

A RESEARCH ON THE VARIATIONS OF
THE QUADRATIC SIEVE

INTEGER FACTORING ALGORITHM

by

SUAT KARADEN ĐZ

JUNE 2008

A RESEARCH ON THE VARIATIONS OF THE QUADRATIC SIEVE

INTEGER FACTORING ALGORITHM

by

Suat KARADENĐZ

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematics

June 2008
Istanbul,Turkey

 ii

APPROVAL PAGE

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

Prof. Dr. Hakkı Đsmail Erdoğan
 Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Barış Kendirli

 Supervisor

Examining Committee Members

Prof. Dr. Barış KENDĐRLĐ :

 Prof. Dr. A. Göksel AĞARGÜN :

 Prof. Dr. Feyzi BAŞAR :

Asst. Prof. Dr. Bahattin YILDIZ :

It is approved that this thesis has been written in compliance with the formatting rules

laid down by the Graduate Institute of Sciences and Engineering.

 Asst. Prof. Nurullah Arslan

 Deputy Director

 iii

A RESEARCH ON THE VARIATIONS OF THE QUADRATIC SIEVE

INTEGER FACTORING ALGORITHM

Suat KARADENĐZ

M. S. Thesis - Mathematics
June 2008

Supervisor: Prof. Dr. Barış KENDĐRLĐ

ABSTRACT

No polynomial time solutions for the integer factorization problem (IFP) have yet been

found. The security of RSA cryptosystem is based on the difficulty of the above problem.

With the advent of RSA, the IFP has gained a great deal more practical importance. One of

the important methods that has been developed so far is the Quadratic Sieve Method (QS).

The work presented here addresses the quadratic sieve integer factorization algorithm

and its variations. We will begin with some elementary factorization algorithms and

techniques. And then, the quadratic sieve and its variations will be presented together with

some Maple implementations.

Keywords: Integer Factorization, Quadratic Sieve, Multi-Polynomial Quadratic Sieve, Large

Prime Variation.

 iv

TAMSAYILARI ÇARPANLARA AYIRMA YÖNTEM Đ

KUADRAT ĐK ELEK ALGOR ĐTMASININ VARYASYONLARININ

ARAŞTIRILMASI

Suat KARADENĐZ

Yüksek Lisans Tezi – Matematik

Haziran 2008

Tez Yöneticisi: Prof.Dr. Barış KENDĐRLĐ

ÖZET

 Tamsayıları asal çarpanlarına ayırmak için polinom zamanlı bir algoritma henüz

bulunamamıştır. RSA şifreleme sisteminin güvenliği bir tamsayıyı asal çarpanlarına

ayırmanın zorluğuna dayanır. RSA’nın bulunmasıyla birlikte tamsayıları çarpanlarına ayırma

probleminin önemi daha da artmıştır. Bu problemin çözümünde şu ana kadar geliştirilen

algoritmaların en önemlilerinden birisi “Kuadratik Elek” metodudur.

 Bu tez Kuadratik Elek metodu ve varyasyonları üzerine bir çalışmadır. Öncelikle

yukarıdaki problemin çözümünde kullanılan bazı temel algoritmalar ve teknikler verilecektir.

Maple uygulamalarıyla birlikte, Kuadratik Elek metodu ve varyasyonları detaylı bir şekilde

incelenecektir.

Anahtar Kelimeler: Tamsayıları çarpanlara ayırma, Kuadratik Elek , Çok Polinomlu Kuadratik

Elek, Büyük Asal Varyasyonu.

 v

DEDICATION

To my family

 vi

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my thesis advisor, Prof. Dr. Barış KENDĐRLĐ,

for his support and encouragement. My special thanks go to Asst. Prof. Dr. Ibrahim

KARATAY, Asst. Prof. Dr. Ali ŞAHĐN, Asst. Prof. Dr. Bahattin YILDIZ and PhD student

Gökhan KELEBEK for their endless support and assistance in my times of need while

completing this thesis.

 I would like to express my great appreciation to Asst. Prof. Dr. Tuğrul YANIK for his

valuable information and experience.

Finally, I would like to thank everybody who was important to the successful realization

of this thesis, as well as expressing my apology that I could not mention personally one by

one.

 vii

TABLE OF CONTENTS

ABSTRACT..………iii

ÖZET………………….………………………………………………………………………iv

DEDICATION……….…………………………………………….…………………………..v

ACKNOWLEDGEMENT……….………………………………………….………………...vi

TABLE OF CONTENTS……………….………………………………….…………………vii

LIST OF TABLES .………………………………………………... ………………...…..…..ix

LIST OF SYMBOLS AND ABBREVATIONS……………………………………….………x

CHAPTER 1 INTRODUCTION………………………...…………………………………1

CHAPTER 2 FACTORIZATION METHODS………...…..3

2.1 Fermat’s Factoring Method (Difference of Squares)……………...………………....3

2.2 Pollard’s (p-1)-Method………………………..……………………………………..6

2.3 Pollard’s and Strassen’s Method……………….….…………………………………9

2.4 Continued Fraction Method………………….……………………………………..11

CHAPTER 3 A COMMON FACTORING STRATEGY…………..……………………..16

3.1 Definitions……………………………….. ………………..……………………….17

3.2 How to choose the factor base?..……19

3.3 Linear Algebra Stage……………………...………………………………………..23

CHAPTER 4 QUADRATIC SIEVE(QS)..25

 4.1 Initializing..26

4.2 Sieving………………………………...……………………………………………30

4.3 Linear Algebra Step………………………………………...………………………31

CHAPTER 5 VARIATIONS OF QUADRATIC SIEVE ...36

5.1 Use of a Multiplier...36

5.2 Logarithm Variant..37

5.3 Small Prime Variation..39

5.4 Special q-Polynomials...40

5.5 The Multi-Polynomial Quadratic Sieve(MPQS)...41

 viii

5.6 Self-Initializing Quadratic Sieve(SIQS).. ...45

5.7 Large Prime Variation.......... ...46

CHAPTER 6 EXPERIMENTAL RESULTS...48

6.1 Using a Multiplier Test...49

6.2 Logarithm Variant Test...50

6.3 Small Prime Variation Test...50

6.4 Comparing Variations...51

CHAPTER 7 CONCLUSION...54

REFERENCES……………………………………………..………………………..………..55

 ix

LIST OF TABLES

TABLE

2.1 Possible 2-digit endings of a square number……………………………….…..…….……5

3.1 Probability of B-smoothness for 1010X = ……………………………………..…………21

3.2 Probability of B-smoothness for 2010X = ……………………………….………………21

3.3 Probability of a N to be the upper bound for the largest prime divisor of N………..…..22

4.1 Approximate parameters for QS…………………………………………………...……..27

5.1 T-adjustment of the threshold value………………………………………………………39

6.1 Optimal parameters for MPQS and q-Polynomials………………………………………51

 x

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS /ABBREVIATIONS

IFP Integer factorization problem

CFRAC Continued Fraction Integer Factoring Algorithm

ECM Elliptic Curve Method

FB Factor base

FB Factor base size

SI Sieving interval

QS Quadratic sieve

MPQS Multi-Polynomial Quadratic Sieve

SIQS Self-Initializing Quadratic Sieve

N

p

 
 
 

 Legendre symbol

()xπ Number of primes less than or equal to x

   The greatest integer(floor) function

   The ceiling function

 1

CHAPTER 1

INTRODUCTION

 Two fascinating problems of the computational number theory have been

primality testing and integer factorization problem (IFP). Many great mathematicians of

the past, Fermat, Euler, Legendre, Gauss and many others, worked on these problems

and set the basis of the many of the techniques used today.

 The former one deals with the question that for a given positive integer N, to say

whether N is a prime number or not. En route to the solution, great progress has been

shown. There are many successful probabilistic algorithms and even a deterministic one

(Agrawal et al.,2004) running at a polynomial time.

 You run a primality test on N and it turned out to be not a prime, i.e. composite.

Now, the question: what to do next? How to find the prime factors of N?

 Although “the fundamental theorem of arithmetic” says that every integer can be

decomposed into a product of primes uniquely, most of the time, to cast out those prime

factors is not that easy.

 IFP looks for those primes, i.e. to extract out prime factors of a composite

integer N, in other words, to decompose N into its prime factors as stated in the

fundamental theorem. Even today, with the availability of highly fast computers, there

seems to be a long way to go on the way to solve the integer factorization problem.

 Anyone with elementary knowledge of arithmetic knows divisibility rules for

2, 3, 5, 9,11 and even more. In the very past, they were enough. Why should we ask for

more? Unfortunately, every number is not only divisible by them. Today, at this point

we need more complicated tools compared to the very primitive tools of the past.

 The question “why should we ask for more?” gained a lot more practical

importance with the advent of RSA public-key cryptosystem in 1977. Its security is

based on the difficulty of the IFP. All the researches done so far on the security of RSA

 2

suggest that breaking RSA cryptosystem is equivalent to factorizing a positive

composite integer N which is the product of two primes. The problem in this case is

called hard factorization problem.

 When RSA was invented, factoring a 50-digit number was very hard. At that

time, the Brillhart-Morrison continued fraction algorithm was the best available method

and there were a few others, like Pollard’s p-1, Pollard’s rho, Shank’s SQUFOF. With

the genesis of Pomerance’s quadratic sieve (QS) in 1982, a giant step was taken on the

way to solve the IFP. Factoring numbers more than 100 digit became commonplace, i.e.

the length of numbers that could be factored doubled. In 1994, 129-digit RSA challenge

number was factorized by a variant of this method. Ironically, in 1976 that number was

estimated to be safe for 40 quadrillion years by Martin Gardner in Scientific American.

In the spring of 1996, QS lost its crown to Number Field Sieve (NFS). By NFS, 130-

digit RSA challenge number was split successfully in about 15% of the time QS would

have required (Pomerance,1996). From that time on so far, NFS has been the factoring

champion. With this method, between December 2003 and May 2005, RSA-200 was

decomposed and 313-digit special Mersenne number 10392 1− was split by Special

Number Field Sieve (SNFS) in May 2007 by a group of researchers.

 What attracted us about studying Pomerance’s QS as a thesis topic then?

Because the idea behind QS is very beautiful, simple and still effective. It is the fastest

known factorization method for the numbers between 40 to 110 digits long. Since it

emerged for the first time, many major improvements have been made and nobody

knows what future awaits for us.

 In Chapter 2, four different factorization methods, all stemming from different

ideas, will be studied with their mathematical bases. They are respectively, Fermat’s

difference of squares, Pollard’s- (p-1), Pollard’s and Strassen’s method and continued

fraction algorithm (CFRAC).

 In Chapter 3, a common systematic factorization strategy will be studied. Today,

it is used by most of the modern factorization methods except elliptic curve method

(ECM).

 In Chapter 4, we will explain the basic version of the quadratic sieve and the

underlying ideas behind its success.

 The last two chapters will be about variations of QS and the experimental results

obtained from Maple 10 implementations.

 3

CHAPTER 2

FACTORIZATION METHODS

There are numerous techniques employed to factorize an integer into its prime

factors. In this chapter, we will briefly explain some of them to give an idea of the

richness of the methods and the mathematical tools behind them.

From now on N will represent the composite number to be factorized.

2.1. Fermat’s Factoring Method (Difference of Squares)

Trial division just tests a number for divisibility by a prime and if it turns out to

be divisible, then divides by that prime. If not divisible, next prime is tested and so on.

This method dates back to B.C. and can only be used to extract out small divisors of a

number.

After the trial division, Fermat’s method is the oldest systematic way of

factoring integers. It has a historical importance and the same idea with improvements

lies at the heart of the most modern factoring algorithms.

Fermat’s idea was to express N as a difference of squares. Let N be a composite

odd number, say N a b= ⋅ . If we are able to write

2 2N x y= − ,

()()N x y x y= + − ,

then two factors of N can be found immediately. So the question arises now is how

such a representation of N can be found. Indeed, it is carried out via the squares of half

of the sum and difference of two proper factors whose product is N.

 N a b= ⋅ ,

2 2

2 2

a b a b
N

+ −   = −   
   

is the form that we look for.

Since ,

2

a b
ab N

+ > = (by AM-GM inequality if a b≠),

 4

we iteratively start by first computing

 1m N = +  , as an approximation to
2

a b+
,

which is the smallest possible value for
2

a b+
 unless N is a square number.

Next, it must be checked that

 2
1t m N= −

is a square number or not. If it is, then

 2 2N m k= − where 2
1t k= ,

a factorization is found. Otherwise, calculate

 ()2

2 11 (2 1)t m N t m= + − = + +

and test whether it is a square or not and continue until the difference it becomes a

square number.

Example 2.1. N=1273, 1 36m N = + = 

m 2m+1 t

36 73 23

37 75 96

38 77 171

39 79 248

40 81 327

41 83 408

42 85 491

43 87 576

In the last row, 2576 24t = = has been found, now using that

N can be written as a difference of squares and factorized as

2 243 24

(43 24)(43 24)

67 19

N = −
= + −
= ⋅

 5

Obviously,
67 19

43
2

m
+= = and

67 19
24

2
t

−= = .

 Some improvements can be made to Fermat’s method. Since t must be a square

number, last two-digit of t can be any of the following 22 combinations:

 Table 2.1 Possible 2-digit endings of a square number

00 01 04 09 16 21 24 25 29 36 41

44 49 56 61 64 69 76 81 84 89 96

This fact greatly simplifies the search for squares in the column t of the table

(Riesel,1994).

 Another improvement to Fermat’s method exists if it is known that the prime

divisors of N have a certain form. For example, Legendre’s Theorem states that all

prime factors p of the number n nN a b= ± , with gcd(a,b)=1, are in the form

1,p k n k Z += ⋅ + ∈ ,

apart from those which divide the algebraic factors of the form

m ma b± , m n< , of N (Riesel,1994).

Shortly,

1

2 1

n n

n n

p k n where N a b

p k n where N a b

 = ⋅ + = −


= ⋅ ⋅ + = +

Example 2.2. The fifth Fermat number
52 32

5 2 1 2 1F = + = + has prime divisors of the

form 64 1p k= + .

 5 641 6700417F = ⋅

641 1 (mod 64)

6700417 1 (mod 64)

≡
≡

as stated by Legendre’s Theorem.

Lemma 2.1. Fermat’s method can be speeded up by a factor of 22n , if all factors of N

are in the form 2 1k n⋅ ⋅ + .

Proof. Let N satisfy the conditions given in the lemma, then

 1 2(2 1)(2 1)N p q k n k n= ⋅ = ⋅ ⋅ + ⋅ ⋅ +

 6

 2
1 21 4N k k n p q+ = ⋅ ⋅ ⋅ + +

 21
(mod 2)

2 2

p q N
n

+ +≡ .

So for the numbers 1m N ≥ +  in the method, only the ones such that

 22 ,m a k n k Z += + ⋅ ⋅ ∈ where 21
(mod 2)

2

N
a n

+≡

must be tested. This gives us a speed-up of factor 22n .

 In 1920’s, Maurice Kraitchik developed an idea based on Fermat’s difference of

squares technique.Today, his idea sets the basis of many factorization algorithms

(Rabah,2006). This time, we are not looking for differences of squares equal to N , but

a multiple of N , i.e.

 2 2x y k N− = ⋅

 2 2 (mod)x y N≡ .

But finding a non-trivial factor is not guaranteed by the above congruence. However,

the probability is still as high as 50%, and the chance to obtain a congruence

 2 2 (mod)x y N≡ ,

is much higher than finding x and y such that

2 2x y N− = .

2.2. Pollard’s (p-1)-Method

 In 1974, J. M. Pollard found this method. It is suitable for certain composite

integers which have a special kind of prime divisor.

Definition 2.1. (Cohen,1996) Let B be a positive integer. A positive integer n said to

be B-smooth if all the prime divisors of n are less than or equal to B . We will say that

n is B-powersmooth if all prime powers dividing n are less than or equal to B .

Theorem 2.1. If N has a prime divisor p such that 1p − is B -powersmooth , then p

can be extracted out by calculating

 [1..]gcd(1,)lcm Ba N− where gcd(,) 1a N = .

Proof. Since 1p − is B -powersmooth,

 7

 [1..] (1),lcm B k p k Z += ⋅ − ∈ .

By Fermat’s Little Theorem,

 1 1(mod)pa p− ≡ , and

 [1..] (1) 1(mod)lcm B k pa a p⋅ −= ≡ .

That implies,

 [1..]| 1lcm Bp a − ,

so [1..]gcd(1,)lcm Ba N p− = .

Example 2.3. Let 10B = . If N has any of the following prime factors p , the

following table shows whether they can be detected by this method or not.

p 1p − B -powersmooth

7 2⋅ 3 yes

11 2⋅ 5 yes

13 22⋅ 3 yes

19 2⋅ 32 yes

23 2⋅ 11 no

29 22⋅ 7 yes

The algorithm for this method proceeds as follows (Riesel,1994):

Generate a list of all primes and prime-powers up to some bound B , say 106. For each

prime square, cube, etc., write the corresponding prime instead of the prime power.

Like,

 2,3,2,5,7,2,3,11,13,2,17,...

Next, choose a, generally 2a = , and compute recursively

 1 (mod)ip
i ib b N+ ≡ , (2.1)

where ip is the thi prime in the list. Start the above sequence with 1b a= and check

gcd(1,)ib N− periodically to see a factor p of N has been found, e.g. at regular

intervals of 100 cycles. It is because to calculate gcd(1,)ib N− each time is a costly

operation.

 8

As soon as the largest prime power in the factorization of p-1, say i
iq α , has been

reached in the list, the factor p can be detected.

Example 2.4. Let N=4087, a=2 and B=5. The list of primes and prime-powers is

2,3,2,5. By setting 2ib a= = , the sequence (2.1) generates the following ib ’s .

i ib gcd(1,)ib N−

1 2 1

2 4 1

3 64 1

4 9 1

5 1831 61

If we check 5gcd(1,)b N− , the prime divisor of N,

 5gcd(1,) 61p b N= − =

is found. Because 21 60 2 3 5p − = = ⋅ ⋅ is B-powersmooth over the list.

Then, immediately, 61 67N = ⋅ .

Phase 2 of the method:

 It is likely that p-1 has only one prime factor q which exceeds B.

1

1 , , 1,.., , :i i

m

i i
i

p q p p B i m q prime Bα α

=

− = ⋅ < = >∏ .

If q is in a reasonable range after B, then an efficient continuation to (p-1)-method

works nicely. This continuation is called phase 2 of the method.

 Assume no factor is found up to the search limit B. Then another bound B1 is

chosen about 10 to 20 times larger than B. Denote the result at the end of the phase-1

by b.

 [1..] (mod)lcm Bb a N≡

Let { }iq be the set of all primes (in order) between B and B1, q1 is the largest prime

below B. Prepare a list id of differences of primes,

 9

 1i i id q q+= − .

Then, recursively, find the value of

 1 (mod), 1,2,3,...i i iq q db b b N i+ ≡ ⋅ =

and check whether

 1gcd(1,) 1iqb N+ − > .

Since differences are small, one cycle in this recursion runs a lot faster than the one in

phase-1 (Riesel,1994). For example, the maximum distance between two consecutive

primes in the interval 121, 4.444 10 ×  is 326.

 The biggest factor found by this method is 66-digit prime divisor of 119960 1−

on 29.06.2006 by T. Nohara. In phase1, 810B ≈ and in phase 2, 10
1 10B ≈ were used

as bounds. Today in record trials, B ranges from 810 to 1110 and 1B from 1010 to 1710 .

 Inspired from the (p-1)-method, in 1982 H. C. Williams found a similar method

based on the decomposition of p+1. It is called Williams’ (p+1)-method. We will not

give details here but in this method Lucas sequences are used in the computations.

There is a problem with this method which is to find(actually to guess) a quadratic non-

residue D of p, 1
D

p

 
= − 

 
. For details, we refer to (Williams,1982). So far, the biggest

prime factor found by p+1 method has been 60–digit long.

 Due to the methods (p-1) and (p+1), RSA primes are chosen to have a very large

B-powersmoothness bounds for p-1 and p+1.

2.3. Pollard’s and Strassen’s Method

 If !(mod)x k N≡ could be computed quickly for []1..k N∈ , then we should be

able to factor N quickly (Dixon,1982). If there existed such a method any factor of N in

the range 1,..,k could be found easily. It is because, if

 !(mod)x k N≡ ,

say, p is a factor of N, 1p k< ≤ .

 ! ,x k a N a Z += + ⋅ ∈ ,

since | !p k and |p N , p must divide x .

Then, gcd(,)x N p= .

 10

 A method partially uses the above idea, due to Pollard and Strassen, was found

in 1976 and can be used to find the smallest prime factor of N. The procedure goes as:

Let b be the smallest factor of N and define

 () (1)(2).....(), 1F x x x x c c N= + + + ≤ ≤ ,

 () () (mod)f x F x N≡ .

The coefficients of ()f x can be calculated quickly by a method called FFT (Fast

Fourier Transform).

 2

0

()! () (mod)
i c

c f ic N
≤ <

≡ ∏ .

This can be derived from calculations easily,

 (0) !(mod)f c N≡

 () (1)(2)....(2) (mod)f c c c c N≡ + +

 ⋮

 ⋮

 2((1)) ((1) 1)((1) 2)....() (mod)f c c c c c c c N− ≡ − + − + .

Let () (mod), 0,..., 1ig f ic N i c≡ = − .

If there exists a factor p, 21 p c< ≤ , of N, it can be extracted out easily by computing

 gcd(,)ig N .

Example2.5. Choosing N=1633 and c=7, then set

() (1)(2)...(7) (mod)f x x x x N≡ + + + ,

(0) 141, gcd(141,) 1f N= = ,

(7) 544, gcd(544,) 1f N= = ,

(14) 160, gcd(160,) 1f N= = ,

(21) 1518, gcd(1518,) 23f N= = .

So 23 71N = ⋅ .

 The fastest-known fully proven deterministic algorithm is the Pollard-Strassen

method .

 11

2.4. Continued Fraction Method(CFRAC)

Definition 2.2. The regular continued fraction expansion of a real number number x is

an expression of the form

 []0 0 1 2

1

2

1
, , ,...

1
1

x b b b b
b

b

= + =
+

+
⋱

where 0b is an integer and the partial denominators 1 2, ,..b b are all positive integers.

 The calculations of bi’s can be achieved by successively computing the numbers

given by the following algorithm (Riesel,1994):

 0 0 0,x x b x= =    ,

 1 1 1
0 0

1
,x b x

x b
= =   −

,

 2 2 2
1 1

1
,x b x

x b
= =   −

,

 From now on, we are only interested in regular continued fraction expansion of

quadratic irrational numbers. They are infinite and periodic.

Definition2.3. Let []0 1 2, , ,...x b b b= and

 []0 1 2, , ,...,n
n

n

A
b b b b

B
= , where

1

0

1
1

1
1

n
n

n

n

b
b

A
b

B b

− +

= +
+
⋱

, gcd(,) 1n nA B = ,

then the rational numbers n

n

A

B
 is called the nth convergent of the continued fraction.

Example 1.6. []7 2,1,1,1,4,1,1,1,4,1,1,1,4,....= is an infinite continued fraction with

period 4 (i.e. 1,1,1,4 repeats infinitely many times). The convergents are

 12

 []1 1

1 1

1
2,1 , 2 3

1

A A

B B
= = + = ,

 []2 2

2 2

1 5
2,1,1 , 2

1 21
1

A A

B B
= = + =

+
,

 []3 3

3 3

1 8
2,1,1,1 , 2

1 31
1

1
1

A A

B B
= = + =

+
+

,

 ⋮
 ⋮

Theorem 2.2. Let []0 1 2, , ,...,n
n

n

A
b b b b

B
= be the nth convergent of a continued fraction.

If we define A-1=1, B-1=0, A0=b0, B0=1 then , n

n

A

B
 can be computed recursively by the

formulas

 1 2

1 2

s n s s

s s s s

A b A A

B b B B
− −

− −

= +
 = +

 , 1s ≥ .

Proof can be found on p. 330, Riesel 1994.

 After this introduction to regular continued fractions, the factorization method

CFRAC will be explained now. It was first introduced by D.H. Lehmer and R.E. Powers

in 1931. But at that time, calculations were not suitable to be done by hand computers.

Around 1970, Morrison and Brillhart developed a systematic way to implement it on

computers and F7 (seventh Fermat number) was factorized by this method in September

1970.

The method:

Let N be an odd composite integer.

Expand N or k N⋅ , for some suitably chosen k if N has a small period length,

into its continued fractions,

 13

0 1 2 1, , ,..., , n
n

n

N P
N b b b b

Q−

  +=   
   

 up to some point.

For each value of 1n ≥ , the identity

 2 2
1 1 (1)n

n n nA N B Q− −− ⋅ = − ⋅ , where n

n

A

B
 is the nth convergent of N ,

implies the congruence

 2
1 (1) (mod)n

n nA Q N− ≡ − ⋅ , 2nQ N< . (2.2)

The details of the identity can be found in any elementary number theory book.

Among the ()1, (1)i
i nA Q− − pairs, if a subset S of i’s such that the product

(1)i
i

i S

Q
∈

−∏ is a square, say 2Q ,

can be found, then

 2 2 2
1 (1) (mod)i

i i
i S i S

A A Q Q N−
∈ ∈

= ≡ − =∏ ∏ .

2 2 (mod)A Q N≡ is obtained (Kraitchik’s idea). Then by calculating gcd(,)A Q N− and

gcd(,)A Q N+ , we have a 50% chance to find proper factors of N.

A systematic way how to find a set S will be explained in the third chapter.

 How about calculations of 1nA − and nQ in (2.2) ?

Here we give the recursive computations for parameters used in the original paper

(Morrison,Brillhart,1975).

(i) Set A-2=0, A-1=1, Q-1=N, r-1=b0, P0=1, Q0=1 and 0b N =   .

(ii) Use 0 , 0n n n n n nb P b Q r r Q+ = + ≤ < ,

to generate rn where bn can be found as explained before in the continued fraction

expansion.

(iii) Use 1 2 (mod)n n n nA b A A N− −= + ,

to calculate (mod)nA N for 0n ≥ . (It is not necessary to calculate Bn in this algorithm.)

(iv) Use 0 1 02n nb P b r++ = − to generate 0 1nb P ++ for 0n ≥ .

(v) Use 1 1 1()n n n n nQ Q b r r+ − −= + − to find 1nQ + for 0n ≥ .

(vi) Increase n by 1 and return to (ii).

 14

Example 1.7. Let N=767. The following table shows the ()1, (1)i
i iA Q− − pairs

generated by the given algorithm.

i 1iA − (1)n
iQ−

1 27 -38

2 28 17

3 83 -14

4 277 29

5 360 -23

6 637 26

7 230 -23

8 100 29

Choosing the set { }1 5,7S = and to obtain the required congruence of Kraitchik,

2 2 5 7
4 6 5 7(1) (1) (mod)A A Q Q N⋅ ≡ − ⋅ −

is calculated. It leads to the congruence

2 2 2360 230 23 (mod)N⋅ ≡ ,

 and two non-trivial divisors are found by computing

 gcd(360 230 23,)N⋅ + =13 and gcd(360 230 23,)N⋅ − =59.

Then, N=13.59.

 CFRAC was the best algorithm in 70’s and in the beginning of 80’s. It can be

used to factorize numbers up to 50-digit long.

 There is another method, Dixon’s random squares, that works similar to CFRAC

but to generate congruences of the form

 2 (mod)i iX Q N≡ ,

it uses quadratic polynomials 2()Q x x N= − .

By taking i’s randomly where,

, 0, 1, 2,...ix N i i = + = ± ±  ,

we obtain congruences

 15

 2 () (mod)i ix Q x N≡ .

In CFRAC, 2iQ N< for all i=1,2,3,... but in Dixon’s random squares those values

get larger, () 2 , 1, 2,...iQ x i N i≈ ⋅ ⋅ = ± ± . Therefore finding a subset S of i’s such that

the product ()i
i S

Q x
∈
∏ is a square, becomes harder.

That’s why, Dixon’s method was no better than CFRAC in that sense until Carl

Pomerance incorporated the sieving into this method. His brilliant idea will be studied

in fourth chapter.

 16

CHAPTER 3

A COMMON FACTORING STRATEGY

 More or less, most of the modern factorization methods, namely, CFRAC, QS,

NFS, follow a common strategy to factor an integer. The final goal is to obtain a square

congruence in the form (Kraitchik’s idea)

 2 2 (mod)X Y N≡ , (3.1)

where N is the number to be factorized. Sometimes, (3.1) is called as Legendre’s

congruence (Riesel,1994,p.149). And we wil adopt this notation.

 Once we have (3.1), by calculating gcd(,)X Y N− and gcd(,)X Y N+ , there is

at least a 50% chance of extracting out non-trivial factors of N. When N is the product

of only two distinct primes p and q, the probability is
2

3
(Rabah,2006). If

(mod)X Y N≠ ± , then two proper divisors of N can be found immediately. But in case,

(mod)X Y N≡ ± , only trivial factors can be obtained.

 So finding t-different Legendre’s congruence means, the probability of finding a

proper factor is
1

1
2

t
 −  
 

. The more such square congruences are found, the higher the

chance to factorize N.

Example 3.1. Let N=21. The congruence 2 217 11 (mod)N≡ leads to

gcd(17 11,21) 3− = and gcd(17 11,21) 7+ = . Two proper divisors of N are found.

 But generating a Legendre’s congruence directly in a reasonable time is nearly

impossible with today’s techniques and computational power as N gets large.

 So how to reach our end-goal (3.1)? An efficient and systematic way to the

solution of the above question was found by Morrison and Brillhart. The idea was first

used in CFRAC, and that’s why it was the factoring champion during the 70’s and the

beginning of 80’s until the Pomerance’s quadratic sieve. Still it is at the heart of the

many factoring algorithms.

 17

 Let’s see how it works. Firstly, congruences of kind

 2 (mod),i i ix a N a N≡ < , (3.2)

are generated . From now on, ai’s will be called “quadratic residues” or “auxiliary

numbers”. Every algorithm has its way of finding (3.2). Then a suitable subset I of i’s

is selected so that the product of ai’s is a square number. Let

 2 (mod)i
i I

Y a N
∈

= ∏ and 2 2
i

i I

X x
∈

= ∏ .

It is obvious that 2 2 (mod)X Y N≡ .

Are we done? Has the final goal been reached? No, not yet!

Still we don’t know an efficient way of obtaining the subset I. The runtime of the

methods is very much related to finding the set I quickly and that depends on

(i) generating small residues,

(ii) availability of the residues for sieving.

The superiority of one method to another lies in (i) and (ii).

 For the rest of this chapter, the focus will be on the common terminology and the

systematic strategy which will be called “factor base method” to determine the subset I

efficiently.

3.1. Definitions

Definition 3.1. A set of primes { }| : , 1,...,i iFB p p prime i k= = is named a factor

base(FB) satisfying max kp p B= < , where B is a positive integer depending on the size

of N. B is called an upper bound or smoothness bound. Most of the time -1 is also

included in the factor base to take advantage of small negative residues. Generally, FB

is constructed from the first k-smallest primes into which the auxiliary numbers are

likely to factor.

Definition 3.2. The cardinality of the set FB is called factor base size, and denoted by

|FB|.

Definition 3.3. An integer m is said to be B-smooth if all of its prime factors are

B≤ (Pomerance,2000). A number which completely factors over the first k-primes is

 18

called pk-smooth. The smoothness bound B is determined by the largest prime maxp in

the factor base.

Example 3.2. Let { }1,2,3,7FB = − then the smoothness bound B is 7. So

2
1 36 2 3a = = ⋅ is B-smooth but 2

2 44 1 2 11a = − = − ⋅ ⋅ is not.

Definition 3.4. By the fundamental theorem of arithmetic we know that every integer

can be decomposed into the product of prime numbers uniquely. Let
1

i

k

i
i

m pα

=

= ∏ , where

pi denote the i-th prime. The product is over all primes but only finitely many of the

exponents iα are non-zero. Then the vector 1 2, ,...,() ()kv m α α α= is called the exponent

vector of m. Every integer has its own associated exponent vector. For us, the exponent

vectors of numbers which are smooth in our factor base will be important. The

associated exponent vectors of these numbers have an infinite sequence of zeros

representing the exponents of the primes beyond the factor base. Thus, those zeros are

omitted and the dimension of the exponent vector becomes the size of the factor base.

Example 3.3. Let { }1,2,3,5FB = − and 1 2 336, 30, 75m m m= = = − then the

associated exponent vectors are

0 2 2 0
1 (1) (2) (3) (5)m = − ⋅ ⋅ ⋅ , 1() (0,2,2,0)v m =

0 1 1 1
2 (1) (2) (3) (5)m = − ⋅ ⋅ ⋅ , 2() (0,1,1,1)v m =

1 0 1 2
3 (1) (2) (3) (5)m = − ⋅ ⋅ ⋅ , 3() (1,0,1,2)v m =

Definition 3.5. A congruence of the kind

 2 (mod)i

i

i
p FB

X p Nα

∈

≡ ∏ (3.3)

is called a smooth or full relation with respect to FB. Another kind,

 2 (mod), : ,i

i

i
p FB

X p P N P prime P FBα

∈

≡ ⋅ ∉∏

is called a partial or 1-partial relation with respect to FB. The product of two partial

relations with the same P leads to a full relation because

 19

2
1

2 2 2
1 22

2

(mod),

(mod)
(mod),

i

i i i

i
i i

i

i
p FB

i i
p FB q FBi

q FB

X p P N

X X p q P N
X q P N

α

α β
β

∈

∈ ∈
∈

≡ ⋅

⇒ ⋅ ≡ ⋅ ⋅

≡ ⋅ 


∏
∏ ∏∏

.

In the same manner, there may be 2-partial, 3-partial relations etc. However, to find the

combinations of 2-partial, 3-partial relations that make a full relation is more

complicated. In this case Graph theory is used.The importance of collecting r-partial

relations will be seen later.

 Actually, 2 (mod),i i ix a N a N≡ < is a smooth relation if and only if ia is a

smooth number in the factor base, i.e. the greatest prime factor of ia does not exceed

the biggest prime in the FB.

Example 3.4. Let N=989 and { }1,2,3,5FB = − then

 233 100 (mod)N≡ ,

 2 2 233 2 5 (mod)N≡ ⋅ is a smooth relation over the factor base, but

 231 28 (mod)N≡ − ,

 2 231 2 7 (mod)N≡ − ⋅ is not.

3.2. How to choose the factor base?

 The proper choice of the factor base plays a crucial role in the runtime of the

factoring algorithms. Now, the problem is how to decide the FB size, or equivalently the

upper bound B of the factor base. The following lemma and the next theorem partially

shed light on the solution of the problem.

Lemma 3.1.(Pomerance,2000): If 1 2, ,.., km m m are positive B-smooth integers, and if

()k Bπ> , then some non-empty subsequence (mi) has product a square.

(()Bπ denotes number of primes B≤ .)

Proof. For a B-smooth m, look at its exponent vector v(m). If m has the prime

factorization
()

1

i

B

i
i

m p
π

α

=

= ∏ , where pi is the ith prime number and each iα is a non-

 20

negative integer, then 1 2 (), ,...,() ()Bv m πα α α= . So, a subsequence 1 2, ,..,i i itm m m has

product a square if and only if 1 2() () ... ()i i itv m v m v m+ + + has all even entries. That is,

if and only if the sum of vectors is the 0-vector mod 2. Now the vector space ()
2

BF π ,

where 2F is the finite field with 2 elements, has dimension ()Bπ . And we have

()k Bπ> vectors. So this sequence of vectors is linearly dependent in this vector space.

However, a linear dependence when the field of scalars is 2F is exactly the same as a

subsequence sum being the 0-vector. This completes the proof of the lemma.

 What actually can be deduced from the lemma for our purpose is that if |FB|=k,

then finding (k+1) smooth relations (i.e. smooth quadratic residues) guarantees us

finding at least one Legendre’s congruence.

Example 3.5. Let’s illustrate the case with one example. Choosing N=1081 and

{ }2,3,5FB = , we need 4 smooth relations over the factor base. Because |FB|=k=3,

so finding k+1=4 smooth relations will make it possible to have at least one Legendre’s

congruence by lemma 3.1.

 2 3
1(1) 33 8 (mod), 8 2N a≡ = =

 2 1 2
2(2) 34 75 (mod), 75 3 5N a≡ = = ⋅

 2 5 2
3(3) 37 288 (mod), 288 2 3N a≡ = = ⋅

 2 3 1 2
4(3) 41 600 (mod), 600 2 3 5N a≡ = = ⋅ ⋅

The associated exponent vectors are

 1() (3,0,0)v a = , 2() (0,1,2)v a = , 3() (5,2,0)v a = , 4() (3,1,2)v a = .

Then writing the corresponding vectors over the field F2,

 1'() (1,0,0)v a = , 2'() (0,1,0)v a = , 3'() (1,0,0)v a = , 4'() (1,1,0)v a =

are obtained.

It is easily seen that

2 3 4'() '() '() (0,0,0)v a v a v a+ + = .

This implies that the product 2 3 4()a a a⋅ ⋅ is a square number. By using congruences

(2), (3), (4), the obtained Legendre’s congruence is

 2(34 37 41) (75 288 600) (mod)N⋅ ⋅ ≡ ⋅ ⋅ ,

 21

 2 251578 3600 (mod),N≡

 2 2771 357 (mod)N≡ .

And to find the factors of N, we calculate

 1 gcd(771 357,)d N= − and 2 gcd(771 357,)d N= + .

1 23d = and 2 47d = turn out to be the only nontrivial factors of N.

N=23 47 ⋅ is factorized in this way.

Theorem 3.1. Let X be a number to be factorized, B be an upper bound on prime

divisors of X and denote by r, the ratio
log

log

X

B
. Then, if r B<< , we have the

probability of X factorizing fully into primes smaller than B approximately rr−

(Kechlibar,2005).

 The value rr− indeed is the probability of X being B-smooth. Denoting this

probability by p, the following tables give us an idea about p depending on the choice of

B for a fixed X.

 Table 3.1 Probability of Table 3.2 Probability of
 B-smoothness for 1010X = B-smoothness for 2010X =

 1010X = 2010X =

 The table next is also helpful visualizing the case from a different angle

(Bressoud,1989.p.106).

B p

1000 0.018

500 0.0078

200 0.00168

100 0.00032

50 0.000029

B p

10000 0.00032

5000 0.000108

2000 0.000018

1000 0.0000032

500 0.000000358

 22

 Table 3.3 Probability of a N to be
 the upper bound for the largest prime divisor of N

a Probability that the largest

prime divisor of N is a N<
2 13.07 10−×

3 24.86 10−×

4 34.91 10−×

5 43.55 10−×

6 51.96 10−×

7 78.75 10−×

8 83.23 10−×

9 91.02 10−×

10 112.80 10−×

Lemma 3.1 says that to reach a Legendre’s congruence for sure , the number of smooth

relations must be more than the factor base size. Keeping the upper bound B of the

factor base small means less number of B-smooth residues are needed, but it can be

seen from the tables 3.1, 3.2 and 3.3 that as B gets smaller, the probability of detecting a

smooth residue decreases.

Example 3.6. Let the typical auxiliary number X generated by the factoring algorithm

be around 1010 and B (the upper bound for FB) be chosen 1000.

Then, (1000) 168FB π= = . By looking at the table 3.1, it can be seen that the

probability of X to be smooth is nearly 0.018. On avarage,
1

55
0.018

≈ residues must be

examined to find one smooth relation. By lemma 3.1, the number of smooth relations

must be more than the factor base size. So to guarantee one Legendre’s congruence

around 169 55 9295x = residues must be tested.

 Now choosing B=500, the factor base size becomes (500) 95FB π= = .

The probability of X to be smooth is 0.0078. This time approximately

1
96 12307

0.0078
x ≈ residues are required to be examined.

 23

 The problem that arises now is, how to determine the optimal value of B as a

function of a typical auxiliary number X so that the number of trials is minimized.

 An approximate solution to the above question was given in a paper in 1983 by

Canfield, Erdös and Pomerance.If X is an estimate for the typical auxiliary number then

B must be about ()exp 1/ 2 log log(log)X X⋅ and the minimum number of trials is

about ()exp 2 log log(log)X X⋅ (Pomerance,1996).

 But in real factoring situations, for a particular reason the B-estimation is not as

accurate as desired. The reason is that, in practice the factor base does not consist of all

primes up to B. Because the generated residues are not as random as suggested in the

theory. That’s why, in real applications heuristic arguments are used rather than what

the theory suggests.

3.3. Linear Algebra Stage

 There is only one point left to be clarified. If the number of smooth residues

found is more than the factor base size, it is for certain that the product of some

combination of them is a perfect square. But, how to find those combinations of

residues? At this stage, linear algebra comes into play. By using Gaussian elimination, it

can be carried out easily. The steps are as follows:

a) Let FB k= and , (0)k i i+ > smooth residues be found. First, a matrix A of

dimensions ()k i k+ × is formed. The rows of A are the associated exponent

vectors of the residues over F2. It is convenient to arrange the corresponding

vectors according to the exponents of primes from largest to the smallest. First

coordinates of the vectors represent the power of the largest prime over F2 and so

on.

b) Then a () ()k i k i+ × + identity matrix is adjoined to the right of A to keep track

of the combinations of residues resulting in a perfect square.

c) The rows of the matrix A are linearly dependent, thus at the end of the Gaussian

elimination step there must be at least i -zero rows. Each zero row tells us the

product of which combination of residues is a square number. So we start

Gaussian elimination.

Turning back to the previous example 3.5, let us illustrate the steps.

 24

Given N=1081, { }2,3,5FB = , |FB|=3 and the smooth residues found are

8, 75, 288, 600.

 The associated exponent vectors over2F were calculated before in the example

but this time to construct the rows of the matrix A, we use them in reverse order

according to the step (a).

5 3 2

0 0 1

0 1 0

0 0 1

0 1 1

A

 
 
 =
 
 
 

.

Adjoining 4 4I × to the right of A leads to the following matrix

0 0 1 1 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 1 1 0 0 0 1

 
 
 
 
 
 

At the end of the Gaussian elimination, we get

0 0 1 1 0 0 0

0 1 0 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 1 1

 
 
 
 
 
 

As expected 0-rows are obtained and the 1’s in the same row of the adjoined matrix tell

us the locations of the residues whose product is a square.

 In the example above, two zero rows are found . 3rd row tells us that the product

of the first and the third residues is a square. And in the same way, from the 4th row it

can be deduced that the residues which lead to a Legendre’s congruence are in the

second, third and fourth locations.

 25

CHAPTER 4

QUADRATIC SIEVE (QS)

 Quadratic sieve algorithm (QS) was the first to introduce the idea of sieving

effectively into the factoring world. In 1981, Carl Pomerance came up with the new

method inspired from Dixon’s random squares and from the well-known sieve of

Eratosthenes, used to find primes in a given interval. He modified the sieving to the

residues of the quadratic polynomial 2()Q x x N= − . This can be considered as a

milestone in the history of the integer factorization problem (IFP). At the beginning of

1980’s , CFRAC was able to factor numbers around 50 digits but with the coming of

QS, the number of digits was soon doubled.

 By using basic QS, Joseph Gerver managed to factor a 47-digit (a factor of

2253 1−) number from the Cunningham Project in 1982 (Gerver, 1983) then in 1984 at

Sandia Laboratories a number consisting of 71-ones was factored with an improved

variant of QS (Pomerance,1996). With the parallel implementation of the algorithm,

100-digit numbers were in the range of QS and in 1994, a team distributing the

computation over internet set the record. A 129-digit RSA challenge number was split.

It was the first signs of that the security of RSA was at risk for the numbers around that

size. So far the biggest number factored using QS has been a 135- digit cofactor of

803 4022 2 1− + . It was a special effort in 2001 to show efficiency of the three prime

variation of MPQS although QS was not the factoring champion anymore.

 What is the reason for the superiority of QS over CFRAC? At first glance, it

seems that using continued fractions is more advantageous than using quadratic

polynomials to generate small residues. But the trick lies in the clever idea of

Pomerance, quadratic sieving. Until then, the common way to examine a number for

smoothness was by trial division, testing the number for divisibility by the primes in the

factor base and if divisible, dividing the number by that prime. This entails using costly

 26

and time consuming multi-precission division many times. But employing a new

technique, quadratic sieve, enables us to detect smooth numbers by doing far fewer

divisions and in later variants requiring no division operation at all.

 Contrary to Eratosthenes, this time sieving is not used to detect primes in an

interval but to locate places of numbers divisible by a certain prime. So this way we

already know which residues are divisible by the primes in the factor base thus

eliminating the need to test for divisibility. This seemingly small but indeed giant step

put QS in front of CFRAC.

 There are three basic steps to the quadratic sieve:

1) Initialization

2) Sieving

3) Linear algebra

In the following subsections, these steps will be explained in details.

4.1. Initializing

 Let N be the odd number to be factorized and Nk   = (Here N 
  denotes the

greatest integer less than or equal to N .)

Set 2() []Q x x N x= − ∈Z where x runs over the integers in the interval [,]k M k M− + ,

M k<< . [,]k M k M− + is the sieving interval, the optimal value of M depends on N.

The residues then become,

2 2 2 2 2() , (1) ,.., ,.., (1) , ()k M N k M N k N k M N k M N− − − + − − + − − + − .

Now, a factor base for the residues and a sieving interval must be chosen. The

approximate sizes of the residues are known and the tools how to decide the optimal

factor base size were developed in third chapter. For the sieving interval and the factor

base size, the following table will be used while implementing the basic QS. But these

values may vary depending on N.

 27

 Table 4.1 Approximate parameters for QS (K:1000)

number of
digits of N

factor base
size

M

10 40 600

15 70 8K

20 300 50K

23 1000 70K

26 1700 200K

28 2000 400K

30 2500 800K

The following two lemmas will also be useful to decide which primes will be

included in the factor base and how to sieve the interval with a prime in the FB.

Lemma 4.1. p is a prime. If | ()p Q x and |p N then 1,
N

p

 
= 

 

where () : is the Legendre symbol.

Proof. | ()p Q x implies 2|p x N− . Then,

 2 0 (mod)x N p− ≡

 2 (mod)x N p≡

N is a quadratic residue of p. So 1
N

p

 
= 

 
.

Lemma 4.2. Given 2() []Q x x N x= − ∈Z , p is a prime and α +∈ℤ . Then

0 0| () | (),p Q x p Q x t p tα α α⇔ + ⋅ ∀ ∈ℤ .

Proof. 2 2 2
0 0 0() 2Q x t p x x t p t p Nα α α+ ⋅ = + ⋅ ⋅ ⋅ + ⋅ −

 2 2
0 0(2)x N p x t t pα α= − + ⋅ ⋅ ⋅+ ⋅

 2
0 0() , 2Q x p u u x t t pα α= + ⋅ = ⋅ ⋅ ⋅+ ⋅

By the above identity, the proof of the lemma is straightforward.

 28

The roots of the quadratic congruence

2 (mod), ,x N p p FBα α +≡ ∈ ∈ℤ (4.1)

tells us the places of the residues which are divisible by pα . By using lemma 4.2, those

residues in the sieving interval can be distinguished easily.

 As an initializing step of QS, for each ip FB∈ , the quadratic congruences

2 (mod)ix N p≡ must be solved. The necessary procedures for the solutions will be

given in Theorem 4.1 and Theorem 4.2. Lemma 4.1 says that if p FB∈ then 1
N

p

 
= 

 
.

So we are now ready to see how to solve the congruence (4.1).

Theorem 4.1. Let p be a prime in the factor base.

(i) If 4 3p k= ⋅ + then

 1 (mod)kx N p+≡ is a solution to (4.1).

(ii) If 8 5p k= ⋅ + and 2 1 1 (mod)kN p+ ≡ , then

 1 (mod)kx N p+≡ is a solution to (4.1).

(iii) If 8 5p k= ⋅ + and 2 1 1 (mod)kN p+ ≡ − , then

 () 1 1
4 (mod)

2
k p

x N p
+ + ≡ ⋅ × 

 
,

is a solution to (4.1).

Proof. Since p FB∈ , N is a quadratic residue mod p, then

(1)

2 1 (mod)
p

N p
−

≡ .

(i) It is given that 4 3p k= ⋅ + so

 ()
(1)

21 2 2 2 (mod)
p

k kN N N N N p
−

+ += = × ≡ .

If 8 5p k= ⋅ + , then

 4 2 1 (mod)kN p+ ≡ , which implies two cases.

Case 1:

(ii) 2 1 1 (mod)kN p+ ≡

 ()21 2 1 (mod)k kN N N N p+ += × ≡ .

 29

Case 2:

(iii) 2 1 1 (mod)kN p+ ≡ −

()
2 2

4 2 2 244 2

(1) () (mod)

(mod)

k
k kN N

N p

N p

+
+ +⋅ = ×

≡ − × −
≡

Since 8 5p k= ⋅ + implies
2

1
p

 
= − 

 
.

What if 4 3p k≠ ⋅ + or 8 5p k≠ ⋅ + ?

Then to solve (4.1), Theorem 4.2 comes into play.

Theorem 4.2. Let N be a quadratic residue modulo an odd prime p and h be chosen so

that the Legendre symbol
2 4

1
h N

p

 − ⋅ = − 
 

.

Define a sequence 1 2 3, , ,....V V V by the recursion

1V h= ,

2
2 2V h N= − ⋅ ,

. . .
1 2i i iV h V N V− −= × − × .

We then have that

2
2 2 i

i iV V N= − × and

2 1 1
i

i i iV V V h N+ += × − × ,

and a solution of (4.1) is given by

 1

2

1
(mod)

2p

p
x V p+

+ ≡ × 
 

 (Bressoud,1989. p. 108).

This algorithm was suggested by D. H. Lehmer in 1969. The proof can be found in any

elementary number theory book. It must be noted here that computations in this

algorithm take longer time than required in Theorem 4.1.

 The congruence 2 (mod)x N p≡ , 2, |p p N≠ has two solutions in the interval

{ }0,1,,..., 1p − . One of the roots 0x can be calculated with the help of Theorem 4.1 and

 30

Theorem 4.2. Then the second solution becomes 0p x− . By Lemma 4.2 , all the other

zeros of the polynomial 2() (mod)Q x x N p= − are known to be of the form

 0x x k p= + ⋅ and 0() ,x p x k p k= − + ⋅ ∈ℤ .

In this way, the places of residues divisible by p can be located easily and the need for

trial division required in CFRAC is eliminated.

 By setting sieving interval, factor base and solving congruences (4.1), we are

ready to move to the next stage, sieving.

4.2. Sieving

 In the sieving process, the locations of 'x s in the sieving interval where the

residues ()Q x are B-smooth (completely decomposes over the factor base) are found.

It is the most time consuming part of QS. While Gerver was factoring 47-digit number,

it took 7 minutes to solve congruences (4.1), 6 minutes for the linear algebra stage but

70 hours of CPU time to do sieving.

 The basic sieving algorithm can be formulated as follows:

 (Buchmann, Muller,2005)

 Input: M ∈ℕ , 2() []Q x x N x= − ∈Z , the factor base FB

 Output: Set { }: , ()Nx x M Q x is factor base smooth  − ≤

(1) Compute and store ()Q x for every { },..,N Nx M M      ∈ − + .

(2) For every prime p FB∈ do, compute 0x and { }'
0 0,1,.., 1x p∈ −

with 0() 0(mod)Q x p≡ and '
0() 0(mod)Q x p≡ .

(3) For every 0x x k p= + ⋅ with Nx M  − ≤ do,

replace ()Q x by
()Q x

p
.

(4) If ()'
0x x≠ then for every '

0x x k p= + ⋅ with Nx M  − ≤ do

replace ()Q x by
()Q x

p
.

 Return all { },..,N Nx M M      ∈ − + with () 1Q x = .

 31

Having obtained 'x s for which () 1Q x = , the decomposition of ()Q x over FB can

easily be constructed by trial division. That means, the associated exponent vector for

each ()Q x is generated by trial division.

 It may happen that there is a factor , , 2pα α α+∈ ≥ℤ in the prime

decomposition of ()Q x . In that case, the sieving is done not only by primes but also by

prime powers up to some limit. The solutions to the congruences

 2 (mod), , 2x N pα α α+≡ ∈ ≥ℤ

can be found by Hensel Lifting. But in practice, sieving is done by primes only and the

'x s are collected by giving some tolerance to ()Q x values (()Q x L≤). Then by trial

division, these candidates are tested whether they are FB smooth or not.

Theorem 4.3. (Hensel Lifting) Let ()f x be a polynomial with integer coefficients, p

a prime and 1α ≥ an integer. It is known that xα is a solution to () 0 (mod)f x pα≡ , k

is a solution to ()()
0 (mod)

f x
k f x p

p
α

αα ′+ ⋅ ≡ where 0 x pα α≤ < , 0 k p≤ < ,

()f xα′ denotes the derivative of the function ()f x . Then, 1x x k pα
α α+ = + ⋅ is a

solution to 1() 0 (mod)f x pα +≡ . (Tattersall, 2005)

 For a particular p FB∈ , the values of k for which 0x x k p= + ⋅ falls into the

interval [],N NM M− + ranges from 0 0N NM x M x
to

p p

   − − + −
   
   

.

4.3. Linear Algebra Step

 Having collected enough number of smooth residues after the sieving stage, it is

now time to find a combination of them which forms a Legendre’s congruence. This

step is generally called Gaussian elimination, and how it is carried out is fully explained

in 3.3. Proportional to the size of N, the factor base size increases. This leads to dealing

with very large matrices and this may not be easy to handle with respect to memory and

time considerations. Since operations are done over F2, the matrix turns out to be very

sparse, i.e. a matrix populated primarily with zeros. For large systems, there are

methods which take advantage of this special form of the matrices,namely:

 32

1) Structured Gaussian Elimination

2) The Coordinate Recurrence Method of Wiedemann

3) The Lanczos Algorithm.

For detailed information on these methods we refer to Chapter 7 of (Buchman, Muller,

2005).

 To understand basic QS better, let us illustrate all the steps with one example.

Example 4.1. Let’s factorize N=1349 by basic QS.

Step 1: Initialization

{ }

2() 1349,

36,

7,

1,2,5,13

Q x x

N

M

FB

= −

  = 

=
= −

The sieving interval is []29,43 . [](),N NM M− +

 By solving congruences

(a) 2 1349 (mod 2)x ≡

(b) 2 1349 (mod5)x ≡

(c) 2 1349 (mod13)x ≡

we get (a) has solution set { }1 so all solutions are of the form 1 2 k+ ⋅ ,

 (b) has solution set { }2,3 so all solutions are of the form 2 5 k+ ⋅ and 3 5 k+ ⋅ ,

 (c) has solution set { }6,7 so all solutions are of the form 6 13 k+ ⋅ and7 13 k+ ⋅ .

Step 2: Sieving

 By calculating all residues of ()Q x , the following table is obtained.

x 29 30 31 32 33 34 35 36

()Q x 508− 449− 388− 325− 260− 193− 124− 53−

x 37 38 39 40 41 42 43

()Q x 20 95 172 251 332 415 500

 We start sieving by the primes in the FB.

 33

1) 2p = , the locations of residues divisible by 2 are 1 2 k+ ⋅ , 14,..,21k = .

 The table after sieving by 2p = is shown below.

x 29 30 31 32 33 34 35 36

()Q x 254− 449− 194− 325− 130− 193− 62− 53−

x 37 38 39 40 41 42 43

()Q x 10 95 86 251 166 415 250

2) 5p = , the locations of residues divisible by 5 are 2 5 k+ ⋅ , 6,7,8k = and

 3 5 l+ ⋅ , 6,7,8l =

 The table after sieving by 5p = becomes

x 29 30 31 32 33 34 35 36

()Q x 254− 449− 194− 65− 26− 193− 62− 53−

x 37 38 39 40 41 42 43

()Q x 2 19 86 251 166 83 50

3) 13p = , the locations of residues divisible by 13 are 6 13 k+ ⋅ , 2k = and

 7 13 l+ ⋅ , 2l =

 The resulting table after sieving by 13p = is

x 29 30 31 32 33 34 35 36

()Q x 254− 449− 194− 5− 2− 193− 62− 53−

x 37 38 39 40 41 42 43

()Q x 2 19 86 251 166 83 50

4) Finally, sieving by powers of 2 and 5, i.e. 22 and 25 ,

the table now is

 34

x 29 30 31 32 33 34 35 36

()Q x 127− 449− 97− 1− 1− 193− 31− 53−

x 37 38 39 40 41 42 43

()Q x 1 19 43 251 83 83 5

By collecting values of x such that () 13Q x ≤ , the algorithm returns

the set { }32,33,37,43.

To obtain the associated exponent vectors, we do trial division.

2(32) 1 5 13Q = − ⋅ ⋅ ,

2(33) 1 2 5 13Q = − ⋅ ⋅ ⋅ ,

2(37) 2 5Q = ⋅ ,

2 3(43) 2 5Q = ⋅ .

13 5 2 1

(32) 1 2 0 1

(33) 1 1 2 1

(37) 0 1 2 0

(43) 0 3 2 0

Q

Q

Q

Q

−

Exponent vectors are 1 (1,2,0,1)v = ,

 2 (1,1,2,1)v = ,

 3 (0,1,2,0)v = ,

 4 (0,3,2,0)v = .

The vectors then calculated over F2 so we get

'
1 (1,0,0,1)v = ,

 '
2 (1,1,0,1)v = ,

 '
3 (0,1,0,0)v = ,

 '
4 (0,1,0,0)v = .

 35

After Gaussian elimination step, two Legendre’s congruences are found.

First one, 2 2 2 232 33 37 1300 (mod)N⋅ ⋅ ≡ gives two trivial factors 1 and N.

But the second one, 2 2 2 232 33 43 6500 (mod)N⋅ ⋅ ≡ results in two proper factors 19 and

71 after the calculations gcd(32 33 43 6500,)N⋅ ⋅ − and gcd(32 33 43 6500,)N⋅ ⋅ + .

19 71N = ⋅ is factorized by using basic QS.

 36

CHAPTER 5

 VARIATIONS OF QUADRATIC SIEVE

 Since the QS emerged for the first time, many improvements have beeen made

to it. Some techniques used in CFRAC also adapted to QS. There were two main

handicaps with the basic version. First one is that sieving takes a lot of time in the

factorization of big numbers since the factor base and sieving interval get large

proportional to N’s size. The second one is related to the quadratic residues. They

increase very rapidly so the probability of the residue to be factor base smooth

decreases and this requires sieving very large intervals even to detect one smooth

relation. In the rest of this chapter, the methods developed to solve these drawbacks of

the basic QS and other improvements will be studied .

5.1. Use of a Multiplier

 It is always desirable to have many small primes in our factor base. To enable

this, N is multiplied by a suitable number k and k is called a multiplier.So the number

to be factorized becomes k N⋅ . The multiplier k must be a small square-free integer

and obviously the factor base changes accordingly. Generally, k is chosen to be

between 1 and 100, otherwise k N⋅ becomes very large and it takes away more than it

compensates. Multiplying N by k increases the size of residues by a factor of k . So

how to choose multiplier while trying to maximize the number of small primes in the

factor base and trying to minimize k ?

 The selection of k is done according to the function that will be given next.

We select a value of k that maximizes the modified Knuth-Schroeppel function

1
log () log

2 p
p B

k E k p
≤

− + ⋅∑ .

 Here,

 37

2 1(mod8)
2

0

1()

2

p

if N
p

otherwise

E k if p divides kp
else

otherwisep

 ≡
= 


 =  




 

where the sum is over those primes p B≤ with

2, 1 |
kN

p or p k
p

 
= = 

 
 (Kurowski,1998).

The quality of the multiplier k and the corresponding value of the modified Knuth-

Schroeppel function may reduce the runtime by a factor up to 2.5 (Silverman,1987).

For example, N to be of the form 8 1k + is a case we want because then 2()Q x x N= −

is divisible by 8 for all odd values of x . Most of the time, setting

 mod8k N=

is a good choice of multiplier for moderate size N since k N⋅ turns into the desired

form 8 1k + .

Example 5.1. Let N=923, { }1,2,13,19FB = − , []23,37SI = (SI:sieving interval)

In the sieving interval, there is only one FB-smooth residue. But, if a multiplier

3 (mod8)k N= ≡ is used, then the parameters become

3 2769N N′ = ⋅ = , { }1,2,3,5FB′ = − , []45,59SI ′ = .

And this time, even if SI SI ′= , there are 3-smooth residues detected in the SI ′ .

5.2. Logarithm Variant

 The aim of sieving process is to identify locations of x such that 2()Q x x N= −

factors completely into our factor base. In the basic QS, by solving quadratic

congruences 2 (mod)x N pα≡ , places of x’s in the sieving interval where ()Q x is

divisible by pα are found and those ()Q x ’s are then divided by p. The logarithm

variant replaces these slow division operation by subtraction or addition. Since latter

 38

ones are much faster than division, in this way sieving time can be reduced greately

depending on the size of the factor base and the sieving interval. The steps can be

summarized as follows:

(1) Set an array of size equal to the sieving interval, then compute and store the

approximate value of log ()Q x in the location corresponding to the

argument x , [],N Nx M M∈ − + .

(2) Identify x ’s in the SI, where ()Q x is divisible by p.

(3) Subtract from those locations the weight log p associated with p. This step

replaces division by faster subtraction.

(4) Repeat the steps (2) and (3) for each p FB∈ .

(5) Scan the array for residual logs that are close to 0 and these locations

correspond to the values of ()Q x that factors completely into our factor base

(Pomerance,1985).

(6) Do the usual trial division and linear algebra steps.

In later modified logarithm variants, subtraction is changed to addition in the

following way: In step (1), all array entries are initialized to 0 instead of computing

log ()Q x for each x. There is no change in step (2). But in the next stage, the weight

log p is added to the corresponding locations rather than subtracting. It is repeated for

each p FB∈ . And this time to identify x ’s such that ()Q x is FB-smooth, we scan the

array for the summed logs that are close to target that will be defined next.

 If we are sieving over 2 1M⋅ + values, then the logarithm of the absolute value

of ()2
, 0,..,2N M i N i M   − + − = will be approximately

 target
log

log
2

N
M= + . (Bressoud,1989)

This logarithm variant, suggested by Silverman (Silverman,1987), speeds up the sieving

process because first step in the subtraction version requires calculating log ()Q x ,

2 1M⋅ + times. But in Silverman’s version, we just initialize all cells of the array to 0.

Therefore, proportional to the size of M, a great deal of time is saved.

 39

When the sieving is done by addition, those entries close to target are collected.

But how close?

In (Silverman,1987), it is suggested to collect indexes where a value bigger than

threshold = target maxlogT p− ×

is accumulated. Here pmax is the biggest prime in the factor base and T is a constant

near 2. The Table 5.1 gives optimal values of T with respect to N.

 Table 5.1 T-adjustment of the threshold value

Number of digits of N T

24 1.5

30 1.5

36 1.75

42 2.0

48 2.0

54 2.2

60 2.4

66 2.6

It must be noted that in this implementation a very few number of fully factorable

()Q x ’s may be missed but the time saved makes up for more than what’s lost.

5.3. Small Prime Variation

 On avarage, the sieving time takes more than 85% of the total running time

(Boender,Riele,1995). So it is important to optimize the sieving process. Another

method,called small prime variation, saves about 20% of the sieving time. This

variation is based on the following idea:

 Let 10ip < and 100jp > , ,i jp p FB∈ . In the SI, the multiples of ip occur at

least 10 times as frequently as jp ’s. Therefore, sieving with small primes takes a

substantial percentage of overall time. And also at the occurences of small primes ip ,

 40

log ip is added to the locations, so compared to log jp ’s, they don’t contribute much to

the sieving. That’s why, in practice, it is customary to start sieving with primes bigger

than a fixed bound L, generally with 30L ≈ , and then the threshold value is reduced by

 log
p L

p
<
∑ or log

p L

p
α <
∑ ,

so we don’t lose anything. If L is defined 30≈ , then log 20
p L

p
<

<∑ .

But the negative side of this variation is that after sieving, depending on the modified

threshold value, it may cause a few false residues to be collected. Nevertheless, the

resulting performance is much better.

5.4. Special q-Polynomials

 As mentioned earlier at the beginning of this chapter, the rapid growth in the

residues of the quadratic polynomial was one of the main drawbacks of basic QS. The

larger the residue, the less likely it is to factor over the factor base. While implementing

QS at Sandia Lab., Jim Davis developed an important enhancement that mitigated this

handicap. He found a way to switch to the other quadratic polynomial after values of the

first one, 2()Q x x N= − , grew uncomfortabley large (Pomerance,1996).

After sieving, it is very likely to come up with a residue at location 0x such that

||

0
1

() i

FB

i
i

Q x p qα

=

= ⋅∏ ,

where ip FB∈ and 2
max maxp q p< < .

If q is a prime, and most of the time it is, consider

 ()2

0 0()Q x k q x k q N+ ⋅ = + ⋅ −

 2 2
0 0() 2Q x k q x k q= + ⋅ ⋅ ⋅ + ⋅

 ()Q k= .

Every term of ()Q k is divisible by q and the magnitude of

 41

0()Q x k q

q

+ ⋅

is essentially that of ()Q k (Davis,Holdridge,1983). Then the residues to be sieved are

generated by ()Q k for [],k M M∈ − . The sieving on these residues is done by the usual

way. These special q’s are easy to find and at no cost. To keep the residues small ,

sieving is done over small intervals and when we are done, it is switched to another

special q-polynomial.

 This modification enables to factor big numbers in less time.

For example, Sieving of 58-digit Cunningham number took about one-sixth of the time

that single polynomial version required. (Davis, Holdridge,1983)

5.5. The Multi-Polynomial Quadratic Sieve (MPQS)

 Another remedy for the uncomfortable growth of the residues was found by

P. Montgomery. In the previous section, special q-polynomials were used to keep

residues small by switching to another polynomial. Inspired from this method,

P. Montgomery developed a better strategy than using special q-polynomials. It is called

Multi-Polynomial Quadratic Sieve (MPQS for short). As the name suggests, several

different polynomials are used to keep the sieving interval short and as a result residues

small. The basic version of QS can be used to factorize integers up to 50-digit long in a

reasonable time(Buchmann,Muller,2005) but with MPQS, this can be up to 100-digits.

The idea and the computations of the polynomials will be explained in the rest of this

chapter.

 As a polynomial set 2()Q x ax bx c= + + such that 2 4b ac N− = , , ,a b c ∈ℤ .

Because only in that case ()Q x generates quadratic residues.

 b is selected odd then 2 4 1 (mod 4)b ac− ≡ .

 N must be of the form 4 1k + because of the previous arguments, if not, N is

multiplied by a suitable multiplier k to convert into the desired form.

 2()Q x ax bx c= + + ,

 42

2 2 4

()
2 4

b b ac
Q x a x

a a

− = + − 
 

, (5.1)

 then

2

() (mod)
2

b
Q x a x N

a
 ≡ + 
 

 (5.2)

Let 2a d= , :d prime and 1
N

d
  = 
 

.

The equation (5.1) and the congruence (5.2) become

2 2 2

2

4
()

2 4

b b d c
Q x dx

d d

− = + − 
 

, (5.3)

2

() (mod)
2

b
Q x dx N

d
 ≡ + 
 

. (5.4)

We will adopt (5.4) for the congruences. This idea, choosing 2a d= , is Pomerance’s.

What we want is to make the value of ()Q x as small as possible over [],M M− .

By minimizing,

 ()
M

M

Q x dx
−
∫ with the constraint 2 4b ac N− = , , ,a b c ∈ℤ ,

it is obtained that,

2

N
a

M
=

⋅
,

 0b = ,

1

2 2
c M N

−= .

Minimizing ()
M

M

Q x dx
−
∫ is equivalent to minimizing ()Q x values small because the

base of the parabola 2M is fixed and the area is directly proportional to the height of

the parabola, i.e. ()Q x values. The constructed polynomial ()Q x satisfies the inequality

 43

1

()
2

Q x M N≤ , [],x M M∈ − .

A 2 2 improvement over q-polynomials which take values 2 NM≤ ⋅ ⋅ in [],M M− .

The selection of the parameters and the computations are done as follows:

(1) Determine the size of FB and the length of the sieving interval 2 1M + .

(2) Select a multiplier k such that 1 (mod4)kN ≡ .

(3) Choose 2a d= where d is a prime with

 1
kN

d
  = 
 

,
/2kN

d
M

≈ and 3(mod)d N≡ .

(4) Solve 2 (mod)b kN a≡ for b. kN must be a quadratic residue modulo d since

2 4b ac kN− = . By an elementary application of Hensel’ Lemma (by Wagstaff),

 2 (mod)b kN a≡ can be solved easily.

The solution is

 2
1 2 (mod)b h h d d≡ + where

1

4

1 () (mod)
d

h kN d
+

≡ and

2

1 1
2 1(2) (mod)

kN h
h h d

d
−  −≡  
 

.

b must be odd, in case b is even, subtract it from 2d .

(5) ip FB∀ ∈ ,

 The roots of () 0 (mod)iQ x p≡

 are (mod)
2 i

b kN
p

a

− ±
.

Here, kN± stands for the integer solutions of the congruence

 2 (mod)ix kN p≡ .

To summarize whole procedure as an algorithm

 44

 While (not enough smooth residues found)

 Begin

 Generate coefficients for the polynomial.

 Solve () 0 (mod)iQ x p≡ , ip FB∀ ∈ .

 Do the sieving.

 Scan the sieve array: If any value exceeds the threshold value,

 Begin

 Compute ()Q x and find its factorization via trial division.

 Save the value of H where
2

2 2
() (mod)

2

a x b
Q x H kN

d

⋅ ⋅ + ≡ ≡  ⋅ 

 and the exponent vector of ()Q x .

 End.

End.

(Silverman,1987)

Example 5.2. Given N=13223521. Let us do the necessary computations step by

step to generate a polynomial.

Set M=20.

1 (mod 4)N ≡ , then the multiplier 1k = .

2a d= ,
/ 2N

d
M

≈ . 11 d = and 3 (mod 4)d ≡ , 1
N

d
  = 
 

.

Then 121a = .

By solving the congruence

 2 (mod)b N a≡ ,

the roots are found to be 6b = and 115b = .

Since b must be odd, 115b = .

 45

Using 2 4b ac N− = , the last coefficient 27294c = − is calculated.

2() 121 115 27294Q x x x= + − is the polynomial we want. And obviously,

2

2

115
() 11

2 11 4 11

N
Q x x

 = + − ⋅ ⋅ 
,

2

115
() 11 (mod)

2 11
Q x x N

 ≡ + ⋅ 
.

Some relations found by using ()Q x ,

2(1) 27058 7813915 (mod)Q N= − ≡ and 2(0) 27294 7813904 (mod)Q N= − ≡ .

5.6. Self-Inititializing Quadratic Sieve (SIQS)

 In MPQS, the polynomial change is costly. For each polynomial, to find

locations which are divisible by p FB∈ ,

 () 1
2 (mod)a p

−
 (5.5)

has to be calculated. For example, for a 60-digit number, the factor base size is about

3000, so every polynomial change requires computing (5.5), 3000 times. The cost of

switching to another polynomial is dominated by calculating inverse of ()2a for each

prime.

 An efficient way of changing polynomials was found by Alford and Pomerance

in 1993. This variant of MPQS is called self-initializing quadratic sieve (SIQS). Since

polynomials can be changed quickly, in this variant, smaller M than MPQS can be used.

Therefore, the residues become smaller.

The calculations of the polynomials are done in the following way:

(i) Choose 30k < primes 1 2, ,..., kd d d FB∈ such that

1

22 k

i

N
d

M

 
≈   
 

 and 1
i

N

d

 
= 

 
.

(ii) Let 1 2 ... kd d d d= ⋅ ⋅ ⋅ and 2a d= .

 46

(iii) By the CRT(Chinese Remainder Teorem),

 2 (mod)b N a≡

has 2k solutions for b. And each root satisfies the condition

2 4 , 1 2k
ib ac N i− = ≤ ≤ .

But only 12k − of the solutions are useful as will be explained next.

b is the solution to the system of congruences by CRT,

2
1 1

2
2 2

2

(mod)

(mod)

(mod)k k

x b d

x b d

x b d

≡ +

≡ ±

≡ ±
⋮

where ()2 2(mod)i ib N d± ≡ . By using only ib+ in the first congruence, there are 12k −

solutions. Because (mod)i jb b a≡ ± implies the generated polynomials

2
1() (2)Q x ax b N= + − and 2

2() (2)Q x ax b N= − − are mutually symmetric about 0x = .

Then to use only one such b, i.e. to eliminate the case (mod)i jb b a≡ ± , we fix the sign

in one of the congruences. There are 12k − combinations of signs, that means

corresponding to each a , 12k − different b ’s can be generated, all 12k − possible

polynomials are obtained in this way.

 The costly operation () 1
2 (mod),i ia p p FB

− ∈ is calculated only once and then

stored. When b is changed, i.e. the polynomial, the precomputated values (inverses) are

used at no cost. By this variation, a speed-up of a few percent of the total computing

time can be gained(Boender, Riele ,1995).

5.7. Large Prime Variation

 If the residue at a location x in the sieving interval completely decomposes over

the factor base, it is called a full(smooth) relation. The question is now how to make use

of partial relations

 ()
i

i
p FB

Q x p P
∈

= ⋅∏ , wehere P FB∉ , P:prime.

 47

In chapter 3, it was shown that two 1-partial relations with the same large prime P lead

to a full relation. By the Birthday Paradox, there is a reasonable good chance that the

same P will appear twice or more after collecting enough number of partial relations.

And finding 1-partial relations is at no extra cost. For example, for the factorization of

102-digit number, 180879 1-partial relations were collected and as a result 11433

additional full relations were obtained (Denny,1993).

 To detect large primes which are slightly bigger than pmax, the threshold value is

kept to be
max

2p . In logarithm variant, it is set to be
max

2log p . After the trial division by

the numbers in the FB, the remainder P must be a prime between

 2

max max
p pP< < .

In practice an upper bound L for the threshold value is chosen because collecting all

partial relations require a lot of disk space and bigger P’s don’t contribute much.

Generally,
max

10 100
L

p
< < is a good choice.

 In the same way, relations of the form

1 2()
i

i
p FB

Q x p P P
∈

= ⋅ ⋅∏ , wehere 1 2,P P FB∉ , 1 2,P P :prime, can be found.

Such relations are called partial-partial (2-partial) relations . To find combinations of 1-

partial and 2-partial relations that give a full relation, the cycles in undirected graphs are

used (Boender,Riele,1995). In this double prime variation, if the remainder R after the

trial division satisfy 1L R L< < and R is composite, then the large prime factors of R

can be found by a suitable factoring algorithm. Generally, Shank’s SQUFOF or

ECM(Elliptic Curve Method) is used. So this variation requires some extra

computation.

 More large prime variations can be used for factorization of very big numbers.

Earlier studies have shown that using one large prime variation is always better than

none, and the double prime variation is more efficient when factoring integers with

more than 80-digits (Leyland et al., 2001). In 1994, the RSA challenge number (RSA-

129) was factored using PPMPQS (Double Large Prime variation of MPQS) and in

2001 a 135-digit number was factored using TMPQS (Three Large Prime variation of

MPQS).

 48

CHAPTER 6

 EXPERIMENTAL RESULTS

 In the previous chapter, the variations of the QS have been introduced. In order

to show the effects of them, we wrote maple codes and ran tests on random numbers

between 10 to 35 digits. Because the linear algebra stage is fixed for all variations, we

did not implement that part. Since the main aim is to reduce the sieving time and the

efficiency can be measured with respect to it, we measured it for each variation.

 The test numbers we used are as follows:

c10=3605478927,

c15=781254789636521,

c20=86587412021455590143,

c23=42589740114577785544069,

c26=62111072210124773690021303,

c28=7896510144129021400155877441,

c30=325412235487201240012587445447,

c32=12345678909876543210122233301039,

c34=2021458722547810032556987410235477.

Here, c stands for compositeness and the adjoining number next to c denotes the number

of digits of the number.

 We used the following abbreviations throughout our tests:

M: sieving interval,

FBS: factor base size,

 49

SR: number of smooth relations found,

SR: sieving time,

K: 1000,

s: second.

6.1. Using a Multiplier Test

 Number = c10 , M=600, FBS=40

Multiplier SR

1* 42

7 77

 Number = c20 , M=50K, FBS=300

Multiplier SR

1 140

7 390

17* 562

 Number = c26 , M=200K, FBS=1700

Multiplier SR

1 982

5* 1739

7 1726

It can be observed that using a good multiplier may reduce the runtime of QS up to 3

times. Here, the ones with a (*) shows the multiplier calculated by our maple code.

And we also run test using the multiplier k where k=N mod 8. As a method, basic QS is

used.

 50

6.2. Logarithm Variant Test

 Number = c23 , M=70K, FBS=1000, Multiplier=1

Method SR ST

Basic QS 1006 17.045s

Log Variant (T=1.1) 1001 14.969s

 Number = c28 , M=200K, FBS=2000, Multiplier=1

Method SR ST

Basic QS 2070 92.171s

Log Variant (T=1.2) 2072 59.984s

 Number = c30 , M=500K, FBS=2500, Multiplier=3

Method SR ST

Basic QS 1853 408.405s

Log Variant (T=1.2) 1852 215.596s

As the number gets bigger, the efficiency of the logarithm variant increases. The

initialization step in the logarithm variant is faster but here it is not calculated.

6.3. Small Prime Variation Test

 Number = c23 , M=70K, FBS=1000, Multiplier=1

Method SR ST

Basic QS 1006 17.045s

Small Prime Variation 972 7.765s

 51

 Number = c28 , M=200K, FBS=2000, Multiplier=1

Method SR ST

Basic QS 2070 92.171s

Small Prime Variation 1895 42.890s

 Number = c30 , M=500K, FBS=2500, Multiplier=3

Method SR ST

Basic QS 1853 408.405s

Small Prime Variation 1831 194.095s

In the small prime variation, sieving has started from the 7th prime in the factor base.

A few smooth relations were missed but the time gained compensated for them.

6.4. Comparing Variations

In this section, the sieving times of basic QS, special q-Polynomials and MPQS

will be measured. For all of them, small prime and logarithm variant will be used. For

the sieving interval and the factor base size, the following table (Bressoud, 1989, p.

118) will be helpful while implementing the special q-Polynomials and MPQS .

Table 6.1 Optimal parameters for MPQS and q-polynomials (K:1000)

number of digits of N factor base size M

24 100 5K

30 200 25K

36 400 25K

42 900 50K

48 1200 100K

54 2000 250K

60 3000 350K

66 4500 500K

 52

 Number = c15 , Multiplier=1

Method M FBS ST SR # of Poly.

Basic QS 8K 70 0.968s 71 1

q-Poly. 700 50 1.752s 65 4

MPQS 700 50 1.515s 66 4

 Number = c26 , Multiplier=5

Method M FBS ST SR # of Poly.

Basic QS 200K 1700 38.733s 1732 1

q-Poly. 25K 200 17.984s 219 12

MPQS 25K 200 11.218s 221 11

For MPQS, the multiplier was set to be 7, otherwise the number is not of the form 4k+1.

Number = c32 , Multiplier=1

Method M FBS ST SR # of Poly.

Basic QS 800K 3500 270.842s 2829 1

q-Poly. 70K 600 82.421 639 16

MPQS 70K 600 51.673 647 13

For MPQS, the multiplier was 59, otherwise the number is not of the form 4k+1.

Number = c34 , Multiplier=97

Method M FBS ST SR # of Poly.

Basic QS - - - - -

q-Poly. 1000K 1000 167.047s 1045 17

MPQS 1000K 1000 110.923s 1033 17

 53

From the experimental results, it can be observed that MPQS outperforms others

and the basic QS is not suitable for the numbers above 30 digits. But for the small

numbers basic QS has the best performance.

All the tests were run on Maple 10 using a single PC with the following

properties Pentium(R) D CPU 2.80 GHZ and 1GB RAM. You can obtain the codes by

contacting me via skaradeniz@fatih.edu.tr.

 54

CHAPTER 7

 CONCLUSION

 One of the greatest steps taken on the way to solve the IFP was the invention of

the QS. It is very simple and still efficient. For the numbers that range from 50 digits to

110 digits, QS is the fastest known algorithm. Since a basic version of it was

implemented for the first time, many improvements have been made. In this thesis, we

did a thorough survey on these improvements(variations) and by using maple, the

effects of some of them have been shown experimentally.

 In this research, we applied some variations of the quadratic sieve to some

specific randomly chosen lerge integers.

 As a result of our experiments, it was observed that using an appropriate

multiplier can significantly reduces the runtime of the QS. The logarithm variant and

small prime variations are also applied to some large numbers, as a result of which we

observed substantial improvements.

 We also tested two multi polynomial variants, special q-polynomials and MPQS,

and found out that MPQS outperformed all the other variants.

 This research suggests that further improvements to the quadratic sieve integer

factoring algorithm may be attained in the future.

 55

REFERENCES

Agrawal, M., N. Kayal and N. Saxena, “Primes is in P”, Annals of Math.,

Vol.160, No.2, pp.781-793, 2004.

Bernstein, J.D., Integer Factorization, 2006,

 http://cr.yp.to.mirror.dogmap.org/2006.aws/notes-20060306.pdf.

Boender,H. and J. Riele, Factoring Integers with Large PrimeVariations

of the Quadratic Sieve, CWI Report, NM-R9513, 1995.

Bressoud, D. M., Factorization and Primality Testing, UTM, Springer-Verlag, 1989.

Buchmann, J. and V. Müller, Algorithms for Factoring Integers, 2005,

 http://citeseer.ist.psu.edu/219938.htm

Cohen, H., A Course in Computational Algebraic Number Theory, Third Ed.,

Springer, 1996.

Contini, S. P., Factoring Integers with the Self-Initializing Quadratic Sieve,

M.S. Thesis, University of Georgia, 1997.

Davis, J. A. And D. B.Holdridge, Factorization Using the Quadratic Sieve Algorithm,

 Sandia Report, Sand 83-1346, Sandia National Laboratories,Albuquerque,

 NM,1983.

Denny, T. F., Foktorisieren mit dem Quadratischen Sieb, Ph.D. Thesis, Universitat des

 Saarlandes, 1993.

Dixon, J. D., “Factorization and Primality Tests”, The American Mathematical

 Monthly, Vol.91, No.6, pp.333-352, Jun.-Jul. 1984.

Gathen, J. and J. Gerhard, Modern Computer Algebra, Cambridge University

Press, 1999

Gerver, J. L., “Factoring Large Numbers with a Quadratic Sieve”, Mathematics

 of Computation, Vol.41, No.163, pp.287-294, July 1983.

 56

Kechlibar, M., The Quadratic Sieve-introduction to theory with regard

to implementation issues, Ph. D. Thesis, 2005.

Kendirli, B., Number Theory with Cryptographic Applications, Fatih University,

 Istanbul, 2006.

Kurowsky, B., The Multiple Polynomial Quadratic Sieve, 1998,

 http://brandt.kurowsky.net/projects/mpqs/paper/mpqs.ps.gz

Landquist, E., The Quadratic Sieve Factoring Algorithm, 2001,

 http://www.cs.virginia.edu/crab/QFS_Simple.pdf

Leyland, P., A. Lenstra, B. Dodson, A. Muffett and S. Wagstaff, MPQS with

Three Large Primes,2001,

http://www.leyland.vispa.com/numth/factorization/2,1606L/tmpqs.ps

Montgomery, P., “A Survey of Modern Integer Factorization Algorithms”,

 CWI Quarterly, Vol.7, No.4, pp.337-365, 1994.

Morrison, M. and J. Brillhart, “A Method of Factoring and the Factorization of F7”,

 Mathematics of Computation, Vol.29, No. 129, pp.183-205, Jan. 1975.

Odlyzko, A. M., “The Future of Integer Factorization”, Cryptobytes, Vol.1, No.2,

 pp.5-12, July 1995.

Pomerance, C., “The Quadratic Sieve Factoring Algorithm”, Proc. of the Eurocrypt

84, Workshop on Advances in Cryptology: Theory and Applications

of Cryptographic Techniques, Paris-France, pp.169-182, Springer-Verlac,1985.

Pomerance, C., “A Tale of Two Sieves”, Notices of the AMS, 43 ,1996.

Pomerance, C., Smooth Numbers and the Quadratic Sieve, 2000,

 http://www.math.dartmouth.edu / carlp/PDF/qstalk3.pdf

Rabah, K., “Review of Methods for Integer Factorization Applied to Cryptography”,

 Journal of Applied Sciences, Vol.6, No.1, pp.458-481, 2006.

 57

Riesel, H., Prime Numbers and Computer Methods for Factorization,

Second Ed. Birkhauser, Boston, 1994.

Silverman, R. D., “The Multiple Polynomial Quadratic Sieve”, Mathematics

of Computation, Vol.48, No.177, pp.329-339, January 1987.

Tattershall, J. J., Elementary Number Theory in Nine Chapters, Second Ed.,

 Cambridge University Press, 2005.

Williams, H.C., “A p+1 Method of Factoring”, Mathematics of Computation,

 Vol.39, No.159, pp.225-234, July 1982.

