

THE IMPLEMENTATION OF A MULTIMEDIA DATA MINING
TOOL

by

Ayşe Nur TAŞLIPINAR

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

July 2007
Istanbul, Turkey

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Bekir KARLIK
Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Atakan KURT

Supervisor

Examining Committee Members

Assist. Prof. Dr. Atakan KURT _____________________

Assoc. Prof. Dr. Onur TOKER _____________________

Assist. Prof. Dr. Zeynep ORHAN _____________________

It is approved that this thesis has been written in compliance with the formatting
rules laid down by the Graduate Institute of Sciences and Engineering.

Assist. Prof. Dr. Nurullah ARSLAN

Director

Date
July 2007

iii

THE IMPLEMENTATION OF A MULTIMEDIA DATA MINING TOOL

Ayşe Nur TAŞLIPINAR

M. S. Thesis - Computer Engineering
July 2007

Supervisor: Assist. Prof. Dr. Atakan KURT

ABSTRACT

For beginner users like students of computer science current data mining software
are very sophisticated. A lightweight tool that provides an easy to use environment for
the students who are learning data mining and multimedia is beneficial for their
education.

In this thesis, we developed a tool that provides a simple interface for image

processing and a way to running data mining algorithms on image files which will be
quite valuable in data mining and image processing courses. This tool provides the
functionalites of manipulation and filtering of image files, conversion of image files to a
format suitable for data mining, and application of several data mining algorithms on
these groups of files.

Keywords: Multimedia, data mining, image processing, JAI, Weka

iv

MULTİMEDYA VERİ MADENCİLİĞİ ARACI

Ayşe Nur TAŞLIPINAR

Yüksek Lisans Tezi – Bilgisayar Mühendisliği
Temmuz 2007

Tez Yöneticisi: Yrd. Doç Dr. Atakan KURT

ÖZ

Bilgisayar bilimi öğrencileri gibi yeni başlayanlar için günümüzde mevcut olan
veri madenciliği yaz l mlar oldukça kompleks bir yap ya sahiptir.ı ı ı ı Veri madenciliği ve
multimedya öğrencilerine kullanımı kolay bir ortam sağlayan sade bir araç eğitimleri
için faydal d r.ı ı

Bu tez çalışmasında, veri madenciliği ve görüntü işleme derslerinde oldukça

faydalı olacak, görüntü dosyaları üzerinde görüntü işleme ve veri madenciliği
algoritmalarını çalıştırma yöntemi sağlayan bir araç geliştirildi. Bu araç; görüntü
dosyalarının filtre edilmesi ve işlenmesi, görüntü dosyalarının veri madenciliği için
uygun formata dönüştürülmesi ve bu dosya grupları üzerinde çeşitli veri madenciliği
algoritmalarının uygulanması işlevlerini sağlamaktad r. ı

Anahtar Kelimeler: Multimedya, veri madenciliği, görüntü işleme, JAI, Weka

v

ACKNOWLEDGEMENT

I express sincere appreciation to Assist. Prof. Dr. Atakan KURT and for his

guidance and insight throughout the research.

My sincere thanks to the committee member Assist. Prof. Dr. Zeynep Orhan for

her support and motivation.

I am also grateful to my family and my friends for their understanding, motivation

and patience.

vi

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGEMENT...v

TABLE OF CONTENTS ...vi

LIST OF TABLES .. viii

LIST OF FIGURES..ix

LIST OF SYMBOLS AND ABBREVIATIONS ...x

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND .. 3

2.1 PREVIOUS WORK... 3

2.2 IMAGE PROCESSING WITH JAVA.. 6

2.2.1 Java AWT Model ... 7

2.2.2 Java 2D Imaging Model.. 8

2.2.3 Java Advanced Imaging Model..11

2.3 DATA MINING WITH WEKA..12

2.3.1 Introducing WEKA..12

2.3.2 ARFF file format ...13

CHAPTER 3 PROGRAM USAGE..16

3.1 TABLE FORMAT OF MDT...17

3.2 XML FILE FORMAT OF MDT ...19

3.3 USAGE SCENARIOS ..21

vii

3.3.1 Image Dataset Preparation ...21

3.3.2 Table Creation ...23

3.3.3 Image Processing Example ..25

3.3.4 Data Mining Example..27

CHAPTER 4 IMPLEMENTATION..34

4.1 INTRODUCTION TO MDT CLASS STRUCTURE ..34

4.2 MAINWINDOW CLASS ...36

CHAPTER 5 CONCLUSION..41

REFERENCES..43

viii

LIST OF TABLES

Table 2.1 Basic imaging classes of java AWT .. 7

Table 2.2 Basic imaging classes in Java 2D .. 9

Table 2.3 Filtering classes in Java 2D..10

Table 2.4 Basic JAI imaging classes ..11

Table 3.1 Columns of MDT table ..18

Table 4.1 Basic classes of MDT ..35

Table 4.2 Methods of MainWindow class..37

ix

LIST OF FIGURES

Figure 2.1 Screen from WEKA..13

Figure 2.2 Sample ARFF file...14

Figure 3.1 XML file format of MDT ...20

Figure 3.2 Grayscale images of subjects in different poses...22

Figure 3.3 Creating a table...23

Figure 3.4 Adding row using menu..24

Figure 3.5 Importing image from explorer...25

Figure 3.6 Applying filter to an instance ..26

Figure 3.7 Result of filtering operation ..26

Figure 3.8 Preparing the dataset for data mining ..27

Figure 3.9 Choosing classification algorithm ...28

Figure 3.10 Generic Object Editor of J48 tree..29

Figure 3.11 Data mining window for classification..30

Figure 3.12 Results of the classification...30

Figure 3.13 Selecting clustering algorithm...31

Figure 3.14 Generic Object Editor of EM algorithm ..31

Figure 3.15 Data mining window for clustering...32

Figure 3.16 Results of the clustering..33

Figure 4.1 Function loadAtable() ..38

Figure 4.2 Function addColumn()...39

Figure 4.3 Function deleteColumn() ...39

Figure 4.4 Function deleteRow() ..40

Figure 4.5 Function saveTable() ...40

x

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION

ARFF Attribute Relation File Format

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AWT Abstract Window Toolkit

CLI Command Line Interpreter

JAI Java Advanced Imaging

JPEG Joint Photographic Experts Group

GIF Graphics Interchange Format

MDT Multimedia Data Mining Tool

PNG Portable Network Graphics

SAX Simple API for XML

WEKA Waikato Environment for Knowledge Analysis

XML Extensible Markup Language

2D Two dimensional

1

CHAPTER 1

INTRODUCTION

Demand of knowledge discovery from image files has rapidly grown in past few

years. Current data mining software are very sophisticated and not all of them provide

features for working on image files. For beginner users like computer science students it

can be very complicated to figure out how to use these tools during their learning

periods. A lightweight tool is beneficial for data mining and image processing courses

that enable users to manage and apply data mining on image files easily. In this manner,

an application that provides a simple interface for image processing and running data

mining algorithms on image files will be quite valuable for data mining and image

processing education.

“Multimedia data mining is a subfield of data mining that deals with the

extraction of implicit knowledge, multimedia data relationships, or other patterns not

explicitly stored in multimedia databases.” (Zaiane et al., 1998) Multimedia file types

include text, image, audio and video. Since gathering knowledge from image data is

mostly in demand and easier to handle than video, most of the multimedia data mining

research are being done on image data. For these purposes together with the vision of

simplicity, our study will only focus on image file type.

In this study a computer application called Multimedia Data Mining Tool (MDT)

which provides simple filtering and data mining of image files is implemented. The tool

has a plain but practical user interface which allows creating and managing image

datasets. Besides, it provides the datasets to be stored in and retrieved from specially

designed document format which is based on the Extensible Markup Language (XML).

2

One of the prominent features of the MDT is its plain table data structure. Based

on this structure, converters for the two different file formats, XML and Attribute

Relation File Format (ARFF) are developed in order to use table data. Besides, MDT

provides simple filters and operators for image processing. Prewieving is supported in

this step. Further, MDT forms a link to the data mining algorithms in Waikato

Environment for Knowledge Analysis (WEKA). By the way, “Weka is a collection of

state-of-the-art machine learning algorithms and data preprocessing tools” (Witten and

Frank, 2005). In the data mining step, classification and clustering algorithms can be

applied and the results are output to the screen. “Image classification and clustering are

the supervised and unsupervised classification of images into groups.” (Hsu et al.,

2002). However, the image classification and clustering methods we used are very

different from the advaced ones. What we used here is pixel based classification.

This thesis is organized as follows: Chapter 2 gives information about the

previously implemented systems that handles multimedia data, and then it presents the

key points of the two technologies, Java Advanced Imaging Application Programming

Interface (JAI API) and Weka Data Mining Tool, which are used to develop the

application. Chapter 3 illustrates a usage scenario of MDT. Chapter 4 presents detailed

information of MDT’s basic classes. Chapter 5 discusses future work and concludes the

study.

 3

CHAPTER 2

BACKGROUND

The two most important capabilities that The Multimedia Data Mining Tool

(MDT) provides are the ability to do image processing and data mining on image files.

This chapter includes general background information by first presenting previous work

done in the area of multimedia data mining and then the two basic technologies that

provides means for these capabilities in several sections. In section 2.1, some significant

works in the interested area are summarised. In section 2.2, the Java Media API which

is used for handling image processing part is explained. In section 2.3, the Weka data

mining tool which provides algorithms for data mining process is explained.

2.1 PREVIOUS WORK

“Data mining is the analysis of (often large) observational data sets to find

unsuspected relationships and to summarize the data in novel ways that are both

understandable and useful to the data owner” (Hand et al., 2001). Simply, it is often

described as finding hidden information from data.

Multimedia is referred to any type of information medium that can be captured,

represented, processed, communicated and stored in digital form. Multimedia data

means any type of text, image, video, audio, etc files. From this point of view,

multimedia mining can be defined as a subfield of data mining that deals with the

extraction of implicit patterns, relationships, or facts from the multimedia data.

Grosky and Tao identify multimedia data mining and discuss a representation

design for multimedia objects used for mining (Grosky and Tao, 1998).

4

They make a classification of multimedia data mining and present a data model over

existing models (Gudivada et. al., 1996).

Although image mining and video mining are considered as different subfields of

multimedia data mining, same type of input data -image- is being considered for similar

operations and mining techniques. The most important research areas in image and

video mining are listed as pattern recognition, content-based image retrieval, video

retrieval, video sequence analysis, change detection, training for object recognition, and

image model learning. All of these areas have two common problems that processing of

large samples of images and extraction of semantically meaningful information for the

user (Missaoui and Palenichka, 2005).

The emergence of multimedia data mining concept influenced the related areas of

databases and information systems. It leaded to many applications of knowledge

discovery, information analysis and retrieval, content based searching of multimedia

information. This triggered the implementations of many multimedia data mining

systems. Some of the most significant systems will be explained briefly. For instance,

not all of these systems can be considered as data mining systems but they are specific

examples for drawing a picture about the usage and retrieval of multimedia data.

One of the leading researches is the MultiMediaMiner system. (Zaiane et al.,

1998) which is defined as a prototype for multimedia data mining system designed for

mining information from large multimedia databases. It provided an interactive mining

interface and display for image and video data. In implementation, DBMiner (Han et.

al., 1997) and content based image retrieval (CBIRD) (Gudivada and Raghavan, 1995)

systems are extended to handle multimedia data for knowledge discovery purposes. One

feature of the MultiMediaMiner is that it includes the multimedia data cubes which

provide a multi dimensional analysis for multimedia data. The underlying CBIRD

system is composed of four major components:

(a) an image excavator for gathering images and videos from the multimedia

database;

(b) a preprocessor that extracts features of image and stores precomputed data;

(c) a search kernel that matches queries with image and video features;

5

(d) some discovery modules (characterizer, classifier and associator) that applies

image mining methods to extract knowledge and patterns.

Another feature of MultimediaMiner is that it includes some data mining modules

which act as, characterizer, classifier, and associator, in image and video databases.

These are named as MM-Characterizer, MM-Classifier, and MM-Associator

respectively.

There are many systems implemented to mine scientific data. Diamond Eye

(Roden et al, 1999) is a scientific image mining system that enables users to gather

images from large image databases. Diamond Eye system uses Java client-server

architecture. The server maintains an object oriented database that stores client data,

query models, and results and provide query processing. Inside the system there are

several image processing and object recognition algoritms that enables searching and

retrieving image content. The client side tools enables image search queries and analysis

of query results. Query results are displayed as thumbnail images. Metadata elements

can be added to Image class which enables metadata operations for developers.

Another scientific toolkit is Algorithm Development and Mining (ADaM)

(Rushing et. al, 2005) which provides data mining and image processing capabilities

together. ADaM toolkit provides pattern recognition, image processing, optimization

and data mining together with many supporting data mining tools. It provides common

data mining methods which are classification, clustering, association rule mining, and

data preprocessing. There are tools to extract features from images, conversion of image

from image data pattern vector form and vice versa. The toolkit is a combination of

many independent components. ADaM is interoperable with WEKA at the data level

because it uses the same data format of ARFF.

There are also example researches that focus on video retrieval. An interactive

system called VideoQ is defined as the first on-line advanced content-based video

searching system (Chang et al, 1998). Its significant features are listed as:

(a) automatic segmentation and tracking of video objects;

(b) a rich library of visual features ;

6

(c) making queries with multiple objects;

(d) making queries with the spatio-temporal constraints.

The system allows users to do video search using a large set of visual features and

spatio-temporal relationships. The query is formulated by so called animated sketch in

which each object is assigned with motion and temporal duration attributes in addition

to the usual shape, color and texture attributes. Segmentation and tracking is done

automatically and different features of the object like color, shape, texture, etc. are

stored in the feature libraries. When query is processed, it is matched with these features

and then candidate video shots are listed.

Another interesting implementation is The Informedia Digital Video Library

project (Wactlar et. al, 1996) developed in Carnegie Mellon University. Informedia is

also an on-line digital video library that supports content based searching and retrieval.

The system includes a speech recognizer that transcribes video soundtracks, and a

structure that understands and stores the transcript in a text database. The database

allows making queries in which the user can specify the words in the soundtrack.

Image mining trends are rapidly advancing. Hsu et. al. examines research issues in

this area and presents some future directions for image mining.(Hsu et al, 2002). Hsu et.

al. classified image mining reseaches to two dimensions .First one is extraction of most

relevant features(Fayyad et al.,1996; Hsu et al.,2000 ;Kitamoto, 2001), second is

generating image patterns for understanding.(Ordonez and Omiecinzki, 1999; Zaiane et

al.,1998).

2.2 IMAGE PROCESSING WITH JAVA

MDT provides simple image processing features. The image processing

operations are implemented using the latest Java Imaging classes which are known as

Java Advanced Imaging Application Programming Interface (JAI API).

In order to understand the structure of the Java Media API, essential steps in java

image processing should be examined. This section will provide the progressive

7

development of image processing in Java until the introduction of Java Advanced

Imaging Model. Only the image processing parts of the APIs will be focused on.

The evolution of image processing in Java is considered as three main steps: First

is the imaging part of Abstract Window Toolkit (AWT) API, which provides the basic

simple rendering package. Second is the Java 2D API, which is an extension to the early

AWT and added support for many more graphics and rendering operations. Third is the

JAI API which advanced image processing by providing elaborate classes and high

performance processing capabilities.

2.2.1 Java AWT Model

AWT supports image processing by providing the java.awt and java.awt.image

class packages. Basic AWT imaging interfaces and classes with their definitions are

listed in Table 2.1. All class declarations are offical from Sun Java website.

Table 2.1 Basic imaging classes of java AWT

Image processing in AWT is based on the concept of filtering pipeline of image

producers and consumers. An image object of java.awt.Image abstract class may be

created either by loading from an image source or being drawn by an AWT component.

The Image object does not provide the actual image data; it only provides a means for

processing it. To process an image, an object implementing the ImageProducer interface

Class Description

Image The abstract class Image is the superclass of all classes that
represent graphical images.

ImageConsumer The interface for objects expressing interest in image data through
the ImageProducer interfaces.

ImageObserver An asynchronous update interface for receiving notifications about
Image information as the Image is constructed.

ImageProducer The interface for objects which can produce the image data for
Images.

ColorModel
The ColorModel abstract class encapsulates the methods for
translating a pixel value to color components (for example, red,
green, and blue) and an alpha component.

PixelGrabber
The PixelGrabber class implements an ImageConsumer which can
be attached to an Image or ImageProducer object to retrieve a subset
of the pixels in that image.

8

should send image data to an object implementing the ImageConsumer interface. Filter

objects implement both interfaces. The AWT imaging model is called as Push Model

because the consumer cannot request the Image, image data is pushed into the image

processing pipeline by the ImageProducer object when it is needed.

AWT provides a few simple filters, for cropping and color manipulation

operations. Basic filters class is ImageFilter base class. After the filtering operation, the

resulting consumer image which is also an AWT Image object can be drawn upon the

screen by obtaining a Graphics object.

In AWT, image data is stored as array of bytes. When an image is loaded, the

Image object is obtained with encapsulated pixel data inside. There is not a mechanism

for reusable persistent memory storage of image pixels. Pixel data can be extracted by

using the PixelGrabber class. The ColorModel accompanying the image data describes

the layout and interpretation of the pixels.

AWT supports width and height properties of image and a very limited number of

image input file types, such as GIF, JPEG, and later added PNG.

There are many deficiencies of the AWT imaging model that makes it unsufficient

for high level image processing. These may be listed as the absence of permanent image

data, the abstactions in the push model, poor filtering capabilities, the insufficiency of

image data formats, and the lack of some common concepts for extensive image

processing.

2.2.2 Java 2D Imaging Model

The Java 2D API introduced special classes that extend the Java AWT classes to

support for two-dimensional imaging operations. These classes are merged into AWT

and became a part of the Java Core with the Java Platform 1.2 release. They also formed

the foundation of the Java Advanced Imaging API.

Basic image-handling interfaces and classes which are part of Java 2D are listed

in Table 2.2. All class declarations are offical from Sun Java website.

9

Table 2.2 Basic imaging classes in Java 2D

Class/ Interface Description

RenderedImage RenderedImage is a common interface for objects which
contain or can produce image data in the form of Rasters.

WritableRenderedImage

WriteableRenderedImage is a common interface for
objects which contain or can produce image data in the
form of Rasters and which can be modified and/or written
over.

BufferedImage The BufferedImage subclass describes an Image with an
accessible buffer of image data.

ComponentColorModel
A ColorModel class that works with pixel values that
represent color and alpha information as separate samples
and that store each sample in a separate data element.

ComponentSampleModel
This class represents image data which is stored such that
each sample of a pixel occupies one data element of the
DataBuffer.

DataBuffer This class exists to wrap one or more data arrays.

FilteredImageSource

This class is an implementation of the ImageProducer
interface which takes an existing image and a filter object
and uses them to produce image data for a new filtered
version of the original image.

ImageFilter
This class implements a filter for the set of interface
methods that are used to deliver data from an
ImageProducer to an ImageConsumer.

Kernel

The Kernel class defines a matrix that describes how a
specified pixel and its surrounding pixels affect the value
computed for the pixel's position in the output image of a
filtering operation.

Raster A class representing a rectangular array of pixels.

SampleModel This abstract class defines an interface for extracting
samples of pixels in an image.

WritableRaster This class extends Raster to provide pixel writing
capabilities.

RenderableImage
A RenderableImage is a common interface for rendering-
independent images (a notion which subsumes resolution
independence).

ParameterBlock
A ParameterBlock encapsulates all the information about
sources and parameters (Objects) required by a
RenderableImageOp, or other classes that process images.

RenderableImageOp
This class handles the renderable aspects of an operation
with help from its associated instance of a
ContextualRenderedImageFactory.

RenderableImageProducer An adapter class that implements ImageProducer to allow
the asynchronous production of a RenderableImage.

RenderContext A RenderContext encapsulates the information needed to
produce a specific rendering from a RenderableImage.

10

The imaging model of Java 2D API is based on the producer/consumer model of

AWT, additionally, it provides the permanent image data in memory. The image

processing model of Java 2D is called the immediate mode imaging model, since it

makes the entire image data available in memory immediately after each step in the

imaging pipeline.

Primary image class is java.awt.image.BufferedImage, which represents an area

of memory containing pixel data. A BufferedImage consists of a DataBuffer, which

stores actual pixel data as one or more arrays of primitive datatypes, and associated with

it a SampleModel, and a ColorModel to read and write the data. SampleModel deals

with grouping the numbers into pixels and ColorModel deals with conversion of pixels

to colors.

Filtering classes provided by Java 2D supports many image processing operations

like blurring, sharpening, geometric transformation, rotating, scaling, thresholding, etc.

Imaging operations can be done directly to BufferedImage using these filters. Some of

these are listed in Table 2.3. All class declarations are offical from Sun Java website.

Table 2.3 Filtering classes in Java 2D

Class/ Interface Description

AffineTransformOp
This class uses an affine transform to perform a linear mapping
from 2D coordinates in the source image or Raster to 2D
coordinates in the destination image or Raster.

BandCombineOp This class performs an arbitrary linear combination of the bands in a
Raster, using a specified matrix.

ColorConvertOp This class performs a pixel-by-pixel color conversion of the data in
the source image.

ConvolveOp This class implements a convolution from the source to the
destination.

RescaleOp
This class performs a pixel-by-pixel rescaling of the data in the
source image by multiplying the sample values for each pixel by a
scale factor and then adding an offset.

The Java 2D API provides device-independent rendering by introducing

Renderable and Rendered interfaces. By the way, rendering an image means to

transform it to an appropriate format for an output device. Since rendering

independence concept is essential to JAI, these interfaces will be briefly explained.

11

Renderable and Rendered layers are two integrated imaging layers. The

renderable layer is rendering-independent layer that provides reusable image sources for

different contexts and operators that take rendering-independent parameters. In contrast,

the Rendered Layer provides context-specific image sources and operators that take

context-dependent parameters.

2.2.3 Java Advanced Imaging Model

“The Java Advanced Imaging (JAI) API further extends the Java platform

(including the Java 2D API) by allowing sophisticated, high-performance image

processing to be incorporated into Java programming language applets and

applications” (Prasad, 2002). JAI provides many image operators and an extension

mechanism for developing additional operators. Basic JAI classes are listed in Table

2.4. All class declarations are offical from Sun Java website.

Table 2.4 Basic JAI imaging classes

Class Description

CollectionImage An abstract superclass for classes representing a Collection
of images.

JAI A convenience class for instantiating operations.

OpImage This is the base class for all image operations.

PlanarImage A RenderedImage is expressed as a collection of pixels.

RenderableOp A node in a renderable imaging chain.

RenderedOp A node in a rendered imaging chain.

TiledImage A concrete implementation of WritableRenderedImage.

Imaging model of JAI, called as pull model, allows image processing when

needed. The image object waits for a request to pass the pixel data. The model is based

on Renderable and Rendered layer concepts introduced in Java 2D. Both the images and

12

operators are objects. The operator object defined with image source(s) and parameters.

Then, they can be linked to form chains.

The top level image class is javax.media.jai.PlanarImage. Besides, previous

SampleModel, ColorModel, DataBuffer, and Raster classes are extended.

In JAI, an image processing operation is progressed through four steps: firstly,

gathering the image either by loading from a file or a data source, or by creating

internally, secondly describing the imaging graph by defining the operators and their

relationships, thirdly, evaluating the result through using one of the rendered, renderable

or remote execution models, and fourthly, processing the resultant image either by

saving it to a file or sending to a device or API.

2.3 DATA MINING WITH WEKA

“The Weka Workbench is a collection of state-of-the-art machine learning

algorithms and data preprocessing tools” (Witten and Frank, 2005). It provides various

methods for common data mining problem areas which are classification, clustering,

regression, association rule mining, and attribute selection together with a powerful user

interface. “The philosophy behind WEKA is to move away from supporting a computer

science or machine learning researcher, and towards supporting the end user of machine

learning” (Holmes et. al., 1995).

2.3.1 Introducing WEKA

Weka provides a fully comprehensive environment for the total data mining

process. In addition to various data mining algorithms, it provides capabilities for data

preprocessing i.e. preparation, evaluation and visualization. Its powerful user interface

combines all of its capabilities.

13

Figure 2.1 Screen from WEKA

The graphical user interface presents four interfaces according to usage objective.

First and the mostly used one is the Explorer. Figure 2.1 shows a screen view of the

Explorer. Second is the Knowledge Flow interface that allows the user to design

configurations for incremental algorithms. The third one is the Experimenter for

advanced users who need to make comparison of various learning techniques and

different parameter settings. The last one is a simple command-line interface that allows

to run data mining commands from the command line. In MDT, we used the concept of

command line interface. We focused on generating the appropriate command that will

be sent as input to the classes of command line interface.

2.3.2 ARFF file format

Tables stored in XML format is also converted to Weka's ARFF file format for

data mining process. Data Mining is done on ARFF set files.

14

In Weka homepage, the definition is “An ARFF (Attribute-Relation File Format)

file is an ASCII text file that describes a list of instances sharing a set of attributes.” A

sample which is taken from our tool output arff file is shown in the figure Figure 2.2

Figure 2.2 Sample ARFF file

An ARFF file consists of two sections. The header section is the information

between @RELATION and @DATA declarations. This part is the Header information,

which contains the declarations of the relation, and the attributes with their types. The

data section starts with @DATA declaration until the end of the document. This part

includes the actual instances as each line.

The percent sign indicates the beginning of a comment line. If spaces will be used

in the user specified strings like relation name, attribute name, data values, etc, then the

entire string must be quoted.

The name of the relation (table) is written just next to the @relation declaration.

This forms the first line in the document.

Attribute declarations consists of an ordered sequence of @attribute statements.

Each attribute declaration is given by its name and data type. The order of the attribute

15

declarations is maintained in the data section as column positions. The attribute name

must start with an alphabetic character. The data type of the attribute can be any of the

numeric, nominal, string, or date types. For MDT implementation, only numeric and

nominal types are used. Numeric attributes can be real or integer numbers. Nominal

values are written as a comma seperated list inside curly braces, as shown in the figure.

The @data declaration is a single line denoting the start of the data segment. Each

instance is listed below the @data declaration, on a single line with carriage returns

denoting the end of its values. Attribute values for each instance are delimited by

commas. They must appear in the order that they were declared in the header section

(i.e. the data corresponding to the nth @attribute declaration is always the nth field of

the attribute). Missing values are represented by a single question mark.

 16

CHAPTER 3

PROGRAM USAGE

Multimedia Data Mining Tool (MDT) is designed to fulfill the need of a simple

tool for learning common image processing and data mining operations. In the

evaluation framework designed by Collier et al., the user interface criteria is one of the

most significant measures which asks if it is easy to navigate and uncomplicated

(Collier et, al.,1999). MDT aims this ease of use criteria for educational purposes.

MDT also enables users to apply JAI filters on image files and run Weka’s data mining

algorithms on image file datasets.

This tool will provide the functionalites of manipulation and filtering of image

files, conversion of XML dataset files to Weka’s arff format files suitable for data

mining, and application of data mining tasks on these groups of files. We need to

provide a set of data sets.

MDT includes a powerful user interface which is developed in Eclipse

environment using Java Programming Language. The interface provides the user the

ability to open, create, edit, or save tables which hold image datasets. Functionalities of

MDT classes include extracting image files’ properties and pixel data, applying imaging

operations on image files, writing to and reading from XML tables, writing to Weka’s

ARFF data format, calling data mining algorithms of Weka with the help of Weka’s

Simple CLI classes.

Table format of MDT will be explained in section 3.1. Section 3.2 presents the

properties of specially designed XML file format, and section 3.3 builds up a usage

scenario.

17

3.1 TABLE FORMAT OF MDT

Table format in MDT is specially designed to hold the image files with their

properties. The clear and informative format provides rich information about each

image with their preview so enables user to easily select the images that will be added

to the dataset.

Each image file forms one row of the table while properties of the image shown in

separate columns. Columns are listed in Table 3.1.

18

Table 3.1 Columns of MDT table

Column Name Description

preview Thumbnail preview of the image

filename Name of the image file

originalURL Full path of the image file

fileType File type of the image

fileSize Size of the image file

width Image width in pixels

height Image height in pixels

tileInfo Tile dimensions, if there is more than one tile

tileBound Tile bounds, if image is tiled

tileGridOffset Tile offset, if image is tiled

numberOfBands Number of bands of the image, extracted from samplemodel

dataType Data type of the image, extracted from sample model

colorMapType Colormap type extracted from the color model

numOfComponents Number of color components

bitsPerPixels Bits per pixel components in the color model

transparency Transparency information

class Class value used for data mining

19

3.2 XML FILE FORMAT OF MDT

A sample file is shown in Figure 3.1. It can be seen that the <table> tag is the root

element. It represents the dataset table. The table is considered as two parts. The only

two child elements are <schema> which contains table structure information and <data>

which contains actual data.

Schema consists of the properties of the table columns. Each table column

corresponds to an <attribute> element. Name, data type, size and visual order of the

columns are listed as attribute values of the <attribute> element. Attributes other than

“name” are given default values; they are not actively used in implementation. Column

is given this name because of the data mining terminology; each column is called as

attributes. A column may either be one of default columns or added by user. The

<builtinattributes> and <userattributes> elements indicate this.

Data consists of the table rows each of which represent an instance (image file).

Each <row> element represents one instance of the table. Actual data is listed between

column name tags this corresponds to a cell value.

20

Figure 3.1 XML file format of MDT

21

3.3 USAGE SCENARIOS

This part attempts to put together a scenario involving a set of operations to serve

as a useful example for MDT usage. In this scenario of using MDT, we will create our

own image dataset tables, modify our images using built-in filters, run a classification

and a clustering algorithm, and finally interpret the results.

For this usage scenario, we will assume that MDT is installed in our computer,

and we already have an image database which consists of gray-scale photos of different

subjects with different pose angels and facial expressions. Datasets will be explained in

more detail in the following section.

Steps will be given under seperate titles.Section 3.3.1 presents the issues to

consider when selecting our dataset instances.Section 3.3.2 demonstrates how to create

a table and build up a dataset. Section 3.3.3 explains an image processing operation.

Finally, section 3.3.4 explains how to carry on a data mining operation.

3.3.1 Image Dataset Preparation

MDT’s ARFF file contains only two types of values; the pixel information and

class for any image. Each pixel consists of values that built up an array, of which size is

specified by the band value. Band value forms the number of columns (attributes) for

each pixel value in ARFF files, so all image files should have the same band value. This

column appropriateness is only one of the issues that enforce many image properties to

be identical for the dataset. Others that can be clearly seen are type, size, etc.

 Another issue is that since the attribute number grows rapidly, performance

issues may occur during data mining process, so it is better to keep the file size

(widthxheight value) as small as possible. Also, for the same performance issues, it is

better to use grayscale images.

In the experiments, we used three different databases. All of these provide

grayscale images of various subjects.The images are frontal poses of individuals with

22

small variations in face position, illumination, facial details and expressions, etc. The

databases are included in the thesis material and listed as:

(a) AT&T Olivetti Research Laboratory, Cambridge Database

(b) CMU AMP Face Expression Database

(c) Equinox Corporation Human Identification at a Distance Database

Figure 3.2 Grayscale images of subjects in different poses

An example part from the AT&T Olivetti image dataset is given in Figure 3.2.

The images are 8 bit gray level images with homogenous background and different by

varying lighting conditions, facial expressions (open/closed eyes, smiling/non-smiling)

and facial details (glasses/no-glasses). We will try to carry out a face recognition

operation, and pick up 5 different pose images of 5 distinct subjects. Subjects will be

23

named as s1, s2, s3, s4 and s5 respectively. The images are resized to 23x28 pixel sizes

and converted to JPEG format.

3.3.2 Table Creation

Tables may either be created or loaded from an existing MDT XML document. At

first, we will create a new table and carry out a clasification. For clustering operation we

will use the same table so we will need to load it again.

To create a table, select New from File menu. A dialog box appears asking the

user to enter a name for the new table. Figure 3.3 illustrates creating a new table.

Figure 3.3 Creating a table

When we input a name and click on the create button, a new empty table will be

shown on desktop, at the time an MDT XML file created with empty data tags in user

directory.

24

Now we can add image files to our table. We may either use new row option in

the Edit menu or import from Explorer. If Edit menu is used, a file chooser appears that

let any file to be chosen. Adding an image using Edit menu is illustrated in Figure 3.4.

Figure 3.4 Adding row using menu

If we need to preview the images before importing, we should cancel the file

chooser in order to use the Explorer. Left on the desktop pane, there is the explorer,

clicking on the button makes it visible.

We can add images to the table either by selecting the image and clicking import

button or only by double clicking on the image. The image is automatically added to the

table.Figure 3.5 shows the explorer.

25

Figure 3.5 Importing image from explorer

Add or remove operations for rows and column are provided in edit menu.

Column or row is selected by a single click, table cell values can be modified by double

clicking.

It can be clearly seen that each image file forms a row with its properties as its

columns. One or multiple rows (images) can be selected and selection from one of the

image filter operations from the image menu starts the process.

3.3.3 Image Processing Example

We can do some image processing on our files. We select an image by single

clicking on a row. Then we go to Image Menu, select one group of operations, and then

select one of the filters. Figure 3.6 shows an example.

26

Figure 3.6 Applying filter to an instance

Result of the operation can be seen in the preview column immediately, in Figure

3.7. Image files are replaced with the filtered ones. This process is not revisable, he

should be careful to back up the images. The images and tables can be collected under a

directory for convenience.

Figure 3.7 Result of filtering operation

27

3.3.4 Data Mining Example

As mentioned before, in order for the data mining algorithms run correctly,

properties of image files in our table must be identical. That’s why we should restore

the image we modified before. This can be done by just changing the modified file with

its original copy, i.e. copying the original and pasting it into the same directory. Then

we will have our orginal table as our dataset.

In the table dataset, we have 5 different pose images of 5 subjects. We should

check the class values under the CLASS column. By default, class column value of an

instance is given the image file’s name. The user should provide the correct class

values. For prediction, we should place a question mark (?) into the cell under the

CLASS column indicating the unknown class value.As shown in Figure 3.8 we put

question marks to images of subjects called s4, s3, s5 and s2, respectively.

Figure 3.8 Preparing the dataset for data mining

The table should be saved before going for data mining process. We save the table

by clicking on Save from the File Menu. At the time we save the table, four files are

created. The first one is MDT’s XML file. It contains table data as seen on the screen.

The other three are ARFF files, a training file, a test file and a complete ARFF version

28

of the XML file. Training file contains instances of which class values are known. Test

file is built up of instances of which class values are unknown, i.e given as question

mark. The complete ARFF file is combination of test and training files which we need

for clustering operation.

We click on to the Data Mine menu after saving the table, two data mining

options are shown, one is classification and the other is clustering. We choose

classification, then, Weka’s Generic Object Editor (GOE) pops up to let us choose one

of the classification algorithms. By clicking on the upper left Choose button, as shown

in Figure 3.9, a list is expanded from which we can select our algorithm.

Figure 3.9 Choosing classification algorithm

We choose the J48 under the tree directory in the list and GEO is customized for

the algorithm in order to let us make changes in its options. Figure 3.10 shows the

customized GOE, by means of which we can set execution options for the algorithm.

29

Figure 3.10 Generic Object Editor of J48 tree

We just click on OK to use the default options.We will see a window is showed

which will be used for starting the data mining process and viewing the results.

Figure 3.11 shows the data mining window. The start button starts the process by

sending the command shown in the text line between the start and predictions buttons.

The empty text area under the buttons will output the results.

Clicking on the start button will run the algorithm with our table given as its

parameters. In Figure 3.12 output of the algorithm is shown. Under the prediction

column, the predicted classes are listed. We had put question marks for subjects 4, 3, 5

and 2. In the figure it can be seen that the first, the third and the fourth instances are

classified correctly, i.e., as s4, s5 and s2 respectively. However the second one is

classified incorrectly, s3 is predicted as it was s5. Clicking on the prediction button pops

up the table and puts the predicted values to CLASS column of the corresponding

instances.

30

Figure 3.11 Data mining window for classification

Figure 3.12 Results of the classification

For clustering operation, we choose the Clustering option from the Data Mining

menu. Again, Weka’s Generic Object Editor (GOE) shows up to let us choose one of

the clustering algorithms. By clicking on the upper left Choose button, as shown in

Figure 3.13, a list is expanded from which we can select our algorithm.

31

Figure 3.13 Selecting clustering algorithm

We choose the EM algorithm under the clusterers directory in the list and GEO is

customized for the algorithm in order to let us make changes in its options. Figure 3.14

shows the customized GOE, by means of which we can adjust the data mining options

for the algorithm.

Figure 3.14 Generic Object Editor of EM algorithm

32

We enter the value 5 into the numClusters field. This means we need to have 5

clusters since we have 5 subjects. After adjusting the cluster number, we click on OK

and again, the clustering window is showed which will be used for starting the data

mining process and viewing the results. Figure 3.15 shows the data mining window.

Figure 3.15 Data mining window for clustering

Clicking on the start button will run the algorithm with our table given as its

parameters. In Figure 3.16 the output of the clustering operation is shown. Two columns

are listed. The first column is the instance numbers which correspond to the row index.

The second column lists the cluster numbers into which the corresponding instance is

assigned. The 5 clusters are numbered from 0 to 4. In the figure, the results show that

the first and second instances are assigned to the cluster 2, the third one is assigned to

cluster 3, etc. By examining all of the results, assignments are made as follows; subject

1 is assigned to cluster 2, subject 2 to cluster 3, subject 3 to cluster 1, subject 4 to cluster

0 and finally, subject 5 to cluster 4. We can see that the two of the instances are

clustered incorrectly, i.e., the third and fifth instances which are images of subject 5 are

assigned to cluster 1.

33

Figure 3.16 Results of the clustering

 34

CHAPTER 4

IMPLEMENTATION

4.1 INTRODUCTION TO MDT CLASS STRUCTURE

MDT is developed by using Java Programming Language. MDT’s classes with

their descriptions are given in Table 4.1.

The main class that starts up the user in interface is the MainWindow class. Basic

methods of this class will be explained in the following section.

MyTableModel class is designed to manage the actual table data. The model of

MDT holds its data in a form of vector of vectors. Data table vector consists of elements

of instances each of which is also a vector. Elements of the instance vectors correspond

to the columns in the table. ReadXMLTable class is a SAX Handler used to read a file

and populate the data table from MDT XML file. It reads the text data inside the XML

tags which are column names and place the values as table cells under the

corresponding columns. WriteXMLTable class creates MDT XML document from user

table. It gathers the data from the table model. WriteARFFTable class does the same

function to create an ARFF file which will be used for data mining. Writer classes use

an instance of the ImageAdapter class for each image and extract pixel information. The

ImageAdapter class extracts the image information listed in table columns. MyFilters

class provides the filtering operations used for image processing.

The JAI related ImageAdapter and MyFilters classes are developed by making use

of the source code which is part of the Java Advanced Imaging Stuff site, by Rafael

Santos(Santos, 2007).

35

Table 4.1 Basic classes of MDT

Class Name Description
AlgorithmArgs Builds up the option string for data mining algorithms

Extends FileFilter
ExplorerFilter Filters file view of MyExplorer to show only image files of

specific types
Extends FileView

FileImage
Creates thumbnail previews of the files inside MyExplorer

ImageAdapter Gathers properties of the image file
Extends JFrame

MainWindow
Base class for user interface operations
Extends JInternalFrame, implements ActionListener

MiningOutputs
User interface for data mining operations
Extends JPanel

MyExplorer
Allows users to preview and import image files
Extends JFrame

MyFilters
Define and apply image filters

MyTable Defines MDT's tables
Extends AbstractTableModel, implements
TableModelListener MyTableModel
Table Model of MDT table

PredictionsExtractor Shows the predicted results of unknown instances on the table
Extends JComponent

Previewer
Creates preview of the selected image
Extends DefaultHandler

ReadXMLTable
Reads tables from specific XML format documents of MDT
Extends JLabel, implements TableCellRenderer

Renderer
Provide image rendering inside the table cell

WriteARFF Creates ARFF file for data mining
WriteXMLTable Creates MDT's XML document of the table

36

4.2 MAINWINDOW CLASS

In the following figure, some of the basic methods of MainWindow are listed in

Table 4.2 MainWindow initiates the graphical user interface and provides methods

menu options.

37

Table 4.2 Methods of MainWindow class

Method Name Description

MainWindow() Constructor, initializes user interface

main(String[]) main, initialize objects

createAndShowGUI() creates and shows user interface components

createStatusBar() creates status bar

createMenuBar() creates main menu and items

saveTable(String) save current table in XML and ARFF format

loadATable() loads an XML format table

createAtable(String) creates an empty table

addArow() insert an instance (an image file) to the table

addColumn() insert a new column(a user-defined property attribute) to
table

deleteColumn(int) removes the selected column from the table

deleteRow(int) removes the selected row from the table

quit() stops the execution and exits the program
createMenuItem(String,
int,int,String, boolean) create an item of the main menu

createDialog(String) creates dialogs

RefreshTable() refreshes table data

getTableName() returns table name of the active table

setTableName(String) sets table name of the active table

getFileName() returns filename of the active table

setFileName(String) sets filename of the active table

getDbType() returns type of the active table

setDbType(String) sets type of the active table

getFilePath() returns current file path

setFilePath(String) sets current file path

getDesktop() returns desktop component

setDesktop(JDesktopPane) sets desktop component

38

If the user creates a new table MainWindow.createATable(String doctype) calls

WriteXMLTable.createEmptyTable() in order to create a new table with the given name

and extension(doctype). The createEmptyTable() will be explained later. If the user

opens an existing table, MainWindow.loadATable() is called. This method reads a file

and populates table data from the XML file using SAX. It calls an instance of

ReadXMLTable as the SAX event handler. Figure shows part of loadAtable() :

Figure 4.1 Function loadAtable()

Methods for table column modification are addColumn() and deleteColumn(int

index). The addColumn() method ask user for column name input and adds a new

element of empty string at the end of each row in the current table. Some code from

addColumn() is listed in Figure 4.2.

39

Figure 4.2 Function addColumn()

The deleteColumn() removes an element which is at the given index –selected

column index- from each row of the data table. Most important part of this function is

listed in Figure 4.3.

Figure 4.3 Function deleteColumn()

Methods for row modification are addRow() and deleteRow(). The addRow()

function calls the importButtonAction() of MyExplorer.This action creates an

ImageAdapter object to gather the image properties as table columns. The deleteRow()

40

function simply removes the element at given index from data vector and notifies the

listener of MyTableModel class. The function is listed in Figure 4.4.

Figure 4.4 Function deleteRow()

The saveTable() function calls createDocument() of WriteXMLTable and

WriteARFF classes acording to the specified document type.

Figure 4.5 Function saveTable()

 41

CHAPTER 5

CONCLUSION

A lightweight tool with a simple user interface is very important for the education

of students that take data mining and image processing courses. Therefore an

application that can integrate image processing and data mining of image files is quite

valuable for this purpose.

In this thesis, a data mining tool for image files is developed. The application is

developed with Java programming language because it provides the advantages of

powerful JAI API and Swing classes. For the data mining implementation, WEKA is

preferred because of its open source structure, extendibility with user defined classes

and large scale of algorithm options.

The three fundamental facilities of MDT are storing and conversion of table

datasets, applying image processing filters to the instances which are image files, and

running classification and clustering algorithms on image pixel information.

First feature is supported by means of two types of converters that implement the

conversion of table data to XML format and ARFF format of WEKA. The table data

provided a functional way for managing datasets easily. Converters for XML and ARFF

handled all of the document processing operations which can be considered as an

advantage to the user by hiding details of file formats. ARFF converter has an extended

ability to use the pixel extraction class.

The second capability is provided through a set of pixel level filters and operators

that are developed by using functions from the Java Advanced Imaging Application

Programming Interface. The image filtering operations are provided in pixel level and

42

worked well enough to illustrate the results. Using small sized gray scale images

provided improved visibility and performance.

Finally, the third goal is accomplished by sending Java calls to Weka’s data

mining API in order to apply data mining tasks to image datasets. The two enabled data

mining tasks are classification and clustering. The classification and clustering tasks

were based on numeric pixel data that is extracted during the process of ARFF file

conversion. Data mining process was successful because of the powerful weka

algorithms and small sized grayscale image instances with specific face positions.

The tool only works for image files now, but it may be adapted for data mining of

many more multimedia file types for example, audio, video, and text files in the future.

Current system is able to work with grayscale and small sized images because of the

performance issues, better computer systems will provide better results especially in

data mining process and enable using color images. Also, using small set of advanced

image processing techniques may speed up the process that will yield better results.

43

REFERENCES

Chang, S.F., Chen, W., Sundaram, H., “VideoQ: a fully automated video retrieval
system using motion sketches”, Proceedings of the Fourth IEEE Workshop on
Applications of Computer Vision, Princeton, New Jersey, October 1998, pp. 270

Collier, K., Carey, B., Sautter, D., Marjaniemi, C., “A Methodology for Evaluating and

Selecting Data Mining Software”, Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences, 1999. HICSS-32 , Maui-HI USA, 1999
Vol. 6, pp. 11, 1999.

Fayyad, U.M., Djorgovski, S.G., and Weir, N., “Automating the Analysis and

Cataloging of Sky Surveys”, Advances in Knowledge Discovery and Data Mining,
471–493, 1996

Grosky, W. and Tao, Y., “Multimedia Data Mining and Its Implications for Query

Processing”,The Ninth International Workshop on Database and Expert Systems
Applications (DEXA'98), Vienna, Austria, August 1998, pp. 95-100.

Gudivada, V., Raghavan, V.V. and Vanapipat, K. “A Unified Approach to Data

Modeling and Retrieval for a Class of Image Database Applications,” Multimedia
Database Systems, Springer-Verlag, New York, Inc., Secaucus, NJ,pp73-78,1996.

Gudivada V. and Raghavan V., “Content-based image retrieval systems”, IEEE

Computer, Vol.28, No.9, pp. 18–22, September 1995.

Han, J., Chiang, J., Chee, S., Chen J., Chen, Q., Cheng, S., Gong, W., Kamber, M., Liu,

G., Koperski, K., Lu, Y., Stefanovic, N., Winstone, L., Xia, B., Zaiane, 0. R., Zhang,
S. and Zhu, H. “DBMiner: A system for data mining in relational databases and data
warehouses”, Proceedings of. CASCON’97: Meeting of Minds, Toronto, Canada,
November 1997, pp. 249-260.

Hand D., Mannila H., and Smyth P., Principles of Data Mining, MIT Press, Cambridge,

MA, 2001.

44

Harold, E. R., Processing XML with Java, Pearson Prentice Hall, Boston, 2003.

Holmes, G., Donkin, A., Witten, I.H., “WEKA: A Machine Learning Workbench”,

Proceedings of the 1994 Second Australian and New Zealand Conference on
Intelligent Information Systems, pp. 357-361, 1994.

Hsu, W., Lee, M.L., and Goh, K.G, “Image Mining in IRIS: Integrated Retinal

Information System”, ACM SIGMOD, 2000.

Hsu, W., Lee, M. L.,and Zhang, J., “Image Mining: Trends and Developments”, Journal

of Intelligent Information Systems, Vol19:1, pp. 7–23, January 2002

Kitamoto, A, “Data Mining forTyphoon Image Collection.”, Second

InternationalWorkshop on Multimedia Data Mining (MDM/KDD’2001), 2001.

Missaoui, R. and Palenichka, R. M., “Effective Image and Video Mining: an Overview

of Model-Based Approaches”, Proceedings of the 6th international workshop on
Multimedia data mining: mining integrated media and complex data, pp. 43-52,
2005

Ordonez, C. and Omiecinski, E.,”Discovering Association Rules Based on Image

Content., IEEE Advances in Digital Libraries Conference, 1999.

Prasad, C. K., Developing Imaging Applications Using the Java2D[tm], JAI and New

ImageIO APIs, 2002.
http://access1.sun.com/techarticles/ImagingApps/JImage.html

Roden, J., Burl, M., Fowlkes, C., “The Diamond Eye image mining system”, Eleventh

International Conference on Scientific and Statistical Database Management, 1999. ,
28-30 July 1999, pp. 283

Rushing, J., Ramachandran, R., Nair U., Graves S., Welch R., Hong Lin, “ADaM: A

data mining toolkit for scientists and engineers”, Computers & geosciences (Comput.
geosci.), Vol. 31, No. 5, pp. 607-618, 2005

Santos, R., Java Advanced Imaging Stuff, 2007, http://jaistuff.dev.java.net

The official Java Sun web site, http://java.sun.com

45

The official XML web site, http://www.w3.org/xml

Wactlar, H.D., Kanade, T., Smith, M.A., Stevens, S.M., Intelligent access to digital

video: Informedia project”, Computer, Vol. 29, No. 5, pp. 46-52, May 1996.

Weka homepage, http://www.cs.waikato.ac.nz/~ml/weka/

Witten, I. H. and Frank E., Data Mining: Practical machine learning tools and

techniques, Morgan Kaufmann, San Francisco, 2005.

Zaiane, O. R., Han, J., Li, Z. N., Chee, S. H., Chiang, J. Y., “MultiMediaMiner: A

System Prototype for MultiMedia Data Mining”, SIGMOD Conference, p581-583,
1998.

