THE IMPLEMENTATION OF A MULTIMEDIA DATA MINING
TOOL

by

Ayse Nur TASLIPINAR

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

Computer Engineering

July 2007
Istanbul, Turkey

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Bekir KARLIK
Head of Department

This is to certify that | have read this thesis and that in my opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Atakan KURT
Supervisor

Examining Committee Members

Assist. Prof. Dr. Atakan KURT

Assoc. Prof. Dr. Onur TOKER

Assist. Prof. Dr. Zeynep ORHAN

It is approved that this thesis has been written in compliance with the formatting
rules laid down by the Graduate Institute of Sciences and Engineering.

Assist. Prof. Dr. Nurullah ARSLAN
Director

Date
July 2007

THE IMPLEMENTATION OF A MULTIMEDIA DATA MINING TOOL

Ayse Nur TASLIPINAR

M. S. Thesis - Computer Engineering
July 2007

Supervisor: Assist. Prof. Dr. Atakan KURT

ABSTRACT

For beginner users like students of computer science current data mining software
are very sophisticated. A lightweight tool that provides an easy to use environment for
the students who are learning data mining and multimedia is beneficial for their
education.

In this thesis, we developed a tool that provides a simple interface for image
processing and a way to running data mining algorithms on image files which will be
quite valuable in data mining and image processing courses. This tool provides the
functionalites of manipulation and filtering of image files, conversion of image files to a
format suitable for data mining, and application of several data mining algorithms on
these groups of files.

Keywords: Multimedia, data mining, image processing, JAl, Weka

MULTIMEDYA VERI MADENCILIGI ARACI

Ayse Nur TASLIPINAR

Yuksek Lisans Tezi — Bilgisayar Mithendisligi
Temmuz 2007

Tez Yoneticisi: Yrd. Dog Dr. Atakan KURT

oz

Bilgisayar bilimi 6grencileri gibi yeni baslayanlar i¢in giinimiizde mevcut olan
veri madenciligi yazilimlari oldukga kompleks bir yapiya sahiptir. Veri madenciligi ve
multimedya Ogrencilerine kullanimi kolay bir ortam saglayan sade bir arag egitimleri

icin faydalidir.

Bu tez calismasinda, veri madenciligi ve gorlintii isleme derslerinde oldukca
faydali olacak, goriintii dosyalari tizerinde goriintii isleme ve veri madenciligi
algoritmalarin1 ¢alistrma yOntemi saglayan bir arag gelistirildi. Bu arag; gorintu
dosyalarinin filtre edilmesi ve islenmesi, goriintii dosyalariin veri madenciligi igin
uygun formata doniistiiriilmesi ve bu dosya gruplari lizerinde ¢esitli veri madenciligi
algoritmalarinin uygulanmasi islevlerini saglamaktadir.

Anahtar Kelimeler: Multimedya, veri madenciligi, goriintii isleme, JAI, Weka

ACKNOWLEDGEMENT

| express sincere appreciation to Assist. Prof. Dr. Atakan KURT and for his

guidance and insight throughout the research.

My sincere thanks to the committee member Assist. Prof. Dr. Zeynep Orhan for

her support and motivation.

I am also grateful to my family and my friends for their understanding, motivation

and patience.

Vi

TABLE OF CONTENTS

ABSTRACT .ttt ettt bbb ii
ACKNOWLEDGEMENT ...ttt e v
TABLE OF CONTENTS ..ottt bt Vi
LIST OF TABLES ...ttt viii
LIST OF FIGURESot e ix
LIST OF SYMBOLS AND ABBREVIATIONSccoooiiiiiiiieee e X
CHAPTER 1 INTRODUCTIONciiiiiiiiiiii ettt s 1
CHAPTER 2 BACKGROUNDoooiiiiiie ettt 3
2.1 PREVIOUS WORKoiiiiiiiiiit ittt nne e 3
2.2 IMAGE PROCESSING WITH JAVAcoo e 6
2.2.1Java AWT MOGEIooiiiiiiii e 7
2.2.2Java 2D Imaging MOdel...........ccooiiiiiiiie e 8

2.2.3 Java Advanced Imaging Model............ccccooiiiiiiiiiniii e 11

2.3 DATA MINING WITH WEKA ..ot 12
2.3.1Introducing WEKAooie e 12

2.3.2 ARFF file TOrmMat.......ccooiiiiii e 13
CHAPTER 3 PROGRAM USAGE.........cci ittt 16
3.1 TABLE FORMAT OF MDT ...ttt 17
3.2 XML FILE FORMAT OF MDT ...ttt s 19

3.3 USAGE SCENARIOS ..o 21

Vil

3.3.1 Image Dataset Preparationc.ccooeeieeiieniiniieiiesiieseeese e 21

3.3.2 Table Creationcccei e e 23

3.3.3 Image Processing EXample ... 25

3.3.4 Data Mining EXamPle........oooiiiiiie e 27
CHAPTER 4 IMPLEMENTATION ..ottt 34
4.1 INTRODUCTION TO MDT CLASS STRUCTUREccccoeiiiiiieieiiee 34
4.2 MAINWINDOW CLASS ...ttt e 36
CHAPTER 5 CONCLUSION.......coiiiitiitie ettt 41

REFERENCES. ...t 43

viii

LIST OF TABLES
Table 2.1 Basic imaging classes Of java AWTcooeiiiriiniieies e 7
Table 2.2 Basic imaging Classes iN JaVa 2Dccocoeeieriieiieies e 9
Table 2.3 Filtering classes iN Java 2Dcccooiiiiiiiii s 10
Table 2.4 BasiC JAI IMagiNg CIASSEScuviiiaiiiiie it 11
Table 3.1 Columns of MDT tablecc.ooiiiiie s 18
Table 4.1 BasiC Classes Of IMIDTooiiiiiiiie e 35

Table 4.2 Methods of MaiNnWINAOW CIaSS........cooveeeeeeeeee e 37

LIST OF FIGURES

Figure 2.1 Screen from WEKAooii ot 13
Figure 2.2 Sample ARFF file ... 14
Figure 3.1 XML file format Of MDTooiiiiiiiiie e 20
Figure 3.2 Grayscale images of subjects in different poSes..........c.ccoovvviieniiiiieciicnnns 22
Figure 3.3 Creating a table..........oooiiiiii e 23
Figure 3.4 Adding rOW USING MENU......cccuiiiuiaiieiiiitiieie sttt ne e 24
Figure 3.5 Importing image from eXplOrer...........couveiiiiiiieieceee e 25
Figure 3.6 Applying filter to an INStANCEcociiiieiiiiiiiee e 26
Figure 3.7 Result of filtering Operationccocoiiieiieiiiiie e 26
Figure 3.8 Preparing the dataset for data miningccocuvriieiiiiiiiiieiieece e 27
Figure 3.9 Choosing classification algorithmccccouviiiiiii e 28
Figure 3.10 Generic Object Editor 0f JA8 tree.........c.oeiveiiiiiieiieiceiee e 29
Figure 3.11 Data mining window for classification..............cccoovviiiiiiiieiice e 30
Figure 3.12 Results of the ClassSifiCation...............ccocuveiiiiiiiieiie e 30
Figure 3.13 Selecting clustering algorithm..............cccoooiiiiiieici e 31
Figure 3.14 Generic Object Editor of EM algorithm ..o 31
Figure 3.15 Data mining Window fOr CIUSEEIINGccceiviiiieiieiiiiiiee e 32
Figure 3.16 Results of the CIUSLErING..........ccoeiiiiiiiieiee e 33
Figure 4.1 Function 10adALADIE()coveeiiiiieie e 38
Figure 4.2 Function addColuMN()eooeiiiiiieeee e 39
Figure 4.3 Function deleteColumN()c.oiiieiiiiie e 39
Figure 4.4 FUNCtion deleteROW() ...oooueeeiiiiieie et 40

Figure 4.5 FUNCtion SAVETADIE() ...vveiveeiiiiiieie et 40

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION

ARFF

API

ASCII

AWT

CLI

JAI

JPEG

GIF

MDT

PNG

SAX

WEKA

XML

2D

Attribute Relation File Format

Application Programming Interface

American Standard Code for Information Interchange
Abstract Window Toolkit

Command Line Interpreter

Java Advanced Imaging

Joint Photographic Experts Group

Graphics Interchange Format

Multimedia Data Mining Tool

Portable Network Graphics

Simple API for XML

Waikato Environment for Knowledge Analysis
Extensible Markup Language

Two dimensional

CHAPTER 1

INTRODUCTION

Demand of knowledge discovery from image files has rapidly grown in past few
years. Current data mining software are very sophisticated and not all of them provide
features for working on image files. For beginner users like computer science students it
can be very complicated to figure out how to use these tools during their learning
periods. A lightweight tool is beneficial for data mining and image processing courses
that enable users to manage and apply data mining on image files easily. In this manner,
an application that provides a simple interface for image processing and running data
mining algorithms on image files will be quite valuable for data mining and image

processing education.

“Multimedia data mining is a subfield of data mining that deals with the
extraction of implicit knowledge, multimedia data relationships, or other patterns not
explicitly stored in multimedia databases.” (Zaiane et al., 1998) Multimedia file types
include text, image, audio and video. Since gathering knowledge from image data is
mostly in demand and easier to handle than video, most of the multimedia data mining
research are being done on image data. For these purposes together with the vision of

simplicity, our study will only focus on image file type.

In this study a computer application called Multimedia Data Mining Tool (MDT)
which provides simple filtering and data mining of image files is implemented. The tool
has a plain but practical user interface which allows creating and managing image
datasets. Besides, it provides the datasets to be stored in and retrieved from specially

designed document format which is based on the Extensible Markup Language (XML).

One of the prominent features of the MDT s its plain table data structure. Based
on this structure, converters for the two different file formats, XML and Attribute
Relation File Format (ARFF) are developed in order to use table data. Besides, MDT
provides simple filters and operators for image processing. Prewieving is supported in
this step. Further, MDT forms a link to the data mining algorithms in Waikato
Environment for Knowledge Analysis (WEKA). By the way, “Weka is a collection of
state-of-the-art machine learning algorithms and data preprocessing tools” (Witten and
Frank, 2005). In the data mining step, classification and clustering algorithms can be
applied and the results are output to the screen. “Image classification and clustering are
the supervised and unsupervised classification of images into groups.” (Hsu et al.,
2002). However, the image classification and clustering methods we used are very

different from the advaced ones. What we used here is pixel based classification.

This thesis is organized as follows: Chapter 2 gives information about the
previously implemented systems that handles multimedia data, and then it presents the
key points of the two technologies, Java Advanced Imaging Application Programming
Interface (JAI API) and Weka Data Mining Tool, which are used to develop the
application. Chapter 3 illustrates a usage scenario of MDT. Chapter 4 presents detailed
information of MDT’s basic classes. Chapter 5 discusses future work and concludes the

study.

CHAPTER 2

BACKGROUND

The two most important capabilities that The Multimedia Data Mining Tool
(MDT) provides are the ability to do image processing and data mining on image files.
This chapter includes general background information by first presenting previous work
done in the area of multimedia data mining and then the two basic technologies that
provides means for these capabilities in several sections. In section 2.1, some significant
works in the interested area are summarised. In section 2.2, the Java Media API which
is used for handling image processing part is explained. In section 2.3, the Weka data

mining tool which provides algorithms for data mining process is explained.

2.1 PREVIOUS WORK

“Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are both
understandable and useful to the data owner” (Hand et al., 2001). Simply, it is often

described as finding hidden information from data.

Multimedia is referred to any type of information medium that can be captured,
represented, processed, communicated and stored in digital form. Multimedia data
means any type of text, image, video, audio, etc files. From this point of view,
multimedia mining can be defined as a subfield of data mining that deals with the

extraction of implicit patterns, relationships, or facts from the multimedia data.

Grosky and Tao identify multimedia data mining and discuss a representation

design for multimedia objects used for mining (Grosky and Tao, 1998).

They make a classification of multimedia data mining and present a data model over

existing models (Gudivada et. al., 1996).

Although image mining and video mining are considered as different subfields of
multimedia data mining, same type of input data -image- is being considered for similar
operations and mining techniques. The most important research areas in image and
video mining are listed as pattern recognition, content-based image retrieval, video
retrieval, video sequence analysis, change detection, training for object recognition, and
image model learning. All of these areas have two common problems that processing of
large samples of images and extraction of semantically meaningful information for the

user (Missaoui and Palenichka, 2005).

The emergence of multimedia data mining concept influenced the related areas of
databases and information systems. It leaded to many applications of knowledge
discovery, information analysis and retrieval, content based searching of multimedia
information. This triggered the implementations of many multimedia data mining
systems. Some of the most significant systems will be explained briefly. For instance,
not all of these systems can be considered as data mining systems but they are specific

examples for drawing a picture about the usage and retrieval of multimedia data.

One of the leading researches is the MultiMediaMiner system. (Zaiane et al.,
1998) which is defined as a prototype for multimedia data mining system designed for
mining information from large multimedia databases. It provided an interactive mining
interface and display for image and video data. In implementation, DBMiner (Han et.
al., 1997) and content based image retrieval (CBIRD) (Gudivada and Raghavan, 1995)
systems are extended to handle multimedia data for knowledge discovery purposes. One
feature of the MultiMediaMiner is that it includes the multimedia data cubes which
provide a multi dimensional analysis for multimedia data. The underlying CBIRD

system is composed of four major components:

(a) an image excavator for gathering images and videos from the multimedia
database;
(b) a preprocessor that extracts features of image and stores precomputed data;

(c) asearch kernel that matches queries with image and video features;

(d) some discovery modules (characterizer, classifier and associator) that applies

image mining methods to extract knowledge and patterns.

Another feature of MultimediaMiner is that it includes some data mining modules
which act as, characterizer, classifier, and associator, in image and video databases.
These are named as MM-Characterizer, MM-Classifier, and MM-Associator

respectively.

There are many systems implemented to mine scientific data. Diamond Eye
(Roden et al, 1999) is a scientific image mining system that enables users to gather
images from large image databases. Diamond Eye system uses Java client-server
architecture. The server maintains an object oriented database that stores client data,
query models, and results and provide query processing. Inside the system there are
several image processing and object recognition algoritms that enables searching and
retrieving image content. The client side tools enables image search queries and analysis
of query results. Query results are displayed as thumbnail images. Metadata elements

can be added to Image class which enables metadata operations for developers.

Another scientific toolkit is Algorithm Development and Mining (ADaM)
(Rushing et. al, 2005) which provides data mining and image processing capabilities
together. ADaM toolkit provides pattern recognition, image processing, optimization
and data mining together with many supporting data mining tools. It provides common
data mining methods which are classification, clustering, association rule mining, and
data preprocessing. There are tools to extract features from images, conversion of image
from image data pattern vector form and vice versa. The toolkit is a combination of
many independent components. ADaM is interoperable with WEKA at the data level

because it uses the same data format of ARFF.

There are also example researches that focus on video retrieval. An interactive
system called VideoQ is defined as the first on-line advanced content-based video

searching system (Chang et al, 1998). Its significant features are listed as:

(a) automatic segmentation and tracking of video objects;

(b) arich library of visual features ;

(c) making queries with multiple objects;

(d) making queries with the spatio-temporal constraints.

The system allows users to do video search using a large set of visual features and
spatio-temporal relationships. The query is formulated by so called animated sketch in
which each object is assigned with motion and temporal duration attributes in addition
to the usual shape, color and texture attributes. Segmentation and tracking is done
automatically and different features of the object like color, shape, texture, etc. are
stored in the feature libraries. When query is processed, it is matched with these features

and then candidate video shots are listed.

Another interesting implementation is The Informedia Digital Video Library
project (Wactlar et. al, 1996) developed in Carnegie Mellon University. Informedia is
also an on-line digital video library that supports content based searching and retrieval.
The system includes a speech recognizer that transcribes video soundtracks, and a
structure that understands and stores the transcript in a text database. The database

allows making queries in which the user can specify the words in the soundtrack.

Image mining trends are rapidly advancing. Hsu et. al. examines research issues in
this area and presents some future directions for image mining.(Hsu et al, 2002). Hsu et.
al. classified image mining reseaches to two dimensions .First one is extraction of most
relevant features(Fayyad et al.,1996; Hsu et al.,2000 ;Kitamoto, 2001), second is
generating image patterns for understanding.(Ordonez and Omiecinzki, 1999; Zaiane et
al.,1998).

2.2 IMAGE PROCESSING WITH JAVA

MDT provides simple image processing features. The image processing
operations are implemented using the latest Java Imaging classes which are known as

Java Advanced Imaging Application Programming Interface (JAI API).

In order to understand the structure of the Java Media API, essential steps in java

image processing should be examined. This section will provide the progressive

development of image processing in Java until the introduction of Java Advanced

Imaging Model. Only the image processing parts of the APIs will be focused on.

The evolution of image processing in Java is considered as three main steps: First
is the imaging part of Abstract Window Toolkit (AWT) API, which provides the basic
simple rendering package. Second is the Java 2D API, which is an extension to the early
AWT and added support for many more graphics and rendering operations. Third is the
JAI API which advanced image processing by providing elaborate classes and high

performance processing capabilities.

2.2.1 Java AWT Model

AWT supports image processing by providing the java.awt and java.awt.image
class packages. Basic AWT imaging interfaces and classes with their definitions are

listed in Table 2.1. All class declarations are offical from Sun Java website.

Table 2.1 Basic imaging classes of java AWT

Class Description
Image The abstract class Image is the superclass of all classes that
g represent graphical images.

The interface for objects expressing interest in image data through
ImageConsumer :

the ImageProducer interfaces.

An asynchronous update interface for receiving notifications about
ImageObserver . . .

Image information as the Image is constructed.

The interface for objects which can produce the image data for
ImageProducer

Images.

The ColorModel abstract class encapsulates the methods for
ColorModel translating a pixel value to color components (for example, red,

green, and blue) and an alpha component.

The PixelGrabber class implements an ImageConsumer which can
PixelGrabber be attached to an Image or ImageProducer object to retrieve a subset
of the pixels in that image.

Image processing in AWT is based on the concept of filtering pipeline of image
producers and consumers. An image object of java.awt.Image abstract class may be
created either by loading from an image source or being drawn by an AWT component.
The Image object does not provide the actual image data; it only provides a means for

processing it. To process an image, an object implementing the ImageProducer interface

should send image data to an object implementing the ImageConsumer interface. Filter
objects implement both interfaces. The AWT imaging model is called as Push Model
because the consumer cannot request the Image, image data is pushed into the image

processing pipeline by the ImageProducer object when it is needed.

AWT provides a few simple filters, for cropping and color manipulation
operations. Basic filters class is ImageFilter base class. After the filtering operation, the
resulting consumer image which is also an AWT Image object can be drawn upon the

screen by obtaining a Graphics object.

In AWT, image data is stored as array of bytes. When an image is loaded, the
Image object is obtained with encapsulated pixel data inside. There is not a mechanism
for reusable persistent memory storage of image pixels. Pixel data can be extracted by
using the PixelGrabber class. The ColorModel accompanying the image data describes
the layout and interpretation of the pixels.

AWT supports width and height properties of image and a very limited number of

image input file types, such as GIF, JPEG, and later added PNG.

There are many deficiencies of the AWT imaging model that makes it unsufficient
for high level image processing. These may be listed as the absence of permanent image
data, the abstactions in the push model, poor filtering capabilities, the insufficiency of
image data formats, and the lack of some common concepts for extensive image

processing.

2.2.2 Java 2D Imaging Model

The Java 2D API introduced special classes that extend the Java AWT classes to
support for two-dimensional imaging operations. These classes are merged into AWT
and became a part of the Java Core with the Java Platform 1.2 release. They also formed
the foundation of the Java Advanced Imaging API.

Basic image-handling interfaces and classes which are part of Java 2D are listed

in Table 2.2. All class declarations are offical from Sun Java website.

Table 2.2 Basic imaging classes in Java 2D

Class/ Interface

Description

Renderedimage

Renderedimage is a common interface for objects which
contain or can produce image data in the form of Rasters.

WritableRenderedImage

WriteableRenderedImage is a common interface for
objects which contain or can produce image data in the
form of Rasters and which can be modified and/or written
over.

BufferedImage

The BufferedImage subclass describes an Image with an
accessible buffer of image data.

ComponentColorModel

A ColorModel class that works with pixel values that
represent color and alpha information as separate samples
and that store each sample in a separate data element.

ComponentSampleModel

This class represents image data which is stored such that
each sample of a pixel occupies one data element of the
DataBuffer.

DataBuffer

This class exists to wrap one or more data arrays.

FilteredmageSource

This class is an implementation of the ImageProducer
interface which takes an existing image and a filter object
and uses them to produce image data for a new filtered
version of the original image.

This class implements a filter for the set of interface

ImageFilter methods that are used to deliver data from an
ImageProducer to an ImageConsumer.
The Kernel class defines a matrix that describes how a
specified pixel and its surrounding pixels affect the value
Kernel L IS .
computed for the pixel's position in the output image of a
filtering operation.
Raster A class representing a rectangular array of pixels.
This abstract class defines an interface for extracting
SampleModel

samples of pixels in an image.

WritableRaster

This class extends Raster to provide pixel writing
capabilities.

Renderablelmage

A Renderablelmage is a common interface for rendering-
independent images (a notion which subsumes resolution
independence).

ParameterBlock

A ParameterBlock encapsulates all the information about
sources and parameters (Objects) required by a
RenderablelmageOp, or other classes that process images.

RenderablelmageOp

This class handles the renderable aspects of an operation
with help from its associated instance of a
ContextualRenderedImageFactory.

RenderablelmageProducer

An adapter class that implements ImageProducer to allow
the asynchronous production of a Renderablelmage.

RenderContext

A RenderContext encapsulates the information needed to
produce a specific rendering from a Renderablelmage.

10

The imaging model of Java 2D API is based on the producer/consumer model of
AWT, additionally, it provides the permanent image data in memory. The image
processing model of Java 2D is called the immediate mode imaging model, since it
makes the entire image data available in memory immediately after each step in the

imaging pipeline.

Primary image class is java.awt.image.Bufferedimage, which represents an area
of memory containing pixel data. A Bufferedimage consists of a DataBuffer, which
stores actual pixel data as one or more arrays of primitive datatypes, and associated with
it a SampleModel, and a ColorModel to read and write the data. SampleModel deals
with grouping the numbers into pixels and ColorModel deals with conversion of pixels

to colors.

Filtering classes provided by Java 2D supports many image processing operations
like blurring, sharpening, geometric transformation, rotating, scaling, thresholding, etc.
Imaging operations can be done directly to Bufferedimage using these filters. Some of

these are listed in Table 2.3. All class declarations are offical from Sun Java website.

Table 2.3 Filtering classes in Java 2D

Class/ Interface Description

This class uses an affine transform to perform a linear mapping
AffineTransformOp | from 2D coordinates in the source image or Raster to 2D
coordinates in the destination image or Raster.

This class performs an arbitrary linear combination of the bands in a

BandCombineOp Raster, using a specified matrix.

This class performs a pixel-by-pixel color conversion of the data in

ColorConvertOp the source image.

This class implements a convolution from the source to the

ConvolveOp —

destination.

This class performs a pixel-by-pixel rescaling of the data in the
RescaleOp source image by multiplying the sample values for each pixel by a

scale factor and then adding an offset.

The Java 2D API provides device-independent rendering by introducing
Renderable and Rendered interfaces. By the way, rendering an image means to
transform it to an appropriate format for an output device. Since rendering

independence concept is essential to JAI, these interfaces will be briefly explained.

11

Renderable and Rendered layers are two integrated imaging layers. The
renderable layer is rendering-independent layer that provides reusable image sources for
different contexts and operators that take rendering-independent parameters. In contrast,
the Rendered Layer provides context-specific image sources and operators that take

context-dependent parameters.

2.2.3 Java Advanced Imaging Model

“The Java Advanced Imaging (JAI) API further extends the Java platform
(including the Java 2D API) by allowing sophisticated, high-performance image
processing to be incorporated into Java programming language applets and
applications” (Prasad, 2002). JAI provides many image operators and an extension
mechanism for developing additional operators. Basic JAI classes are listed in Table

2.4. All class declarations are offical from Sun Java website.

Table 2.4 Basic JAIl imaging classes

Class Description
. An abstract superclass for classes representing a Collection
Collectionlmage .
of images.
JAI A convenience class for instantiating operations.
Oplmage This is the base class for all image operations.
Planarimage A RenderedImage is expressed as a collection of pixels.

RenderableOp A node in a renderable imaging chain.

RenderedOp A node in a rendered imaging chain.

TiledImage A concrete implementation of WritableRenderedimage.

Imaging model of JAI, called as pull model, allows image processing when
needed. The image object waits for a request to pass the pixel data. The model is based

on Renderable and Rendered layer concepts introduced in Java 2D. Both the images and

12

operators are objects. The operator object defined with image source(s) and parameters.

Then, they can be linked to form chains.

The top level image class is javax.media.jai.Planarimage. Besides, previous

SampleModel, ColorModel, DataBuffer, and Raster classes are extended.

In JAI, an image processing operation is progressed through four steps: firstly,
gathering the image either by loading from a file or a data source, or by creating
internally, secondly describing the imaging graph by defining the operators and their
relationships, thirdly, evaluating the result through using one of the rendered, renderable
or remote execution models, and fourthly, processing the resultant image either by

saving it to a file or sending to a device or API.

2.3 DATA MINING WITH WEKA

“The Weka Workbench is a collection of state-of-the-art machine learning
algorithms and data preprocessing tools” (Witten and Frank, 2005). It provides various
methods for common data mining problem areas which are classification, clustering,
regression, association rule mining, and attribute selection together with a powerful user
interface. “The philosophy behind WEKA is to move away from supporting a computer
science or machine learning researcher, and towards supporting the end user of machine

learning” (Holmes et. al., 1995).

2.3.1 Introducing WEKA

Weka provides a fully comprehensive environment for the total data mining
process. In addition to various data mining algorithms, it provides capabilities for data
preprocessing i.e. preparation, evaluation and visualization. Its powerful user interface

combines all of its capabilities.

13

* Weka 3.5.5 - Explorer g@
Program Applications Tools Wisualization Windows Help
& Dxplorer =J=)ed
Preprocess | Classify | Cluster | Associate | Select attributes | Visualize
Classifier
=5[] classifiers # lcore,EuclideanDistance”
#- | bayes
=1 functions
-~ 4 GaussianProcesses | =
IsotonicRegression tts class walue: Iris-setosa ||
-4 LeastMedSq
LibsyM to build madel: 0 zseconds
-4 LinearRegression
Logistic Led cross-validation ===
-4 MultilayerPerceptron ===
-4 PaceRegression E
b o |assified Tnatances 50 33.3333 %
d T i Classified Instances 100 66,6667 &
SimpleLinearfegression
! ® SimpleLogist [ee g
[: - 5;:\10':8 e pe error 0.4444
F @ SMOreq ‘Iuareﬂ BYFOY 0.4714 .
e tolute error 100 4
s # VotedPerceptron J¢ squared error 100 .
b WinOW b of Instances 150
=[] lazy |
i IB1 | dccuracy By Class ===
.
-4 Kokar ! Rate Precision Recall F-HMeasure ROC Area Class
- LBR w1 0.333 1 0.5 0.5 Iris-setosa
[Filter...] [Remove filker I [Clase J 2 g g o 0.5 II?S%’?[S?CMDI
a a a 1] 0.5 Iris-virginica
=== Confusion Matrix ===
a b © <-- classified as
50 0 0| a = Iris-setosa
50 0 0] b = Iris-versicolor
50 0 0| e = Iris-wirginica
sl
Status
oK Log w %0

Figure 2.1 Screen from WEKA

The graphical user interface presents four interfaces according to usage objective.
First and the mostly used one is the Explorer. Figure 2.1 shows a screen view of the
Explorer. Second is the Knowledge Flow interface that allows the user to design
configurations for incremental algorithms. The third one is the Experimenter for
advanced users who need to make comparison of various learning techniques and
different parameter settings. The last one is a simple command-line interface that allows
to run data mining commands from the command line. In MDT, we used the concept of
command line interface. We focused on generating the appropriate command that will

be sent as input to the classes of command line interface.

2.3.2 ARFF file format

Tables stored in XML format is also converted to Weka's ARFF file format for

data mining process. Data Mining is done on ARFF set files.

14

In Weka homepage, the definition is “An ARFF (Attribute-Relation File Format)
file is an ASCII text file that describes a list of instances sharing a set of attributes.” A

sample which is taken from our tool output arff file is shown in the figure Figure 2.2

% Here comes comments

5
BRELATICH myTable

BATTRIEUTE columnl NUMERIC
BATTRIBUTE columnZ NUMERIC
BATTRIEUTE column3 NUMERIC

RATTRIEUTE columnd { ves, no

BATTRIBUTE CLAZ3 { classl, classZ, class3 }

BDATA

R - ,75,75,78,78,78,clas=s1
| O T T L87,87,79,79,.79,clas=s2
O,0,0, 00, ccueuean ,5,5,.7,7,7, class3

P s PR 1 (o) PSR e ;a2 2,3,3,3,class2
O0,0,0, %85, e s 3,3, 7, 7, 7,01lasss
o o A s B, TE,79,79,.79, clas=sl

Figure 2.2 Sample ARFF file

An ARFF file consists of two sections. The header section is the information
between @RELATION and @DATA declarations. This part is the Header information,
which contains the declarations of the relation, and the attributes with their types. The
data section starts with @DATA declaration until the end of the document. This part

includes the actual instances as each line.

The percent sign indicates the beginning of a comment line. If spaces will be used
in the user specified strings like relation name, attribute name, data values, etc, then the

entire string must be quoted.

The name of the relation (table) is written just next to the @relation declaration.

This forms the first line in the document.

Attribute declarations consists of an ordered sequence of @attribute statements.

Each attribute declaration is given by its name and data type. The order of the attribute

15

declarations is maintained in the data section as column positions. The attribute name
must start with an alphabetic character. The data type of the attribute can be any of the
numeric, nominal, string, or date types. For MDT implementation, only numeric and
nominal types are used. Numeric attributes can be real or integer numbers. Nominal

values are written as a comma seperated list inside curly braces, as shown in the figure.

The @data declaration is a single line denoting the start of the data segment. Each
instance is listed below the @data declaration, on a single line with carriage returns
denoting the end of its values. Attribute values for each instance are delimited by
commas. They must appear in the order that they were declared in the header section
(i.e. the data corresponding to the nth @attribute declaration is always the nth field of

the attribute). Missing values are represented by a single question mark.

CHAPTER 3

PROGRAM USAGE

Multimedia Data Mining Tool (MDT) is designed to fulfill the need of a simple
tool for learning common image processing and data mining operations. In the
evaluation framework designed by Collier et al., the user interface criteria is one of the
most significant measures which asks if it is easy to navigate and uncomplicated
(Collier et, al.,1999). MDT aims this ease of use criteria for educational purposes.
MDT also enables users to apply JAI filters on image files and run Weka’s data mining

algorithms on image file datasets.

This tool will provide the functionalites of manipulation and filtering of image
files, conversion of XML dataset files to Weka’s arff format files suitable for data
mining, and application of data mining tasks on these groups of files. We need to

provide a set of data sets.

MDT includes a powerful user interface which is developed in Eclipse
environment using Java Programming Language. The interface provides the user the
ability to open, create, edit, or save tables which hold image datasets. Functionalities of
MDT classes include extracting image files’ properties and pixel data, applying imaging
operations on image files, writing to and reading from XML tables, writing to Weka’s
ARFF data format, calling data mining algorithms of Weka with the help of Weka’s

Simple CLI classes.

Table format of MDT will be explained in section 3.1. Section 3.2 presents the
properties of specially designed XML file format, and section 3.3 builds up a usage

scenario.

16

17

3.1 TABLE FORMAT OF MDT

Table format in MDT is specially designed to hold the image files with their
properties. The clear and informative format provides rich information about each
image with their preview so enables user to easily select the images that will be added

to the dataset.

Each image file forms one row of the table while properties of the image shown in

separate columns. Columns are listed in Table 3.1.

Table 3.1 Columns of MDT table

18

Column Name

Description

preview Thumbnail preview of the image

filename Name of the image file

originalURL Full path of the image file

fileType File type of the image

fileSize Size of the image file

width Image width in pixels

height Image height in pixels

tilelnfo Tile dimensions, if there is more than one tile
tileBound Tile bounds, if image is tiled

tileGridOffset

Tile offset, if image is tiled

numberOfBands

Number of bands of the image, extracted from samplemodel

dataType

Data type of the image, extracted from sample model

colorMapType

Colormap type extracted from the color model

numOfComponents

Number of color components

bitsPerPixels

Bits per pixel components in the color model

transparency

Transparency information

class

Class value used for data mining

19

3.2 XML FILE FORMAT OF MDT

A sample file is shown in Figure 3.1. It can be seen that the <table> tag is the root
element. It represents the dataset table. The table is considered as two parts. The only
two child elements are <schema> which contains table structure information and <data>

which contains actual data.

Schema consists of the properties of the table columns. Each table column
corresponds to an <attribute> element. Name, data type, size and visual order of the
columns are listed as attribute values of the <attribute> element. Attributes other than
“name” are given default values; they are not actively used in implementation. Column
is given this name because of the data mining terminology; each column is called as
attributes. A column may either be one of default columns or added by user. The

<builtinattributes> and <userattributes> elements indicate this.

Data consists of the table rows each of which represent an instance (image file).
Each <row> element represents one instance of the table. Actual data is listed between

column name tags this corresponds to a cell value.

20

<?uml wversion="1.0" encoding="UTF-5"2>
<tabhle name="myTable”™ creationdate="06 07 Z007" modificationdate="06 07 Z007":>
<zchermar
<huiltinattributes:
<attribute name="preview" datatype="hinary" sSize="3" visualorder="1" />
<attribute name="fileNawe" datatype="string" size="50" visualorder="2Z" comment="..."/>
<attribute name="originalUBRL" datatype="string” Size="255" wvisualorder="3" />
<attribute name="fileType" datatype="string" =size="50" visualorder="4" />
<attribute name="fileSize" datatype="string" size="50" wisualorder="5" />
<attribute name="width" datatype="integer'" size="5" visualorder="g" />
<attribute name="height" datatype="integer" sSize="5" visualorder="7" />
<attribute name="tileInfo” datatype="integer” size="3" visualorder="s" />
<attribute nsmm 'tileBounds"™ datatype="hoolean” size="1" visualorder="9" comment="..."/>
<attribute name="tileGrid0ffset” datatype="string”™ =Size="3" wvisualorder="10" />
<attribute name="nunberOfBands" datatype="string" size="3" wvisualorder="11i" />
<attribute name="dataType" datatype="integer” size="3" wvisualorder="1z" />
<attribute name="colorMapType" datatype="hoolean" size="1" visualorder="13" comment="..
<attribute name="numOfComponents" datatype="string” size="3" wvisualorder="14" />
<attribute name="hitsPerPixel"” datatype="string" size="50" wvisualorder="15" />
<attribute name="transparency” datatype="string" size="50" wvisualorder="16" />
<attribute name="CLLI3" datatype="string"” sSize="50" wvisualorder="17" />
</builtinattributes:
<userattributes:
<attribute name="grayscale" datatype="string" size="3" wvisualorder="1g"/>
</userattributess
</ schemas
<data>
<row:
<builtinattributes:>
<preview>subject1_1.bmp<fpreview>
<filensme>subjectl 1.bmp</filename>
<0riginalURL»D:\ Iata3ETs\dataseclisubjectl 1.bmp</originalURL>
<fileTypesbmp</fileType>
<fileSizex>2102</filedizes
<width>32</width>
<height>32</height>
<tileInforno tile</tilelInfo>
<tileBoundsrno tile</tileBounds>
<tileGridOffset>no tile</tileGridoffzets
<number 0fBands> 1</ nuberOfEands:
<dataTyperbyte</dataTypex
<colorMapTyperComponentColorModel</colorHapTypes
<numlfComponentss>1</ numOfComponents:
<bitsPerPixel>8</bitsPerPixel>
<LEansparencyropagque</ tEansparencys
<plassrSubjectls/olasss
</builtinattributes>
<userattributes>
<grayscaleryes</grayscales
</userattributes>
</rows
<rows

<frows
</ datax
</tablex

e

Figure 3.1 XML file format of MDT

21

3.3 USAGE SCENARIOS

This part attempts to put together a scenario involving a set of operations to serve
as a useful example for MDT usage. In this scenario of using MDT, we will create our
own image dataset tables, modify our images using built-in filters, run a classification

and a clustering algorithm, and finally interpret the results.

For this usage scenario, we will assume that MDT is installed in our computer,
and we already have an image database which consists of gray-scale photos of different
subjects with different pose angels and facial expressions. Datasets will be explained in

more detail in the following section.

Steps will be given under seperate titles.Section 3.3.1 presents the issues to
consider when selecting our dataset instances.Section 3.3.2 demonstrates how to create
a table and build up a dataset. Section 3.3.3 explains an image processing operation.

Finally, section 3.3.4 explains how to carry on a data mining operation.

3.3.1 Image Dataset Preparation

MDT’s ARFF file contains only two types of values; the pixel information and
class for any image. Each pixel consists of values that built up an array, of which size is
specified by the band value. Band value forms the number of columns (attributes) for
each pixel value in ARFF files, so all image files should have the same band value. This
column appropriateness is only one of the issues that enforce many image properties to

be identical for the dataset. Others that can be clearly seen are type, size, etc.

Another issue is that since the attribute number grows rapidly, performance
issues may occur during data mining process, so it is better to keep the file size
(widthxheight value) as small as possible. Also, for the same performance issues, it is

better to use grayscale images.

In the experiments, we used three different databases. All of these provide

grayscale images of various subjects.The images are frontal poses of individuals with

22

small variations in face position, illumination, facial details and expressions, etc. The

databases are included in the thesis material and listed as:

() AT&T Olivetti Research Laboratory, Cambridge Database
(b) CMU AMP Face Expression Database
(c) Equinox Corporation Human Identification at a Distance Database

@@@bﬂéflﬂl

1 IPg 2ipg 3] ||:",:1 4 ipg & pg Bip i Tipg 8 Sipa 10jpg

HEREEEEERE

Bing ?u:g g 3jpg 10jpg.

3ipg

E’mg Hipg.

[ei2ls]e

7ipg Bipg Sipg 10pg

1.ipg 2ipg dipa 4.ipg

_ 2ipa

Figure 3.2 Grayscale images of subjects in different poses

An example part from the AT&T Olivetti image dataset is given in Figure 3.2.
The images are 8 bit gray level images with homogenous background and different by
varying lighting conditions, facial expressions (open/closed eyes, smiling/non-smiling)
and facial details (glasses/no-glasses). We will try to carry out a face recognition

operation, and pick up 5 different pose images of 5 distinct subjects. Subjects will be

23

named as s1, s2, s3, s4 and s5 respectively. The images are resized to 23x28 pixel sizes

and converted to JPEG format.

3.3.2 Table Creation

Tables may either be created or loaded from an existing MDT XML document. At
first, we will create a new table and carry out a clasification. For clustering operation we

will use the same table so we will need to load it again.

To create a table, select New from File menu. A dialog box appears asking the

user to enter a name for the new table. Figure 3.3 illustrates creating a new table.

Q)Multimedia Miner E]@

Eile | Edit Image DataMining Project Help

Mew AltH
Open Alt0

Close

create table

@ Enter a name for new tahle
|Enter name here |
Table will be in XML format

I Create

you should open or create a table to continue

Figure 3.3 Creating a table

When we input a name and click on the create button, a new empty table will be
shown on desktop, at the time an MDT XML file created with empty data tags in user

directory.

24

Now we can add image files to our table. We may either use new row option in
the Edit menu or import from Explorer. If Edit menu is used, a file chooser appears that

let any file to be chosen. Adding an image using Edit menu is illustrated in Figure 3.4.

& Multimedia Miner
Eile [Edit| image DataMining Project Help
> | New ¥ column | o' o
Delete ¥ row Filename OriginalURL FileType Filegize Width Height Tilelnfa Tileg
& Open
Lookin: [Tt MIEIEEEE
[tieg [7ipg
[10400 5 8ing|
[y 2ipg [2dng
[2ipg
[4ipg
[5.ing
[.pg
5 File Name: |E ipg | [»
Files of Type: |ﬂ|| Files ‘ > ‘

Figure 3.4 Adding row using menu

If we need to preview the images before importing, we should cancel the file
chooser in order to use the Explorer. Left on the desktop pane, there is the explorer,

clicking on the button makes it visible.

We can add images to the table either by selecting the image and clicking import
button or only by double clicking on the image. The image is automatically added to the

table.Figure 3.5 shows the explorer.

25

éMullimedia Miner g@

File Edit Image DataMining Project Help

Blable i iiai s il i
Preview Filename Qriginal URL

FileType FileSize Widlth

<
Look In: ‘Ijs1 "| @ EE

4 il
File Mame: |7 jpg |
Files of Type: ‘Imaesﬁles ‘v ‘

you should open or create a table to continue

Figure 3.5 Importing image from explorer

Add or remove operations for rows and column are provided in edit menu.
Column or row is selected by a single click, table cell values can be modified by double
clicking.

It can be clearly seen that each image file forms a row with its properties as its
columns. One or multiple rows (images) can be selected and selection from one of the

image filter operations from the image menu starts the process.
3.3.3 Image Processing Example

We can do some image processing on our files. We select an image by single
clicking on a row. Then we go to Image Menu, select one group of operations, and then
select one of the filters. Figure 3.6 shows an example.

26

= —
2 % i e - v |
* lieTvae FileSize [width |Height| Tilelnfo| TileBounds [TileGridOfset Numb...[DataType) ColorkapType Mumof | BitsPerPixel | T CLAS
| Original Image L&
Median T] 28lnotile |notile notile 3|byte ComponentCGolomiodel 3 24|opague 7
Roherts
3ipg Chaclipsen. Prewitt 23 28|notile nofile notile 3| byte ComponentColotodel 3 24|opague 3
Frei-chen .
Bipg Checlipsel.. jpg 934 23 28|nofile nofile no tile 3|byte CamponentColorModel 3 24|opague 8
4.jpg Cleclipset... |jpg 926 e 28|notile |nofile notile 3| hyte ComponentColorModel 3 24|opagque 4 L
Sipg |Cleclipsen. jng 940 23 28|notile |nofile no tile 3|byte ComponentColorkodel 3 24|opague 5
Bjog |Cieclipset. |jpg 931 23 28|notile |notile natile 3|byte CGomponentCGolomiodel 3 24|opague 3
Sipy |Claclipsel. |y 924 23 28[noftile |noftile na il 3{byte ComponentCalomodsl 3 24|opague &
2ipg Checlipse... |jpy 938 e 28|notile nofile o tile 3| byte ComponentColotodel 3 24|opague 2
Clheclipset... jpg 982 23 28|notile |nofile notile 3| hyte ComponentColorModel 3 24|opague g
welcome

Figure 3.6 Applying filter to an instance

Result of the operation can be seen in the preview column immediately, in Figure
3.7. Image files are replaced with the filtered ones. This process is not revisable, he
should be careful to back up the images. The images and tables can be collected under a

directory for convenience.

& Multimedia Miner M=%
File Edit Image DataMining Project Help

> | [table1 |
Preview |Filename OriginalURL|FileType| FileSize | Width |Height| Tilelnfo| TileBounds | TileGridOffset| Mumb... |DataType! ColorMapType MumGf. | BitsPerl
] -
T.ipg Clheclipsel... [jpg 935 23 28 notile |noftile no tile 3|byte ComponentColorModel 22 B
2ipg Checlipsen... jog 967 23 28/notile |notile na tile 3 byte ComponentColorModel 3 E

2ipg Checlipsen... (jog 434 23 28 notile |notile na tile 3 hyte ComponentColoodal 2

4ipg Checlipsen... (oo 926 23 28/notile |notile na tile 3 lyte ComponentColorModel 3

Sipg Checlipsel... |jipg 940 23 28/notile |noftile no tile 3 hyte CompaonentColorMadel 3
Bipa Checlipsel.. |jipg 931 23 28 notile |noftile no tile 3 hyte CompanentColorMode| 3 Z

Il] [+
welcome

Figure 3.7 Result of filtering operation

27

3.3.4 Data Mining Example

As mentioned before, in order for the data mining algorithms run correctly,
properties of image files in our table must be identical. That’s why we should restore
the image we modified before. This can be done by just changing the modified file with
its original copy, i.e. copying the original and pasting it into the same directory. Then

we will have our orginal table as our dataset.

In the table dataset, we have 5 different pose images of 5 subjects. We should
check the class values under the CLASS column. By default, class column value of an
instance is given the image file’s name. The user should provide the correct class
values. For prediction, we should place a question mark (?) into the cell under the
CLASS column indicating the unknown class value.As shown in Figure 3.8 we put

question marks to images of subjects called s4, s3, s5 and s2, respectively.

[face-dataset
reviewJﬂIeName originalUREL | fileType | fileSize | width | height| tilelnfo |tileBo... [tileGri...numb..| dataTvpe | colorMap.. numOf. | bitsPer... | franspar. CLASS

¥ T.ipg Checlipse... [jipg 940 23 28 notile |notile [notile |3 fte Compon... |3 24 opague |52

9.jpg Checlipse... |jpg 973 e 28 notile |nofile [notile |3 hyte Compon... |3 24 opague |83

Sjpn |[Checlipse... |ipg 942 23 28 notile |notile |notile |3 byte Compon... 3 24 opague (g5

Zjpg |Checlipse.. |ipg 932 23 28 notile |notle |notile |3 byte Compon... |3 24 opague |7

ipg Checlipse... [jpg 934 23 28 notile |notile (notile |3 hyte Compon... |3 24 opague |52

B.jpg Checlipse. |jpg 967 rie) 28 notile |notile [notile |3 bte Compon... |3 24 opafgue |7

f|7ing |Checlipse.. |ipg 940 23 28 notie |notile |notile |3 byte Compon... 3 24 opague |s4

10jpy |Checlipse... |ipg 919 23 28 notile |notle |notile |3 byte Compon... |3 24 opague |7

1.ipg Checlipse... |ipg 934 29 28 notile |notile [notile |3 hyte Compon... |3 24 opague (|7

il []

Figure 3.8 Preparing the dataset for data mining

The table should be saved before going for data mining process. We save the table
by clicking on Save from the File Menu. At the time we save the table, four files are
created. The first one is MDT’s XML file. It contains table data as seen on the screen.

The other three are ARFF files, a training file, a test file and a complete ARFF version

28

of the XML file. Training file contains instances of which class values are known. Test
file is built up of instances of which class values are unknown, i.e given as question
mark. The complete ARFF file is combination of test and training files which we need

for clustering operation.

We click on to the Data Mine menu after saving the table, two data mining
options are shown, one is classification and the other is clustering. We choose
classification, then, Weka’s Generic Object Editor (GOE) pops up to let us choose one
of the classification algorithms. By clicking on the upper left Choose button, as shown

in Figure 3.9, a list is expanded from which we can select our algorithm.

Eface-dataset
fileldame| ariginal URL | fileTypey - — . - tsPer.|transpar.| CLASS
25 weka.gui.GenericObjectEditor g@ [a
=W Tipo Checlipse.. |ipg ErEETE = 74 opague |52
o [functions W
ajng |[Cleclipse.. |ipg o=] lazy 24 opague |53
o= meta ing More
o mi -
N lsjnn |Coeclipse.. |ipg o= [misc Capahilities 24 opague [s6
¢ Cltrees
i I
Jipg Checlipse.. [ipg D BFTrae || 24 opague |7
[Decigionsturmp
Gjng |Cleclipse.. |ipg [103 24 opague (52
IRRCE]
[Lmr —
fjpg Checlipse. . |ipg D M5P 24 opague |7 |
| | R S
Ting |[Cleclipse.. |ipg EE [randomFarest THvIE Tampan. 24 opague (34
[} RandormTree
) REPTree i
10Jpg |Cleclipse.. |jpg a [simplecart byte Compon... |3 24 opague |7
[userciassifier
1jpg |Cieclipse.. [ipg] o Hrules = ||l kiyte Compon... |3 24 opague |[? | 4
| Filter... | | Remove filter | | Close | T hd

Figure 3.9 Choosing classification algorithm

We choose the J48 under the tree directory in the list and GEO is customized for
the algorithm in order to let us make changes in its options. Figure 3.10 shows the

customized GOE, by means of which we can set execution options for the algorithm.

& M E¥E
22 Multimedia Mine = LEL S
Elg gtditgimang Data Mining SRrolect gwweka.gui.GenericObject[ditnr g@
S 3
DH E [acedataset weka.classifiers.trees.)48
preview [fileMame|original URL| fileT: 4 ..|franspar..| CLASS
About -
o |7 3 24 2 M
fy |7 |CAeclipse... jng Class for generating a pruned ar unpruned G4 ARERE s
More
s Capabilities
9ipy |Cleclipse.. |jpy 24 opague |53
BinarySplits |False |v|
8jpy |Cleclipse.. jpg 24 opague |55
eFactor [0.25 |
Jpy |Checlipse.. |jpy debug |False |v| 24 opague |7
y obj [2 |
"8 [90py |Coheclipse.. |jpg 24 opague |52
numFolds |3 |
6 ipg Cleclipse... |pg reducedErrorPruning |False |'| 4 opague |7
savelnstanceData |False |v|
W |Tipn |Cleclipse.. |jpo 24 opague |54
" seed |1 |
0oy |cieclipse.. jag subtreeRaising |True |'| 24 opague |7
unpruned |False iv|
1.ipg Cleclipse... |jpg 24 apague ||? ||
usel aplace |False |v| =
[+]
Open... | | Save... | ‘ OK | | Cancel |

Figure 3.10 Generic Object Editor of J48 tree

We just click on OK to use the default options.We will see a window is showed

which will be used for starting the data mining process and viewing the results.

Figure 3.11 shows the data mining window. The start button starts the process by
sending the command shown in the text line between the start and predictions buttons.

The empty text area under the buttons will output the results.

Clicking on the start button will run the algorithm with our table given as its
parameters. In Figure 3.12 output of the algorithm is shown. Under the prediction
column, the predicted classes are listed. We had put question marks for subjects 4, 3, 5
and 2. In the figure it can be seen that the first, the third and the fourth instances are
classified correctly, i.e., as s4, sb and s2 respectively. However the second one is
classified incorrectly, s3 is predicted as it was s5. Clicking on the prediction button pops
up the table and puts the predicted values to CLASS column of the corresponding

instances.

30

‘5 B

START |java weka,classifiers.trees.J48 -C 0.25 -M 2 -t C:\MDT\face-datasetTRAIN.arff -T C:\lIDT\face—dat,aset,TES'q| Predictions

a Mo classifier buil

help
Command must be one of:

java <classnamer <Largss
break

kill

cls

exit

help <command:>

Figure 3.11 Data mining window for classification

1 No classifier bui o' w’ [
START |java weka.clagsifiers.trees.J48 -C 0.25 -M 2 -t C:\MDT\face-datasetTRAIN.arff -T C:\" Predictions |
cla

instc# actual predicted error prediction

1 T Lizd + L
z I5:% 3is5 + 1
3 dezi: G2l + A
4 1:2 2is2 + 1

Figure 3.12 Results of the classification

For clustering operation, we choose the Clustering option from the Data Mining
menu. Again, Weka’s Generic Object Editor (GOE) shows up to let us choose one of
the clustering algorithms. By clicking on the upper left Choose button, as shown in

Figure 3.13, a list is expanded from which we can select our algorithm.

| [face-dataset

fileMarme|original URL | fileTyp & weka.gui.GenericObjectEditor Lﬁngjmi bitsPer...|transpar...| CLASS
Tipg Checlipse.. [jpg [Jweka 24 opague |52
9 [] clusterers
D Cabweb
9jpg Checlipse. |jpg D DBEScan d More a4 opafgue |53
[Ty Em Capabilities
gjpg |checlipee. |jpy [Fartnestrirst 24 opague |s5
D FilteredClusterer |
D MakeDensitvBasedClusterer -
dipg Checlipse.. |jpg D OPTICE 24 opague |7
[simplekmeans
ajpy |[Checlipse.. |jpy [steans - 24 opague |52
Bipg Checlipse.. |jpg [24 opague |7
Tipy [Checlipse.. jpa byte Cormpon.. |3 24 opague |54
10jpy |Checlipse.. jpa byte Compon.. |3 24 opague |?
1jpg |[Checlipse.. [jpg | Filter... H Rermove filter || Cluse ‘ bivte Corpon... |3 24 opague |7

[]

4]

Figure 3.13 Selecting clustering algorithm

We choose the EM algorithm under the clusterers directory in the list and GEO is

customized for the algorithm in order to let us make changes in its options. Figure 3.14

shows the customized GOE, by means of which we can adjust the data mining options

for the algorithm.

[face-dataset

filelame| original UEL ﬂ\eType\ ﬁIeSize\ width |height| tilelnfo |tiIeBU. |IiIeGn... numh..l dataType|cUIUrMap...|num0f. JhitzPer.. |transpar..| CLASE
| | | | | | | I | |
7oy |Cleclivse.lios | G weka. gui GenericObjeetEditor LEE| 2 |weae 2
weka.clusterers.EmM
4] Checlipse.. |j 24 opaque |53
pg p 1pg b pang
Simple EM (expectation maximization) class. More
8.ipg Checlipse... [ipg 24 opague |55
Capabilities
3.jpo Checlipse.. |ipg 24 opague |7
debug |Fa|se |V|
Aipy |Checlipse.. |jpg maxlterations [100 | 24 opague |52
Dev [1.0E-6 |
B.jpg Checlipse... |ipg ARGt |k5 | 24 opague |7
seed [100 |
T.ipg Checlipse... |ipg 24 opague |54
Open... | | Save... | | OK | | Cancel |
10jpa |Checlipse... |ipg 979] 8 notile [nofile [nofile [3 hyte Compon. [3 24 opague | ?
1.ipo Checlipse .. |ipg 934 23 28 nofile |nofile [noftile |3 byte Compon.. |3 24 opague |7

[4]

[»]

Figure 3.14 Generic Object Editor of EM algorithm

32

We enter the value 5 into the numClusters field. This means we need to have 5
clusters since we have 5 subjects. After adjusting the cluster number, we click on OK
and again, the clustering window is showed which will be used for starting the data

mining process and viewing the results. Figure 3.15 shows the data mining window.

o' & B

I START Ijava weka.clusterers.EM -I 100 -N 5 -M 1.0E-& -5 100 -t C:\MDT\face-dataset.arff -p 0 |

No clusterer built yet! :

help

Command must be one of:
jawva <classname> <argsr
hreak
kill
cls
exit
help <commands:

Figure 3.15 Data mining window for clustering

Clicking on the start button will run the algorithm with our table given as its
parameters. In Figure 3.16 the output of the clustering operation is shown. Two columns
are listed. The first column is the instance numbers which correspond to the row index.
The second column lists the cluster numbers into which the corresponding instance is
assigned. The 5 clusters are numbered from 0 to 4. In the figure, the results show that
the first and second instances are assigned to the cluster 2, the third one is assigned to
cluster 3, etc. By examining all of the results, assignments are made as follows; subject
1 is assigned to cluster 2, subject 2 to cluster 3, subject 3 to cluster 1, subject 4 to cluster
0 and finally, subject 5 to cluster 4. We can see that the two of the instances are
clustered incorrectly, i.e., the third and fifth instances which are images of subject 5 are

assigned to cluster 1.

Mo clusterer huilt yet!

START |java weka.clusterers.EM -I 100 -N 5 -M 1.0E-¢ -3 100 -t C:\MDT\face-dataset.arff -p 0 |

M0 -l e WD e O
B S T = i e e T B VI

DO Dd Bd D3 [0 = = = = = = = = = =
= = S == R R T T T O S =]

L N e T e TR O o R o T e Y 5 R o e B

4

Figure 3.16 Results of the clustering

CHAPTER 4

IMPLEMENTATION

4.1 INTRODUCTION TO MDT CLASS STRUCTURE

MDT is developed by using Java Programming Language. MDT’s classes with

their descriptions are given in Table 4.1.

The main class that starts up the user in interface is the MainWindow class. Basic

methods of this class will be explained in the following section.

MyTableModel class is designed to manage the actual table data. The model of
MDT holds its data in a form of vector of vectors. Data table vector consists of elements
of instances each of which is also a vector. Elements of the instance vectors correspond
to the columns in the table. ReadXMLTable class is a SAX Handler used to read a file
and populate the data table from MDT XML file. It reads the text data inside the XML
tags which are column names and place the values as table cells under the
corresponding columns. WriteXMLTable class creates MDT XML document from user
table. It gathers the data from the table model. WriteARFFTable class does the same
function to create an ARFF file which will be used for data mining. Writer classes use
an instance of the ImageAdapter class for each image and extract pixel information. The
ImageAdapter class extracts the image information listed in table columns. MyFilters

class provides the filtering operations used for image processing.

The JAI related ImageAdapter and MyFilters classes are developed by making use
of the source code which is part of the Java Advanced Imaging Stuff site, by Rafael
Santos(Santos, 2007).

34

35

Table 4.1 Basic classes of MDT

Class Name

Description

AlgorithmArgs

Builds up the option string for data mining algorithms

ExplorerFilter

Extends FileFilter

Filters file view of MyExplorer to show only image files of
specific types

Extends FileView

FileImage - - —
Creates thumbnail previews of the files inside MyExplorer
ImageAdapter Gathers properties of the image file
o Extends JFrame
MainWindow

Base class for user interface operations

MiningOutputs

Extends JinternalFrame, implements ActionListener

User interface for data mining operations

Extends JPanel

MyExplorer - - - -
Allows users to preview and import image files
. Extends JFrame
MyfFilters - - -
Define and apply image filters
MyTable Defines MDT's tables

MyTableModel

Extends AbstractTableModel, implements
TableModelListener

Table Model of MDT table

PredictionsExtractor

Shows the predicted results of unknown instances on the table

Previewer

Extends JComponent

Creates preview of the selected image

ReadXMLTable

Extends DefaultHandler

Reads tables from specific XML format documents of MDT

Renderer

Extends JLabel, implements TableCellRenderer

Provide image rendering inside the table cell

WriteARFF

Creates ARFF file for data mining

WriteXMLTable

Creates MDT's XML document of the table

36

4.2 MAINWINDOW CLASS

In the following figure, some of the basic methods of MainWindow are listed in
Table 4.2 MainWindow initiates the graphical user interface and provides methods

menu options.

37

Table 4.2 Methods of MainWindow class

Method Name

Description

MainWindow()

Constructor, initializes user interface

main(String[])

main, initialize objects

createAndShowGUI()

creates and shows user interface components

createStatusBar()

creates status bar

createMenuBar()

creates main menu and items

saveTable(String)

save current table in XML and ARFF format

loadATable()

loads an XML format table

createAtable(String)

creates an empty table

addArow()

insert an instance (an image file) to the table

addColumn()

insert a new column(a user-defined property attribute) to
table

deleteColumn(int)

removes the selected column from the table

deleteRow(int)

removes the selected row from the table

quit()

stops the execution and exits the program

createMenultem(String,
int,int,String, boolean)

create an item of the main menu

createDialog(String)

creates dialogs

RefreshTable()

refreshes table data

getTableName()

returns table name of the active table

setTableName(String)

sets table name of the active table

getFileName()

returns filename of the active table

setFileName(String)

sets filename of the active table

getDbType()

returns type of the active table

setDbType(String)

sets type of the active table

getFilePath()

returns current file path

setFilePath(String)

sets current file path

getDesktop()

returns desktop component

setDesktop(JDesktopPane)

sets desktop component

38

If the user creates a new table MainWindow.createATable(String doctype) calls
WriteXMLTable.createEmptyTable() in order to create a new table with the given name
and extension(doctype). The createEmptyTable() will be explained later. If the user
opens an existing table, MainWindow.loadATable() is called. This method reads a file
and populates table data from the XML file using SAX. It calls an instance of
ReadXMLTable as the SAX event handler. Figure shows part of loadAtable() :

protected woid loaditable () throws IOException |

J/Reads a file and populates the takle data from an XML file using SAX
F/B8AE event handler is the instance of ReadiMLTsble

DefaultHandler hatndler = new ReadXMLTable (welcowes)

3A¥ParserFactory factory = ShEParserFactory.newlnstancel):
factory.setWValidatingitrue) ;

//Parse the input
3AEParser saxParser = factory.newlliXParseri);
saxParser.parse (new File [getFilePath()]), handler |:

Figure 4.1 Function loadAtable()

Methods for table column modification are addColumn() and deleteColumn(int
index). The addColumn() method ask user for column name input and adds a new
element of empty string at the end of each row in the current table. Some code from
addColumn() is listed in Figure 4.2.

39

protected void addColumn()

Jtring newColnsue = [(Jtring) JoOptionPane.showInputDislog
[this, "enter a nawme for new coluwmn ", "Add New Column®™,
JoptionPane. QUESTICN ME3ISAGE) :

if ((newColnawme '= null)] && (newColname.lengthi) > 0O)) {
myTable . .mtm,. columniNammes . addE lement (newColname) ;

for (int i=0:; i< myTable.mtbm.getDatal)].sizel): i++)1
[(Vector) wyTable.wtim.getDatal(] .elementit (i)) .addElement (" ") ;
}
myTable . .mtm, fireTablebataChanged () ;
myTable . .mtm. fireTahleStructureChanged () ;
RefreshTahle (] :

Figure 4.2 Function addColumn()

The deleteColumn() removes an element which is at the given index —selected

column index- from each row of the data table. Most important part of this function is

listed in Figure 4.3.

protected wvoid deleteColwmn(int index) {

int ind = wyTable.tabhle.getlelectedColumni) ;
if (ind > 7 && 'myTable.table.getColumhMNate (ind) .equals ("CLASS")) |
// cannot delete constant 8 colwins
for (int i = 0; i < myTable.mtm.getData().size(): 1i++) {
Vector v = (Vector) myTable.mti.getDatal) .get (i)
v.removek lement (ind) ;
i
J/remove the coluwn header
myTable . mtin., o lumhMNawes . rewmowve [ind) ;
MainWindow.myTable.mtm.fireTableStructureChanged () ;
MainWindow.myTable.mim.fireTablebataChanged () ;
1 else {
System.out.println(" Tou cannot remove constant coluwmms ™)

Figure 4.3 Function deleteColumn()

Methods for row modification are addRow() and deleteRow(). The addRow()
function calls the importButtonAction() of MyExplorer.This action creates an

ImageAdapter object to gather the image properties as table columns. The deleteRow()

40

function simply removes the element at given index from data vector and notifies the

listener of MyTableModel class. The function is listed in Figure 4.4.

protected static void deleteRow(int index)
MainWindow.myTakble.mtm.getlatal) .removeElement At [index) ;
MainWindow.myTable.mtim.fireTableRowsheleted|
MainWindow.myTable.wtm.getData() .sizel)
MainWindow.myTable.mtm.gectDhata() .size())

Figure 4.4 Function deleteRow()

The saveTable() function calls createDocument() of WriteXMLTable and
WriteARFF classes acording to the specified document type.

public static woid saveTable (3tring doctype)] |

if (doctype.equals ("xml™)) {
¥mlFileFilcer filter = new XmlFileFilter():

if (result == JFileChooser.APPRCVE OPTICH) |
weloowme . secTab lename (saveDialog. getielectedFile () .getlawe ()) ;
EMLwriter=new WriteXMLTable (welcome) ;
EMLwriter.createbocument (£ilensame) ;
i
} else if (doctype.equals("arff")){
ArffFileFilter filter = new ArffFileFilter():

if (result == JFileChooser.APPRCVE_OPTIOH) |

ARFFuriter = new WritcelRFF (welcome) :
ARFFwriter.createbocwment (£ilename, "simple™) ;
i
} else if(doctype.equalsTarff train and test™)) |

we loome . setTab lename (0riginal TableNasme+ " TRATI™) »
ARFFuwriter = new WriteldRFF (welcome):
ARFFuriter.createlocument (filename, "train®) ;
welcowe .. setTab lenawe (original Takhlellzmwme+"TEST) 2
ARFFuriter = new WriteldRFF (welcome):
ARFFuriter.createlocument (filename, "tceat™) ;
we loome . SetTab lenawe (original Tak lellame) ;

} else {
System.out.println("No format selected™):

Figure 4.5 Function saveTable()

CHAPTER 5

CONCLUSION

A lightweight tool with a simple user interface is very important for the education
of students that take data mining and image processing courses. Therefore an
application that can integrate image processing and data mining of image files is quite

valuable for this purpose.

In this thesis, a data mining tool for image files is developed. The application is
developed with Java programming language because it provides the advantages of
powerful JAI APl and Swing classes. For the data mining implementation, WEKA is
preferred because of its open source structure, extendibility with user defined classes

and large scale of algorithm options.

The three fundamental facilities of MDT are storing and conversion of table
datasets, applying image processing filters to the instances which are image files, and

running classification and clustering algorithms on image pixel information.

First feature is supported by means of two types of converters that implement the
conversion of table data to XML format and ARFF format of WEKA. The table data
provided a functional way for managing datasets easily. Converters for XML and ARFF
handled all of the document processing operations which can be considered as an
advantage to the user by hiding details of file formats. ARFF converter has an extended

ability to use the pixel extraction class.

The second capability is provided through a set of pixel level filters and operators
that are developed by using functions from the Java Advanced Imaging Application

Programming Interface. The image filtering operations are provided in pixel level and

41

42

worked well enough to illustrate the results. Using small sized gray scale images

provided improved visibility and performance.

Finally, the third goal is accomplished by sending Java calls to Weka’s data
mining API in order to apply data mining tasks to image datasets. The two enabled data
mining tasks are classification and clustering. The classification and clustering tasks
were based on numeric pixel data that is extracted during the process of ARFF file
conversion. Data mining process was successful because of the powerful weka

algorithms and small sized grayscale image instances with specific face positions.

The tool only works for image files now, but it may be adapted for data mining of
many more multimedia file types for example, audio, video, and text files in the future.
Current system is able to work with grayscale and small sized images because of the
performance issues, better computer systems will provide better results especially in
data mining process and enable using color images. Also, using small set of advanced

image processing techniques may speed up the process that will yield better results.

REFERENCES

Chang, S.F., Chen, W., Sundaram, H., “VideoQ: a fully automated video retrieval
system using motion sketches”, Proceedings of the Fourth IEEE Workshop on
Applications of Computer Vision, Princeton, New Jersey, October 1998, pp. 270

Collier, K., Carey, B., Sautter, D., Marjaniemi, C., “A Methodology for Evaluating and
Selecting Data Mining Software”, Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences, 1999. HICSS-32 , Maui-HI USA, 1999
Vol. 6, pp. 11, 1999.

Fayyad, U.M., Djorgovski, S.G., and Weir, N., “Automating the Analysis and
Cataloging of Sky Surveys”, Advances in Knowledge Discovery and Data Mining,
471-493, 1996

Grosky, W. and Tao, Y., “Multimedia Data Mining and Its Implications for Query
Processing”, The Ninth International Workshop on Database and Expert Systems
Applications (DEXA'98), Vienna, Austria, August 1998, pp. 95-100.

Gudivada, V., Raghavan, V.V. and Vanapipat, K. “A Unified Approach to Data
Modeling and Retrieval for a Class of Image Database Applications,” Multimedia
Database Systems, Springer-Verlag, New York, Inc., Secaucus, NJ,pp73-78,1996.

Gudivada V. and Raghavan V., “Content-based image retrieval systems”, IEEE
Computer, Vol.28, No.9, pp. 18-22, September 1995.

Han, J., Chiang, J., Chee, S., Chen J., Chen, Q., Cheng, S., Gong, W., Kamber, M., Liu,
G., Koperski, K., Lu, Y., Stefanovic, N., Winstone, L., Xia, B., Zaiane, 0. R., Zhang,
S. and Zhu, H. “DBMiner: A system for data mining in relational databases and data
warehouses”, Proceedings of. CASCON’97: Meeting of Minds, Toronto, Canada,
November 1997, pp. 249-260.

Hand D., Mannila H., and Smyth P., Principles of Data Mining, MIT Press, Cambridge,
MA, 2001.

43

44

Harold, E. R., Processing XML with Java, Pearson Prentice Hall, Boston, 2003.

Holmes, G., Donkin, A., Witten, I.H., “WEKA: A Machine Learning Workbench”,
Proceedings of the 1994 Second Australian and New Zealand Conference on
Intelligent Information Systems, pp. 357-361, 1994.

Hsu, W., Lee, M.L., and Goh, K.G, “Image Mining in IRIS: Integrated Retinal
Information System”, ACM SIGMOD, 2000.

Hsu, W., Lee, M. L.,and Zhang, J., “Image Mining: Trends and Developments”, Journal
of Intelligent Information Systems, Vol19:1, pp. 7-23, January 2002

Kitamoto, A, “Data Mining forTyphoon Image Collection.”, Second
InternationalWorkshop on Multimedia Data Mining (MDM/KDD’2001), 2001.

Missaoui, R. and Palenichka, R. M., “Effective Image and Video Mining: an Overview
of Model-Based Approaches”, Proceedings of the 6th international workshop on
Multimedia data mining: mining integrated media and complex data, pp. 43-52,
2005

Ordonez, C. and Omiecinski, E.,”Discovering Association Rules Based on Image
Content., IEEE Advances in Digital Libraries Conference, 1999.

Prasad, C. K., Developing Imaging Applications Using the Java2D!™, JAI and New
ImagelO APIs, 2002.
http://accessl.sun.com/techarticles/ImagingApps/Jimage.html

Roden, J., Burl, M., Fowlkes, C., “The Diamond Eye image mining system”, Eleventh
International Conference on Scientific and Statistical Database Management, 1999. ,
28-30 July 1999, pp. 283

Rushing, J., Ramachandran, R., Nair U., Graves S., Welch R., Hong Lin, “ADaM: A
data mining toolkit for scientists and engineers”, Computers & geosciences (Comput.
geosci.), Vol. 31, No. 5, pp. 607-618, 2005

Santos, R., Java Advanced Imaging Stuff, 2007, http://jaistuff.dev.java.net

The official Java Sun web site, http://java.sun.com

45

The official XML web site, http://www.w3.org/xml

Wactlar, H.D., Kanade, T., Smith, M.A., Stevens, S.M., Intelligent access to digital
video: Informedia project”, Computer, Vol. 29, No. 5, pp. 46-52, May 1996.

Weka homepage, http://www.cs.waikato.ac.nz/~ml/weka/

Witten, 1. H. and Frank E., Data Mining: Practical machine learning tools and
techniques, Morgan Kaufmann, San Francisco, 2005.

Zaiane, O. R., Han, J., Li, Z. N., Chee, S. H., Chiang, J. Y., “MultiMediaMiner: A
System Prototype for MultiMedia Data Mining”, SIGMOD Conference, p581-583,
1998.

