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ABSTRACT 
 
 

The two dimensional electron gas (2DEG) between two ferromagnetic 

contacts, known as Spin Field Effect Transistor (Spin FET), is considered 

theoretically in the presence of impurities. Spin precession due to Rashba spin-

orbit coupling is studied using the model of Datta and Das in the one dimensional 

channel including impurities. Spin precession angle is found to be independent of 

an arbitrary  impurity potential. Therefore, it is shown that the conductance 

modulation for purely one dimensional case is not affected by any kind of 

impurity potential. 
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ÖZET 
 
 
Spin Alan Etkili Transistör (Spin FET) olarak bilinen iki ferromanyetik malzeme 

arasındaki katkılı iki boyutlu elektron gazı (2DEG), Spin Alan Etkili Transistör (Spin FET), 

teorik olarak incelenmiştir. Rashba spin-yörünge etkileşmesinden kaynaklanan spin 

presesyonu bir boyutlu Data ve Das modeli kullanılarak katkılı durumda çalışılmıştır. Spin 

presesyon açısının herhangi bir katkı potansiyelinden bağımsız olduğu bulunmuştur. Bundan 

dolayı iletkenlikteki değişimin bir boyutlu sistemlerde, herhangi bir potansiyelden 

etkilenmediği gösterilmiştir.  

 

  
 
 

Anahtar Kelimeler: Spin FET, 2 Boyutlu Elektron Gazı, Rashba etkisi, Spin Polarize 
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CHAPTER 1 

 

 INTRODUCTION 
 

Spintronics is a new paradigm in electronics (I. Zutic et al., 2004). It is also known as  

magnetoelectronics and based on exploitation of spin, a quantum property of electron, (Fig. 

1.1). Control of electrical properties and modification of information, by spin manipulation, 

are the two main goals of this field.  

 
In the last 50 year period, there has been a great revolution in the technology based on 

charge of electrons. From the earliest transistor to the microprocessor in our computers, most 

electronic devices have used circuits that express data as binary digits, or bits-ones and zeroes 

represented by the existence or absence of electric charge. In addition to this, the 

communication between microelectronic devices occurs by the binary flow of electric 

charges. In the last two decades scientists have been eager to use another property of the 

electron, a characteristic known as “spin”. Spin is a purely quantum mechanical phenomenon 

roughly akin to the spinning of a child’s gyroscope. 

 

The movement of spin, like the flow of charge, can also carry information among 

devices. One advantage of spin over charge is that spin can be easily manipulated by 

externally applied magnetic fields, a property already in use in magnetic storage technology. 

Another property of spin is its long coherence, or relaxation time, once created it tends to stay 

that way for a long time, unlike charge states, which are easily destroyed by scattering or 

collisions with defects, impurities or other charges. These characteristics open the possibility 

of developing devices that could be much smaller, consume less electricity and be more 

powerful for certain types of computations than is possible with electron charge based 

systems. 

 

Spintronics is an important technology that uses quantum property of electrons to spin 

as well as using of their charges. Spintronics is one of the most exciting and challenging area, 

multidisciplinary field, important to both fundamental scientific research and industrial 

applications. Spintronics is playing an increasingly significant role on the high density data 

storage, microelectronics, sensors, quantum computing and bio-medical applications, etc. (S. 

D. Sarma et al., 2001) 
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                       Figure 1.1. Types of Spin Alignment  [Sarma, S. D., et al.,2001] 
 

 It is expected that the impact of spintronics to the microelectronics industry might be 

comparable to the development of the transistor 50 years ago. Today everyone already has a 

spintronics device on their desktop, as all modern computers use the spin valve (see next 

chapter) in order to read and write data on their hard drive. The initial driving force for 

spintronics has been the improvement of computer technology. At  present the research has 

been concentrating on the fabrication of spin transistors and spin logic devices integrating 

magnetic and semiconductors, with the aim of improving the existing capabilities of 

electronic transistors and logics devices so that the future computation and thus the future 

computer could become faster and consume less energy. There are four main areas in 

spintronics: 

 

1. Understanding the fundamental physics, such as spin-dependent transport across the 

magnetic/semiconductor or magnetic/nonmagnetic metal interfaces and spin coherence 

length in semiconductors or metals. 

2. Synthesising suitable spintronic materials in the vicinity of room temperature, large 

spin polarization at the Fermi level and matching conductivity between the magnetic 

and semiconductor materials. 

 

3. Fabricating devices with nanometer feature sizes and developing new techniques for 

mass production. 
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4. Integrating spin-devices with current microelectronics and computing. 

 

     Spin relaxation (how spins are created and disappear) and spin transport (how spins 

move in metals and semiconductors) are fundamentally important. Depending on the relative 

orientation of the magnetizations in the magnetic layers, the electrical resistance through the 

layers changes from small (parallel magnetizations) to large (antiparallel magnetizations) 

values. Scientists discovered that they could use this change in resistance  to construct perfect 

sensitive detectors of changing magnetic fields, such as those marking the data on a computer 

hard-disk platter (S. A. Wolf et al., 2001). 

 

 In this thesis we focus on spin dependent transport to consider spin field effect 

transistor (spin FET), also named as Datta-Das field effect transitor (S. Datta and B. Das, 

1990), in the presence of impuritities. It consists of two ferromagnetic electrodes and a 

semiconductor 2DEG channel with a gate electrode. It is basically similar in structure to a 

conventional FET. The source and drain electrodes are ferromagnetic metals, and two 

dimensional electron gas (2DEG) channel where impurities are located should have a spin-

orbit interaction. We basically consider the variation in the conductance affected by the 

impurities. 

 

This thesis is divided into following parts: In chapter 2 we review some spin based 

devices; in chapter 3 we consider the spin FET in detail; we analyze the nonballistic spin FET 

in chapter 4; we give an ansatz in chapter 5 concerning the our calculations; and finally in 

chapter 6 the thesis will be completed by the conclusions. 
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CHAPTER 2 

 

 SPIN BASED DEVICES 
    

Semiconductor spintronic devices combine advantages of semiconductor with the 

concept of magnetoelectronics. This category of devices includes spin diodes, spin filter, and 

spin FET. To make semiconductor based spintronic devices, researchers need to address 

several problems. A first problem is the creation of inhomogeneous spin distribution. It is 

called spin polarization or spin injection. Spin-polarized current is the primary requirement to 

make semiconductor spintronics based devices. It is also very fragile state. Therefore, the 

second problem is achieving transport of spin-polarized electrons maintaining their spin-

orientation. Final problem, related to application, is the spin relaxation time. Spins come to 

equilibrium by the phenomenon called spin relaxation. It is important to create long spin 

relaxation time for effective spin manipulation, which will allow additional spin degrees of 

freedom to spintronics devices with the electron charge. Utilizing spin degrees of freedom 

alone or add them to mainstream electronics will significantly improve the performance with 

higher capabilities. 

 

The other category devices are being considered for building quantum computers (S. 

D. Sarma et al., 2001). Quantum information processing and quantum computation is the 

most ambitious goal of spintronics research. The spins of electrons and nuclei are the perfect 

candidates for quantum bits or qubits. Therefore, electron spin and nuclear based hardwares 

are some of the main candidates being considered for quantum computers. 

 

Spin based devices offer several advantages over the conventional charge based 

devices. For example, as the magnetized materials maintain their spin even without power, 

spin based devices could be the basis of non-volatile memory device. Energy efficiency is 

another virtue of these devices as spins can be manipulated by low-power external magnetic 

field. Miniaturization is also other advantage because spintronics can be coupled with 

conventional semiconductor and optoelectronic devices. However, temperature is still a major 

bottleneck. Practical application of spintronics needs room-temperature ferromagnet in 
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Figure 2.2. Giant magneto resistance effect; (a) electron transport takes place when magnetization 
direction of both ferromagnetic regions aligned parallel to each other, (b) electrons are facing high 
resistance and scattered away near interface when magnetization direction of both ferromagnetic 
regions are opposite to each other [Hammar, P. R., and M. Johnson, 2002 ]. 

 

Soon after its discovery, the GMR effect found its application in information storage 

and reading, for example in read heads for hard disks and MRAM memory (M. Dax, 1997). 

Researchers and developers of spintronic devices currently take two different approaches. In 

the first, they seek to perfect the existing GMR-based technology either by developing new 

materials with larger populations of oriented spins  (called spin polarization) or by making 

improvements in existing devices to provide better spin filtering. The second effort focuses on 

finding novel ways both to generate and to utilize spin-polarized currents, that is, to actively 

control spin dynamics.  

 

2.2. Magnetic Tunnel Junctions (MTJ) 
 
            Quantum mechanical tunneling is the phenomenon in which the wave nature of 

particles enables them to pass through an energy barrier that an otherwise classical object 

could not. One of the most fascinating phenomena in condensed matter physics is spin 

dependent tunneling. Spin dependent tunneling arises when one or both the electrodes 

separated by the tunneling barrier are ferromagnetic or otherwise capable of producing spin-

polarized carriers. The number of electrons with spin-up and spin-down are not the same, and 

the magnetization direction in ferromagnetic materials can be expressed as the spin 
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orientation of the majority electrons. When the magnetization of the two electrodes are 

parallel then majority spin state or minority spin state will have the same spin orientation for 

both the electrodes, whereas, for antiparallel orientation of the magnetization majority spin 

state in one electrode is the minority spin state of the other electrode. Hence, the 

corresponding resistances are different for parallel and antiparallel magnetization orientation 

of the electrodes. This is the basis of tunneling magnetoresistance (TMR) (M. Johnson, 1994). 

 

 MTJ (M. Johnson, 1994) are particularly important since they are already solving the 

problem of volatility of logic and memory components that ordinarily need constant 

refreshing power to function properly. By replacing capacitor-based charge storage elements, 

MTJ are providing much needed non-volatility of information storage. 

 

 

2.3. All-Metal Spin Transitor 

 

 
 
Figure 2.3. All Metal Spin Transistor.  Spin transistor invented by Mark Johnson. [M. Johnson,1994]. 
 

Another interesting concept is the all-metal spin transistor (Fig 2.3), konown as 

Johnson transistor, developed by Mark Johnson (M. Johnson, 1994). It is a trilayer structure 

consisting of a nonmagnetic metallic layer sandwiched between two ferromagnets. The all-

metal transistor has the same design philosophy as do GMR devices: The current flowing 

through the structure is modified by the relative orientation of the magnetic layers, which in 

turn can be controlled by an applied magnetic field. In this scheme, a battery is connected to 

control circuit (emitter-base), while the direction of the current in the working circuit (base-
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collector) is effectively switched by changing the magnetization of the collector. The current 

is drained from the base in order to allow for the working current to flow under the reverse 

base-collector bias (antiparallel magnetizations). Neither current nor voltage is amplified, but 

the device acts as a switch or spin valve to sense changes in an external magnetic field. A 

potentially significant feature of the Johnson transistor is that it can in principle be made 

extremely small using nanolithographic techniques (M. Johnson, 1994). An important 

disadvantage of Johnson transistor is that it will be difficult to integrate this spin transistor 

device into existing semiconductor microelectronic circuitry. Besides that metal-based 

spintronic devices do not amplify signals.  

 

2.4. Spin Polarized p-n Junction 

Motivated by the possibility of having both spin polarization and amplification, S. D. 

Sarma and his group have studied a prototype device, the spin polarized p-n junction (S. D. 

Sarma, 2001). In their scheme they illuminate the surface of the p-type region of a gallium 

arsenide (GaAs) p-n junction with circularly polarized light to optically orient the minority 

electrons. By performing a realistic device-modeling calculation they have discovered that the 

spin can be effectively transferred from the p side into the n side, via what we call spin 

pumping through the minority channel. In effect, the spin gets amplified going from the p to 

the n region through the depletion layer. One possible application of their proposed spin-

polarized p-n junction (see Fig. 2.4) is something called the spin-polarized solar cell. 

  

                              

2.5. Magnetic Field Effect Transitor 

 
In a magnetic field effect transistor proposed by I. Zutic (I. Zutic et al., 2004), 

electrodes of an external circuit are placed perpendicular to the p-n junction. The current is 

determined by the amount of available electrons in the region of the junction around the 

electrodes. If the depletion layer is wider than the electrodes, no (or very small) electric 

current flows. As the width decreases, more and more electrons come into contact with the 

electrodes and the current rapidly increases. Traditionally field effect transistors operate with 

an applied electric field (voltage) along the junction, as the width of the depletion layer is 

sensitive to the voltage. They proposed to use electric field instead a magnetic field. If the n 
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or p region (or both) is doped with magnetic impurities, an external magnetic field produces a 

physical effect equivalent to applying an external voltage and could effectively tailor the 

width of the junction. (At the same time, this affects spin-up and spin-down electrons 

differently: A spin-polarized current results as well). Such a device could be used in magnetic 

sensor technology such as magnetic read heads or magnetic memory cells. 

 

     

 
 

Figure  2.4. Magnetic Field Effect Transistor [Sarma, S. D, 2001]. 
 

 

2.6. Spin Valve 
        

A spin valve (R. Jansen, 2003) is a device consisting of two or more conducting 

magnetic materials, shown in Fig 2.5, that alternates its electrical resistance (from low to high 

or high to low) depending on the alignment of the magnetic layers, in order to exploit the 

GMR effect. The magnetic layers of the device align up or down depending on an external 

magnetic field. Layers are made of two materials with different hysteresis curves, so one layer 

(soft layer) changes polarity while the other (hard layer) keeps its polarity. In Fig. 2.5, the top 

layer is soft and the bottom layer is hard.  

 

Spin valves work, based on a quantum property of electrons and other particles. When 

a magnetic layer is polarized, the unpaired carrier electrons align their spins to the external 

magnetic field. When a potential exists across a spin valve, the spin-polarized electrons keep 

their spin alignment as they move through the device. If these electrons encounter a material 

with a magnetic field pointing in the opposite direction, they have to flip spins to find an 



1 0  
 

 
 

empty energy state in the new material. This flip requires extra energy which causes the 

device to have a higher resistance than when the magnetic materials are polarized in the same 

direction.  

 

 

 
 

  Figure 2.5. Spin valve: Resistance alternates depending on the external magnetic field [Potz, W., et 

al.,2007]. 

 

 

Figure 2.6. Scattering in a spin valve . 

 

Fig. 2.6 shows a multilayer spin valve that exhibits the GMR effect. In the figure spin 

valve consists of two magnetic metal layers separated by a non-magnetic metal layer. On the 

left of the figure, the magnetizations of the two magnetic layers are antiparallel aligned. Here 

the majority spin electrons of the top magnetic layer are the minority spin electrons of the 

bottom magnetic layer. Equally, the minority electrons of the top magnetic layer are the 

majority electrons of the bottom magnetic layer. Either way, the electron experiences a layer 

with high scattering conditions and a large resistance is obtained in the anti-parallel 

alignment. 
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Figure 2.7. Datta-Das or spin FET [Datta, S., and B. Das, 1990] 
 
 

2.7. Spin Field Effect Transistor (Spin FET)  

 The first scheme for a spintronic device based on the metal-oxide-semiconductor 

technology familiar to microelectronics designers was the field effect spin transistor proposed 

in 1990 by Supriyo Datta and Biswajit Das (S. Datta and B. Das, 1990). In a conventional 

field effect transistor, electric charge is introduced via a source electrode and collected at a 

drain electrode. A third electrode, the gate, generates an electric field that changes the size of 

the channel through which the source-drain current can flow. This results in a very small 

electric field being able to control large currents.     

 

In the spin FET, or Datta-Das device, a structure made from, for instance, InAlAs and 

InGaAs provides a channel for two-dimensional (2D) electron transport between two 

ferromagnetic electrodes. One electrode acts as an emitter, the other as a collector (similar, in 

effect, to the source and drain, respectively, in a FET). The emitter emits electrons with their 

spins oriented along the direction of the electrode’s magnetization, while the collector (with 

the same electrode magnetization) acts as a spin filter (W. Potz et al, 2007) and accepts 

electrons with the same spin orientation only. In the absence of any changes to the spins 

during transport, every emitted electron enters the collector. In this device, the gate electrode 

produces a field that forces the electron spins to precess, just like the precession of a spinning 

top under the force of gravity. The electron current is modulated by the degree of precession 

in electron spin introduced by the gate field: An electron passes through the collector if its 

spin is parallel, and does not if it is antiparallel, to the magnetization. The Datta-Das effect is 
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the most visible for narrow band-gap semiconductors such as InGaAs, which have relatively 

large spin-orbit interactions (that is, a magnetic field introduced by the gate current has a 

relatively large effect on electron spin) (see Fig. 2.7 and Fig. 2.8). Spin FET will be 

considered in detail in the next chapter. 

 

  
Figure 2.8. Direction of Spins in Datta-Das FET [Sarma, S. D., et al., 2001]. 

 

 

If spintronic devices are ever to be practical, we need to understand how spins move 

through materials and how to create large quantities of aligned spins. Pioneering experiments 

on spin transport were performed by Paul M. Tedrow and Robert Meservey on 

ferromagnet/superconductor sandwiches to demonstrate that current across the interface is 

spin-polarized (P. M. Tedrow and R. Meservey, 1973). Today, the range of materials we can 

study has significantly increased, including novel ferromagnetic semiconductors, high-

temperature superconductors and carbon  nanotubes (O. Manasreh, 2005). As devices 

decrease in size, the scattering from interfaces plays a dominant role. In these hybrid 

structures the presence of magnetically active interfaces can lead to spin-dependent 

transmission (spin filtering) and strongly influence operation of spintronic devices by 

modifying the degree of spin polarization. One way to test these ideas is by directly injecting 

spins from a ferromagnet, where the spins start out in alignment, into a nonmagnetic 
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semiconductor. Understanding this kind of spin injection is also required for hybrid 

semiconductor devices, such as the Datta-Das spin transistor. But this situation is very 

complicated, and a complete picture of transport across the ferromagnetic-semiconductor 

interface is not yet available.  

 

Experiments on spin injection (A. T. Hanbicki et al., 2002) into a semiconductor 

indicate that the obtained spin polarization is substantially smaller than in the ferromagnetic 

spin injector, spelling trouble for spintronic devices. In this case, where spins diffuse across 

the interface, there is a large mismatch in conductivities, and this presents a basic obstacle to 

achieving higher semiconductor spin polarization with injection. An interesting solution has 

been proposed by inserting tunnel contacts, a special kind of express lane for carriers, 

scientists found that they could eliminate the conductivity mismatch (V. F. Motsnyi et al., 

2002). Moreover, to reduce significant material differences between ferromagnets and 

semiconductors,  one can use a magnetic semiconductor as the injector (J. H. Davies, 1993). 

While it was shown that this approach could lead to a high degree of spin polarization in a 

nonmagnetic semiconductor, it only worked at low temperature. For successful spintronic 

applications, future efforts will have to concentrate on fabricating ferromagnetic 

semiconductors in which ferromagnetism will persist at higher temperatures. The issues 

involving spin injection in semiconductors, as well as efforts to fabricate hybrid structures, 

point toward a need to develop methods to study fundamental aspects of spin-polarized 

transport in semiconductors. 
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CHAPTER 3 

 

 SPIN POLARIZED TRANSPORT AND SPIN FET 

 
              

As explained in the previous chapter the first model of transistor using active control 

of electron spin was proposed by Datta and Das (S. Datta and B. Das, 1990). In the Datta-Das 

field effect transistor or spin FET, the non-magnetic layer acts as a gate while two 

ferromagnetic layers act as source and drain respectively. The gate plays an important role in 

spin FET. The gate voltage modifies direction of the electron spin by generating electric field, 

as a result of relativistic effect, giving rise to effective magnetic field and thereby switching 

the transistor. In the proposed device the electrons are ballistically transported in the channel 

and enter the drain (collector) if its spin is parallel to the magnetization direction of drain 

(spin detector), otherwise, it is scattered away. 

 

The control of charge current in spin FET is similar to the conventional transistors (S. 

D. Sarma et al., 2001), but the spin FET possesses advantages over conventional transistors. It 

is smaller in size, and consumes less power. Still, spin FET exists in prototype model because 

of theoretical limitation related to spin behavior in different materials. Now consider how 

Datta-Das spin FET works.  

 

 

 
Figure 3.1. Spin FET or Datta-Das FET. 
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The proposed device, by Datta and Das, spin FET utilizes the spin of the electrons 

while they are travelling through a one dimensional (1D) channel without being scattered. The 

spin FET is an electronic device where spin-polarized current could be created, manipulated 

and detected by means of an electric field. Using ferromagnetic materials as source and drain, 

one can create a spin-polarized current, whereas spin manipulation is done by the gate 

electrode. An electric field applied via the gate electrode creates a conducting channel from 

source to drain in conventional FET devices. In spin FET devices, the electric field applied 

via gate electrode can also be used to control the orientation of the spin of electrons travelling 

through the conducting channel. To understand how an electric field can control the 

orientation of spins, we have to look back at relativistic effects on the spin of the electrons (P. 

Grundler, 2002). When an electric field is applied perpendicularly to the transport direction, 

an electron in its moving frame of reference feels an effective magnetic field directed 

perpendicularly to both the electric field and the transport direction. Hence, the spin of the 

injected electron can precess about this effective magnetic field while it is travelling through 

the conducting channel. This phenomenon is similar to the spin-orbit interaction in an atomic 

system, where electrons orbit around the nucleus in the presence of an electric field created by 

the positively charged nucleus. The underlying spin-orbit interaction in spin FET devices is 

called Rashba effect or Rashba spin-orbit coupling (E. I. Rashba, 2004). The output current 

will be proportional to the projection of the spin orientation of the electrons carrying current 

to the magnetization direction of the ferromagnetic drain electrode. Therefore, the source-

drain current can be manipulated, i.e. spin direction of the current carrying electrons can be 

rotated willingly, by utilizing the Rashba spin-orbit effect via an applied electric field through 

the gate electrode. This basic principle of a spin FET is shown schematically in Fig. 3.1. The 

spin precession and output current modulation are controlled via the field effect by applying 

an external gate voltage. The spin precession between source and drain electrodes is a 

function of gate voltage via Rashba spin-orbit interaction parameter.  

 

 

3.1. Two Dimensional Electron Gas (2DEG) 
        

       2DEG is a 2D system arising at the interfaces of a heterostructure. It is trapped at a 

heterojunction and the most important low-dimensional system for the electronic transport. It 
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forms the core of a FET, which goes by many acronyms including modulation-doped field-

effect transistor (MODFET) and high electron mobility transistor (HEMT).  

 

GaAs-AlGaAs heterojunctions have importance in mesoscopic conductors. In these 

heterojunctions, a thin two dimensional conducting layer is formed at the interface between 

GaAs and AlGaAs. The reason is that, considering the conduction and valance band line up in 

one direction, the Fermi Energy (εf) in the widegap AlGaAs layer is higher than that in the 

narrow gap GaAs layer. According to this difference electrons spill over from the n-AlGaAs 

leaving behind positively charged donors. This space changes give rise to an electrostatic 

potential that causes the bands to bend (see Fig. 3.3). The electron density is sharply peaked 

near the GaAs-AlGaAs interface forming a thin conducting layer which is called as 2DEG.  

 

 

 

 
 

Figure 3.2. An electron, subject to electric and magnetic field, in 2DEG. 
 
 
 
 
 

 
 

Figure 3.3. Band Diagram. 
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electrode's magnetization (along the transport direction), while the collector (with the same 

electrode magnetization) acts as a spin filter and accepts electrons with the same spin 

orientation only. In the absence of spin relaxation and spin dependent processes during 

transport, every emitted electron enters the collector. 

        

         For a 2DEG carrier moving, for instance, in the x(y)  direction, perpendicular electric 

field, Ez transforms, in the rest frame of the carrier, as an effective magnetic field By (Bx). This 

effective field interacts with the spin of the carriers, and is therefore called a spin-orbit 

interaction. The coupling results in the spin eigenstates described in Fig 3.5(a) and Fig.3.5(b). 

The spin-orbit coupling can be characterized by a strength that is proportional to momentum 

and g value. It adds a term to the Hamiltonian and the corresponding field is known as Rashba 

field leading to the spin precession of the electrons (see Fig 3.6). 

 

 

 
Figure 3.5. Energy dispersion and Fermi surface diagrams describing Rashba effect and current-
induced nonequilibrium spin magnetization. (a) Energy dispersion along kx; showing spin-split 
subbands. (b) Fermi surface in equilibrium [Potz, W., 2007].  

 

 

 
                            

Figure 3.6. Rashba Field [Potz, W., 2007] 
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Depending on the direction of the electron spin (when entering into the collector) 

relative to the collector magnetization, the electron current is modulated: an electron passes 

through if its spin is parallel and does not if it is antiparallel to the magnetization. The current 

is in effect modulated by the external electric field induced spin-orbit field naturally existing 

in asymmetric zinc blende semiconductor structures (Rashba effect) (E. I. Rashba, 2004). The 

Rashba field can be, in turn, modulated by the applied perpendicular field at the gate. The 

Hamiltonian for the Rashba interaction is written as: 

 

                                                                                                                                   (3.1) 

 

where α  is the Rashba interaction constant which is linearly dependent on electric field 

through the energy gap and effective mass, xσ  and yσ are Pauli spin matrices corresponding 

to the electron spin. kx and ky are the wave vectors along the x and y axis, respectively. 

 

The Rashba spin-orbit effect has several important consequences. First, if a carrier is 

injected into such a 2DEG with a known spin orientation, the orientation will randomize very 

rapidly. The spin precesses rapidly around the Rashba field because the magnitude of the 

effective field is large, but the direction of this field changes with any scattering event that 

alters momentum. The result is that spin relaxation is rapid. Second, the Rashba effect can be 

modulated by varying an externally applied gate voltage. This permits novel studies of the 

Fermi surface of a 2DEG (Nitta et al., 1997) and is the concept that underlies the original 

device idea of Datta and Das. Third, the unusually strong spin-orbit effect can be used to 

generate a population of nonequilibrium spin polarized electrons. In turn, this population can 

be detected using a ferromagnetic film as a spin-sensitive electrode. The result is a technique, 

called current-induced nonequilibrium magnetization, that can characterize the spin transport 

properties of an individual ferromagnetic-2DEG interface (P. R. Hammar et al, 1999; P. R. 

Hammar and M. Johnson, 2002). Given the difficulties associated with the experimental 

development of a spin FET, studies of the component parts of the device are very useful.  

 

 The other type of spin-orbit interaction in semiconductor heterostructures is 

Dresselhaus spin-orbit interaction which appears as a result of the asymmetry in a certain 

lattice (G. Dresselhaus, 1955). For 2D heterostructures with appropriate growth geometry, the 

Dresselhaus spin-orbit interaction is of the form: 

( )xyyxR kkH σσα −−=
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                                                                                                                                   (3.2) 

 

where β  is the corresponding interaction constant. Here the Hamiltonian term comes from 

the bulk inversion asymmetry. 

 

Enhancement of spin-orbit coupling in solids come from two basic sources. First, this 

coupling originates from fast electron motion in a strong electric field near the nuclei. Second, 

the symmetry of microstructure is essentially lower than the symmetry of a vacuum. As a 

result new terms that critically change spin dynamics appear in electron Hamiltonians. There 

is no simple way to calculate Rashba constant. Because it depends both on the field applied 

and boundary conditions at the interfaces. For InAs based quantum wells, typical values of 

Rashba constant are about  10−9 eV cm, however, values as large as  6 × 10−9 eV cm have 

been also reported (L. J. Cui et al., 2002). This is important, because Rashba constant can be 

controllably changed by the gate voltage.                                                     

                                                           

   Other possible sources of spin-orbit interaction are nonmagnetic impurities, phonons 

(V. F. Gantmakher and Y. B. Levinson, 1987), sample inhomogenity, surfaces and interfaces. 

In some situations these could play a role in spin transport and spin relaxation dynamics. 

 

3.3. Spin Matrices and Spin Direction  
 

The spin direction in any system is defined through spin matrices by spherical 

coordinates and is given by the following parameters: 

 

ߟ   ൌ ሺsin ߠ cos ߮, sin ߠ sin ߮, cos  ሻ                                                                      (3.3)ߠ

 
where ߠ is the angle between the vector and z axis, ߮ is the azimuthal angle. Upon 

representing the corresponding vector in unit vector notation as ߟԦ ൌ ୶ı̂ߟ ൅ ୷ĵߟ ൅ ୸ߟ ෠݇,  in terms 

of its components becomes   ߟሬԦ ൌ ሺsin ߠ cos ߮î ൅ sin ߠ sin ߮ĵ ൅ cos  .෠݇ሻߠ

 

The direction of spin is given by scalar product of Pauli spin matrices and ߟԦ: ܵ௡ ൌ Ԧܵ.  ,Ԧߟ

where Ԧܵ ൌ ௫ı̂ߪ ൅ ௬ĵߪ ൅ ௭ߪ ෠݇  and Pauli spin matrices are: 

( )yyxxD kkH σσβ −−=
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௫ߪ  ൌ ቀ  0 11 0  ቁ ௬ߪ           ൌ ቀ 0 െ݅݅   0 ቁ          ߪ௭ ൌ ቀ  1    0  0 െ1 ቁ                                      (3.4) 

 

which gives rise to: 

 ܵ௡ ൌ ቀ  0 11 0  ቁ sin ߠ cos ߮ ൅ ቀ 0 െ݅݅   0 ቁ sin ߠ sin ߮ ൅ ቀ  1    0  0 െ1 ቁ cos  (3.5)                          ߠ

 

After taking the summation of matrices, the above equation can simply be written as:   

                                                                                                 

 ܵ௡ ൌ ൬  cos ߠ              sin ߠ cos ߮ െ ݅ sin ߠ sin ߮sin ߠ cos ߮ ൅ ݅ sin ߠ sin ߮ െ cos ߠ   ൰                                       (3.6) 

 

Using the definitions cos ߮ െ ݅. sin ߮ ൌ ݁ି௜ఝ and cos ߮ ൅ ݅. sin ߮ ൌ ݁௜ఝ the equation 

above takes the following form: 

  ܵ௡ ൌ ൬ cos ߠ sin ௜ఝsinି݁ߠ ߠ ݁௜ఝ െ cos ߠ ൰                                                                  (3.7) 

 

There are two eigenstates for an electron spin: ቚଵଶ  ଵଶۄ (spin up) and ቚଵଶ ିଵଶ  .(spin down) ۄ

These eigenstates form the spinor part of any wave function describing the motion of an 

electron in a material. Using these as basis vectors, the electron wave function can be 

expressed in terms of orbital (߶ሻ and spinor part (ܺ) as a two element column matrix: ߰ ൌ ߶ܺ, where the spinor contains the terms realted to spin up and down:                     

 ܺ ൌ ቀܾܽቁ ൌ ܽܺ՝ ൅ ܾܺ՛                                                                                                                        (3.8) 

 

here a and b are coefficients. In terms of these coefficients ܵ௡ can be written in matrix form 

as:  

  ܵ௡ ቀܾܽቁ ൌ ௡ܥ ቀܾܽቁ                                                                                            (3.9) 

 
where Cn is the eigenvalue. Substituting (3.7) into the equation above: 
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 ൬  cos ߠ sin ௜ఝsinି݁ߠ ߠ ݁௜ఝ െcos ߠ ൰ ቀܾܽቁ ൌ ௡ܥ ቀܾܽቁ                                                                                          (3.10) 
 

 

 Then this expression will result in the following equations: 

 ܽሺcos ߠ െ ௡ሻܥ ൅ ܾ sin ௜ఝି݁ߠ ൌ 0                                                                                                    (3.11) 

 asin ߠ ݁௜ఝ െ ܾሺcos ߠ ൅ ௡ሻܥ ൌ 0                                                                        (3.12) 
 
which will yield: 

 ቤcos ߠ െ ௡ܥ sin ௜ఝsinି݁ߠ ߠ ݁௜ఝ െcos ߠ െ ௡ቤܥ ൌ 0                                                                          (3.13) 

 

and it becomes  

 ሺcos ߠ െ ௡ሻሺെcosܥ ߠ െ ௡ሻܥ െ sin ߠ ݁௜ఝ sin ௜ఝି݁ߠ ൌ 0                                                                  (3.14) 

 

Solving it for Cn gives: ܥ௡ଶ ൌ 1 ՜ ௡ܥ  ൌ ௡ܥ For .1ט ൌ 1 ՜ ܽሺcos ߠ െ 1ሻ ൅ܾ sin ௜ఝି݁ߠ ൌ 0  which result in:                                                                                         

                                                                                                                                  ௔௕ ൌ ୱ୧୬ ఏ௘ష೔കଵିୡ୭ୱ ఏ ൌ ଶ ୱ୧୬ቀఏ ଶൗ ቁ ୡ୭ୱሺఏ ଶൗ ሻ௘ష೔കଵିቂଵିଶ ୱ୧୬మቀഇమቁቃ ൌ cot ቀఏଶቁ ݁ି௜ఝ                             (3.15)                          

 

 For  ܥ௡ ൌ െ1 ՜  ܽሺcos ߠ ൅ 1ሻ ൅ ܾ sin ௜ఝି݁ߠ ൌ 0  which leads to: 

                                                                                                                 ௔௕ ൌ ି ୱ୧୬ ఏ௘ష೔കଵାୡ୭ୱ ఏ ൌ ିଶ ୱ୧୬ቀఏ ଶൗ ቁ ୡ୭ୱሺఏ ଶൗ ሻ௘ష೔കଵାቂଶ ୡ୭ୱమቀഇమቁିଵቃ ൌ െtan ቀఏଶቁ ݁ି௜ఝ                               (3.16) 

 

 Since the spinor part of the wave function includes two components, in (3.8),  two 

values of Cn must be associated with both the spin up and spin down parts: Positive and 

negative values correspond to spin up and spin down components, respectively. Employing 

(3.15) and (3.16), they can be expressed in matrix form: 
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ܺ՛ ൌ ቌcos൫ߠ 2ൗ ൯݁ି௜ቀകమቁsin൫ߠ 2ൗ ൯݁௜ሺകమሻ ቍ          ܺ՝ ൌ ቌ sin൫ߠ 2ൗ ൯݁ି௜ቀകమቁെ cos൫ߠ 2ൗ ൯݁௜ቀകమቁቍ                                                      (3.17) 

 

 The above equation gives the eigenfunctions for up and down spin. They describe the 

direction of spin in terms of spherical angles while electrons are traveling in a system. 

Actually these angles give the amount of deviation form the z axis by ߠ and x axis by ߮. 

Hence they define the spin precession angles which are fundamental in Rashba effect.  
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CHAPTER 4 
 
 

 BALLISTIC AND NONBALLISTIC SYSTEMS 
 

 

        A ballistic conductor is a conductor where electrons propagate freely, and resistance 

arises from the contacts. The conductance of such a conductor is indeed independent of its 

length. The ohmic length dependence of the conductance comes from scattering processes 

within the conductor. Comparing mean free path l  with characteristic dimensions of the 

system, L, one can discriminate between diffusive, l << L   and  ballistic,  l ≥ L, transport (see 

Fig. 4.1).  

 
 
 

 
 

Figure 4.1. Ballistic and non ballistic conductors. 
 
 
 
4.1. Ballistic (Impurity Free) Systems 
 
 

Ballistic conduction is the characteristic of a material, known as a ballistic conductor, 

which has crystalline properties that allow electrons to flow through the material without 

collisions. The material must be free of impurities that the electrons will be capable of 

colliding with. In ordinary conductors, flowing electrons continually collide with the atoms 

making up the material, slowing down the electrons and causing the material to heat, 

effectively creating resistance in the material. Despite ballistic conductivity is really 

connected with very low resistance of particular material, the major importance isn't energy 
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efficient transport of power on the long distance but nanoscience and information processing 

electronic applications. 

  

Ballistic conduction enables utilization of quantum mechanical properties of electron 

wave function. The ballistic transport is coherent in terms of wave mechanics. For a ballistic 

system in the presence of Rashba effect, one can describe Hamiltonian in 2D as following: 

෡ܪ  ൌ ௣మೣା௣೥మଶ௠ ൅ ߙ ሺఙ೥௣ೣିఙೣ௣೥ሻħ                                                                            (4.1) 
  

When the width (w) of the 2DEG is sufficiently narrow, ا ԰૛ હܕൗ  , the intersubband 

mixing can be neglected (S. Datta and B. Das, 1990). Moreover the number of available 

channels reduces to two, including the spin degeree of freedom, for sufficiently small w. In 

such a situation the transport via two available channels is given by a simple 1D Hamiltonian 

which describes 1DEG. Assuming electrons are traveling along the x direction, kz = 0, the  

reduced Hamiltonian becomes: 

෡ܪ  ൌ ௣మೣଶ௠ ൅ ߙ ሺఙ೥௣ೣሻħ ൌ െ ħଶ௠ ௗమௗ௫మ ൅ ௭ߪߙ ௣ħೣ                                                                                       (4.2) 
 

Wave functions, describing the motion of electrons in 1DEG for up and down spins 

can be written as: 

 ߰՛ ൌ ݁௜௞՛௫ ቀ10ቁ           ߰՝ ൌ ݁௜௞՝௫ ቀ01ቁ                                                              (4.3) 

 

Time independent Schrodinger equation is for both spin directions is given by  ܪ෡߰՛՝ ൌ  ՛՝. Upon substituting  (4.3) into  this expression, energy eigenvalues and߰ܧ

eigenstates can be found by  solving the following  matrix:  

 

ቮħమ௞మଶ௠ ൅ ݇ߙ െ ܧ 00 ħమ௞మଶ௠ െ ݇ߙ െ ቮܧ ൌ 0                                                            (4.4) 

 
       Upon diagonalizing the matrix above we obtain the energy eigenstates for up and down 

spins: 
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՝ܧ  ൌ ħమ௞՝మଶ௠ െ                         ՝                                                                                 (4.5)݇ߙ
  
 

՛ܧ  ൌ ħమ௞՛మଶ௠ ൅  ՛                                                                                     (4.6)݇ߙ
 
where  ݇՛ and ݇՝ are the wave vectors for up spin and down spin, respectively. From these 

equations it is possible to recover the momentum difference because the two energies are 

fixed to the Fermi energy (see Fig. 4.2):  

 ݇՝ െ ݇՛ ൌ ଶ௠ఈħమ                                                                            (4.7) 
 

 

 
Figure 4.2. Energy dispersion for up and down spins. 

 
       

 Phase shift ( θ∆ ) corresponding to (4.7) is described as the difference between down 

spin and up spin multiplied by L,  where L is the length of the system that we consider, is 

proportional Rashba parameter ߙ: 

 ሺ݇՝ െ ݇՛ሻܮ ൌ ଶ௠ఈħమ ܮ ൌ  (4.8)                                                                     ߐ߂
 
 

Total wave function ( )ψ  of an electron is defined as the superposition or linear 
combination of two waves,  :    ߰ ൌ ଵ߰՛ܥ ൅          ଶ߰՝ܥ
            
 
  ߰ ൌ ܿଵ݁݅݇՛ݔ ቀ10ቁ ൅ ܿ2݁݅݇՝ݔ ቀ01ቁ                       (4.9)
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To set up a relation between coefficients C1, C2 and spin precession angles one can 

introduce the following definitions:  ,   . After putting them into the 

(4.9), it becomes: 

  ቆܥଵ݁௜௞՛௫ܥଶ݁௜௞՝௫ቇ ൌ ቆ|ܿଵ|݁௜ఊభା௜௞՛௫|ܿଶ|݁௜ఊమା௜௞՝௫ቇ                                                                           (4.10) 

 
here ߛଵ and ߛଶ are the angles, indicating deflections from the phase. From the matrix 

expression (4.10) we will get:  

 

tan(θ/2)= 
1

2

c
c    and   ߮ ൌ ଶߛ െ ଵߛ ൅ ሺ݇՝ െ ݇՛ሻ(4.11)                                                   ݔ 

 
In the equation above we see that spin precession angle (θ ) and the azimuthal spin 

precession angle  depend on the ratio of coefficients and , respectively. Hence from 

the equation (4.7)  is also dependent on Rashba Coefficient.  It means that as the electrons 

are traveling in 1DEG the deflection from the z axis and the x axis are given by this ratio and 

the parameters 1γ , 2γ  and .   

 

4.2. Nonballistic Systems 
 
     A perfect crystal consists only of intrinsic (host) atoms and stoichiometric vacancies 

occupying intrinsic sites in the crystal lattice. Any deviation from crystal perfection is known 

as a defect, and the process that has brought it into life is termed as defect formation. In  

generally accepted classification, impurities and vacancies are referred to as point defects. In a 

spin FET the conductance modulation in the field of impurities has been studied (S. Caliskan, 

2006). In this section, first of all we will examine those systems which include a single 

impurity, and then examine effect of more than one impurity and different kind of potentials 

on the system. 

 
4.2.1. Systems of One Impurity 

 

Figure 4.3. A system including one impurity 

1  2  
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Take a Dirac potential at x = 0 as an impurity in the system..In the presence of that 

impurity one can rewrite the Hamiltonian in (4.2) as following: 

  

෡ܪ  ൌ െ ħଶ௠ ௗమௗ௫మ ൅ ௭ߪߙ ௣
ħೣ

൅  δሺxሻ                             (4.12)߁
 
 

where ߁δሺxሻ is the Dirac Delta potential term. As a result of one impurity at x = 0, the 

wavefunctions before and after the impurity can simply be written for up spin: 

 ߰՛ ൌ ቐ ݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞՝௫ݎ ቀ10ቁ    for ݔ ൏ ՛݁௜௞՛௫ݐ0 ቀ10ቁ                             for  ݔ ൐ 0ቑ                         (4.13) 

 
 and for down spin: 
 ߰՝ ൌ ቐ݁௜௞՝௫ ቀ01ቁ ൅ ՝݁ି௜௞՛௫ݎ ቀ01ቁ    for ݔ ൏ ՝݁௜௞՝௫ݐ0 ቀ01ቁ                            for  ݔ ൐ 0ቑ                (4.14) 

 
 
 As a linear combination of wave functions of up and down spin, the total wave 

function becomes:  

 
 

      ߰ ൌ ۔ۖەۖ
ۓ ቆܥଵݎ՛݁௜௞՝௫ܥଶݎ՝݁௜௞՛௫ቇ        for ݔ ൏ 0

ቆܥଵݐ՛݁௜௞՛௫ܥଶݐ՝݁௜௞՝௫ቇ          for ݔ ൐ 0ۙۘۖ
ۖۗ

                                                            (4.15) 

 
 Transmission coefficients for both spin directions can be introduced in a similar 

fashion as done in the previous section: 

՛ݐ       ൌ  ՛|݁௜క՛                                                                        (4.16)ݐ|
                                                                                                
՝ݐ                  ൌ  ՝|݁௜క՝                                                                       (4.17)ݐ|

 
 
  Using these definitions for x > 0, the total wave function will take the following form: 
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                                                                                                               ߰ ൌ ቊቆ|ܿଵ||ݐ՛|݁௜ఊభା௜௞՛௫ା௜క՛|ܿଶ||ݐ՝|݁௜ఊమା௜௞՝௫ା௜క՝ቇቋ                  (4.18) 

 
 
 
        The spin precession angles ߠ and φ can be found in terms of coefficients in a similar 

manner as done for systems with no impurity: 

 tan ቀఏଶቁ ൌ ቚ௖మ௧՝௖భ௧՛ቚ  and  ߮ ൌ ଶߛ െ ଵߛ ൅ ՛ߦ െ ՝ߦ ൅ ሺ݇՝ െ ݇՛ሻ(4.19)                                               ݔ 
 
                                    

      Wave functions for both spin orientations,  before and after the impurity taken place at        

x = 0, can be written as:  

 ߰ଵ՛ ൌ ݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞՝௫ݎ ቀ10ቁ  
                                              ߰ଵ՝ ൌ ݁௜௞՝௫ ቀ01ቁ ൅ ՝݁ି௜௞՛௫ݎ ቀ01ቁ 
 ߰ଶ՛ ൌ ՛݁௜௞՛௫ݐ ቀ10ቁ 
 ߰ଶ՝ ൌ ՝݁௜௞՝௫ݐ ቀ01ቁ 
 

At the boundary, x = 0, the wave functions must be equal to each other, and the 

difference in the derivatives of them is given by the corresponding potential strength: 

 ߰ଵ՝ሺ0ሻ ൌ ߰ଶ՝ሺ0ሻ  
      ߰ଵ՛ሺ0ሻ ൌ ߰ଶ՛ሺ0ሻ 
 ߲߰ଵ՛ሺ0ሻ߲ݔ െ ߲߰ଶ՛ሺ0ሻ߲ݔ ൌ ħଶ߁2݉            ߲߰ଵ՝ሺ0ሻ߲ݔ െ ߲߰ଶ՝ሺ0ሻ߲ݔ ൌ ߁2݉

ħଶ  

 
      
 After setting and employing boundary conditions, we get the following equalities for 

the polarized transmission and reflection coefficients: 
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 1 ൅ ՛ݎ ൌ ՛         and     1ݐ ൅ ՝ݎ ൌ                         ՝                                                                                    (4.20)ݐ
  
and upon applying the derivatives, the following expression is obtained: 
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↓↑ mkki

kki
tt                                                                             (4.21)    

 
 It is obtained that the polarized transmission coefficients for up and down spin, after 

passing through the impurity are equal to each other. It implies that an electron with down 

spin can have up spin after passing the impurity. Hence a single impurity in the type of  Dirac 

Delta Potential does not affect the spin precession angle and thus the behaviour of the 

transmission coefficients for up and down spin travelling in the system. We have found these 

results for those electrons having positive energies. One can also find a relationship for 

negative energies, E < 0: 

                 
        For systems of negative energy we can follow the same procedures: Define the wave 

functions for up and down spins before and after the impurity; set and employ the boundary 

conditions: 

 ߰ଵ՛ ൌ ݁௜௞௫ ቀ10ቁ ൅ ՛݁௜௞′௫ݎ ቀ10ቁ                   (4.22) 
                                              ߰ଵ՝ ൌ ݁ି௜௞′௫ ቀ01ቁ ൅ ՝݁ି௜௞௫ݎ ቀ01ቁ                    (4.23) 
 ߰ଶ՛ ൌ ՛݁௜௞௫ݐ ቀ10ቁ                                                                                                                 (4.24) ߰ଶ՝ ൌ ՝݁ି௜௞′௫ݐ ቀ01ቁ                                                                                                              (4.25) 
 
 ߰ଵ՝ሺ0ሻ ൌ ߰ଶ՝ሺ0ሻ ௬௜௘௟ௗ௦ሱۛ ۛۛ ሮ 1 ൅ ՛ݎ ൌ ՛ݐ                                                                                  (4.26)  
 
 ߰ଵ՛ሺ0ሻ ൌ ߰ଶ՛ሺ0ሻ ௬௜௘௟ௗ௦ሱۛ ۛۛ ሮ 1 ൅ ՝ݎ ൌ  ՝                                                                                    (4.27)ݐ
 
 
and utilizing the difference in derivatives of wave functions, we again  

find that even at negative energies the polarized transmission coefficients become equal to 

each other: 
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t                                                                                                           (4.28)       

 
which implies that spin precession angle will be inert to impurity at negative energies. 
 
 
 
4.2.2. Systems of Two Impurities 
 
 

 

Figure 4.4.  Systems of two impurities 
 

 

     In the presence of two impurities, we follow the same way as done in the previous 

section. Firstly we define the wave functions for each region (see Fig.4.4). The first two 

regions contain both transmission and reflection coefficients, whereas the third region will 

consist of only polarized transmission coefficients: 

 ߰ଵ՛ ൌ ݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞՝௫ݎ ቀ10ቁ                                                              (4.29) 
                                              ߰ଵ՝ ൌ ݁௜௞՝௫ ቀ01ቁ ൅ ՝݁ି௜௞՛௫ݎ ቀ01ቁ                                                                                          (4.30) 
 ߰ଶ՛ ൌ ՛݁௜௞՛௫ݐ ቀ10ቁ ൅ ௜՛݁ି௜௞՝௫ݎ ቀ10ቁ                       (4.31) 
 ߰ଶ՝ ൌ ՝݁௜௞՝௫ݐ ቀ01ቁ ൅ ௜՝݁ି௜௞՛௫ݎ ቀ01ቁ                   (4.32) 
 ߰ଷ՛ ൌ ௜՛݁௜௞՛௫ݐ ቀ10ቁ                                                                                                              (4.33) 
 ߰ଷ՝ ൌ ௜՝݁ି௜௞՝௫ݐ ቀ01ቁ                    (4.34) 
 
 
    Upon  indicating the wave functions for each region, now we can set boundary 

conditions at the location of the impurities. The impurity potential at x = 0 gives rise to the 

1  2  3  

x = 0  x = x i  
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similar results as in the previous section, except that there are now polarized reflection 

coefficients due to other impurity: 

 1 ൅ ՛ݎ ൌ ՛ݐ ൅  ௜՛                            (4.35)ݎ

 ݅݇՛ݐ՛ െ ݅݇՝ݎ௜՛ െ ሺ݅݇՛ െ ݅݇՝ݎ՛ሻ ൌ ଶ௠௰
ħమ ሺݐ՛ ൅  ௜՛ሻ                   (4.36)ݎ

 

Similarly, by utilizing the boundary conditions for the impurity potential at  ݔ ൌ  ௜ theݔ

following equalities can easily be obtained: 

                                                                                                                                          
௜՛݁௜௞՛௫೔ݐ  ൌ ՛݁௜௞՛௫೔ݐ ൅  ௜՛݁ି௜௞՝௫೔ݎ
 ݅݇՛ݐ௜՛݁௜௞՛௫೔ െ ݅݇՛ݐ՛݁௜௞՛௫೔ ൅ ݅݇՝ݐ௜՛݁ି௜௞՝௫೔ ൌ ħଶ߁2݉  ௜՛݁௜௞՛௫೔ݐ
           
௜՛ݐ  ൌ ሺ௞՛ା௞՝ሻమ

௘೔൫ೖ՛శೖ՝൯ೣ೔ቀమ೘೨ħమ ቁషቀమ೘೨ħమ ష೔ሺೖ՛శೖ՝ሻቁమ ൌ  ௜՝                                                             (4.37)ݐ

 
                                       

We again found that the polarized transmission coefficients for up and down spin are 

equal. Therefore even the presence of two impurities don’t influence the behavior of spin 

precession angle. It means that the corresponding current is inert to scatterings due to 

impurities.                                   

 

4.2.3. Systems of Potential Well 

 
Figure 4.5  A potential well 

 
 
 
In this section we will introduce a potential well of width a to the Hamiltonian. The 

Hamiltonian including the potential well type impurity will take the following form: 
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෡ܪ ൌ െ ħଶ௠ ௗమௗ௫మ ൅ ௭ߪߙ ௣
ħೣ

െ |ܸ|                   (4.38) 
 
 

Similar to the previous sections, first of all we must define the wavefunctions for both 

spin directions in each region (Fig.4.5):   

 
 ߰ଵ՛ ൌ ݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞՝௫ݎ ቀ10ቁ                                                                                          (4.39) 
                                              ߰ଵ՝ ൌ ݁௜௞՝௫ ቀ01ቁ ൅ ՝݁ି௜௞՛௫ݎ ቀ01ቁ                  (4.40) 
 ߰ଶ՛ ൌ ՛݁௜௤՛௫ݐ ቀ10ቁ ൅ ௔՛݁ି௜௤՝௫ݎ ቀ10ቁ                  (4.41) 
 ߰ଶ՝ ൌ ՝݁௜௤՝௫ݐ ቀ01ቁ ൅ ௔՝݁ି௜௤՛௫ݎ ቀ01ቁ                  (4.42) 
 ߰ଷ՛ ൌ ௔՛݁௜௞՛௫ݐ ቀ10ቁ                    (4.43) 
 ߰ଷ՝ ൌ ௔՝݁ି௜௞՝௫ݐ ቀ01ቁ                    (4.44) 
 

where ݍ՛ and ݍ՝ are the electron wave vectors for up and down spin inside the potential well. 

Upon applying the Schrodinger equation and diagonilizing the Hamiltonian, the following 

energy eigenvalues are found: 

ܧ  ൌ ħଶ ௤՛మଶ௠ ൅ ՛ݍߙ െ |ܸ| ൌ ħଶ ௤՝మଶ௠ െ ՝ݍߙ െ |ܸ|                              (4.45)                         

 
inside the potential well and 
 
ܧ  ൌ ħଶ ௞՛మଶ௠ ൅ ՛݇ߙ ൌ ħଶ ௞՝మଶ௠ െ  ՝                                                                                    (4.46)݇ߙ
 
 
outside the well. The above two expressions give: 
 
 

↓↓↑↑ −=− kqkq                                                                                                                  (4.47) 
In this system the boundary conditions can be set as: 

 ߰ଵ՝ሺ0ሻ ൌ ߰ଶ՝ሺ0ሻ and  ߰ଵ՛ሺ0ሻ ൌ ߰ଶ՛ሺ0ሻ 
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 ߰ଶ՝ሺܽሻ ൌ ߰ଷ՝ሺܽሻ and  ߰ଶ՛ሺܽሻ ൌ ߰ଷ՛ሺܽሻ 
 
 
 These relations together with their derivatives give rise to the following equations:  
 
 1 ൅ ՛ݎ ൌ ՛ݐ ൅           ௔՛ݎ
 
 ݅݇՛ െ ݅݇՝ݎ՛ ൌ ՛ݐ՛ݍ݅ െ                               ௔՛ݎ՝ݍ݅
             
՛݁௜௤՛௔ݐ                                                    ൅ ௔՛݁ି௜௤՝௔ݎ ൌ                                                                                                 ௔՛݁௜௞՛௔ݐ
 
՛݁௜௤՛௔ݐ՛ݍ݅  െ ௔՛݁ି௜௤՝௔ݎ՝ݍ݅ ൌ ݅݇՛ݐ௔՛݁௜௞՛௔                                                                                 
 
  
 From the expressions above and utilizing (4.31), the polarized transmission 

coefficients for electrons passing through the potential well are found to be:  

௔՛ݐ   ൌ ௔՝ݐ ൌ െ ௘೔ೌ൫೜՛షೖ՝൯൫೜՝షೖ՛൯ሺ௞՛ା௞՝ሻሺ௤՛ା௤՝ሻ௘೔ೌ൫೜՛శ೜՝൯ሺ௤՛ି௞՝ሻሺ௤՝ି௞՛ሻିሺ௞՛ା௤՛ሻሺ௞՝ା௤՝ሻ                                                             (4.48)  

 
 
which are equal to each other. Even if we take a different kind of impurity potential the ratio 

of polarized transmission coefficients again becomes unity, meaning that the spin precession 

angle will not be influenced either by a potential well. It implies that electron with down spin 

before the well can have up spin after the well. 

 
 
4.3. Effect of Magnetic Field 
 

In this section we will examine what happens when the system is under an external 

magnetic field (S. Caliskan and M. Kumru, 2007). We choose two different directions for the 

magnetic field:  
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4.3.1. Parallel Magnetic Field 
 

In this part the external magnetic field is taken to be along the z direction, zBB ˆ=
→

, i.e. 

parallel to the Rashba Field, zBB RR ˆ=
→

. The analogous magnetic vector potential A
r

 can be 

chosen using the  Landau Gauge which may yield )0,0,( yBA
rr

−= .  

The quantum mechanical description of electron motion in a magnetic field is obtained 

by solving the Schrödinger equation: 

,ݔ෡߰՛՝ሺܪ  ,ݕ ሻݖ ൌ ,ݔ՛՝ሺ߰ܧ ,ݕ  .ሻݖ

 

with Hamiltonian: 

෡ܪ  ൌ ௣మೣଶ௠ ൅ ௘஻೤௣ೣ௠ ൅ ௘మ஻మ௬మଶ௠ ൅ ߙ ቂቀ௣ħೣ ൅ ௬ቁܤ݁ ௭ቃߪ ൅  ௭                                               (4.49)ܤ஻ߤ
 

  
In the expression above since we may write:  

 ௘஻೤௣ೣ௠ ൅ ௘మ஻మ௬మଶ௠ ՜ ௘஻௛௠ ௫݇ۄݕۃ ՜ 0                                                                                     
 
the Hamiltonian in (4.33) reduces to: 
෡ܪ  ൌ zBzx Bµαk σσ ++

m
kx

2

22h
               (4.50)                         

 
Replacing kx by k and diagonalizing the Hamiltonian gives: 
 

 

0

2
0

0
2

22

22

=
−−−

−++ EBµαkEBµαk
B

B
m
k

m
k

h

h

                                                          (4.51) 

 
 

Solving this expression for energy gives the eigenvalues for each spin direction: 
 

 

↑↑
↑

+ =++= EBµαk2mkE B22h
                    (4.52) 
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↓↓
↓

− =−−= EBµαk2mkE B22h
              (4.53) 

 
 

To see the effect of magnetic field we focus on, for instance, those systems including 

two impurities (see Fig. 4.4). As it was done in the previous sections, first of all we describe 

the wavefunctions, then set the boundary conditions and finally solve for polarized 

transmission  coefficients in the presence of external magnetic field. The wave functions in 

each region are: 

  ߰ଵ՛ ൌ ݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞′՝௫ݎ ቀ10ቁ                   (4.54) 
                                              
 ߰ଵ՝ ൌ ݁௜௞՝௫ ቀ01ቁ ൅ ՝݁ି௜௞′՛௫ݎ ቀ01ቁ                  (4.55) 
 
 ߰ଶ՛ ൌ ՛݁௜௞՛௫ݐ ቀ10ቁ ൅ ௜՛݁ି௜௞′՝௫ݎ ቀ10ቁ                  (4.56) 
 
 ߰ଶ՝ ൌ ՝݁௜௞՝௫ݐ ቀ01ቁ ൅ ௜՝݁ି௜௞′՛௫ݎ ቀ01ቁ                       (4.57) 
 
 ߰ଷ՛ ൌ ௜՛݁௜௞՛௫ݐ ቀ10ቁ                                                                                                               (4.58) 
 
 ߰ଷ՝ ൌ ௜՝݁௜௞՝௫ݐ ቀ01ቁ                                                                                                               (4.59) 
 
  
 The first impurity located at x = 0 yields:   
 

↑↑↑ +=+ irtr1                                                                                                                     (4.60)            
 ሺ݅݇՛ݐ՛ െ ݅݇՝ᇱݎ௜՛ሻ െ ሺ݅݇՛ െ ݅݇՝ᇱݎ௜ሻ ൌ ଶ௠௰ħమ ሺݐ՛ ൅  ௜՛ሻ                                                                      ሺ4.61ሻݎ
 
 
 The second impurity located at x = xi results in:   
௜՛݁௜௞՛௫೔ݐ  ൅ ′௜՛݁ି௜௞՝ݎ ௫೔ ൌ   ௜՛݁௜௞՛௫೔                                                                                         (4.62)ݐ
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൫݅݇՛ݐ௜՛݁௜௞՛௫೔ሻ െ ሺ݅݇՝ ௜՛݁௜௞՛௫೔ݐ െ ݅݇՝ᇱݎ௜՛݁ି௜௞ᇲ՝௫൯ ൌ ଶ௠௰ħమ ሺݐ՛ ൅  ௜՛݁௜௞՛௫೔                   (4.63)ݐ௜՛ሻݎ
       
 The above relations give the following expression: 
 
௜՛ݐ  ൌ ሺ௞՛ା௞ᇲ՝ሻమ

௘೔൫ೖ՛శೖᇲ՝൯ೣ೔ቀమ೘೨ħమ ቁషቀమ೘೨ħమ ష೔ሺೖ՛శೖᇲ՝ሻቁమ ൌ  ௜՝                                                                           (4.64)ݐ

 
which indicates that the spin precession angle again is not influenced due to the ratio of 

polarized transmission coefficients.  

 
 
4.3.2. Perpendicular Magnetic Field 
 

In this part the external magnetic field is taken to be along the y direction, yBB ˆ=
→

, i.e. 

perpendicular to the Rashba Field, zBB RR ˆ=
→

. The corresponding Hamiltonian may reduce the 

following form, upon choosing an appropriate Landau Gauge: 

 

෡ܪ ൌ zBz Bµαk σσ ++
m
k

2

22h
                                                                       (4.65) 

 
 

Diagonalizing the Hamiltonian in the presence of perpendicular magnetic field gives 

the following determinant:  

 

0

2

2
22

22

=
−−

−+ EαkBiµ Biµ‐Eαk
B

B
m
k

m
k

h

h

                                                                                (4.66) 

 
                                                   
which gives rise to following energy eigenvalues for both spin orientations: 
 
േܧ  ൌ ħమ௞మଶ௠ േ ඥሺ݇ߙሻଶ ൅ ሺߤ஻ܤሻଶ                                                                                          (4.67)  
           
 
and corresponding eigenstates can simply be found by solving the matrix equation: 
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ቌħమ௞మଶ௠ ൅ ݇ߙ െ േܧ െ݅ߤ஻ߤ݅ܤ஻ܤ ħమ௞మଶ௠ െ ݇ߙ െ േቍܧ ൬ܽേܾേ൰ ൌ 0                                                                 (4.68) 

 
 
which yields, after obtaining a and b: 
 
 ߰േ ൌ ݁௜௞௫ ቆ ௜ఓಳ஻ఈ௞േඥሺఈ௞ሻమାሺఓಳ஻ሻమ1 ቇ                                                                                        (4.69) 

 
 

This expression can be written in more compact form: 
 

 ߰േ ൌ ݁௜௞௫ ቀߟേ1 ቁ                                                            (4.70)   
 
 
where  ߟേ ൌ ௜ఓಳ஻ఈ௞േඥሺఈ௞ሻమାሺఓಳ஻ሻమ .                                                                                           (4.71) 

                     
                                                         

The wave functions for up and down spin in each region (see Fig. 4.4) can be 

described as following, using (4.66): 

 ߰ଵା ൌ ݁௜௞శ௫ ቀߟା1 ቁ ൅ ା݁ି௜௞శ௫ݎ ൬ߟା′1 ൰ ൅ ݎି ݁ି௜௞ష௫ ൬′1ିߟ ൰                                                       (4.72) 

 ߰ଵି ൌ ݁௜௞ష௫ ቀ1ିߟ ቁ ൅ ′ାݎ ݁ି௜௞శ௫ ൬ߟା′1 ൰ ൅ ′ݎି ݁ି௜௞ష௫ ൬′1ିߟ ൰                                                       (4.73) 

 ߰ଶା ൌ ା݁௜௞శ௫ݐ ቀߟା1 ቁ ൅ ௜௞ష௫݁ିݐ ቀ1ିߟ ቁ ൅ ௜ା݁ି௜௞శ௫ݎ ൬ߟା′1 ൰ ൅ ௜ି݁ି௜௞ష௫ݎ ൬′1ିߟ ൰                       (4.74) 

 
 ߰ଶି ൌ ′௜ାݐ ݁௜௞శ௫ ቀߟା1 ቁ ൅ ௜௞ష௫݁ିݐ ቀ1ିߟ ቁ ൅ ′௜ାݎ ݁ି௜௞శ௫ ൬ߟା′1 ൰ ൅ ௜ି݁ି௜௞ష௫ݎ ൬′1ିߟ ൰                      (4.75) 

 
 ߰ଷା ൌ ௜ା݁௜௞శ௫ݐ ቀߟା1 ቁ ൅ ௜ି݁௜௞ష௫ݐ ቀ1ିߟ ቁ                                                                               (4.75) 
 
 ߰ଷି ൌ ′௜ାݐ ݁௜௞శ௫ ቀߟା1 ቁ ൅ ௜ି݁௜௞ష௫ݐ ቀ1ିߟ ቁ                                                                               (4.76) 
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As in the case of previous section, upon setting the boundary conditions at x = 0 and   

x = xi, we again find that the polarized transmission coefficients in the presence of 

perpendicular magnetic field becomes equal to each other. 

  
 In this section we investigated the effect of parallel and perpendicular external 

magnetic field, with respect to built in Rashba field. In both situations the ratio of 

transmission coefficients for up and down spin again goes to unity. Therefore even the 

external magnetic field does not modify this ratio, and so spin precession angle. It results in 

only a phase shift.  

 

This chapter is devoted to effect of different kind of impurity potentials and of external 

magnetic field in different directions. In all cases we see that the polarized transmission 

coefficients are equal to each other for down spin and up spin. Since any type of impurity 

potential together with external field don’t change this equality, there must be a mapping 

between up and down spin: Up spin may be transformed to down. In the next chapter we will 

consider in detail this mapping and generalize these results, by introducing a gauge 

transformation, using an operator.. 

 
 
4.4. Inhomogeneous Rashba Coefficient 
 

Lastly we consider briefly the case where the Rashba coefficient α is not 

homogeneous. An example is the case where the gate potential covers only a part of the 

quantum wire, so that α becomes an x-dependent function α(x). To address the effects of its x 

dependence we consider the following Hamiltonian: 

௜௡௛ܪ  ൌ ௣మೣଶ௠ ൅ ܸሺݔሻ ൅ ఙ೥ଶħ ሾߙሺݔሻ݌௫ ൅                        ሻሿ                                         (4.77)ݔሺߙ௫݌

 

Note that the Rashba term in the Hamiltonian is replaced by its symmetric 

combination, so that Hamiltonian remains Hermitian. The scattering state in homogenous 

system can be converted to a new state associated with inhomogenous system, by an 

analogous gauge transformation: 

 ෨߰ ൌ ݁௜൫௠ ħమ⁄ ൯ఙ೥ ׬ ௗ௫́ఈሺ௫́ሻ߰                           (4.78)   
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 Under this transformation the Schrodinger equations for ෨߰ା and ෨߰ି become identical: 

 ෨݄ ௜௡௛ ෨߰ା,ି ൌ ෨ܧ ෨߰ା,ି                                                                                                             (4.79) 

where  ෨݄ ௜௡௛ ൌ ௣మೣଶ௠ ൅ ܸ௜௡௛ሺݔሻ.  Here the effective potential  ܸ௜௡௛ሺݔሻ: 

 ܸ௜௡௛ሺݔሻ ൌ ܸሺݔሻ െ ௠ןమሺ௫ሻଶħమ                               (4.80) 

 

is renormalized by ߙሺݔሻ. Thus the inhomogeneous α can induce backscattering and reduce the 

mean free path l just as an inhomogeneous V(x) does. Note that for a given slope dα/dx this 

backscattering effect becomes stronger as the average α value gets larger since α(x) affects 

Vinh(x) quadratically. Once this reduction of l  by the inhomogeneous α(x) is taken into 

account, the rest of the analysis is the same as for the homogeneous α case and the results will 

be similar. 
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CHAPTER 5 
 
 
 

NONBALLISTIC SPIN FET and ANSATZ 
 

 
 

In the previous chapter we have dealed with those systems which contain different 

number and kind of impurities. Even if these systems inserted in an external magnetic field of 

different directions, we have seen that in all situations polarized transmission coefficients 

have been found to be equal for down and up spin. Since the impurities that we have 

considered does not affect the ratio of polarized transmission coefficients one can imply that 

the spin precession angle must be independent of impurity potential. Therefore we may also 

make a comment that any arbitrary potential would not change our results. To see whether 

this comment is really true or not can be given by an ansatz. We are going to take an impurity 

potential of arbitrary shape and examine the ratio of transmission coefficients for up spin and 

for down spin and see whether it is gonna be unity or not. It will give the behaviour of the 

spin precession angle, and so the polarized transmission coeffcients or polarized conductance 

influenced by impurities . If the ratio goes to unity our ansatz that we suggest will be true. 

 

Ansatz: Spin precession angle is independent of potential. Let us take an arbitrary 

potential of V(x)  and write corresponding Hamiltonian: 

   xσαx z22
)(

2
ˆ

2

xV
im

H +
∂
∂

+
∂
∂

−=
h          (5.1) 

 

 and energy eigenvalues for up and down spin can be found as: 

  αk2mkαk2mkE 2222
↓

↓
↑

↑ −=+=
hh

 

 

thus, 

 

( ) ( ) 2222 2mαkkkkααk2m kk
h

h
−=−⇒+−=+

−
↓↑↓↑↑

↓↑              (5.2) 
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There are two possibilities for this case: 

 
- There may exist a mapping betwen ↑ and ↓ solutions, 

 
- There  may exist a dynamic symmetry, eigenvalue of which represents spin precession 

angle. 

 
 

Consider the following eigenstates for polarized spins before and after an arbitrary 

potential located at x = 0: 

 

߰՛ ൌ ۔ۖەۖ
ۓ ݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞՝௫ݎ ቀ10ቁ       for  ݔ ൏ ՛݁௜௞՛௫ݐ                                                   0 ቀ10ቁ                                for   ݔ ൐ 0ۙۘۖ

ۖۗ
 

 

 

߰՝ ൌ ۔ۖەۖ
௜௞՝௫݁ۓ ቀ01ቁ ൅ ՝݁ି௜௞՛௫ݎ ቀ01ቁ      for   ݔ ൏ ՝݁௜௞՝௫ݐ                                                    0 ቀ01ቁ                              for   ݔ ൐ 0ۙۘۖ

ۖۗ
 

 

Concerning the mapping between up and down solutions, an operator ܮ෠ can be 

introduced which transforms up (down) eigenstate to down (up) as: 

෠ܮ  ቄ݁௜௞՛௫ ቀ10ቁቅ ൌ ݁௜௞՝௫ ቀ01ቁ                                                                                                      (5.3)    
 
෠ܮ  ቄ݁ି௜௞՝௫ ቀ10ቁቅ ൌ ݁ି௜௞՛௫ ቀ01ቁ                                                                                                  (5.4) 
 
 

By utilizing (5.2) one can define this operator as following: 
 

෠ܮ  ൌ ݁௜మ೘ഀ
ħమ ௫ ቀ0 01 0ቁ                                                                                                                (5.5) 

                                                                                                   
  
where the exponent on the right side is related to phase shift and so spin precession angle. 

Substituting (5.5) into the (5.3) and (5.4) yields: 
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 ቆ 0 0݁௜మ೘ഀ

ħమ ௫ 0ቇ ൬݁௜௞՛௫0 ൰ ൌ ቆ 0݁௜ቀ௞՛ାమ೘ഀ
ħమ ቁ௫ቇ ൌ ቀ 0݁௜௞՝௫ቁ                                                             (5.6) 

 
 ቆ 0 0݁௜మ೘ഀ

ħమ ௫ 0ቇ ൬݁ି௜௞՝௫0 ൰ ൌ ቆ 0݁ି௜ቀ௞՝ିమ೘ഀ
ħమ ቁ௫ቇ ൌ ቀ 0݁ି௜௞՛௫ቁ                                                         (5.7) 

 
                              
which satisfy (5.3) and (5.4). According to the definition of the ܮ෠  operator, (5.5) can also be 

written in the form of Pauli spin matrices as: 

෠ܮ  ൌ ݁௜మ೘ഀ
ħమ ௫  ଵଶ ൫ߪ௫ െ  ௬൯                                                                                                      (5.8)ߪ݅

 

 .෠ operator, to be a valid operator for any system, must commute with the Hamiltonianܮ           

Hence, now let’s investigate the commutation of ܪ෡ and ܮ෠ : 

,෡ܪൣ  ෠൧ܮ ൌ 0 (if they commute)                                                                             (5.9) 
 

To find whether it is zero or not, we can examine each component of the Hamiltonian, 

(5.1), with ܮ෠. It is readily seen that the arbitrary potential and ܮ෠ operator are commutative: 

 ൣܸሺݔሻ, ෠൧ܮ ൌ 0                                     (5.10)                        
                                                                                                      

The first term of the Hamiltonian includes ̂݌௫ଶ. Begin with commutation of momentum 

operator ̂݌௫ with  ܮ෠ operator:   

,௫̂݌ൣ              ෠൧ܮ ൌ ൤ħ௜ డడ௫ , ݁௜మ೘ഀ
ħమ ௫ ቀ0 01 0ቁ൨ ൌ ħ௜ ൤ డడ௫ , ݁௜మ೘ഀ

ħమ ௫൨ ቀ0 01 0ቁ                                

                                                                                             
which results in:  ଶ௠ఈ
ħ

 ෠                       (5.11)ܮ
       

 The relationship between ௣ොమೣଶ௠ and ܮ෠ will take the following form, upon employing the 

commutation properties together with (5.11): 
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 ଵଶ௠ ቀ̂݌௫2݉ ఈ

ħ
෡ܮ ൅ 2݉ ఈ

ħ
௫ቁ̂݌෡ܮ ൌ ఈ

ħ
൫̂݌௫ܮ෡ ൅  ௫൯                                                                  (5.12)̂݌෡ܮ

 
  By utilizing (5.8), the commutation of the second term and ܮ෠ operator can be written 

as: 

                  ቂߪߙ௭ ௣ො
ħೣ

, ෠ቃܮ ൌ ൤ߪߙ௭ ௣ො
ħೣ

, ݁௜మ೘ഀ
ħమ ௫  ଵଶ ൫ߪ௫ െ  ௬൯൨                                                                       (5.13)ߪ݅

             
 

                   = ఈ
ħ

௭ߪ ൤̂݌௫, ݁௜మ೘ഀ
ħమ ௫  ଵଶ ൫ߪ௫ െ ௬൯൨ߪ݅ ൅ ൤ఈ

ħ
,௭ߪ ݁௜మ೘ഀ

ħమ ௫  ଵଶ ൫ߪ௫ െ ௬൯൨ߪ݅                      ௫̂݌
 
 

                   = ఈ
ħ

,௫̂݌௭ൣߪ ෠൧ܮ ൅ ఈ
ħ

൤ߪ௭, ݁௜మ೘ഀ
ħమ ௫  ଵଶ ൫ߪ௫ െ ௬൯൨ߪ݅               ௫̂݌

 

which gives: 
  ఈ
ħ

௭ߪ ቀ2݉ ఈ
ħ

෡ቁܮ ൅ ఈ
ħ

൜൤ߪ௭, ݁௜మ೘ഀ
ħమ ௫  ଵଶ ൫ߪ௫ െ ௬൯൨ߪ݅ ൅ ݁௜మ೘ഀ

ħమ ௫ ቂߪ௭, ଵଶ ൫ߪ௫ െ ௬൯ቃൠߪ݅  ௫                (5.14)̂݌
 
 ൤ߪ௭, ݁௜మ೘ഀ

ħమ ௫  ଵଶ ൫ߪ௫ െ ௬൯൨ߪ݅ ൌ 0 and the third term in the above equation can easily be 

evaluated by obtaining the commutation relations of the Pauli spin matrices:               

 ሾߪ௭, ௫ሿߪ ൌ ௫ߪ௭ߪ െ ௭ߪ௫ߪ ൌ ቀ1 00 െ1ቁ ቀ0 11 0ቁ െ ቀ0 11 0ቁ ቀ1 00 െ1ቁ ൌ  ௬ߪ2݅
 

 In a similar manner, 

,௭ߪൣ  ௬൧ߪ ൌ െ2݅ߪ௫ 
 

Then: 
 ቂߪ௭, ଵଶ ൫ߪ௫ െ ௬൯ቃߪ݅ ൌ ଵଶ ൫2݅ߪ௬ െ ݅ሺെ2݅ሻߪ௫൯                                                                          
 
                              = െߪ௫ ൅ ௬ߪ݅ ൌ െሺߪ௫ െ  ௬ሻ                                                                 (5.15)ߪ݅
                                                                                                                        

and (5.14) becomes: 
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ቂߪߙ௭ ௣ො
ħೣ

, ෠ቃܮ ൌ ଶ௠ఈమ
ħమ ෠ܮ௭ߪ െ ఈ

ħ
݁௜మ೘ഀ

ħమ ௫൫ߪ௫ െ   ௫̂݌௬൯ߪ݅
                     

In the expression above the second term  ఈ
ħ

݁௜మ೘ഀ
ħమ ௫൫ߪ௫ െ ௬൯ߪ݅ ൌ  ෠. As a result (5.13)ܮ2

is found to be:   
 
 ቂߪߙ௭ ௣ො

ħೣ
, ෠ቃܮ ൌ ଶ௠ఈమ

ħమ ෠ܮ௭ߪ െ 2 ఈ
ħ

 ௫                                                                                       (5.16)̂݌෠ܮ
 

 Finally the commutaion of the Hamiltonian with ܮ෠ operator can be obtained by adding 

(5.12) to (5.16): 

,෡ܪൣ  ෠൧ܮ ൌ ఈ
ħ

൫̂݌௫ܮ෡ ൅ ௫൯+ଶ௠ఈమ̂݌෡ܮ
ħమ ෠ܮ௭ߪ െ 2 ఈ

ħ
 ௫̂݌෠ܮ

 
           ൌ ఈ

ħ
൫̂݌௫ܮ෡ െ ௫൯̂݌෡ܮ ൅ 2݉ ఈమ

ħమ                                                                                    ෡ܮ௭ߪ
                                                         
           = ఈ

ħ
,௫̂݌ൣ ෡൧ܮ െ 2݉ ఈమ

ħమ                                                                                                  ෡ܮ
                                                                 
           ൌ  ఈ

ħ
2݉ ఈ

ħ
෡ܮ െ 2݉ ఈమ

ħమ ෡ܮ ൌ 0                         (5.17)                         
                            
                                  
 We have found that, ൣܪ෡, ෠൧ܮ ൌ  ෠ are commutative, meaning that theܮ ෡ andܪ ,0

introduced operator ܮ෠ can be an appropriate operator to define our systems. In the following 

steps, we apply the Gauge  transformation in employing ansatz. Gauge theories are a class of 

theories based on the idea that symmetry transformations can be performed locally as well as 

globally.  The operator ܮ෠ can should transform the wave function ߰ to a new function ሖ߰ : 
෠߰ܮ  ൌ ሖ߰    
 
 The Schrodinger equation is ܪ෡߰ ൌ  :For the new function it becomes .߰ܧ

෡ܪ  ሖ߰ ൌ ෠߰൯ܮ෡൫ܪ ൌ ෡߰ܪ෠ܮ ൌ ߰ܧ෠ܮ ൌ ෠߰ܮܧ ൌ ܧ ሖ߰  
 

Since ܪ෡ ሖ߰ ൌ ܧ ሖ߰ , the same Hamiltonian describes the system for the new wave 

function as well. Applying the operator on wave function ߰ for up (down) spin will give rise 

to  ሖ߰  for down (up) spin: 
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߰՛ ൌ ൞݁௜௞՛௫ ቀ10ቁ ൅ ՛݁ି௜௞՝௫ݎ ቀ10ቁ         for  ݔ ൏ ՛݁௜௞՛௫ݐ                                                           0 ቀ10ቁ                                 for   ݔ ൐ 0ൢ 

 
 

෠߰՛ܮ ൌ  ሖ߰ ՝ ൌ ൞ ݁௜௞՝௫ ቀ01ቁ ൅ ՛݁ି௜௞՛௫ݎ ቀ01ቁ        for  ݔ ൏ ՛݁௜௞՝௫ݐ                                                       0 ቀ01ቁ                                 for    ݔ ൐ 0ൢ 

 
 
similarly, 
 
 

߰՝ ൌ ൞݁௜௞՝௫ ቀ01ቁ ൅ ՝݁ି௜௞՛௫ݎ ቀ01ቁ          for  ݔ ൏ ՝݁௜௞՝௫ݐ                                                           0 ቀ01ቁ                                   for  ݔ ൐ 0ൢ 

 
 
 

෠߰՝ܮ ൌ  ሖ߰ ՛ ൌ ൞ ݁௜௞՛௫ ቀ10ቁ ൅ ՝݁ି௜௞՝௫ݎ ቀ10ቁ        for  ݔ ൏ ՝݁௜௞՛௫ݐ                                                       0 ቀ10ቁ                                  for   ݔ ൐ 0ൢ 

 
 

 From the above expressions we see that for any arbitrary impurity potential polarized 

refelection and transmission coefficients for up and down spin become equal to each other. 

Therefore their ratio always go to unity, indicating that ansatz is really valid and our 

generalization is true. Thus spin precession angle will be inert to the impurity potentials 

located in the system. 
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CHAPTER 6 
 
 

CONCLUSIONS 
 

 

 The two dimensional electron gas between two ferromagnetic contacts known as spin 

field effect transistor is considered theoretically in the presence of impurities. Spin precession 

due to Rashba spin orbit coupling is studied using the model of Datta and Das in the one 

dimensional channel. We assume that the channel is narrow so that there is only a single 

channel in the system. In this way we are able to neglect the subband mixture. We have taken 

a few systems  for which we examined the effect of one impurity, two impurities, potential 

well together with the external magnetic field parallel and perpendicular to the Rashba field. 

We mainly concentrated on the ratio of polarized transmission coefficients for up and down 

spin since one of the spin precession angle (θ ) depends on this ratio. In the field of impurities 

equality of this ratio means that the θ  will not be influenced by potential. The other azimuthal 

spin precession angle  gives rise to only small fluctuations in the variation of the polarized 

transmission coefficients or current. 

 

  For all systems including an arbitrary potential we have found that transmission 

coefficients are equal to each other for up and down spin. Hence we get the result that the spin 

precession angle θ  giving the deflection from the z axis is obtained to be independent of the 

any type of impurity potential. In order to generalize this result we have made an ansatz. We 

have taken an arbitrary impurity potential and defined an operator compatible with the ansatz. 

This operator relates the wave functions for up and down spin and maps them onto each other. 

The introduced operator can transform the wave function for up spin to that for down and vice 

versa. As a result of the proposed ansatz we have found that in general spin precession angle 

is independent of the any type of impurity potential. Therefore, it is shown that the 

conductance modulation for purely one dimensional case is not affected by an arbitrary 

potential but only with small fluctuations due to azimuthal angle. As the real systems always 

include defects or impurities, the results we get will have a significant impact on the 

applications of spin field effect transistor. However note that for such applications the channel 

width must be sufficiently narrow. 
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