
 

 

AUGMENTED REALITY TECHNIQUES IN ROBOTICS AND THEIR 
.NET IMPLEMENTATIONS 

 
 

 
 
 
 
 
 
 

by 
 
 
 
 
 
 
 
 
 

Yusuf ADIBELLİ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

August 2007 
 
 
 



 

 

 
 
 
 

AUGMENTED REALITY TECHNIQUES IN ROBOTICS AND 
THEIR .NET IMPLEMENTATIONS 

 
 
 

by 
 
 

Yusuf ADIBELLİ 
 
 

A thesis submitted to 
 

the Graduate Institute of Sciences and Engineering 
 
 

of 
 
 

Fatih University 
 
 

in partial fulfillment of the requirements for the degree of  
 

Master of Science 
 
 

in 
 
 

Electronics Engineering 
 
 
 
 
 

August 2007 
Istanbul, Turkey 

 
 
 
 
 
 
 



 

 
 
 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 

Master of Science. 
 

                          ___________________ 
Prof. Dr. Muhammet KÖKSAL 

      Head of Department 
 
 

This is to certify that I have read this thesis and that in my opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 

    ___________________  
Assoc. Prof. Dr. Onur TOKER   

Supervisor  
 
Examining Committee Members  
 
Prof. Dr. Muhammet KÖKSAL 
_____________________ 
 
Assoc. Prof. Dr. Onur TOKER 
_____________________ 
        
Assoc. Prof. Dr. Halil Rıdvan ÖZ 
_____________________ 
  
 
 

It is approved that this thesis has been written in compliance with the formatting 
rules laid down by the Graduate Institute of Sciences and Engineering. 

 
 

    ___________________  
 Assist. Prof. Dr. Nurullah ARSLAN 

   Director 
 
 
 
 
 

Date 
August 2007 

 
 
 



iii 

 

 
 
 
 

AUGMENTED REALITY TECHNIQUES IN ROBOTICS AND 
THEIR .NET IMPLEMENTATIONS 

  
 

 Yusuf ADIBELLİ 
 
 

M. S. Thesis - Electronics Engineering 
August 2007 

 
  

Supervisor: Assoc. Prof. Dr. Onur TOKER 
 
  
 

ABSTRACT 
 
 
 

Telerobotics is a scheme that allows humans to extend their manipulative skills 
over a network by combining human’s cognitive skills and robot’s specialized working 
abilities. Efficient control of the robot over LAN in the presence of time delays and data 
loss is a dynamic research field. The purpose of this work  is to implement a reliable 
teleoperation of Mitsubishi RV-2AJ robot over a LAN. In order to pursue this goal, a 
completely distributed telerobotic framework is developed using .NET Remoting 
technology to provide multithreaded environment for real-time interaction between 
client and server side components. Computer vision and force feedback techniques are 
implemented and their performance analysis are evaluated in order to enhance the 
maneuverability of the operator telemanipulating the robot.  

 
 

Keywords: Computer Vision, Telerobotics, Augmented Reality, Multithreaded, Force 

Feedback 

 
 
 
 
 
 
 
 
 
 
 



iv 

 
 
 
 
 

ROBOTİKTE SANAL + GERÇEK DÜNYA TEKNİKLERİ VE 
BUNLARIN .NET UYGULAMALARI 

 
 

Yusuf ADIBELLİ 
 
 

Yüksek Lisan Tezi – Elektronik Mühendisliği 
Ağustos 2007 

 
  

Tez Yöneticisi: Doç. Dr. Onur TOKER 
  

 
ÖZ 

 
Telerobotik insanın bilgiye ve idrake dayalı becerileri ile robotun uzmanlaşmış 

çalışma yeteneklerini birleştirerek insanların ağ üzerinden kullanma kaabiliyetini 
genişleten bir sistemdir.  Robotun LAN üzerinden var olan zaman gecikmeleri ve veri 
kayıplarına rağmen verimli kontrolu dinamik araştırma alanlarındandır. Bu çalışmada 
Mitsubishi RV-2AJ robotun LAN üzerinden güvenli bir şekilde kullanımı 
amaçlanmaktadır. Bu amacı gerçekleştirmek için de; client ve server bileşenleri arasında 
gerçek zamanlı bir etkileşim için multithread yapılı  bir ortam oluşturulması, tamamen 
dağıtılmış telerobotik yapısı .NET technolojisi kullanılarak geliştirilmiştir. Görüntü 
işleme ve geribesleme etkisi teknikleri uygulanmış ve operatorün robotu elle kullanım 
manevra kaabiliyetini artırmak için bu tekniklerin performans analizleri yapılmıştır. 

 
 
 

Anahtar Kelimeler: Görüntü İşleme, Telerobotik, Artırılmış Gerçeklik, Multithread, 

Geri Besleme Etkisi 

 
 
 
 
 
 
 
 
 
 
 
 



v 

 
 
 
 
 

DEDICATION 

 

 

Dedicated To My Parents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi 

 
 
 

ACKNOWLEDGEMENT 
 
 

This dissertation could not have been written without Assoc. Prof. Dr. Onur 

TOKER who not only served as my supervisor but also encouraged and challenged me 

throughout my academic program. He patiently guided me through the dissertation 

process, never accepting less than my best efforts. I thank him all. 

 

I also express gratitude to Research Assistants Cihan Ulaş, Melek Oktay, 

Mustafa Sarıöz and Taner Çevik who have previous works and creative ideas on this 

thesis subject. 

 

Thanks go to the committee member Assist. Prof. Tuğrul Yanık for his valuable 

suggestions and comments. 

 

I express my thanks and appreciation to my family for their understanding, 

motivation and patience.  

 
At last but not least, I want to thank my friends Dinçer Özer, Ergun Şakalar, and 

Cemil Dizman with their encouragements. And I am thankful especially to Sinan 

Kocaman with his extraordinary understanding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 

 

 
 
 

TABLE OF CONTENTS 
 

ABSTRACT .................................................................................................................... iii 

ÖZ .................................................................................................................................... iv 

DEDICATION.................................................................................................................. v 

ACKNOWLEDGEMENT............................................................................................... vi 

TABLE OF CONTENTS ...............................................................................................vii 

LIST OF FIGURES .......................................................................................................... x 

LIST OF TABLES.......................................................................................................... xii 

LIST OF SYMBOLS AND ABBREVIATIONS ..........................................................xiii 

CHAPTER 1    INTRODUCTION................................................................................... 1 

1.1 Thesis Objectives.............................................................................................. 6 

1.1.1 Telerobotics .............................................................................................. 6 

1.1.2 Computer Vision....................................................................................... 7 

1.2 Organization of the Work ................................................................................. 7 

CHAPTER 2    LITERATURE REVIEW........................................................................ 8 

2.1 Network Telerobotic ............................................................................................... 8 

2.1.1 Supervisory Control in Telerobotics.............................................................. 14 

2.2 Stereo Vision and Augmented Reality.................................................................. 17 

2.2.1 Stereo Vision.................................................................................................. 18 

2.2.2 Augmented Reality ........................................................................................ 20 

2.2.3 Classification of Visualization Systems Based on Used Equipments ........... 22 

2.2.3.1 Interleaved/Interlaced Stereoscopic ....................................................... 22 

2.2.3.2 Page Flipping /Page Flip Mode ............................................................. 22 

2.2.3.3 Sync-Doubling (Above-And-Below)........................................................ 22 

2.2.3.4 Line Blanking .......................................................................................... 23 

CHAPTER 3    ROBOT SYSTEM................................................................................. 25 

3.1 ROBOT FUNDAMENTALS ......................................................................... 25 

3.1.1 Robot Components ........................................................................................ 25 

3.1.2 Robot Reference Frames................................................................................ 26 

3.2 MITSUBISHI RV-2AJ ......................................................................................... 27 



viii 

3.3 COSIROP 2.0 PROGRAMMING SOFTWARE.................................................. 30 

3.4 TESTS ON RV-2AJ ROBOT ............................................................................... 32 

3.4.1 Control of RV-2AJ by Microsoft HyperTerminal ......................................... 32 

3.4.1.1 Robot Controller Box Melfa Basic IV Program for HyperTerminal 

Control ................................................................................................................ 34 

3.4.2 Control of RV-2AJ by Microsoft Visual Studio .NET/C# GUI .................... 35 

3.4.3 Control of RV-2AJ by Joystick ..................................................................... 35 

CHAPTER 4    A MULTI-THREAD DISTRUBUTED TELEROBOTIC 

FRAMEWORK .............................................................................................................. 37 

4.1 AN OVERVIEW OF THE DISTRIBUTED OBJECT TECHNOLOGIES ......... 38 

4.1.1 CORBA.......................................................................................................... 38 

4.1.2 .NET............................................................................................................... 38 

4.1.3 JAVA/RMI .................................................................................................... 39 

4.2 MOTIVATION FOR USING .NET FRAMEWORK .......................................... 40 

4.3 SERVER SIDE COMPONENTS ......................................................................... 41 

4.3.1 Mitsubishi RV-2AJ CR1 Controller Program ............................................... 41 

4.3.1.1 Operation 1 ............................................................................................. 44 

4.3.1.2 Operation 2 ............................................................................................. 44 

4.3.1.3 Operation 3 ............................................................................................. 45 

4.3.1.4 Operation 4 ............................................................................................. 45 

4.3.1.5 Operation 5 ............................................................................................. 45 

4.3.2 .NET Server Component & Server User Interface ........................................ 46 

4.3.2.1 TCP/IP Socket Programming ................................................................. 47 

4.3.2.2 ServerTest Program ................................................................................ 50 

4.4 CLIENT SIDE COMPONENTS .......................................................................... 53 

4.4.1 .NET Client Component & Client User Interface.......................................... 53 

4.4.1.1 Client Component ................................................................................... 53 

4.4.1.2 Joystick Component ................................................................................ 53 

CHAPTER 5    PERFORMANCE EVALUATION....................................................... 57 

5.1 EXTRAPOLATION METHODS......................................................................... 58 

5.1.1 Linear Extrapolation ...................................................................................... 58 

5.1.2 Polynomial Extrapolation .............................................................................. 58 

5.1.3 Cubic Extrapolation ....................................................................................... 58 

5.2 PERFORMANCE EVALUATION TESTS ......................................................... 59 



ix 

5.2.1 Least Squares Method (LSM)........................................................................ 60 

5.2.2 Experimental Results ..................................................................................... 62 

5.2.2.1 Experiment Result without Using Estimation Techniques ...................... 62 

5.2.2.2 Experiment Result Using Linear Extrapolation...................................... 63 

5.2.2.3 Experiment Result Using Parabolic Extrapolation ................................ 64 

5.2.2.4 Experiment Result Using Cubic Extrapolation....................................... 65 

5.3 COMPARISION................................................................................................... 66 

CHAPTER 6    AN AUGMENTED REALITY SYSTEM SOR TELEROBOTICS..... 67 

6.1 VISUALIZATION SYSTEMS BASED ON USED EQUIPMENTS.................. 67 

6.2 VISUALIZATION SYSTEMS BASED ON USED IMAGE AND VIDEO 

GENERATION TECHNIQUES................................................................................. 69 

6.3 3D LIVE VIDEO GENERATION AND 3D VISUALIZATION IN SYNC-

DOUBLING MODE................................................................................................... 72 

CHAPTER 7    CONCLUSION ..................................................................................... 75 

7.1 CONTRIBUTIONS .............................................................................................. 76 

REFERENCES ............................................................................................................... 77 

APPENDIX A USED MELFA BASIC IV COMMANDS DEFINITIONS .................. 81 

APPENDIX B MITSUBISHI RV-2AJ CONTROLLER PROGRAM FOR .NET 

APPLICATION .............................................................................................................. 83 

APPENDIX C PERFORMANCE EVALUATION PROGRAM................................... 85 

APPENDIX D 3D STEREO IMAGE GENERATION PROGRAM ............................. 86 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 
 

 
 

LIST OF FIGURES 
 
 
 

Figure 2.1 A Model of Supervisory Control .................................................................. 17 

Figure 2.2 Pinhole Camera Model ................................................................................. 18 

Figure 2.3 Stereo Camera Model ................................................................................... 19 

Figure 2.4 Optical See-through Augmented Reality Display ......................................... 21 

Figure 2.5 Video See-through Augmented Reality Display ........................................... 22 

Figure 3.1 Mitsubishi RV-2AJ ...................................................................................... 27 

Figure 3.2 Dimensions of Mitsubishi RV-2AJ .............................................................. 29 

Figure 3.3 Application areas of the Mitsubishi RV-2AJ ................................................ 29 

Figure 3.4 RV-2AJ Controller Box and Teach Pendant ................................................. 30 

Figure 3.5 COSIROP software can be used to download, start and stop a program to the 

robot controller box. ....................................................................................................... 31 

Figure 3.6 Serial communication parameters for connection between the robot controller 

box and the PC running the COSIROP software............................................................ 34 

Figure 3.7 GUI of RV-2AJ Controller (written in C#) ................................................... 35 

Figure 3.8 Joystick experiment with DirectInput API of DirectX.................................. 36 

Figure 4.1 Mitsubishi RV-2AJ  CR1 Controller Program Flowchart............................. 43 

Figure 4.2 Server Side Graphic User Interface............................................................... 46 

Figure 4.3 Component Hierarchy on the Server Side..................................................... 47 

Figure 4.4 Server-Client Communication Orientation ................................................... 49 

Figure 4.5 Server Component Model View and UML Diagram of Server .................... 51 

Figure 4.6 Client Component Model View and UML Diagram of Client...................... 52 

Figure 4.7 Client Side Gaphic User Interface................................................................. 55 

Figure 4.8 Server and Client Side Integrated Scheme .................................................... 56 

Figure 5.1 Joystick Incremental Motion (Desired) and Robot Response (Actual)......... 62 

Figure 5.2 Desired and Actual Position Error (None of Estimation Techniques) .......... 63 

Figure 5.3 Linear Extrapolated Desired Motion and Actual Motion.............................. 63 

Figure 5.4 Desired and Actual Position Error................................................................. 64 



xi 

Figure 5.5 Parabolic Extrapolated Desired Motion and Actual Motion ......................... 65 

Figure 5.6 Desired and Actual Position Error................................................................. 65 

Figure 5.7 Cubic Extrapolated Desired Motion and Actual Motion............................... 65 

Figure 5.8 Desired and Actual Position Error................................................................. 66 

Each format requires different techniques and/or equipment for generation and 

visualization. ................................................................................................................... 68 

Figure 6.1 Eye3D Premium Shuttering Glasses for 3D Visualization .......................... 69 

Figure 6.2 Artificially Generated Images for the 1st and the 2nd eye .............................. 70 

Figure 6.3 Artificially Generated 3D Image in Interleaved Mode ................................. 70 

Figure 6.4 Combined 1st and the 2nd eye Artificially Generated Images ........................ 71 

This image, when viewed on a CRT monitor with LCD glasses, and controller operating 

in Sync-Doubling Mode, will result an artificial 3D scene as shown below.................. 71 

Figure 6.5 Artificially Generated 3D Image in Sync-Doubling Mode ........................... 72 

Figure 6.6 Used Parallel Camera Configuration............................................................. 73 

Figure 6.7 HYTEK  General Stereo 3D Camera Driver Interface.................................. 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



xii 

 
 

LIST OF TABLES 
 
 

Table 3.1 Joint Limits ..................................................................................................... 28 

Table 5.1 Experiment Results ......................................................................................... 61 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xiii 

 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

2D    Two-Dimensional  

3D    Three-Dimensional  

Q.o.S    Quality of Service  

GPS    Global Positioning System  

LAN    Local Area Network  

MAN    Metropolitan Area Network  

MOMR   Multi-Operator-Multi-Robot  

SOSR    Single-Operator-Single-Robot   

OS    Operating System  

GUI    Graphical User Interface 

VR    Virtual Reality   

VE    Visual Enhancements  

TCP/IP  Transmission Control Protocol / Internet Protocol 

ATM    Asynchronous Transfer Mode  

HIC    Human Interactive Computer  

TIC    Interactive Computer  

HMD   Head Mounted Display 

DOF   Degree Of Freedom 

BBS   Bulletin Board System 

RPC    Remote Procedure Call 

OMG    Object Management Group 

IDL    Interface Definition Language 

COM    Component Object Model 

SOAP    Simple Object Access Protocol 

 
 
 
 



 

1 

 
 
 
 
 

CHAPTER 1 
 
 

INTRODUCTION 
 

Robots are employed to make exacting routine works, alternating from the 

common place to difficult and from the relatively safe to the highly dangerous. The idea 

“human supervisory control” has the potential to bring robotics out of the laboratory and 

into the difficult and messy world. Traditionally, researchers have focused on 

automation which seeks to build all necessary capabilities into a machine to achieve a 

particular task, including sensors, actuators, servos and algorithms. In contrast to 

automatic control, supervisory control puts a human back “in the loop”. In the 

supervisory control systems, human and machine work together.  

 

 Remote-controlled robots or teleoperation -manipulation of an object (in this case 

a robot) - is one way to combine the intelligence and maneuverability of human beings 

with the precision and durability of robots (A. Monferer, 2002). Therefore, a telerobot 

can be defined as a electromechanical tool or device containing sensors and actuator 

that effectively extends an operator’s sensorimotor system, perceiving and manipulative 

ability, to a remote environment. Shortly, when the operator and the machine are not 

collocated but are connected by some communication channel, the system said to be 

telerobotic. Particularly, a telerobot system consists of  (Telerobot System, 2004): 

 

i. A master arm connected to a client 

ii. A slave arm connected to a server station, 

iii. A-stereo vision system to provide 3D views of slave-remote- 

scene (a visual sensor, an image processing system, and system 

controller). 

 

Teleoperated and under supervisory control robots have been used in a variety of 

application areas in maintenance and repair including those which are (Nof, 1998): 

 



2 

a) Hazardous to humans such as  

i. nuclear decommissioning, inspection, and waste handling 

ii. bomb disposal and minefield clearance 

iii. unmanned underwater inspection, search and rescue 

iv. Power Line Maintenance 

 

b) Humans adversely affect the environment such as 

i. Medical applications 

ii. Clean room operations 

 

c) Impossible for humans to be satiated in such as 

i. Deep space 

ii. Nano robotics  

 

Depending on the technological developments, especially, in robotic explorations, 

robotics is finding many applications in these areas. In addition, removing the human 

operators from the operation sites is an effective way to save the human lives and 

reduce the production costs. However, in most of these areas, we need humans in the 

control loop because of their high level skills (intelligence and maneuver ability). Also, 

machine technology advanced insufficiently to operate autonomously and intelligently 

in complex, unstructured and often cluttered environments. 

 

In mechanical, electrical, computer and control systems engineering, telerobotics 

has become the most rapidly developing area due to the utilization of robots in many 

industries and, in addition, robots ensure many advantages such as being able to 

perform set routines with less cost, more quickly and accurately than humans. Instead of 

using routine programs in maneuvering the robots, telerobotics technology allows 

human to operate robots from a remote world and helps human to make decisions while 

telemanipulating them in real time. Future of the telerobotics seems extremely 

promising depending on the development of more powerful and efficient computers. 

However, flexibility problem with which these teleoperated robots can be used is a great 

concern to both users and telerobotic researchers even if having a positive effect of 

technological development.  

 



3 

Compensation of time delay between operator and telerobot interface is an active 

research area in telerobotics. It is a great obstruction for manual control of the remote 

manipulator if time delay between the control input given by the operator and the 

consequent feedback of its control actions visible on the display is in sense. When 

control loop’s time delay exceeds half of the time period at a particular frequency, a 

continuous closed-loop control becomes unstable at that particular frequency. There are 

many examples which have been shown in literature when the human operator in the 

control loop can avoid such kind of instability by using a “move and wait strategy” that 

the operator makes small incremental moves in an open loop fashion and then waits for 

a new update of the position of the telerobot. Reasons of the time delay that occurs in 

communication are:  

i. Large distance between local and remote site, 

ii. A low speed of data transmission, 

iii. Computers are processing at a different stages, 

iv. All of the above.  

 

For example, continuous teleoperation in earth orbit or deep space by human 

operators on the earth’s surface is seriously impeded by signal transmission delays. 

Imposed this time delay is due to the limits on the speed of light (radio transmission) 

and computer processing at sending and receiving stations and satellite relay stations. 

For vehicles in low earth orbit, round-trip delays (the time from sending a discrete 

signal until any receipt of any feedback pertaining to the signal) are minimally 0.4 s; for 

vehicles on or near the moon these delays are typically 3 s. But in reality a round trip 

time delay of up to 6 seconds is common, owing to multiple reflections of signal 

through the satellites. For the underwater teleoperation which is used having a 1700m/s 

speed sonar signals in water for data transmission, the remote manipulator is not 

directly connected with cables to the controlling site. A round trip time-delay of 10 

seconds is common for teleoperation in deep sea (Sheridan, 1992). 

 

Further from the communication speed and the distance between the remote and 

local sites, appreciable time delay occurs due to the signal processing and data storage 

in computer buffers at various stages between the local and the remote sites.  

 



4 

Moreover, additional problems caused by the digital communication channels 

such as internet is an extra uncertainty in the actual magnitude of the time delay. 

Decreasing the existence of the problems like time delay and data losses that telerobotic 

have been facing today is possible if a dedicated channel is used for communication. 

Dedicated medium, commonly, is not possible and feasible because of the high 

economic costs. Having a dedicated medium, always, is not a perfect solution that 

eliminating time delay problem. For example, time delay is inevitable for satellite 

operations because of the large distances.  

 

Another problem that is faced with in many practical situations in digital 

communication is bandwidth issue because of not having a direct cabling between 

remote and local world. Many digital communication devices such as modems have a 

lower bandwidth. Using internet over a modem as a communication channel imposes 

several limitations on bandwidth. For example, the present inventions of modems allow 

operating in the voice band from 300 to 3400 Hz, and also in the ADSL band, which 

extends, nearly, above 3400 Hz (Bellenger and Russell, 1999). Due to the requirement 

of the very high bandwidth, the most difficult signal to transmit is video signal. 30 

Megabyte/second bandwidth is necessary to transfer an uncompressed standard video 

signal. Streaming of this type of data can be supported by using Local Area Network 

(LAN).  

 

Lower bandwidth causes to decrease the video signal quality available at the 

display because of the drop of the rate at which: 

i. Frame Rate, the rate at which video frames are displayed on a monitor per 

second 

ii. Display Resolution, number of pixels (or maximal image resolution) that 

can be displayed on the screen 

iii. Grayscale, the range of gray tones between black and white as displayed 

on a monitor or in an image 

 

Depending on the quality of the video signal, operator will also be affected 

adversely by decrease in the frame rate, resolution and grayscale (Sheridan, 1992).  

 



5 

Using telepresence system that is receiving sensory information or feedback 

from the robot that creates a sense of being present at the remote site and allows a 

satisfactory degree of technical performance usually helps to increase operator’s 

performance on his/her tasks. Being able to interpret the remote scene and undertake the 

task in the remote environment effectively and efficiently is accomplished by having 

sufficient visual information. Because telepresence system displays high quality visual 

information about the remote world. Therefore, operator while he is in local 

environment feels physically present in the remote world. Position of the cameras is 

another important factor to get reality of remote world as visual information.  

 

There are three principals and independent determinants of the sense of presence 

or the state of being present in a remote environment in the telerobotic literature such 

as: 

i. Having an ability to modify the remote environment (to be able to 

change objects in the remote environment or their relationship to one 

another) 

ii. The extent of the sensory information (same level sensor information that 

operator would have if sensors were physically in the remote 

environment) 

iii. The control of the sensors (being able to modify or change the position of 

the sensing device) 

 

Using single camera to take pictures from a single side does not increase the 

user’s perception on visual scene. It is not possible to know the real sizes of the objects 

by observing them from a single point. Three-Dimensional (3D) positions of points can 

be estimated only by observing in at least two images that are taken from slightly 

different viewing angles. This is the reason of rising of the stereo vision term that is 

process of combining multiple images of a scene to obtain 3D geometric information. 

Generating 3D images increases operator’s perception by providing the illusion of 

depth, height, shading and perspective within the scene. The most stereo images are 

generated by using only two images or a pair of cameras. 

 

According to above discussion, it is obvious that the development in telerobotic 

is restricted by absence of an economical high bandwidth communication medium and 



6 

as well as the unavailability of a Quality of Service (Q.o.S) that capability of a network 

to provide better service to selected network traffic over various technologies, including 

Frame Relay, Asynchronous Transfer Mode (ATM), Ethernet and 802.1 networks for 

this real-time communication (Cisco, 2007). Due to provide an effective, efficient and 

precise real-time interface in a local-remote environment depending on the stereo views 

of the remote world, it is necessary and undeniable to have a high-band width 

communication channel and guaranteed Q.o.S.  

 

1.1 Thesis Objectives 

 

The dissertation “Augmented reality techniques and their .NET application” 

presents a telerobotic system (Kazerooni et al., 1993)-( Sooyong et al., 1998) that 

consists of a vision-based client station (operator) and server station (slave robot arm) 

which are interconnected by a computer network connected through a 100 Mbps 

Ethernet LAN. The client-server (operator and slave arm) system implemented using a 

robust Visual Studio .NET with C# (VS.NET/C#) programming environment together 

with the TCP/IP (Transmission Control Protocol & Internet Protocol) socket 

programming to provide real-time connectivity through the LAN.  

 

A real-time vision system based on two similar web cameras (WebCams) 

monitor the robot arm motion to control a tele-robot. To get a stereo illusion, stereo 

visualization based on the views of the left and right camera images of the robot is 

generated after proper synchronization. Eye shuttering glasses, to view the robot scene, 

are used to see remote environment in three dimensions from the client station. 

 

   The thesis work is divided into two major categories: 
 

1. Telerobotics 

2. Computer Vision 

 

1.1.1 Telerobotics 

A Reliable Telerobotic System: 

Developing a fully distributed Object Oriented approach to implement Robot-

Server-Client interaction (Al-Harthy, 2002). 



7 

 

 Improvement on joystick-robot interaction performance by using extrapolation 

algorithms. 

 

1.1.2 Computer Vision 

 

Development of the client-server framework and grabbing, transferring and 

displaying of 3D stereo data over a Local Area Network. For the 3D effect on client 

side, different methods used to generate 3D image such as sync-doubling, line blanking 

and page flipping. 

 

1.2 Organization of the Work 

 

Literature survey relevant to thesis objectives will be given briefly in chapter 2. 

Robot fundamentals are given and Mitsubishi RV-2AJ is introduced in detail in Chapter 

3. A Multi-Thread Distrubuted Telerobotic Framework is present in Chapter 4 and, also, 

backbone of the Telerobotic Control System is explained in detail. Chapter 5 gives you 

an idea about performance evaluation of the used prediction algorithm. Augmented 

Reality system for the developed telerobotic framework will be given in Chapter 6. We 

conclude in Chapter 7. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

8 

 
 
 
 

CHAPTER 2 
 
 

LITERATURE REVIEW 
 

The literature review is subdivided into two main categories based on the two 

outstanding areas of this work: 

 

1. Network Telerobotic 

2. Stereo Vision and Augmented Reality 

 

 2.1 Network Telerobotic 

 

Research on field of robots has begun to increase and gains a momentum in 

recent years due to a number of rising technologies such a Global Positioning System 

(GPS), small computers and machine vision. These robots operating under ambiguous 

and unstructured environment assure to allow performing real tasks with much greater 

safe and comfort than is presently possible. Demand of computer network based 

telerobotic system is increasing due to the high costs of dedicated communication links 

between local and remote environments. Network Telerobotics is a natural product of 

this demand. It primarily deals with the topics related to the utilization of a computer 

network such as LAN/WAN, for the development of extremely efficient telerobotic 

systems.  

 

Paolucci et al. (Paolucci et al., 1996) discussed a teleoperation using packed 

switched computer networks as a communication resource. Experiments were carried 

out with different kinds of computer networks considering with different types of data 

traffic such that varying values of data loss, delay and jitter to evaluate the performance 

of teleoperation system. Two different PC were connected to a Network using an 

Ethernet Adapter. Two kinds of network were considered: an Ether-net based Local 

Area Network (LAN) and a Metropolitan Area Network (MAN). It is shown that when 

the packed size is increased from 64 to 1024 bytes, the network delay is also increased 



9 

from a mean value of 5.6 ms to 13.4 ms with a minimum value of delay equal to 5.4 ms 

due to the computational overheads for LAN and 30.2 ms to 90 ms due to the routing 

algorithm and queuing. LAN performs well even in the presence of traffic caused by 

other users until the total network congestion, which, of course, causes to system to be 

completely unpredictable. But even with a better performance, Q.o.S guarantee cannot 

be provide for LAN and Internet. Random time delays occur due to the absence of 

Q.o.S. a real time process can go unstable when the time delay exceeds a certain limit. 

The performance is more degraded with added delays and jitter on MAN possibly 

presence of different routers and queuing algorithms.  

 

Teleoperation performance was tested on a network simulator. An important 

result is that the operator performance is quiet insensitive to a fairly small data loss due 

to the high sampling rate with respect to data frequency contents. In addition, if the 

same quantity of data is supplied but spaced at regular intervals, increase in the operator 

performance is observed. 

 

Introduction of time delay causes an almost linearly decrease in operator 

performance. Jitter produces a disturbance in velocity due to varying intervals between 

samples. Introduction of a buffer can decrease the jitter but increase the cost of the 

delay. A tradeoff can be negotiated between the two parameters. To get better 

performance out of the telerobotic system, a new predictive algorithm is applied to 

utilize the model of the actuator. The model is located at both master and slave sites. 

Master site model gives immediate visual feedback to operator to enhance his 

performance while the slave site model is used to periodically update the parameters of 

the actuator by comparing the predictive and actual outputs. Actuator dynamic model is 

obtained using least square recursive estimator with an exponential forgetting factor. 

 

A collision-free coordinated rate control scheme is discussed by Chong et al. 

(Chong et al., 1999) for Multi-Operator-Multi-Robot (MOMR) teleoperation using a 

network with communication time delay. Multi-robot collaboration have a significant 

advantage over a Single-Operator-Single-Robot (SOSR). However, the effect of the 

time delay will cause more severe problems that seriously affect their performance in 

MOMR teleoperation systems than in SOSR systems due to the unpredictable nature, in 

local display, of the slave arm under the control of remote operator. Because the 



10 

distance between two operators is so long, one of them can not get immediately 

command issued by the other operator. Therefore, it is obvious to pose the danger of 

collisions in slave arms. This type of collaboration, known as unconstrained 

collaboration, in which each operator has the freedom to control his/her slave arm 

independently from the other slave arm, is very sensitive to time delays. Operator 

usually performs to a wait and move strategy in order to avoid from collisions which 

causes to decrease the productivity, considerably. 

 

Simulation experiments managed using OpenGL and network delay simulator 

showed that the occurrence of collisions even when a virtual thickness corresponding to 

the time-delay is added to the slave manipulator model in local display. Although there 

was no network delay, some collisions occur because of human error. By authors, a new 

approach is suggested that the usage of velocity rate control which scales the velocity 

commands issued by the operator considering the relative positions of the slave arms. If 

they are too near, the velocity commands will be scaled down, otherwise they will be 

sent as they are. However, if the distance is too small, the velocity commands will 

become zero neglecting the operator, completely. This approach causes not to happen 

the collisions completely but decrease the level of maneuverability of the joystick 

because of scaling effect. 

 

 Yeuk et al. in (Ho et al., 1999) discussed component-based distributed control 

for teleoperations using DCOM and JAVA. A model based supervisory control is 

proposed at the remote environment which is the substructure preparation project at the 

bottom of a volcano in Japan. A component based distributed control of the system is 

used to fulfill the certain requirements such as high level of robustness in deployment of 

the complete system and ease in upgrading the system. Based upon the remote 

environment model, a supervisory control is implemented at the remote site. JAVA / 

DCOM to maximize system flexibility are employed to realize component infrastructure 

and internet is used as a communication backbone. Complete isolation is from the 

network protocol is obtained using components. 

 

 JAVA and DCOM, each one has  some unique characteristics, are used for 

component developments. JAVA is basically an operating system transparent software 

language but the use of Virtual Machine makes it a bit slow than Operating System 



11 

(OS) optimized complied DCOM objects. Therefore, DCOM is used in all interface 

components except Path Planner GUI and Database interface. Path Planner GUI and 

Database interface are written in JAVA because of the simplicity with no difficulty real-

time constraint. For that project, the heart of the supervisory system is DCOM / 

ActiveX Supervisory Control Server and it maintains communication with vehicle 

objects, direct manual control as well as sensor integration server components. It is 

provided to the operator that video stream as well as a 3D graphical model of the 

current remote environment. Generally, the difference between the video stream and 3D 

graphical model should not be much, but if there is, the Supervisory Control will 

transfer the control to the operator to initiate necessary actions. 

 

Yeuk et al. have further extended their study in Ho’s work, in 2000. In this 

study, they provided the feedback by two paths, one from the Global Positioning 

System (GPS) data and second from the visual feedback. A camera is used to generate a 

visual feedback from the slave environment. Then images are snapped from the remote 

environment models which are identified by Visual Enhancements (VE), the position X 

of the vehicle is determined by minimizing the error function below based on the 

difference between the vehicle and position coordinates obtained from GPS and the 

visual feedback. 

 

E=Σi,j E2
ij = Σ Kij [Xp(i,j) – PiTcwiTwfi(X)] 2  (2.1) 

 

Here Pi, Tcwi, Twfi(.) are coordinate transformation operators and Kij is 

determined from the reliability of the measurement. This information is used in 

supervisory control and is also sent to the master site to invoke operator intervention if 

any critical error occurs. The system is developed to be sufficiently robust against to the 

addition of white noise in both robot actuator and camera planes.  

 
John E. Lloyd et al. in (Lloyd et al, 1997) discussed estimating 3D position of 

the object and using it in model-based telerobotics. Model-based telerobotics, 

sometimes also referred to as teleprogramming, has been proposed as a means of 

overcoming the problems of time-delay and bandwidth limitation between a 

teleoperated manipulator (remote site) and an operator control station (delayed remote 



12 

site). Under this framework, an operator interacts with a model of the remote site 

instead of a delayed remote site. This interaction is in turn used by the system to 

generate motion and task commands which are transmitted to the remote site. For that 

operation, the operator points to a known object feature in a video image of the remote 

site and uses two-dimensional (2D) images of these features to solve for the 3D position 

of the object.  

 

In the Lloyd’s study, the system consists of an operator site and a remote site, 

connected by communication links implemented as TCP/IP sockets. At the remote site 

there is a video/vision module which continuously collects a single camera images and 

processes them using a model-based vision algorithm to locate objects in the scene. 

Using one single camera, Lloyd in (Lloyd et al, 1997) used to pin-hole camera model 

with offline calibrated focal length and radial distortion for one single camera. Then a 

list of the objects found, along with their spatial positions, is transmitted back to the 

operator site. The camera image itself is also compressed and transmitted back to the 

operator site, where it is displayed in a separate window.  

 

Besides overcoming time delay, model-based teleprogramming systems permit 

other advantages, such as operator control of the viewpoint, the ability to test and 

preview actions, and the introduction of artificial graphical and kinesthetic aids for task 

specification. More generally, they provide the opportunity to raise the semantic level of 

the interaction between the operator and the manipulator system. 

 

Mayez et al. discussed in (Mayez et al., 2005) about the performance of 

networked teleoperation systems which is based on timely streaming of highly-

demanding dynamic media to interface human operator to the actuators and sensors of a 

remote robot. To minimize real-time delays a multi-threaded programming has been 

used to restructure sequential processing into concurrent threads that are executed in a 

pipelined fashion to parallelize the CPU processing with network transmission. 

 
 Telerobot is implemented using TCP/ATM in which two LANs are connected 

to an Asynchronous Transfer Mode (ATM) backbone. Specification of Quality-of-

Service (QoS) includes application timing, reliability, clock synchronization and 

criticality. This is accomplished by using a constant bit rate (CBR). For suitable real-



13 

time applications, ATM connection allows a tightly constrained transmission delay. In 

the robot closed loop control, random delays affect stability and performance.  

  
 The client and server are run on two PCs having 2-GHz Intel P4 processors with 

1GB DRAM memory. The vision server software uses MS Visual C++ with .NET 

framework 1.1 under Microsoft development environment 2003. The imaging device 

used is Microsoft DV camera and VCR. The PUMA server is implemented using MS 

Visual C# with the above .NET framework. Network delays are studied using three 

campus networks denoted by routes A, B, and C as shown on Figure 2.2. 

 Evaluation is carried out at the following levels:  

(1)streaming force in presence of video,  

(2) thread engineering and delays in live transfer of stereo video. 

 

Mayez et al. studied on delays in live transfer of stereo video, in three sub-

section, such as:    

1) the delays in copying the video data from cameras to computer main memory, 

2) performance of thread engineering for live video transfer in route A,  

3) video performance in routes B and C. 

  

The time delay which is due to copying a 300 video frames from cameras to 

memory in the case of a single stereo thread is 24 ms,  and time delay in the case of 

single copying thread increased from 24 ms yo 60.5 ms. In the case of stereo copying 

thread with force thread reading and transferring data over the network, the mean stereo 

copying times decreased from 60.5 ms to 33.46 ms. The improvement is due to the 

release of CPU resources to the video copying thread.  

  

Performance of  live transfer of stereo video for route A is evaluated using a 

single buffer with serialized transfer.  In this case the inter-arrival times of 300 stereo 

video frames is 86.5 ms or 11.6 fps. For good depth perception of the viewer, a frame 

rate greater than 10 fps is sufficient and it gives good viewing . In network B, it is 

noticed that the stereo and force frames preserve the same distribution pattern as in 

network A, but the whole distribution is slightly shifted with an increase in the average 

inter-arrival times to 60 ms for the stereo data. Similarly, for the route C the dominant 



14 

part (90%) of the distribution remains in the range of 58-60 ms (stereo) and some 

scattering appears in the region 60-80 ms. 

 

The use of .NET technology for streaming of force packets provides nearly the 

same inter-arrival delay for routes A, B, or C which is also comparable to the delay for 

one single hub using TCP sockets. 
 

 2.1.1 Supervisory Control in Telerobotics 

  

The machine, with automatic control, controls the process or task, adapts to 

changing circumstances and conditions and makes decisions in pursuit of some goal. 

Supervisory control is defined by Sheridan (Sheridan, 1986) “in the strictest sense, 

supervisory control means that one or more human operators are intermittently 

programming and continually receiving information from a computer that itself closes 

an autonomous control loop through artificial efforts to the controlled process or task 

environment.” 

  

 Buzan and Sheridan ( Buzan and Sheridan, 1989) developed a dynamic user aid 

to help operators compensate for several second time delays in telemanipulator systems. 

The aid, among other approaches like state prediction, position feedback, etc., also 

utilized impedance control. Therefore, it provides different level of supervisory control 

in the remote system.  Also, this study presents a dynamic extension to the kinematic 

predictor display concept. The predictive operator aid provides the operator with 

appropriate position and force predictions by using a model of the manipulator and the 

environment. Three predictive force reflection techniques are suggested and tested. 

 
Using the parallel-feedback predictive controller for both position and force 

results in a four-part predictive operator aid which are state predictor, predictor display 

(position feedback),  force reflector and slave impedance controller. State Predictor 

uses models of the manipulator and the environment, and predicts not only the states 

(position and velocity), but also the system configuration. The predictor display 

technique incorporates dual visual feedback, since the operator is provided with both 

the actual feedback and the predicted feedback using superpositioning. it is probably 

necessary using two monitors and separate the predicted video from the delayed real 



15 

video for clarity. Force feedback gives the operator insight to the interaction, instilling 

confidence to move faster, or fear that one should stop. The slave impedance controller 

provides dynamic disturbance rejection by controlling the slave / environment 

interaction.  

 

Matthew et al. in (Matthew et al., 1995) discussed a teleprogramming 

experiment incorporating operator supervisory control of a robot performing puncture 

and slice operations on the thermal blanket securing tape of satellite repair mission sub-

task. The operator interface performs the dual function of providing immediate 

feedback to assist in specifying intentions and providmg  time delayed feedback to 

allow assessment of the status of the remote site. The authors, in teleoperation research, 

claim that remote sites should be remote and by this principle, they were able to treat 

research issues that could not be completely simulated in a laboratory setup. They 

developed a layered architecture controller defining multiple layers of control. Operator 

direction interacts as the highest layer of the architecture and does not affect lower level 

behaviors of the system.  

 

Fischer et al. (Fischer et al., 1996) have shown the necessity of hierarchical 

supervisory control for service task solution using  a huMan Robot Interface (MRI) and 

the demands on information exchange between operator, MRI and service robot are 

outlined and categorized. The aim of this paper is to combine a semiautonomous robot 

system with a human operator to obtain an intelligent human-robot-system (hierarchical 

supervisory control). The resulting system is capable of solving different service tasks 

even in unknown situations. They have presented a distributed planner to control the 

robot system enabling both flexible robot behaviors and online operator support. The 

behavior of the proposed intelligent system is separated in four different abstraction 

levels starting from physical layer to the highest level used by the operator, for example,  

knowledge based robot. A semi-autonomous robot system is combined with a human 

operator to obtain an intelligent human robot system (hierarchical supervisory control). 

 

Chen and Luo constructed a remote supervisory control architecture by 

combining computer network and an autonomous mobile robot in (Chen and Luo, 

1997). Users having access to World Wide Web (WWW) can command the robot by 

sending primitive commands to move the robot, to grip and lift arm, to pan and tilt the 



16 

camera and grab images, to speak, and get the information what robot senses through 

internet. This architecture offers multilevel remote control modules, namely, direct 

control, supervisory control and learning control modes.  In supervisory mode, the robot 

works as a service man who provides to web users with a specific service. The server 

receives only a high level command, then controls the robot to perform the specific task 

by applying local intelligence of the mobile robot such as collision avoidance, path 

planning, self referencing and object recognition. One of the possible uses of this 

scheme is stated to be sharing of robot with multi-users via WWW. 

 

 Sheridan (Sheridan, 1997) defines a model of supervisory control. In this model, 

the operator as a supervisory controller, provides system commands to a human 

interactive computer (HIC) which consists of system status displays and data input 

devices. HIC improves these goals to the lower level Task Interactive Computer (TIC) 

which translates these higher level goals into a set of commands to the actuators that 

will produce the desired system performance. A sketch of this scheme is shown in 

Figure 2.3 

 

 Luo and Chan (Luo and Chen, 2000) have proposed a behavior programming 

concept to avoids disturbances of the internet latency. Primitive local intelligence of a 

mobile robot have been grouped into motion planner, motion executer and motion 

assistant. Each of a group is treated as an agent. All of these agents are integrated by 

centralized control architecture based on multi-agent concept. Event driven approach is 

applied on the robot to switch the behaviors to accommodate the unpredicted mission 

autonomously. For communication between the client and server, two virtual channels 

are used. First channel for the transmission of explored information and the second one 

for the commands.  The high level behavior programming control of the networked 

robot is demonstrated to be a feasible and reliable method to reduce to interference 

caused by internet latency.  

 

 

 

 

 

 



17 

 
Figure 2.1 A Model of Supervisory Control (Sheridan, 1997) 

 

 

2.2 Stereo Vision and Augmented Reality 

 

Stereo vision is a technique to grab 3D information of a scene. In addition to that 

meaning, it is defined as visual perception of or exhibition in three dimensions. In 

robotics, it is used for 3D viewing / reconstruction of the remote scene in a telerobotic 

environment. To supplement the perception of the person using the real data, augmented 

reality helps us to add additional information with the real data. In the following text, a 

review of the work in stereo vision and augmented reality is presented.  

 

 

 

 



18 

2.2.1 Stereo Vision 

 

In stereo vision, we discuss different issues of 3D characteristics of a scene. 

Meaning of the stereo vision is the visualization of a remote scene in such a way that the 

viewer has a clear idea about the relative distances and depths of the objects present in 

the stereo image. Stereo vision has a wide range of application areas such as three 

dimensional map building, data visualization and robot pick and place.  

 

 
Figure 2.2 Pinhole Camera Model (Owens R., 1997) 

 

 

In order to know the mapping of 3D point on 2D image, a simple camera model 

known as ‘pinhole’ camera is described. A point (X,Y,Z) in 3D space where Z is the 

depth of the point maps to,  

      X
Z
fxcam =      (2.2) 

 

X
Z
fycam =      (2.3) 

 
In this equation,  f  corresponds to the distance from the projection plane to the 

projection center.  



19 

 
 

Figure 2.3 Stereo Camera Model (Iqbal, 2003) 

 

3D camera model can be developed considering figure 2.3. We assume the 

following aspects in developing this camera model. 

• Two cameras with their optical axes parallel and separated by a distance d. 

• The line connecting the camera lens centers is called the baseline. 

• Let baseline be perpendicular to the line of sight of the cameras. 

• Let the x-axis of the three dimensional world coordinate system be parallel 

to the baseline. 

• Let the origin O of this system be mid-way between the lens centers. 

 

Using similar triangles, 

 

z

dx

f
x 2

1

1
+

=  ,     
z

dx

f
x

r

r 2
−

=    (2.4) 

 

where 1x , rx  are the x-coordinates of the projections of 3D point x on left and 

right image planes while 1f , rf  are focal lengths of left and right lenses respectively. d 

is the disparity or the distance by which two cameras are separated from each other. 

 



20 

 

 

 

Assuming equal focal lengths, 

z
y

f
y

f
y

r

r ==
1

1      (2.5) 

 

 where 1y , ry  are the x-coordinates of the projections of 3D-point x on the left 

and right image planes. Now solving for (x, y, z) in the world coordinates (Iqbal, 2003), 

 

,
)(2
)(

1

1

r

r

xx
xxd

x
−
+

=  ,
)(2
)(

1

1

r

r

yy
yyd

y
−
+

=  
rxx

fdz
−

=
1

.   (2.6) 

 

2.2.2 Augmented Reality 

 

Augmented Reality (AR) is a field of computer research which deals with the 

combination of real world and computer generated data. At present, most AR research is 

concerned with the use of live video imagery which is digitally processed and 

"augmented" by the addition of computer generated graphics. Moreover, Augmented 

Reality can be defined as a variation of Virtual Reality (VR). VR is a technology that is 

computer generated and allows the user to interact with data that gives the appearance 

of a three-dimensional environment. AR allows the user to see the real world, with 

virtual objects superimposed upon or composited with the real world. Therfore, AR 

supplements reality, rather than completely replacing the reality as is the case with 

Virtual Environment (VE) or VR. According to Azuma (Azuma, 1997), AR systems are 

required to have the following three characteristics: 

1) Combines real and virtual 

2) Interactive in real time 

3) Registered in 3-D 

 

In this article, at least six classes of potential applications of AR have been 

explored: medical visualization, maintenance and repair, annotation, robot path 

planning, entertainment and military aircraft navigation and targeting. In Boeing 



21 

Company, AR technology have been developing by a group to guide technician in 

building a wiring harness that forms part of an airplane’s electrical system. See (Sims, 

1994) for details.  

 

AR can help to users by annotating objects and environments with public or 

private information. Rekimoto (Jun, 1995) proposed an application of annotation where 

a user gets information about the contents of library shelves on a hand-helps display as 

he walks around in the library. 

 

Robot path planning can be facilitated using AR in situations where a large time 

delay is present between operator and the robot. Operator can preview the effect of the 

move on the local display overlaid on the remote world image. Once operator satisfied 

with the movement, he can send the actual command. 

 

In combining the real and virtual worlds in an AR system, we have two choices: 

1) Use Optical Technology 

2) Make use of Video Technology 

 

In an optical AR equipment, we make use of direct see-through, for example, the 

operator gets a direct view of the real world while the virtual objects are superimposed 

on optical see through mirrors in front of his eyes.  

 
 

 
Figure 2.4 Optical See-through Augmented Reality Display 

 

 



22 

In video, the operator does not have any direct view of the real  world. He uses 

the video input from the camera altered by a local scene generator in order to add virtual 

objects to the scene.  

 

 
 

Figure 2.5 Video See-through Augmented Reality Display 
 
 
There are advantages and disadvantages of both techniques. Further details is 

presented in (Azuma, 1997). 

 
2.2.3 Classification of Visualization Systems Based on Used Equipments 

 

There are many Stereo3D Image Formats such as Interleave/Interlace, Line 

Blanking,  page flipping and sync-doubling (above-and-below). 

 

2.2.3.1 Interleaved/Interlaced Stereoscopic   

Image format in which the left and right views are combined or "woven" 

together, line by line. Each line alternates between the left and right view of the image. 

 

2.2.3.2 Page Flipping /Page Flip Mode 

 Method of viewing stereoscopic content by using video hardware to rapidly 

switch the left and right eye view in temporal sync with shutter glasses.  

 

2.2.3.3 Sync-Doubling (Above-And-Below) 

The above-and-below standard is perhaps more effective and does not require 

additional hardware support inside the computer. In this scenario, the left view is 

rendered in the upper half of the screen at half of its vertical resolution, while the right 



23 

view is rendered in the lower half. These images are separated by a variable number of 

black lines that will operate as a vertical blanking interval on final display. 

 

2.2.3.4 Line Blanking 

This method is suitable when the output on the screen is in interlaced format. 

The line-blanking controller hides odd lines for right eye and even for left eye. The 

frequency of watching is 1/2 of the monitor frequency 

 

Each format requires different techniques and/or equipment for generation and 

visualization. Furthermore, they have different robustness characteristics under MPEG 

compression, and image/video resizing. For a detailed and comparative discussion on 

these modes, see the online document, Eye3D Manual (eDimensional, 2007), (Ramm, 

1997). 

Different ways to generate 3D video content are given as: 

1. Parallel Camera Configuration (Lee et al., 1996), can be used to observe 

with high accuracy a 3D object under magnification and depth. This is a very commonly 

used technique for 3D video generation. Computational aspects are simpler than a tilted 

case. However, it has problems especially with the near stereoscopic viewing. Most of 

the time some sort of video mixer may be required to convert two video streams into a 

single synchronized system.  

 

2. Tilted camera Configuration (Lee et al., 1996), produce more accuracy in the 

horizontal direction than in the vertical direction compared to the case of parallel 

camera configuration. However this problem can be solved by using different horizontal 

and vertical scaling factors. Furthermore, this configuration provides a larger area of 

stereoscopic vision, such that the total area for 3D display is more, the depth resolution 

is enhanced, an near stereoscopic viewing is better than the parallel configuration. 

Computational aspects are more complicated and demanding compared to the parallel 

case. 

3. Nu View 3D adapter consist of two LCD shutters, a prismatic beam, splitter 

and an adjustable mirror. Watching through the Nu View, while it is switched off, one 

will see two images. The mirror/prism system puts the camera lens into the center of the 

light rays of the left and right eye view. The shutters allow the camera lens to get only 

one of the views at a time. The adaptor is connected the video-out port of the 



24 

camcorder. This way the shutter can sync to the recording (50 or 60 Hz). It is a simple 

and practical solution to 3D video generation. See the online documentation at 

(Bungert, 2007) for further details.  

 

There are basically two major classes of 3D visualization techniques. These are 

shuttering glasses and head mounted displays which are described as follows. 

 

1. The shutter glasses achieve stereo by using frame sequential techniques.  

Shutter glasses enable the subjects to see stereoscopic images. The glasses alternately 

"shutter," i.e. block, the viewer's left, then right, eyes from seeing an image. The 

stereoscopic image is alternatively shown in sequence left-image, right-image 

synchronously with the shuttering of the glasses (Lo and Chalmers, 2004). At low 

refresh frequencies, the user can experience the annoying phenomena of flickering 

which can affect the ability to control the robot arm. However, most of the available 

monitors and display adapters can support refresh frequencies equal or above 120 Hz at 

resolutions of 1024x768 or above. Therefore, 3D visualization with very high details is 

possible with most shuttering glasses. There are indeed such papers, which 

demonstrates the effectiveness of shuttering glasses in 3D visualization. See (Strunk and 

Iwamoto, 1990) for more details.  

 

Just for the illustrative purposes, the “Eye3D Premium” shuttering glasses can 

support resolutions (in pixels) up to 2048x1538 at 120 Hz, and 1856x1392 at 140 Hz. 

These specs are available only in high-end monitors. For reasonably high resolution and 

high refresh rate, the existing shuttering glasses technology is more than enough.   

 

2. Head mounted display (HMD) (Bungert, 2007) and (Lee et al. 1985) provide 

a much larger virtual monitor size for the user, usually in the range of 2 meters large. 

However, their main disadvantage is that their resolutions are either VGA or SVGA (at 

least the ones which are commercially available during this period of time). They are 

more comfortable to work with, forces to use to see the 3D object and nothing else, and 

there is no problem of flickering. Most of them support the INTERLEACED 3D video 

format, but not the so called ABOVE/BELOW format which is robust under video 

compression and resizing.  Most HMDs also support page flipping, but this requires 

special drivers for each display adapter.  



 

25 

 
 
 
 
 

CHAPTER 3 
 
 

ROBOT SYSTEM 
 

 
Robots are very powerful elements of today’s industry. They are capable of 

performing many different tasks and operations precisely and do not require common 

safety and comfort elements humans need. However, it takes much effort and many 

resources to make a robot function properly. Most companies that made robots in the 

mid-1980s no longer exist, and only companies that made industrial robots remain in 

the market (such as Adept Robotics, Staubli Robotics, Mitsubishi Electric, Fanuc 

Robotics, North America, Inc.). 

 

3.1 ROBOT FUNDAMENTALS 

 

3.1.1 Robot Components 

 

1. Manipulator or Rover: Manipulator is the main body of the robot and consists of 

the links, the joints, and other structural elements of the robot.  

 

2. End Effector: This is the part that is connected to the last joint (hand) of a 

manipulator, which generally handles objects. 

 

3. Actuators: Actuators are the “muscles” of the manipulators. Common types of 

actuators are servomotors, stepper motors, pneumatic cylinders and hydraulic cylinders.  

 

4. Sensors: Sensors are used to collect information about the internal state of the robot 

or to communicate with the outside environment. 

 

5. Controller: The controller rather similar to human cerebellum, and although it does 

not have the power of human brain, it still controls human motion. The controller 



26 

receives its data from the computer, controls the motions of the actuators and 

coordinates the motions with the sensory feedback information.  

 

6. Processor: the processor is the brain of the robot. It calculates the motions of the 

robot’s joints, determines how much and how fast each joint must move to achieve the 

desired location and speeds, and oversees the coordinated actions of the controller and 

the sensors. 

 

7. Software: There are perhaps three groups of software that are used in a robot. One is 

the operating system which operates the computer. The second is the robotic software, 

which calculates the necessary motions of each joint based on the kinematic equations 

of the robot. This information is sent to the controller. This may be at many different 

levels, from machine language to sophisticated languages used by modern robots. The 

third group is the collections of the routines and application programs that are 

developed in order to use the peripheral devices of the robots, such as vision routines, or 

to perform specific tasks.  

 

It is important to note that in many systems, the controller and the processor are 

placed in the same unit.  

 

3.1.2 Robot Reference Frames 

 

Robots may be moved relative to different coordinate frames. In each type of 

coordinate frame, the motions will be different. Usually, robot motions are 

accomplished in the following three coordinate frames. 

 

World Reference Frame, which is a universal coordinate frame, as defined by x, 

y, z-axes. In this case, the joints of the robot move simultaneously so as to create motion 

along the three major axes.  

 

Joint Reference Frame, which is used to specify movements of each individual 

joint of the robot. 

  



27 

Tool Reference Frame, which specifies movements of the robot’s hand relative 

to a frame attached to the hand. The x’-, y’-, z’-axes attached to the hand define the 

motions of the hand relative to this local frame (Niku, 2001). 

 

3.2 MITSUBISHI RV-2AJ 

 

 The “Mitsubishi RV-2AJ” is compact industrial robot developed with 

Mitsubishi’s advanced Technology. This robot responds to user’s needs for compact 

and flexible facilities generated due to the recent diffusion of compact and highly 

accuracy products such as personal computer related devices.  

 

The Mitsubishi RV-2AJ robot, shown in figure 3.1, is 5 axis robot arms 

featuring 64-bit RISC/DSP controller technology, and load capacity of 1.5 kg. The 

maximum speed of the robot arm is 2.200 mm/s. RV-2AJ’s joint space is limited and 

joint limits are shown in Table 3.1 . 

 

The robot family of Mitsubishi includes small robots, like the RV-2AJ, which 

has a height of 410 mm which is the maximum range of the robot arm when the arm is 

aligned vertically. RV-2AJ used in this project is one of the smaller robots in the 

Mitsubishi robot family.  

 

 
 

Figure 3.1 Mitsubishi RV-2AJ (Mitsubishi Electric, 2006) 

 

To accurately position and orientate an object in 3D (three dimensional space) a 

robot must have 6 DOF’s (degree of freedom). This means that it must be able to move 



28 

the tool to an X,Y,Z position and then rotate the tool about X,Y,Z to provide the correct 

orientation. The Mitsubishi RV2AJ robot has only 5 DOF and therefore has reduced 

functionality, i.e. there will be orientations within its workspace that it will be unable to 

achieve. The missing DOF, J4, is the wrist pitch movement. In practice this limitation 

will usually cause, at worst, only minor inconvenience (HarewoodGill, 2006). 

 

The robot ‘waist’ position (J1). 

The robot ‘shoulder’ position (J2). 

The robot ‘elbow’ position (J3). 

The robot wrist ‘yaw’ position (J5). 

The robot wrist ‘roll’ position (J6). 

 

JOINT LIMIT 

J1 -150o to +150o 

J2 -60o to +120o 

J3 -110o to +120o 

J5 -90o to +90o 

J6 -200o to +200o 

 

Table 3.1 Joint Limits 

 

The manipulator has 5 degrees of freedom. The size of the manipulator is given 

by Figure 3.2. 

 



29 

 
 

Figure 3.2 Dimensions of Mitsubishi RV-2AJ (Mitsubishi Electric, 2006) 
 

The Mitsubishi RV-2AJ has a lot of different application areas. Some of them 

are shown in Figure 3.3. 

 

 
 
 

Figure 3.3 Application areas of the Mitsubishi RV-2AJ  

(Haklidir M. and Tasdelen, 2006) 

 

 

 

 



30 

 

The Mitsubishi RV-2AJ has two important parts to manipulate the Robot Arm.  

1. The Robot Controller Unit, which is the main part of robot arm that has a 

processors to calculate the motions of the robot’s joints by means of determining how 

much and how fast each joint must move to achieve the desired location and speeds, and 

it controls the motions of the actuators.  

 

It has three modes to control an operation such as Automatic Operation Mode, 

Automatic Operation externally Mode and Teach Mode. Automatic Controller Mode is 

used to run programs that are stored in the robot controller memory. The program will 

cycle, i.e. run continuously once started. In Automatic Operation Mode-controlled 

externally (via PC)-, robot has an external connection ports to connect to a computer 

and it can be controlled by sending data from that computer.  Teach Mode is used to 

maneuver the robot by using Teach Pendant (TeachBox). 

  

2. A Teach Pendant (or TeachBox) Unit, which is used to create, edit and 

control the program, teach the operation position and for jog feed, etc. It can not be used 

without enabling the Teach Mode of controller.  

 

 

  

 

 

  

 

 

 

 

Figure 3.4 RV-2AJ Controller Box and Teach Pendant (Mitsubishi Electric, 2006) 

 

3.3 COSIROP 2.0 PROGRAMMING SOFTWARE 

 

COSIROP 2.0 is the tool for programming, online control, parameterization, and 

diagnosis of Mitsubishi MELFA Robots. COSIROP is used to develop robot programs 



31 

in MELFA BASIC or Movemaster Command. Its jog operation tool is used to teach the 

robot and, also, it is helpful to insert positions directly into a position list. Therefore, 

users can exchange their programs between the PC and the robot controller via a serial 

interface or via an Ethernet connection. The RCI Explorer (Robot Controller Interface) 

is the new information-processing center of COSIROP 2.0. With the RCI Explorer users 

can up- and download programs, simply by drag-and-drop.  

 

A powerful robot programming language needs an equally powerful 

programming environment. COSIROP allows users to create robot programs in minutes 

using the MELFA BASIC IV or MOVEMASTER COMMAND robot programming 

languages. After testing and optimizing the program they can then transfer the program 

to the actual robot with a couple of mouse clicks, via an efficient direct network or 

serial link between the PC and the robot. 

 

 
Figure 3.5 COSIROP software can be used to download, start and stop a 

program to the robot controller box. 

 

While the programs are being executed they can monitor and visualize the robot 

with the help of COSIROP’s comprehensive control and diagnostics functions. The 

real-time axis speeds and motor currents are displayed clearly, together with the statuses 

of all the robot’s inputs and outputs. Live monitoring facilities for all the programs 

executed by the controller enable to track down program errors quickly and reliably. 



32 

COSIROP also provides tools for program archival and for backing up the robot’s 

parameters and settings (Mitsubishi Electric, 2006), (Cosirop, 2006). 

 

Other useful functions include: 

• Online ”teach-in” function for robot positions  

• Position display on a 3-D representation of the robot  

• Syntax checking  

• I/O monitor  

• Variable monitor  

• Online command execution  

• Error diagnostics  

• Position editor  

• Project management  

 

 

3.4 TESTS ON RV-2AJ ROBOT 

 

Three kinds of tests are considered, respectively, to understand the aspects of 

robot control, robot-PC communication and parameterizations topics. 

 

3.4.1 Control of RV-2AJ by Microsoft HyperTerminal 

 

COSIROP does not provide the operational flexibility which can be achieved by 

using low-level communication and programming. In this project, we would like to 

teleoperate the robot from a remote location with visual feedback, and we will need 

more than the operational flexibility provided by COSIROP. At first, robot was 

controlled by Microsoft HyperTerminal which is a program that someone can use to 

connect to other computers, Telnet sites, and bulletin board systems (BBSs), online 

services, and host computers, using either modem or a null modem cable. 

 

Our first goal was to be able to communicate with the robot controller box over a 

serial link. For this purpose, we have developed two Melfa-Basic programs, 

HTERM.MB4, and JHTERM.MB4, which are given below. These programs basically 



33 

run on the robot controller box, listen to the serial port of the controller box, and wait 

for commands. Once a command is received, a move will be initiated, and then the 

system will wait for the next command.  

 

The programs HTERM.MB4, and JHTERM.MB4 can be downloaded to the 

controller box by using the COSIROP software. Although program load, start, and stop 

type operations are also achieved by some kind of serial communication protocol 

between the robot controller box, and the PC running the COSIROP software, we have 

no detailed information about this. Because of this lack of information, we have to use 

COSIROP for downloading a new program. However, once a program is downloaded to 

the robot controller box, COSIROP application can be closed, and the robot can be 

operated by using our own application. 

 

The full information about the communication protocol between the robot 

controller box, and the PC running the COSIROP software is really valuable, because 

once we have this level of detailed information, complete program download, start, and 

stop type operations can also be done from our own application, completely eliminating 

the COSIROP software. Although it will be very nice to have this level of control from 

our own application, from an operational point of  it is not that critical to be able to 

download, start, and stop a new program from our own application. Because, in our 

project the program running on the robot controller box will be fixed, so it does not 

matter whether the program is loaded to the controller box by COSIROP or by our own 

application. 

 

The main complexity will be in the program running on the PC (Namely our 

own application), but not on the program running on the robot controller box. In the 

teleoperation version, we will have two programs on two different PCs, and again the 

main complexity will be on the programs running on the PCs. 

 

 In Figure 3.5, the COSIROP software main window is shown, and in Figure 3.6, 

serial communication parameters for connection between the robot controller box and 

the PC running the COSIROP software is shown. 

 



34 

 
Figure 3.6 Serial communication parameters for connection between the robot 

controller box and the PC running the COSIROP software 

 

3.4.1.1 Robot Controller Box Melfa Basic IV Program for HyperTerminal Control 

In robot side program, some parameters are defined to use them as a joint input 

values.  After opining COM port of robot, defined position and joint parameters are 

initialized by current coordinates in x, y, z form and joint type data at the current 

position of robot. Then program checks the data on input terminal, in this case serial 

port, for manipulation. Therefore, robot is ready to be controlled from external inputs 

which are sent by HyperTerminal. But user has to send J1 (joint 1) parameter with the 

parameter PRN instead of any X, Y, Z coordinate values. 

 

For example, in the HyperTerminal side, user should write to turn robot’s J1-

axis +90 degrees, “PRN 90”. After user command, program calculates user’s parameter 

corresponds to joint angle in radial format. Then,  robot joint 1 is moved with respect to 

the calculated value. A detailed controller box program is given below. For detailed 

information about Melfa Basic IV commands, see the Appendix A. 

 

 

 

 



35 

01 DEF POS P1 
02 DEF JNT J1 
04 DEF DOUBLE DJ1, DJ2, DJ3, DJ4, DJ5 
10 OPEN "COM1:" AS #1 
15 PRINT #1, "JOYSTICK TEST PROGRAM V1.0" 
20 P1 = P_CURR 
25 J1 = J_CURR 
30 PRINT #1, "P_CURR="; P1 
32 PRINT #1, "J_CURR="; J1 
35 PRINT #1, "INPUT NEW J1 BY USING THE FORMAT PRN J1" 
40 INPUT #1, DJ1 
50 J1.J1 = 3.14 * DJ1 / 180 
60 MOV J1 
90 GOTO 20 
 

3.4.2 Control of RV-2AJ by Microsoft Visual Studio .NET/C# GUI 

 

To control RV-2AJ robot by using .NET/C# Graphical User Interface (GUI), 

same controller box program written in Melfa Basic IV, shown above, is used.  Interface 

of the .NET/C# controller unit was designed on Microsoft Visual Studio 2005. In the 

program, we have two buttons, one of them to move robot J1 at positive direction and 

the other one to move at negative direction. At every click on positive J1 button, 

program sends a “PRN 5” -5o movement- command to the robot using serial 

communication port and “PRN -5” for negative button click event. The user interface 

of the system is shown in figure 3.7. 

 
Figure 3.7 GUI of RV-2AJ Controller (written in C#) 

 

3.4.3 Control of RV-2AJ by Joystick   

 

Finally, we have also tested an analog joystick in the Visual C# 2005 

environment. By using the DirectInput API of DirectX framework, we were able to 



36 

read X, Y, and Z, namely three different analog coordinates, plus a couple of 

buttons, which may be used as digital inputs / mode change inputs.  

 

 

Figure 3.8 Joystick experiment with DirectInput API of DirectX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

37 

 
 
 

 
 
 
 

CHAPTER 4 

 
 

A MULTI-THREAD DISTRUBUTED TELEROBOTIC FRAMEWORK 

 

A telerobotic system consists of master and slave stations which are connected 

by a computer network. In order to establish a reliable working relationship between 

master and slave arms, different plans are used to transfer master arm commands over to 

the slave arm. Distributed application programming is one of the schemes to establish a 

reliable connection between master and slave arms. Basically different items are 

realized as software components and then these components communicate with each 

other using distributed application programming paradigm. This is strictly an object 

oriented approach and promises all the benefits of object oriented programming like 

software reusability, easy extensibility, less time in debugging, data encapsulation, etc.  

 

There are three most dominating distributed object technologies which are given 

as  

1) CORBA,  

2) .NET   

3) JAVA / RMI 

  

CORBA is an abbreviation for Common Object Request Broker Architecture 

and RMI stands for Remote Method Invocation. These are extensions of traditional 

object-oriented systems that allow the objects to be distributed across a heterogeneous 

network. The objects may reside in their own address space outside the boundary of an 

application or on a different computer than the application and they can still be 

referenced as being part of the application. 

  



38 

 All of these, three distributed object technologies, are based on a client/server 

approach implemented as a network calls being transported on network protocols like 

HTTP, TCP/IP, etc. RPC (Remote Procedure Call) is the basic idea behind the CORBA 

and RMI technologies. In this approach, the local (client) and remote (server) ends are 

replaced by stubs thus making possible for both the client and server to use local calling 

conventions for remote methods. In order to avoid the hard and error prone 

implementations of network calls directly to the client and server objects, the distributed 

technology standards address the complex networking interactions through abstraction 

layers and hide the networking issues in order to let the programmer concentrate on 

developing the core logic of the application. 

 

4.1 AN OVERVIEW OF THE DISTRIBUTED OBJECT TECHNOLOGIES 

 

Here it is presented a brief overview of the three above mentioned technologies 

offering support for distributed programming. 

 

4.1.1 CORBA 

 

CORBA is an open distributed object computing infrastructure standardized by 

OMG (Object Management Group) (OMG, 2002), (Gupta, 2003). CORBA is the most 

widely used middle ware standard in the non-Windows market. ORB (Object Reference 

Broker) is the core of CORBA architecture. All the CORBA objects interact with each 

other transparently using ORB regardless of whether these objects are local or remote.  

IIOP (Internet Inter-ORB Protocol) was developed in the CORBA 2.0 as a means for 

the communication between ORBs from different vendors. IIOP runs on top of TCP/IP. 

Every CORBA object must be declared in IDL (Interface Definition Language), a 

language to declare the interfaces and methods of a CORBA server object.  

 

4.1.2 .NET 

 

The .NET architecture by Microsoft has replaced the Distributed Component 

Object Model (DCOM), previously used for distributed computing on, mainly, 

Windows based machines. In .NET, the COM (Component Object Model) is replaced 

by CLR (Common Language Runtime) that supports and integrates components 



39 

developed in any programming language conforming to CLR specifications. .NET is a 

loosely coupled architecture for distributed applications.  

The remote access is based on XML and SOAP (Simple Object Access Protocol) 

technologies. It also supports JAVA like object references and garbage collection but it 

has no JVM (JAVA Virtual Machine) like interpreter. IL (Intermediate Language) code 

is compiled by JIT (Just-In- Time) compiler to native machine code prior to execution. 

Compiled IL code executes on top of a portable API (Application Programming 

Interface) that enables future platform independence.  

 

.NET provides two main strategies to use distributed objects, 1) Web services 

and, 2) .NET Remoting. Web services involve allowing applications to exchange 

messages in a way that is platform, object model, and programming language 

independent. Web services use XML and SOAP to form the link between different 

objects. Remoting, on the other side, relies on the existence of the common language 

runtime assemblies that contain information about data types. For the closed 

environments where faster connections are required, .NET remoting is an ideal solution 

cutting the overhead caused by object and data serialization through XML (DevHood, 

2001), (Gupta, 2003). 

 

4.1.3 JAVA/RMI 

 

It is a standard developed by JavaSoft. JAVA has grown from a programming 

language to three basic and completely compatible platforms; J2SE (JAVA 2 Standard 

Edition), J2EE(JAVA 2 Enterprise Edition) and J2ME(JAVA 2 Micro Edition). RMI 

supports remote objects by running on a protocol called the JRMP(JAVA Remote 

Method Protocol). Object serialization is heavily used to marshal and unmarshal objects 

as streams. Both client and server have to be written in JAVA to be able to use object 

serialization. The JAVA server object defines interfaces that can be used to access the 

objects outside the current (JVM) JAVA Virtual Machine from another JVM that could 

reside on a different computer. A RMI registry on the server machine holds information 

of the available server objects and provides a naming service for RMI. A client acquires 

a server object reference through the RMI registry on the server and invokes methods 

on the server object. The server objects are named using URLs and the client acquires 

the server object reference by specifying the URL. 



40 

4.2 MOTIVATION FOR USING .NET FRAMEWORK 

 

The system development support for .NET based components in most common 

languages like Visual Basic, Visual C++ and C# is excellent when using Microsoft 

Visual Studio as an integrated development environment. Components developed in  

any of the above languages as well as other languages conforming to CLR 

specifications, can be used easily in different applications and can interact with 

components developed in different languages. JAVA and CORBA support multiple 

inheritances while .NET does not. However, multiple inheritance at the interface level is 

provided in the .NET framework which compensates for the unavailability of the 

former. In comparison to DCOM, .NET provides object and data serialization through a 

firewall making it more dependable on even the internet. In addition, there is no need 

for component registration on the server side. The application just requires an access to 

server assembly which contains the implementation of server objects as well as the 

meta-data for these objects. 

 

 .NET components are self-describing: type signatures and other information is 

embedded in the components. This allows a lot of reflection on types, and it makes it 

possible for services such as the Visual Studio debugger to work across different 

languages. This level of debugging for components developed using different languages 

and in one environment is still missing in CORBA and JAVA. Microsoft technologies 

are a very good choice for organizations that mainly use Windows OS to run mission-

critical applications (Gupta, 2003). 

 

In conclusion, although JAVA has been used in many telerobotic systems but we 

choose .NET framework because of the following reasons: 

1. We target to use the proposed framework on a commodity LAN where 

Microsoft Technologies give optimized performance. JAVA is recommended for 

Internet-Based cross platform environments. 

 

2. .NET components can be easily deployed to work across firewalls. 

 



41 

3. CLR (Common Language Runtime) used by .NET Framework is similar to 

Java Virtual Machine because it also compiles the source code into 

platform-independent byte code (Mayez et al., 2003). 

 

 In our case, we need a real-time distributed system that will run on two lab PCs 

with Windows XP and commodity 100 Mbps LAN. .NET based distributed components 

prove to be an excellent choice for the proposed framework. 

 

By using the distributed programming, network protocol issues can be avoided 

in the sense that the distributed framework itself takes care of all the network resources 

and data transfer over the network. In other words, distributed components based 

approach gives us complete isolation from network protocols. The framework can 

decide either to use TCP or HTTP protocols. All of the components are created using 

Visual C# as programming language. 

 

In order to describe the complete system, we need to explain individual 

components and their interactions with each other when they co-exist in a distributed 

application. For simplicity we can divide the components in two groups, i.e., server side 

components and client side components. 

 

4.3 SERVER SIDE COMPONENTS 

 

On the server side, we have following components; 

1. Mitsubishi RV-2AJ CR1 Controller Program 

2. .NET Server Component & Server User Interface  

 

4.3.1 Mitsubishi RV-2AJ CR1 Controller Program 

 

RV-2AJ component is the heart of the server side framework because it deals with 

the commands sent by PC used as a server and the responses of the robot arm’s 

coordinates sent to PC.  In other words, commands are issued from the client to the 

server side component will be read as they are issued to the robot and whenever the 

robot changes its states the component updates itself automatically to reflect these 

changes. 



42 

In the RV-2AJ CR1 Controller, the kernel program is written in COSIROP 

program in Melfa Basic IV programming language. After downloading program to 

Controller CR1, it is started by the user. Then, the communication between the 

Controller Unit and COSIROP Software is closed to establish a communication with the 

Server Program. 

 

 Controller Kernel Program (CKP) has eight input parameters which are sent by 

the server PC, in fact by the client PC, connected to RV-2AJ by RS-232 

Communication Control Protocol. Moreover, CKP consists of five different subroutines 

which are controlled with respect to the input parameters sent by the server. The 

program flowchart is shown in Figure 4.1. 

 

 

 



43 

 
 

Figure 4.1 Mitsubishi RV-2AJ  CR1 Controller Program Flowchart 

 

In the program, we have eight parameters defined as integer value. The first 

parameter M0 is checked when any input data is read from COM port. Controller 

Program defines which subroutine will be called with respect to M0 value.  

 

 



44 

IF M0=0 THEN GOTO Operation 1 

IF M0=1 THEN GOTO Operation 2 

IF M0=2 THEN GOTO Operation 3 

IF M0=3 THEN GOTO Operation 4 

IF M0=4 THEN GOTO Operation 5 

 

4.3.1.1 Operation 1 

Operation 1 subroutine is written to move the robot arm in joint reference frame. 

In the subroutine, joint type data at the current position is stored to joint variable J1, 

input parameters M1, M2,…M6 are scaled with the scaling factor 0.001 to establish a 

small reliable incremental movement. These scaled parameters are added to current 

joint values initially stored. Then, this joint variable J1 is converted to cartesian 

coordinates X, Y, Z to prevent the robot arm from the collisions by checking the Z 

position with the previously defined boundary value. If the converted Z coordinate 

value less than boundary value, the program is terminated. Otherwise, robot arm is 

moved in joint reference frame with respect to input data. After movement, hand is 

opened or closed with respect to M7 input data. If M7 is equal to 1, hand will be opened 

and if it is 0, hand will be closed. After saving the robot current position coordinates to 

P1 coordinate variable program sends the joint and cartesian coordinates of the robot 

arm back to the server. And it returns to read the input COM port. 

 

4.3.1.2 Operation 2 

Operation 2 subroutine is written to move the robot arm in world reference 

frame or in X, Y, Z Cartesian coordinates. Firstly, cartesian coordinate position data at 

the current position is stored to position variable P1, input parameters M1, M2, M3 are 

scaled with the scaling factor 0.01 to establish a small reliable incremental movement. 

These scaled parameters M1, M2, M3 are added to current position values P1.X, P1.Y 

and P1.Z respectively. Then, this position variable P1’s Z coordinate is checked with 

the previously defined boundary value to prevent the robot arm from the collisions. If 

the modified Z coordinate value less than boundary value, the program is terminated. 

Otherwise, robot arm is moved in world reference frame with respect to input data. 

After movement, M7 input data is checked and hand is closed or opend depends on the 

M7 parameter. If M7 is equal to 1, hand will be opened and if it is 0, hand will be 

closed. After saving the robot current joint coordinates to J1 joint variable program 



45 

sends the joint and cartesian coordinates of the robot arm back to the server as in the 

form of :  

"P=J2.J1, J2.J2, J2.J3, J2.J4, J2.J5, J2.J6, P1.X, P1.Y, P1.Z”. 

And it returns to read the input data from COM port. 

 

4.3.1.3 Operation 3 

If M0 is equal to 2, program goes to subroutine 3 to set the robot arm position to 

a specific coordinates. But coordinate initialization is done in Joint Reference Frame to 

provide a robust and dynamic movement. Sometimes coordinate initialization in 

cartesian reference frame caused to undesired result that robot arm moves to different 

positions in a repeated operation 3 calls. Then, program checks the M7 to control the 

hand motion. After program sends the joint and cartesian coordinates of the robot arm 

back to the server, it is saved the robot current position coordinates to P1 and joint 

coordinates to J1 coordinate variable. And it returns to read the input data from COM 

port. 

 

4.3.1.4 Operation 4 

Subroutine 4 is directly related to client interface program. In client GUI, we 

have last position button to store and move to last position. Therefore, last position data 

is sent in the format of M0 is equal to 3. then, program moves to cartesian coordinates 

P1.X to M1, P1.Y to M2 and P1.Z to M3, respectively with the maximum speed of the 

robot arm. Then, it checks the robot hand. At the end of that operation, it store current 

joint coordinates to J1 and sends robot current positions back to the server.   

 

4.3.1.5 Operation 5 

If M0 is equal to 4, program goes to subroutine 5 to set the robot arm speed. We 

declared an integer variable SORA (Speed of Robot Arm) and M1 input parameter is 

equalized to SORA. Then, robot arm speed is set to M1 speed using SPD instruction.  

For more detail, look at the Mitsubishi RV-2AJ Controller Program for  .NET 

Application at Appendix B. 

 

 

 

 



46 

4.3.2 .NET Server Component & Server User Interface  

 

A server is a computer that handles requests for data transfers, and other network 

services from other computers (ie, clients). In our project, server (remote environment) 

is the computer which is connected to Mitsubishi RV-2AJ robot arm and handles the 

client computer’s (local environment) requests.    

 

An interface is a set carrying definitions of public methods and properties. It 

serves as a contract for any component that implements this interface. In other words, 

any component that inherits or implements the definitions contained in an interface 

must provide the implementation of all the methods or properties enumerated in the 

interface. This scheme is needed in .NET based distributed applications because any 

client that accesses or executes the methods of a component on the server needs an 

access to the server assembly or component. By giving a reference to an interface that 

the server component implements, we can hide the actual component or assembly from 

the client. This provides security from potential unsafe clients as well as gives the 

developers freedom to the easily amend the logic of the server methods while the 

interface remains unchanged for all the clients because the interface is only a definition, 

the implementation being only inside the component. Server  user interface is shown in 

figure 4.2.  

 

 
Figure 4.2 Server Side Graphic User Interface 



47 

A block diagram explaining the role of user interface and Server Component in 

the hierarchy of the system on server side is shown in figure 4.3. It is clear from the 

figure that server side logic is implemented in four layers. The last layer in the hierarchy 

is the physical layer consisting of robot RV-2AJ. On the highest level of the hierarchy is 

the human operator that might interact with the system using a GUI (Graphical User 

Interface). 

 

 
 

Figure 4.3 Component Hierarchy on the Server Side 

 

4.3.2.1 TCP/IP Socket Programming 

 

A socket is one endpoint of a two-way communication link between two 

programs running on the network. When a computer program needs to connect to a 

local or wide area network such as the Internet, it uses a software component called a 

socket. The socket opens the network connection for the program, allowing data to be 

read and written over the network. It is important to note that these sockets are software, 

not hardware, like a wall socket 



48 

A socket consists of the pair <IP Address,Port>. A port can be defined as an 

integer number between 1024 and 65535. This is because all port numbers smaller than 

1024 are considered well-known - for example, telnet uses port 23, http uses 80, ftp uses 

21, and so on.  

 
A TCP connection consists of a pair of sockets. Sockets are distinguished by 

client and server sockets. The server just waits, listening to the socket for a client to 

make a connection request.  

 

On the client-side: The client knows the hostname of the machine on which the 

server is running and the port number on which the server is listening. To make a 

connection request, the client tries to rendezvous with the server on the server's machine 

and port. The client also needs to identify itself to the server so it binds to a local port 

number that it will use during this connection. This is usually assigned by the system. If 

everything goes well, the server accepts the connection. Upon acceptance, the server 

gets a new socket bound to the same local port and also has its remote endpoint set to 

the address and port of the client. It needs a new socket so that it can continue to listen 

to the original socket for connection requests while tending to the needs of the 

connected client.  

 

On the client side, if the connection is accepted, a socket is successfully created 

and the client can use the socket to communicate with the server. The client and server 

can now communicate by writing to or reading from their sockets (Damian, 2006), (Sun 

Microsystems, 2007).  

 
The power of network programming in .NET platform cannot be denied. Socket 

programming is the core of network programming in Windows and Linux, and today 

the .NET platform implements it in a powerful way. 

 

Socket programming in C#: The 'System.Net.Sockets' namespace contains the 

classes that provide the actual .NET interface to the low-level Winsock APIs. In 

network programming, apart from which programming language to use there are some 

common concepts like the IP address and port. IP address is a unique identifier of a 

computer on a network and port is like a gate through which applications communicate 



49 

with each other. In brief, when we want to communicate with a remote computer or a 

device over the network, we should know its IP address. Then, we must open a gate 

(Port) to that IP and then send and receive the required data. 

 

One of the biggest advantages noticed in the .NET network library is the way IP 

address/port pairs are handled. It is a fairly straightforward process that presents a 

welcome improvement over the old, confusing UNIX way. .NET defines two classes in 

the System.Net namespace to handle various types of IP address information: 

• IPAddress  

• IPEndPoint  

 

In the .NET Framework, one can create connection-oriented communications 

with remote hosts across a network. To create a connection-oriented socket, separate 

sequences of functions must be used for server programs and client programs: 

 

 
Figure 4.4 Server-Client Communication Orientation 

 

On the Server, we have four tasks to perform before a server can transfer data 

with a client connection: 

1. Create a socket.  

2. Bind the socket to a local IPEndPoint.  

3. Place the socket in listen mode.  

4. Accept an incoming connection on the socket.  



50 

 

In addition to Server, on the Client part, we have a working TCP server, and we 

can create a simple TCP client program to interact with it. There are only two steps 

required to connect a client program to a TCP server: 

 

1. Create a socket.  

2. Connect the socket to the remote server address (Blum, 2006).  

 

4.3.2.2 ServerTest Program  

ServerTest Program has four classes written in Visual Studio .NET/C# 

programming language.  They are Form1, AsynchronousSocketListener, Parser and 

StateObject shown in figure 4.5 as a UML (Unified Modeling Language) diagram. 

Form1 class deals with user interface components such as initialization of components, 

button click events and serial port communication. Construction and initialization of the 

socket data buffer is established in StateObject class. AsynchronousSocketListener class 

is the essential part of the ServerTest program which establishes a TCP/IP socket and 

listens to the socket for a client to make a connection request. Parser is an object which 

parses the serial port data sent by the RV-2AJ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 

 

 
Figure 4.5 Server Component Model View and UML Diagram of Server 

 

 
 
 
 



52 

 
 
 
 
 

 
Figure 4.6 Client Component Model View and UML Diagram of Client 

 

 

 

 



53 

4.4 CLIENT SIDE COMPONENTS 

 

4.4.1 .NET Client Component & Client User Interface  

In computing, a client is a system, or a computer program or terminal that 

accesses a remote service, requests information or services from another computer (a 

server) on the network.  

 

The client side, Client_Joystick interface, in this distributed environment 

contains the Client component, to reference the server side component through .NET 

Remoting, as well as Joystick component, to implement slave arm’s all functionality to 

the master arm located in local environment.  

 

UML diagram of Client Side Components is shown in figure 4.6.  

 

4.4.1.1 Client Component 

Client component contains all the definitions to execute methods on Mitsubishi 

RV-2AJ. With the help of Client_Joystick interface we can also get or set the public 

properties of the above mentioned two components located on the server side. In the 

beginning, after the client side program is executed and initialized, user can 

communicate with the server side program by clicking connection button. Once the 

network connection with the server established, the client sends the reference position 

coordinates to initialize the slave robot arm.  

 

Client component, as in ServerTest Program, has AsynchronousClient class to 

create a socket to establish a server-client communication and read-write operation to 

this socket. 

 

4.4.1.2 Joystick Component 

This component implements all the functionality required to interact slave robot 

arm with a master arm, in this case a joystick. 

 

 To handle the Kontorland Joystick Device by .NET, Microsoft DirectX API is 

used. Microsoft DirectX is a collection of Application Programming Interfaces (API) 

for handling tasks related to multimedia, especially game programming and video, on 



54 

Microsoft platforms. Direct3D is widely used in the development of computer games 

for Microsoft Windows. DirectX is also used among other software production 

industries, most notably among the engineering sector because of its ability to quickly 

render high-quality 3D graphics using DirectX-compatible graphics hardware.  

 

In the MyJoystick class, we have Close (), GetData (), InitialDirectInput (), 

MyJoystick (), UpdateUI () methods. InitialDirectInput ()  method is used to initialize 

all functions of the Joystick Device. After GetData () method checks device’s 

validation, it reads device state values.  UpdateUI () method updates old state values 

with new ones depends on the pushed buttons. MyJoystick () method is a constructor to 

create a new Joystick object to be used by other threads.  
 

Construction and initialization of the socket data buffer is established in 

StateObject class. AsynchronousClient class is the communication part of the 

Client_Joystick program to make a connection request with ServerTest which 

establishes a TCP/IP socket. Parser is an object which parses the serial port data sent by 

the RV-2AJ. 

 

MainClass class is the essential part of the client side components and it supplies 

a direct interaction interface to the operator to manipulate the robot arm. Client_Joystick 

Graphic User Interface shown in figure 4.7 provides user: 

 

• To control RV-2AJ Hand  

• To set Joystick Sensitivity 

• To set RV-2AJ Speed Parameter 

• To move RV-2AJ in Joint Reference Frame, 

• To move RV-2AJ in World Reference Frame,  

• To maneuver RV-2AJ to reference coordinate 

• To establish a TCP/IP socket communication with Server 

• To view transferred and non-transferred Joystick Movement values 

• To predict more realistic coordinates by Coordinate Estimation panel 

  

  

http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29


55 

 

 

 

 
 
 

 
 
 

Figure 4.7 Client Side Gaphic User Interface 

 
 
 
 
 



56 

 
 

 
Figure 4.8 Server and Client Side Integrated Scheme 



 

57 

 
 
 
 
 

CHAPTER 5 
 
 

PERFORMANCE EVALUATION 
 

 
There exist many day-to-day activities that require continuous human control for 

their successful and safe completion. Driving an automobile, riding a bicycle, flying an 

aircraft are three examples. Each of these tasks involves the human being acting as a 

feedback element in a control system. The importance of such human feedback activity 

in the operation of many engineering systems has led to the development of a separate 

discipline called manual feedback control, or more simply, manual control. As a distinct 

discipline, manual control is approaching its sixtieth year of existence. 

 

The past history of systems affecting an area of interest is fundamental to the 

success of forecasting. Atmospheric systems usually change slowly, but, continuously 

with time. That is, there is continuity in the weather patterns on a sequence of weather 

charts. When a particular pressure system or height center exhibits a tendency to 

continue without much change, it is said to be persistent.  These concepts of persistence 

and continuity are fundamental forecast aids. Forecasting is done by using many 

mathematical methods. Extrapolation is the one of them to get accurate forecasting 

results.  

 

In mathematics, extrapolation is the process of constructing new data points 

outside a discrete set of known data points. It is similar to the process of interpolation, 

which constructs new points between known points, but its results are often less 

meaningful, and are subject to greater uncertainty. The  extrapolation  procedures  used 

 in  forecasting may vary from simple extrapolation to the use of more complex 

 mathematical  equations  and  analog  methods based  on  theory.  The forecaster 

should extrapolate past and present conditions to obtain future conditions (Sheridan, 

1997), (Brezinski, 1991).  

 



58 

 

5.1 EXTRAPOLATION METHODS 

5.1.1 Linear Extrapolation 

This means creating a tangent line at the end of the known data and extending it 

beyond that limit. Linear extrapolation will only provide good results when used to 

extend the graph of an approximately linear function or not too far beyond the known 

data. A linear extrapolation can be done easily with a ruler on a written graph or with a 

computer. 

).( 2111ˆ xxwxx nnnn −−−
−+=     (5.1) 

 

5.1.2 Polynomial Extrapolation 

 

A polynomial curve can be created through the entire known data or just near the 

end. The resulting curve can then be extended beyond the end of the known data. 

Polynomial extrapolation is typically done by means of Lagrange interpolation or using 

Newton's method of finite differences to create a Newton series that fits the data. The 

resulting polynomial may be used to extrapolate the data. 

 

).().( 3222111ˆ xxwxxwxx nnnnnn −−−−−
−+−+=   (5.2) 

 

5.1.3 Cubic Extrapolation 

 

A conic section can be created using three points near the end of the known data. 

It means, Cubic extrapolation is using a polynomial in which the highest power is the 

third power.  where . If the cubic section created is 

an ellipse or circle, it will curve back on itself. A parabolic or hyperbolic curve will not, 

but may curve back relative to the X-axis. This type of extrapolation could be done with 

a conic sections template on a written graph or with a computer. 

 

).().().(
4333222111ˆ xxwxxwxxwxx nnnnnnnn −−−−−−−

−+−+−+=  (5.3) 

 

 



59 

5.2 PERFORMANCE EVALUATION TESTS 

 

Server side components are: (1) RV-2AJ CR1 Controller Program, (2) .NET 

Server Component & Server User Interface. 

 

.NET Server Component acts as a software proxy of the robot for which 

commands are issued. The CR1 Controller Program reads robot current robot joint θp(t) 

as a 6 x 1 vector and current robot cartesian Xp(t) as a 3 x 1 vector. In addition to CR1 

Controller, .NET Server Component reads the incremental cartesian motion ΔX 

produced by joystick and sent by the client as a 3 x 1 vector. A command for an 

incremental cartesian motion ΔX is sent directly to robot. A command for an 

incremental cartesian motion is specified in hand frame translation ΔX (3 x 1) and 

orientation matrix ΔM (3 x 3). RV-2AJ computes the new robot hand position  

Xnew = Xp(t) + ΔX. RV-2AJ computes the inverse kinematics for Xnew and finds the 

corresponding joint vector Δθ which is sent to robot. 

 

The force sensing component MyJoystick(), implemented in a separate thread, 

reads the master  robot arm, a joystick in our project,  and creates a stream of 

incremental cartesian force directed to the slave arm, remote side robot arm. In the 

client side .NET program, we have a timer which provides a mechanism for executing 

our joystick reading method at specified intervals. At every TimerTick() event, 

MyJoystick() class checks whether any change occurred at joystick position, or not. If 

there is a change at master arm position, the difference between the previous checked 

motion and current one is sent to server in a robot incremental cartesian motion format.  

 

Performance evaluation experiments under different conditions were carried out 

on the server side distributed .NET framework. The connection between slave robot arm 

and PC is established by RS-232 port. We used a PC which has 3.00 GHz P-IV 

microprocessor and 512 MB RAM. Each force data packet contains 8 double values, 6 

one for cartesian coordinates and the other two ones to set robot configuration – motion 

type, hand position - which equal 8 x 8 = 64 bytes.  

 

The experiments are done based on the estimation techniques which are 

explained in section 5.1.  Only the force vector is sent over a RS-232 communication 



60 

port. The joystick timer’s interval was set to 200 milliseconds. It means, joystick motion 

was checked at every 0.2 seconds and incremental change was transferred to robot if 

robot movement completed after previous incremental data sent.  

 

In the experiments, performance of the estimation techniques is defined as the 

matching of desired and actual positions. Therefore, performance evaluation of the 

system is carried out by measuring the differences between the desired positions which 

are produced by joystick and actual positions which are the current coordinate values of 

robot arm. The error analysis of the different estimation techniques was calculated by 

using these differences. In the error calculation, we have used Least Square Method 

which is aimed at minimizing the sum of squared deviations of the observed values for 

the actual variable from those desired by the model. 

 

5.2.1 Least Squares Method (LSM) 
 

The method of least squares assumes that the best-fit curve of a given type is the 

curve that has the minimal sum of the deviations squared (least square error) from a 

given set of data.  

 

Suppose that the data points are (x1,y1), (x2,y2),....., (xn,yn) where, x is the 

independent variable and y is the dependent variable. The fitting curve f(x) has the 

deviation (error) d from each data point, i.e., d1 = y1 - f(x1), d2 = y2 - f(x2),..., dn = yn - 

f(xn). According to the method of least squares, the best fitting curve has the property 

that (eFunda, 2007):  

 (5.4) 

 

 In the experiments, we have used 3 different approaches to increase the 

performance of the robot control with joystick. By using joystick, a rectangle shape with 

X and Y dimension without any depth, ignoring Z dimension, is drawn 3 times. 

Experiments are carried out by using the Linear, Parabolic and Cubic Extrapolation 

algorithms. For every extrapolation methods, different estimation coefficients are used 

to measure the sensitivity of the performance. All of the experiments are repeated three 



61 

times by comparing more than 140 samples of actual and desired positions to get more 

reliable and accurate results and MATLAB program, shown in Appendix C, was used to 

calculate, plot and compare these results. Experiment setups and results are shown in 

Table 5.1. 

 

 

 

 

 

 

None 
Est. Coef. No     

X error 11,18%     
Y error 11,60%     
Z error 0%     

LINEAR EXTRAPOLATION 
Est. Coef. 0,1 0,5 0,9 

X error 9,61% 11,79% 29,22% 
Y error 12,24% 12,47% 30,68% 
Z error 0% 0% 0% 

PARABOLIC EXTRAPOLATION 
Est. Coef. 0,1 0,5 0,9 

X error 6,03% 12,37% 44,29% 
Y error 5,46% 13,56% 49,09% 
Z error 0% 0% 0% 

CUBIC EXTRAPOLATION 
Est. Coef. 0,1 0,5 0,9 

X error 3,08% 7,39% x 
Y error 3,35% 13,69% x 
Z error 0% 0% x 

        
 

Table 5.1 Experiment Results 

 

 

 

 

 

 



62 

 

 

5.2.2 Experimental Results 

5.2.2.1 Experiment Result without Using Estimation Techniques 

In this experiment, we sent only the joystick previous and current motion 

differences that are read with 200 millisecond time intervals to the robot arm. 

TransferredData( xn 1−
)=JoystickCurrentPosition( pn 1−

) – JoystickPreviousPosition( pn 2−
) 

 ppx nnn 211 −−−
−=  xx nn 1ˆ −

=     (5.5) 

 
Figure 5.1 Joystick Incremental Motion (Desired) and Robot Response (Actual)  

(None of Estimation Techniques)  



63 

 
 

Figure 5.2 Desired and Actual Position Error (None of Estimation Techniques) 

5.2.2.2 Experiment Result Using Linear Extrapolation 

ppx nnn 211 −−−
−=    )2.(

32111ˆ pppwxx nnnnn −−−−
+−+=  (5.6) 

In this experiment, estimation coefficient is 1.0
1
=w . 

 

 
Figure 5.3 Linear Extrapolated Desired Motion and Actual Motion 

 



64 

 
Figure 5.4 Desired and Actual Position Error  

 

 

5.2.2.3 Experiment Result Using Parabolic Extrapolation 

ppx nnn 211 −−−
−=       (5.7) 

)2.()2.(
432232111ˆ pppwpppwxx nnnnnnnn −−−−−−−

+−++−+=      

(5.8) 

where, 1.0
21
== ww  

 



65 

Figure 5.5 Parabolic Extrapolated Desired Motion and Actual Motion 

 
Figure 5.6 Desired and Actual Position Error  

5.2.2.4 Experiment Result Using Cubic Extrapolation 

ppx nnn 211 −−−
−=      (5.9) 

)2.()2.(
432232111ˆ pppwpppwxx nnnnnnnn −−−−−−−

+−++−+=

)2.(
5433 pppw nnn −−−

+−+                    (5.10) 

where, 1.0
321
=== www  

 
Figure 5.7 Cubic Extrapolated Desired Motion and Actual Motion 



66 

 

 
Figure 5.8 Desired and Actual Position Error  

 

5.3 COMPARISION 

 

When we compare the results with respect to the estimation techniques tested 

with different estimation coefficients, the most reliable and accurate algorithm can be 

defined as Cubic Extrapolation in the case of its estimation coefficients are equal to 0.1. 

For Linear and Parabolic Extrapolations, when estimation coefficient increases from 0.1 

to 0.5 or 0.9, error rate also increases with respect to increase rate.  For the Cubic 

Extrapolation, similar results are obtained. Even performance of Cubic Extrapolation 

when its estimation coefficient w is equal to 0.9 could not be measured because 

predicted coordinates exceeded the robot workspace. 

 

We try to measure the affect of the time interval which can be defined as the 

sampling time of reading the joystick or transferred data intervals. But, increase on the 

time interval, 200 ms to 800 ms, affected the error with an observable rate. It means, 

error increased more than 2 times when interval increased four times.  



 

67 

 
 
 
 
 

CHAPTER 6 
 
 

AN AUGMENTED REALITY SYSTEM FOR TELEROBOTICS 
 

Augmented Reality (AR) is a variation of Virtual Environments (VE), or Virtual 

Reality as it is more commonly called. VE technologies completely immerse a user 

inside a synthetic environment. While immersed, the user cannot see the real world 

around him. In contrast, AR allows the user to see the real world, with virtual objects 

superimposed upon or composited with the real world. Therefore, AR supplements 

reality, rather than completely replacing it.  

 

According to Azuma (Azuma, 1997), AR systems are required to have the 

following three characteristics: 

1) Combines real and virtual 

2) Interactive in real time 

3) Registered in 3-D 

 

AR can help to users by annotating objects and environments with public or 

private information. Robot path planning can be facilitated using AR in situations where 

a large time delay is present between operator and the robot. Operator can preview the 

effect of the move on the local display overlaid on the remote world image. Once 

operator satisfied with the movement, he can send the actual command. 

 

6.1 VISUALIZATION SYSTEMS BASED ON USED EQUIPMENTS 

 

Visualization systems are classified based on the used equipments. There are 

many Stereo3D Image Formats: 

 

• Interleave/Interlace, image format in which the left and right views are 

combined or "woven" together, line by line. Each line alternates between 

the left and right view of the image. 



68 

 

• Line Blanking, this method is suitable when the output on the screen is in 

interlaced format. The line-blanking controller hides odd lines for right 

eye and even for left eye. 

 

• Page flipping, method of viewing stereoscopic content by using video 

hardware to rapidly switch the left and right eye view in temporal sync 

with shutter glasses. 

 

• Sync-doubling (above-and-below), the above-and-below standard is 

perhaps more effective and does not require additional hardware support 

inside the computer. In this scenario, the left view is rendered in the 

upper half of the screen at half of its vertical resolution, while the right 

view is rendered in the lower half. These images are separated by a 

variable number of black lines that will operate as a vertical blanking 

interval on final display. 

 

Each format requires different techniques and/or equipment for generation and 

visualization.  

 

For 3D visualization, we used one of the basically two major classes of 3D 

visualization techniques which is shuttering glasses. The shutter glasses achieve stereo 

by using frame sequential techniques. Shutter glasses enable the subjects to see 

stereoscopic images. The glasses alternately "shutter," i.e. block, the viewer's left, then 

right, eyes from seeing an image. The stereoscopic image is alternatively shown in 

sequence left-image, right-image synchronously with the shuttering of the glasses.  

 

Most of the available monitors and display adapters can support refresh 

frequencies equal or above 120 Hz at resolutions of 1024x768 or above. Therefore, 

Eye3D Premium Shuttering Glasses support 3D visualization with very high details as 

shown in figure 6.1. For more details, visit the web page (eDimensional Company, 

2007). 

 



69 

 
Figure 6.1 Eye3D Premium Shuttering Glasses for 3D Visualization (eDimensional, 

2007 ) 

 

Just for the illustrative purposes, the “Eye3D Premium” shuttering glasses can 

support resolutions (in pixels) up to 2048x1538 at 120 Hz, and 1856x1392 at 140 Hz. 

These specs are available only in high-end monitors. 

 

In the Eye3D Premium product, we have LCD Glasses, LCD Glasses Controller 

Box and IR Transmitter. LCD Glasses Controller Box gets the VGA output signal of the 

PC, and generates a modified VGA signal for the monitor, and control/synchronization 

signals for the IR transmitter, which in turn controls the LCD Glasses.  

 
6.2 VISUALIZATION SYSTEMS BASED ON USED IMAGE AND VIDEO 
GENERATION TECHNIQUES 

 

At the beginning of project, we tried to generate artificial 3D images to 

understand the basics of the 3D visualization. For this purpose, we generated two 

different images artificially, one for the 1st eye and the other one for the 2nd eye, as 

shown in figure 6.2. 

 
 



70 

Figure 6.2 Artificially Generated Images for the 1st and the 2nd eye 

Two different methods, Interleaved and Sync-Doubling Mode, are used to get an 

artificial 3D scene. To generate an artificial 3D image in Interleaved Mode, a MATLAB 

Program is used as given in Appendix D. Using this program; we create an image in 

which the left and right views of artificial images shown above are combined line by 

line. Combined image is shown in figure 6.3.  

 

 
 

Figure 6.3 Artificially Generated 3D Image in Interleaved Mode 

 

This image, when viewed on a CRT monitor with LCD glasses, and controller 

operating in Interleaved Mode, will result an artificial 3D scene. This has been tested. It 

has been verified that both eyes see the lower rectangle in the same position, and upper 

one in different positions. 

 
To generate an artificial 3D image in Sync-Doubling Mode, images shown 

above are used; in this case, images are combined as in a single image, one above the 

other, as shown in figure 6.4.  



71 

 
 

Figure 6.4 Combined 1st and the 2nd eye Artificially Generated Images 

 

This image, when viewed on a CRT monitor with LCD glasses, and controller 

operating in Sync-Doubling Mode, will result an artificial 3D scene as shown below. 



72 

 
 

Figure 6.5 Artificially Generated 3D Image in Sync-Doubling Mode 

 
6.3 3D LIVE VIDEO GENERATION AND 3D VISUALIZATION IN SYNC-
DOUBLING MODE 
 

To generate 3D video content, we used Parallel Camera Configuration, shown in 

figure 6.6, which can be used to observe with high accuracy a 3D object under 

magnification and depth. This is a very commonly used technique for 3D video 

generation. One is used for the left eye image, and the other is used for the right eye 

images. Approximate camera separation is 6 cm. 

 



73 

 
 

Figure 6.6 Used Parallel Camera Configuration 

 
One AMCAP windows is opened. AMCap is a small yet fully functional video 

capture and preview application compatible with Microsoft DirectShow. It is based on 

the sample AMCap source code from the Microsoft DirectX 9 SDK. Two webcams are 

connected to PC via USB port. To combine left camera and right camera images in the 

only one AMCAP  window, we used HYTEK  General Stereo 3D Camera Driver. 

HYTEK software helped us to turn a pair of webcams into stereo 3D video generator. It 

has many choices to create a 3D images. We used Up and Below image format which 

combines a pair of camera images in a one window placed with one above the other.  

 

 
 

Figure 6.7 HYTEK  General Stereo 3D Camera Driver Interface 



74 

 
Transferring the video images is established by the Active WebCam video 

program. It captures images up to 30 frames per second from any video device 

including USB, analog cameras, TV-boards, camcorders, and from network IP cameras. 

The program performs simultaneous recording and broadcasting from unlimited number 

of cameras. Also, the captured video can be viewed using any Internet browser 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

75 

 
 
 
 
 

CHAPTER 7 
 
 

CONCLUSION 
 
 

Real-time control of telerobots in the presence of time delays and data loss is an 

significant research area. Different techniques have been applied to realize a reliable 

and efficient telerobotic framework. Previously DCOM(Distributed Component Object 

Modeling) has been used in the implementation of a component based telerobotic 

framework by Yuek et al. (Ho et al., 2000). DCOM, however, has some limitations 

related to deployment on remote machines and requires the registration of distributed 

components before interfacing with them. Microsoft .NET based components are an 

ideal update to the DCOM and use highly optimized network socket connections for 

inter-object communications, (Microsoft, 2007). 

 

This work uses the above mentioned .NET based distributed components for the 

design and development of a reliable telerobotic scheme. Because  telerobotics 

encourages the transfer of all possible real-time data from the remote to client side, 

force feedback and video of the remote scene have now become essential elements of a 

good telerobotic system. .NET technologies can offer excellent platform to build such 

multi-streaming application. 

 

Primarily we have considered,  

1) the development of an efficient system to transfer stereo video data from the 

server to client, 

 2) to output this video data to the user in order to provide a 3D view of the 

remote scene,  

3) development of a real-time telerobotic framework  

4) to explore augmented reality as a way to compensate for network delays in 

telerobotics. All of these areas are addressed adequately in this text while providing a 



76 

valuable insight into the use of latest software trends in solving multi-disciplinary 

problems. 
 

7.1 CONTRIBUTIONS 

 

Brief account of the contributions made through this thesis work is given below: 

1. Different output techniques for stereo video are implemented with eye-

shuttering glasses like Interleaved, Line Blanking, Over-Under and their performance is 

evaluated. 

 

2. A component based framework for telerobotics is designed, implemented and 

its performance is evaluated to study the effects of multi-threading on real-time 

telerobotics that facilitates: 

 

(a) Controlling a robot over LAN in real-time, and 

(b) At the same time, providing 3D views of the remote scene 

(c) Evaluating different algorithms to increase  the performance of Joystick-

Robot Arm compensation. 
 

This scheme has significantly reduced the network delays in a given telerobotic 

scenario while providing a very reliable connection between client and server sides. 

 

3. Different geometric working frame is provided for the operator to enhance his 

maneuverability in the remote environment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

77 

 
 
 
 

REFERENCES 
 

 
Al-Harthy A.. “Design of a telerobotic system over a Local Area Network”. M.Sc. 
Thesis, King Fahd University of Petroleum and Minerals, January 2002.  
 
Azuma Ronald T., “A Survey of Augmented Reality”, In Presence: Teleoperators and 
Virtual Environments 6, 355-385, August 1997. 
 
Bellenger D. M., Steven P. Russell, “Dual band modem for high bandwidth, 
communications”, 1999 
 http://www.freepatentsonline.com/5982768.html 
 
Brezinski C. and M. Redivo Zaglia, “Extrapolation Methods. Theory and Practice”,  
North-Holland, 1991 
 
Bungert Christoph, 2007 
http://www.stereo3d.com/nuview.htm 
 
Buzan F. T. and Thomas B. Sheridan, “A Model-Based Predictive Operator Aid For 
Telemanipulators With Time Delay”, Proc.IEEE Int.Conf. on System Man. And 
Cybernetics, 1:138-143,1989 
 
Chen Tse Min, Ren C. Luo, “Remote Supervisory Control of An Autonomous Mobile 
Robot Via World Wide Web”, Proc. of ISIE ’97,1:SS60-SS64,1997 
 
Cisco, “Managed Voice-Smooting the Transition to Communications”, 2007 
www.cisco.com/en/US/netsol/ns458/net_value_proposition0900aecd80151369.html  
 
Chong N., K. Ohba, T. Kotoku, K. Komoriya, N.Matsuhira, K. Tanie, “Coordinate Rate 
Control of Multiple Telerobot Systems with Time Delay”, Proc.IEEE Int.Conf. on 
System Man. And Cybernetics, Pages V1123-V1128, October 1999. 
 
COSIROP 2.0 “Programming Software for Mitsubishi Industrial Robots”, 2006 
http://www.mitsubishi-automation.com/products/software_COSIROP_content.htm 
 
Damian Mirela,” TCP Sockets”, August 23, 2006  
http://www.csc.villanova.edu/~mdamian/Sockets/TcpSockets.htm  
 
Eck David J., “Introduction to Programming Using Java 4th Edition”,2004 
http://oopweb.com/Java/Documents/IntroToProgrammingUsingJava/VolumeFrames.ht
ml  
 
eDimensional, 2007 
https://edimensional.com/support.php 

http://www.freepatentsonline.com/5982768.html
http://www.cisco.com/en/US/netsol/ns458/net_value_proposition0900aecd80151369.html
http://www.mitsubishi-automation.com/products/software_COSIROP_content.htm
http://www.csc.villanova.edu/~mdamian/Sockets/TcpSockets.htm
http://oopweb.com/Java/Documents/IntroToProgrammingUsingJava/VolumeFrames.html
http://oopweb.com/Java/Documents/IntroToProgrammingUsingJava/VolumeFrames.html
https://edimensional.com/support.php


78 

 

 
eDimensional Company, 2007,  
https://edimensional.com/product_info.php?cPath=21&products_id=29&osCsid=5c8a2
ba365a41bea78b52c90ec6665f7 
 
eFunda, “The Method of Least Squares”, 2007 
http://www.efunda.com/math/leastsquares/leastsquares.cfm 
 
Fischer C., M.Buss, G. Schmidt, “Hierarchical Supervisory Control of Service Robot 
Using HuMan-Robot-Interface”, Proc. of  IROS, 1:1408-1416, 1996 
 
Green P. S., J.W. Hill, J. F. Jensen, and A. Shah, “Telepresence surgery”, IEEE Eng. 
Med. Biol. Mag., vol. 14, no. 3, pp. 324–329, May/Jun. 1995. 
 
Gupta Radhika, “Focused Framework Comparison: Remote Object Access using 
CORBA, J2EE and .NET”, CPSC 689-608: Industrial Frameworks for Distributed 
Systems Project 2, November 3, 2003 
 
Haklidir M., Taşdelen I., Modelıng And Sımulatıon Of An Anthropomorphıc Robot Arm 
By Usıng Dymola, Proceedings of 5th International Symposium on Intelligent 
Manufacturing Systems, May 29-31, 2006: 537-546 
 
HarewoodGill Douglas (MSc Robotics), “Workspace 5 Student Manual”, 2006 
 
Ho Y. E.; H. Masuda; H. Oda; L. W. Stark; “Distributed Control for Teleoperations”. 
Proc. Of the 1999 IEEE/ASME International Conf. on Adv. Intelligent Mechatronics, 
pages 323-325, September 1999.   
 
Ho Y. E.; H. Masuda; H. Oda; L. W. Stark; “Distributed Control for Teleoperations”. 
IEEE/ASME Transactions on Mechatronics, 5(2):100-109, June 2000 
 
Introduction to the .NET Framework tutorial, 2001. 
http://www.devhood.com/training_modules/dist-a/Intro.NET/intro.net.htm  
 
Iqbal A., Multistream, “Real-time Control of a Distributed Telerobotic System”, June 
2003  
 
Jun R., “The Magnifying Glass Approach to Augmented Reality Systems”, Proc. of 
ICAT’95, 1995 
 
Kazerooni T., H. Tsay, and K. Hollerback, ”A controller design framework for 
telerobotic systems”, IEEE Trans. Contr. Syst. Technol., vol. 1, no. 1, pp. 50–62, Mar. 
1993. 
 
Lee, S.   Bekey, G.   Bejczy, A, “Computer control of space-borne teleoperators with 
sensory feedback”, Proc. IEEE International Conference on Robotics and Automation. 
Volume: 2, page: 205- 214, Mar 1985 
 
Lee S., S. Ro, J. Park, C. Lee, “Optimal3D Viewing with Adaptive Stereo Displays: A 
Case of Tilted Camera Configuration”, ICAR '97, 1991 

https://edimensional.com/product_info.php?cPath=21&products_id=29&osCsid=5c8a2ba365a41bea78b52c90ec6665f7
https://edimensional.com/product_info.php?cPath=21&products_id=29&osCsid=5c8a2ba365a41bea78b52c90ec6665f7
http://www.efunda.com/math/leastsquares/leastsquares.cfm
http://www.devhood.com/training_modules/dist-a/Intro.NET/intro.net.htm


79 

 

 
Lee S., S. Lakshmanan, S. Ro, J. Park, C. Lee, “Optimal 3D Viewing with Adaptive 
Stereo Displays for Advanced Telemanipulation”, International Conference on 
Intelliigent Robot and Systems. Pages 1007-1014, 1996 
 
Lloyd John E., Jeffrey S. Beis, Dinesh K. Pai, David G. Lowe, “Model-based 
Telerobotics with Vision”, Proc. IEEE Int. Conf. Robotics and Automation, pp.1297-
1304, 1997 
 
Lo C. H., and A. Chalmers, “Stereo Vision for Computer Graphics: The Effect that 
Stereo Vision has on Human Judgments of Visual Realism”, ACM Transactions on 
Design Automation of Electronic Systems (TODAES), Pages: 238 - 271 ,2004  
 
Luo R. C., T.M. Chen. “Development of the multibehavior-based mobile robot for 
remote supervisory control through the internet”. IEEE/ASME Transactions on 
Mechatronics, 5(4): 376-385, December 2000. 
 
Matthew R. Stein, Richard P. Paul$, Paul S. Schenker and Eric D. Paljug, “A Cross-
Country Teleprogramming Experiment”, Proc. IEEE/RSJ Int. Conf. On Intelligent 
Robots and Systems, 1:21-26,1995 
 
Mayez A. Al-Mouhamed, Onur Toker, Asif Iqbal, “Design of a Multi-Threaded 
Telerobotic Framework”, ICECS 2003. pages: 1280 – 1283, Dec. 2003 
 
Mayez A. Al-Mouhamed1, Onur Toker, Asif Iqbal, and Syed M.S. Islam  “Evaluation 
of Real-Time Delays for Networked Telerobotics”, 3rd IEEE Intemational Conference 
on Industrial Informatics (INDIN), pages 351-356, 2005 
 
Microsoft. “MSDN Library”.  
http://msdn.microsoft.com/default.asp  
 
Mitsubishi Electric, “Instruction Manual, Specification Manual”, 2006 
http://www.mitsubishi-automation.com/products.html 
 
Monferer A., “Cooperative Robot Teleoperation through Virtual Reality Interfaces”, 
Sixth International Conference on Information Visualization (IV'02)   p. 243, 2002 
 
Niku Saeed B., “Introduction to Robotics, Analysis, Systems, Applications”. Prentice 
Hall, Inc. 2001. 
 
Nof S., “Handbook of Industrial Robotics”, 2nd Edition, 1998 
 
OMG. “The Common Object Request Broker: Architecture and Specification, revision” 
2.4.2. 2002,  http://www.omg.org 
 
Owens R., Computer Vision, 1997 
homepages.inf.ed.ac.uk/.../LECT1/node2.html 
 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9125
http://msdn.microsoft.com/default.asp
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/iv/&toc=comp/proceedings/iv/2002/1656/00/1656toc.xml
http://www.omg.org/
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT1/node2.html


80 

 

Paolucci F., M. Andrenucci, “Teleoperatiorl Using Computer Networks: Prototypr 
Realization and Performance Analysis”, Electrotechnical Conference MELECON’96 
(8.th Mediterranean, 2-1156-1159,1996. 
 
Ramm Andy, 1997  
http://www.von-oppen.com/doc/ddj/articles/1997/9709/9709i/9709i.htm 
 
Richard B.., “C# network programming”, Jan 2006 
http://www.codeproject.com/cs/internet/TCPIPChat.asp  
 
Sheridan T. B., “Human Supervisory Control of Robot Systems”. Proc.IEEE 
International Conference of Robotics Automation, page 1, 1986 
 
Sheridan T. B., “Telerobotics, Automation, and Human Supervisory Control”, 
M.I.T Press, 1992 
 
Sheridan T. B. “Space Teleoperation through Time Delay: Review and Prognosis”, 
IEEE Transactions on Robotics and Automation, vol. 9, no. 5. October 1993 
 
Sheridan T. B.. Supervisory Control. G. Salvendy (2.Ed.) “Handbook of Human factors 
and ergonomics”, pages 1295-1327.1997. 
 
Sims, D., “New realities in aircraft design and manufacture”, Computer Graphics and 
Applications, IEEE Volume 14,  Issue 2,  Page(s):91, March 1994 
 
Sooyong L., D.-S. Choi, M. Kim, C.-W. Lee, and J.-B. Song, “A unified approach to 
teleoperation: Human and robot interaction”, in Proc. IEEE/RSJ Int. Conf. Intelligent 
Robots and Systems, vol. 1 , pp. 261–266, 1998 
 
Strunk, L.M.   Iwamoto, T. “ A linearly-mapping stereoscopic visual interface for 
teleoperation”, Proceedings. IROS '90, 429-436 vol.1, 1990 
 
Sun Microsystems, 2007  
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html  

Telerobot System, “LCA Telerobot”, 2004 
systemhttp://vismi.kaist.ac.kr/2004/research/TelerobotSystem.htm  

 
 
 

 
 
 
 
 
 
 
 
 
 

http://www.codeproject.com/cs/internet/TCPIPChat.asp
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(strunk%20%20l.%20m.%3cIN%3eau)&valnm=Strunk%2C+L.M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20iwamoto%20%20t.%3cIN%3eau)&valnm=+Iwamoto%2C+T.&reqloc%20=others&history=yes
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html


 

81 

 
 
 
 
 

APPENDIX A 
 
 

USED MELFA BASIC IV COMMANDS DEFINITIONS 

 
CLOSE (Close) 

Closes the designated file. If a file has been opened for input/output the CLOSE 

statement will sweep out the data in the buffer. Consequently, the output processing for 

the file can be completed properly. 
END (End)  

Ends the program execution. 

DEF INTE/FLOAT/DOUBLE (Define Integer/Float/Double)  

The variable declared with INT will be an integer type. (-32768 ~ +32767) 

The variable declared with FLOAT will be a single-precision type. (+/- 1.70141E+38) 

The variable declared with DOUBLE will be a double-precision type. (+/- 

1.701411834604692E+308) 

DEF JNT (Define Joint) 

Declares a joint variable. 

DEF POS (Define Position) 

 Declares a position variable. 

GOTO (Go To)  

Unconditionally branches to a designated line No. or label 

HOPEN/HCLOSE (Hand Open/Close) 

Commands the hand to open or close. 

IF THEN ELSE (If Then Else)  

A process is selected and executed according to the results of an expression. 

INPUT # (Input) 

Inputs data from a file (input device). All data uses the ASCII format. 

MOV (Move)  

Using joint interpolation operation, moves from the current position to the destination 

position. 

 



82 

 

MVS (Move S)  

Carries out linear interpolation movement from the current position to the movement 

target position. 

OPEN (Open)  

Open a file or communication line 

OPEN "COM1:" AS #1    'Open standard RS-232-C line as file No. 1. 

 

PRINT (Print) 

Outputs data into a file (including communication lines). All data uses the ASCII 

format. 

PRINT#1,"**PRINT TEST**" 'Outputs the character string "**PRINT TEST**". 

 

SPD (Speed) 

Designates the speed for the robot's linear and circular movements. 

 

MELFA-BASIC-IV Robot Status Variables 

J_CURR Returns the joint type data at the current position. 

P_CURR Returns the current position (X, Y, Z, A, B, C). 

M_SPD  Returns the currently set speed  during XYZ and JOINT interpolation. 

JTOP   Converts the joint data into position data. 

PTOJ  Converts the given position data into a joint data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

83 

 
 
 
 
 

APPENDIX B 
 
 

MITSUBISHI RV-2AJ CONTROLLER PROGRAM FOR .NET APPLICATION 
 

 
2 DEF INTE M0  
3 DEF INTE M1 
4 DEF INTE M2 
5 DEF INTE M3 
6 DEF INTE M4 
7 DEF INTE M5 
8 DEF INTE M6 
9 DEF INTE M7 
10 DEF INTE MH 
11 DEF INTE SORA 
12 OPEN "COM1:" AS #1 
15 P1=P_CURR 
20 P2=P_CURR 
25 J1=J_CURR 
26 J2=J_CURR 
27 SPD 100 
28 PRINT #1, "P=", J1.J1, J1.J2, J1.J3, J1.J4, J1.J5, J1.J6,P1.X,P1.Y,P1.Z 
 
40 INPUT #1,M0,M1,M2,M3,M4,M5,M6,M7 
45 IF M0=0 THEN GOTO 50 
46 IF M0=1 THEN GOTO 140 
47 IF M0=2 THEN GOTO 220 
48 IF M0=3 THEN GOTO 300 
49 IF M0=4 THEN GOTO 400 
  
50 J1=J_CURR 
51 J1.J1=J1.J1+0.001*M1 
52 J1.J2=J1.J2+0.001*M2 
53 J1.J3=J1.J3+0.001*M3  
54 J1.J4=J1.J4+0.001*M4 
55 J1.J5=J1.J5+0.001*M5 
56 J1.J6=J1.J6+0.001*M6 
74 P2=JTOP(J1) 
75 IF P2.Z<238 THEN GOTO 500 ELSE GOTO 78 
78 MVS J1 
80 IF M7=1 THEN HOPEN 1  
81 IF M7=0 THEN HCLOSE 1  
82 P2=P_CURR 
85 PRINT #1, "P=", J1.J1,J1.J2,J1.J3,J1.J4,J1.J5,J1.J6,P2.X,P2.Y,P2.Z 



84 

 

110 GOTO 40 
 
140 P1=P_CURR 
141 P1.X=P1.X+0.01*M1 
160 P1.Y=P1.Y+0.01*M2 
170 P1.Z=P1.Z+0.01*M3 
175 IF P1.Z<238 THEN GOTO 500 ELSE GOTO 180 
180 MVS P1 
190 IF M7=1 THEN HOPEN 1  
195 IF M7=0 THEN HCLOSE 1 
196 J2=J_CURR 
199 PRINT #1, "P=",J2.J1,J2.J2,J2.J3,J2.J4,J2.J5,J2.J6,P1.X,P1.Y,P1.Z 
200 GOTO 40 
 
220 J1.J1=-0.0073628 
221 J1.J2=0.0934216 
222 J1.J3=1.385601 
223 J1.J4=0 
224 J1.J5=0.8990962  
225 J1.J6=-3.16062 
245 MVS J1 
250 IF M7=1 THEN HOPEN 1 
260 IF M7=0 THEN HCLOSE 1 
261 P2=P_CURR 
262 PRINT #1, "P=", J1.J1,J1.J2,J1.J3,J1.J4,J1.J5,J1.J6,P2.X,P2.Y,P2.Z 
265 J1=J_CURR 
275 P1=P_CURR  
280 GOTO 40 
 
300 P1.X=M1 
310 P1.Y=M2 
320 P1.Z=M3 
330 MVS P1 
331 SPD M_NSPD 
340 IF M7=1 THEN HOPEN 1 
350 IF M7=0 THEN HCLOSE 1 
360 J2=J_CURR 
370 PRINT #1, "P=",J2.J1,J2.J2,J2.J3,J2.J4,J2.J5,J2.J6,P1.X,P1.Y,P1.Z 
380 GOTO 40 
 
400 SORA=M1 
410 SPD SORA 
430 GOTO 40 
  
500 CLOSE #1 
510 END 
 
 
 
 



 

85 

 
 
 
 
 

APPENDIX C 
 
 

PERFORMANCE EVALUATION PROGRAM 
 

load RobotCoordinates.dat 
load JoystickCoordinates.dat  
[M,N]=size(JoystickCoordinates);  
JoystickCoordinates(:,10)=JoystickCoordinates(:,7).*JoystickCoordinates(:,7); 
JoystickCoordinates(:,11)=JoystickCoordinates(:,8).*JoystickCoordinates(:,8); 
JoystickCoordinates(:,12)=JoystickCoordinates(:,9).*JoystickCoordinates(:,9); 
  
[M,N]=size(JoystickCoordinates); 
xerror(1,1)=0; 
yerror(1,1)=0; 
zerror(1,1)=0; 
for i=1:M     
   xerror(1:1)=xerror(1:1) + JoystickCoordinates(i:i,10); 
   yerror(1:1)=yerror(1:1) + JoystickCoordinates(i:i,11); 
   zerror(1:1)=zerror(1:1) + JoystickCoordinates(i:i,12); 
end 
xerror=xerror/M  
yerror=yerror/M 
zerror=zerror/M 
  
figure(1) 
plot(JoystickCoordinates(:,1),'r'); 
hold on  
plot(JoystickCoordinates(:,2),'g'); 
plot(JoystickCoordinates(:,3),'b'); 
plot(JoystickCoordinates(:,4),'k-.'); 
plot(JoystickCoordinates(:,5),'k-.'); 
plot(JoystickCoordinates(:,6),'k-.'); 
  
figure(2) 
plot(JoystickCoordinates(:,7),'r'); 
hold on 
plot(JoystickCoordinates(:,8),'g'); 
plot(JoystickCoordinates(:,9),'b'); 
  
figure(3) 
plot(JoystickCoordinates(:,10),'r'); 
hold on 
plot(JoystickCoordinates(:,11),'g'); 
plot(JoystickCoordinates(:,12),'b'); 



 

86 

 
 
 
 

 
APPENDIX D 

 
 

3D STEREO IMAGE GENERATION PROGRAM 
 

Q11=imread('C:\Documents and Settings\yadibelli\Desktop\matlab3D\11.bmp'); 
Q12=imread('C:\Documents and Settings\yadibelli\Desktop\matlab3D\12.bmp'); 
  
Q11=double(Q11(:,:,3)); 
Q12=double(Q12(:,:,3)); 
Q1=zeros(M,N); 
[M,N]=size(Q11) 
for i=1:2:M 
    for j=1:N 
        Q1(i,j)=Q11(i,j); 
        Q1(i+1,j)=Q12(i+1,j); 
    end 
end 
Q1=uint8(Q1); 
imshow(Q1) 
  
imwrite(Q1,'C:\Documents and Settings\yadibelli\Desktop\matlab3D\3d1.bmp'); 

 
 
 
 
 


