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ABSTRACT 
 
 
 

In the last few decades, smart cameras started to play a very important role in 
many applications, such as medical applications, traffic surveillance systems and 
industrial applications.  There are several smart camera architectures reported in the 
literature. However, in this study, we designed our own smart camera architecture and 
named it as “FU-SmartCam”.  

 
This thesis is about the FU-Smart Camera (Fatih University Smart Camera) 

architecture and its application to an industrial problem. Rotation estimation for the 
weft-straightening machines is implemented. 

 
Two different methods are proposed for rotation estimation. The first method is 

based on FFT computation and the second one is based on statistical feature extraction. 
The advantages and disadvantages of both approaches are discussed and illustrated via 
examples. Matlab programs are used to compare the results of rotation estimation 
algorithms. FFT based algorithms also implemented in C and deployed on the Smart 
Camera. 
 
 
Keywords: Smart Cameras, Embedded Systems, 2D FFT, Statistical Feature Extraction, 
Rotation Angle Estimation, Embedded Linux, Texture Analysis. 
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ÖZ 
 
 
 

Son yıllarda, Akıllı kameralar medikal uygulamalar, trafik izleme ve endüstriyel 
uygulamalar gibi bir çok alanda önemli rol oynamaya başladı. Literatürde sunulan bir 
kaç akıllı kamera mimarisi bulunmaktadır, ancak bu uygulamada biz FU-SmartCam 
diye adlandırılan kendi mimarimizi dizayn ettik.  

Bu tez FU-SmartCam (Fatih Üniversitesi Akıllı Kamera) mimarisi ve endüstrideki 
uygulaması üzerinedir. Atkı düzeltme makinası için kumaştaki dönmeyi hesaplayan 
uygulama gerçekleştirilmiştir.  

Kumaş resmindeki dönme açısının hesaplanması için iki metot önerildi. FFT ve 
statiksel özelliklere dayanan iki yöntemin avantaj ve dezavantajları tartışıldı ve örnekler 
ile gösterildi. Dönme açısının hesaplanmasında ve deney sonuçlarının 
karşılaştırılmasında Matlab programı kullanıldı. Ayrıca FFT metoduna dayalı yöntem C 
programlama dili ile yazıldı ve Akıllı Kamera üzerinde test edildi. 
 
 
 
Anahtar Kelimeler: Akıllı Kameralar, Gömülü Sistemler, 2D FFT, Statiksel Özellik 
Çıkarımı, Dönme Açısı Hesaplama, Gömülü Linux, Kumaş Analizi. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

A “smart camera” is generally a video camera combined with a computer vision 

system in a tiny package. An embedded system is designed for a specific function and 

performs pre-defined tasks. There are several reasons for designing a smart camera as 

embedded, such as cost, simplicity, integration, and reliability (Yaghmour, 2003). 

Smart cameras are equipped with a high-performance onboard computing 

communication video capture units. By providing access to more than one view through 

cooperation among each camera, networks of embedded cameras can potentially support 

more complex and challenging applications such as smart rooms, surveillance systems, 

tracking of an object or people, and motion analysis than a single camera (Bramberger et 

al., 2006).  

 The question often comes up as to what is the most appropriate approach to take in 

implementing a vision system using a smart camera or sort of PC based approach. It is very 

obvious that microprocessors, DSPs and FPGAs are getting faster; therefore, smart cameras 

are getting more powerful and “smarter”. Thus, they can compete with the more 

“traditional” approaches to machine vision systems (Maclean, 2005). 
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An important property of the smart camera is that it reduces the amount of data 

generated to the ‘data of interest’ by making use of embedded image processing 

algorithms. The data of interest might be, for example, defective areas of the product being 

inspected. Multiple cameras can route their data to a single frame grabber and computer 

due to the reduction of data stream, thus dramatically reducing system cost and increasing 

inspection bandwidth capability. This smart camera also makes use of an on-board 

microprocessor for communication with the inspection systems’ host computer and for 

internal control functions (Sousa, 2003). 

.The main part of the smart cameras is embedded system. Embedded system is 

desingned for specific tasks and completely dedicated to the device or system it controls. 

Unlike a general-purpose PC, an embedded system performs one or a few pre-defined 

tasks, usually with very specific requirements. Since the system is dedicated to specific 

tasks, design engineers can optimize it, reducing the size and cost of the product. 

Embedded systems are often mass-produced, benefiting from economies of scale 

(Yaghmour, 2003). 

The reason of using Linux operating systems (OS) is that it can be used in many 

computers and embedded systems. Linux is interchangeably used in reference to the Linux 

kernel, a Linux system, or a Linux distribution. Other advantages of Linux are modularity 

and structure, ease of fixing, extensibility, configurability and error recovery. When source 

access problems arise, the open source and free software communities seek to replace the 

"faulty" software with an open source version providing similar capabilities. This contrasts 

with traditional embedded OSes, where the source code isn't available or must be purchased 

for very large sums of money. The advantages of having the code available are the 

possibility of fixing the code without exterior help and the capability of digging into the 

code to understand its operation. Fixes for security weaknesses and performance 

bottlenecks, for example, are often very quickly available once the problem has been 

publicized. With traditional embedded OSes you have to contact the vendor, alert them of 

the problem, and await a fix. Most of the time, people simply find workarounds instead of 

waiting for fixes. For sufficiently large projects, managers even resort to purchasing access 

to the code to alleviate outside dependencies (Yaghmour, 2003).  
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An embedded Linux system simply designates an embedded system based on the 

Linux kernel and does not imply the use of any specific library or user tools with this 

kernel. An embedded Linux distribution may include: a development framework for 

embedded Linux systems, various software applications tailored for usage in an embedded 

system, or both. Development framework distributions include various development tools 

that facilitate the development of embedded systems. This may include special source 

browsers, cross-compilers, debuggers, project management software, boot image builders, 

and so on. These distributions are meant to be installed on the development host. Tailored 

embedded distributions provide a set of applications to be used within the target embedded 

system. This might include special libraries, executions, and configuration files to be used 

on the target. A method may also be provided to simplify the generation of root file systems 

for the target system (Yaghmour, 2003). 

In the texture industry, there is a well known mechanism which is weft-straightening 

machine. This mechanism simply straights the texture if the texture pattern goes wrong. 

There can be two types of distortion; the first one is linear distortion and the second one is 

circular distortion. This distortion has to be fixed just before drying of the texture. In 

industry this problem was solved by using optical systems. The aim of this thesis is to find 

a suitable algorithm for such a system and build smart camera architecture.  

We study for the rotation estimation algorithms on a texture and their implementation 

in a Vortex86 SBC (Single Board Computer) to overcome the problem that I mentioned 

above.  

The second chapter consists of the literature survey on the smart camera architectures, 

position estimation and texture analysis. Although there are many researches in the area of 

pattern recognition for rotation invariant systems, there are very few study on the rotation 

estimation for the textures. We tried two different methods for rotation estimation on a 

texture image. 

The third chapter proposes the Fast Fourier Transform (FFT) based rotation 

estimation algorithm. The rotation on texture image is equivalent to rotation on the FFT. 

Based on this idea, we observe the brightest point in the image and get the brightest point 
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location. Since the brightest point on the FFT will turn with rotation, we can estimate the 

rotation angle by tracing this brightest point location.    

Fourth chapter introduces the statistical based rotation estimation algorithm. The 

statistical features are observed with the rotation. The aim of the algorithm is to find the 

linear change with the rotation. Two parameters modeling and six parameters modeling are 

compared to each other. Chapter five is devoted to experimental setup for testing the FFT 

and statistical based rotation estimation algorithms as well as real time embedded Linux 

installation. Chapter six shows the experimental result of the FFT and statistical based 

rotation estimation approximations. Finally, conclusions for the thesis are presented in 

chapter seven. 
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CHAPTER 2 
       

       

LITARATURE SURVEY   
       

       

       

Smart Cameras as an embedded system are greatly used in many applications, including 

industrial inspection, robot vision, traffic control, automotive control, surveillance, security 

systems and medical imaging. This thesis mainly covers two main topics which are smart camera 

architectures and rotation estimation algorithms for texture images.  The smart cameras and their 

architectures will be in the first section. Following sections contain pose estimation (position 

estimation) and texture analysis.  

 

2.1 SMART CAMERA AND ITS ARCHITECTURES IN LITERATURE 

2.1.1 Smart Cameras as Embedded Systems  

Smart Cameras can be expressed as high performance embedded systems combining video 

sensing, video processing, and communicating within a single device. Wayne Wolf and 

colleagues described the required computing and communication performance and the real-time 

and quality-of-service (QoS) requirements of the image-processing algorithms executed on a 

single embedded smart camera (Wolf et al., 2002) 

An important study on gesture recognition with real-time smart cameras is designed by Lu 

(Lu, 2004). The designed smart camera project can be implemented not only for gesture  
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recognition but also detecting and tracking of objects. They proposed two background 

elimination algorithms in the dissertation to increase the performance of smart camera 

systems in changing background and varying lighting condition environment. The software 

implementation of the smart camera systems is then taken up, including the selection of 

platforms and the optimization process that leads to a five times speedup. New hardware 

architecture is then proposed that it can provide more processing power than current 

platforms. The new architecture exhibits more than ten times average speedup over a 

traditional architecture. 

Foote and Kimber proposed a FlyCam practical panoramic video and automatic 

camera control (Foote and Kimber, 2000).  They improve computationally and substantially 

inexpensive methods for panoramic video imaging. Combining images, digitally, from an 

array of inexpensive video cameras results in a wide-field panoramic camera from 

inexpensive ready to use hardware. They present methods that both correct lens distortion 

and seamlessly merge images into a panoramic video image. Electronically selecting a 

region of this, results in a rapidly steerable “virtual camera”. Since the camera is fixed with 

respect to the background, simple motion analysis can be used to track objects and people 

of interest. They present methods of motion analysis and algorithms for automatic camera 

control that imitate the behavior of a human operator, using inexpensive and widely 

available hardware. 

Sato et al. present a paper which describes the design and implementation of a hybrid 

intelligent surveillance system consisting of an embedded system and a personal computer 

PC-based system (Sato et al., 2006). The embedded system performs some of the image 

processing tasks and sends the processed data to a PC. The PC tracks persons and 

recognizes two-person interactions by using a grayscale side-view image sequence captured 

by a stationary camera. 

Since the computer vision and image processing algorithms need computational 

powered computer systems, there are various architectures based on this approach. The best 

known smart camera architectures will be explained in this subsection. 
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2.1.2 Philips “Inca” Camera Architecture 

The company of Philips developed a smart camera for machine vision. The Philips 

Inca (Intelligent Camera) is widely used in industry, automotive and surveillance systems. . 

The role of a digital intelligent camera in automating industrial photogrammetry is 

presented by Dold (Dold, 1998) and a face recognition system is studied with Philips Inca 

(Broers et al., 2004).  This camera houses a CMOS sensor, a parallel processor for pixel 

crunching and a DSP for the high level programs. The architecture will be explained with 

the application of face recognition. 

Harry Broers et al. proposed a face recognition algorithm with Philips SmartCam 

(Broers et al., 2004). Face recognition is divided into two parts. Face detection and face 

recognition. The detection part is face-oriented (high level processing). It finds the faces in 

the scene. In order to reduce the amount of work, the image needs to be pre-processed by a 

number of low level operations. These operations are at pixel level. This allows massive 

data-level parallelism. Thus, detection part involves low level and high level image 

processing (IP).  

 

 Figure 2.1 Philips Inca camera. 
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The recognition part uses high level IP and only works on a few faces per second. On 

the other hand, it has a high amount of operations in an iterative way while a database is 

scanned.  

The different points of view of these algorithms tasks (low and high level IP) need a 

dual processor approach. The low level IP approach of the face detection part is mapped on 

a massively parallel processor “Xetal” working in SIMD (Single Instruction Multiple Data) 

mode (Hjelmas and Low, 2001). The high level IP approach of the detection and 

recognition part is mapped on a high-performance fully programmable DSP core 

“Trimedia” (Trimedia, 2003).  

Two processors can be simply connected in series (in Figure 2.2). The Xetal performs 

face detection pre-processing. The Xetal is a low power high performance digital signal 

processor (Kleihorst et al., 2001). The Trimedia performs the actual face detection and 

recognition. For more information about the implementation of Trimedia processor one can 

look at the study of Slavenburg (Slavenburg, 1996). For the face detection, Haar-Face 

detection algorithm is initially applied to captured image (Leinhart and Maydt, 2002). The 

initial point of the problem is to detect (segment) the skin colored regions in the image 

(Majoor, 2000). This algorithm is highly talented to detect even hand drawn faces in the 

different light conditions. Before the image is transferred to the DSP (Trimedia) image is 

pre-processed. First Xetal converts the RGB colored image to a gray level image. Then, 

Xetal performs lighting correction to improve the quality of the image. Xetal also performs 

canny edge processing to reduce the number of faces candidates (Viola and Jones, 2001). 

Consequently, Xetal computes two so-called integral images as described before. One for 

the light corrected image and one for the canny edge image. The Trimedia takes the original 

gray level image and these two integral images from the three communication channels. As 

it is seen, Trimedia processor saves valuable time by using a parallel processor. After all 

possible face candidates are obtained, a grouping algorithm is applied to reduce a group of 

face candidates into one positive detection system. After the faces on the captured images 

are detected, the face recognition is performed.  
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Figure 2.2 Philips Inca architecture. 

Only the normalized images are used for recognition, namely the eyes and part of the 

nose region, covering 96x40 pixels. Hairline, mouth and ears are avoided as they can differ 

because of changing hairstyle, background, shaving conditions and moving lips. The 

registered images are forwarded directly to the input of the neural network in the 

recognition phase after being normalized in gray-level. For face recognition, a Radial Basis 

Function (RBF) neural network is used. 

Hammerstrom and Lulich present the design rationale for CNAPS, a specialized one-

dimensional (1-D) processor array developed by Adaptive Solutions Inc. (Hammerstrom 

and Lulich, 1996). They discuss the problem of Amdahl's law which severely constrains 

special-purpose architectures (Gustafson, 1998). They also discussed specific architectural 

decisions such as the kind of parallelism, the computational precision of the processors, on-

chip versus off-chip processor memory, and-most importantly-the interprocessor 

communication architecture. They argue that, for their particular set of applications, a 1-D 

architecture gives the best “bang for the buck”, even when compared to the more traditional 

two-dimensional (2-D) architecture. Secondly, they describe how several simple algorithms 

map to the CNAPS array. The CNAPS array is described in the Hammerstrom and his 
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colleagues book (Hammerstrom, 1993). Their results show that the CNAPS 1-D array 

offers excellent performance over a range of IP algorithms. They also briefly look at the 

performance of CNAPS as a pattern recognition engine because many image processing 

and pattern recognition problems are closely related. 

2.1.3 Scalable Smart Camera Architecture 

 Michael Bramberger et al. proposed that “The Scalable Smart Camera Architecture” 

is divided into two parts as Hardware and Software (Bramberger et al., 2006). They suggest 

a hardware architecture as seen in Figure 2.3. 

The video sensor represents the first stage in the smart cameras overall data flow. The 

sensor captures incoming light and transforms it into electrical signals that can be 

transferred to processing unit. A CMOS sensor best fulfills the requirements for a video 

sensor. These sensors feature high dynamics due to their logarithmic characteristics and 

provide on-chip ADCs and amplifiers. 

 

 

 Figure 2.3 Hardware architecture of the scalable smart camera. 
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The second stage in the overall data flow is the processing unit. Due to the high 

performance on-board image and video processing, the requirements on the computing 

performance are very high. A rough estimation results in 10 GIPS computing performance. 

These performance requirements together with the various constraints of the embedded 

system solution are fulfilled with digital signal processors (DSP). The smart camera is 

equipped with two TMS320C6415 DSPs from Texas Instruments (TI) running at 600 MHz 

(Markandey, 2002). Both DSPs are loosely coupled via the on-board PCI bus, while each 

processor is connected to its own local memory. The various tasks are statically mapped to 

the DSPs to avoid overhead induced by a global scheduler. The video sensor is connected 

to one DSP via a FIFO memory to relax the timing between sensor and DSP. The image is 

then transferred into the DSP’s external memory and via the PCI bus to the other 

components (DSP and network processor). 

The final stage of the smart camera’s overall data flow is represented by the 

communications unit. The unit is primarily composed of an Intel XScale IXP425 processor 

which directly manages most onboard communications like PCI, Ethernet, USB, and serial 

communications. Wireless LAN and GSM/GPRS are connected using a generic interface. 

This interface enables the connection of various peripherals or communication systems 

with low effort. 

The software architecture of the smart camera is basically divided into two parts; 

DSPs configured to basically run computation intensive tasks like video compression 

(MPEG-4 simple profile), image analysis, or some parameters calculation. Since 

reconfigurability and scalability are important issues, the DSPs are running on Texas 

Instruments’ Reference Framework 5 (RF5) in combination with TI’s XDAIS algorithm 

standard, which enables the exchange and reconfiguration of algorithms during runtime. All 

reconfiguration and control actions are controlled by the system control processor. XScale 

processor is primarily used for system control and communication purposes. Therefore a 

standard operating system makes the development of internal and external communication 

services like web-services, proprietary control connections, or PCI- communications easier. 

Hence (Embedded-) Linux has been chosen to be used. XScale processor is primarily used 

for system control and communication purposes.  
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2.2 LITERATURE SURVEY ON POSE ESTIMATION 

Pose estimation and object matching are two classical problems in pattern recognition 

and computer vision. Pose (Position) of rotated object is calculated relative to an original or 

known object. Similarly, in object matching an object database is needed such that the 

unknown object is matched to one candidate object in this database. These methods are 

widely used automated manufacturing and robotics. Since we are looking for the rotation 

estimation, we will focus on this pose estimation rather than object matching.   

Cem Unsalan proposed a least squares based parameter estimation method depending 

on implicit polynomial (IP) representations directly (Unsalan, 2007). This approach can be 

applied to both 2D and 3D implicit polynomial representation. Implicit Polynomial 

representations have many desirable properties over parametric representations. In this 

paper, the IP fit method which is suggested by Tasdizen was used. (Tasdizen, 2000). Object 

representation with IP is based on finding appropriate parameters. The pose estimation and 

object matching methods depends upon IP representation of the original and rotated 

objects. Second order and fourth order IP is used in this study. It is stated that the increment 

of the fit order start to capture the effects of the disturbance more, so increasing the degree 

of the polynomial decrease the performance. It is not possible to give a specific fit order 

that performs best under colored noise, missing points, or affine transformation. Finally, it 

is claimed that fit order should be neither high nor low. 

Marques et al. proposed an algorithm for the optimal alignment of a pair of 2D shapes 

defined by point sequence (Marques et al., 1997). The proposed algorithm provides closed-

form expressions for the estimation of the initial point, scale, and pose parameters. In this 

study, a shape is taken as a reference image. Then, this image is rotated with a certain 

degree and the rotation of the image is estimated. The experimental results of the study 

show that the proposed method provides reliable estimates for the unknown parameters 

even under strong shape deformations. For example, no error is observed in the initial point 

estimates in the tests presented in the study. It is also concluded that the shape alignment 



 13

algorithm proposed in the paper performs better than the Hough transform when applied to 

the same data (Illingworth and Kittler, 1988). 

An important problem is that a mobile robot exploring an unknown environment has 

no absolute frame of reference for its position, other than features it detects through its 

sensors. Lu and Milios developed two new iterative algorithms to register a range scan to a 

previous scan so as to compute relative robot positions in an unknown environment (Lu and 

Milios, 1997). The first algorithm is based on matching data points with tangent directions 

in two scans and minimizing a distance function in order to solve the displacement between 

the scans. The second algorithm establishes correspondences between points in the two 

scans and then solves the point-to-point least-squares problem to compute the relative pose 

of the two scans.  

An approach for pose estimation based on multi-camera system with known internal 

camera parameters is proposed by Frahm et al (Frahm et al., 2004). They only assume for 

the multi-camera system that the cameras of the system have fixed orientations and 

translations between each other. In contrast to existing approaches for reconstruction from 

multi-camera systems they introduce rigid motion estimation for the multi-camera system 

itself using all information of all cameras simultaneously even in the case of non 

overlapping views of the cameras. Furthermore they introduce a technique to estimate the 

pose parameters of the multi-camera system automatically. 

Real-time 3-D pose estimation is useful in a variety of situations. In manufacturing 

environments, it can be used in feedback control loops to allow a mechanism (e.g. a robot) 

to perform an operation (e.g. grasping) on a moving part. In the area of Human Computer 

Interaction (HCI), real-time pose estimation can be useful for tracking movements of a 

body part for subsequent interpretation as input to a computer. In medicine, a variety of 

problems involve the need to register pre-operative, volumetric data with the corresponding 

anatomy of the actual patient. A real-time 3-D pose estimation approach is described in the 

paper which is written by David A. Simon et al. (Simon et al, 1994). 

To be able to increase the performance of the pose estimation algorithms, Gregory 

Shakhnarovich et al. proposed fast pose estimation algorithm with parameter sensitive 
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hashing (Shakhnarovich et al., 2003). They present a new algorithm that learns a set of 

hashing functions that efficiently index examples relevant to a particular estimation task. 

Their algorithm extends a recently developed method for locality-sensitive hashing, which 

finds approximate neighbors in time sublinear in the number of examples. This method 

depends critically on the choice of hash functions; they show how to find the set of hash 

functions that are optimally relevant to a particular estimation problem. Experiments 

demonstrate that the resulting algorithm, which is called Parameter-Sensitive Hashing, can 

rapidly and accurately estimate the articulated pose of human figures from a large database 

of example images. 

2.3 LITERATURE SURVEY ON TEXTURE ANALYSIS 

Texture analysis methods are used in many applications. These applications can 

counted as medical image processing, automated inspection, document processing, and 

remote sensing. There are many researches in literature about texture analysis. Texture 

analysis studies such as texture classification, segmentation, defect detection and texture 

analysis methods will be given in this section.  

2.3.1 Texture Classification 

Almost every computer vision and image processing book contains significant part 

devoted to texture analysis (Sonka et al., 1993). Irene Epifanio and Guillermo Ayala 

proposed a global framework for texture classification based on random closed set theory 

(Epifanio and Ayala, 2002). In this approach, a binary texture is considered as an outcome 

of a random closed set. Some distributional descriptors of this stochastic model are used as 

texture features in order to classify the binary texture. If a grayscale texture has to be 

classified, then the original texture is reduced to a multivariate random closed set where 

each component (a different random set) corresponds with those pixels verifying a local 

property. Again, some functional descriptors of the multivariate random closed set defined 

from the texture can be used as texture features to describe and classify the grayscale 

texture. 
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Chellappa and Chatterjee present two feature extraction methods for the classification 

of textures using two-dimensional (2-D) Markov random field (MRF) models (Chellappa, 

and Chatterjee, 1985). It is assumed that the given M x M texture is generated by a 

Gaussian MRF model. In the first method, the least square (LS) estimates of model 

parameters are used as features. In the second method, using the notion of sufficient 

statistics, it is shown that the sample correlations over a symmetric window including the 

origin are optimal features for classification. Simple minimum distance classifiers using 

these two feature sets yield good classification accuracies for a seven class problem.  

Porter and Canagarajah proposed novel feature extraction schemes for texture 

classification, which are wavelet Gabor filter and GMRF based schemes (Porter and 

Canagarajah, 1997). The schemes are shown to give a high level of classification accuracy 

compared to most existing schemes, using both fewer features (four) and a smaller area of 

analysis (16 x 16). Furthermore, unlike most existing schemes, the proposed schemes are 

shown to be rotation invariant and demonstrate a high level of robustness to noise. The 

performances of the three schemes are compared, indicating that the wavelet-based 

approach is the most accurate, exhibits the best noise performance and has the lowest 

computational complexity.  

Another classification method using color, texture and regions is presented by Cheng 

and Chen (Cheng and Chen, 2003). Image-based features related to color and local edge 

patterns are used to prune irrelevant database images for each query image. The proposed 

region matching is then applied to find the match to the query image from among the set of 

candidate images in the database. The dissimilarity of each pair of images can be calculated 

on the basis of the matching results. Finally, all the database images in the candidate set can 

be sorted by ascending dissimilarity values. The main contribution of this paper is to select 

proper features for representing color, texture and region, which, in turn, are used to 

achieve effective classification results. More important, all features used in the proposed 

method, no matter color or texture, are presented in the simple form of histogram, yet 

leading to effective results.  
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A framework for comparing texture classification algorithms is proposed by Smith 

and Burns (Smith and Burns, 1997). The framework contains several suites of texture 

classification problems, a standard functionality for algorithms, and a method for 

computing a score for each algorithm. They use the framework to demonstrate the peaking 

phenomenon in texture classification algorithms. 

2.3.2 Texture Segmentation 

Sun et al. proposed a multiscale Bayesian texture segmentation algorithm that is 

based on a complex wavelet domain hidden Markov tree (HMT) model and a hybrid label 

tree (HLT) model (Sun et al., 2004). The HMT model is used to characterize the statistics 

of the magnitudes of complex wavelet coefficients. The HLT model is used to fuse the 

interscale and intrascale context information. In the HLT, the interscale information is 

fused according to the label transition probability directly resolved by an EM algorithm. 

The intrascale context information is also fused so as to smooth out the variations in the 

homogeneous regions.  

Panda and Chatterji present a texture segmentation algorithm based on the multi-

channel filtering theory (Panda and Chatterji, 1997). The channels are characterized by a 

bank of Gabor like tuned modulated basis filters. They chose scale changeable exponential 

bases of compact support to derive such filters. It is seen that the tuned modulated basis 

filters closely approximate the Gabor elementary function. Perfect reconstruction of the 

input image from its filtered images is shown. Computation and storage requirements are 

considerably reduced. Texture features are obtained by subjecting each (selected) filtered 

image to a nonlinear transformation and computing a measure of "energy" in a window 

around each pixel.  

An adaptive computational model for texture segmentation is proposed by Caelli 

(Caelli, 1998). Extensions to current models for texture segmentation are presented in the 

study. The underlying detector (filter) mechanisms are allowed to adapt to the incoming 

signal in terms of their dynamical response range and associativities. This system 

converges on new “texton” profiles of minimal dimensionality that are used to classify 

texture regions by a minimum distance classifier in the texture feature space. These three 
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processes of convolution, cooperativity, and classification are individually analyzed and 

compared with some observations from human texture discrimination experiments. 

Thomas Hofmann et al. present a novel optimization framework for unsupervised 

texture segmentation that relies on statistical tests as a measure of homogeneity (Hofmann 

et al., 1998) Texture segmentation is formulated as a data clustering problem based on 

sparse proximity data. Dissimilarities of pairs of textured regions are computed from a 

multiscale Gabor filter image representation. They discuss and compare a class of 

clustering objective functions which is systematically derived from invariance principles. 

As a general optimization framework, they propose deterministic annealing based on a 

mean-field approximation. The canonical way to derive clustering algorithms within this 

framework as well as an efficient implementation of mean-field annealing and the closely 

related Gibbs sampler are presented.  

2.3.3 Pattern Regularity and Finding Structural Defects  

D. Chetverikov gives a summary of our research on pattern regularity (Chetverikov, 

2000). Periodic structures are perceived by humans as regular in a wide range of viewing 

angles. This observation motivates the development of a regularity based feature vector 

whose affine invariance is justified theoretically and tested experimentally. The vector is 

derived from the interaction map of a pattern. Several alternative but closely related 

definitions of the interaction map are discussed. The maximal regularity, a component of 

the feature vector, is shown to be consistent with human judgment on regularity. This 

feature can be implemented as a run filter, allowing for regularity based image filtering. 

Three applications of the regularity approach are presented. First, it is used for affine-

invariant texture classification. Then, detection of periodic structures in aerial images is 

demonstrated. Finally, the texture inspection problem is addressed and structural defects are 

found as locations of low regularity.  

Another texture defect detection method is proposed by Dimitry Chetverikov and 

Krisztian Gede (Chetverikov and Gede, 1997). In this paper, it is illustrated that structural 

texture imperfections of the diverse origin can be detected in the framework of a novel 

approach based on the FBIM structural filtering. The initial experiments of the study 
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indicate that adaptivity to variations in directionality and size is strongly desirable. The 

FBIM approach is especially proper for detection of structural defects in more or less 

regular textures. It is not efficient when applied to irregular patterns. 

Sezer et al. address the raw textile defect detection problem using independent 

components approach with insights from human vision system (Sezer et al, 2007). Human 

vision system is known to have specialized receptive fields that respond to certain type of 

input signals. Orientation-selective bar cells and grating cells are examples of receptive 

fields in the primary visual cortex that are selective to periodic- and aperiodic-patterns, 

respectively. Regularity and anisotropy are two high-level features of texture perception, 

and they assume that disruption in regularity and/or orientation field of the texture pattern 

causes structural defects. In the paper, it is observed that independent components extracted 

from texture images give bar or grating cell like results depending on the structure of the 

texture.  

2.3.4 Texture Analysis Methods  

Tuceryan and Jain proposed that distinguishing the perceived qualities of texture in 

an image is an important step towards building mathematical models for texture (Tuceryan 

and Jain, 1998). The intensity variations in an image which characterize texture are 

generally due to some underlying physical variation in the scene (such as pebbles on a 

beach or waves in water). Modeling this physical variation is very difficult, so texture is 

usually characterized by the two-dimensional variations in the intensities present in the 

image. This explains the fact that no precise, general definition of texture exists in the 

computer vision literature. In spite of this, there are a number of intuitive properties of 

texture which are generally assumed to be true. 

The texture analysis methods are divided into four main topics which are Statistical 

Methods, Geometrical Methods, Model Based Methods and Signal Processing Methods. 
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2.3.4.1 Statistical Methods 

The use of statistical methods is very early researches proposed in machine vision 

literature. In statistical methods literature, there are two subtopics which are co-occurrence 

matrix and autocorrelation (Tuceryan and Jain, 1998). 

Spatial gray level co-occurrence estimates image properties related to second-order 

statistics. Haralick et al. suggested the use of gray level co-occurrence matrices (GLCM) 

which have become one of the most well-known and widely used texture features (Haralick 

et al., 1973). The GxG gray level co-occurrence matrix dP  for a displacement vector 

),( yx ddd =  is defined as follows. The entry (i, j) of dP  is the number of occurrences of 

the pair of gray levels i and j which are a distance d apart. Formally, it is given as 

),( jiPd  = | {((r, s), (t, v)): I(r, s) =i, I (t, v) =j}|          (2.3.1) 

 

 

 

Figure 2.4 Interrelation between various second-order statistics and 

input image. 

Where (r, s),(t, v)∈N×N,  (t, v)=(r+ xd , s+ yd ) and |.| is the cardinality of a set. 
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As a property of a co-occurrence matrix, it is not symmetrical but a symmetric matrix 

can be computed as;  

dd PPP −+=                   (2.3.2) 

They proposed a number of useful texture features that can be computed from the co-

occurrence matrix. Table 2.1 lists some of these features. In the list, xμ and yμ , are the 

means and, xσ  and yσ  are the standard deviations of )(xPd  and )(yPd  where, 

∑
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d yiyP         (2.3.3) 

The co-occurrence matrix features suffer from a number of difficulties. There is no 

well established method of selecting the displacement vector d and computing and 

computing co-occurrence matrices for different values of d is not feasible. For a given d, a 

large number of features can be computed from the co-occurrence matrix. This means that 

some sort of feature selection method must be used to select the most relevant features. The 

co-occurrence matrix-based texture features have also been primarily used in texture 

classification tasks and not in segmentation tasks. 

Table 2.1 Some texture features from gray level co-occurrence matrices. 
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An important property of many textures is the repetitive nature of the placement of 

texture elements in the image. The autocorrelation function of an image can be used to 

assess the amount of regularity as well as the fineness/coarseness of the texture present in 

the image. Formally, the autocorrelation function of an image I (x, y) is defined follows. 
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This function is related to the size of the texture primitive (i.e. the fineness of the 

texture). If the texture is coarse, then the autocorrelation function will drop off slowly. 

Otherwise, it will drop off very rapidly. For regular textures, the autocorrelation function 

will exhibit peaks and valleys. 

The autocorrelation function is also related to the power spectrum of the Fourier 

transform (see Figure 2.5). Consider the image function in the spatial domain I(x, y) and its 

Fourier Transform F (u, v). The quantity 2),( vuF  is defined as the power spectrum where 

|.| is modulus of the complex number.  

        

Figure 2.5 Texture features from the power spectrum;                                                

(a) a texture image     (b) power spectrum of the image. 

  



 22

2.3.4.2 Geometrical Methods 

The class of texture analysis methods that falls under the heading of geometrical 

methods is characterized by their definition of texture as being composed of “texture 

elements” or primitives (Tuceryan and Jain, 1990). The method of analysis usually depends 

upon the geometric properties of these texture elements. Once the texture elements are 

identified in the image, there are two major approaches to analyzing the texture. One 

computes statistical properties from the extracted texture elements and utilizes these as 

texture features. The other tries to extract the placement rule that describes the texture. The 

latter approach may involve geometric or syntactic methods of analyzing texture. 

Tuceryan and Jain proposed the extraction of texture tokens by using the properties of 

the Voronoi tessellation of the given image (Tuceryan and Jain, 1990). Voronoi tessellation 

has been proposed because of its desirable properties in defining local spatial 

neighborhoods and because the local spatial distributions of tokens are reflected in the 

shapes of the Voronoi polygons. 

Zucker has proposed a method in which he regards the observable textures (real 

textures) as distorted versions of ideal textures (Zucker, 1976). The placement rule is 

defined for the ideal texture by a graph that is isomorphic to a regular or semi regular 

tessellation. These graphs are then transformed to generate the observable texture. Which of 

the regular tessellations is used as the placement rule is inferred from the observable 

texture. This is done by computing a two-dimensional histogram of the relative positions of 

the detected texture tokens. 

Another approach to modeling texture by structural means is described by Fu (Fu, 

1982). In this approach the texture image is regarded as texture primitives arranged 

according to a placement rule. The primitive can be as simple as a single pixel that can take 

a gray value, but it is usually a collection of pixels. The placement rule is defined by a tree 

grammar. A texture is then viewed as a string in the language defined by the grammar 

whose terminal symbols are the texture primitives. An advantage of this method is that it 

can be used for texture generation as well as texture analysis.  
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2.3.4.3 Model Based Methods 

Model based texture analysis methods are based on the construction of an image 

model that can be used not only to describe texture, but also to synthesize it. The model 

parameters capture the essential perceived qualities of texture. 

Ohanian and Dubes have studied the performance of various texture features 

(Ohanian and Dubes, 1992). They studied the texture features with the performance criteria 

“which features optimized the classification rate?” They compared four fractal features, 

sixteen co-occurrence features, four Markov random field features, and Gabor features. In 

this study, it is used Whitney’s forward selection method for feature selection. The 

evaluation was done on four classes of images: Gauss Markov random field images, fractal 

images, leather images, and painted surfaces (Whitney, 1971). 

2.3.4.4 Signal Processing Methods 

Psychophysical research has given evidence that the human brain does a frequency 

analysis of the image. Texture is especially suited for this type of analysis because of its 

properties. This subsection will review the various techniques of texture analysis that rely 

on signal processing techniques. Most techniques try to compute certain features from 

filtered images which are then used in either classification or segmentation tasks.  

Spatial domain filters are the most direct way to capture image texture properties. 

Earlier attempts at defining such methods concentrated on measuring the edge density per 

unit area. Fine textures tend to have a higher density of edges per unit area than coarser 

textures. The measurement of edgeness is usually computed by simple edge masks such as 

the Robert’s operator or the Laplacian operator. The two orthogonal masks for the Robert’s 

operator and one digital realization of the Laplacian are given below. 
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Laplacian Operator, 
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The edgeness measure can be computed over an image area by computing a 

magnitude from the responses of Roberts’s masks or from the response of the Laplacian 

mask.  

Malik and Perona proposed spatial filtering to model the preattentive texture 

perception in human visual system (Malik and Perona, 1990). Their proposed model 

consists of three stages: (a) convolution of the image with a bank of even-symmetric filters 

followed by half-wave rectification, (b) inhibition of spurious responses in a localized area, 

and (c) detection of the boundaries between the different textures. The even-symmetric 

filters they used consist of differences of offset Gaussian (DOOG) functions. The half-wave 

rectification and inhibition (implemented as leaders-take-all strategy) are methods of 

introducing nonlinearity into the computation of texture features. Nonlinearity is needed in 

order to discriminate texture pairs with identical mean brightness and identical second-

order statistics. The texture boundary detection is done by straightforward edge detection 

method applied to the feature images obtained from stage (b). This method works on a 

variety of texture examples and is able to discriminate natural as well as synthetic textures 

with carefully controlled properties.  

Unser and Eden have also looked at texture features that are obtained from spatial 

filters and a nonlinear operator (Unser and Eden, 1990). Reed and Wechsler review a 

number of spatial/spatial frequency domain filter techniques for segmenting textured 

images (Reed and Wechsler, 1990). 

2.3.4.5 Gabor and Wavelet Methods 

Gabor and Wavelet methods are the most commonly methods used in texture analysis 

(Tuceryan and Jain, 1998). The Gabor and Wavelet method is produced from the window 
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Fourier Transform. The Fourier transform is an analysis of the global frequency content in 

the signal. Many applications require the analysis to be localized in the spatial domain. This 

is usually handled by introducing spatial dependency into the Fourier analysis. The 

classical way of doing this is through the window Fourier Transform. The window Fourier 

Transform (or short-time Fourier Transform) of a one-dimensional signal f(x) is defined as 

follows: 

dxexwxfuF uxj
w

πζζ 2)()(),( −
∞

∞−
∫ −=                (2.3.7) 

When the window function is Gaussian, the transform becomes a Gabor transform. 

The limits on the resolution in the time and frequency domain of the window Fourier 

Transform are determined by the time-bandwidth product or the Heisenberg uncertainty 

inequality given by: 

π4
1

≥ΔΔ ut              (2.3.8) 

Once a window is chosen for the window Fourier Transform, the time-frequency 

resolution is fixed over the entire time-frequency plane. To overcome the resolution 

limitation of the window Fourier Transform, one lets the tΔ  and uΔ vary in the time-

frequency domain. Intuitively, the time resolution must increase as the central frequency of 

the analyzing filter is increased. That is, the relative bandwidth is kept constant in a 

logarithmic scale. This is accomplished by using a window whose width changes as the 

frequency changes. 

Recall that when a function )(xf  is scaled in time by a  which is expressed as )(atf , 

the function is contracted if 1>a  and is expanded when 1<a  . Using this property, the 

wavelet transform can be written as: 
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Figure 2.6 The segmentation results using moment based texture features.                 

(a) A texture pair consisting of reptile skin and herringbone pattern from 

the   Brodatz album. (b) The resulting segmentation. 

Here, the impulse response of the filter bank is defined as the scaled versions of the 

same prototype function )(th . Now, setting in Equation (2.2.8); 

utjetwth π2)()( −=            (2.3.10) 

The wavelet model for the texture analysis is obtained. Usually scaling factor a will 

be based on the frequency of the filter. 

Daugman proposed the use of Gabor filters in the modeling of the receptive fields of 

simple cells in the visual cortex of some mammals (Daugman, 1980). The proposal to use 

the Gabor filters in texture analysis was made by Turner (Turner, 1986). Jain and 

Farrokhnia used it successfully in segmentation and classification of textured images (Jain 

and Farrokhnia, 1991). Gabor filters have some desirable optimality properties. Daugman 

showed that for two dimensional Gabor functions, the uncertainty relations 4/π≥ΔΔ ux  

and 4/π≥ΔΔ vy  attain the minimum value. Here xΔ and yΔ  are effective widths in the 

spatial domain. Furthermore, uΔ  and vΔ are effective bandwidths in the frequency domain.  

A two-dimensional Gabor function consists of a sinusoidal plane wave of a certain 

frequency and orientation modulated by a Gaussian envelope. It is given by,  
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where 0u and φ  are the frequency and the phase of sinusoidal wave. The values xσ  

and yσ  are the sizes of the Gaussian envelope in the x and y directions, respectively. The 

Gabor function at an arbitrary orientation 0θ  can be obtained from Equation (2.3.11) by a 

rigid rotation of the x-y plane by 0θ . 

The Gabor filter is a frequency and orientation selective filter. This can be seen from 

the Fourier domain analysis of the function. When the phase φ  is 0, the Fourier transform 

of the resulting even-symmetric Gabor function ),( yxf  is given by 
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where )2/(1 xu πσσ = , )2/(1 yv πσσ =  , and yxA σπσ2=  . This function is real-

valued and has two lobes in the spatial frequency domain, one centered around 0u  and 

another centered around 0u− . For a Gabor filter of a particular orientation, the lobes in the 

frequency domain are also appropriately rotated. 
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CHAPTER 3  
 

 

FOURIER TRANSFORM BASED ROTATION ESTIMATION 
ALGORITHM 

 

 

 

To be able to estimate rotation angle on the target image, FFT (Fast Fourier 

Transform) based approximation will be discussed in this section. Also, the definitions of 

Fourier Transform (FT), Fast Fourier Transform (FFT) and Discrete Time Fourier 

Transform (DFT) is discussed in this chapter. 

The Fourier transform is a mathematical method which is used to expand signals into 

a spectrum of sinusoidal components to provide signal analysis and system performance. In 

certain applications the Fourier transform is used for spectral analysis, or for spectrum 

shaping that adjusts the relative contributions of different frequency components in the 

filtered result. In other applications, the Fourier transform is important for its ability to 

decompose the input signal into uncorrelated components, so that signal processing can be 

more effectively implemented on the individual spectral components. Decorrelating 

properties of the Fourier transform are important in frequency domain adaptive filtering, 

subband coding, image compression, and transform coding.  

Classical Fourier methods such as the Fourier series and the Fourier integral are used 

for continuous-time (CT) signals and systems, i.e., systems in which the signals are defined 

at all values of t on the continuum – ∞< t <∞ . A more recently developed set of discrete 

Fourier methods, including the discrete-time (DT) Fourier transform and the Discrete  
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Fourier transform (DFT), are extensions of basic Fourier concepts for DT signals and 

systems. A DT signal is defined only for integer values of n in the range of – ∞< n <∞ .  

Fast Fourier Transform is the decimation-in-time method to speed the computation of 

FT or DFT of a sequence. This method is one of breaking the N-point transform into two 

(N/2)-point transforms, breaking each (N/2)-point transform into two (N/4)-point 

transforms, and continuing the above process until we obtain the two point transform.  FFT 

program, which is written in Matlab, can be found in Appendix A. 

 

3.1 2D DISCRETE FOURIER TRANSFORM (DFT) REPRESENTATION 

The 2D Discrete Fourier Transform is the series expansion of an image function in 

terms of “cosine” image basis function. The definition of the transform and its inverse are 

given as; 
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Brayer illustrated the basis functions for the Fourier Transforms (FT) in his study 

(Brayer, 2006). The main idea of the FT is to represent all images as a summation of 

cosine-like images (see Figure 3.1). 

The images are a pure horizontal cosine of 8 cycles and a pure vertical cosine of 32 

cycles. It is very important to figure out that FT for each image has a single component, 

represented by 2 bright spots symmetrically placed about the center of the FT image. The 

center of the image is the origin of the frequency coordinate system. The u-axis runs left to 

right through the center and represents the horizontal component of frequency. The v-axis 

runs bottom to top through the center and represents the vertical component of frequency. 

In both cases there is a dot at the center that represents the (0, 0) frequency term or average 
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value of the image. Images usually have a large average value (like 128) and lots of low 

frequency information so FT images usually have a bright blob of components near the 

center. Notice that high frequencies in the vertical direction will cause bright dots away 

from the center in the vertical direction. And those high frequencies in the horizontal 

direction will cause bright dots away from the center in the horizontal direction. 

 

       Figure 3.1 High and low frequency information of sinusoidal pattern image. 

There is another example in Figure 3.2, the image composed of 2D cosines with both 

horizontal and vertical components. The one on the left has 4 cycles horizontally and 16 

cycles vertically. The one on the right has 32 cycles horizontally and 2 cycles vertically 

(Note: It can be seen a gray band when the function goes through gray = 128 which 

happens twice/cycle). It is obvious to see the symmetry on the FTs of the images. For all 

real images the FT is symmetrical about the origin so the 1st and 3rd quadrants are the 

same and the 2nd and 4th quadrants are the same. If the image is symmetrical about the x-

axis (as the cosine images are) 4-fold symmetry results. 

After the basis function explanations, we would like to show the rotation and edge 

effects on the FT of the images. 
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         Figure 3.2 FT of a more complicated pattern image.    

 

3.2 ROTOTION AND EDGE EFFECTS ON FOURIER TRANSFORM 

In the text, whenever FT (Fourier Transform) is mentioned, FFT (Fast Fourier 

Transform) should be understood since FFT is used for speeding up the calculations. 

Rotation of the image corresponds the rotation of its FT. To prove this; 

A rotation matrix is defined as; 
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From the Fourier transform definition; 
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Therefore, the rotation of the image results in equivalent rotation of its FT. 
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To be able to see the edge affects on the Fourier transform let us analyze the image 

shown in Figure 3.3. 

 

           Figure 3.3 Edge effect. 

As it is seen in Figure 3.3, the 45 degree rotation has very complicated and undesired 

result on the FT of the image. The horizontal and vertical components occur on the FT. 

This event is known as strong “edge effect” between neighbors of a periodic array. Edge 
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effects are significantly reduced by "windowing" the image with a function that slowly 

tapers off to a medium gray at the edge. The result can be seen in Figure 3.4 

 

Figure 3.4 The windowed image and its FT. 

The ideal case at right-down figure and the real FT can be seen on the left-down 

figure. Although it does not give perfect reduction, it significantly eliminates the horizontal 

and vertical components. There are several kinds of data windowing methods. These are 

Triangle (Fejer, Bartlet), Hamming window, Blackman window, Blackman-Harris window, 

Centered Gaussian, Centered Kaiser-Bessel window (Harris et al., 1978).  

 

3.3 TEXTURE IMAGE AND ITS FOURIER TRANSFORM (FT) ANALYSIS 

Texture image pattern is generally in a periodic format. Therefore, Fourier Transform 

of the image also has the periodic structure. In this subsection, we will explain how FT is 

used to estimate the rotation. 
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3.3.1 Image Size Modification  

Before we compute FT of the image, we must modify the image size to make sure the 

size of the image matrix is square. The reason of size modification is to comply with FFT 

requirements. This modification cuts the texture image from center pixel to previously 

defined size (n). The algorithm is as follows; 

• Get the size of target image. 

• Find the center of the image. 

• Cut the image from center for n size width and n size height 

The aim of getting the size of the target image is to find the image width and height. 

After the width and height is found, the center of the image is can be obtained. Finally, the 

image is cut from center for n sizes to keep the size of the image square. 

  Another important result of the size modification is to convert RGB image to Gray 

level image. Since we are dealing with the pattern, we can omit the color information.  

3.3.2 FFT of the Texture Image 

After we get the square matrix gray-level image, we take the FFT of the texture 

image. Then, we emphasize or de-emphasize the bright points by thresholding the FT of the 

image. The complete Matlab code can be found in Appendix A.  

The image and its Fourier Transform can be seen in Figure 3.5. The rotation of points 

can be seen from the figures. To get a clear response on the figure, we invert the color from 

black to white.  
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Figure 3.5 (a) Rotated texture image and (b) Its FFT. 

3.3.3 Estimating the Rotation from FFT of the image 

In order to estimate rotation from FFT of the image, the following algorithm is proposed. 

• Define a box in the neighbor of the center image. It can be 20-25 pixel depending 

on the image size. 

• Search and find the brightest point. 

• Get the brightest point location (x and y). 

• Compute the angle. 

The box and searching region can be seen from the Figure 3.6. The area “I” represent 

the dc component region, so we omit this region while searching the brightest point. The 

searched area is actually “I`”. The regions of the “I” can be 3-5 pixels depending on the dc 

component size. When we are searching the brightest point, we are actually looking for the 

greatest pixel value of the FFT taken image. Then we get brightest point location and 

compute the rotation angle by applying the following well known formula; 
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Figure 3.6 Determination of the brightest point in the searched region  
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θ ,            (3.3.1) 

where x and y represent the brightest point location. 
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CHAPTER 4 
 

 

STATISTICAL FEATURES BASED ROTATION ESTIMATION 
ALGORITHM 

      

      

      

In order to avoid the computational difficulty of FT (Fourier Transform), we have 

computed different statistical features of textures, and observed how they change with 

texture rotation. Statistical parameters which vary significantly and linearly with 

rotation are best candidates for such an approach. Currently, we have studied the 

computation of 2-D model based parameters, 1-D model based parameter, mean of the 

standard deviations on the x axis, y axis and diagonal axes of the texture image. The 

computations of the statistical features will be discussed in the first section of this 

chapter. In the second part, the statistical based rotation estimation algorithm will be 

explained. 

The FFT based rotation estimation algorithm has some disadvantages, such as 

computational difficulties and rotation range. Honec et al. proposed in their study that 

even assuming all the exponential terms are pre-calculated and stored in a table, the 

total number of complex multiplications needed to evaluate the 2D DFT is 4N (Honec 

et al., 2001) The number of complex additions is also 4N .  Two techniques can be 

employed to reduce the operation count of the 2D-DFT transform. First, the row-

column decomposition method partitions the 2D-DFT into many one-dimensional 

DFTs. Row-column decomposition reduces the number of complex multiplications 

from N  to 32N . The second technique for reducing the operation count of the 2D-

FFT transform is the fast fourier transform (FFT). The FFT is a shortcut evaluation of 

the DFT. The FFT is used to evaluate the one-dimensional DFTs produced by the row-  
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column decomposition. The number of complex multiplications is reduced from 32N  

for direct evaluation of each DFT to NN log2  for FFT evaluation using the row-

column decomposition method.   

Another drawback of the FFT is the restricted working region. The rotations 

which are outside of the region of 4545 ≤≤− θ can not be estimated. Even this is not 

a problem for the weft-straightening problem; it should be found another method which 

is more time conservative and also work in large working region. Statistical based 

rotation estimation algorithms corresponds these requirements. The statistical based 

rotation estimation algorithm also has some disadvantages with respect to FFT based 

method. These disadvantages will be explained in this chapter as well as the statistical 

based rotation estimation algorithm method. 

 

4.1 STATISTICAL FEATURES 

In this section, the computation of the statistical features will be discussed. We 

will start with two parameters modeling approximation. 

4.1.1 2-D Model Based Parameters 

A pixel value can expressed with the following equation. 

),(),(),(ˆ ydxxtdyyxtyxt −⋅+−⋅= βα        (4.1.1) 

where α  andβ  are the model parameters. Apart from these parameters, there are 

also two variables which are dx  and dy . This variables are the distances from the 

current pixel to previous pixel position. There are totally 4 parameters to be expressed. 

In the above equation, we try to minimize the following function. 
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Solving for α  and β , we optain,  
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4.1.2 1-D Model Based Parameter  

1-D model based parameter approximation is similar to 2-D model based 

parameters approximation. A pixel can be expressed as follows; 

),(),(ˆ dyydxxtayxt −−⋅=         (4.1.8) 

 

In this situation a  has the following equality, 
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4.1.3 Mean of Standard Deviations Parallel to the X Axis 

The mean of the standard deviations along the x axis can be expressed as follows; 
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=                (4.1.10) 

where xΦ  is the mean of standard deviations along the x axis of the texture image 

and I is statitical parameter which is independent of illumination disturbance. In order to 

eleminate the effects of the enviroment xΦ  is divided to M , which is the average pixel 

intensity of the texture. ixσ  is the standard deviations of the each row. W and H stand 

for the image sizes as pixel value. W represents the width of the image, and H 

represents the height of the image.   

4.1.4 Mean of Standard Deviations Parallel to the Y Axis 

Similarly, the mean of the standard deviations along the y axis can be expressed as 

follows;  
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where yΦ  is the mean of standard deviations on the y axis of the texture image 

and J is statitical parameter which  is independent of the light disturbance. jyσ  is the 

standard deviations of the each columns.  

4.1.5 Mean of Standard Deviations Along the Diagonal Axes       

Let 1dΦ and 
2dΦ  be the means of standard deviations along the first and second 

diagonal axes, and M be the average pixel intensity of the texture. We define a new 

statistical parameter (K) as follows; 
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4.2 STATISTICAL PARAMETERS BASED ROTATION ESTIMATION  

The main idea of the theorem is to find the best statistical parameters which 

change significantly and linearly with rotation. To be able to find the best candidates we 

plot and look at the figures which give the desired result. To show the importance of the 

usage of more than one statistical feature, we divide the statistical based approach into 

two parts. In the first section, we analyze using 2 model parameters, which is the most 

important one. In the second section, we analyze using all parameters to show the 

improvement. 

4.2.1 Statistical Rotation Estimation by Using Two Model Parameters 

In this subsection, we will use the 2 model statistical parameters to estimate 

rotation angle. The algorithm of the system is as follows.  

The most important part is to generate a look up table. The look-up table has the 

following structure  

Table= [α  β  θ ], 

The look up table is generated by rotating the image in a desired region. We 

compute the 2 model parameters α  andβ  for each value of θ . After the look-up table 

is generated, we analyze the system in the same region with more detail. For example if 

we generate the look-up table from -30 degree to +30 degree with 0.5 step rotation, we 

analyze the system in the same region but with 0.1 step of rotations. This method 

determines the performance of the system.  

Another important point is the problem of choosing dx and dy. We have to choose 

distance variables dx and dy properly because it significantly affects the parameters-

rotation linearity. To decide which distance values are best candidates for the target 

texture image, we implement two methods. The first one is to draw the parameter-
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rotation graph for each dx and dy combination and look at the linearity with naked eyes. 

The second and more professional one is to draw θ -error graph and compute the least 

square error. The error stands for the difference between estimated rotation and real 

rotation. As an example, the best dx and dy values for the small image can be seen in the 

Figure 4.1 and Figure 4.2, respectively. As we mentioned, model parameters α  and β  

linearly change with the rotation. The θ -error graph can be seen in the Figure 4.3. 

 

 

Figure 4.1 θα   versus  plot. 

 

 

 

 

Distance dx=4 & Distance dy=3 
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       Figure 4.2 θβ    versus  plot. 

 

     

Figure 4.3 θ  versusError  plot 

The nearest neighborhood method is used to estimate rotation angle. Actually, the 

decision error is given by the following equation: 

Distance dx=4 & Distance dy=3 

Distance dx=4 & Distance dy=3 



 44

ivi

N

i
iwe ,

1

μμ −= ∑
=

 

where iv,μ  is the array of statistical parameters, where the first index is for the 

rotation angle, and the second index is for the parameter number. The measured 

parameters are iμ , and they are obtained by processing the captured the texture image. 

Finally, iw ’s are weighting factors which are used to emphasize certain statistical 

parameters over others. Selection of these weighting factors is also an important issue, 

and affects the overall system performance. In our performance analysis tests, we have 

selected equal weights; however a further analysis can be done for optimum weight 

selection as well. 

As seen from Figure 4.1 through Figure 4.3, in the region of -20 to -30, there is an 

undesired result on the θ  versusError   plot in Figure 4.3.   To reduce the error and get 

better results, we should increase the statistical features. 

4.2.2 Statistical Features Based Rotation Estimation by Using Six Model 

Parameters 

To get better results in rotation estimation algorithm, we used one model 

parameter, the mean of the standard deviations along the x, y and diagonal axes in 

addition to the two model parameters. 

The idea is very similar to the two model rotation estimation algorithm; the first 

difference is that we generate the look table with all these statistical parameters which is 

explained in section 4.1. The other difference is the computational time. In this method, 

the processing time increases due to the size of the table of the parameters. Table has 

the following structure; 

Table= [ I J K  a  α β  θ ]; 

where I  stands for the mean of standard deviations on the x axis, J stands for the 

mean of standard deviations on the y axis, K stands for the mean standard deviations on 

the diagonal  axes, a  stands for the one model parameter, and α  andβ  stand for the 

two model parameters. Finally, θ  stands for the rotation angle. We compute each 
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statistical feature and generate the look-up table for each rotation. The decision 

mechanism is the same as the two model parameter rotation estimation algorithm. The 

nearest neighborhood method is applied to find the rotation. 
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CHAPTER 5 
 

 

EXPERIMANTAL SETUP 
       

       

       

In this section, we explain how the algorithm is implemented and improved in a 

tiny embedded system. This process is very overwhelming and contains a lot of details. 

The process consists of two phases. 

The first one is the development phase. we start with the development phase 

which is implemented and simulated in Matlab. The Matlab has many sophisticated 

functions and methods to improve the algorithm. However, we prefer to utilize the built-

in subroutines.  

The second phase is the implementation phase. The algotithm is implemented in a 

desktop PC and then in a single board PC (SBPC) which is also known as Industrial PC. 

This PC is like regular PC but it is designed for the industry. It is very small and 

convenient to use in many applications. It has serial ports, Ethernet card, TV card, 

keyboard mouse sockets. Namely, it has almost every properties of the standard PC. As 

an OS, we used embedded Linux operating system (Xlinux).  

 

5.1 DEVELOPMENT PHASE OF THE ALGORITHMS 

As explained in the previous chapters, there are two main algorithms that we 

study in this thesis. The first one is FFT based approximation and second one is 

statistical based approximation.  
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5.1.1 FFT Computation Based Rotation Estimation Algorithm 

To test the camera in Matlab, following command was used: 

vidobj = videoinput('winvideo', 1); 

This command creates the video object. All camera properties can be obtained 

from this object. To view and open the window for displaying the vision we used the 

following command (see Figure 5.1).  

preview(vidobj) 

After we get an acceptable vision, we can proceed with capturing process of an 

image from the camera.  

To get a snapshot from the camera, we used the following command. 

I=getsnapshot (vidobj); 

 

 

  Figure 5.1 Video previews for testing. 
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Next, we snap an image in the size of 320x240. This size depends on the camera. 

After we get the image matrix into “I” variable, we continue with the modify image 

subroutine given as :  

Im=modifyimage(I,n); 

The modify image subprogram cut the image (I) into nxn pixel from center to 

side. This makes the image matrix square and gray scale. The code can be found in 

Appendix A. After we get the square matrix we apply the fft2new algorithm. 

Ixd=fft2new(Im,threshold,gamma); 

After executing this code, we obtain the FFT matrix of the image and store it in 

Ixd matrix.   

 The brightest point in predefined region is found as;  

 [xI yI]=findbrghtpnt(Ixd) ; 

where xI and yI contain the brightest point locations.  

Finally, the rotation angle is estimated with the following well known formula: 

theta=180/pi*atan(xI/yI); 

5.1.2 Statistical Parameters Based Rotation Estimation Algorithm  

We divide statistical method into two parts. These are two model parameter based 

rotation estimation and six model parameters based rotation estimation. They are 

exactly same algorithm but six model parameters use more statistical features to get 

better performance. The algorithm is given below : 

• Generate a look-up table by rotating the image in a desired region and step 

interval. 

• Connect camera to the system. Check if the system recognizes the camera. 

• Get a snapshot from the camera. 

• Modify the image size and convert to gray. 
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• Obtain the model parameters. 

• Look up the table and find the best rotation angle by using nearest 

neighborhood method. 

5.1.2.1 Generating Look-Up Table and Parameter Extraction 

We use the following function to generate look-up table: 

table=gettable(I, range, dx, dy) 

This function takes the image, range and distance values as input variables and 

generates the table as an output. The gettable function for two model statistical 

approach is given as follows: 

function table_real=gettable(I, range, dx, dy) 
           n=round (size (I, 1)/4); 
          xr=[]; 
         theta=[]; 
           for t=range 
               XR = imrotate (I, t, 'bilinear', 'crop'); 
               XR=modifyimage (XR,n);XR=double(XR); 
               xr=[xr getparameters(XR, dx, dy)]; 
               theta=[theta t];   
           end 
 

table_real=[xr(1,:);xr(2,:);theta]; 
 

where n is used to obtain square image matrix. Image is rotated in a pre-assigned 

range and for all rotation angle statistical parameters is calculated and stored in an xr 

array .  Finally the table matrix is generated.  The crucial function is the getparameters 

function. It computes the statistical features of the image. The getparameters function 

for two model rotation estimation is given as follows; 

function x=getparameters(X, dx, dy) 
 

[M, N]=size(X); 
  

myA11=sum(sum(X([1:M-dx],[dy+1:N]).*X([1:M-dx],[dy+1:N]))); 
myA12=sum(sum(X([1:M-dx],[dy+1:N]).*X([dx+1:M],[1:N-dy]))); 
myA21=sum(sum(X([dx+1:M],[1:N-dy]).*X([1:M-dx],[dy+1:N]))); 
myA22=sum (sum(X([dx+1:M],[1:N-dy]).*X([dx+1:M],[1:N-dy]))); 
myB11=sum(sum(X([dx+1:M],[dy+1:N]).*X([1:M-dx],[dy+1:N]))); 
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myB21=sum(sum(X([dx+1:M],[dy+1:N]).*X([dx+1:M],[1:N-dy]))); 
 

A= [myA11 myA12; myA21 myA22] ; 
B= [myB11; myB21]; 
x=inv (A)*B; 

The mathematical analysis can be found in Chapter 3. For the six model 

parameters rotation estimation algorithm, we change the gettable function as follows; 

function table_real=gettable(I, range, dx, dy) 
          n=round (size (I, 1)/4); 
        table=[]; 
          theta=[]; 
           for t=range 
            XR = imrotate (I, t, 'bilinear', 'crop'); 
            XR=modifyimage(XR,n);XR=double(XR); 
            xdir1=xdir (XR); 
            ydir1=ydir (XR); 
            diagdir1=diagdir (XR); 
            mod1=getmodpar (XR, dx, dy); 
            mod2=getparameters (XR, dx, dy); 
            xr=[xdir1 ydir1 diagdir1 mod1 mod2];    
            table=[table; xr] ; 
          end 
          table_real=[table range']';   
 

As seen from the program sequence, in addition to 2 model parameters we add 

other statistical parameters to the look-up table as explained in Chapter 3. After we 

generate the table, we analyze the system and its performance.  

5.1.2.2 Testing the System and Camera Setting 

The system was tested using two different ways. The first one is that we decrease 

step interval and compute new statistical features and plot the theta-error graph. The 

second one is that we connect a webcam to computer by using Matlab and try to 

understand how the estimated rotation changes. The experimentation of the second 

method is not so efficient because while we are rotating the camera (or texture), we 

exactly do not know how much we really rotate the camera or texture. Another 

drawback of the second method is that we can not rotate the camera with our hand 

perfectly. While we are rotating the camera, we also change the direction of the camera 

unwillingly. The first method also has some drawbacks such as rotation is done by 
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computer and there is no light effects and noise on the texture image. However, it gives 

the general idea about how statistical parameters change with the rotation. Therefore, 

the experimental results are obtained mostly using the first method. 

Camera Settings and snapshot are exactly the same as the FFT based 

approximation. The modification of the image size and conversion to the gray level 

image is also the same as FFT based approximation. 

To analyze the system, we used the GUI (Global User Interface) to make the 

usage of the program easier. Figure 5.2 shows the main menu. There are six sections 

which are; 

• Get image 

• Inspect for the best statistical distance (dx and dy) 

• Rotate image 

• Calculate Rotation 

• Theta-Error Plotter 

• Theta-Error Plotter for different distance 

 

 

Figure 5.2 Testing menu. 
 



 52
 

Get Image function: 

Get file image function basically gets the image path and name for the imread 

command.  The image path is taken from the application folder or captured from the 

camera. To get the image path from the folder; 

 

[file_name file_path] = uigetfile ('*.bmp'); 
I = imread ([file_path,file_name]);   

To capture the image from a camera; 

vidobj = videoinput('winvideo', 1); 
preview(vidobj) 
I=getsnapshot(vidobj); 
 

Inspect for the best statistical distances function: 

The aim of the inspect for the best statistical distance function is to plot the 2 

model and one model parameters and rotation graphs for the combinations of dx and dy. 

Let’s assume that the region is dx=1:10 and dy=10 then we will get 100 plot as a result 

and we look at the linearity to choose best statistical distance dx and dy values. 

  drangex=input('Distance Range for dx: '); 
  drangey=input('Distance Range for dy: '); 
         

for d1=drangex   
             for d2=drangey 
                 table=gettable(I,range,d1,d2); 
                  mod1=table(4,:); 
                  mod21=table(5,:); 
                  mod22=table(6,:); 
                  figure('Name','1 Model Parameter','NumberTitle','off') 
                  plot(range,mod1,'b') 
                  xlabel ('theta') 
                  ylabel ('a0') 

title(['Distance dx= ',int2str(d1),' & Distance… 
y=',int2str(d2)],'Color','b')  

                
figure('Name','2 Model Parameters','NumberTitle','off') 

                  plot(range,mod21,'b') 
                  xlabel ('theta') 
                  ylabel ('a1') 
                  title('Mean of Diag Left-Right-Mean')  
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title(['Distance dx= ',int2str(d1),' & Distance… 
y=',int2str(d2)],'Color','b')  

                  
            figure('Name','2 Model… Parameters','NumberTitle','off') 

                  plot(range,mod22,'b') 
                  xlabel ('theta') 
                  ylabel ('a2') 
                  title('Mean of Diag Left-Right-Mean')  

title(['Distance dx= ',int2str(d1),' & Distance… 
dy=',int2str(d2)],'Color','b') 

                  disp('Press any key for the next distance...') 
                  pause; 
                  close all; 
                  clc; 
             end 
       end 
       

 

Rotate Image function: 

Using this function, the image can be rotated for a desired angle and 

getparameters function is executed to get statistical parameters. The distance variables 

(dx, dy) have to be entered. 

t=input('Enter the rotation angle: '); 
xr=rotandgetpar(I,t,dx,dy) 
 

Calculate Rotation function: 

In order to estimate the rotation, we enter the table and xr as an input. The nearest 

neighborhood method is applied while finding the best match. 

theta=gettheta(table,xr) 
 

function theta=gettheta(table,xr)   
          [m,n]=size(table); 
          minerror=10; 
           for i=1:n 
               %xR=table(1:8,i);   
              xR=table(1:2,i);   
             error =norm(xR-xr); 
            if error < minerror 
            minerror=error; 
            %theta=table(9,i); 
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            theta=table(3,i); 
            end 
        end 
 

Theta Error Plotter function: 

Theta-Error function is used to plot the theta-error graph by using the following 

code. 

      rot=input('Enter the table range(Example:0:0.5:180):'); 
               err=[] ; 
               for t=rot 
                        xr=rotandgetpar(I,t,dx,dy); 
                        thetac=gettheta(table,xr); 
                        err=[err (t-thetac)]; 
               end 
               disp(mean(err)); 
               figure 
               plot(rot,err) 
               axis auto 
               xlabel('theta') 
               ylabel('error') 

   title(['Distance dx= ',int2str(dx),' & Distance… dy=',int2str(dy)], 'Color', 'b')  
 

Theta-Error Plotter for Different Distances function: 

We use the theta-error plotter with the combinations of various dx and dy distance 

values. Then we apply least square error method to find the best distance dx and dy 

values. 

  rot=input('Enter the rotation range(Example:0:1:180):'); 
      drangex=input('Distance Range dx: '); 
      drangey=input('Distance Range dy: '); 
      disp('This process may take a few minutes...') 
      minerr=10000; 
      c=clock; 
      disp(['Started at :' int2str(c(1,4)) ':' int2str(c(1,5)) ':'…          
      int2str(c(1,6))]) 
      for dx=drangex   
                  for dy=drangey 
                       table=gettable(I,range,dx,dy);     
                       err=[] ; 
                           for t=rot 
                                xr=rotandgetpar(I,t,dx,dy);        
                                thetac=gettheta(table,xr); 
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                                err=[err (t-thetac)]; 
                           end 
                          pwrerr=sum(err.^2); 
                               if pwrerr<minerr 
                                    minerr=pwrerr; 
                                    bestdx=dx; 
                                    bestdy=dy; 
                                    besterr=err; 
                               end 
                       disp(dx*dy) 
                       c=clock; 

                disp([int2str(c(1,4)) ':' int2str(c(1,5)) ':' …  
   int2str(c(1,6))]) 

            end 
          end 

       disp(['Finished at : ' int2str(c(1,4)) ':'…  
int2str(c(1,5)) ':' int2str(c(1,6))]) 

             figure 
             plot(rot,besterr) 
             xlabel ('rot') 
             ylabel ('err') 

       title(['Best Distances  dx=… ',int2str(bestdx),' &…  
Distance dy= ',int2str(bestdy)],'Color','b')  

            axis auto 

After we find the best distance values for the texture image, we can implement the 

algorithm in the embedded system. The above method is same for two-model and five-

model statistical features however the result is very different.  

 

5.2 IMPLEMENTATION OF THE ALGORITHMS ON THE LINUX SYSTEM 

Up to now, we have investigated the FFT and statistical based rotation estimation 

algorithms. We are interested in the software side of the project. However, the 

significant part of the problem is the implementation part. This section covers the 

installation of Linux and how to switch from a conventional Linux to embedded system.    

5.2.1 Installation of Linux and Embedded Linux Operating System 

We firstly setup a Debian Linux OS on a desktop PC. The procedure we go over 

is as follows, 

• Install Debian Kernel (2.4-27-2-386) 
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• Install the base system from CD-ROM or DVD-ROM 

• Complete installation via CD-ROM or Internet 

• HDD Partitioning as flows 

 Device Boot       Start          End       Blocks     Id   System 

 /dev/hda1   *      1          1155     9277506   83    Linux 

 /dev/hda2        1156        2498           10787647+     83    Linux 

• Installation of TELNET and FTP server 

• Kernel Recompilation  

• Compile the Xlinux Kernel (Embedded Linux OS) with BTTV driver 

• Boot the new system and test BTTV driver (install xawtv program ) 

• Configure the Video For Linux (V4Linux) parameters 

• SDL Library and libfg installation       

• Compile the project.c source file 

• Run and test the system in Desktop PC  

After we setup the Debian Linux system, we developed the project application 

code. In this process, we wrote the C code of the program that was used in Matlab. It is 

basically a conversion of the codes from Matlab to C. Since there is no direct 

conversion from Matlab code to C code in our case, we need to write the code again by 

using our own function and libraries. We use SDL libraries for the video applications. 

SDL library provides us easy to use functions while dealing with the video application.  

After we write our code and make sure that the algorithm works fine with the 

Debian Linux system. Then we continue with the installation of the executable file in to 

Vortex86 SBC (Single Board Computer.) The hierarchy is shown in Figure 5.3. 

The procedure that we applied in Debian Linux Desktop is the same with the 

Vortex86 SBC. One difference is that here is no need to install SDL libraries in to SBC 

and compile the program. The executable file is transferred via ftp to embedded system. 

Once this is done, a problem is encountered. The problem is that since some of the “.so” 

object files are missing in the SBC, we need to transfer these files from Debian Desktop 

PC to SBC, too.  The other difference is that we install Xlinux system on SBC. These 
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system works very fast with respect to debian system while booting the system. It takes 

about 10-12 seconds to boot system as soon as the energy is given.   

 

    Figure 5.3 Application developments and implementation hierarchy. 

 

5.2.2 Smart Camera System Architecture and Networking 

Another important part of the experimental setup is the networking. Since the 

cameras are connected to each other with a network, this is also another topic to be 

covered. The servers will be “Smart Cameras”, which has Embedded Linux OS and 

client can be either Linux or Windows loaded systems. Each server will compute the 

rotation and will wait for the client to make request. As soon as the client make request, 

server starts to send vision results to the client. There are totally 4 or 6 Smart Cameras 

(SmartCam) depending upon the requirements as shown in Figure 5.4. Each SmartCam 

has their vision area and connected to a network with a hub. There is only one client and 

get rotation information from each server (or SmartCam). The final decision is made in 

this client PC. The motors are activated based on the final decision. Since our target is 

to estimate rotation angle, we will not discuss the driving motor part. Connection 

oriented TCP/IP flowchart can be seen in Figure 5.5 (Stevens, 1990). 
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Figure 5.4 Weft-Straightening system architecture. 

 
 

        
 

Figure 5.5 TCP/IP networking 
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; Specify the comm. Protocol (UTCPU, UDP, XNS, and SPP) 

; Assign a name to unnamed socket (Address assignment)  

; Indicate that it is willing to receive connection 
; Number of the connection is defined here. 

; Wait for the connection from client 
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5.2.3 Elementary Socket System Calls 

In this section the elementary system calls which are used in TCP/IP networking 

will be explained in detail.   

5.2.3.1 “Socket” System Call 

The network I/O, is established by calling the socket system call and specifying 

the type of communication protocol desired (Internet TCP, Internet UDP, XNS SPP, 

etc.). 

# include<sys/types.h> 

# include<sys/socket.h> 

 

int socket (int family, int type, int protocol); 

The family is one of; 

AF_UNIX  UNIX internal protocol 

AF_INSET  Internet Protocol 

AF_NS   Xerox NS protocol 

AF_IMPLINK  IMP link layer 
 

The AF_ prefix stands for “address family.” There is another set of terms that is 

defined, starting with a PF_ prefix, which stands for “protocol family.” Either term for a 

given family can be used, as they are equivalent. 

The socket system call returns an integer value, similar to a file descriptor. It is 

called a socket descriptor, or a sockfd. To obtain this socket descriptor, we specify the 

address family and socket type (stream, datagram, etc.). For an association; 

[Protocol, local-addr, local-process, foreign-addr, foreign-process] 

All the socket system call specifies is one element of this 5-tuble, the protocol. 

Before the socket descriptor is of any real use, the remaining four elements of the 
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association must be specified. The socket system calls and association elements can be 

seen in Table 5.1 (Stevens, 1990). 

  Table 5.1 Socket system calls and association elements  

 Protocol Local addr, local-process Foreign addr, foreign process 

Server Socket () Bind() Listen(), Accept() 

Client Socket() Connect() 

 

5.2.3.2 “Bind” System Call 

The bind system call assigns a name to an unnamed socket. 

# include<sys/types.h> 

# include<sys/socket.h> 

int bind (int sockfd, int sockaddr *myaddr, , int addrlen); 

The second argument is a pointer to a protocol-specific address and the third one 

is the size of this address structure. There are three use of bind. 

Servers register their well known address with system. It tells the system “this is 

my address and any messages received for this address are to be given to me.” Both 

connection-oriented and connectionless servers need to do this before accepting client 

requests.  

A client can register a specific address for itself. A connectionless client needs to 

assure that the system assigns it some unique address, so that the other end (the server) 

has a valid return address to send its responses to.  

5.2.3.3 “Connect” System Call 

A client process connects a socket descriptor following the socket system call to 

establish a connection with a server. 

# include<sys/types.h> 
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# include<sys/socket.h> 

int connect (int sockfd, int sockaddr *myaddr, , int addrlen); 

The sockfd is socket descriptor that was returned by the socket system call. The 

second arguments are a pointer to a socket address, and its size, as described earlier. 

For the connection oriented protocols, the connect system call result in the actual 

establishment of a connection between the local system and the foreign system. 

Messages are typically exchanged between the two systems and specific 

parameters relating to the conversation might be agreed on. In these cases the connect 

system call does not return until the connection is established, or an error is returned to 

the process. 

5.2.3.4 “Listen” System Call 

This call is used by a connection oriented server to indicate that is willing to 

receive connection. 

int listen (int sockfd, int backlog); 

It is usually executed after both socket and bind system calls, and immediately 

before the accept system call. The backlog argument specifies how many connection 

requests can be queued by the system while it waits for the server to execute the accept 

system call. This argument usually specified as 5, the maximum value currently.   

5.2.3.5 “Accept” System Call 

After a connection oriented server executes the listen system call described above, 

an actual connection from some client process is waited for by having the server 

execute the accept system call. 

int accept (int sockfd, struct sockaddr *peer, int *addrlen); 

Accept system call takes the first connection request on the queue and creates 

another socket with the same properties as socket. If there are no connection requests 

pending, this call blocks the caller until one arrives. 
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CHAPTER 6 
 

 

     TEST RESULTS 
           

       

            

FFT and Statistical based rotation estimation algorithm test results are presented 

in this chapter.  

 

6.1 FFT COMPUTATION BASED ROTATION ESTIMATION ALGORITHM 

The Matlab simulation results will be explained in this section. Although we test 

the system in real time, we use the Matlab simulation results since Matlab has powerful 

graphical interface and graphic functions. The real time system does not need any 

graphical plots, hence Matlab simulation results are used. From our experiences, the 

Matlab result and real time system result are very close to each other.  

6.1.1 Rotation of an Image in Matlab 

The Image has to be zoomed enough to get a clear vision response on the FFT 

domain. There are some rotated image samples which can be seen in Figure 6.1. 

 
 

Figure 6.1 Rotated image figures. 
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6.1.2 The FFT of the Texture Image 

The rotated FFTs of the images can be seen in Figure 6.2. The result shows that 

the rotation on the spatial domain correspond the rotation on the frequency domain. 

This phenomenon is proved in Chapter 3.  

 
 

Figure 6.2 FFTs of the rotated images. 
 

6.1.3 Finding the Brightest Point  

After we apply the find brightest point algorithm, we get the results which are 

displayed in Figure 6.3. Finding brightest point algorithm was given in Chapter 5 and 

the Matlab code is shown in Appendix A. 

Finally we compute the rotation from the brightest point position. For this 

example, we estimated -10.4915 for -10 rotation angle, 0 for 0 rotation angle and 

10.4915 for +10 rotation angle, respectively.  It seems that there is almost 0.5 degree 

error on the estimation. This is very acceptable for weft-straightening machine. 
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Figure 6.3 Finding the brightest point. 

 
 

6.1.4 Theta-Error Plots 

In order to analyze the algorithm, the image is tested in the rotation region of 

theta= -35:0.1:35 and each error which corresponds to the related theta is plotted. The 

rotation is done by Matlab imrotate function and “bilinear-crop” method is applied. The 

result is shown in Figure 6.4. There are two main reasons why we chose this region. 

• The region is acceptable for texture weft-straightening machine and is 

never exceeded after the system is setup by a technician. 

• The FFT based rotation estimation algorithm can not estimate the 

rotation which is out of this region due to the periodicity of the texture 

image FFT pattern. 

By plotting the theta-error graph, we can see that which angle generates much 

error. As seen from the Figure 6.4. The maximum error is about 3 degrees when the 

actual rotation is 13.5 degrees and 27.3 degrees.  

Brightest Points 
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Figure 6.4 θ  versusError  plot. 

6.1.5 The Drawback of the FFT Based Approach 

We expected that the system works fine in the region of theta= -45:45 since we 

are searching the first area on the x-y axis. However, the algorithm gives reasonable 

response in the region of theta= -40:40. The system loses its functionality outside of this 

region. This problem can be seen from Figure 6.5. 
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     Figure 6.5 The drawback of the FFT algorithm. 
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6.2 STATISTICAL FEATURES BASED ROTATION ESTIMATION  

Two parameters and six parameters modeling methods are discussed in this 

section.  There are three sizes of texture images that we used for experimentation. The 

sizes of the images are 140x100, 180x150 and 440x325 (see Figure 6.6).  

 

Figure 6.6 Different size images used in the experiment. 

6.2.1 2-D Model Based Parameters 

For dx=1 and dy=1 the 2 model parameters (α  and β ) changes with the 

rotation can be seen from the following figures. These dx and dy are arbitrarily chosen 

values for just illustration.  Later on we find the optimum dx and dy values and show the 

effect of the distance variables. The following figures show how the model parameters 

vary with rotation. 

As we see from these figures, the model parameters almost change linearly with 

the rotation. However, the dx and dy values has to be chosen properly. Although 

dx=dy=1 gives reasonable response, we have to search for the optimum dx and dy 

values. As seen from the Figure 6.7, there is a bounce around zero degree rotation. 

Therefore, the estimation error will be high in this region. We could not analyze the 

reason of this situation. The situation does not occur for all the dx and dy values. This 

can be seen from the further illustrations. 
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   Figure: 6.7 α  versus θ  plot for 440x325 size image. 
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  Figure: 6.8 β  versus θ  plot for 440x325 size image. 
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6.2.1.1 Usage of Theta-Error Plotter 

We use theta-error plotter program to see the difference between estimated error 

and actual error for dx=dy=1. It is shown from the result that the error is very large 

around -20 and 0 degree. Obviously, this is not a desired result; therefore, we need to 

find the optimum dx and dy values to improve the performance.  
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      Figure 6.9 θ  versusError  plot for 440x325 size image. 

6.2.1.2 The Optimum Distance Values (dx, dy) 

We execute the program that we explained in previous chapter, and we found the 

optimum distance values for the small size, middle size and large size images as 

follows. For a small size (45x30) image, the optimum distances are dx=4 and dy=3. 

Please also note that the error reaches its maximum value in non linear region. 
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    Figure 6.10 θ  versusError  plot for the optimum distance values of    
    small size image. 
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       Figure 6.11 α  versus θ  plot for the optimum distance values of  
       small size image. 

For the middle size (180x150) image the optimum distances are found as dx=9 

and dy=8.  
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        Figure 6.12 θ  versusError  plot for the optimum distance   

         values of middle size image. 
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      Figure 6.13 α  versus θ  plot for the optimum distance values of  

middle size image. 
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For the large size (440x325) image the optimum distances are found as dx=1 and 

dy=7. 
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   Figure 6.14 θ  versusError  plot for the optimum distance values of      
  large size image. 
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       Figure 6.15 α  versus θ  plot for the optimum distance values of      

  large size image. 
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From these results, it is shown that, even for the optimum distances the error 

look high in the range of non-linear region. Another important result is that, for some 

distance values, the error is very high when the rotation is about zero. Although we 

could not find the reason of this fact, we consider that this non-linearity occurs due to 

the numerical computation. Next, we increase the number of statistical parameters to 

improve the performance of the system.  

6.2.2 Six Parameters Model Based Rotation Estimation Algorithm 

In addition to two model parameters, we use the following statistical features; 

mean of the standard deviations along the x axis, y axis, diagonal axes and one 

parameter modeling. 

6.2.2.1 Mean of Standard Deviation Parallel to the X Axis 

The mean of the standart deviations along the x axis for small size image is 

shown in Figure 6.16. As it is seen, there is no linarity between rotation and the mean 

along x axis. Therefore, this result should be considered when estimating the rotation. 
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 Figure 6.16 Mean of standard deviations along x-axis for  

small size image. 
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6.2.2.2 Mean of the Standard Deviations Parallel to the Y Axis 

We plot the means of the standard deviations on the y axis for each rotation 

angle value as shown in Figure 6.17. Similarly, there is no linearity between rotation 

and mean along y axis. 

-30 -20 -10 0 10 20 30
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

θ

m
ea

n 
(Y

di
r)

Mean of Y Direction

 
Figure 6.17 Mean of standard deviations along y-axis for  

small size image. 

6.2.2.3 Mean of Standard Deviations Along the Diagonal Axes 

Again, we plot the means of the standard deviations along the diaganal axes for 

each rotation angle value is shown in Figure 6.18. The non-linear behavior between 

rotation and mean along diagonal axes is valid. 
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         Figure 6.18 Mean of standard deviations along diagonal axes for  

small size image. 
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6.2.2.4 1-D Model Based Parameter 

The distances dx and dy are chosen as one. However, in order to improve the 

performance the optimum disrance values must be found. As seen from the Figure 6.19, 

the a versus θ  plot is not linear. By using the optimum distance values (dx and dy), it 

can be obtained better performance (see Figure 6.20 through 6.24). 
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  Figure 6.19 One parameter modeling for small size image. 

 

6.2.2.5 The Performance of the Algorithm by Using Six Statistical Parameters 

The similar idea is valid for the six parameter modeling. Firstly, we need to find 

the best candidate distance (dx and dy) variables. To do this, we follow the similar 

technique that we apply in the two parameter modeling. We draw the theta-error figure 

for the combinations of the dx and dy values. Then we applied the least square method 

to find the optimum distance values.  

For the experimental results, we generate the look-up table in the region of -30 

to 30 with the 0.5 degree step interval and we test the system in the interval of 0.1 

degree. This region is mostly used in weft-straightening mechanism. However, the 

system accepts rest of regions too. The performance of the system in the region of -90 to 

90 degree rotation is shown in Figure 6.26. The only thing is the computational 
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difference. Large regions take more time to generate the look-up table; on the other 

hand small regions take less time.   

The results of dx and dy values can be seen for different size of images in Figure 

6.20 through Figure 6.22, respectively.  
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    Figure 6.20 θ  versusError  plot for small size image (dx=5 and dy=1). 
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    Figure 6.21 θ  versusError  plot for middle size image (dx=4 and dy=4). 
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   Figure 6.22 θ  versusError  plot for large size image (dx=5 and dy=7) 

 

Figure 6.22 through in Figure 6.24 for the small size (140x100), middle size 

(180x150) and large size (440x325) images show the theta-error plot for the optimum 

dx an dy values. 
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      Figure 6.23 θ  versusError  plot for optimum values of distances for  

     small size image. 
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       Figure 6.24 θ  versusError  plot for the optimum distances for  
      middle size image. 
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Figure 6.25 θ  versusError  plot for the optimum distances for  
          large size image. 

Finally, to show the similarity between wide range (-90:90) and normal range (-

30:30), we apply the same procedure to the middle image The results for this case are 
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shown in Figure 6.25. In this plot, we used the step interval as 0.3 for testing to get a 

clear response on the output figure.   
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        Figure 6.26 Wide range θ  versuserror  plot. 
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CHAPTER 7 
 

 

CONCLUSIONS 
       
       
       

In this thesis, we have presented new smart camera architecture for various 

purposes.  Specifically, a textile industrial system, weft-straightening system, was 

analyzed and two different rotation estimation algorithms was proposed.  

The first method was based on FFT method. It was proved in Chapter 3 that 

rotation of an image corresponds to rotation of its FT. Based on this fact, FFT based 

rotation estimation algorithm procedure was explained. The brightest point tracking, 

searched region, and rotation estimation Matlab code was presented in Chapter 3.  

Statistical parameters based rotation estimation algorithm was proposed in 

Chapter 4. The extraction of the statistical parameters was presented. Statistical 

parameters which vary significantly with rotation were best candidates for this 

approach. To illustrate the importance of the number of used statistical parameter this 

method was divided into two subsections. The first section used only two model based 

statistical parameters and the second section used six statistical parameters which are 

one parameter modeling, two parameter modeling, and means of standard deviations on 

the x, y, and diagonal axes.  
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The experimental setup of the algorithms was explained in chapter five. The 

developments of the algorithms and their implementations on the embedded system had 

been given. The Matlab codes of the algorithms had been explained in detail. The setup 

process for embedded Linux operating system was explained. Finally, the TCP/IP 

networking of the smart cameras was discussed and the related flow chart was given for 

connection oriented TCP/IP networking. The system calls for the networking was 

expressed in the related chapter. 

The system performance was discussed in chapter six. The FFT based rotation 

estimation and statistical parameters based rotation estimation algorithm results was 

observed as simulations. The maximum error for FFT based method was around two 

degree. FFT based method was independent of the texture pattern, so it was very 

suitable for the industrial application. However, “FFT based rotation estimation 

algorithm” had computational difficulties (Honec et al., 2001). Therefore, it was 

observed that the system worked considerably sluggish with respect to statistical based 

method. In order to design a much faster system for the real time applications, another 

method called “statistical parameters based rotation estimation algorithm” was 

proposed. The maximum error for statistical parameters based method was less than one 

degree for three different size images. The number of the used statistical parameters 

improved the system performance significantly. The results showed that this method 

was very fast and suitable for the real time applications. On the other hand, the method 

was depended upon the texture pattern, so the system had to be trained for every texture 

pattern.   

   In conclusion, the result showed that each algorithm had advantages and 

disadvantages. The FFT based and statistical parameters based algorithms work in the 

region of 90 degree due to the texture pattern periodicity. However, implementation of 

FFT based method was easier than statistical method since it did not depend on the 

texture pattern. Although statistical method was required a look up table for each type 

of texture pattern, FFT based method did not need this kind of pre-work.  
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APPENDIX A 
 
 

MATLAB CODE 
 
 
 

1.1 MATLAB CODE OF THE FFT BASED METHOD 

% Version : 1.0 

% Author  : Cihan Ulas 

 % Date      : January, 2007 

clf 

     clear all 

     close all 

     I=imread('k1z.bmp');n=round(size(I,1)/5) 

     %n=164; 

     threshold=0.5; 

     gamma=0.3; 

    theta =10 ; %For demonstration 

     subplot(1,2,1) 

     imshow(I); 

     title('Texture Image') 

     R = imrotate(I,theta,'bilinear','crop');  

     subplot(1,2,2) 

     imshow(R) 

     Im=modifyimage(I,n); 

     Rm=modifyimage(R,n); 

     title('Rotated Image (10 degree)') 

     figure 

     Ixd=fft2new(Im,threshold,gamma); 

     [xI yI]=findbrghtpnt(Ixd) ; 
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subplot(1,2,1) 

     imshow(Ixd); 

     Rxd=fft2new(Rm,threshold,gamma); 

     %[xR yR]=findbrghtpnt(Rxd) ;  

     subplot(1,2,2) 

     imshow(Rxd);  

     pause; 

     err=[]; 

     figure(2) 

for t=-35:2.5:35 

      R = imrotate(I,t,'bilinear','crop');   

      Rm=modifyimage(R,n); 

      Rxd=fft2new(Rm,threshold,gamma); 

      [xR yR]=findbrghtpnt(Rxd) ;  

      figure(2) 

      imshow(1-Rxd); hold on; plot(yR+n,-xR+n,'ro') 

      title(['Threshold:' num2str(threshold) ' ' 'Gamma:' num2str(gamma) ' '… 

'Rotation:' num2str(t)]); 

         theta1=180/pi*atan(xR/yR); 

        theta2=180/pi*atan(xI/yI); 

          theta=theta1-theta2; 

         err=[err (t-theta)]; 

        disp(theta) 

     end 

     hold off, 

     figure 

     t=-35:2.5:35; 

     plot(t,err) 

 

1.1.1 Functions of The System 

function R=modifyimage(R,n) 

[nx,ny,nc]=size(R); 

nx2=round(nx/2); 

ny2=round(ny/2); 
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R=R(nx2-n+1:nx2+n,ny2-n+1:ny2+n,2);  

 

function Ixd=fft2new(image,tl,gamma) 

%input image=I 

%output Ixd shifted and fft taken image 

Ix=real(ifft2(abs(fft2(double(image))).^2)); 

Ixmin=min(min(Ix)); 

Ixmax=max(max(Ix)); 

Ixd=(Ix-Ixmin)/(Ixmax-Ixmin); 

%tl=0.6;  

Ixd=Ixd-tl; 

Ixd=(Ixd+abs(Ixd))/2; 

%gamma=0.4; 

Ixd=Ixd.^gamma; 

Ixd=Ixd/max(max(Ixd)); 

Ixd=fftshift(Ixd); 

%imshow(Ixd); 

 

function [x,y]=findbrghtpnt(I) 

   threshold=0.6; 

Imax=max(max(I)); 

row=size(I,1); 

col=size(I,2); 

boxsize=20; 

ic=round(row/2); 

jc=round(col/2); 

ii=[];jj=[]; 

x=0;y=0; 

iii=0;jjj=0; 

bp=0.1; % brightest point 

% figure 

% hold on 

quit=0; 

rmin=1000; 
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for i=0:boxsize 

          for j=0:boxsize 

            pixelval= I(-i+ic,j+jc); 

            if abs(i)>3 && abs(j)>3 && pixelval>0 

                           radius=sqrt(x^2+y^2); 

                           if bp<pixelval %&& rmin>radius 

                 bp=pixelval; 

                 x=i; 

                 y=j; 

                 rmin=radius; 

                end 

            end 

       end 

end 

  

% figure  

% plot(ii,jj,'*') 

% hold on 

% plot(x,y,'ro') 

% axis([-30, 30,-30, 30]) 

 

 

1.1 MATLAB CODE OF THE STATISTICAL BASED METHOD  

 

1.2.1 Two Parameter Model Examining  

 

% Version : 1.0 

% Author  : Cihan Ulas 

% Date      : January 2007 

clear all; 

clc; 

close all; 

while (1) 
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            choice=menu('Main Menu',... 

                   'Get Image',... 

                   'Inspect for the best statistical distance',... 

                   'Rotate Image',.... 

                   'Calculate Rotation',... 

                   'Theta-Error Plotter',... 

                   'Theta-Error Plotter for differet distances',... 

                   'Exit'); 

         if (choice ==1) 

          [file_name file_path] = uigetfile ('*.bmp'); 

          I = imread ([file_path,file_name]);         

          %I=imread('k1.bmp'); 

          disp('Enter the table range for training. Example:0:1:180'); 

          range=-30:0.5:30;%input('Range: '); 

          dx=input('Distance dx: ');  

          dy=input('Distance dy: ');  

          table=gettable(I,range,dx,dy) 

          a1=table(1,:); 

          a2=table(2,:); 

          theta=range; 

          figure('Name','alpha','NumberTitle','off') 

          plot(theta,a1,'b') 

          xlabel ('theta') 

          ylabel ('alpha') 

          title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b') 

          figure('Name','beta','NumberTitle','off') 

          plot(theta,a2,'b') 

          xlabel ('theta') 

          ylabel ('beta') 

          title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b') 

         end  

  

  if (choice == 2) 

          drangex=input('Distance Range for dx: '); 
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          drangey=input('Distance Range for dy: '); 

         

       for d1=drangex   

             for d2=drangey 

                  table=gettable(I,range,d1,d2); 

                  a1=table(1,:); 

                  a2=table(2,:); 

                  theta=table(3,:); 

                 %%%%%%%%%%%%%%%%%%%%%% 

                  figure('Name','a1 and a2','NumberTitle','off') 

                  plot(theta,a1,'b',theta,a2,'r') 

                  xlabel ('theta') 

                  ylabel ('2 Parameters') 

                  title(['Distance=#',int2str(d1),' Distance=#',int2str(d2)],'Color','b')  

                  disp('Press any key for the next distance...') 

                  pause; 

                  close all; 

                  clc; 

             end 

       end 

  

      end 

  

     if (choice == 3) 

             disp(' Image will be rotated and a bilinear-crop method will be applied.') 

                disp('--------------------------------') 

                 t=input('Enter the rotation angle: '); 

              xr=rotandgetpar(I,t,dx,dy) 

     end 

     if (choice == 4) 

                 disp('--------------------------------') 

                 disp('Finding the rotation based on 2 parameters'); 

                 disp('--------------------------------') 

                 theta=gettheta(table,xr) 
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     end 

     if (choice==5) 

                 rot=input('Enter the table range(Example:0:0.5:180):'); 

                 err=[] ; 

                 for t=rot 

                         xr=rotandgetpar(I,t,dx,dy); 

                         thetac=gettheta(table,xr); 

                          err=[err (t-thetac)]; 

                 end 

                 disp(mean(err)); 

                 figure 

                 plot(rot,err) 

                 axis auto 

                 xlabel('theta') 

                 ylabel('error') 

                 title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

     end 

    

     if (choice == 6) 

          rot=input('Enter the rotation range(Example:0:1:180):'); 

          drangex=input('Distance Range dx: '); 

          drangey=input('Distance Range dy: '); 

                 disp('This process may take a few minutes...') 

         minerr=10000; 

         c=clock; 

         disp(['Started at : ' int2str(c(1,4)) ':' int2str(c(1,5)) ':' int2str(c(1,6))]) 

         for dx=drangex   

                  for dy=drangey 

                       table=gettable(I,range,dx,dy);    %  build new table 

                       err=[] ; 

                          for t=rot 

xr=rotandgetpar(I,t,dx,dy);                                   

thetac=gettheta(table,xr); 

                               err=[err (t-thetac)]; 
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                          end 

                          pwrerr=sum(err.^2); 

                              if pwrerr<minerr 

                                   minerr=pwrerr; 

                                   bestdx=dx; 

                                   bestdy=dy; 

                                   besterr=err; 

                              end 

                       disp(dx*dy) 

                      c=clock; 

                       disp([int2str(c(1,4)) ':' int2str(c(1,5)) ':' int2str(c(1,6))]) 

%                     figure 

%                     plot(rot,err) 

%                     xlabel ('rot') 

%                     ylabel ('err') 

%                     title(['Distances  dx= ',int2str(dx),' & Distance dy=  

',int2str(dy)],'Color','b')  

%                     %axis([min(theta) max(theta) -2 2]); 

%                     axis auto 

                     %  saveas(gcf,[int2str(d) '.jpg']); 

                  end 

          %  disp('Figures are exported to the application folder!'); 

         end 

          disp(['Finished at : ' int2str(c(1,4)) ':' int2str(c(1,5)) ':' int2str(c(1,6))]) 

                     figure 

                     plot(rot,besterr) 

                     xlabel ('rot') 

                     ylabel ('err') 

                     title(['Best Distances  dx= ',int2str(bestdx),' & Distance dy=  

',int2str(bestdy)],'Color','b')  

                    %axis([min(theta) max(theta) -2 2]); 

                     axis auto 

     end 

     if (choice == 7) 
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          %clear all; 

          clc; 

          close all; 

          return;      

     end 

end 

 

1.2.1.1 Functions for Two Parameter Modeling 

 

function table_real=gettable(I,range,dx,dy) 

          n=round(size(I,1)/4); 

          xr=[]; 

          theta=[]; 

          for t=range 

              XR = imrotate(I,t,'bilinear','crop'); 

             % XR=myrotate(I,t); 

              XR=modifyimage(XR,n);XR=double(XR); 

%         XR=XR+0.05*randn(size(XR,1),size(XR,2)); 

              xr=[xr getparameters(XR,dx,dy)]; 

              theta=[theta t];   

          end 

          table_real=[xr(1,:);xr(2,:);theta];   

 

function R=modifyimage(R,n) 

[nx,ny,nc]=size(R); 

nx2=round(nx/2); 

ny2=round(ny/2); 

R=R(nx2-n+1:nx2+n,ny2-n+1:ny2+n,2);  

  
function x=getparameters(X,dx,dy) 

   [M,N]=size(X); 

myA11=sum(sum(X([1:M-dx],[dy+1:N]).*X([1:M-dx],[dy+1:N]))); 

myA12=sum(sum(X([1:M-dx],[dy+1:N]).*X([dx+1:M],[1:N-dy]))); 

myA21=sum(sum(X([dx+1:M],[1:N-dy]).*X([1:M-dx],[dy+1:N]))); 
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myA22=sum(sum(X([dx+1:M],[1:N-dy]).*X([dx+1:M],[1:N-dy]))); 

myB11=sum(sum(X([dx+1:M],[dy+1:N]).*X([1:M-dx],[dy+1:N]))); 

myB21=sum(sum(X([dx+1:M],[dy+1:N]).*X([dx+1:M],[1:N-dy]))); 

   A=[myA11 myA12;myA21 myA22] ; 

B=[myB11;myB21]; 

x=inv(A)*B; 

 

function xr=rotandgetpar(I,t,dx,dy) 

          n=round(size(I,1)/4); 

         XR = imrotate(I,t,'bilinear','crop'); 

          XR=modifyimage(XR,n);XR=double(XR);  

          xr=getparameters(XR,dx,dy); 

  
function theta=gettheta(table,xr)   

          [m,n]=size(table); 

          minerror=10; 

           for i=1:n 

              xR=table(1:2,i);   

              error =norm(xR-xr); 

              if error < minerror 

              minerror=error; 

              theta=table(3,i); 

              end 

          end 

 

1.2.2 Five Parameter Model Examining 

 

% Version : 1.0 

% Author  : Cihan Ulas 

clear all; 

clc; 

close all; 

while (1) 

            choice=menu('Main Menu',... 
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                   'Get Image',... 

                   'Inspect for the best statistical distance',... 

                   'Rotate Image',.... 

                   'Calculate Rotation',... 

                   'Theta-Error Plotter',... 

                   'Theta-Error Plotter for differet distances',... 

                   'Exit'); 

     if (choice ==1) 

          [file_name file_path] = uigetfile ('*.bmp'); 

          I = imread ([file_path,file_name]);         

          %I=imread('k2.bmp'); 

          disp('Enter the table range for training. Example:0:1:180'); 

          range=-30:0.5:30;%input('Range: '); 

          dx=input('Distance dx: ');  

          dy=input('Distance dy: ');  

          table=gettable(I,range,dx,dy) 

          xdir=table(1,:); 

          ydir=table(2,:); 

          diag=table(3,:); 

          mod1=table(4,:); 

          mod21=table(5,:); 

          mod22=table(6,:); 

          figure('Name','Mean of X Direction','NumberTitle','off') 

          plot(range,xdir,'b') 

          xlabel ('theta') 

          ylabel ('mean(xdir)') 

          title('Mean of X Direction')  

          %%%%%%%%%%%%%%%%%%%%%%%%% 

          figure('Name','Mean of Y Direction','NumberTitle','off') 

          plot(range,ydir,'b') 

          xlabel ('theta') 

          ylabel ('mean(ydir)') 

          title('Mean of Y Direction')  

          %%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 92

          figure('Name','Mean of Diag Left-Right-Mean','NumberTitle','off') 

          plot(range,diag,'b') 

          xlabel ('theta') 

         ylabel ('mean(diags)') 

          title('Mean of Diag Left-Right-Mean')  

         %%%%%%%%%%%%%%%%%%%%%%%%% 

          figure('Name','1 Model Parameter','NumberTitle','off') 

          plot(range,mod1,'b') 

          xlabel ('theta') 

          ylabel ('a0') 

          title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

          %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

          figure('Name','2 Model Parameters','NumberTitle','off') 

          plot(range,mod21,'b') 

          xlabel ('theta') 

          ylabel ('a1') 

          title('Mean of Diag Left-Right-Mean')  

          title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

           %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

          figure('Name','2 Model Parameters','NumberTitle','off') 

          plot(range,mod22,'b') 

          xlabel ('theta') 

          ylabel ('a2') 

          title('Mean of Diag Left-Right-Mean')  

          title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b') 

        end 

      if (choice == 2) 

          drangex=input('Distance Range for dx: '); 

          drangey=input('Distance Range for dy: '); 

         

        for d1=drangex   

              for d2=drangey 

                 

                   table=gettable(I,range,d1,d2); 
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                   mod1=table(4,:); 

                   mod21=table(5,:); 

                  mod22=table(6,:); 

                         figure('Name','1 Model Parameter','NumberTitle','off') 

                  plot(range,mod1,'b') 

                   xlabel ('theta') 

                   ylabel ('a0') 

                  title(['Distance dx= ',int2str(d1),' & Distance dy=…  

',int2str(d2)],'Color','b')  

                   %%%%%%%%%%%%%%%%%%%%%%%%% 

                   figure('Name','2 Model Parameters','NumberTitle','off') 

                   plot(range,mod21,'b') 

                   xlabel ('theta') 

                   ylabel ('a1') 

                   title('Mean of Diag Left-Right-Mean')  

                   title(['Distance dx= ',int2str(d1),' & Distance dy= … 

',int2str(d2)],'Color','b')  

                       %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                   figure('Name','2 Model Parameters','NumberTitle','off') 

                   plot(range,mod22,'b') 

                   xlabel ('theta') 

                   ylabel ('a2') 

                   title('Mean of Diag Left-Right-Mean')  

                   title(['Distance dx= ',int2str(d1),' & Distance dy=…  

',int2str(d2)],'Color','b') 

                   disp('Press any key for the next distance...') 

                   pause; 

                   close all; 

                   clc; 

              end 

        end 

  

     end 
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     if (choice == 3) 

                 disp(' Image will be rotated and a bilinear-crop method will be applied.') 

                 disp('--------------------------------') 

                t=input('Enter the rotation angle: '); 

          xr=rotandgetpar(I,t,dx,dy) 

     end 

     if (choice == 4) 

                 disp('--------------------------------') 

                 disp('Finding the rotation based on 2 parameters'); 

                 disp('--------------------------------') 

                 theta=gettheta(table,xr) 

     end 

     if (choice==5) 

                 rot=input('Enter the table range(Example:0:0.5:180):'); 

                 err=[] ; 

                 for t=rot 

                         xr=rotandgetpar(I,t,dx,dy); 

                         thetac=gettheta(table,xr); 

                          err=[err (t-thetac)]; 

                 end 

                 disp(mean(err)); 

                 figure 

                 plot(rot,err) 

                 axis auto 

                 xlabel('theta') 

                 ylabel('error') 

                 title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

     end 

    

     if (choice == 6) 

          rot=input('Enter the rotation range(Example:0:1:180):'); 

          drangex=input('Distance Range dx: '); 

          drangey=input('Distance Range dy: '); 
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          disp('This process may take a few minutes...') 

          minerr=10000; 

          c=clock; 

         for dx=drangex   

                  for dy=drangey 

                       table=gettable(I,range,dx,dy);    %  build new table 

                       err=[] ; 

                          for t=rot 

                               xr=rotandgetpar(I,t,dx,dy);        

thetac=gettheta(table,xr); 

                               err=[err (t-thetac)]; 

                          end 

                       pwrerr=sum(err.^2); 

                          if pwrerr<minerr 

                                   minerr=pwrerr; 

                                   bestdx=dx; 

                                   bestdy=dy; 

                                   besterr=err; 

                              end 

                       disp(dx*dy) 

                       c=clock; 

                       disp([int2str(c(1,4)) ':' int2str(c(1,5)) ':' int2str(c(1,6))]) 

                       %saveas(gcf,[int2str(d) '.jpg']); 

                  end 

          end 

                  disp(['Finished at : ' int2str(c(1,4)) ':' int2str(c(1,5)) ':' … 

int2str(c(1,6))]) 

                  figure 

                 plot(rot,besterr) 

                 xlabel ('rot') 

                 ylabel ('err') 

                 title(['Best Distances  dx= ',int2str(bestdx),' & Distance dy=  

',int2str(bestdy)],'Color','b')  

                 %axis([min(theta) max(theta) -2 2]); 
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                 axis auto 

         end 

     

 if (choice == 7) 

          %clear all; 

          clc; 

          close all; 

          return;      

     end 

end 

 

1.2.2.1 Functions for Five Parameter Modeling 

 

function table_real=gettable(I,range,dx,dy) 

          n=round(size(I,1)/4); 

          table=[]; 

          theta=[]; 

          for t=range 

           XR = imrotate(I,t,'bilinear','crop'); 

           XR=modifyimage(XR,n);XR=double(XR); 

%        XR=XR+0.05*randn(size(XR,1),size(XR,2)); 

           xdir1=xdir(XR); 

           ydir1=ydir(XR); 

           diagdir1=diagdir(XR); 

           mod1=getmodpar(XR,dx,dy); 

           mod2=getparameters(XR,dx,dy); 

           xr=[xdir1 ydir1 diagdir1 mod1 mod2];    

           table=[table;xr] ; 

          end 

          table_real=[table range']';   

 

function xr=rotandgetpar(I,t,dx,dy) 

                  XR = imrotate(I,t,'bilinear','crop'); 

           xr=getpars(XR,dx,dy);  
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function xr=getpars(XR,dx,dy) 

           n=round(size(XR,1)/4);  

           XR=modifyimage(XR,n);XR=double(XR);  

           xdir1=xdir(XR); 

           ydir1=ydir(XR); 

           diagdir1=diagdir(XR); 

           mod1=getmodpar(XR,dx,dy); 

           mod2=getparameters(XR,dx,dy); 

           xr=[xdir1;ydir1;diagdir1;mod1;mod2']; 

 

function meanstd= xdir(I) 

[M,N]=size(I); 

stds=[]; 

for i=1:M 

stds= [stds std(I(i,:))]; 

end 

meanstd=mean(stds)/mean(mean(I)); 

 

function meanstd= ydir(I) 

[M,N]=size(I); 

stds=[]; 

for i=1:N 

stds= [stds std(I(:,i))]; 

end 

meanstd=mean(stds)/mean(mean(I)); 

 

function meanstd= diagdir(I) 

[M,N]=size(I) ; 

   Id1=[]; 

%%Get Diag Forward Elements 

for i=1:M 

Id1= [Id1 I(i,i)]; 

end 
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   stdF=std(Id1); 

%%Get Diag Backward Elements 

Id2=[]; 

for i=1:M 

Id2= [Id2 I(i,M-i+1)]; 

end 

stdB=std(Id2); 

%%Their mean 

meanstd=(stdF+stdB)/2;meanstd=meanstd/mean(mean(I)); 

%all=[meanstd;stdF;stdB]/mean(mean(I)); 

 

function x=getmodpar(X,dx,dy) 

[M,N]=size(X); 

  A=sum(sum(X([1:M-dx],[1:N-dy]).*X([dx+1:M],[dy+1:N]))); 

  B=sum(sum(X([1:M-dx],[1:N-dy]).*X([1:M-dx],[1:N-dy]))); 

 

function x=getparameters(X,dx,dy) 

   [M,N]=size(X); 

  

myA11=sum(sum(X([1:M-dx],[dy+1:N]).*X([1:M-dx],[dy+1:N]))); 

myA12=sum(sum(X([1:M-dx],[dy+1:N]).*X([dx+1:M],[1:N-dy]))); 

myA21=sum(sum(X([dx+1:M],[1:N-dy]).*X([1:M-dx],[dy+1:N]))); 

myA22=sum(sum(X([dx+1:M],[1:N-dy]).*X([dx+1:M],[1:N-dy]))); 

myB11=sum(sum(X([dx+1:M],[dy+1:N]).*X([1:M-dx],[dy+1:N]))); 

myB21=sum(sum(X([dx+1:M],[dy+1:N]).*X([dx+1:M],[1:N-dy]))); 

   A=[myA11 myA12;myA21 myA22] ; 

B=[myB11;myB21]; 

x=inv(A)*B; 

x=x'; 

 

function theta=gettheta(table,xr)   

          [m,n]=size(table); 

          minerror=10; 

          Wi=[1 1 1 1 1 1]; 
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          for i=1:n 

              xR=table(1:6,i);   

              error =Wi.*norm(xR-xr); 

              if error < minerror 

                minerror=error; 

               theta=table(7,i); 

                %theta=table(3,i); 

              end 

          end 

 

1.2.3 Statistical Method Examining by Using a Camera 

 

% Version : 1.0 

% Author  : Cihan Ulas 

clear all; 

clc; 

close all; 

while (1) 

            choice=menu('Main Menu',... 

                   'Start Capturing',... 

                   'Inspect for the best distance',.... 

                   'Rotate Image',.... 

                   'Calculate Rotation',... 

                   'Theta-Error Plotter',... 

                   'Theta-Error Plotter for differet distances',... 

                   'Work in Real Time',... 

                   'Exit'); 

if (choice ==1) 

             vidobj = videoinput('winvideo', 1); 

             preview(vidobj) 

             disp('Enter the range for training. Example:0:1:180'); 

             range=-20:.5:20;%input('Range: '); 

             dx=input('Distance dx: ');  

             dy=input('Distance dy: ');  
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             I=getsnapshot(vidobj); 

               table=gettable(I,range,dx,dy); 

             disp('Table has been created') 

              xdir=table(1,:); 

             ydir=table(2,:); 

             diag=table(3,:); 

             mod1=table(4,:); 

             mod21=table(5,:); 

             mod22=table(6,:); 

             figure('Name','Mean of X Direction','NumberTitle','off') 

             plot(range,xdir,'b') 

             xlabel ('theta') 

             ylabel ('mean(xdir)') 

             title('Mean of X Direction')  

             %%%%%%%%%%%%%%%%%%%%%%%%% 

             figure('Name','Mean of Y Direction','NumberTitle','off') 

             plot(range,ydir,'b') 

             xlabel ('theta') 

             ylabel ('mean(ydir)') 

             title('Mean of Y Direction')  

             %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             figure('Name','Mean of Diag Left-Right-Mean','NumberTitle','off') 

             plot(range,diag,'b') 

             xlabel ('theta') 

             ylabel ('mean(diags)') 

             title('Mean of Diag Left-Right-Mean')  

             %%%%%%%%%%%%%%%%%%%%%%%%% 

             figure('Name','1 Model Parameter','NumberTitle','off') 

             plot(range,mod1,'b') 

             xlabel ('theta') 

             ylabel ('a0') 

             title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

             %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             figure('Name','2 Model Parameters','NumberTitle','off') 
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             plot(range,mod21,'b') 

             xlabel ('theta') 

             ylabel ('a1') 

             title('Mean of Diag Left-Right-Mean')  

             title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

              %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             figure('Name','2 Model Parameters','NumberTitle','off') 

             plot(range,mod22,'b') 

             xlabel ('theta') 

             ylabel ('a2') 

             title('Mean of Diag Left-Right-Mean')  

             title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b') 

     end 

    if (choice == 2) 

          drangex=input('Distance Range for dx: '); 

          drangey=input('Distance Range for dy: '); 

               for d1=drangex   

              for d2=drangey 

                   table=gettable(I,range,d1,d2); 

                   mod1=table(4,:); 

                   mod21=table(5,:); 

                   mod22=table(6,:); 

                   figure('Name','a0','NumberTitle','off') 

                   plot(range,mod1,'b') 

                   xlabel ('theta') 

                   ylabel ('2 Parameters') 

                   title(['Distance=#',int2str(d1),'…  

Distance=#',int2str(d2)],'Color','b')  

                   %%%%%%%%%%%%%%%%%%%%%% 

                   figure('Name','a1 and a2','NumberTitle','off') 

                   plot(theta,mod21,'b',theta,mod22,'r') 

                   xlabel ('theta') 

                   ylabel ('2 Parameters') 

                   title(['Distance=#',int2str(d1),'…  
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Distance=#',int2str(d2)],'Color','b')  

                 

                   disp('Press any key for the next distance...') 

                   pause; 

                   close all; 

                   clc; 

              end 

        end 

end 

  

     if (choice == 3) 

                 disp(' Image will be rotated and a bilinear-crop method will be applied.') 

                 disp('--------------------------------') 

                 t=input('Enter the rotation angle: '); 

          %         dist1=input('Enter dx:'); 

          %         dist2=input('Enter dy:'); 

                 xr=rotandgetpar(I,t,dx,dy) 

     end 

      

if (choice == 4) 

                 disp('--------------------------------') 

                 disp('Finding the rotation based on 2 parameters'); 

                 disp('--------------------------------') 

                 theta=gettheta(table,xr) 

     end 

      

if (choice==5) 

                 rot=input('Enter the table range(Example:0:0.5:180):'); 

                 err=[] ; 

                 for t=rot 

                         xr=rotandgetpar(I,t,dx,dy); 

                         thetac=gettheta(table,xr); 

                          err=[err (t-thetac)]; 

                 end 
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                 disp(mean(err)); 

                 figure 

                 plot(rot,err) 

                 axis auto 

                 xlabel('theta') 

                 ylabel('error') 

                 title(['Distance dx= ',int2str(dx),' & Distance dy= ',int2str(dy)],'Color','b')  

     end  

     

if (choice == 6) 

          rot=input('Enter the rotation range(Example:0:1:180):'); 

          drangex=input('Distance Range dx: '); 

          drangey=input('Distance Range dy: '); 

             disp('This process may take a few minutes...') 

          for dx=drangex   

                  for dy=drangey 

                       table=gettable(I,range,dx,dy);    %  build new table 

                       err=[] ; 

                          for t=rot 

xr=rotandgetpar(I,t,dx,dy);                            

thetac=gettheta(table,xr); 

                               err=[err (t-thetac)]; 

                          end 

                       figure 

                       plot(rot,err) 

                       xlabel ('rot') 

                       ylabel ('err') 

                       title(['Distance dx= ',int2str(dx),' & Distance dy=…  

',int2str(dy)],'Color','b')  

                       %axis([min(theta) max(theta) -2 2]); 

                       axis auto 

                       disp('.') 

                       %saveas(gcf,[int2str(d) '.jpg']); 

                  end 
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           %disp('Figures are exported to the application folder!'); 

         end   

    end 

      

if (choice == 7) 

%             range=input('Range: ');  

%             dx=input('Distance: ');        

%             dy=input('Distance: '); 

             while(1) 

                 xpars=[]; 

                     for j=1:10 %%get avarage. 

                          I = getsnapshot(vidobj); 

                          xr=getpars(I,dx,dy); 

                          xpars=[xpars xr]; 

                     end 

                     theta=gettheta(table,mean(xpars')') ; 

                     disp(theta); 

              %pause(0.5)    

             end 

     end 

     if (choice == 8) 

          %clear all; 

          clc; 

          close all; 

          delete(vidobj); 

          clear vidobj 

          return;      

 end 

end 
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