TURKISH AND TURKMEN MORPHOLOGICAL ANALYZER AND
MACHINE TRANSLATION PROGRAM

by

Maxim SHYLOV

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

June, 2008
Istanbul, Turkey

APPROVAL PAGE

Student : Maxim SHYLOV

Institute : Institute of Sciences and Engineering

Department : Computer Engineering

Thesis Subject: Turkish and Turkmen Morphological Analyzer and Machine
Translation Program

Thesis Date : June 2008

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Bekir KARLIK
Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist Prof. Atakan KURT
Supervisor

Examining Committee Members

Assist Prof. Atakan KURT
Assist Prof. Veli HAKKOYMAZ e,
Prof. Mehmet KARA

It is approved that this thesis has been written in compliance with the formatting
rules laid down by the Graduate Institute of Sciences and Engineering.

Assist Prof. Nurullah ARSLAN
Director

il

TURKISH AND TURKMEN MORPHOLOGICAL ANALYZER
AND MACHINE TRANSLATION PROGRAM

MAXIM SHYLOV

M. S. Thesis - Computer Engineering
June 2008

Supervisor: Assist Prof. Atakan KURT

ABSTRACT

The machine translation is the one of the fundamental problems in Natural
Language Processing. In this thesis a machine translation framework was implemented.
The translation framework is mainly based on morphological analysis. Both Turkmen
and Turkish morphological parsers and generators have been implemented. An in-depth
morphological analysis of Turkmen has been done. The dictionary of word roots and
stems for Turkmen and Turkish were created.

Keywords: Machine Translation System, Turkmen Morphological Analyzer,
Turkmen Two — level Morphological Rules.

v

TURKCE VE TURKMENCE BiCIMBIRIMSEL COZUMLEME
VE MAKINE CEVIiRi PROGRAMI

MAXIM SHYLOV

Yiiksek Lisans Tezi — Bilgisayar Miihendisligi
Haziran 2008

Tez Yoneticisi: Yrd.Dog.Dr. Atakan KURT

0z

Makine cevirisi, Dogal Dil Islemenin temel konularindan biridir. Bu tezde,
Tiirkmence ve Tirk¢e iki tarafli bi¢imbirimsel makine ¢eviricisi uygulamasi
gergeklestirilmistir. Basta Tiirkmence i¢in bigimbirimsel ¢oziimleyeci ve bigimbirimsel
tiretici uygulama olarak gerceklestirilmistir. Daha sonra, Tiirkce icin bigimbirimsel
cOziimleyeci ve bigimbirimsel {iretici uygulamasi gergeklestirilmis, Tirkce ve
Tiirkmence icin kok sozliikleri olusturulmustur.

Anahtar Kelimeler: Makine Ceviri, Tiirkmence Bigimbilimsel Coziimleyici,
Tiirkmence iki seviyeli Bi¢cimbilimsel Kurallari.

DEDICATION
To my family

Vi

ACKNOWLEDGEMENT

I express sincere appreciation to Assist Prof. Atakan KURT and Prof. Mehmet
KARA for their guidance and insight throughout the research. Moreover, I would like
to thank Prof. Mehmet KARA for helping me in understanding the structure and
morphology of Turkmen and Turkish languages.

I would like to thank Giilsah SOYAL for helping preparing dictionaries and all

those who was directly or indirectly involved in the project.

I express my thanks and appreciation to my family for their understanding,

motivation and patience.

vii

TABLE OF CONTENTS
ABSTRACT ...ttt ettt sttt e esareens 111
OZ ettt iv
DEDICATION ...ttt ettt et ettt et e e saeeseesaesseessesnaesseensessaenseensas \
ACKNOWLEDGEMENT ...ttt sttt vi
TABLE OF CONTENTS ...ttt s vii
LIST OF TABLES ... oottt ettt ettt et nae e e iX
LIST OF FIGURES ..ottt ettt ese s sneennes X
LIST OF ABBREVIATIONSottt sttt Xi
CHAPTER 1 INTRODUCTIONcccuiiiiiiiiiieiesieeieeteettete sttt st 1
CHAPTER 2 TURKMEN PHONOLOGYcttiitiiiiieiieeeeieeie et 3
CHAPTER 3 TURKMEN MORPHOLOGYccuteiieiiiiieieeiesiteie et 6
3.1 Two — Level MOrphology.......ccoviiiiieiiieiieeieeie ettt 6
3.2 Turkmen Ortographycccueeeuieriiiiieeiieieeeie ettt ens 7
3.3 Turkmen MOrphotactiCscovvieiiieriieiiecie ettt 19
CHAPTER 4 TRANSLATION FRAMEWORKccoooiiiiiiiiiieeeeeeee e 25
4.1 Sentence TOKENIZETeovuiiiiieiiieiieie et 25
4.2 Multi Word TOKENIZETcccueeiiriiiiiiieiiesieeieeesicee et 26
4.3 Morphological Analysis and AMbIGUILYccceeeevierieriiienieeieeie e 27
4.4 Morpholog1C GENEIAtOTcccvveeeiieeeiieeeiieeeiee et e ete e e e e e eeeaeeeeeneees 28
CHAPTER 5 IMPLEMENTATIONocciiiiiiieieeiesieee ettt 30
5.1 Morphologic ANALYZETccvieiieiiieiiecie ettt 30
5.2 XML Schema for MorphotactiCs.........cecveeriieeiienieeiiieniieeieenie e 30
5.3 XML Schema for Morphotactic Rulescccceeviiieviiieiiieeieeeieeeeeee 32
5.4 Implementation of Morphotactic Rules............cccceeviiniiiiniiniiiiieeee, 35
5.5 Translation SYSTEIMcecuieiiieiiierie ettt e e eeees 38
5.6 Sample Translation..........c.occveeeiieriiieiieenieeieeee et 41

CHAPTER 6 CONCLUSIONS ..ottt s 42

viii

REFERENCES ...ttt sttt et st st s en 45

X

LIST OF TABLES

TABLE

2.1: Cyrillic Turkmen alphabet and its transliteration to Latin alphabet. 4
2.2: New Turkmen alphabet and its transliteration to Latin alphabet.............ccccccuenene. 4
2.3: TUKMEN VOWEIS. ..cvviiiiiiiiiiiiiiicictt et 4
3.1: TWO — 1@VEL RUIES ... 7
3.1: Tenses in Turkish and Turkmencccoooiiiiiiiiiiii e 24

3.2: The tenses in Turkmen without a match in Turkish.eeeeeeeeeveeeiiieeeeeeeeeeeeeenn. 24

LIST OF FIGURES

FIGURES

3.1: A simple finite state automaton for lexical word representation.cccceveeneennee. 7
3.2: The finite state automaton for nominal morphology.cccccecviieviieeiiieniieeeiene 20
3.3: The finite state automaton for verb morphology.ccccoecieiiiiiiniiiiiiiecies 21
3.4: The finite state automaton for verb morphology (cont)...........ccceeviieviienirinieennnnnne. 22
4.1: Components of the translation mechaniSm............cccccvevvviieiiiiiniiienie e, 25
4.2: A sample parsing for Turkish word giilseydimcccceeveiieniiiiniiiiciee e, 28
5.1: The DTD for the finite state automaton of the morphological analyzer.................. 30
5.2: A simple xml representation for finite state automaton..........c.cceeceeveerveneerienienenne 31
5.3: A graphical representation for finite state automaton..............cecceeevveerieenveecieennnenns 32
5.4: The DTD for the two — level rules of morphological analyzer...............cccceeuvennnnn. 33
5.5: XML representation for V:0 = 4+ H:@yor rule.ccoeeviieeiiiiniieieeeee e 33
5.6: XML representation for V:0 <> $:0 C +:0 @:0V:@ rule.cccoevveveeienieireiennne 34
5.7: XML representation for A:a = V:Vy *C*@:0* + :0* _rule.....cccceveeieniiiinennnnne 35
5.8: The pseudo code for the function used to parse a surface word.ccceeeveennennns 36
5.9: The pseudo code for traverse fUNCHiON.ccecvieeriieeiiie et 36
5.10: The pseudo code for NextState function.ceceeveevieniiniriinienienienieeeicnene 37
5.11: The pseudo code for translation fUNCtion.c.cecceeveiieriieniiienienieeie e 38
5.12: The pseudo code for getWordFromPath function.cccceevveievierciienienciieeenns 40

5.13: A sample for translation from Turkmen to Turkish.........c..cccceeiviiiniiiiniieies 41

LIST OF ABBREVIATIONS
ABBREVIATION
Abl Ablative
Acc Accusative
AgrlPS 1* Person Agreement
ADJtoADJ Adjective to Adjective
ADJtoV Adjective to Verb
Dat Dative
Gen Genitive
Inf Infinitive
Infer Inferential
Loc Locative
Neg Negative
NegPastIndInf ~ Negative Past Indefinite Inferential
NtoADJ Noun to Adjective
NtoN Noun to Noun
NtoV Noun to Verb
Plu Plural
Poss1PS Possessive 1% Person Single
Poss2PS Possessive 2" Person Single
Poss3PS Possessive 3" Person Single
PreCon Present Continuous
PreSim Present Simple
Rel Relative
VtoADJ Verb to Adjective
VtoN Verb to Noun
XML Extensible Markup Language

xi

CHAPTER 1

INTRODUCTION

The machine translation is one of the fundamental problems in the natural
language processing. The design and implementation of machine translator is a complex
process defined by divergences of languages in terms of their morphological, syntactical
and lexical structures (Jurafsky & Martin, 2000). The morphological structures for
different languages can vary in terms of morphemes used for word. For example, the
English word cats has a root cat and inflectional morpheme —s, but in Turkish word
kediler has a root kedi and an inflectional morpheme -ler. The syntactical structure for
different languages can vary in term of the way the words are positioned in the sentence.
The lexical structures can vary for different languages in terms of morpheme position.
For example, in such languages as Russian and English the words can be formed by

prepositions and suffixes, but in Turkic languages the words are formed by suffixes.

The languages discussed in this thesis are agglutinative languages which have
productive inflectional and derivational suffixes. The inflectional suffixes change the
form of words in order to express the grammatical features. For example, gel(come) +
di(came) or gol(lake) + ler(lakes). The derivational suffixes make new words from

existing ones, with a different meaning. For example, haber(news) + les(communicate).

Koskenniemi introduced the two-level morphology to represent a word in two
levels (Koskenniemi, 1983). One of the representations is the word orthographic form
and the other is the word lexical form. The lexical form is represented by the word root
and morphemes. The morphological rules were used for the word transformation from
lexical representation to the orthographic form. Morphological analyzers are used in
machine translation. For example, Cesilko is the machine translation project for Slavic

languages Czech and Slovak (Haji¢ et al. 2000). Later on, it was extended to deal

with Lithuanian (Haji¢ et al. 2003), Polish and Lower Serbian (Dvotak et al. 2006).
Another project is interNOSTRUM, which was developed for translating between
Catalan and Spanish (Canals-Marote et al. 2000). A machine translation system for
Portuguese — Spanish was implemented in the same manner (Garrido-Alenda et al.
2003). However, the number of studies on machine translation between Turkic
languages is limited. One of the studies is related to the translation from Turkish to
Crimean Tatar, which is able to generate ambiguous translations with a limited

dictionary (Altintag & Cigekli, 2001).

The translation machine for Turkmen and Turkish languages is a current topic
(Tantug et al, 2007). This study (Tantug et al, 2007) is based on the morphological
analysis and morphological translation (Tantug et al, 2006). The morphological
translation was modified by introducing new modules to perform syntactical analysis.
However, it seems that a morphological analyzer is not fully describing the structures of
the Turkmen language. Therefore those structures were analyzed in this thesis and

morphotactic rules were redefined to cover those structures as well.

The morphological analyzer for Turkmen and machine translation from Turkmen
to Turkish and Turkish to Turkmen is studied in this thesis. However, the framework for
translation system between agglutinative languages were designed and implemented.
The framework consists of morphological parser and generator. The rules and
morphological parser for Turkish language were implemented and designed on the basis
of Oflazer research (Oflazer, 1994). Therefore, the aspects of the design of the Turkish

morphological parser are not described.

The rest of the thesis is as follows. The second chapter provides information about
Turkmen language and its similarities and differences with Turkish language. In
addition, the ways of dealing with differences are described. The morphological parser
and generator for Turkmen language are described in the chapter three. Chapter four
describes word by word translation system. The fifth chapter describes important
technologies and algorithms used in the system. Chapter six discusses the conclusion

and future work.

CHAPTER 2

TURKMEN PHONOLOGY

The Turkmen is the official language of Turkmenistan. It is also spoken by many
people living outside Turkmenistan. The Turkmen language is one of the Turkic
languages, belonging to the Oghuz group. An Arabic script was used for the Turkmen
language as the first writing system since 18 century, although very little was written in
it. The Unified Turkish Latin Alphabet (UTLA), based on the Latin alphabet, was
introduced in 1928. It was very similar to the Latin alphabet used in Turkey. In 1940,
the Cyrillic script for Turkmen replaced the UTLA. Finally, in 1995, the "Téze Elipbiyi"
or New Alphabet was formally introduced by the president and officially came into use
in 1996. This alphabet and Cyrillic Turkmen alphabet are used today. Both alphabets
are given in the Tables 2.1 and 2.2.

Like the rest of the Turkic languages, Turkmen is agglutinative, meaning that
most grammatical functions are pointed out by attaching suffixes to the stems of words.
One of the most notable features of the Turkmen language is the vowel harmony. All
vowels can be classified as front vowels or back vowels. In the Turkmen language, if
there is a back vowel in the first syllable of the word, back vowels are also used in the
following syllables. The same can be said for the front vowels. However, some words,
which were taken from other languages, don’t obey vowel harmony. The front, and back

vowels are given in the Table 2.3.

Table 2.1: Cyrillic Turkmen alphabet and its transliteration to Latin alphabet.

Cyrillic Latin Cyrillic Latin Cyrillic Latin
Aa Aa JIn L1 Xx Hh
b o Bb MM Mm I o Ts ts
BB Vv Hu Nn Uy Cg
[r GgGg) HH N LI 1 Ss
Hn Dd Oo Oo T 1x S¢ s¢
Ee Ye ye Oe 06 b b Separation
Eé Yo yo IIn Pp bl b1 I1

K x Jj Pp Rr bp Subtilization
XK x Cc Cc Ss CX) Ee
33 Zz T Tt SE Aid
NUn Ii Vy Uu 10 10 Yu yu
Uit Yy Yy Ui A st Yaya
Kk Kk D P Ff
Table 2.2: New Turkmen alphabet and its transliteration to Latin alphabet.

Turkmen Latin Latin Turkmen Latin | Latin | Turkmen Latin | Latin
Aa Aa J] Cc Rr Rr
Bb Bb 77 Jj S's S's
Ce Ce Kk Kk Ss Ss
Dd Cg L1 L1 Tt Tt
Ee Ee Mm Mm Uu Uu
Aid Ad Nn Nn Ui Ui
Ff Ff N i N i W w Vv
Gg G g(G) Oo Oo Yy 11
Hh Hh 06 06 Yy Yy
Ii Ii Pp Pp Zz 7z

Table 2.3: Turkmen vowels.
Unrounded Round
Wide Narrow Wide Narrow
Back a y 0 u
Front e, a 1 0 i

The other characteristic of Turkmen language is the vowel harmony related to the

round vowels in the word. According to the rules of harmony, the wide round vowels o

and o0 can appear only once in the first syllable and cannot appear in the syllables

following it. Once, the narrow round vowels u and i appears in the syllable, it can

appear only in the next closed syllable. The syllable is said to be closed if the syllable

ends with a consonant letter. Otherwise, it is said to be open. If a syllable following the

syllable containing narrow round u or i is open, then the vowel it contains can be one of
the narrow unrounded vowels y or i. However, the closed syllable following the syllable
containing a narrow round u or i can contain a long vowel such as y and i. The long
vowels are vowels with a long sound and are not disclosed within the orthography of
Turkmen language. Some words in Turkmen language with suffixes vuk/viik don’t obey

the vowel harmony rules (Kara, 2005).

An interesting property of Turkmen language is the way the words are being
pronounced. Against the vowel harmony, the wide round o and ¢ can appear after first
syllable in the speech. However, this topic is out of the scope of the thesis work,

therefore it will not be discussed.

CHAPTER 3

TURKMEN MORPHOLOGY

The two — level morphologic analyzer is the one of the most common approaches
used in machine translation. The following subsections give general information about

morphological analyzer and two — level rules employed in this translation project.

3.1 TWO - LEVEL MORPHOLOGY

The two — level morphology was firstly introduced by Koskenniemi in 1983
(Koskenniemi, 1983). The two-level morphology defines two different levels of word
representation. The first is called lexical level and it represents a word as a list of
concatenated morphemes. The lexical level expresses the grammatical features of the
formed word. The second level is called surface and it represents word’s orthographic
realization. The mapping between these levels is performed by means of so called two -

level rules. Each language can have a number of rules.

The rule is defined by (lexical: surface) correspondence pair followed by an
operator and the immediate left and right context. There are four operators used in the

rules. The rules using those operators and their meaning are given in the Table 3.1.

Any word can be represented by the finite state automaton in two - level
morphology. Let’s assume that we have a Turkish lexicon containing a set of words
cocuk (child), cocuklar(children), cocuklarin(your children), cocugun(your child). Then
the words in the dictionary are the surface level. A simple finite state automaton, which
can be used to obtain the lexical level for the dictionary is shown in Figure 3.1. The
node named Q! is the initial state. The node named Q3 is an end state. When the ¢ocuk

word is passed to the Q7 node, the lexical representations that can be generated are

cocuk + [Ar, cocuk + [Ar + Hn, and ¢ocuk + Hn. Each of the state can define a lexical
representation of words with two — level morphology. The lexical — surface pair can be
determined in the following way. The word root which can be a candidate for the
surface word representation is located in the dictionary of roots. After that, the suffixes
are appended one after another to the located word root. The word root with appended
to it suffixes forms lexical word representation. The two — level morphological rules are
then applied to the lexical word. The operation continues until the surface word form

and a word generated by the application of two — level rules to the lexical form are

identical.
Table 3.1: Two — level Rules
Rules Meaning of the Rule
ab=lc rc Lexical a is realized as surface b, only when it has Ic to the left and rc
to the right
acb < lc re Lexical a always realized as surface b when it has Ic to the left and rc
to the right.

a:b & Ic rc Lexical a always and only realized as surface b when it has lc to the
left and rc to the right

a:b/&l1c re Lexical a is never realized as surface b when it has lc to the left and rc
to the right

+Hn

+lAr +Hn

Figure 3.1: A simple finite state automaton for lexical word representation.

The finite state automaton can be designed to represent all possible legal
combinations of the morphemes. Those legal combinations form lexical representations
of the words. The surface form of the word can be obtained by application of two —

level morphologic rules to the lexical form of the word.

3.2 TURKMEN ORTOGRAPHY

The Turkmen language is still using two alphabets. The Cyrillic and a new Latin

Turkmen alphabet defined in 1996. The rules defined for the Turkmen language are

based on the Latin Turkmen alphabet. However, the switch to the Cyrillic alphabet can
be achieved by mapping each Latin letter to the corresponding Cyrillic letter. The Latin
Turkmen alphabet consists of 30 letters. There are 9 vowels: a, e, &, 1, 0, 0, u, i, y, and
21 consonants: b, ¢, d, f, g, h,j, zZ, k, |, m, n, i, p, 1, s, 5, t, W, ¥, z. The sets defined

below are used in two — level rules:

1. Lexical Consonants: C={b,¢,d, f,g h,j,zZ, kL m,n i,p, 1,8, t WY,z
¢, G,S,P, T}

2. Lexical Vowels: V= {a, e 4,i,0,0,u,i,y, H,A, A, O, U}
3. Back Vowels: Vy, ={a,0,u,y }

4. Front Vowels: Vi={e, 4,1, 0,1 }

5. Front Rounded Vowels: Vi = { 6,1 }

6. Back Rounded Vowels: Vi, = {o,u }

7. Lexical A={a,e}

8. Lexical A= {a,i}

9. LexicalH={1i,u,1,y,4}

10. Lexical O={ 0,06 }

11. Lexical U= {u, ii }

12. Lexical consonant G = { k, g }

13. Lexical consonant P= { p, b }

14. Lexical consonant T= { t, d }

15. Lexical consonants which can disappear on the surface under certain

conditions D = {s, n}

16. Lexical consonants which are always realized on the surface C,= { C, S }

The two-level rules for the Turkmen language are defined as follows. Those rules
are based on recently published Turkmen grammar (Kara, 2005). Examples are given

after the rules.

1. kg +0(@:0)V
The last k of the word becomes g whenever a morpheme starting with a vowel
is affixed.
Lexical: kirjimek + nH dirty + Acc
Surface: kirjimeg00i kirjimegi

Lexical: tovuk + Hm chicken + Poss1PS

Surface: tovugOym tovugym

. Ala®y:0+:0 1

The rule deals with a special case for 4/ derivational morpheme. It states that a
lexical 4 becomes an a on the surface if and only if the word ends with y. y

letter is deleted upon the affixation.

Lexical: dogry + Al right + NtoV (to straighten up)
Surface: dogr00al dogral
. Ale®1:0+:0 1

Similar to the rule 2, lexical 4 becomes e on the surface whenever a word ends
with i. i is deleted upon the affixation.
Lexical: egri + Al bent + ADJtoV (to bend)
Surface: egr00el egrel
. k0= +[JA:@k[jH:@k]
The last k£ of the word is deleted whenever j4k or jHk morpheme is affixed to a

word.
Lexical: tovuk + jAk chicken + NtoN (small chicken)
Surface: tovu00jak tovujak
Lexical: doviik + jAk broken ADJtoADJ
Surface: dovii00jek doviijek
Lexical: kicik + jHk small + ADJtoADJ (smaller)
Surface: ki¢i00jik ki¢ijik

Lexical: yumsak + jHk soft + ADJtoADJ (softer)

Surface: yumsa00jyk yumsajyk

. 002 Vy+0C C

The lexical O becomes o on the surface, when a word ends with a back vowel.
Lexical: damak + SOv glutton + NtoADJ (gluttonous)
Surface: damakOsov damaksov

. 0= Vi+0C C

The lexical O is realized as o on the surface, when a word ends with a front

vowel.
Lexical: ¢iige + SOv sand + NtoADJ (sandy)
Surface: ¢igeOsov cagesov

. V0= $:0 C+:0@:0V:@

10

Sometimes a vowel in lexical level will be deleted on the surface due to the
ellipsis phenomenon. The phenomenon occurs when a vowel becomes
unstressed. This vowel is identified by the § symbol in the lexical
representation of the word root. This rule deals with such vowels. The rule
states that a vowel following § symbol is deleted when the morpheme being
affixed to the word starts with a vowel. The § symbol is deleted as well. This
rule also appears in the Turkish two — level morphological rules (Oflazer,

1994).

Lexical: agSyz + Hm mouth + Pos1PS
Surface: ag00z0ym agzym

Lexical: agSyz + dA mouth + Loc
Surface: ag0yz0Oda agyzda

Lexical: or$un + A place + Dat
Surface: or0On0Oa orna

Lexical: yyg$yn + Hid group + Poss2PS
Surface: yyg00OnOyn yygnyn

8. Om=>V_ +:0 SH:@rA:@
This rule deals with the case when a new consonant is added on the surface.
The phenomenon is specific to SHr4 morpheme. The word ending with vowel

gets m consonant between the word and morpheme on the surface, whenever

SHrA morpheme is affixed.
Lexical: cay + SHrA tea + NtoV (wish to drink tea)
Surface: ¢cayOsyra caysyra
Lexical: eye + SHrA owner + NtoV (behave as owner)
Surface: eyemOsire eyemsire
Lexical: ulu + SHrA grand + ADJtoV (do the grand)
Surface: ulumOsyra ulumsyra

9. Gk = [pl¢|t/k|s|s|ald] +:0 é&r
This rule deals with lexical G in the morpheme Gdr. It states that a surface k&

occurs whenever a word ends with one of the letters in the option list.

Lexical: ¢ogap + Gér responsibility + NtoADIJ (responsible)
Surface: ¢cogapOkar cogapkér
Lexical: giind + Gér sin + NtoN (sinner)

Surface: giind0kar glinakar

10. G:g = [!(p[c|tik|s|s|ald)] +:0 é&r

11

Similar to Rule 9, the lexical G is dealt with in this rule. G becomes a surface

g whenever a word ends with one of the letters not in the option list.

Lexical: kiiyze + Gér
Surface: kiiyzeOgar
Lexical: umydy + Gir
Surface: umydyOgér

11. G:g = [pl¢|t|k|s|s] +:0 (H:@)r

earthenware pot + NtoN (potter)
kiiyzegar

hope + NtoADJ (hopeful)
umydygér

Similar to previous rule, the lexical G in the GHr morpheme is dealt with. The

surface g appears whenever a word ends with one of the letters in the option

list.
Lexical: hyn¢ + GHr
Surface: hyn¢Ogyr
Lexical: pys + GHr
Surface: pysOgyr
12. Gk = [!(pl¢|tkls|s)] +:0 (H:@)r

sob + NtoV (to sob)
hynggyr

sneeze + NtoV (to sneeze)

pysgyr

Like in Rule 11, the surface k appears whenever a word ends with one of the

letters not in the option list.
Lexical: hay + GHr
Surface: hayOkyr
Lexical: hen + GHr

Surface: henOkir

exclamation + NtoV (to exclaim)
haykyr
cry + NtoV (to cry)

henkir

13. A:0 <& V +:0 [_Ig(A:@)|_v(A:@)g| vul]

The lexical 4 disappears on the surface only and only when one of AlgA4, AvA¢

or Avul morphemes are affixed and the word ends with a vowel.

Lexical: oka + AlgA

Surface: oka0Olga

Lexical: germe + AvAg

Surface: germe(OOvacg

Lexical: capa + Avul

Surface: ¢capaOOvul
14.U:0=> V+0

to read + VtoN (reading hall)
okalga

to stretch + VtoN (stretcher)
germevag

distribute + VtoN (courrier)

capavul

This rule deals with lexical U which disappears on the surface when a word

ends with a vowel which is not deleted on the surface.

Lexical: alda + Uv
Surface: alda00Ov
Lexical: derie + Uv
Surface: derne0Ov

15. Ui VIC+:0 C:@_

12

to cheat + VtoN (cheat)
aldav
to inspect + VtoN (inspection)

dernev

The rule states that a lexical U is realized as i on the surface when the last

vowel of a word ending with a consonant is front vowel and the suffix’s first

lexical vowel is U.
Lexical: diiz + Uv
Surface: diizOiv
Lexical: bi¢ + Uv
Surface: bi¢Oliv
Lexical: giibiirde + vUk
Surface: giibiirdeOviik
Lexical: jiirle + vUk
Surface: jiirliiOviik

16. Uu= V,C+:0 C:@ _

to be right VtoN (right)

diiziiv

to give a shape + VtoN (shape)

bigliv

to make noise +VtoADJ (noisy person)
giiblirdeviik

to whistle + VtoN (whistle)

jurliviik

The rule states that a lexical U is realized as u on the surface when the last

vowel of a word ending with a consonant is a back vowel and the suffix’s first

lexical vowel is U.
Lexical: hasyrda + vUk
Surface: hagyrdaOvuk
Lexical: yaldyra + vUk
Surface: yaldyraOvuk
Lexical: cap + Uv
Surface: ¢capOuv

17.¢:4 © m k+:0A:@

to rustle + VtoN (rustling noise maker)
hasyrdavuk

to shine + VtoADJ (shiny)

yaldyravuk

run + VtoN (race)

capuv

In Turkmen when an infinitive form of verb takes the suffix of dative case, the

last vowel of the word changes on the surface in case it is e. This rule defines

this particular case.
Lexical: bermek + A
Surface: bermég0e
Lexical: gelmek + A

Surface: gelmégOe

to give + Inf + Dat
bermége
to come + Inf + Dat

gelmige

18. [n|s]:0 = C +:0 _

13

The lexical n or s is deleted on the surface, whenever a word ends with a

consonant and the suffix being affixed starts with an » or s consonant.

Lexical: gijeler + sH
Surface: gijeler00i
Lexical: gijeler + nHn
Surface: gijeler00in

19. H:4 & e:0 +:0 @:0_

night + Plu + Poss3PS
gijeleri
night + Plu + Gen

gijeleriil

If and only if the word ends with e and the suffix starts with a lexical vowel H,

the last vowel of a word is deleted and the H lexical vowel realized as d on the

surface.
Lexical: diiye + Hm
Surface: diiy00im
Surface: gozle + Hp dur
Lexical: g6z1004p
20. H:0 = V(:le) +:0 _

camel + Poss1PS
diiydm
to observe + PreSim

g6zlap

This rule states that the first letter of the suffix is deleted whenever the word it

is affixed ends with a vowel other from e.

Lexical: oba + Hm
Surface: oba0Om
Lexical: avgy + Hn

Surface: avgy00On

village + Poss1PS
obam
hunter + Poss2PS

aveyn

2l.e:da & +:0 [n(H:@)n(H:@)nk(H:@)]

This rule deals with a word ending with the vowel e and the suffix affixed is

one of the suffixes in the option list. When a match is located the last vowel of

the word is realized as d on the surface.

Lexical: diiye + nHi
Surface: diiyaOnin
Lexical: gije + nH
Surface: gijaOni
Lexical: ¢olde + kH
Surface: ¢61daoki
Lexical: denizde + kH

Surface: denizdaOki

camel + Gen
diiyanin

night + Acc

gijani

desert + Loc + Rel
¢oldaki

sea + Loc + Rel

denizdaki

14

22. A:d & V0 +:0 @:0
This rule deals with the words ending with one of the front vowels and taking
suffixes starting with lexical 4. In this case, the last vowel of the word is

deleted on the surface and the suffix’s lexical 4 is realized as ¢ on the surface.

Lexical: bergi + nA debt + Dat
Surface: berg00a bergi
Lexical: diiye + A camel + Dat
Surface: diiy00a diiya

Lexical: ele + An délmis to eliminate + NegPastIndInf
Surface: el004n dilmis elidn dalmis
23. A:a © V0 +:0 @:0
This rule is the same as the previous one except it deals with words ending

with back vowels.

Lexical: alada + nA care + Dat
Surface: alad00a alada
Lexical: tuty + A curtain + Dat
Surface: tut00a tuta

24. Aie & ViC +:0 @:0_
This rule deals with the suffixes affixed to the words ending with consonant
and with a front vowel in the last syllable. According to the rule, a lexical A
becomes a surface e when it is located at the beginning of a suffix.

Lexical: giil + An dilmis to lugh + NegPastIndInf

Surface: giilOen dilmis giilen délmis
Lexical: gel + An eken to come + NegPastIndInf
Surface: gelOen eken gelen eken

25. A:a & Vi,C+:0 @:0

This rule is similar to Rule 24. It deals with words with a back vowel in the

last syllable.
Lexical: yap + An dilmis to do + NegPastIndInf
Surface: yapOan dilmis yapan ddlmis
Lexical: kol + A arm + Dat
Surface: kolOa kola

26.¢j=V_ +0@0V

15

In Turkmen morphology, when the ¢ character occurs between two vowels, it

realized as j on the surface. This rule deals with words ending with ¢ and a

suffix affixed to the word starts with vowel.

Lexical: bozgug¢ + Hi
Surface: bozgujOyn
Lexical: yangyc + nH
Surface: yangyj00y
27.0:y < V_+:0 H:@s

eraser + Poss2PS
bozgujyn
fuel oil + Acc

yangyjy

This rule introduces the addition of a new letter when it doesn’t occur in the

lexical level. It states that a new character y should be added on the surface

whenever a word ends with a vowel and the suffix is Hs.

Lexical: gora + Hs
Surface: goraOyys
Lexical: so6zle + Hs
Surface: s6zleOyis

28. {P,T}:{b,d} & +0V

protect + VtoN (protection)
gorayys
to speak + VtoN (speech)

sOzleyis

The letter p of some Turkmen words ending with p, changes to » when a

suffix starting with a vowel is affixed. The letter ¢ of some Turkmen words

ending with ¢, changes to d when a suffix starting with a vowel is affixed. The

last letters of the words which can have such conversion were specified by

letters P and T in the lexicon. This rule deals with those letters. According to

the rule the lexical P and T are realized as surface b and d whenever an affixed

suffix starts with a vowel.
Lexical: gaP + Hm
Surface: gabOym
Lexical: aT + Hm
Surface: ad0ym

29. {P,T}:{p,t} > +0C

container + Poss1PS
gabOym
name + Poss1PS

adym

This rule realizes lexical P and T as surface p and t whenever the suffix

affixed to the word starts with a consonant.

Lexical: gap + ndAn
Surface: gapOOdan
Lexical: taT + dA
Surface: tatOda

container + Abl

gapdan

taste + Loc

tatda

16

In Turkmen language the vowel harmony is different for open and closed

syllables affixed to a word consisting of one syllable. The rules from 30 to 33 deal

with such cases.

30. Hiy & C*Vy,C +:0 C:@_

This rule states that H vowel of the suffix with an open syllable is realized as y

only when the word consists of one syllable with a back round vowel.

Lexical: yol + nH road + Acc
Surface: yol00y yoly

Lexical: gus + sH bird + Poss3PP
Surface: gus00y gusy

3. H:i=» C*ViC +:0 C:@_
This rule states that H vowel of the suffix with an open syllable is realized as i
only when the word consists of one syllable with a front round vowel.
Lexical: goz + sH eye + Poss3PS
Surface: g6z00i g0zi
Lexical: kiil + nH ash + Acc
Surface: kiil00i kiili
32.H:u = C*V,C+:0C* C
This rule deals with the words consisting of one syllable with a back round
vowel and the suffixes with one closed syllable. When this condition is
satisfied, the lexical H of the suffix is realized as u on the surface.
Lexical: kol + Hm arm + Poss1PS
Surface: kolOum kolum
Lexical: kub + nHn cube + Gen
Surface: kubOOun kubun
33.H:i= C¥VgC+0C*_C

This rule states that a lexical H is realized as ii on the surface, when a suffix

with one closed syllable is affixed to a word with one syllable with a front

round vowel.
Lexical: 6y + nHn
Surface: 6y0un
Lexical: kiiy + Hm
Surface: kiiy0im

34. yiu & C*Vy,C* +:0C

house + Gen
oyln
consideration + Poss1PS

kiiytim

17

This rule deals with the case when a suffix starting with a consonant is affixed

to a word consisting of two syllables such that the first syllable contains a

back round vowel and the last syllable is open. In this case, if the word ends

with lexical y, it is realized as u on the surface.

Lexical: koly + ndA
Surface: koluOnda
Lexical: ruhy + nH
Surface: ruhuOny
35. 10 & C*¥VeC*_ +:0C

arm + Poss3PS + Loc
kolunda
soul + Poss3PS + Acc

ruhuny

This rule deals with the case when a suffix starting with a consonant is affixed

to a word consisting of two syllables such that the first syllable contains a

front round vowel and the last syllable is open. In this case, if the word ends

with lexical i, it is realized as # on the surface.

Lexical: gozi + nH
Surface: goziiOni
Lexical: kiiyi + ndA
Surface: kiiyiiOnde

36. Hiy ® C*V,C*V,,C +:0 C* C

eye + Poss3PS + Acc
g6zlini
consideration + Poss3PS + Loc

kiiylinde

This rule deals with a word consisting of more than one syllable and the last

two syllables contain a back vowel. Moreover, the last syllable of the word

should be closed. When a suffix affixed to such a word, its lexical H is

realized as y on the surface.
Lexical: gonsum + nH
Surface: gonsumOQy
Lexical: darak + Hm
Surface: darag0ym

37. H:ii & C*V,C*V,C +:0 C* C

neighbour + Poss1PS + Acc
gonsumy
comb + Poss1PS

daragym

This rule deals with a word consisting of more than one syllable and the last

two syllables contain a front vowel. Moreover, the last syllable of the word

should be closed. When a suffix affixed to such a word, its lexical H is

realized as i on the surface.
Lexical: enek + Hn
Surface: enegin

Lexical: mekdeb + Hm

cow + Poss2PS
enegin

school + Poss1PS

Surface: mekdebim

38. Ara © C*V,C* +:0 C* C

18

mekdebim

This rule states that the lexical 4 of a suffix is realized as surface a when the

vowel preceding it is a back vowel.

Lexical: kolun + dA
Surface: kolunda
Lexical: oba + dAn
Surface: obadan

39. Aie = C*¥ViIC*+:0C* C

arm + Poss2PS + Loc
kolunda
village + Abl

obadan

This rule states that the lexical 4 of a suffix is realized as surface e when the

vowel preceding it is a front vowel.

Lexical: goziin + dA
Surface: goziinOde
Lexical: 6y + dA
Surface: 6y0Ode

40. A:a= C*V,C+0C C

eye + Poss2PS + Loc
gbziinde
house + Loc

oyde

The lexical A4 is realized on the surface as @ when the last vowel of a word is a

back vowel.
Lexical: gara + yAr
Surface: garaQyar
Lexical: dur + mAn eken
Surface: durOman eken

41. A = C*VC*+:0C_C

to look + PreSim
garayar
to stand + NegPastIndInf

durman eken

The lexical A is realized on the surface as ¢ when the last vowel of a word is a

front vowel.
Lexical: bil + yA
Surface: bilOya
Lexical: s6y + mAn eken

Surface: soyOmén eken

to know + PreSim + Agr3PS
bilya
to like + NegPastIndInf

sOymén eken

19

3.3 TURKMEN MORPHOTACTICS

The finite state automaton defines the lexical representation of the word as
discussed previously. In addition, it specifies the order in which the morphemes can be
affixed to a word. So, the structure of the word can be restricted. The finite state
automaton for the nominal words is presented in the Figure 3.2. The finite state
automaton for the verbs is defined in similar way and presented in Figure 3.3 and 3.4. In
Turkmen language adverb, adjectives and pronouns take all inflectional suffixes the
nouns take therefore the finite state automaton defined for the nouns can be reused for

adverbs, adjectives, and pronouns.

The finite state automaton’s entry point so called initial state is defined by the
thick-bordered rectangle shown in the Figure 3.2. Internal states have regular normal
borders. They can be a solution for the generation of the word’s lexical representation.
The states that have double line border are called end states and they also can be treated
as a solution. The nodes with dotted-border are not treated as a solution; even thought
they can appear in the sequence of the morphemes. The reason for defining such node is
the specific aspects of Turkmen language. For example, éylerini and &ylenn have the

same meaning (your villages), but the word 6yle is meaningless in Turkmen.

The finite state automaton was defined in such a way that it could not only
translate the word from surface to lexical level, but determine the structure and the
ordering of the morphemes. Therefore the surface word with incorrect order of the
morphemes will be rejected. For example, the possessive suffixes are not acceptable
after the accusative case in Turkish; as a result the Turkish word with incorrect order
kitabryyim will be rejected by the morphological analyzer. On the other hand, the
correctly ordered word kitabimi will be accepted. The examples provided below will

clarify the main ides of word construction.

The nominal for word diiyelerinddiki can be constructed as follows.
diye +lAr +Hn +ndA +kH

diye +ler +in +0dd +ki

things on your camels

The states passed to generate the word are

1. Noun (root)

20

+HnjH, +mtHI, +mtHk, +jHk, +SH
+AR, HHmMAK, +CHI, +dar, +hor, +dAs, +kH, +IAk, N O
- ; o R - Al, +Ar, +jAr,
+H, +mAn, +SHz, +SOv, +jAk, +G&R, +HnjH Adjective 41, +rgA, Hk
+A, +rAk .
+jagaz,+Hstan, +jAk, +kes, +jHK, +SA, i 1A,
+dAs, +CA, +CH, +dH, +IHk, +CHI -
5, +CA, +CH, +dH, +IHk, +¢ +rgA, +rA +A, +Ar, +Ar, +HrA, +dA,
+GAr, +GHr, +k, +IA, +SA, +SHrA
Proper Noun d r r Verb
Noun +A +|AyHn
,,,,, 6”” < <
i Plural ‘< +HA “
N S +|Ar,+0
+lAr,+0 ’
i >(Y Adverb
Plural
i+Hm + i«*Hﬁ l+sH l +HmHz i+HﬁHz i+sH Pronoun
v
Possesive Possesive Possesive Possesive Possesive Possesive
1st Person 2nd Person 3rd Person 1st Person 2nd Person 3rd Person
Single Single Single Plural Plural Plural
) v v) b v L
+CA, +0
\ 4
N
Adverb
+0 bilen +A |+nHA +ndAn +ndA +nA +nH
A A A
[Instrumeptal—] [Genitive j [Ablative] [Locative] [Dative][Accusative]
comitative
A A 4 }
: v v v A v :i : vl
N N v
| | +nHA +ndAn +kH | +ndA +nA | nH g
+0 bilen
v
+mH +mH
1 Question €«——
+mH +kH X
< +mH
+dHr +0 daldir +dH ¢+0 daldi +0 dalmidi i+mH§ i+0 dalmis +0 kA
,,,,,, \ A 2 S S S \
3 L 1 " b | | PastDefinite | | .]
| Present || Present ! | past Definite | iPa’st De.ﬂmtei | Negative | | Pastindefinite | | Pastlndgﬂnlte b Temporal |
' !'1 Negative ! | i | Negative ! ! Question - b Negative [Adverb |
e N e FERN AN N ‘ N /
+Hn, +sHf, +mH +dH +Hm, +HH, D
+0, +Hs, - +0, +k, +Hn, +HN, +0,
+sHMHz, +lAr » +AHz, +IAr +HmHz, +Hk,
Agrement +HitHz, +Ar
v
Agreement [«
+Hm, +Hi, +H,
+HmHz, +HriHz, +IArH +0 wagt i+0 eken i+o dal eken
] P | . . N
‘ Temporal ‘ Temporal ‘ ‘ ‘ Past Indefinite ‘
| Adverb Lo P «— | PastIndefinite | ! - |
' . i1 Adverb ! ! . Negative !
| Negative | | : i P ;
T+0 dal wagt L 1
+Hm, +HH,
+0, +HKk,
+HMHz, +IAr

Figure 3.2: The finite state automaton for nominal morphology.

+AIA, +ARKHrIA, +Ar, +dAr, +dHr, +Hr,

+HI, +mAIA, +Hn, +Hs, +Ht, +Hz

-
o

21

+A, +gHt, +vUk, +Ag, +H, +Avul, +HjH, +Avag, +AKk,
+HndH, +AlgA, +yHs, +AnAk, +Hm, +jA, +mA, +mAg,

+¢, +mAk, +dAjH, +maga, +g, +mHk, +gA, +mHt,
+gAn, +Hn, +gH, +Ht, +gHg, +0v, +gHn, +Hk

Verb Stem

+

ﬂ» Indefinite Past

+HpmHdHr_ (" Indefinite Past
Question

Ability

i+Hp bil

[E—

Negative

Noun Stem

+AgAn, +gHn, +gHr, +jAn, +gH, +Hk,
+gAn, +HjH, +gAk, +mA, +Hg, +ArmAn,
+mAzAk, +vUk, +Ak, +mHk, +mAg

_|*dH

+mAndHr “Indefinite Past
Negative

+mAnmHdHr

Indefinite Past

>\ Definite Past

Adjective
Stem

Adverb Stem

+AgAdA, +AlH, +AndA, +dHkgA,
+HngA, +Hp, +mAn, +yAncA

+mH +m, +0, +0,
+k, +fiHz,

+lAr

| Negative
Question Question Y
. Agree@i
+mHs, +An +Hn, +SHA, +0, .
+m, +f, +0, +k, :km'%"'_"ZJ'O'
+0, +lAr +nHz, +IAr +IAr ’

+HpdH (" Indefinite Past | Agreement
Past
*HpmHdH ™ |ndefinite Past
Past Question
+mAndH Indefinite Past

Past Negative
+mAnmHdH (" |ndefinite Past Past
Negative Question
+HpmHs, +AnmHs Indefinite Past
Inferential

+mAnmHs, +An dalmis

Inferential Negative

Indefinite Past
Inferential

+An eken

+mAn eken, +mAdHk eken [Indefinite Past
Inferential Negative

+An bolsa

+mAdHk bolsa Indefinite Past

N Indefinite Past
Conditional

+Hm, +Hn, +0,
+Hn, +Hk, +HrHz,
+Hn, +HnlAr

+Hm, +HH,
+0, +H,
+Hk,
+HmHz,
+HriHz, +IAr

+m, +i, +0,
+k, +nHz,
+lAr

| Conditional Negative

+mH
1 *+mAkeH Subjunctive X m
Subjunctive +0 dal
Negative
+Hm, +Hi, +HriHz, +0, +Hn,
+mHs o R +HK, +HnHz, +IAr, +HnlAr
Subjunctive Inferential - " y
+Hm, +Hn, +HAHz, +0, +H,
+0 eken Subjunctive Inferential +Hk, +HmHz, +HfHz, +IAr
+mA
) +gHn, +0 +Hi
+AyHn Imperative Agreement
1st Person Single v y
\ 4 +SHn (" Imperative Agreement
8rd Person Single Imperative Imperative
v +AIHA, AIH _(Tmperative Agreement Agreement | Agreement
1st Person Plural 2nd Person | 2nd Person
i Plural
+SHnlAr (‘Imperative Agreement Single ura
3rd Person Plural
+gHn, +0 +HE

+An, +mAdHk)
N Gegmis Zaman
Sifat-Fiili
<«
*YAn, +mAyAn Simdiki Zaman
Sifat-Fiili
*Ar, *mAz Genis Zaman
Sifat-Fiili
Ak, +mAJAK Gelecek
Zaman Sifat-
Fiili
+Hn, +SHn,
+0, +Hs,
+SHiHz, +IAr +yAr
Y 2 Present
+n, +1, +0, +s, N
+nHz, +IAr +yA
A
P>
+Hp dur,
+Hp otyr,
+Hp yatyr,
+Hp yér
L
Present Agreement
Question 1st Person Single
Present Agreement
2nd Person Single
Present Agreement
3rd Person Single
1 -
Present Agreement +Amzok
1st Person Plural
Present Agreement +Afizok
2nd Person Plural
A . Present Agreement +Anoklar
+m, +n 3rd Person Plural
« +0, +k,
M N BHZ, +Ar +dH
+0, +k, Present Past
+MHz,
+IAr
Present Past +dH . +mH
4 Question Question
+Hm, +Hf, +HfHz, +0, +Hn,
+Hk, +HAHz, +Ar, +HnlAr - +mHs
Present Inferential
+Hm, +HA, +0, +H, +Hk,
+HmHz, +HfHz, +IAr

+
Present Inferential ﬂ

Figure 3.3: The finite state automaton for verb morphology.

22

D I

Ability

Verb Stem

+Hp bil

+Hn, +SHA, +0,

+Hn, +SHHA,
+Hs, +SHiiHz
. . e
AT Negative Aorist
0, +IA 4
+0, +
Negative Aorist il

+m, +11, +0, +k,
+iHz, +IAr

A

Aorist Past

+mH

+
Q
I

+m, +1, +0, +k,
+NHz, +IAr

Question
+Hm, +Hf, +HiiHz,
+0, +Hn, +Hk,

Aorist Past
Question
+mH: A
s Aorist Inferential *HiiHz, +IAr, +HnlAr A

+Hm, +Hi, +0, +H, +Hk,
+0 eken Aorist Inferential +HmHz, +HAHz, +IAr

+Ak

Future

+0 dal
v

Future Negative

+m, +0, +0, +k,

+dH +fiHz, +IAr

Future Past

+m, +A, +0, +k,
+AHz, +IAr

Future Past

Question

+m, +n, +0, +k,
+MAHz, +IAr

+mAjAkdH Future Past
Negative A

+m, +A, +0, +k,
+mAJAkmHdH Future Past +hHz, +IAr

Negative Question
+Hm, +Hi, +HMAHz,
+0, +Hn, +Hk,
+HrHz, +lAr,

+mH
i Future Inferential +HnlAr A
+Hm, +HA, +0,+H,

+Hk, +HmHz,

+HiHz, +IAr
+0 eken Future Inferential ’ A

+Hm, +Hi, +HfAHz,
+0, +Hn, +Hk,
+HrHz, +IAr,

+mAjAkmHs Future Inferential | +HnIAr
Negative A

+Hm, +HA, +0,+H,
+Hk, +HmHz,

+mAjAk eken Future Inferential) +HfHz, +IAr
= -
Negative A

+m, +A, +0, +k,

+jAk bolsa +AHz, +IAr
Future Conditional A

+m, +A, +0, +k,

+mAJAK bolsa Future Conditional) *+1Hz, +IAr
Negative

5 +mAIH
*0dal Obligatory
+mH
Question
. Negative
+Hn, +SHA,
+0, +Hs,
A +mAIHdHr
« 5 +SHNRHz, +IAr Obligatory L
i +mAIHmHdAr
Agreement %ﬁ:g;}g;y N
Obligatory +0 daldHr L
Negative
Obligatory +0 dalmHdHr
Negative Question
+m, +f, +0, «
+k, +iiHz, +IAr) +dH
i Obligatory Past
+dH - +mH
I
||tk +iHz, +IAr T Gpligatory Past
A Question
+Hm, +Hi, +0,
+Hn, +Hk, +HfAHz,
+lAr, +HnlAr Obligatory +mHs
A Inferential
+Hm, +Hi, +0,
+H, +Hk, +HmHz,
+HfiHz, +Ar Obligatory +0 eken
A Inferential
- +SA
Conditional -«
A
Conditional
Negative
+m, +8, +0, +k, +mH
*hHz, +1Ar Conditional Past
+m, +1, +0, +K, Question
+fiHz, +IAr Conditional Past

Question

o
¢ (Agreement st
o
;[Agresment2nd
o
;[Agreement 3
+mH

+dH ent 1st

Person Plural

+m_(Conditional) +dH +m

Conditional
Past

+dH

Conditional
Past

+dH

+0

Conditional
Past

+mH

+dH ent 2nd

Person Plural

Conditional
Past

+AHz

+mH

+dH ent 3rd

Person Plural

Conditional
Past

Agr3PP

Figure 3.4: The finite state automaton for verb morphology (cont).

23

Plural with +1Ar
Possessive 2" Person Single with +Hi

Locative with +ndA

“w»ok wN

Relative with +kH

The verb for word gormeydr ekenim can be constructed as follows

gor +mA +yAr +0 eken +Hm
gor +me + yér + eken +im
see +Neg +PreCon +Infer +AgrlPS

The states passed to generate the word are
1. Verb (root)

Negative with +mA

Present with + yAr

Present Inferential with +0 eken

“w»ok wN

Agreement with +Hm

The Turkish and Turkmen languages are both agglutinative languages as stated
before, but they have developed independently despite they are from the same family.
The Turkmen language has some differences concerning the affixation of suffixes. The
person agreement suffixes are affixed to the obligatory and intentional forms of verb in
Turkish, but the pronoun and obligatory and intentional forms of verb combination is
used to obtain the same result in Turkmen. In addition, the order of some suffixes
affixed to word in Turkish can be different for Turkmen. One such example is the
question suffix. Moreover, the copulatives used in Turkish have no corresponding
copulatives in the Turkmen. The ki copulative of Turkish is one of such example. And
finally, there are the tenses in Turkish which have no corresponding tense in Turkmen.
The list of tenses for Turkish and Turkmen are listed in the Table 2.4. The +/- sign

specifies the presence/absence of tense.

When a tense which has no equivalent in the other language, then the
meaningfully most similar tense was chosen. These tenses are given in Table 2.5.
However, some of the tenses are presented by lexical suffixes, which are decided after

asking the native speakers of the Turkmen language.

Table 3.1: Tenses in Turkish and Turkmen

24

Tense

Turkish

Turkmen

Present Simple

+

+

Past Simple (Past Indefinite)

Aorist Simple

Future Indefinite

Past Definite

Conditional Form

Obligatory Form

Imperative Form

Subjunctive Form

Past Indefinite Past

e A R T A

Past Definite Past

Present Past

Future Past

Aorist Past

Conditional Past

Past Obligatory Form

A+]

Subjunctive Past Form

Past Indefinite Inferential

Present Inferential

Future Inferential

Aorist Inferential

A+

Conditional Inferential

Inferential Obligatory Form

Subjunctive Inferential Form

Past Indefinite Conditional

|+

Past Definite Conditional

Present Conditional

Future Conditional

Aorist Conditional

4+

Obligatory Conditional Form

o o e e o e B B e o e I B B e o e e e e o o o e e

Table 3.2: The tenses in Turkmen without a match in Turkish.

Verb State for Turkish

Corresponding Verb State for Turkmen

Past Definite Past

Past Indefinite Past

Subjunctive Past Form

Conditional Past

Past Definite Conditional

Conditional Past

Present Conditional

+ YA + An bolsa

Obligatory Conditional Form

+ mAIH + 0 bolsa

The implementation of two-level rules and the finite state automaton of the

morphological analyzer discussed in the next chapter.

CHAPTER 4

TRANSLATION FRAMEWORK

The translation framework consists of sentence tokenizer, multi word tokenizer,
source language morphological analyzer and target language generator components. The
interaction between those components is presented on the Figure 4.1. The framework

was designed for agglutinative languages.

Source Language
Morphologycal Analyzer

Tokonized
Word

Sentence Tokonizer Sentence Multi Word Tokonizer

Language Text
pJopp pasied

Word Steam
Translator

Target Language Word
Target Language Word

Generator

Figure 4.1: Components of the translation mechanism

4.1 SENTENCE TOKENIZER

The sentence tokenizer is responsible to split a given text into paragraphs and
sentences. The paragraph is identified by the new line character. After paragraphs are
identified by the system, each paragraph is splitted into sentences. The sentence is

identified using punctuation marks, such as ., ;. /, - and ?.

25

26

4.2 MULTI WORD TOKENIZER

The Turkic languages are closely related. However some of the words in one
language are represented by a phrase in the other. Especially, it concerns the tenses. For
example, the word in Past Indefinite Inferential for the Turkmen has the surface
representation gelen eken, but in Turkish it is gelmismis. The multiword tokenizer is
responsible for splitting a given text into the phrases or words which correspond to the
word in the target language. To achieve this goal, the multiword - tokenizer splits each
sentence into words. During the division process the words and punctuation marks are
stored in a list. So, each sentence is represented by list of words and punctuation marks.
After that, the multiword tokenizer groups the words. The grouping process is achieved
by taking each word in the list and joining all the words in the list before a punctuation
mark. Then the generated group is passed to the morphological analyzer. If the
morphological analyzer fails to parse a given group of words, the number of words in
the word group is decreased by one. This process continues till the number of words in a

group is one. For example:

Sentence: Howa sergindi, yektay dony hem ¢ykarayasyn gelip durdy.

(3R]

List of words and punctuation marks: ‘Howa’, ‘sergindi’, ,’, ‘yektay’, ‘dony’, ‘hem’,
‘cykarayasyn’, ‘gelip’, ‘durdy’, ‘.’

Group of words for word ‘Howa’: <Howa sergindi>,<Howa>.

Group of words for word ‘sergindi’:<sergindi>.

Group of words for word ‘yektay’: <yektay dony hem ¢ykarayasyn gelip durdy>, <yektay dony
hem ¢ykarayasyn gelip>, <yektay dony hem>, <yektay dony>, <yektay>.

Group of words for word ‘dony’: <dony hem ¢ykarayasyn gelip durdy>, <dony hem g¢ykarayasyn
gelip>, <dony hem ¢ykarayasyii>, <dony hem>, <dony>.

Group of words for word ‘hem’: <hem ¢ykarayasyn gelip durdy>, <hem ¢ykarayasyn gelip>, <hem
cykarayasyn>, <hem>.

Group of words for word ‘cykarayasyn’: <gykarayasyn gelip durdy>, <gykarayasyn gelip>,
<gykarayasyn>.

Group of words for word ‘gelip’: <gelip durdy>, <gelip>.

Group of words for word ‘durdy’: <durdy>.

The main disadvantage of such approach is the possibility, that two words that
should be treated separately could come together and match the morpheme from the list.

To handle such situation, the words that satisfied the match should be also passed to the

27

morphological analyzer separately. In any case, the words that are not satisfying

morpheme ordering and structure will be rejected by the morphological analyzer.

4.3 MORPHOLOGICAL ANALYSIS AND AMBIGUITY

The source language morphological analyzer component is responsible for taking
a word or phrase in its surface representation and outputting the word or phrase in its
lexical representation. In addition, list of mapld’s of the nodes visited during the
obtaining of lexical representation for the word is provided to the word generator. The
mapld is a number used for mapping between source node and destination node. For
example, if value of mapld for source node with name noun is one then the value for

destination node with name noun should be one.

The root dictionary is a must for the morphological analyzer. Two lookup
dictionaries were used, one for Turkish, and the other for the Turkmen. Every row of the
dictionary stores word root, word lexical root, the type of the word root, and the
language the word belongs to. Using these dictionaries the morphological analyzer
determines the root for the analyzing word. Each root from the dictionary is compared
with a word being analyzed. If that word starts with any root from the dictionary then
the root is said to be a possible solution for the analysis. After that the finite state
automaton is traversed. During that traversing the suffixes used during movement from
one node to another are affixed to the candidate root. After each movement the
generated lexical form is converted to surface form and the word wished to be analyzed
is checked to start with word surface form. If the word doesn’t start with surface form of
the word the node is ignored. The traversing continues until all nodes are traversed or

all generated surface forms are mismatch the beginning of the word being analyzed.

A sample result of Turkish giilseydim word parsing is given in Figure 4.2. Map
path is the list of maplds. The maximal stem is the stem obtained by affixing

derivational suffixes.

28

1st Person Single: giil + SA + yDH + m
Map Path: 3~81~106~94

Suffixes used for lexical level

SA

yDH

m

Root: giil

Root’s Part of Speech: verb

Maximal Stem: giil

Maximal Stem’s Part of Speech: verb

Figure 4.2: A sample parsing for Turkish word giilseydim

The morphologic analyzer has capability of returning the parsed word, the list of
maplds, a list of suffixes in lexical form, the root and its part of speech, and maximal
stem and its part of speech. The maximal stem is the same as the root in this situation.
However, the maximal stem and its part of speech can change when the derivational

suffixes are used.

In Turkish language some words have more than one meaning. For example, yiiz
(face, swim [imperative form], one hundred) can be treated as a nominal noun or a verb.
As a result, there is not a single lexical form for the word. In addition, some orders of
suffixes are realized equally on the surface, causing more than one lexical
representation of the word. Therefore, the morphological analyzer can produce more
than one lexical representation for a word. For example, hastalik (illness) is represented
as hasta + [Hk (+Noun) and hasta + [H + Hk (+Noun+Verb) on lexical level. However,
some of the representations which have no corresponding mapping are eliminated by

the target language word generator.

4.4 MORPHOLOGIC GENERATOR

Morphologic generator generates the surface form of a word from lexical form.
The generator have internal module used to translate the stem of source language to the
stem of target language. However, not the root of the word, but maximal stem is

translated, since it is difficult to create relation between derivational suffixes.

The stem dictionary represented as a table which has the following fields: id, word

stem, word stem’s speech part, and word language. The id field is a primary key for the

29

table. For example, the word giil(laugh) is stored as I, giil, verb, Turkish. Another, row
from the same table is 2, giil(laugh), verb, Turkmen. The translations between those
words are stored in second table which has the following fields: id, source id,
destination id, and order of the stem. The source and destination ids are referenced to
the stem dictionary table’s id. Using this table one source stem can be related to more
than one destination stem. The order of stem field specifies primary and secondary

orders of translation stems.

The morphologic generator uses map ids referring to states of the morphological
analyzer’s finite state automaton. When a word is passed from one state to another state
the map ids are combined in a list. The system then takes this list and uses it to generate
a word by passing the list of map ids and a translated stem to the morphological
analyzer of the target language. However, Turkmen and Turkish languages have
differences in terms of lexical structures. Therefore, the generated list of map ids in
Turkmen is different from that in Turkish. To deal with such differences a map
translator was introduced. It takes a map ids list of source language and returns the map
ids list or map ids lists of the destination language. Therefore the translation of a given
word can have more than one result. For example, the word giilseydim (if I laughed) in

Turkish, have two translations in Turkmen: giilsedim and giilsemdim.

The current translation mechanism is designed to take a sentence and translate
words or group of words, the syntactical structure is not taken into account. Due to this
some translated sentences may be meaningless. In addition, a word can have many
translations, since there is no way to resolve meaning of the word. An example for this
is Turkmen word abadan, which can be translated as durgun(calm), gecimli(easygoing),
or babadan(from father), dededen(from grandfather). First two words are translations
for stem abadan, but last two are translations for stem aba taking ablative inflection

suffix.

CHAPTER S

IMPLEMENTATION

5.1 MORPHOLOGIC ANALYZER

The software for morphologic analyzer and translator was developed in Java. The
web page interface was implemented with Java Server Page technology. The
morphotactics and morphotactic rules for Turkmen and Turkish were defined in xml
files. This approach was used because of flexibility of XML. Later on, same xml

schema can be used for other languages without making any changes to the software.

5.2 XML SCHEMA FOR MORPHOTACTICS

The DTD for morphologic analyzer’s finite state machine is given in Figure 5.1.

<?xml version="1.0" encoding="UTF-8"?>

<IELEMENT finiteStateMachine (states)>

<!ELEMENT states (state+)>

<IELEMENT state (name, action*)>

<IELEMENT name (#PCDATA)>

<IELEMENT action (suffix+)>

<IELEMENT suffix (#PCDATA)>

<IATTLIST state type (initialState | middleState | endState) #REQUIRED stateld ID
#REQUIRED rootType (noun | verb | adverb | adjective | pronoun| proper noun)
#IMPLIED mapld CDATA #REQUIRED isNotSolution (Y) #IMPLIED>

<IATTLIST finiteStateMachine language (Turkish | Turkmen | Kyrgyz | Uzbek | Kazakh |

Azerbaijani) #REQUIRED>
<!ATTLIST action resultStateld IDREF #REQUIRED>

Figure 5.1: The DTD for the finite state automaton of the morphological analyzer

The DTD starts with the element called finiteStateMachine, which can include
only one element called states. In addition, the finiteStateMachine element has an

attribute called language, which specifies what language the morphological analyzer

30

31

was defined for. The states element can have one or more elements called state. Each of
the state elements has a name element and zero or more action elements. The action
element specifies the states to which the owner of the action leads to. The state element
has a set of attributes. The first one is the #ype, which defines the kind of the state. The
values it can take are initialState, middleState, or endState. The type attribute is
required. The next attribute is stateld, which defines a unique state id. Another attribute
for the state element is called rootType, which is optional and should appear within the
element whenever the fype attribute’s value is initialState. The values for the rootType
attribute are noun, verb, adverb, and adjective. The state element has mapld required
attribute, which is used for the mapping between two different finite state automata of
morphological analyzers. The last attribute that the state element can have is the
isNotSolution attribute, which have the only one possible value ¥ meaning yes. That
attribute has to appear at the states generating a lexical word with no meaning on the
surface. The action element can have one or more suffix elements. The attribute it takes
is resultStateld. This attribute’s value specifies the state action leads to. The value for
the suffix element is the lexical representation of the suffix morpheme. An example for
the xml structure provided by the DTD is shown in Figure 5.2. The graphical

representation for the example is given in Figure 5.3.

<finiteStateMachine language="Turkish">
<states>
<state type="initialState" stateld="s-1" rootType="noun" mapld="1">
<name> Nominal Root</name>
<action resultStateld="s-2">
<suffix>1Ar</suffix>
</action>
</state>
<state type="middleState" stateld="s-2" mapld="2">
<name>Plural</name>
<action resultStateld="s-1">
<suffix>IH</suffix>
<suffix>SHz</suffix>
</action>
</state>
</states>
</finiteStateMachine>

Figure 5.2: A simple xml representation for finite state automaton.

The finite state automaton presented in the Figure 5.3 consists of two states. The
name for the first state is Nominal Root, and the name for the second state is Plural.

Each of the states has one action; the first state’s action leads to the second state, and the

32

second state’s action leads to the first state. In addition, the first state is an initial state
and the root types it accepts are nouns, therefore it is an entry point for the finite state
machine. So the lexical representations of the word that can be generated are word root

+ [Ar, word root + [Ar + [H, and word root + [Ar + SHz.

+H, + SHz

Figure 5.3: A graphical representation for finite state automaton.

5.3 XML SCHEMA FOR MORPHOTACTIC RULES

The DTD for two — level rules given in Figure 5.4 is a bit more complicated than

that of morphotactics.

The DTD starts with element named rules which can have element called letfers
followed by one or more elements called rule. The rules element has an attribute called
language, which is required and specifies the language the rules were defined for. The
letters element consists of one or more elements called consonant, which is followed by
one or more elements called vowel. The vowel element can be followed by the elements
called conversion. The consonant element defines the consonant letters available for the
language. The vowel element defines the vowel letters for the language. The conversion
element is defining conversion for the letters. It has two attributes called from and to,
and specifying that value of from attribute is substituted with value of zo attribute. There
are cases when the last letter of the word is changing when a suffix is affixed. The
conversion element is introduced to deal with such situations. An example for such case
is Turkmen word diiyd (camal + Dat). The root for this word is diiye. The root of first
word is hidden since the roots last letter is dropped when a dative suffix taken. So using,
the values of conversion element the last letter of the word can be replaced. In this case,

d with e, as a result the words will match.

The rest of DTD is explained using the examples bellow, since it is better to

understand from examples than from writing.

33

<?xml version="1.0" encoding="UTF-8"?>

<IELEMENT rules (letters, rule+)>

<IATTLIST rules language (Turkish | Turkmen | Kyrgyz | Uzbek | Kazakh | Azerbaijani)
#REQUIRED>

<IELEMENT letters (consonant+, vowel+, conversion*)>

<IELEMENT consonant EMPTY>

<!ATTLIST consonant char CDATA #REQUIRED>

<!ELEMENT vowel EMPTY>

<IATTLIST vowel char CDATA #REQUIRED>

<!ELEMENT conversion EMPTY>

<!ATTLIST conversion from CDATA #REQUIRED>

<!ATTLIST conversion to CDATA #REQUIRED>

<!IELEMENT rule (((condition, statement+) | (condition, statement+, otherwise+) | statement+) |
for-each)>

<IATTLIST rule order CDATA #REQUIRED>

<IELEMENT condition ((expressionGroup) | (expression) | (expressionGroup?, expression,
operator))>

<IELEMENT for-each (((condition, statementt+) | (condition, statement+, otherwise+) |
statement+)+)>

<!ATTLIST for-each select (suffixVowelLetter) #REQUIRED>

<IELEMENT expressionGroup (expressionGroup?, expression+, operator?)>

<!ELEMENT expression EMPTY>

<!ATTLIST expression

operator (equals | not_equals | endsWith | contains | startsWith | not_endsWith | preLastCharEquals
| lastVowelEquals | previousVowelEquals | firstVowelEquals | vowelCountEquals |
preLastVowelEquals | isFirst | vowelCountNotEquals | secondCharls) #REQUIRED
operandOne (word | suffix | suffixLetter | wordLetter) #REQUIRED

operandTwo CDATA #REQUIRED>

<IELEMENT operator (fPCDATA)>

<!ELEMENT statement EMPTY>

<IATTLIST statement operator (replace | deleteLastChar | deleteFirstChar | addToEnd)
#REQUIRED oldPattern CDATA #IMPLIED newPattern CDATA #IMPLIED flag
(firstOccurrence | lastOccurrence | All) #IMPLIED operandOne (word | suffix | suffixLetter
| wordLetter) #REQUIRED operandTwo CDATA #IMPLIED>

<!IELEMENT otherwise (condition?, statement+)>

Figure 5.4: The DTD for the two — level rules of morphological analyzer.

An XML for orthographic rule V:0 = + H:@yor (Oflazer, 1994) is shown in
Figure 5.5.

<rule order="3">
<condition>
<expression operator="equals" operandOne="suffix" operandTwo="Hyor"/>
<expression operator="endsWith" operandOne="word" operandTwo="vowel"/>
<operator>AND</operator>
</condition>
<statement operator="deleteLastChar" operandOne="word"/>
</rule>

Figure 5.5: XML representation for V:0 ® _+ H:@yor rule.

From rule’s attribute order it can be clear that the rule should be applied in third

order. There is a condition which checks that the suffix is Hyor and word ends with a

34

vowel. If the conditions a satisfied then the last letter of the word is deleted before

affixation.

An XML for orthographic rule V:0 & $:0 C +:0 @:0V:@ (Oflazer, 1994) is

shown in Figure 5.6.

<rule order="4">
<condition>
<expression operator="contains" operandOne="word" operandTwo="$"/>
<expression operator="startsWith" operandOne="suffix" operandTwo="vowel"/>
<operator>AND</operator>
</condition>
<statement operator="replace" operandOne="word" oldPattern="8." newPattern=""
flag="lastOccurrence"/>
<otherwise>
<condition>
<expression operator="contains" operandOne="word" operandTwo="$"/>
<expression operator="startsWith" operandOne="suffix" operandTwo="consonant"/>
<operator>AND</operator>
</condition>
<statement operator="replace" operandOne="word" oldPattern="$" newPattern=""
flag="lastOccurrence"/>
</otherwise>
</rule>

Figure 5.6: XML representation for V:0 & $:0 C +:0 @:0V:@ rule.

The XML representation states that $. characters are deleted when the word have
a $ symbol and suffix starts with a vowel. Dot means any character. However, if the
conditions are not satisfied the word is checked for containing $ symbol and suffix is
checked for starting with a consonant. If the condition is satisfied the § symbol is

deleted.

The next example is related to the application of a rule repeatedly. The reason for
such need is appearance of suffixes which consist of two or more syllables. An example
for such suffix is mAktA. Therefore, each vowel should be processed separately. The
XML representation for rule A:a = V:V,,:"*C*@.0* + :0* (Oflazer, 1994) is shown
in Figure 5.7

The vowels in suffix are checked repeatedly by introducing for-each element and
providing a suffixVowelLetter value to its select attribute. So, each vowel is processed
one by one. Firstly, the previous, according to processed one, vowel is checked using
first condition. If the checked vowel is the first in the suffix then the second condition is

used to check last vowel of the word.

35

<rule order="17">
<for-each select="suffixVowelLetter">
<condition>
<expressionGroup>
<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="a"/>
<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="1"/>
<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="0"/>
<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="u"/>
<operator>OR</operator>
</expressionGroup>
<expression operator="equals" operandOne="suffixLetter" operandTwo="A"/>
<operator>AND</operator>
</condition>
<statement operator="replace" operandOne="suffixLetter" oldPattern="A" newPattern="a"/>
<condition>
<expressionGroup>
<expression operator="1astVowelEquals" operandOne="word" operandTwo="a"/>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="1"/>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="0"/>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="u"/>
<operator>OR</operator>
</expressionGroup>
<expression operator="equals" operandOne="suffixLetter" operandTwo="A"/>
<operator>AND</operator>
</condition>
<statement operator="replace" operandOne="suffixLetter" oldPattern="A" newPattern="a"/>
</for-each>
</rule>

Figure 5.7: XML representation for A:a = V:V,*’*C*@:0* + :0*_rule.

5.4 IMPLEMENTATION OF MORPHOTACTIC RULES

The finite state automaton for the morphological analyzer is represented as a
directed graph. Each edge of the graph has a list of suffixes. The vertexes of the graph
are stored in the list. Therefore they can be visited one by one. In addition, they can be
visited using the edges. When the graph is traversed the lexical form of the word is
generated. The generation is achieved by passing the word root into the initial state.
Starting from that state each of the suffixes located on the edge is added to the word.
For example, if the edge has two suffixes, two lexical representations will be generated
for each word from the outgoing vertex. Those words are passed to the vertex, to which
the edge leads. The traversing of the tree is done using the breath first search algorithm.
The pseudo code for the generation of the lexical word representation is given in Figure

5.8.

36

Input: wordToParse
Output: list of word lexical representations
function parseWord
Dictionary«—get all roots from dictionary
for i — 0 to sizeof(Dictionary) do
j<0
if wordToParse starts with Dictionary[i].lexicalRoot then
SolutionCanditates[j].lexicalRoot «— Dictionary[i].lexicalRoot
SolutionCanditates[j].rootType «— Dictionary[i].rootType
je—j+1
for i — 0 to sizeof(SolutionCanditates) do
for j < 0 to sizeof(NodeList) do
if NodeList[j].stateType = ‘initialState’ AND NodeList [j].rootType =
SolutionCanditates [i].rootType then
traverse(NodeList [j], wordToParse)
return solution

Figure 5.8: The pseudo code for the function used to parse a surface word.

Dictionary is the list containing the structure, which has two elements: the lexical
root and a lexical root’s part of speech. SolutionCandidates is the list of the candidates
to be a solution. NodeList is the list of the nodes of the finite state automaton for the
morphological analyzer. The solution is a global variable and filled by the traverse
function. The function actually takes a word and tries to match it with the one in the
root dictionary. The root from the root dictionary is said to match the comparison word
if the comparison word begins with the root from the dictionary. All located words are
candidates for the solution. After that, the initial node, whose speech part the same with
the speech part of candidate root, and the candidate root are passed to the traverse

function. The pseudo code for traverse function is given in Figure 5.9.

Input: state, wordToParse
Output: N/A
function traverse
if state.stateType != ‘endState’ then
k<0
for i < 0 to sizeof(state.actions) do
processedStates[k] < state.getNextState(wordToParse)
k—k+1
k<0
for i — 0 to sizeof(processedStates) do
if sizeof(processedState[i].candidates) > 0 then
NextStates[k] «— processedState[i]
if getSolutionSetSize() > 0 then
solution.add(processedState[i])
k—k+1
for i < 0 to sizeof(NextStates) do
for j « sizeof(NextStates [i].candidates) do
NextStates [i].candidate[j].wordList < NextStates [i].wordList
traverse(NextStates[i], wordToParse)

Figure 5.9: The pseudo code for traverse function.

37

The traverse function is recursive function which returns when the passed state is
an end state or the list of the states that can be processed is empty. The function takes a
state node and evaluates each child. The number of children is defined by number of
actions for state node. The evaluation of each child is achieved by calling getNextState
function. The getNextState function is calling the NextState function of the action
object. The pseudo code for the NextState function of the state is given in Figure 5.10.
The getNextState function returns the state, which is stored in the processedStates list.
Each element of this list has a list of candidates or list of solutions. The state whose
candidates list is not empty is added to the NextStates list and those whose solutions list
is not empty are added to the solution list. Some nodes can be child of themselves. An
example is the node named noun in Figure 3.2. In addition, some morphemes consist of
one vowel which is deleted on the surface in certain situations. As a result, in these
circumstances the traverse function will fall in endless loop. To avoid those loops the
number of repeatable same morphemes is limited. Each element of NextStates points to
the state to be processed next, but this state has no information about candidate words.
Therefore the list of candidate words is copied to the state list of words. And then, each

element of the NextStates list is passed to traverse function with the word to be parsed.

The NextState function in Figure 5.10 is used to get the state that can be the
candidates or the solution for word lexical representation. First of all the lexical word
representations are generated by concatenating words from child state’s list of words
and each suffix from suffixes list. The suffixes list contains suffixes that are located on

the edge from parent vertex to child vertex. After that, the rules are applied and the sur-

Input: wordToParse
Output: next state to process
function NextState
k<0
for i < 0 to sizeof(suffixes) do
for j < O to sizeof(childState.wordList) do
generatedWords[k] <— wordList[j] + + * + suffixes[i]
k—k+1
for i < 0 to sizeof(generatedWords) do
surfaceWord < applyRules(generatedWords[i])
if wordToParse starts with surfaceWord then
processedState.candidatesList.add(generatedWords[i])
if wordToParse = surfaceWord then
processedState.addSolution(generatedWords|[i])
processedState.candidatesList.add(generatedWords[i])
return processedState

Figure 5.10: The pseudo code for NextState function.

38

face word representation is obtained. The surface word form is compared with the word
to parse. If the word to parse starts with the surface word form then the lexical
representation of the word is added to the candidate list of the processedState structure.
This structure consists of such information as candidates list, solution list and pointer to
the state. If the word surface representation is the same with word to parse then the
word’s lexical representation is added to the list of solutions. When the list of generated

lexical word’s representations is processed the processedState is returned.

5.5 TRANSLATION SYSTEM

The translation is implemented outside of the morphological analyzer’s
implementation. It was implemented as a simple function which takes source language
morphological analyzer, destination language analyzer and word as parameters and
outputs the list of translations. The pseudo code for the function is given in the Figure

5.11.

Input: sourceLanguageAnalyzer, targetLanguageAnalyzer, word
Output: list of translations
function translate
listOfLexicalWords «— sourceLanguageAnalyzer.parseWord(word)
for i — sizeof(listOfLexicalWords) do
maximalStem « listOfLexical Words[i].maximalStem
wordRoot « listOfLexicalWords[i].wordRoot
stemType <« listOfLexicalWords[i].maximalStemType
if maximalStem = wordRoot then
mapPath « listOfLexicalWords[i].mapPath
else
for j — 0 to sizeof(listOfLexical Words[i].suffixes) do
genWord « applyRules(wordRoot,listOfLexical Words[i].suffixes[j])
if maximalStem = genWord then
break
maplds = split(wordRoot,listOfLexical Words[i].mapPath,’~") j«—j+1
for k « j to sizeof(maplds) do
if k =j then
mapPath = maplds[k]
else
mapPath < mapPath + ‘~’ + maplds[k]
listOfTranslatedStems «—
getTranslationFromDictionary(sourceLanguageAnalyzer.language,
targetLanguageAnalyzer.language, maximalStem, stemType)
for i < 0 to sizeof(listOfTranslatedStems) do
translatedWords <« targetLanguageAnalyzer.getWordFromMapPath(
listOfTranslatedStems[i], mapPath, stemType)
for j < 0 to sizeof(translatedWords) do
result.add(translatedWords[j])
return result

Figure 5.11: The pseudo code for translation function.

39

In translate function the word wished to be translated is firstly given to the
morphological analyzer of source language. The result from morphological analyzer is
the list of structures. Each structure consists of lexical word form, word root, word
speech part, word maximal stem, word maximal stem speech type, list of map ids, and a

list of suffixes. An example for the structure content is given in Figure 4.2.

After the word is parsed, the new list of map ids is created. This list is created by
taking last map id of derivational suffix and all following it map ids. The reason for
such approach is the difficulty to create relation between derivational suffixed of two
any language. After the list of map ids has been constructed the translation is looked up
in the dictionary. The resulting list of translation stems, list of map ids, and maximal
stem‘s speech are then passed to the getWordFromPath function of destination
analyzer. The getWordFromPath function is used to generate a word from the given
path. The result of the function is the list of generated words. The pseudo code for the

function is given in Figure 5.12.

In getWordFromPath function the first element of map ids list is used to
determine the entrance point to the morphological analyzer. This is achieved by visiting
each node of the morphological analyzer and comparing its map id with the first
element from the map ids list. In addition, type of node is checked for being initial state
and node’s speech part is checked to be the one passed to the function. If no of these
conditions is satisfied an empty list is returned. Once the conditions are satisfied such
information as state satisfied condition, word stem, and map id is stored in the structure

vState. The structure then added to the list of visited states.

For the rest of the element of the map ids list each element from visited states list
is processed. For each child, if any, of the visited state, the map id is compared with the
processed one. If the map ids match then the list of words for the visited state is
appended the suffixes of the child node and then rules are applied. After that the child
node is added to the visited states list. After that the states that were added from
previous loop but are not the solution for the problem are removed from the list of

visited states.

40

And finally, the list of words is copied to the result list from visited states’ word

list. During this operation the words lists are copied from states that are marked to be a
solution.

Input: wordStem, mapPath, rootType
Output: the list of words generated from path
function getWordFromPath
maplds « split(mapPath, ‘~’
for i — 0 to sizeof(maplds) do
if i = 0 then
for j — O to sizeof{(states) do //states is the list of state in the morphologicanalyzer
if states[j].mapld = maplds[i] and states[j].stateType = ‘initialState’ and
states[j].rootType = rootType then
vState.state = states[j]
vState.words.add(wordStem)
vState.visitedPath = states[j].mapld
visitedStates.add(vState)
else
if sizeof(visitedStates) = 0 then
return empty
else
statesSize «— sizeof(visitedStates)
for j < 0 to sizeof(visitedStates) do
state «— visitedStates[j].state
if state.stateType != ‘endState’ then
wordsSize < sizeof(state.words)
for k « 0 to sizeof{(state.actions) do
action «— state.actions[k]
if action.resultingState.getType != ‘initialState’ then
if visitedStates[j].visitedPath != mapPath then
constructPath « visitedStates[j].visitedPath + ‘~” +
action. resultingState.mapld
if mapPath starts with constructedPath then
for m < 0 to sizeof(action.suffixes) do
vState.state = action.resultingState
for n < 0 to wordsSize do
state.words.add(applyRules(state.words[n],
action.suffixes[m]))
vState.wordStem = wordStem
vState.visitedPath = constructPath

visitedStates.add(vState)
k<0

for m « 0 to statesSize do
if visitedStates[k].visitedPath != mapPath then
visitedStates.removeAt(k)
else
k—k+1
for i — 0 to sizeof(visitedStates) do

//some nodes not accepted as a solution when they are located at the end of the chain
if visitedStates[i].visitedPath = mapPath and visitedStates[i].state.canBeSolution then
for j — 0 to sizeof(visitedStates[i].words) do

resultList.add(visitedStates[i].words[j])
return words

Figure 5.12: The pseudo code for getWordFromPath function.

41
5.6 SAMPLE TRANSLATION
A sample translation from Turkmen to Turkish is shown in Figure 5.13.

Morphologic Translator

Input Language: Turkmen

Input Text: Menifi pikirimge, biz taryhda tdze sahypa acgyldy diyip

ynamly aydyp bileris. Russiya beyik yurt, ol etniki
taydan k&pdiirliligi bilen, senagat, ylmy we medeni
potensialynyh dgirt uly diapazony bilen hayran

galdyryar. Tatarystan Respublikasy gu jdhtden ajayyp
mysal bolup duryar, mufa biz bu gin aydyh gdz

yetirdik. Bussiya Federasiyasynyh regionlary bilen gd=a-
géni we amatly gatmasyklary jola goymak ikitaraplayyn
diwletara gatnasyklarynda ileri tutulyan ugurlaryh
biridir. [

Cutput Language: | Turkish °

Translate

Translation Results:

bana gire , biz ¢ tarihte veni sayfa agld: divip[no root] ynamiy[no root] aydyp[no root]
bileriz ¢ _Rusya bevik[no root] VUL * . o etnik taraftan ¢ cok gesitlilifiyle , senagat
[no root] , ilimi ve kiiltiirel potansiyelinin ¢ cok bijviik geniglifiyle ¢ hayrette birakiyor LN

Tataristan Respublikasy[no root] bu ¢ ydnden ¢ gayyp[no root] dmek ¢ bolup[no root]

duruyor ® _buva biz # py gin ¢ sdyleyiniz ¢ anladk ¢ Rusya
federasyonunun bélgelerivle gis-goni[no root] ve amatly[no root] iligkileri vola[no root] koymak ¢ il
taraf olaralk devletler arasi ¢ iligkilerinde ileri[no root] tutulmakta olan + wyollann ¢
biri ¢

Figure 5.13: A sample for translation from Turkmen to Turkish.

The words that have more than one translation are shown in combo boxes such as
biz. The words that were not translated are followed by the possible reason for failure in
square brackets. There can be two possible reasons: one is no root meaning that
morphological analysis failed. The second is no stem meaning that translation dictionary

doesn’t have this stem.

CHAPTER 6

CONCLUSIONS

The machine translation is the one of the fundamental problems in Natural
Language Processing. It is a challenging task. However, the design of translators for
languages similar in terms of morphological, syntactical and lexical structures seems to
be relatively easier. A translation framework between Turkic languages was designed
and implemented in this study. The framework was used to implement Turkmen —

Turkish and Turkish — Turkmen translators.

A common approach used in morphological machine translation has three
components: the two—level morphological analyzer, stem translator and word generator.
The two—level morphological analyzer is used to get a word’s lexical form. The stem
translator uses the stems of the word’s lexical form as an input, and outputs a list of
stems for the target language. After that, the stems in target language are passed to the
word generator. The output of the word generator is a list of words in the target

language.

The morphotactics for Turkmen language was studied and orthographic rules for
Turkmen were written. After the design these rules were encoded in XML. And finally,
a two—level morphological analyzer was implemented in Java. The encoding of
morphotactics and orthographic rules into XML gives users unfamiliar with
programming ability to define morphotactics and orthographic rules for agglutinative

languages.

Initially the system was designed for two-way Turkmen-Turkish translation.
However, isolating morphotactics and orthographic rules from the system and storing
them in XML gave the system ability to work with other languages as long as their

morphotactics and orthography can be represented in the XML format set forth here.

42

43

The root dictionary is a must for two - level morphological analyzer. Two root
dictionaries were used, one for Turkish, and the other for the Turkmen. Current
dictionaries contain 14.888 word roots for Turkish and 10.349 word roots for Turkmen.
However, new roots can be added in the future thru the web interface. The words in the
dictionary are divided into eleven categories (part of speech). These are noun, adjective,
verb, compound noun, adverb, exclamation, proper noun, preposition, compound verb,

conjunction, and pronoun.

In initial testing, it was noticed that the words which should take inflectional
suffixes are also can be presented as root and a chain of derivational suffixes, therefore
producing unexpected results. For example, gelir (income) and gelir (he comes) have
same morphological representation ge/ + Hr. These cases will be dealt with in the

future.

The translation component is one of the important components of the system. It
consists of two stem dictionaries (lexicons). This component simply performs a lookup
on a target language stem and returns the corresponding list of destination language

stems. A web interface was designed to manage stem dictionaries.

The word generator component was implemented using the list of unique ids
referring to states of the morphological analyzer’s finite state automaton. Each state has
a unique id. When a word is passed from one state to another state the ids are combined
in a list. The system then takes this list and uses it to generate a word by passing the list
of ids and a translated - stem to the morphological analyzer of the target language.
Naturally Turkmen and Turkish languages have differences in terms of lexical
structures. Since, the generated list of ids in Turkmen was different from that in
Turkish. To deal with such differences a map translator was introduced. The differences
of such mappings were encoded into XML to provide flexibility to users. The map
translator takes a list of ids of source language and returns the one or more lists of ids

for the destination language. As a result, a word can be translated to one or more words.

Current machine translator is designed to translate words on one to one basis.
Therefore, the created output can be misunderstanding since the syntactical structure of
the sentences may differ for languages. To remedy this problem to some extend we use

word groups in addition to the single word in the dictionary. So the word in any

44

language can correspond to a word or a group of words (phrases) in the other language.
The part of the system is experimental. As indicated above, a word or phrase can have
many translations. Therefore, a sentence translated in such manner can have many more
translations than a single word or phrase. Choosing the best translation among many is
another challenging task and outside this study. Currently web interface produces all

possible translations.

REFERENCES

Altintas K. & Cigekli I., "A Morphological Analyzer for Crimean Tatar", Proceedings
of the 10th Turkish Symposium on Artificial Intelligence and Neural Networks,
TAINN, pp. 180-189, North Cyprus, 2001

Canals-Marote R., Esteve-Guillén A., Garrido-Alenda A., Guardiola--Savall M.I.,
Iturraspe-Bellver A., Montserrat-Buendia S., Pérez-Antén-Rojas P., Ortiz-Pina S.,
Pastor-Anton H. & Forcada M.L., "interNOSTRUM: a Spanish-Catalan Machine
Translation System", Machine Translation Review, Vol.11, pp. 21-25, 2000

Dvorék B., Homola P. & Kubonl V., "Exploiting similarity in the MT into a minority
language", LREC-2006: Fifth International Conference on Language Resources and
Evaluation, Genoa, Italy, 2006

Garrido-Alenda A., Gilabert-Zarco P., Pérez-Ortiz J.A., Pertusa-Ibafiez A., Ramirez-
Sanchez G., Sanchez-Martinez F., Scalco M.A. & Forcada M.L., "Shallow Parsing
for Portuguese-Spanish Machine Translation", TASHA 2003: Workshop on Tagging
and Shallow Processing of Portuguese, Lisbon, Portugal, 2003

Jurafsky D. & Martin J. H., Speech and language processing: An introduction to
natural language processing, computational linguistics, and speech recognition,
Prentice Hall, New Jersey, 2000

Haji¢ J., Hric J. & Kubon V., “Machine translation of very close languages”,
Proceedings of the sixth conference on Applied natural language processing, pp. 7-
12,2000

Haji¢ J., Homola P. & Kubon V., "A simple multilingual machine translation system"
MT Summit IX, New Orleans, USA, 2003

Kara M., Tiirkmen Tiirkcesi Grameri, Ankara, 2005
Koskenniemi K., “Two — level morphology: A general computational model of word-
form recognition and production”, Tech. rep. Publication, No. 11, Department of

General Linguistics, University of Helsinki, 1983.

Oflazer K., “Two — level Description of Turkish Morphology”, Literary and Linguistic
Computing, Vol. 9, No. 2, 1994

Tantug A. C., Adal,, E. & Oflazer K., “Computer Analysis of the Turkmen Language
Morphology”, in T. Salakoski (Eds.), FinTAL 2006, Lecture Notes in Computer
Science, pp. 186-193, Springer, 2006

45

46

Tantug A. C., Adali, E. & Oflazer K., A MT System from Turkmen to Turkish
Employing Finite State and Statistical Methods, Proceedings of MT Summit X1, 2007

