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ABSTRACT

No polynomial time solutions for the integer factation problem (IFP) have yet been
found. The security of RSA cryptosystem is basedhendifficulty of the above problem.
With the advent of RSA, the IFP has gained a gileat more practical importance. One of
the important methods that has been developed $® tfee Quadratic Sieve Method (QS).

The work presented here addresses the quadrate isieeger factorization algorithm
and its variations. We will begin with some elenaent factorization algorithms and
techniques. And then, the quadratic sieve andatgtons will be presented together with

some Maple implementations.

Keywords: Integer Factorization, Quadratic Sieve, MultifA@mial Quadratic Sieve, Large
Prime Variation.



TAMSAYILARI CARPANLARA AYIRMA YONTEM 1
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ARASTIRILMASI
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Tez Yoneticisi: Prof.Dr. BagiIKENDIRLI

OZET

Tamsayilari asal carpanlarina ayirmak icin polineamanli bir algoritma heniz
bulunamamgtir. RSA sifreleme sisteminin guvergi bir tamsaylyr asal carpanlarina
ayirmanin zorlguna dayanir. RSA'nin bulunmasiyla birlikte tamsanyicarpanlarina ayirma
probleminin 6nemi daha da argnr. Bu problemin ¢6zimindgu ana kadar getlirilen
algoritmalarin en 6nemlilerinden birisi “Kuadratifek” metodudur.

Bu tez Kuadratik Elek metodu ve varyasyonlari iimerir ¢alsmadir. Oncelikle
yukaridaki problemin ¢6zimunde kullanilan bazi teatgoritmalar ve teknikler verilecektir.
Maple uygulamalariyla birlikte, Kuadratik Elek mdtove varyasyonlari detayli bjekilde

incelenecektir.

Anahtar Kelimeler: Tamsayilari carpanlara ayirma, Kuadratik Elelok @olinomlu Kuadratik

Elek, Buyuk Asal Varyasyonu.
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CHAPTER 1

INTRODUCTION

Two fascinating problems of the computational number theory have been
primality testing and integer factorization problem (IFP). Many great mathematicians of
the past, Fermat, Euler, Legendre, Gauss and many others, worked on these problems
and set the basis of the many of the techniques used today.

The former one deals with the question that for a given positive integer N, to say
whether N is a prime number or not. En route to the solution, great progress has been
shown. There are many successful probabilistic algorithms and even a deterministic one
(Agrawal et al.,2004) running at a polynomial time.

You run a primality test on N and it turned out to be not a prime, i.e. composite.
Now, the question: what to do next? How to find the prime factors of N?

Although “the fundamental theorem of arithmetic” says that every integer can be
decomposed into a product of primes uniquely, most of the time, to cast out those prime
factors is not that easy.

IFP looks for those primes, i.e. to extract out prime factors of a composite
integer N, in other words, to decompose N into its prime factors as stated in the
fundamental theorem. Even today, with the availability of highly fast computers, there
seems to be a long way to go on the way to solve the integer factorization problem.

Anyone with elementary knowledge of arithmetic knows divisibility rules for
2, 3,5, 9,11 and even more. In the very past, they were enough. Why should we ask for
more? Unfortunately, every number is not only divisible by them. Today, at this point
we need more complicated tools compared to the very primitive tools of the past.

The question “why should we ask for more?” gained a lot more practical
importance with the advent of RSA public-key cryptosystem in 1977. Its security is

based on the difficulty of the IFP. All the researches done so far on the security of RSA



suggest that breaking RSA cryptosystem is equivaten factorizing a positive
composite integer N which is the product of twonmms. The problem in this case is
called hard factorization problem.

When RSA was invented, factoring a 50-digit numbas very hard. At that
time, the Brillhart-Morrison continued fraction algthm was the best available method
and there were a few others, like Pollard’s p-1ljadis rho, Shank’s SQUFOF. With
the genesis of Pomerance’s quadratic sieve (Q3982, a giant step was taken on the
way to solve the IFP. Factoring numbers more thahdigit became commonplace, i.e.
the length of numbers that could be factored dalidie 1994, 129-digit RSA challenge
number was factorized by a variant of this methHazhically, in 1976 that number was
estimated to be safe for 40 quadrillion years bytMaGardner in Scientific American.

In the spring of 1996, QS lost its crown to Numbezld Sieve (NFS). By NFS, 130-
digit RSA challenge number was split successfullabout 15% of the time QS would
have required (Pomerance,1996). From that timeodiars NFS has been the factoring
champion. With this method, between December 20G8 May 2005, RSA-200 was
decomposed and 313-digit special Mersenne nun®& -1 was split by Special
Number Field Sieve (SNFS) in May 2007 by a groupeskarchers.

What attracted us about studying Pomerance’s @Sa #hesis topic then?
Because the idea behind QS is very beautiful, smapd still effective. It is the fastest
known factorization method for the numbers betwédénto 110 digits long. Since it
emerged for the first time, many major improvememése been made and nobody
knows what future awaits for us.

In Chapter 2, four different factorization methpdfi stemming from different
ideas, will be studied with their mathematical Isasehey are respectively, Fermat’s
difference of squares, Pollard’s- (p-1), Pollardisd Strassen’s method and continued
fraction algorithm (CFRAC).

In Chapter 3, a common systematic factorizatioatatyy will be studied. Today,
it is used by most of the modern factorization rodthexcept elliptic curve method
(ECM).

In Chapter 4, we will explain the basic versiontleé quadratic sieve and the
underlying ideas behind its success.

The last two chapters will be about variation€ & and the experimental results
obtained from Maple 10 implementations.



CHAPTER 2
FACTORIZATION METHODS

There are numerous techniques employed to factorize an integer into its prime
factors. In this chapter, we will briefly explain some of them to give an idea of the
richness of the methods and the mathematical tools behind them.

From now on N will represent the composite number to be factorized.
2.1. Fermat’s Factoring Method (Difference of Squares)

Trial division just tests a number for divisibility by a prime and if it turns out to
be divisible, then divides by that prime. If not divisible, next prime is tested and so on.
This method dates back to B.C. and can only be used to extract out small divisors of a
number.

After the trial division, Fermat's method is the oldest systematic way of
factoring integers. It has a historical importance and the same idea with improvements
lies at the heart of the most modern factoring algorithms.

Fermat’s idea was to express N as a difference of squares. Let N be a composite
odd number, saN = alb. If we are able to write

N =x"-y?,

N =(x+y)(x-y),
then two factors of N can be found immediately. So the question arises now is how
such a representation of N can be found. Indeed, it is carried out via the squares of half
of the sum and difference of two proper factors whose product is N.

N=alb,

RESRe|

is the form that we look for.

Since ,

%b >Jab=+N (by AM-GM inequality ifa # b),



we iteratively start by first computing

m= L\/WJ +1, as an approximation g;—b,

. . + .
which is the smallest possible value %21'—13 unless N is a square number.

Next, it must be checked that
t,=m’-N
is a square number or not. If it is, then
N =’ -k* wheret, =k?,
a factorization is found. Otherwise, calculate
t,=(m+1)* =N = (¢, + 2m+1)
and test whether it is a square or not and contumi# the differencet, becomes a
square number.

Example 2.1. N=1273,m= L\/WJ +1=36

m 2m+1 t
36 73 23
37 75 96
38 77 171
39 79 248
40 81 327
41 83 408
42 85 491
43 87 576

In the last rowt =576= 24 has been found, now using that

N can be written as a difference of squares anmriaed as

N =43 - 24
=(43+ 24)(43- 24
= 67019



67+19 67-19

Obviously, m= =43 andt = =24.

Some improvements can be made to Fermat's me8inde t must be a square

number, last two-digit of t can be any of the fallng 22 combinations:

Table 2.1Possible 2-digit endings of a square number

00 01 04 09 16 21 24 25 29 36 41

44 49 56 61 64 69 76 81 84 89

QJ

This fact greatly simplifies the search for squanmesthe column t of the table
(Riesel,1994).
Another improvement to Fermat's method existd isiknown that the prime

divisors of N have a certain form. For example, drdye’s Theorem states that all
prime factorsp of the numberN =a" £b", with gcd(a,b)=1, are in the form
p=k+1, kOZ",
apart from those which divide the algebraic faxtirthe form
a"+b™, m<n, of N (Riesel,1994).
Shortly,

p=k+1 where N=a"-b"
p=2klh+1 where N =a" +b"

Example 2.2.The fifth Fermat numberF, = 2% +1= 22+ 1 has prime divisors of the
form p=64k + 1.
F, =641[570041

641= 1 (mod64)
6700417= 1 (mod 6¢

as stated by Legendre’s Theorem.

Lemma 2.1.Fermat’s method can be speeded up by a fact@nofif all factors of N
are in the form2 [k [n +1.
Proof. Let N satisfy the conditions given in the lemmagrth

N = plg = (20 h+1)(20k, (h + 1)



N +1= 4k, [k, [’ + p+q

p+q_N+1

mod n?).
> ( )

So for the numbers = L\/NJ +1 in the method, only the ones such that
m=a+2Kkm?, kOZ* whereaENTJrl(modmz)

must be tested. This gives us a speed-up of fator

In 1920’s, Maurice Kraitchik developed an ideadzhen Fermat’s difference of
squares technique.Today, his idea sets the basignahy factorization algorithms
(Rabah,2006). This time, we are not looking fofatégnces of squares equal kb, but

a multiple of N, i.e.
x* —y?=k[N
x? = y?(modN).
But finding a non-trivial factor is not guarantebyg the above congruence. However,
the probability is still as high as 50%, and tharate to obtain a congruence
x? = y?(modN),
is much higher than finding and y such that

xX*—y?=N.
2.2. Pollard’s (p-1)-Method

In 1974, J. M. Pollard found this method. It istable for certain composite
integers which have a special kind of prime divisor
Definition 2.1. (Cohen,1996) LeB be a positive integer. A positive integersaid to
be B-smooth if all the prime divisors ohare less than or equal ®. We will say that

n is B-powersmooth if all prime powers dividingh are less than or equal ®.

Theorem 2.1.1f N has a prime divisop such thatp-1 is B -powersmooth , themp
can be extracted out by calculating
gcd@“™-® - 1N ) whereged@,N )= 1.

Proof. Since p-1 is B -powersmooth,



lem1.B]=k{p-1),kOZ".
By Fermat’s Little Theorem,

a’*=1(modp), and

amfl = g =1 (modp).
That implies,

plamel_q

so ged@“™® -1N)=p.

Example 2.3.Let B=10. If N has any of the following prime factorp , the

following table shows whether they can be detebtethis method or not.

p p-1 B -powersmooth
7 213 yes

11 25 yes

13 713 yes

19 2.3 yes

23 2111 no

29 Z.7 yes

The algorithm for this method proceeds as folloR®egel,1994):
Generate a list of all primes and prime-powersaipame bound, say 16. For each

prime square, cube, etc., write the correspondimgep instead of the prime power.
Like,
2,3,2,5,7,2,3,11,13,2,17,...
Next, choose a, generally= 2, and compute recursively
b,,=hb" (modN), (2.1)
where p is thei" prime in the list. Start the above sequence Witk a and check

gcd@ — 1N ) periodically to see a factop of N has been found, e.g. at regular

intervals of 100 cycles. It is because to calculaged® — 1N ) each time is a costly

operation.



As soon as the largest prime power in the factidmeof p-1, sayq“ , has been

reached in the list, the factor p can be detected.
Example 2.4.Let N=4087, a=2 and B=5. The list of primes andnprpowers is

2,3,2,5. By settindh =a =2, the sequence (2.1) generates the followarig .

i b gcd —1N)
1 1

2 4 1

3 64 1

4 9 1

5 1831 61

If we checkgcd(, — LN ), the prime divisor of N,
p=gcdp, - 1N )= 6!
is found. Becaus@-1= 60= 2 [1IF is B-powersmooth over the list.

Then, immediatelyN = 61[67.
Phase 2 of the method:

It is likely that p-1 has only one prime factor §ieh exceeds B.
p—1=qE|_J p®, p% <B,i=1..m,q :prime>B.

If g is in a reasonable range after B, then arciefiit continuation to (p-1)-method
works nicely. This continuation is callgghase 2 of the method.
Assume no factor is found up to the search limifTBen another boundiBs

chosen about 10 to 20 times larger than B. Derf@edsult at the end of the phase-1
by b.
b=a“"* (modN)

Let {qi} be the set of all primes (in order) between B andddis the largest prime

below B. Prepare a ligd, of differences of primes,



d =0,-q.
Then, recursively, find the value of
b%: =b* % (modN), i =1,2,3,.
and check whether
gcdp** —= 1N )> 1.
Since differences are small, one cycle in this rgon runs a lot faster than the one in

phase-1 (Riesel,1994). For example, the maximurtarie between two consecutive

primes in the interva[l, 4.444 16)2} is 326.

The biggest factor found by this method is 664dpgime divisor of960"° -1
on 29.06.2006 by T. Nohara. In phaseB=10" and in phase 28, =10 were used
as bounds. Today in record triaBranges froml@® to 10" and B, from 10 to 10".

Inspired from the (p-1)-method, in 1982 H. C. \iiths found a similar method
based on the decomposition of p+1. It is calledligvins’ (p+1)-method. We will not
give details here but in this method Lucas sequemece used in the computations.

There is a problem with this method which is talfectually to guess) a quadratic non-

residue D of p(%} =-1. For details, we refer to (Williams,1982). So féwe biggest

prime factor found by p+1 method has been 60—thgi.
Due to the methods (p-1) and (p+1), RSA primeschosen to have a very large

B-powersmoothness bounds for p-1 and p+1.

2.3. Pollard’s and Strassen’s Method

If x=k!(modN )could be computed quickly fok O[1..N], then we should be

able to factor N quickly (Dixon,1982). If there sted such a method any factor of N in
the range 1,..,k could be found easily. It is beeaif
x=Kk!I(modN),
say, p is a factor of N,dp<Kk.
x=k!+alN, adZz",
since p|k! and p|N, p must dividex.

Then, gcdk N ¥ p.
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A method partially uses the above idea, due téaRbhnd Strassen, was found
in 1976 and can be used to find the smallest pfater of N. The procedure goes as:

Let b be the smallest factor of N and define
F(X) = (Xx+1)(X+2).....k+c), < c<+/N,
f(X) = F(x)(modN).
The coefficients of f(x) can be calculated quickly by a method called FFas(

Fourier Transform).

()= |_| f(ic) (modN).

O<i<c
This can be derived from calculations easily,
f(0)=c!(modN)
f(c)=(c+1(c+2)....Z2) (modN

f((c-1c)=((c-Dec+D(c—-1c+ 2)....6° ) (modN .
Let g, = f(ic) (modN),i=0,...c- .
If there exists a factor d,< p<c?, of N, it can be extracted out easily by compitin

ged@, \N).

Example2.5.Choosing N=1633 and c=7, then set
f(X) = (x+1)(x+2)...x+ 7) (modN |,

f(0)=141, gcd(14N ¥ ,

f(7)=544, gcd(544N ¥ ,

f (14)=160, gcd(16Q\ ¥ |,

f(21)=1518, gcd(1518) 3 =

So N =23[T1

The fastest-known fully proven deterministic aiggon is the Pollard-Strassen

method .
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2.4. Continued Fraction Method(CFRAC)

Definition 2.2. The regular continued fraction expansion of a nresthber numbex is
an expression of the form

1
x=l, +—————=[b,,b,b,,..]

1
R
b e

whereh, is an integer and the partial denominatdysb,,.. are all positive integers.

The calculations ofils can be achieved by successively computing tmelbeus

given by the following algorithm (Riesel,1994):
X, = X, by =] %, |,

b=,

-

= , b2: .
% b L.

From now on, we are only interested in regulartioored fraction expansion of

quadratic irrational numbers. They are infinite gediodic.

Definition2.3. Let x=[h,,b,b,,..] and

%:[bo,bl,bz,...,bn], where

Aoy 1 -
Bn b0+bl+ - 1 ’ ng(A’] ’Bn) 1’
'bn_1+é
A

then the rational numbeltg— is called then"™ convergent of the continued fraction.

n

Example 1.6.47=[2,1,1,1,4,1,1,1,4,1,1,1,4] is an infinite continued fraction with

period 4 (i.e. 1,1,1,4 repeats infinitely manydsh The convergents are
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Theorem 2.2.Let % =[bo,b1,b2,...,bn] be the H convergent of a continued fraction.

If we define A;=1, B1=0, Ap=by, Bo=1 then % can be computed recursively by the
formulas

A=bAL+A,
B,=hB,_,+B,,

s —s-1

, s=1.

Proof can be found on p. 330, Riesel 1994.

After this introduction to regular continued fti@os, the factorization method
CFRAC will be explained now. It was first introdutcby D.H. Lehmer and R.E. Powers
in 1931. But at that time, calculations were natatile to be done by hand computers.
Around 1970, Morrison and Brillhart developed atsgsatic way to implement it on
computers andHseventh Fermat number) wéactorized by this method in September
1970.

The method:

Let N be an odd composite integer.

Expand\/ﬁ or VkIN , for some suitably choséh if JN has a small period length,

into its continued fractions,
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JIN ={b0,bl,b2,...,bn_{\/ﬁQ+ R*H up to some point.

n

For each value oh =1, the identity

A2 -NB2,=(-1)"[@Q,, where % is the ' convergentf VN ,

n

implies the congruence
AL, =(-1)" @, (modN), |Q,|<2VN. (2.2)
The details of the identity can be found in anyredatary number theory book.

Among the(A_l,(—l)i Qn) pairs, if a subse® of i's such that the product
lj (-1)'Q is a square, sag?,
10

can be found, then

A2 = g A2 = g (-1)'Q =Q? (modN).

A?=Q? (modN ) is obtained (Kraitchik’s idea). Then by calculatigcd(A-Q,N )and
gcd(A+Q,N), we have a 50% chance to find proper factors of N.

A systematic way how to find a set S will be expda in the third chapter.

How about calculations of,_, andQ, in (2.2) ?

Here we give the recursive computations for paramsetsed in the original paper
(Morrison,Brillhart,1975).

(I) Set A=0, A:1=1, Qi=N, ri=by, R=1, Q=1 andbo :LNJ
(i) Useb+P =bQ +1,0<r <Q.,

to generate rwhere R can be found as explained before in the continuaction

expansion.
(i) UseA =bA_+A_, (MmodN),

to calculateA, (modN ) for n=0. (It is not necessary to calculatgiB this algorithm.)
(iv) Use by+P,, =2b,-r, to generatd, +P,,, for n=0.
(v) UseQ,,=Q._+b(r,-r,_) tofindQ,,, for n=0.

(vi)  Increase n by 1 and return to (ii).
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Example 1.7. Let N=767. The following table shows tr(eﬁ,_l,(—l)iQi) pairs

generated by the given algorithm.

i A -D"Q
1 27 -38
2 28 17
3 83 -14
4 277 29
5 360 -23
6 637 26
7 230 -23
8 100 29

Choosing the se§ ={5,7 and to obtain the required congruence of Kraitchik

A TA =(-1)°Q;[1-1)'Q, (modN )
is calculated. It leads to the congruence
360°[23G = 23 (modN

and two non-trivial divisors are found by compagti

gcd(3607236- 23\ =13 andgcd(3607236- 23\ =59.
Then, N=13%9.

CFRAC was the best algorithm in 70’s and in thgitn@&ing of 80’s. It can be
used to factorize numbers up to 50-digit long.

There is another method, Dixon’s random squahed,works similar to CFRAC

but to generate congruences of the form
X.?2=Q (modN),
it uses quadratic polynomia@(x) = x* - N .
By taking i's randomly where,
X :L\/WJH, i=0,+1£2,..,

we obtain congruences
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X?=Q(x) (modN ).
In CFRAC, |Q|<2JN for all i=1,2,3,... but in Dixon’s random squaréese values
get larger,Q(x) = 20E/N,i=+1+2,... Therefore finding a subset S of i's such that
the product lj Q(x) is a square, becomes harder.
10
That's why, Dixon’s method was no better than CFRACthat sense until Carl

Pomerance incorporated the sieving into this methbsl brilliant idea will be studied

in fourth chapter.



CHAPTER 3
A COMMON FACTORING STRATEGY

More or less, most of the modern factorization methods, namely, CFRAC, QS,
NFS, follow a common strategy to factor an integer. The final goal is to obtain a square
congruence in the form (Kraitchik’s idea)

X?=Y? (modN), (3.1)
where N is the number to be factorized. Sometimes, (3.1) is called as Legendre’s
congruence (Riesel,1994,p.149). And we wil adopt this notation.

Once we have (3.1), by calculatimgd(X =Y ,N) and gcd(X +Y ,N), there is

at least a 50% chance of extracting out non-trivial factors of N. When N is the product
of only two distinct primes p and q, the probability %(Rabah,ZOOG). If

X #xY (modN ), then two proper divisors of N can be found immediately. But in case,
X =xY (modN ), only trivial factors can be obtained.

So finding t-different Legendre’s congruence means, the probability of finding a
t
proper factor isl—(%j . The more such square congruences are found, the higher the

chance to factorize N.

Example 3.1. Let N=21. The congruencel7’*=1% (moN leads to
gcd(17- 11,21F 'andgcd(17+ 11,21F . Two proper divisors of N are found.

But generating a Legendre’s congruence directly in a reasonable time is nearly
impossible with today’s techniques and computational power as N gets large.

So how to reach our end-goal (3.1)? An efficient and systematic way to the
solution of the above question was found by Morrison and Brillhart. The idea was first
used in CFRAC, and that’s why it was the factoring champion during the 70’s and the
beginning of 80’s until the Pomerance’s quadratic sieve. Still it is at the heart of the

many factoring algorithms.

16
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Let’s see how it works. Firstly, congruences aifki
x’=a (modN), |a|<N, (3.2)

are generated . From now on'sawill be called ‘Guadratic residues’ or “auxiliary
numbers’. Every algorithm has its way of finding (3.2)hé@n a suitable subset | of i’'s

is selected so that the product g% & a square number. Let

Y2=r|q (modN ) and X2:|_|>g2.

101 1l
It is obvious that X =Y? (modN ).

Are we done? Has the final goal been reached? dtget!
Still we don’t know an efficient way of obtainindpeé subset I. The runtime of the
methods is very much related to finding the satitkjy and that depends on

(1) generating small residues,

(i) availability of the residues for sieving.
The superiority of one method to another lies)rad (ii).

For the rest of this chapter, the focus will betloe common terminology and the
systematic strategy which will be calleth¢tor base method” to determine the subset |

efficiently.
3.1. Definitions

Definition 3.1. A set of primesFB={p |p :prime,i=1,..k} is named afactor
base(FB) satisfying p,.., = p, < B, where B is a positive integer depending on the s

of N. B is called arupper bound or smoothness bound. Most of the time -1 is also
included in the factor base to take advantage afllsmegative residues. Generally, FB
is constructed from the first k-smallest primesinthich the auxiliary numbers are

likely to factor.

Definition 3.2. The cardinality of the set FB is callddctor base size, and denoted by
|FB|.

Definition 3.3. An integer m is said to bB-smooth if all of its prime factors are

< B(Pomerance,2000). A number which completely factonsr the first k-primes is
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called g-smooth. The smoothness bound B is determined dYatigest primep,,, in

the factor base.

Example 3.2. Let FB={-1,2,3,% then the smoothness bound B is 7. So

a, =36= 2[3 is B-smooth buta, = -44=-17 [11is not.

Definition 3.4. By the fundamental theorem of arithmetic we knbattevery integer

k
can be decomposed into the product of prime numi@cgiely. Letm= I‘l p’ , where

pi denote the i-th prime. The product is over alhp@s but only finitely many of the

exponentsa; are non-zero. Then the vectem) =(a,,q,,....a,) is called thesxponent

vector of m. Every integer has its own associated expowector. For us, the exponent
vectors of numbers which are smooth in our factasebwill be important. The
associated exponent vectors of these numbers havmfiaite sequence of zeros
representing the exponents of the primes beyondatiter base. Thus, those zeros are
omitted and the dimension of the exponent vectoolmes the size of the factor base.

Example 3.3. Let FB={-12,3,3 and m =36, m,=30,m,=- 7! then the
associated exponent vectors are

m =(-1)"[2° LB 5, v(m)=(0,2,2,0;

m, = (-1° [2)' (3 5, v(m,)=(0,1,1,1)

m, = (-1 [2)° O3y 15,  v(my) =(1,0,1,2)

Definition 3.5. A congruence of the kind
X?= |_J p® (modN) (3.3)
pLFB

is called asmooth or full relation with respect to FB. Another kind,

X?= |_J p® P (modN), P :prime, POFB
pLFB

is called apartial or 1-partial relation with respect to FB. The product of two partial

relations with the sam@ leads to a full relation because
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X? = |‘J p“ P (modN),
Aore = X! DX} = [ p" ] o P* (modN).
p OFB g OFB

X2 = g’ P (modN ),

q OFB

In the same manner, there may be 2-partial, 3gadiations etc. However, to find the
combinations of 2-partial, 3-partial relations thatake a full relation is more
complicated. In this case Graph theory is used.ilportance of collecting r-partial

relations will be seen later.
Actually,x’ =a (modN), |a|<N is a smooth relation if and only & is a
smooth number in the factor base, i.e. the gregi@sie factor ofa, does not exceed

the biggest prime in the FB.

Example 3.4.Let N=989 andFB ={-1,2,3,3 then
3% =100 (mooN
3F¥ =2[F (modN 'is a smooth relation over the factor base, but
377 =-28 (modN |,
37 =-2°7 (modN 'is not.

3.2. How to choose the factor base?

The proper choice of the factor base plays a atuole in the runtime of the
factoring algorithms. Now, the problem is how teide the FB size, or equivalently the
upper bound B of the factor base. The followingnemand the next theorem patrtially

shed light on the solution of the problem.

Lemma 3.1(Pomerance,2000): Ifm,m,,..,m are positive B-smooth integers, and if
k > 71(B) , then some non-empty subsequencg lias product a square.
( 7(B) denotes number of primesB .)

Proof. For a B-smooth m, look at its exponent vector v(th)m has the prime

71(B)
factorization m= |‘J p , where pis the " prime number and each is a non-
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negative integer, thenv(m) =(a,,a,,...a,.) . SO, a subsequenag,,m,,..,m, has
product a square if and only ¥(m,) +v(m,) +...+v(m,) has all even entries. That is,

if and only if the sum of vectors is the 0-vectood2. Now the vector spade/®,
where F, is the finite field with 2 elements, has dimensi@aB). And we have
k > m(B) vectors. So this sequence of vectors is lineaglyetident in this vector space.

However, a linear dependence when the field ofassak F, is exactly the same as a

subsequence sum being the 0-vector. This completgsroof of the lemma.
What actually can be deduced from the lemma forpoupose is that if |FB|=k,
then finding (k+1) smooth relations (i.e. smoothadpatic residues) guarantees us

finding at least one Legendre’s congruence.

Example 3.5. Let’s illustrate the case with one example. ChogpsN=1081 and

FB={2,3,3, we need 4 smooth relations over the factor Bseause |FB|=k=3,

so finding k+1=4 smooth relations will make it pis to have at least one Legendre’s

congruence by lemma 3.1.

() 3F=8(moN ), a= & 2

(2) 34 =75moN ), a,= 75 3%

(3) 37 =288 (moN ), a,= 288 2~

(3) 4% =600 (modN ), a,= 608 Z1'31*
The associated exponent vectors are

v(a) =(3,0,0). v(a,) =(0,1,2), v(a;)=(5,2,0), v(a,) =(3,1,2).
Then writing the corresponding vectors over thélfle,

vi(a)=(0,0), v(a,) =(0,1,0), vi(a;) = (10,0), vi(a,) = (11,0

are obtained.

It is easily seen that

vi(a,) +v'(a,) +vi(a,) =(0,0,0).
This implies that the produdgh, [&,[&,) is a square number. By using congruences
(2), (3), (4), the obtained Legendre’s congruesce i

(34[B7041f = (7512881 600) (mad
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51578 = 36006 (mod\
77% = 357 (modN .

And to find the factors of N, we calculate

d, =gcd(77F+ 357N andd, =gcd(771 357N .
d, =23 and d, =47 turn out to be the only nontrivial factors of N.

N=23[#47 is factorized in this way.

Theorem 3.1.Let X be a number to be factorized, B be an ugumimd on prime

divisors of X and denote by r, the ratilgﬂ. Then, if r<<B, we have the

logB

probability of X factorizing fully into primes smnial than B approximately™
(Kechlibar,2005).

r

The valuer™ indeed is the probability of X being B-smooth. Deng this
probability by p, the following tables give us a®ea about p depending on the choice of

B for a fixed X.

Table 3.1 Probability of Table 3.2Probability of
B-smoothness foX =10 B-smoothness fr=10"
B p B p
1000 0.018 10000{ 0.00032
500 0.0078 5000 0.000108
200 | 0.00168 2000 0.000018
100 | 0.00032 1000 | 0.0000032
50 | 0.000029 500 | 0.000000358
X =10° X =107

The table next is also helpful visualizing the ecdsom a different angle
(Bressoud,1989.p.106).
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Table PBobability of &N to be
the upper boundtfoe largest prime divisor of N

Probability that the largest
prime divisor of N is< /N
3.07x 10"

a

4.86x 107

4.91x 10°

3.55x 10*
1.96x 10°
8.75x 10"
3.23x10°
1.02x 10°
2.80x 10™

©O©| 0| N| O o | W N

[EEN
o

Lemma 3.1 says that to reach a Legendre’s congeutem sure , the number of smooth
relations must be more than the factor base sieepidg the upper bound B of the
factor base small means less number of B-smooitiues are needed, but it can be
seen from the tables 3.1, 3.2 and 3.3 that as 8yedller, the probability of detecting a

smooth residue decreases.

Example 3.6.Let the typical auxiliary number X generated bg factoring algorithm
be aroundl0® and B (the upper bound for FB) be chosen 1000.
Then, |FB|=7(1000)= 16¢ By looking at the table 3.1, it can be seen tihat

probability of X to be smooth is nearly 0.018. Grarage, =55 residues must be

0.018
examined to find one smooth relation. By lemma &g, number of smooth relations
must be more than the factor base size. So to giegraone Legendre’s congruence
around169x55= 929! residues must be tested.

Now choosing B=500, the factor base size becdfils= 77(500)= 9E.

The probability of X to be smooth is 0.0078. Thisne approximately

1
0.0078

96x = 12307 residues are required to be examined.
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The problem that arises now is, how to determireedptimal value of B as a
function of a typical auxiliary number X so thaethumber of trials is minimized.
An approximate solution to the above question gigen in a paper in 1983 by

Canfield, Erdés and Pomerance.If X is an estimatéhfe typical auxiliary number then

B must be aboutexp(l/&/ logX Clog(logX )and the minimum number of trials is

aboutexp( &/ logX Clog(logX ) (Pomerance,1996).

But in real factoring situations, for a particutaason the B-estimation is not as
accurate as desired. The reason is that, in peattte factor base does not consist of all
primes up to B. Because the generated residuescaras random as suggested in the
theory. That's why, in real applications heuristiguments are used rather than what

the theory suggests.
3.3. Linear Algebra Stage

There is only one point left to be clarified. Het number of smooth residues
found is more than the factor base size, it is dertain that the product of some
combination of them is a perfect square. But, howfihd those combinations of
residues? At this stage, linear algebra comesplaty By using Gaussian elimination, it

can be carried out easily. The steps are as follows

a) Let |FB| =k and k+i, (i >0) smooth residues be found. First, a matrix A of

dimensions(k+i)xk is formed. The rows of A are the associated expone

vectors of the residues oves. At is convenient to arrange the corresponding
vectors according to the exponents of primes frargdst to the smallest. First
coordinates of the vectors represent the powereofargest prime over,Bnd so
on.

b) Then a(k+i)x(k+i) identity matrix is adjoined to the right of A tedp track
of the combinations of residues resulting in ag@&rgquare.

c) The rows of the matrix A are linearly dependentistht the end of the Gaussian
elimination step there must be at leastero rows. Each zero row tells us the
product of which combination of residues is a squaumber. So we start
Gaussian elimination.

Turning back to the previous example 3.5, let lustifate the steps.
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Given N=1081FB={2,3,9, |FB|=3 and the smooth residues found are
8, 75, 288, 600.
The associated exponent vectors dyewere calculated before in the example

but this time to construct the rows of the matrix vie use them in reverse order

according to the step (a).

O O O Ouw
P O PP, O
P P O P

Adjoining |, to the right of A leads to the following matrix

00111 0 0
010010
001001
011,00 0 1

At the end of the Gaussian elimination, we get

o O O

0
1
0

N
B O R O
B P O O

1
0
0
0 0O

0 1

As expected O-rows are obtained and the 1's irséimee row of the adjoined matrix tell
us the locations of the residues whose producsmuare.

In the example above, two zero rows are fourl radv tells us that the product
of the first and the third residues is a squared Anthe same way, from th&4ow it
can be deduced that the residues which lead togendze’s congruence are in the

second, third and fourth locations.



CHAPTER 4

QUADRATIC SIEVE (QS)

Quadratic sieve algorithm (QS) was the first to introduce the idea of sieving
effectively into the factoring world. In 1981, Carl Pomerance came up with the new
method inspired from Dixon’s random squares and from the well-known sieve of
Eratosthenes, used to find primes in a given interval. He modified the sieving to the
residues of the quadratic polynomi§(x)=x*-N. This can be considered as a
milestone in the history of the integer factorization problem (IFP). At the beginning of
1980’s , CFRAC was able to factor numbers around 50 digits but with the coming of

QS, the number of digits was soon doubled.

By using basic QS, Joseph Gerver managed to factor a 47-digit (a factor of

3**-1) number from the Cunningham Project in 1982 (Gerver, 1983) then in 1984 at
Sandia Laboratories a number consisting of 71-ones was factored with an improved
variant of QS (Pomerance,1996). With the parallel implementation of the algorithm,
100-digit numbers were in the range of QS and in 1994, a team distributing the
computation over internet set the record. A 129-digit RSA challenge number was split.
It was the first signs of that the security of RSA was at risk for the numbers around that
size. So far the biggest number factored using QS has been a 135- digit cofactor of

2°%-2%2+1, It was a special effort in 2001 to show efficiency of the three prime

variation of MPQS although QS was not the factoring champion anymore.

What is the reason for the superiority of QS over CFRAC? At first glance, it
seems that using continued fractions is more advantageous than using quadratic
polynomials to generate small residues. But the trick lies in the clever idea of
Pomerance, quadratic sieving. Until then, the common way to examine a number for
smoothness was by trial division, testing the number for divisibility by the primes in the

factor base and if divisible, dividing the number by that prime. This entails using costly

25
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and time consuming multi-precission division mamyes. But employing a new
technique, quadratic sieve, enables us to deteobttrmumbers by doing far fewer

divisions and in later variants requiring no digisioperation at all.

Contrary to Eratosthenes, this time sieving is ums¢d to detect primes in an
interval but to locate places of numbers divisiblea certain prime. So this way we
already know which residues are divisible by thenps in the factor base thus
eliminating the need to test for divisibility. Thégemingly small but indeed giant step
put QS in front of CFRAC.

There are three basic steps to the quadratic:sieve
1) Initialization
2) Sieving
3) Linear algebra

In the following subsections, these steps will kpl@ned in details.

4.1. Initializing

Let N be the odd number to be factorized &nd|/~| (Here |/v| denotes the
greatest integer less than or equalio)
SetQ(x) =x*-NUOZ[X] wherex runs over the integers in the intery&l- M,k + M],
M <<k. [k—=M,k+M] is the sieving interval, the optimal value of Mpdeds on N.
The residues then become,

(k-M)*-N,(k-M +1°-N,..k*-N,..,k+M - 1f-N ,k+M ¥-N.

Now, a factor base for the residues and a sievitgyval must be chosen. The
approximate sizes of the residues are known andoible how to decide the optimal
factor base size were developed in third chapter tire sieving interval and the factor
base size, the following table will be used whifglementing the basic QS. But these

values may vary depending on N.
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Table 4.1Approximate parameters for Q&:1000)

qumber of factqr base M

digits of N size
10 40 600
15 70 8K
20 300 50K
23 1000 70K
26 1700 200K
28 2000 400K
30 2500 800K

The following two lemmas will also be useful to akcwhich primes will be
included in the factor base and how to sieve tterval with a prime in the FB.

Lemma4.1.pis aprime. If p|Q(x) and p,[ N then (Ej =1,
p

where( ): is the Legendre symbol.
Proof. p|Q(x) implies p|x* —N. Then,
x>*~-N=0 (modp)
x> =N (mod p)

N is a quadratic residue of p. %é\l—] =1.
p

Lemma 4.2.Given Q(x) =x*-NDOZ[x , p is a prime andr JZ"* . Then
P” Q%) = P” QX +tp”),0t07%Z.
Proof. Q(x, +t[p") =x;+2x,0p" + t*[(p* - N

=x.-N+p? (2, @G t*p”)
=Q(x,) + p” [, u=20X I3 t*[p°

By the above identity, the proof of the lemmatraightforward.
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The roots of the quadratic congruence

x>*=N (modp?), pOFB, a0OZ* (4.1)
tells us the places of the residues which are iieidy p?. By using lemma 4.2, those
residues in the sieving interval can be distingeisbasily.

As an initializing step of QS, for eagh U FB, the quadratic congruences

x* =N (modp )must be solved. The necessary procedures for theicss will be

given in Theorem 4.1 and Theorem 4.2. Lemma 44 dat if p[0FB then(ﬂj =1.
p

So we are now ready to see how to solve the congeugt.1).

Theorem 4.1.Let p be a prime in the factor base.
() If p=4[k+3then
x=N*"* (mod p) is a solution to (4.1).
(i) If p=8k+5andN*"=1(modp), then
x=N** (mod p) is a solution to (4.1).

(i) If p=8k+5and N**'=-1(modp), then
XE(4EN)k+l><(pT+1j (mod p),

is a solution to (4.1).

Proof. Since pFB, N is a quadratic residue mod p, then

(p-1)

N 2 =1(modp).
() Itis giventhat p=4k+3 so

(p-1)

(N'“l)2 =N*2=NxN 2 =N (mod p).
If p=8k+5, then
N**2=1 (mod p), which implies two cases.

Case 1:

(i) N?*"=1(modp)

(N**)"=NZ"'xN =N (mod p).
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Case 2:
(i) N2k = -1 (mod p)

2k+2

(4|:N)T = 24k+2XN2k+2
=(-1D)x(-N) (mod p)
=N (modp)

Since p=8k+5 implies (Ej =-1.
Y

What if pZ4k+3or pz8k+57?

Then to solve (4.1), Theorem 4.2 comes into play.

Theorem 4.2 Let N be a quadratic residue modulo an odd ppna&d h be chosen so

2 —
that the Legendre symbéwj =-1.
Y

Define a sequencé,V,,V,,.... by the recursion

We then have that
V, =V*-2xN' and

V. —-hxN',

2i+1

::\4 X\

i+1

and a solution of (4.1) is given by

XEVMX( p;—l) (modp)

2
(Bressoud,1989. p. 108).
This algorithm was suggested by D. H. Lehmer in919he proof can be found in any
elementary number theory book. It must be notedre leat computations in this
algorithm take longer time than required in Theorefn

The congruence” =N (modp), p#2, p/1 N has two solutions in the interval

{0,1,,...p— }. One of the roots;, can be calculated with the help of Theorem 4.1 and
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Theorem 4.2. Then the second solution becomes,. By Lemma 4.2 , all the other
zeros of the polynomiaD(x) = x* =N (modp) are known to be of the form

X=%+kp and x=(p-x)+kip, kOZ.
In this way, the places of residues divisible byan be located easily and the need for
trial division required in CFRAC is eliminated.
By setting sieving interval, factor base and savcongruences (4.1), we are

ready to move to the next stage, sieving.
4.2. Sieving

In the sieving process, the locations xfs in the sieving interval where the

residuesQ(x) are B-smooth (completely decomposes over theféetee) are found.

It is the most time consuming part of QS. While ¥@emwas factoring 47-digit number,
it took 7 minutes to solve congruences (4.1), 6utas for the linear algebra stage but
70 hours of CPU time to do sieving.

The basic sieving algorithm can be formulatedodisws:
(Buchmann, Muller,2005)

Input: M ON, Q(x) =x*-N0OZ[x , the factor base FB
Output: Set{x:|x—LmJ| <M, Q(x)is factor basesmooth}
(1) Compute and stor@(x) for everny{LmJ— M,.. |VN]+ M} .
(2) For every primep0FB do, computex, and x, 3{0,1,...p- }
with Q(X,) =0(modp) and Q(x,) =0(modp).
(3) For everyx=x,+k[p with |x—|va|<M do,

replace Q(x) by QE)X)

4) If (x¢ xo) then for everyx=x,+kp with |x-|/|<M do
replace Q(x) by Q|(o)

Return all xO{|vv]=M,...[vn]+M} with |Q(x)| =
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Having obtained x's for which |Q(x)| =1, the decomposition 0Q(x) over FB can
easily be constructed by trial division. That meahs associated exponent vector for
eachQ(x) is generated by trial division.

It may happen that there is a factop”, a0Z",a=2 in the prime
decomposition ofQ(x) . In that case, the sieving is done not only bynes but also by
prime powers up to some limit. The solutions todbegruences

x>*=N (modp?), a0Z* ,a= 2
can be found by Hensel Lifting. But in practices\dng is done by primes only and the

x'sare collected by giving some tolerance @x) values {Q(x)|s L). Then by trial

division, these candidates are tested whetherahe¥B smooth or not.

Theorem 4.3. (Hensel Lifting)Let f(x) be a polynomial with integer coefficientsp,
a prime anda 21 an integer. It is known that, is a solution tof (x) =0 (modp“ ), k

f(x

is a solution to pa")+kD"(xa)EO(modp) where kx, <p,, 0<k<p,

f'(x,

) denotes the derivative of the functioh(x). Then, x,,, =x, +kp” is a

solution to f (x) =0 (modp”**). (Tattersall, 2005)

For a particular pJFB, the values ok for which x=x,+k[p falls into the

interval [ — M, +M] ranges frorw[.m_M _XO—‘IO M/ﬁ+|\/| _XOJ.
P p

4.3. Linear Algebra Step

Having collected enough number of smooth residfies the sieving stage, it is
now time to find a combination of them which formd.egendre’s congruence. This
step is generally called Gaussian elimination, lam it is carried out is fully explained
in 3.3. Proportional to the size of N, the factasé size increases. This leads to dealing
with very large matrices and this may not be eadyaindle with respect to memory and
time considerations. Since operations are done Byehe matrix turns out to be very
sparse, i.e. a matrix populated primarily with zeréor large systems, there are

methods which take advantage of this special fdrthe@matrices,namely:
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1) Structured Gaussian Elimination
2) The Coordinate Recurrence Method of Wiedemann
3) The Lanczos Algorithm.

For detailed information on these methods we refeChapter 7 of (Buchman, Muller,

2005).
To understand basic QS better, let us illustritine steps with one example.

Example 4.1. Let’s factorize N=1349 by basic QS.
Step 1: Initialization
Q(x) = x* —1349,
| VN |=36,
M =7,
FB={-1,2,513
The sieving interval i$29,43. ([vw~M, v +M])
By solving congruences
(@) x> =1349 (mod 2
(b) x* =1349 (mod5
(c) x* =1349 (mod13
we get (a) has solution s{é§ so all solutions are of the forfnt+ 2k,
(b) has solution 31%23 so all solutions are of the for@+ 5[k and 3+ 5[k,
(c) has solution s{aﬁ, 7} so all solutions are of the for@+ 13k and7 +13[k.

Step 2: Sieving
By calculating all residues d(x), the following table is obtained.

X 29 30 31 32 33 34 35 36
Q(X) -508 | -449 | -388 | -325 | -260 | -193 | -124 -53
X 37 38 39 40 41 42 43
Q(x) 20 95 172 251 332 415 500

We start sieving by the primes in the FB.




1) p=2, the locations of residues divisible by 2 are2(k, k =14,..,21.

The table after sieving by =2 is shown below.

33

X 29 30 31 32 33 34 35 36
Q(X) -254 | -449 | -194 | -325 | -130 | -193 -62 -53
X 37 38 39 40 41 42 43
Q(x) 10 95 86 251 166 415 250
2) p=5, the locations of residues divisible by 5 &¢5k, k=6,7,8 and
3+5M,1=6,7,8
The table after sieving by =5 becomes
X 29 30 31 32 33 34 35 36
Q%) -254 | -449 | -194 -65 -26 -193 -62 -53
X 37 38 39 40 41 42 43
Q(x) 2 19 86 251 166 83 50
3) p=13, the locations of residues divisible by 13 &rel13k, k=2 and
7+130, 1 =2
The resulting table after sieving lpy=13 is
X 29 30 31 32 33 34 35 36
Q(X) -254 | -449 | -194 -5 -2 -193 -62 -53
X 37 38 39 40 41 42 43
Q(x) 2 19 86 251 166 83 50

4) Finally, sieving by powers of 2 and 5, iZ. and5°,

the table now is
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X 29 30 31 32 33 34 35 36
Q(X) -127 | -449 -97 -1 -1 -193 -31 -53
X 37 38 39 40 41 42 43

Q(x) 1 19 43 251 83 83 5

the sef{32,33,37,4B.

To obtain the associated exponent vectors, weiaaivision.

Q(32)=-1F [,

Q(33)=-1P [H1S,

Q(37)= 25,
Q(43)= 2[F.

Q(32)
Q(33)
Q(37)
Q(43)

o O -

W R RN
N NN O

O O KL Kk

Exponent vectors are =(1,2,0,1,,

v,=(1,12,1,

v, =(0,1,2,0),
v, =(0,3,2,0).

The vectors then calculated overde we get

v, =(1,0,0,1),

v, =(1,1,0,1),

v, =(0,1,0,0),

v, =(0,1,0,0).

By collecting values of such thallQ(x)| <13, the algorithm returns
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After Gaussian elimination step, two Legendre’sgraences are found.
First one, 32° (B [B7 = 1306 (modl gives two trivial factors 1 and N.
But the second one32° (B3 43 = 65006 (mobl results in two proper factors 19 and

71 after the calculationgcd(32133743 6500 andgcd(32133143 6500\ .
N =19[T1is factorized by using basic QS.



CHAPTER 5
VARIATIONS OF QUADRATIC SIEVE

Since the QS emerged for the first time, many improvements have beeen made
to it. Some techniques used in CFRAC also adapted to QS. There were two main
handicaps with the basic version. First one is that sieving takes a lot of time in the
factorization of big numbers since the factor base and sieving interval get large
proportional to N’s size. The second one is related to the quadratic residues. They
increase very rapidly so the probability of the residue to be factor base smooth
decreases and this requires sieving very large intervals even to detect one smooth
relation. In the rest of this chapter, the methods developed to solve these drawbacks of

the basic QS and other improvements will be studied .
5.1. Use of a Multiplier

It is always desirable to have many small primes in our factor base. To enable
this, N is multiplied by a suitable numbkrandk is called a multiplier.So the number
to be factorized becomds[N . The multiplier k must be a small square-free integer
and obviously the factor base changes accordingly. Genetallis chosen to be
between 1 and 100, otherwig&N becomes very large and it takes away more than it
compensates. Multiplying N bl increases the size of residues by a factotlof So
how to choose multiplier while trying to maximize the number of small primes in the

factor base and trying to minimize?
The selection ok is done according to the function that will be given next.

We select a value df that maximizes the modified Knuth-Schroeppel function

—%Iogk+z E_(k)ogp.

p<B

Here,

36
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_5 2if N=1(mod§
0 otherwise

_ 1. .
E, (k)= ) if pdividesk
else

% otherwise

where the sum is over those primps B with
kN :
p=2, (—) =1lor plk (Kurowski,1998).
p
The quality of the multiplierk and the corresponding value of the modified Knuth-

Schroeppel function may reduce the runtime by tofag to 2.5 (Silverman,1987).

For example, N to be of the forBk +1 is a case we want because théx) = x> - N

is divisible by 8 for all odd values of. Most of the time, setting

k=N mod8

is a good choice of multiplier for moderate sizesiNce k[N turns into the desired
form 8k + 1.

Example 5.1. Let N=923,FB ={-1,2,13,19, S =[23,37 (Sl:sieving interval)
In the sieving interval, there is only one FB-sniosidue. But, if a multiplier
k=3=N (mod8)is used, then the parameters become

N'=3[N = 276¢, FB'={-1,2,3,3, 9'=[45,59.

And this time, even ifSl | = |S| | there are 3-smooth residues detected ifthe

5.2. Logarithm Variant

The aim of sieving process is to identify locasiarf x such thatQ(x) = x> —N
factors completely into our factor base. In the i®a®S, by solving quadratic

congruencesx” =N (modp?), places of x’s in the sieving interval whe@(x) is

divisible by p” are found and thos€(x)'s are then divided by p. The logarithm

variant replaces these slow division operation bigtrsiction or addition. Since latter
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ones are much faster than division, in this wayisg time can be reduced greately
depending on the size of the factor base and #mng interval. The steps can be

summarized as follows:
(1) Set an array of size equal to the sieving inteéen compute and store the

approximate value of Iog|Q(x)| in the location corresponding to the

argumentx, xO[/& —=M,/x+M].
(2) Identify x’s in the SI, whereQ(x) is divisible by p.

(3) Subtract from those locations the weidbg p associated with p. This step

replaces division by faster subtraction.
(4) Repeat the steps (2) and (3) for egth FB.

(5) Scan the array for residual logs that are clos® tand these locations

correspond to the values @(x) that factors completely into our factor base

(Pomerance,1985).
(6) Do the usual trial division and linear algebra step

In later modified logarithm variants, subtractiandhanged to addition in the

following way: In step (1), all array entries argtialized to O instead of computing

Iog|Q(x)| for each x. There is no change in step (2). Buhanext stage, the weight
log p is added to the corresponding locations rathar Hubtracting. It is repeated for
each pOFB. And this time to identifyx’s such thatQ(x) is FB-smooth, we scan the
array for the summed logs that are clostatget that will be defined next.

If we are sieving oveR[M +1 values, then the logarithm of the absolute value

of (Lmj— M +i)2 -N,i=0,..,2M will be approximately

target= IO%N +logM . (Bressoud,1989)

This logarithm variant, suggested by Silvermanv&iinan,1987), speeds up the sieving

process because first step in the subtraction aersequires calculatingog|Q(x)|,

2[M +1 times. But in Silverman’s version, we just iniiza all cells of the array to 0.

Therefore, proportional to the size of M, a gresdldf time is saved.
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When the sieving is done by addition, those entiese totarget are collected.

But how close?
In (Silverman,1987), it is suggested to collecieixels where a value bigger than

threshold=target -T xlog p,

is accumulated. Hereqp is the biggest prime in the factor base and T t®mstant

near 2. The Table 5.1 gives optimal values of thwespect to N.

Table 5.T-adjustment of the threshold value

Number of digits of N T
24 15
30 15
36 1.75
42 2.0
48 2.0
54 2.2
60 2.4
66 2.6

It must be noted that in this implementation a veayw number of fully factorable

Q(x)’s may be missed but the time saved makes up foe than what'’s lost.

5.3. Small Prime Variation

On avarage, the sieving time takes more than 86%heo total running time
(Boender,Riele,1995). So it is important to optienithe sieving process. Another
method,calledsmall prime variation, saves about 20% of the sieving time. This

variation is based on the following idea:
Let p <10 and p; >100, p,p; UFB. In the SI, the multiples ofy occur at
least 10 times as frequently gg’s. Therefore, sieving with small primes takes a

substantial percentage of overall time. And alsthatoccurences of small primgs,
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log p, is added to the locations, so comparetbpp, 's, they don’t contribute much to

the sieving. That's why, in practice, it is custagnéo start sieving with primes bigger

than a fixed bound L, generally with= 30, and then the threshold value is reduced by

Dllogp or > logp,

p<L pe<L

so we don't lose anything. If L is defined30, thenZIog p < 20.

p<L

But the negative side of this variation is thaeaftieving, depending on the modified
threshold value, it may cause a few false residaelse collected. Nevertheless, the

resulting performance is much better.

5.4. Special g-Polynomials

As mentioned earlier at the beginning of thispteg the rapid growth in the
residues of the quadratic polynomial was one ofntlaén drawbacks of basic QS. The
larger the residue, the less likely it is to faat@er the factor base. While implementing
QS at Sandia Lab., Jim Davis developed an impodgahancement that mitigated this
handicap. He found a way to switch to the othedgatéc polynomial after values of the

first one, Q(x) = x* - N, grew uncomfortabley large (Pomerance,1996).

After sieving, it is very likely to come up withrasidue at locatiorx, such that

|FB|

Q(><0)=|:] p" (g,

where p OFB and p,,, <0< P
If q is a prime, and most of the time it is, comsid
QUx, +k ) = (%, +k @) - N
=QUx) + 20K G 5 +k* 147
=Q(k).

Every term of Q(Kk) is divisible by q and the magnitude of



41

Q(x%, + kLd)
q

is essentially that ofQ(k) (Davis,Holdridge,1983). Then the residues to leeesd are
generated byQ(k) for kD[—M : M] . The sieving on these residues is done by thel usua

way. These special g’'s are easy to find and atast. 3o keep the residues small ,
sieving is done over small intervals and when we done, it is switched to another

special g-polynomial.
This modification enables to factor big numbertess time.

For example, Sieving of 58-digit Cunningham numtibek about one-sixth of the time

that single polynomial version required. (Davis |dimge,1983)

5.5. The Multi-Polynomial Quadratic Sieve (MPQS)
Another remedy for the uncomfortable growth of tegidues was found by

P. Montgomery. In the previous section, specialolypomials were used to keep

residues small by switching to another polynomradpired from this method,

P. Montgomery developed a better strategy tharguspecial g-polynomials. It is called
Multi-Polynomial Quadratic Seve (MPQS for short). As the name suggests, several
different polynomials are used to keep the siewmegrval short and as a result residues
small. The basic version of QS can be used to fiaetintegers up to 50-digit long in a
reasonable time(Buchmann,Muller,2005) but with MP@& can be up to 100-digits.
The idea and the computations of the polynomialk b explained in the rest of this

chapter.

As a polynomial setQ(x)=ax*+bx+c such thatb*-4ac=N,a,b,cOZ.

Because only in that casg(x) generates quadratic residues.

b is selected odd thelof —4ac=1 (mod 4.

N must be of the formik +1 because of the previous arguments, if not, N is

multiplied by a suitable multipliek to convert into the desired form.

Q(x) =ax’ +bx+c,
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Q(x):a(x+2£aj _b’ ;:ac, (5.1)
then
Q(x) = a(x+£j (modN) (5.2)
2a

Let a=d?, d:prime and(%jzl.

The equation (5.1) and the congruence (5.2) becom

Q(x) =(dX+%j —%, (5.3)
Q(x) = (dx+%j (modN ). (5.4)

We will adopt (5.4) for the congruences. Thisaidehoosinga=d?, is Pomerance’s.
What we want is to make the value @f(x) as small as possible overM,M].

By minimizing,

M
j |Q(x)| dx with the constrainb®-4ac=N, a,b,c0Z,

-M

it is obtained that,

M
Minimizing I |Q(x)| dx is equivalent to minimizingQ(x) values small because the
-M

base of the parabolaM is fixed and the area is directly proportionattie height of

the parabola, i.eQ(x) values. The constructed polynom@(x) satisfies the inequality
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|Q(X)|S%Mx/ﬁ, xO[-M,M].

A 242 improvement over g-polynomials which take value@M LN in [-M,M].

The selection of the parameters and the computaticmndone as follows:
(1) Determine the size of FB and the length of theisginterval 2M +1.

(2) Select a multiplieik such thatkN =1 (mod 4).

(3) Choosea =d* whered is a prime with

d

(kszl,d: “kl\l\/lI/Z andd =3(modN ).

(4) Solveb” =kN (mod a) for b. kN must be a quadratic residue modulo d since

b’ —4ac =kN . By an elementary application of Hensel’ Lemma \(Bggstaff),
b®> =kN (mod a) can be solved easily.
The solution is

b=h +hd (modd?) where

h=(kN)* (modd)and

KN —h?
d

h, = (zm‘l( j (modd )

b must be odd, in cage is even, subtract it frord?.
(5) Up UFB,

The roots ofQ(x) =0 (modp, )

are -b++kN
2a

(modp, ).

Here, £VkN stands for the integer solutions of the congruence
x* =kN (modp, ).

To summarize whole procedure as an algorithm
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While (not enough smooth residues found)
Begin
Generate coefficients for the polynomial.
SolveQ(x) =0 (modp ), Up OFB.
Do the sieving.
Scan the sieve array: If any value exceledshreshold value,
Begin

Compute(x) and find its factorization via trial division.

2@ X+b

i j (modkN )

Save the value of H whe@¥x) = H? E(

and the exponent vector@tx) .
End.

End.

(Silverman,1987)

Example 5.2.Given N=13223521. Let us do the necessary conipotastep by

step to generate a polynomial.
Set M=20.

N =1 (mod 4), then the multipliek =1.

a=d’, d= NT/Z d=11 and d =3 (mod 4), (%}1.

Thena=121.
By solving the congruence
b>=N (moda),
the roots are found to He=6 and b=115.

Since b must be oddh=115.
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Using b® —4ac = N, the last coefficient = —27294 is calculated.

Q(X) =121x* + 11%— 2729 is the polynomial we want. And obviously,

115)2_ N

QX :(MH 211) 4’

_ 115
Q(x)=(1k+ﬁj (modN ).

Some relations found by using(x),

Q(l) =-27058= 7813915 (moW andQ(0)=-27294= 781390%4 (mo .

5.6. Self-Inititializing Quadratic Sieve (SIQS)
In MPQS, the polynomial change is costly. For egaiynomial, to find
locations which are divisible bp 0 FB,

(2a)™ (modp) (5.5)

has to be calculated. For example, for a 60-digihiber, the factor base size is about

3000, so every polynomial change requires computffc), 3000 times. The cost of

switching to another polynomial is dominated bycodting inverse of 2a) for each
prime.

An efficient way of changing polynomials was fouog Alford and Pomerance
in 1993. This variant of MPQS is called self-inizeng quadratic sieve (SIQS). Since
polynomials can be changed quickly, in this variantaller M than MPQS can be used.

Therefore, the residues become smaller.
The calculations of the polynomials are done infthlewing way:

(i) Choosek <30 primesd,,d,,...,d, OFB such that

{3 (e
M d

1.

(i) Let d =d, (@, [1.[el, and a=d>.
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(iif) By the CRT(Chinese Remainder Teorem),
b>=N (moda)
has 2* solutions for b. And each root satisfies the ctadi

h* -4ac=N, 1<i< 2.

But only 2! of the solutions are useful as will be explainestn

b is the solution to the system of congruences by ,CR

X =+, (modd; )
X = b, (modd; )

x= b (modd? )

where (+h)* =N (mod d? ). By using only+b in the first congruence, there ag™

solutions.  Because b =tb, (moda) implies the generated polynomials

Q(X) = (2ax+b)* =N andQ,(x) = (2ax—b)* -~ N are mutually symmetric abowt=0.

Then to use only one such b, i.e. to eliminatecdmd = b, (mod a), we fix the sign

in one of the congruences. There aP&’ combinations of signs, that means

corresponding to eacta, 2" different b’s can be generated, al** possible

polynomials are obtained in this way.

The costly operatior(Za)_1 (modp ), p. OFB is calculated only once and then

stored. When b is changed, i.e. the polynomial piteeomputated values (inverses) are
used at no cost. By this variation, a speed-up felwapercent of the total computing

time can be gained( Boender, Riele ,1995).

5.7. Large Prime Variation

If the residue at a locatiox in the sieving interval completely decomposes over
the factor base, it is called a full(smooth) reatiThe question is now how to make use
of partial relations

Q(x) = rj p (P, weherePOFB, P:prime.
pOFB
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In chapter 3, it was shown that two 1-partial ielas with the same large prime P lead
to a full relation. By the Birthday Paradox, thésea reasonable good chance that the

same P will appear twice or more after collectingugh number of partial relations.

And finding 1-partial relations is at no extra cdsbr example, for the factorization of
102-digit number, 180879 1-partial relations wedlected and as a result 11433
additional full relations were obtained (Denny,1293

To detect large primes which are slightly bigdert p.., the threshold value is

kept to be pnfax. In logarithm variant, it is set to b2log p_ . After the trial division by
the numbers in the FB, the remainder P must b&zefdretween

2
ax

R <P<n

In practice an upper bound L for the threshold &aki chosen because collecting all
partial relations require a lot of disk space anggér P’s don’t contribute much.

Generally,10<L <100 is a good choice.

max

In the same way, relations of the form

Q(X) = rj p [R[P,, wehereR,P,UFB, B,P,:prime, can be found.
pOFB

Such relations are called partial-partial (2-pdrtialations . To find combinations of 1-
partial and 2-partial relations that give a fulbteon, the cycles in undirected graphs are
used (Boender,Riele,1995). In this double primeatian, if the remainder R after the

trial division satisfy L <R<L, and R is composite, then the large prime factéi® o

can be found by a suitable factoring algorithm. &ally, Shank’'s SQUFOF or
ECM(Elliptic Curve Method) is used. So this vameti requires some extra

computation.

More large prime variations can be used for faz#ion of very big numbers.
Earlier studies have shown that using one largemewariation is always better than
none, and the double prime variation is more effitiwhen factoring integers with
more than 80-digits (Leyland et al., 2001). In 198% RSA challenge number (RSA-
129) was factored using PPMPQS (Double Large Prar@ation of MPQS) and in
2001 a 135-digit number was factored using TMPQi€& Large Prime variation of
MPQS).



CHAPTER 6

EXPERIMENTAL RESULTS

In the previous chapter, the variations of the QS have been introduced. In order
to show the effects of them, we wrote maple codes and ran tests on random numbers
between 10 to 35 digits. Because the linear algebra stage is fixed for all variations, we
did not implement that part. Since the main aim is to reduce the sieving time and the

efficiency can be measured with respect to it, we measured it for each variation.

The test numbers we used are as follows:

c10=3605478927,

c15=781254789636521
€c20=86587412021455590143,
€23=42589740114577785544069,
€26=62111072210124773690021303,
€28=7896510144129021400155877441,
c30=325412235487201240012587445447,
€32=12345678909876543210122233301039,
€34=2021458722547810032556987410235477.

Here, ¢ stands for compositeness and the adjoining number next to ¢ denotes the number

of digits of the number.
We used the following abbreviations throughout our tests:
M: sieving interval,

FBS: factor base size,

48
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SR: number of smooth relations found,
SR: sieving time,

K: 1000,

s: second.

6.1. Using a Multiplier Test

Number = ¢c10, M=600, FBS=40

Multiplier SR
1* 42
7 77

Number = c20 , M=50K, FBS=300

Multiplier SR
1 140
7 390

17* 562

Number = c26 , M=200K, FBS=1700

Multiplier SR
1 982
5* 1739
7 1726

It can be observed that using a good multipliey meluce the runtime of QS up to 3

times. Here, the ones with a (*) shows the muéiplcalculated by our maple code.

And we also run test using the multiplier k wherdNkmod 8. As a method, basic QS is

used.



6.2. Logarithm Variant Test

Number = c23, ROK, FBS=1000, Multiplier=1

Method SR ST
Basic QS 1006 17.045s
Log Variant ( T=1.1) 1001 14.969s

Number = ¢c28 , MK, FBS=2000, Multiplier=1

Method SR ST
Basic QS 2070 92.171s
Log Variant ( T=1.2) 2072 59.984s

Number = c30, M=BQOFBS=2500, Multiplier=3

50

Method SR ST
Basic QS 1853 408.405s
Log Variant ( T=1.2) 1852 215.596s

As the number gets bigger, the efficiency of thgalithm variant increases. The
initialization step in the logarithm variant is fasbut here it is not calculated.

6.3. Small Prime Variation Test

Number = c23 , M¥X70FBS=1000, Multiplier=1

Method SR ST

Basic QS 1006 17.045s

Small Prime Variation 972 7.765s
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Number = c28 , MER) FBS=2000, Multiplier=1

Method SR ST
Basic QS 2070 92.171s
Small Prime Variation 1895 42.890s

Number = c30, M8B) FBS=2500, Multiplier=3

Method SR ST
Basic QS 1853 408.405s
Small Prime Variation 1831 194.095s

In the small prime variation, sieving has startearf the ¥' prime in the factor base.

A few smooth relations were missed but the timaggicompensated for them.

6.4. Comparing Variations

In this section, the sieving times of basic QS c&dey-Polynomials and MPQS
will be measured. For all of them, small prime dogharithm variant will be used. For
the sieving interval and the factor base size,fttlewing table (Bressoud, 1989, p.

118) will be helpful while implementing the speaigPolynomials and MPQS .

Table 6.1 Optimal parameters for MPQS and g-polynomiads.000)

number of digits of N factor base size M
24 100 oK
30 200 25K
36 400 25K
42 900 50K
48 1200 100K
54 2000 250K
60 3000 350K
66 4500 500K
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Number = c15, Multiplier=1

Method M FBS ST SR # of Poly.
Basic QS 8K 70 0.968s 71 1
g-Poly. 700 50 1.752s 65 4

MPQS 700 50 1.515s 66 4

Number = c26, Multiplier=5

Method M FBS ST SR # of Poly.
Basic QS 200K 1700 38.733s 1732 1
g-Poly. 25K 200 17.984s 219 12

MPQS 25K 200 11.218s 221 11

For MPQS, the multiplier was set to be 7, otherwigenumber is not of the form 4k+1.

Number = c32, Multiplier=1
Method M FBS ST SR # of Poly.
Basic QS 800K 3500 270.8425 2829 1
g-Poly. 70K 600 82.421 639 16
MPQS 70K 600 51.673 647 13

For MPQS, the multiplier was 59, otherwise the bamis not of the form 4k+1.

Number = c34, Multiplier=97
Method M FBS ST SR # of Poly.
Basic QS - - - - -
g-Poly. | 1000K 1000 167.047s 1045 17
MPQS 1000K 1000 110.9235 1033 17
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From the experimental results, it can be obserkiaiMPQS outperforms others
and the basic QS is not suitable for the numbbove 30 digits. But for the small

numbers basic QS has the best performance.

All the tests were run on Maple 10 using a singfeé with the following
properties Pentium(R) D CPU 2.80 GHZ and 1GB RAMuYan obtain the codes by
contacting me via skaradeniz@fatih.edu.tr.



CHAPTER 7

CONCLUSION

One of the greatest steps taken on the way to solve the IFP was the invention of
the QS. It is very simple and still efficient. For the numbers that range from 50 digits to
110 digits, QS is the fastest known algorithm. Since a basic version of it was
implemented for the first time, many improvements have been made. In this thesis, we
did a thorough survey on these improvements(variations) and by using maple, the

effects of some of them have been shown experimentally.

In this research, we applied some variations of the quadratic sieve to some

specific randomly chosen lerge integers.

As a result of our experiments, it was observed that using an appropriate
multiplier can significantly reduces the runtime of the QS. The logarithm variant and
small prime variations are also applied to some large numbers, as a result of which we

observed substantial improvements.

We also tested two multi polynomial variants, special g-polynomials and MPQS,

and found out that MPQS outperformed all the other variants.

This research suggests that further improvements to the quadratic sieve integer

factoring algorithm may be attained in the future.
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