

TURKISH AND TURKMEN MORPHOLOGICAL ANALYZER AND
MACHINE TRANSLATION PROGRAM

by

Maxim SHYLOV

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

June, 2008
Istanbul, Turkey

APPROVAL PAGE

Student : Maxim SHYLOV
Institute : Institute of Sciences and Engineering
Department : Computer Engineering
Thesis Subject: Turkish and Turkmen Morphological Analyzer and Machine

Translation Program
Thesis Date : June 2008

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Bekir KARLIK
Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist Prof. Atakan KURT
Supervisor

Examining Committee Members

Assist Prof. Atakan KURT ……………………….

Assist Prof. Veli HAKKOYMAZ ……………………….

Prof. Mehmet KARA ……………………….

It is approved that this thesis has been written in compliance with the formatting

rules laid down by the Graduate Institute of Sciences and Engineering.

Assist Prof. Nurullah ARSLAN
Director

iii

TURKISH AND TURKMEN MORPHOLOGICAL ANALYZER
AND MACHINE TRANSLATION PROGRAM

MAXIM SHYLOV

M. S. Thesis - Computer Engineering
June 2008

Supervisor: Assist Prof. Atakan KURT

ABSTRACT

The machine translation is the one of the fundamental problems in Natural
Language Processing. In this thesis a machine translation framework was implemented.
The translation framework is mainly based on morphological analysis. Both Turkmen
and Turkish morphological parsers and generators have been implemented. An in-depth
morphological analysis of Turkmen has been done. The dictionary of word roots and
stems for Turkmen and Turkish were created.

Keywords: Machine Translation System, Turkmen Morphological Analyzer,

Turkmen Two – level Morphological Rules.

iv

TÜRKÇE VE TÜRKMENCE BİÇİMBİRİMSEL ÇÖZÜMLEME
VE MAKİNE ÇEVİRİ PROGRAMI

MAXIM SHYLOV

Yüksek Lisans Tezi – Bilgisayar Mühendisliği
Haziran 2008

Tez Yöneticisi: Yrd.Doç.Dr. Atakan KURT

ÖZ

Makine çevirisi, Doğal Dil İşlemenin temel konularından biridir. Bu tezde,
Türkmence ve Türkçe iki taraflı biçimbirimsel makine çeviricisi uygulaması
gerçekleştirilmiştir. Başta Türkmence için biçimbirimsel çözümleyeci ve biçimbirimsel
üretici uygulama olarak gerçekleştirilmiştir. Daha sonra, Türkçe için biçimbirimsel
çözümleyeci ve biçimbirimsel üretici uygulaması gerçekleştirilmiş, Türkçe ve
Türkmence için kök sözlükleri oluşturulmuştur.

Anahtar Kelimeler: Makine Çeviri, Türkmence Biçimbilimsel Çözümleyici,
Türkmence iki seviyeli Biçimbilimsel Kuralları.

v

DEDICATION
To my family

vi

ACKNOWLEDGEMENT

I express sincere appreciation to Assist Prof. Atakan KURT and Prof. Mehmet

KARA for their guidance and insight throughout the research. Moreover, I would like

to thank Prof. Mehmet KARA for helping me in understanding the structure and

morphology of Turkmen and Turkish languages.

I would like to thank Gülşah SOYAL for helping preparing dictionaries and all

those who was directly or indirectly involved in the project.

I express my thanks and appreciation to my family for their understanding,

motivation and patience.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ .. iv

DEDICATION ... v

ACKNOWLEDGEMENT ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 TURKMEN PHONOLOGY .. 3

CHAPTER 3 TURKMEN MORPHOLOGY .. 6

3.1 Two – Level Morphology ... 6

3.2 Turkmen Ortography .. 7

3.3 Turkmen Morphotactics ... 19

CHAPTER 4 TRANSLATION FRAMEWORK .. 25

4.1 Sentence Tokenizer .. 25

4.2 Multi Word Tokenizer .. 26

4.3 Morphological Analysis and Ambiguity .. 27

4.4 Morphologıc Generator .. 28

CHAPTER 5 IMPLEMENTATION ... 30

5.1 Morphologic Analyzer ... 30

5.2 XML Schema for Morphotactics .. 30

5.3 XML Schema for Morphotactic Rules ... 32

5.4 Implementation of Morphotactic Rules .. 35

5.5 Translation System ... 38

5.6 Sample Translation ... 41

CHAPTER 6 CONCLUSIONS ... 42

viii

REFERENCES .. 45

ix

LIST OF TABLES

TABLE

2.1: Cyrillic Turkmen alphabet and its transliteration to Latin alphabet. 4

2.2: New Turkmen alphabet and its transliteration to Latin alphabet. 4

2.3: Turkmen vowels. ... 4

3.1: Two – level Rules .. 7

3.1: Tenses in Turkish and Turkmen .. 24

3.2: The tenses in Turkmen without a match in Turkish. ... 24

x

LIST OF FIGURES

FIGURES

3.1: A simple finite state automaton for lexical word representation. 7

3.2: The finite state automaton for nominal morphology. .. 20

3.3: The finite state automaton for verb morphology. .. 21

3.4: The finite state automaton for verb morphology (cont). .. 22

4.1: Components of the translation mechanism .. 25

4.2: A sample parsing for Turkish word gülseydim ... 28

5.1: The DTD for the finite state automaton of the morphological analyzer 30

5.2: A simple xml representation for finite state automaton. .. 31

5.3: A graphical representation for finite state automaton. ... 32

5.4: The DTD for the two – level rules of morphological analyzer. 33

5.5: XML representation for V:0  _ + H:@yor rule. ... 33

5.6: XML representation for V:0  $:0_C +:0 @:0V:@ rule. 34

5.7: XML representation for A:a  V:Vb‘:’*C*@:0* + :0*_ rule. 35

5.8: The pseudo code for the function used to parse a surface word. 36

5.9: The pseudo code for traverse function. .. 36

5.10: The pseudo code for NextState function. .. 37

5.11: The pseudo code for translation function. ... 38

5.12: The pseudo code for getWordFromPath function. .. 40

5.13: A sample for translation from Turkmen to Turkish. .. 41

xi

LIST OF ABBREVIATIONS

ABBREVIATION

Abl Ablative

Acc Accusative

Agr1PS 1st Person Agreement

ADJtoADJ Adjective to Adjective

ADJtoV Adjective to Verb

Dat Dative

Gen Genitive

Inf Infinitive

Infer Inferential

Loc Locative

Neg Negative

NegPastIndInf Negative Past Indefinite Inferential

NtoADJ Noun to Adjective

NtoN Noun to Noun

NtoV Noun to Verb

Plu Plural

Poss1PS Possessive 1st Person Single

Poss2PS Possessive 2nd Person Single

Poss3PS Possessive 3rd Person Single

PreCon Present Continuous

PreSim Present Simple

Rel Relative

VtoADJ Verb to Adjective

VtoN Verb to Noun

XML Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

The machine translation is one of the fundamental problems in the natural

language processing. The design and implementation of machine translator is a complex

process defined by divergences of languages in terms of their morphological, syntactical

and lexical structures (Jurafsky & Martin, 2000). The morphological structures for

different languages can vary in terms of morphemes used for word. For example, the

English word cats has a root cat and inflectional morpheme –s, but in Turkish word

kediler has a root kedi and an inflectional morpheme -ler. The syntactical structure for

different languages can vary in term of the way the words are positioned in the sentence.

The lexical structures can vary for different languages in terms of morpheme position.

For example, in such languages as Russian and English the words can be formed by

prepositions and suffixes, but in Turkic languages the words are formed by suffixes.

The languages discussed in this thesis are agglutinative languages which have

productive inflectional and derivational suffixes. The inflectional suffixes change the

form of words in order to express the grammatical features. For example, gel(come) +

di(came) or göl(lake) + ler(lakes). The derivational suffixes make new words from

existing ones, with a different meaning. For example, haber(news) + leş(communicate).

Koskenniemi introduced the two-level morphology to represent a word in two

levels (Koskenniemi, 1983). One of the representations is the word orthographic form

and the other is the word lexical form. The lexical form is represented by the word root

and morphemes. The morphological rules were used for the word transformation from

lexical representation to the orthographic form. Morphological analyzers are used in

machine translation. For example, Česilko is the machine translation project for Slavic

languages Czech and Slovak (Hajič et al. 2000). Later on, it was extended to deal

2

with Lithuanian (Hajič et al. 2003), Polish and Lower Serbian (Dvořák et al. 2006).

Another project is interNOSTRUM, which was developed for translating between

Catalan and Spanish (Canals-Marote et al. 2000). A machine translation system for

Portuguese – Spanish was implemented in the same manner (Garrido-Alenda et al.

2003). However, the number of studies on machine translation between Turkic

languages is limited. One of the studies is related to the translation from Turkish to

Crimean Tatar, which is able to generate ambiguous translations with a limited

dictionary (Altıntaş & Çiçekli, 2001).

The translation machine for Turkmen and Turkish languages is a current topic

(Tantug et al, 2007). This study (Tantug et al, 2007) is based on the morphological

analysis and morphological translation (Tantug et al, 2006). The morphological

translation was modified by introducing new modules to perform syntactical analysis.

However, it seems that a morphological analyzer is not fully describing the structures of

the Turkmen language. Therefore those structures were analyzed in this thesis and

morphotactic rules were redefined to cover those structures as well.

The morphological analyzer for Turkmen and machine translation from Turkmen

to Turkish and Turkish to Turkmen is studied in this thesis. However, the framework for

translation system between agglutinative languages were designed and implemented.

The framework consists of morphological parser and generator. The rules and

morphological parser for Turkish language were implemented and designed on the basis

of Oflazer research (Oflazer, 1994). Therefore, the aspects of the design of the Turkish

morphological parser are not described.

The rest of the thesis is as follows. The second chapter provides information about

Turkmen language and its similarities and differences with Turkish language. In

addition, the ways of dealing with differences are described. The morphological parser

and generator for Turkmen language are described in the chapter three. Chapter four

describes word by word translation system. The fifth chapter describes important

technologies and algorithms used in the system. Chapter six discusses the conclusion

and future work.

3

CHAPTER 2

TURKMEN PHONOLOGY

The Turkmen is the official language of Turkmenistan. It is also spoken by many

people living outside Turkmenistan. The Turkmen language is one of the Turkic

languages, belonging to the Oghuz group. An Arabic script was used for the Turkmen

language as the first writing system since 18 century, although very little was written in

it. The Unified Turkish Latin Alphabet (UTLA), based on the Latin alphabet, was

introduced in 1928. It was very similar to the Latin alphabet used in Turkey. In 1940,

the Cyrillic script for Turkmen replaced the UTLA. Finally, in 1995, the "Täze Elipbiÿi"

or New Alphabet was formally introduced by the president and officially came into use

in 1996. This alphabet and Cyrillic Turkmen alphabet are used today. Both alphabets

are given in the Tables 2.1 and 2.2.

Like the rest of the Turkic languages, Turkmen is agglutinative, meaning that

most grammatical functions are pointed out by attaching suffixes to the stems of words.

One of the most notable features of the Turkmen language is the vowel harmony. All

vowels can be classified as front vowels or back vowels. In the Turkmen language, if

there is a back vowel in the first syllable of the word, back vowels are also used in the

following syllables. The same can be said for the front vowels. However, some words,

which were taken from other languages, don’t obey vowel harmony. The front, and back

vowels are given in the Table 2.3.

4

Table 2.1: Cyrillic Turkmen alphabet and its transliteration to Latin alphabet.

Cyrillic Latin Cyrillic Latin Cyrillic Latin
А а A a Л л L l Х х H h
Б б B b М м M m Ц ц Ts ts
В в V v Н н N n Ч ч Ç ç
Г г G g(Ğ ğ) Ң ң Ň ň Ш ш Ş ş
Д д D d О о O o Щ щ Sç sç
Е е Ye ye Ө ө Ö ö Ъ ъ Separation
Ё ё Yo yo П п P p Ы ы I ı
Ж ж J j Р р R r Ь ь Subtilization
Җ җ C c С с S s Э э E e
З з Z z Т т T t Ə ə Ä ä
И и İ i У у U u Ю ю Yu yu
Й й Y y Ү ү Ü ü Я я Ya ya
К к K k Ф ф F f

Table 2.2: New Turkmen alphabet and its transliteration to Latin alphabet.

Turkmen Latin Latin Turkmen Latin Latin Turkmen Latin Latin
A a A a J j C c R r R r
B b B b Ž ž J j S s S s
Ç ç Ç ç K k K k Ş ş Ş ş
D d Ç ç L l L l T t T t
E e E e M m M m U u U u
Ä ä Ä ä N n N n Ü ü Ü ü
F f F f Ň ň Ň ň W w V v
G g G g(Ğ ğ) O o O o Y y I ı
H h H h Ö ö Ö ö Ý ý Y y
I i İ i P p P p Z z Z z

Table 2.3: Turkmen vowels.

 Unrounded Round
 Wide Narrow Wide Narrow

Back a y o u
Front e, ä i ö ü

The other characteristic of Turkmen language is the vowel harmony related to the

round vowels in the word. According to the rules of harmony, the wide round vowels o

and ö can appear only once in the first syllable and cannot appear in the syllables

following it. Once, the narrow round vowels u and ü appears in the syllable, it can

appear only in the next closed syllable. The syllable is said to be closed if the syllable

ends with a consonant letter. Otherwise, it is said to be open. If a syllable following the

5

syllable containing narrow round u or ü is open, then the vowel it contains can be one of

the narrow unrounded vowels y or i. However, the closed syllable following the syllable

containing a narrow round u or ü can contain a long vowel such as y and i. The long

vowels are vowels with a long sound and are not disclosed within the orthography of

Turkmen language. Some words in Turkmen language with suffixes vuk/vük don’t obey

the vowel harmony rules (Kara, 2005).

An interesting property of Turkmen language is the way the words are being

pronounced. Against the vowel harmony, the wide round o and ö can appear after first

syllable in the speech. However, this topic is out of the scope of the thesis work,

therefore it will not be discussed.

6

CHAPTER 3

TURKMEN MORPHOLOGY

The two – level morphologic analyzer is the one of the most common approaches

used in machine translation. The following subsections give general information about

morphological analyzer and two – level rules employed in this translation project.

3.1 TWO – LEVEL MORPHOLOGY

The two – level morphology was firstly introduced by Koskenniemi in 1983

(Koskenniemi, 1983). The two-level morphology defines two different levels of word

representation. The first is called lexical level and it represents a word as a list of

concatenated morphemes. The lexical level expresses the grammatical features of the

formed word. The second level is called surface and it represents word’s orthographic

realization. The mapping between these levels is performed by means of so called two -

level rules. Each language can have a number of rules.

The rule is defined by (lexical: surface) correspondence pair followed by an

operator and the immediate left and right context. There are four operators used in the

rules. The rules using those operators and their meaning are given in the Table 3.1.

Any word can be represented by the finite state automaton in two - level

morphology. Let’s assume that we have a Turkish lexicon containing a set of words

çocuk (child), çocuklar(children), çocukların(your children), çocuğun(your child). Then

the words in the dictionary are the surface level. A simple finite state automaton, which

can be used to obtain the lexical level for the dictionary is shown in Figure 3.1. The

node named Q1 is the initial state. The node named Q3 is an end state. When the çocuk

word is passed to the Q1 node, the lexical representations that can be generated are

7

çocuk + lAr, çocuk + lAr + Hn, and çocuk + Hn. Each of the state can define a lexical

representation of words with two – level morphology. The lexical – surface pair can be

determined in the following way. The word root which can be a candidate for the

surface word representation is located in the dictionary of roots. After that, the suffixes

are appended one after another to the located word root. The word root with appended

to it suffixes forms lexical word representation. The two – level morphological rules are

then applied to the lexical word. The operation continues until the surface word form

and a word generated by the application of two – level rules to the lexical form are

identical.

Table 3.1: Two – level Rules

Rules Meaning of the Rule
a:b  lc_rc Lexical a is realized as surface b, only when it has lc to the left and rc

to the right
a:b  lc_rc Lexical a always realized as surface b when it has lc to the left and rc

to the right.
a:b  lc_rc Lexical a always and only realized as surface b when it has lc to the

left and rc to the right
a:b / lc_rc Lexical a is never realized as surface b when it has lc to the left and rc

to the right

Figure 3.1: A simple finite state automaton for lexical word representation.

The finite state automaton can be designed to represent all possible legal

combinations of the morphemes. Those legal combinations form lexical representations

of the words. The surface form of the word can be obtained by application of two –

level morphologic rules to the lexical form of the word.

3.2 TURKMEN ORTOGRAPHY

The Turkmen language is still using two alphabets. The Cyrillic and a new Latin

Turkmen alphabet defined in 1996. The rules defined for the Turkmen language are

8

based on the Latin Turkmen alphabet. However, the switch to the Cyrillic alphabet can

be achieved by mapping each Latin letter to the corresponding Cyrillic letter. The Latin

Turkmen alphabet consists of 30 letters. There are 9 vowels: a, e, ä, i, o, ö, u, ü, y, and

21 consonants: b, ç, d, f, g, h, j, ž, k, l, m, n, ň, p, r, s, ş, t, w, ý, z. The sets defined

below are used in two – level rules:

1. Lexical Consonants: C = { b, ç, d, f, g, h, j, ž, k, l, m, n, ň, p, r, s, ş, t, w, ý, z,

Ç, G, S, P, T }

2. Lexical Vowels: V = { a, e, ä, i, o, ö, u, ü, y, H, A, Ä, Ö, Ü }

3. Back Vowels: Vb = { a, o, u, y }

4. Front Vowels: Vf = { e, ä, i, ö, ü }

5. Front Rounded Vowels: Vfr = { ö, ü }

6. Back Rounded Vowels: Vbr = { o, u }

7. Lexical A = { a, e }

8. Lexical Ä = { a, ä }

9. Lexical H = { i, u, ü, y, ä }

10. Lexical Ö = { o, ö }

11. Lexical Ü = { u, ü }

12. Lexical consonant G = { k, g }

13. Lexical consonant P = { p, b }

14. Lexical consonant T = { t, d }

15. Lexical consonants which can disappear on the surface under certain

conditions D = {s, n}

16. Lexical consonants which are always realized on the surface Cr = { Ç, S }

The two-level rules for the Turkmen language are defined as follows. Those rules

are based on recently published Turkmen grammar (Kara, 2005). Examples are given

after the rules.

1. k:g  _ +:0 (@:0)V

The last k of the word becomes g whenever a morpheme starting with a vowel

is affixed.

Lexical: kirjimek + nH dirty + Acc

Surface: kirjimeg00i kirjimegi

Lexical: tovuk + Hm chicken + Poss1PS

9

Surface: tovug0ym tovugym

2. A:a  y:0 +:0_l

The rule deals with a special case for Al derivational morpheme. It states that a

lexical A becomes an a on the surface if and only if the word ends with y. y

letter is deleted upon the affixation.

Lexical: dogry + Al right + NtoV (to straighten up)

Surface: dogr00al dogral

3. A:e  i:0 +:0 _l

Similar to the rule 2, lexical A becomes e on the surface whenever a word ends

with i. i is deleted upon the affixation.

Lexical: egri + Al bent + ADJtoV (to bend)

Surface: egr00el egrel

4. k:0  _ + [jA:@k|jH:@k]

The last k of the word is deleted whenever jAk or jHk morpheme is affixed to a

word.

Lexical: tovuk + jAk chicken + NtoN (small chicken)

Surface: tovu00jak tovujak

 Lexical: dövük + jAk broken ADJtoADJ

Surface: dövü00jek dövüjek

 Lexical: kiçik + jHk small + ADJtoADJ (smaller)

Surface: kiçi00jik kiçijik

 Lexical: ýumşak + jHk soft + ADJtoADJ (softer)

Surface: ýumşa00jyk ýumşajyk

5. Ö:o  Vb +:0 C_C

The lexical Ö becomes o on the surface, when a word ends with a back vowel.

Lexical: damak + SÖv glutton + NtoADJ (gluttonous)

Surface: damak0sov damaksov

6. Ö:ö  Vf +:0 C_C

The lexical Ö is realized as o on the surface, when a word ends with a front

vowel.

Lexical: çäge + SÖv sand + NtoADJ (sandy)

Surface: çäge0söv çägesöv

7. V:0  $:0_C +:0 @:0V:@

10

Sometimes a vowel in lexical level will be deleted on the surface due to the

ellipsis phenomenon. The phenomenon occurs when a vowel becomes

unstressed. This vowel is identified by the $ symbol in the lexical

representation of the word root. This rule deals with such vowels. The rule

states that a vowel following $ symbol is deleted when the morpheme being

affixed to the word starts with a vowel. The $ symbol is deleted as well. This

rule also appears in the Turkish two – level morphological rules (Oflazer,

1994).

Lexical: ag$yz + Hm mouth + Pos1PS

Surface: ag00z0ym agzym

Lexical: ag$yz + dA mouth + Loc

Surface: ag0yz0da agyzda

Lexical: or$un + Ä place + Dat

Surface: or00n0a orna

Lexical: ýyg$yn + Hň group + Poss2PS

Surface: ýyg00n0yň ýygnyň

8. 0:m  V_ +:0 SH:@rA:@

This rule deals with the case when a new consonant is added on the surface.

The phenomenon is specific to SHrA morpheme. The word ending with vowel

gets m consonant between the word and morpheme on the surface, whenever

SHrA morpheme is affixed.

Lexical: çaý + SHrA tea + NtoV (wish to drink tea)

Surface: çaý0syra çaýsyra

Lexical: eýe + SHrA owner + NtoV (behave as owner)

Surface: eýem0sire eyemsire

Lexical: ulu + SHrA grand + ADJtoV (do the grand)

Surface: ulum0syra ulumsyra

9. G:k  [p|ç|t|k|s|ş|a|ä] +:0 _är

This rule deals with lexical G in the morpheme Gär. It states that a surface k

occurs whenever a word ends with one of the letters in the option list.

Lexical: çögap + Gär responsibility + NtoADJ (responsible)

Surface: çogap0kär çogapkär

 Lexical: günä + Gär sin + NtoN (sinner)

Surface: günä0kär günäkär

11

10. G:g  [!(p|ç|t|k|s|ş|a|ä)] +:0 _är

Similar to Rule 9, the lexical G is dealt with in this rule. G becomes a surface

g whenever a word ends with one of the letters not in the option list.

Lexical: küýze + Gär earthenware pot + NtoN (potter)

Surface: küýze0gär küýzegär

Lexical: umydy + Gär hope + NtoADJ (hopeful)

Surface: umydy0gär umydygär

11. G:g  [p|ç|t|k|s|ş] +:0 _(H:@)r

Similar to previous rule, the lexical G in the GHr morpheme is dealt with. The

surface g appears whenever a word ends with one of the letters in the option

list.

Lexical: hynç + GHr sob + NtoV (to sob)

Surface: hynç0gyr hynçgyr

Lexical: pyş + GHr sneeze + NtoV (to sneeze)

Surface: pyş0gyr pyşgyr

12. G:k  [!(p|ç|t|k|s|ş)] +:0 _(H:@)r

Like in Rule 11, the surface k appears whenever a word ends with one of the

letters not in the option list.

Lexical: haý + GHr exclamation + NtoV (to exclaim)

Surface: haý0kyr haýkyr

Lexical: heň + GHr cry + NtoV (to cry)

Surface: heň0kir heňkir

13. A:0  V +:0 [_lg(A:@)|_v(A:@)ç|_vul]

The lexical A disappears on the surface only and only when one of AlgA, AvAç

or Avul morphemes are affixed and the word ends with a vowel.

Lexical: oka + AlgA to read + VtoN (reading hall)

Surface: oka00lga okalga

Lexical: germe + AvAç to stretch + VtoN (stretcher)

Surface: germe00vaç germevaç

Lexical: çapa + Avul distribute + VtoN (courrier)

Surface: çapa00vul çapavul

14. Ü:0  V +:0 _

This rule deals with lexical Ü which disappears on the surface when a word

ends with a vowel which is not deleted on the surface.

12

Lexical: alda + Üv to cheat + VtoN (cheat)

Surface: alda00v aldav

 Lexical: derňe + Üv to inspect + VtoN (inspection)

Surface: derňe00v derňev

15. Ü:ü  VfC +:0 C:@_

The rule states that a lexical Ü is realized as ü on the surface when the last

vowel of a word ending with a consonant is front vowel and the suffix’s first

lexical vowel is Ü.

Lexical: düz + Üv to be right VtoN (right)

Surface: düz0üv düzüv

Lexical: biç + Üv to give a shape + VtoN (shape)

Surface: biç0üv biçüv

Lexical: gübürde + vÜk to make noise +VtoADJ (noisy person)

Surface: gübürde0vük gübürdevük

Lexical: jürle + vÜk to whistle + VtoN (whistle)

Surface: jürlü0vük jürlüvük

16. U:u  VbC +:0 C:@ _

The rule states that a lexical Ü is realized as u on the surface when the last

vowel of a word ending with a consonant is a back vowel and the suffix’s first

lexical vowel is Ü.

Lexical: haşyrda + vÜk to rustle + VtoN (rustling noise maker)

Surface: haşyrda0vuk haşyrdavuk

Lexical: ýaldyra + vÜk to shine + VtoADJ (shiny)

Surface: ýaldyra0vuk ýaldyravuk

Lexical: çap + Üv run + VtoN (race)

Surface: çap0uv çapuv

17. e:ä  m_k +:0 Ä:@

In Turkmen when an infinitive form of verb takes the suffix of dative case, the

last vowel of the word changes on the surface in case it is e. This rule defines

this particular case.

Lexical: bermek + Ä to give + Inf + Dat

Surface: bermäg0e bermäge

Lexical: gelmek + Ä to come + Inf + Dat

Surface: gelmäg0e gelmäge

13

18. [n|s]:0  C +:0 _

The lexical n or s is deleted on the surface, whenever a word ends with a

consonant and the suffix being affixed starts with an n or s consonant.

Lexical: gijeler + sH night + Plu + Poss3PS

Surface: gijeler00i gijeleri

Lexical: gijeler + nHň night + Plu + Gen

Surface: gijeler00iň gijeleriň

19. H:ä  e:0 +:0 @:0_

If and only if the word ends with e and the suffix starts with a lexical vowel H,

the last vowel of a word is deleted and the H lexical vowel realized as ä on the

surface.

Lexical: düýe + Hm camel + Poss1PS

Surface: düý00äm düýäm

Surface: gözle + Hp dur to observe + PreSim

Lexical: gözl00äp gözläp

20. H:0  V(:!e) +:0 _

This rule states that the first letter of the suffix is deleted whenever the word it

is affixed ends with a vowel other from e.

Lexical: oba + Hm village + Poss1PS

Surface: oba00m obam

Lexical: avçy + Hň hunter + Poss2PS

Surface: avçy00ň avçyň

21. e:ä  _ +:0 [n(H:@)|n(H:@)ň|k(H:@)]

This rule deals with a word ending with the vowel e and the suffix affixed is

one of the suffixes in the option list. When a match is located the last vowel of

the word is realized as ä on the surface.

Lexical: düýe + nHň camel + Gen

Surface: düýä0niň düýäniň

Lexical: gije + nH night + Acc

Surface: gijä0ni gijäni

Lexical: çölde + kH desert + Loc + Rel

Surface: çöldä0ki çöldäki

Lexical: deňizde + kH sea + Loc + Rel

Surface: deňizdä0ki deňizdäki

14

22. Ä:ä  Vf:0 +:0 @:0_

This rule deals with the words ending with one of the front vowels and taking

suffixes starting with lexical Ä. In this case, the last vowel of the word is

deleted on the surface and the suffix’s lexical Ä is realized as ä on the surface.

Lexical: bergi + nÄ debt + Dat

Surface: berg00ä bergä

Lexical: düýe + Ä camel + Dat

Surface: düý00ä düýä

Lexical: ele + Än dälmiş to eliminate + NegPastIndInf

Surface: el00än dälmiş elän dälmiş

23. Ä:a  Vb:0 +:0 @:0_

This rule is the same as the previous one except it deals with words ending

with back vowels.

Lexical: alada + nÄ care + Dat

Surface: alad00a alada

Lexical: tuty + Ä curtain + Dat

Surface: tut00a tuta

24. Ä:e  VfC +:0 @:0_

This rule deals with the suffixes affixed to the words ending with consonant

and with a front vowel in the last syllable. According to the rule, a lexical Ä

becomes a surface e when it is located at the beginning of a suffix.

Lexical: gül + Än dälmiş to lugh + NegPastIndInf

Surface: gül0en dälmiş gülen dälmiş

Lexical: gel + Än eken to come + NegPastIndInf

Surface: gel0en eken gelen eken

25. Ä:a  VbC+:0 @:0_

This rule is similar to Rule 24. It deals with words with a back vowel in the

last syllable.

Lexical: ýap + Än dälmiş to do + NegPastIndInf

Surface: ýap0an dälmiş ýapan dälmiş

Lexical: kol + Ä arm + Dat

Surface: kol0a kola

26. ç:j  V_ +:0 @:0 V

15

In Turkmen morphology, when the ç character occurs between two vowels, it

realized as j on the surface. This rule deals with words ending with ç and a

suffix affixed to the word starts with vowel.

Lexical: bozguç + Hň eraser + Poss2PS

Surface: bozguj0yň bozgujyň

Lexical: yangyç + nH fuel oil + Acc

Surface: yangyj00y yangyjy

27. 0:ý  V_ +:0 H:@ş

This rule introduces the addition of a new letter when it doesn’t occur in the

lexical level. It states that a new character ý should be added on the surface

whenever a word ends with a vowel and the suffix is Hş.

Lexical: gora + Hş protect + VtoN (protection)

Surface: gora0ýyş goraýyş

Lexical: sözle + Hş to speak + VtoN (speech)

Surface: sözle0ýiş sözleýiş

28. {P,T}:{b,d}  _ +:0 V

The letter p of some Turkmen words ending with p, changes to b when a

suffix starting with a vowel is affixed. The letter t of some Turkmen words

ending with t, changes to d when a suffix starting with a vowel is affixed. The

last letters of the words which can have such conversion were specified by

letters P and T in the lexicon. This rule deals with those letters. According to

the rule the lexical P and T are realized as surface b and d whenever an affixed

suffix starts with a vowel.

Lexical: gaP + Hm container + Poss1PS

Surface: gab0ym gab0ym

Lexical: aT + Hm name + Poss1PS

Surface: ad0ym adym

29. {P,T}:{p,t}  _ +:0 C

This rule realizes lexical P and T as surface p and t whenever the suffix

affixed to the word starts with a consonant.

Lexical: gap + ndAn container + Abl

Surface: gap00dan gapdan

Lexical: taT + dA taste + Loc

Surface: tat0da tatda

16

In Turkmen language the vowel harmony is different for open and closed

syllables affixed to a word consisting of one syllable. The rules from 30 to 33 deal

with such cases.

30. H:y  C*VbrC +:0 C:@_

This rule states that H vowel of the suffix with an open syllable is realized as y

only when the word consists of one syllable with a back round vowel.

Lexical: ýol + nH road + Acc

Surface: ýol00y ýoly

Lexical: guş + sH bird + Poss3PP

Surface: guş00y guşy

31. H: i  C*VfrC +:0 C:@_

This rule states that H vowel of the suffix with an open syllable is realized as i

only when the word consists of one syllable with a front round vowel.

Lexical: göz + sH eye + Poss3PS

Surface: göz00i gözi

Lexical: kül + nH ash + Acc

Surface: kül00i küli

32. H: u  C*VbrC +:0 C*_C

This rule deals with the words consisting of one syllable with a back round

vowel and the suffixes with one closed syllable. When this condition is

satisfied, the lexical H of the suffix is realized as u on the surface.

Lexical: kol + Hm arm + Poss1PS

Surface: kol0um kolum

Lexical: kub + nHň cube + Gen

Surface: kub00uň kubuň

33. H: ü  C*VfrC +:0 C*_ C

This rule states that a lexical H is realized as ü on the surface, when a suffix

with one closed syllable is affixed to a word with one syllable with a front

round vowel.

Lexical: öý + nHň house + Gen

Surface: öý0üň öýüň

Lexical: küý + Hm consideration + Poss1PS

Surface: küý0üm küýüm

34. y:u  C*VbrC*_ +:0 C

17

This rule deals with the case when a suffix starting with a consonant is affixed

to a word consisting of two syllables such that the first syllable contains a

back round vowel and the last syllable is open. In this case, if the word ends

with lexical y, it is realized as u on the surface.

Lexical: koly + ndA arm + Poss3PS + Loc

Surface: kolu0nda kolunda

Lexical: ruhy + nH soul + Poss3PS + Acc

Surface: ruhu0ny ruhuny

35. i:ü  C*VfrC*_ +:0 C

This rule deals with the case when a suffix starting with a consonant is affixed

to a word consisting of two syllables such that the first syllable contains a

front round vowel and the last syllable is open. In this case, if the word ends

with lexical i, it is realized as ü on the surface.

Lexical: gözi + nH eye + Poss3PS + Acc

Surface: gözü0ni gözüni

Lexical: küýi + ndA consideration + Poss3PS + Loc

Surface: küýü0nde küýünde

36. H:y  C*VbC*VbC +:0 C*_C

This rule deals with a word consisting of more than one syllable and the last

two syllables contain a back vowel. Moreover, the last syllable of the word

should be closed. When a suffix affixed to such a word, its lexical H is

realized as y on the surface.

Lexical: gonşum + nH neighbour + Poss1PS + Acc

Surface: gonşum00y gonşumy

Lexical: darak + Hm comb + Poss1PS

Surface: darag0ym daragym

37. H:i  C*VfC*VfC +:0 C*_C

This rule deals with a word consisting of more than one syllable and the last

two syllables contain a front vowel. Moreover, the last syllable of the word

should be closed. When a suffix affixed to such a word, its lexical H is

realized as i on the surface.

Lexical: enek + Hň cow + Poss2PS

Surface: enegiň enegiň

Lexical: mekdeb + Hm school + Poss1PS

18

Surface: mekdebim mekdebim

38. A:a  C*VbC* +:0 C*_C

This rule states that the lexical A of a suffix is realized as surface a when the

vowel preceding it is a back vowel.

Lexical: kolun + dA arm + Poss2PS + Loc

Surface: kolunda kolunda

Lexical: oba + dAn village + Abl

Surface: obadan obadan

39. A:e  C*VfC* +:0 C*_C

This rule states that the lexical A of a suffix is realized as surface e when the

vowel preceding it is a front vowel.

Lexical: gözün + dA eye + Poss2PS + Loc

Surface: gözün0de gözünde

Lexical: öý + dA house + Loc

Surface: öý0de öýde

40. Ä:a  C*VbC +:0 C_C

The lexical Ä is realized on the surface as a when the last vowel of a word is a

back vowel.

Lexical: gara + ýÄr to look + PreSim

Surface: gara0ýar garaýar

Lexical: dur + mÄn eken to stand + NegPastIndInf

Surface: dur0man eken durman eken

41. Ä:ä  C*VfC* +:0 C_C

The lexical Ä is realized on the surface as ä when the last vowel of a word is a

front vowel.

Lexical: bil + ýÄ to know + PreSim + Agr3PS

Surface: bil0ýä bilýä

Lexical: söý + mÄn eken to like + NegPastIndInf

Surface: söý0män eken söýmän eken

19

3.3 TURKMEN MORPHOTACTICS

The finite state automaton defines the lexical representation of the word as

discussed previously. In addition, it specifies the order in which the morphemes can be

affixed to a word. So, the structure of the word can be restricted. The finite state

automaton for the nominal words is presented in the Figure 3.2. The finite state

automaton for the verbs is defined in similar way and presented in Figure 3.3 and 3.4. In

Turkmen language adverb, adjectives and pronouns take all inflectional suffixes the

nouns take therefore the finite state automaton defined for the nouns can be reused for

adverbs, adjectives, and pronouns.

The finite state automaton’s entry point so called initial state is defined by the

thick-bordered rectangle shown in the Figure 3.2. Internal states have regular normal

borders. They can be a solution for the generation of the word’s lexical representation.

The states that have double line border are called end states and they also can be treated

as a solution. The nodes with dotted-border are not treated as a solution; even thought

they can appear in the sequence of the morphemes. The reason for defining such node is

the specific aspects of Turkmen language. For example, öýleriň and öýleň have the

same meaning (your villages), but the word öýle is meaningless in Turkmen.

The finite state automaton was defined in such a way that it could not only

translate the word from surface to lexical level, but determine the structure and the

ordering of the morphemes. Therefore the surface word with incorrect order of the

morphemes will be rejected. For example, the possessive suffixes are not acceptable

after the accusative case in Turkish; as a result the Turkish word with incorrect order

kitabıyım will be rejected by the morphological analyzer. On the other hand, the

correctly ordered word kitabımı will be accepted. The examples provided below will

clarify the main ides of word construction.

The nominal for word düýeleriňdäki can be constructed as follows.

düýe +lAr +Hň +ndA +kH

düýe +ler +iň +0dä +ki

things on your camels

The states passed to generate the word are

1. Noun (root)

20

Noun

Possesive
2nd Person

Single

Possesive
3rd Person

Single

Possesive
1st Person

Plural

Possesive
2nd Person

Plural

Possesive
3rd Person

Plural

Possesive
1st Person

Single

Plural

+lAr,+0

+Hm +Hň +sH +HmHz +HňHz +sH

Genitive Ablative Locative Dative
Instrumental-

comitative
Accusative

+ÇA, +0

+0 bilen +nHň +nÄ +nH

+kH

+kH +mH

+mH

Present Present
Negative

Agreement

+dHr +0 däldir

+Hn, +sHň,
+0, +Hs,
+sHňHz, +lAr

+mH

Past Definite
Past Definite

Negative
Past Indefinite

Past Indefinite
Negative

+0 däldi

+dH +Hm, +Hň,
+0, +k,
+ňHz, +lAr

+mHş +0 dälmiş

+Hn, +Hň, +0,
+HmHz, +Hk,
+HňHz, +lAr

Verb

+rgA, +rA,+Ä, +Är, +jAr, +jHrA, +dA,
+GAr, +GHr, +k, +lÄ, +SA, +SHrA

+jagaz,+Hstan, +jAk, +keş, +jHk, +SA,
+dAş, +ÇA, +ÇH, +dH, +lHk, +ÇHl

Relative

+mH

+0 bilen

+nHň +ndAn +ndA +nÄ +nH

Ki
+kH

Adjective

+jA, +rÄk

+jAň, +jHmAk, +ÇHl, +dar, +hor, +dAş, +kH, +lAk,
+lH, +mAn, +SHz, +SÖv, +jAk, +GäR, +HnjH

Adverb

+lAýHn

+HnjH, +mtHl, +mtHk, +jHk, +SH

+Al, +Är, +jAr,
+l, +rgA, Hk

Past Definite
Negative
Question

+0 dälmidi

Question

+dH

+mH

+0 eken +0 däl eken

+Hm, +Hň,
+0, +Hk,
+HňHz, +lAr

Adverb

Question

+ndAn +ndA

Question

+mH

+mH

Temporal
Adverb

Plural

+lA

+lA

+ň

+ň

+Hm, +Hň, +H,
+HmHz, +HňHz, +lArH

Temporal
Adverb

Temporal
Adverb

Negative

+0 wagt

+0 däl wagt

+0 kÄ

Past Indefinite
Past Indefinite

Negative

Agrement

Pronoun

Proper
Noun

+lA

+lAr,+0

Figure 3.2: The finite state automaton for nominal morphology.

21

Verb Stem

Negative

Definite Past

Agreement
Question

+mH +m, +ň, +0,
+k, +ňHz,
+lAr

+dH

+dH

+mA

Noun Stem

+AlA, +AňkHrlA, +Ar, +dAr, +dHr, +Hr,
+Hl, +mAlA, +Hn, +Hş, +Ht, +Hz

+A, +gHt, +vÜk, +Aç, +H, +Avul, +HjH, +Avaç, +Ak,
+HndH, +AlgA, +ýHş, +AnAk, +Hm, +jA, +mA, +mAç,

+ç, +mAk, +dAjH, +maça, +g, +mHk, +gA, +mHt,
+gAn, +Hn, +gH, +Ht, +gHç, +Üv, +gHn, +Hk

Adjective
Stem

+AgAn, +gHn, +gHr, +jAň, +gH, +Hk,
+gAn, +HjH, +gAk, +mA, +Hç, +ArmAn,

+mAzAk, +vÜk, +Ak, +mHk, +mAçAbility
+mA

+Hp bil

+jAk, +mAjAk

Geçmiş Zaman
Sıfat-Fiili

Şimdiki Zaman
Sıfat-Fiili

Geniş Zaman
Sıfat-Fiili

Gelecek
Zaman Sıfat-

Fiili

+Än, +mAdHk

+ýÄn, +mAýÄn

+Ar, +mAz

Adverb Stem

+AgAdA, +AlH, +AndA, +dHkçA,
+HnçA, +Hp, +mÄn, +ýÄnçÄ

Indefinite Past
Negative
Question

+HpdHr

+HpmHdHr

+mÄndHr

+mÄnmHdHr

+Hn, +SHň, +0,
+Hs, +SHňHz, +lArIndefinite Past

+mHş, +Än

+0, +lAr

Agreement

Indefinite Past

Indefinite Past
Question

Indefinite Past
Negative

+m, +ň, +0, +k,
+ňHz, +lAr

+HpdH

+HpmHdH

+mÄndH

+mÄnmHdH

+HpmHş, +ÄnmHş

+mÄnmHş, +Än dälmiş

+Hm, +Hň, +0,
+Hn, +Hk, +HňHz,
+Hn, +HnlAr

+Hm, +Hň,
+0, +H,
+Hk,
+HmHz,
+HňHz, +lAr

+Än eken

+mÄn eken, +mAdHk eken

+m, +ň, +0,
+k, +ňHz,
+lAr+Än bolsa

+mAdHk bolsa

Indefinite Past
Past

Indefinite Past
Past Negative

Indefinite Past
Past Question

Indefinite Past Past
Negative Question

+m, +ň, +0,
+k, +ňHz,
+lAr

Indefinite Past
Inferential Negative

Indefinite Past
Inferential

Indefinite Past
Inferential Negative

Indefinite Past
Inferential

Indefinite Past
Conditional Negative

Indefinite Past
Conditional

Present Agreement
1st Person Single

+Änoklar

+Äňzok

+Ämzok

+Änok

+Äňok

+Ämok

+ýÄ

+ýÄr

+Hp dur,
+Hp otyr,
+Hp ýatyr,
+Hp ýör

+dH

+dH +mH

+mHş

+0 eken

+Hn, +SHň,
+0, +Hs,
+SHňHz, +lAr

+n, +ň, +0, +s,
+ňHz, +lAr

+m, +ň,
+0, +k,
+ňHz,
+lAr

+Hm, +Hň, +HňHz, +0, +Hn,
+Hk, +HňHz, +lAr, +HnlAr

+Hm, +Hň, +0, +H, +Hk,
+HmHz, +HňHz, +lAr

+m, +ň
+0, +k,
+ňHz, +lAr

Present

Present

Present

Present Agreement
2nd Person Single

Present Agreement
3rd Person Single

Present Agreement
1st Person Plural

Present Agreement
2nd Person Plural

Present Agreement
3rd Person Plural

Question

+mH

Present Past

Present Inferential

Question
Present Past

Question

Present Inferential

Subjunctive
+mAkçH

Subjunctive
Negative

Subjunctive Inferential

+0 däl

Subjunctive Inferential

+mHş

+0 eken

+Hm, +Hň, +HňHz, +0, +Hn,
+Hk, +HňHz, +lAr, +HnlAr

+mH

+Hm, +Hň, +HňHz, +0, +H,
+Hk, +HmHz, +HňHz, +lAr

Imperative Agreement
1st Person Single

Imperative Agreement
3rd Person Single

Imperative Agreement
1st Person Plural

Imperative Agreement
3rd Person Plural

+ÄýHn

+SHn

+SHnlAr

+ÄlHň, ÄlH

Negative
+mA

Imperative
Agreement
2nd Person

Plural

Imperative
Agreement
2nd Person

Single

+gHn, +0

+gHn, +0

+Hň

+Hň

Figure 3.3: The finite state automaton for verb morphology.

22

Figure 3.4: The finite state automaton for verb morphology (cont).

23

2. Plural with +lAr

3. Possessive 2nd Person Single with +Hň

4. Locative with +ndA

5. Relative with +kH

The verb for word görmeýär ekenim can be constructed as follows

gör +mA +ýÄr +0 eken +Hm

gör +me + ýär + eken +im

see +Neg +PreCon +Infer +Agr1PS

The states passed to generate the word are

1. Verb (root)

2. Negative with +mA

3. Present with + ýÄr

4. Present Inferential with +0 eken

5. Agreement with +Hm

The Turkish and Turkmen languages are both agglutinative languages as stated

before, but they have developed independently despite they are from the same family.

The Turkmen language has some differences concerning the affixation of suffixes. The

person agreement suffixes are affixed to the obligatory and intentional forms of verb in

Turkish, but the pronoun and obligatory and intentional forms of verb combination is

used to obtain the same result in Turkmen. In addition, the order of some suffixes

affixed to word in Turkish can be different for Turkmen. One such example is the

question suffix. Moreover, the copulatives used in Turkish have no corresponding

copulatives in the Turkmen. The ki copulative of Turkish is one of such example. And

finally, there are the tenses in Turkish which have no corresponding tense in Turkmen.

The list of tenses for Turkish and Turkmen are listed in the Table 2.4. The +/- sign

specifies the presence/absence of tense.

When a tense which has no equivalent in the other language, then the

meaningfully most similar tense was chosen. These tenses are given in Table 2.5.

However, some of the tenses are presented by lexical suffixes, which are decided after

asking the native speakers of the Turkmen language.

24

Table 3.1: Tenses in Turkish and Turkmen

Tense Turkish Turkmen
Present Simple + +
Past Simple (Past Indefinite) + +
Aorist Simple + +
Future Indefinite + +
Past Definite + +
Conditional Form + +
Obligatory Form + +
Imperative Form + +
Subjunctive Form + +
Past Indefinite Past + +
Past Definite Past + -
Present Past + +
Future Past + +
Aorist Past + +
Conditional Past + +
Past Obligatory Form + +
Subjunctive Past Form + -
Past Indefinite Inferential + +
Present Inferential + +
Future Inferential + +
Aorist Inferential + +
Conditional Inferential + -
Inferential Obligatory Form + +
Subjunctive Inferential Form + +
Past Indefinite Conditional + +
Past Definite Conditional + -
Present Conditional + -
Future Conditional + +
Aorist Conditional + +
Obligatory Conditional Form + -

Table 3.2: The tenses in Turkmen without a match in Turkish.

Verb State for Turkish Corresponding Verb State for Turkmen
Past Definite Past Past Indefinite Past
Subjunctive Past Form Conditional Past
Past Definite Conditional Conditional Past
Present Conditional + ýÄ + Än bolsa
Obligatory Conditional Form + mAlH + 0 bolsa

The implementation of two-level rules and the finite state automaton of the

morphological analyzer discussed in the next chapter.

25

CHAPTER 4

TRANSLATION FRAMEWORK

The translation framework consists of sentence tokenizer, multi word tokenizer,

source language morphological analyzer and target language generator components. The

interaction between those components is presented on the Figure 4.1. The framework

was designed for agglutinative languages.

Figure 4.1: Components of the translation mechanism

4.1 SENTENCE TOKENIZER

The sentence tokenizer is responsible to split a given text into paragraphs and

sentences. The paragraph is identified by the new line character. After paragraphs are

identified by the system, each paragraph is splitted into sentences. The sentence is

identified using punctuation marks, such as ., ;. !, : and ?.

26

4.2 MULTI WORD TOKENIZER

The Turkic languages are closely related. However some of the words in one

language are represented by a phrase in the other. Especially, it concerns the tenses. For

example, the word in Past Indefinite Inferential for the Turkmen has the surface

representation gelen eken, but in Turkish it is gelmişmiş. The multiword tokenizer is

responsible for splitting a given text into the phrases or words which correspond to the

word in the target language. To achieve this goal, the multiword - tokenizer splits each

sentence into words. During the division process the words and punctuation marks are

stored in a list. So, each sentence is represented by list of words and punctuation marks.

After that, the multiword tokenizer groups the words. The grouping process is achieved

by taking each word in the list and joining all the words in the list before a punctuation

mark. Then the generated group is passed to the morphological analyzer. If the

morphological analyzer fails to parse a given group of words, the number of words in

the word group is decreased by one. This process continues till the number of words in a

group is one. For example:

The main disadvantage of such approach is the possibility, that two words that

should be treated separately could come together and match the morpheme from the list.

To handle such situation, the words that satisfied the match should be also passed to the

Sentence: Howa sergindi, ýektaý dony hem çykaraýasyň gelip durdy.

List of words and punctuation marks: ‘Howa’, ‘sergindi’, ‘,’, ‘ýektaý’, ‘dony’, ‘hem’,

‘çykaraýasyň’, ‘gelip’, ‘durdy’, ‘.’.

Group of words for word ‘Howa’: <Howa sergindi>,<Howa>.

Group of words for word ‘sergindi’:<sergindi>.

Group of words for word ‘ýektaý’: <ýektaý dony hem çykaraýasyň gelip durdy>, <ýektaý dony

hem çykaraýasyň gelip>, <ýektaý dony hem>, <ýektaý dony>, <ýektaý>.

Group of words for word ‘dony’: <dony hem çykaraýasyň gelip durdy>, <dony hem çykaraýasyň

gelip>, <dony hem çykaraýasyň>, <dony hem>, <dony>.

Group of words for word ‘hem’: <hem çykaraýasyň gelip durdy>, <hem çykaraýasyň gelip>, <hem

çykaraýasyň>, <hem>.

Group of words for word ‘çykaraýasyň’: <çykaraýasyň gelip durdy>, <çykaraýasyň gelip>,

<çykaraýasyň>.

Group of words for word ‘gelip’: <gelip durdy>, <gelip>.

Group of words for word ‘durdy’: <durdy>.

27

morphological analyzer separately. In any case, the words that are not satisfying

morpheme ordering and structure will be rejected by the morphological analyzer.

 4.3 MORPHOLOGICAL ANALYSIS AND AMBIGUITY

The source language morphological analyzer component is responsible for taking

a word or phrase in its surface representation and outputting the word or phrase in its

lexical representation. In addition, list of mapId’s of the nodes visited during the

obtaining of lexical representation for the word is provided to the word generator. The

mapId is a number used for mapping between source node and destination node. For

example, if value of mapId for source node with name noun is one then the value for

destination node with name noun should be one.

The root dictionary is a must for the morphological analyzer. Two lookup

dictionaries were used, one for Turkish, and the other for the Turkmen. Every row of the

dictionary stores word root, word lexical root, the type of the word root, and the

language the word belongs to. Using these dictionaries the morphological analyzer

determines the root for the analyzing word. Each root from the dictionary is compared

with a word being analyzed. If that word starts with any root from the dictionary then

the root is said to be a possible solution for the analysis. After that the finite state

automaton is traversed. During that traversing the suffixes used during movement from

one node to another are affixed to the candidate root. After each movement the

generated lexical form is converted to surface form and the word wished to be analyzed

is checked to start with word surface form. If the word doesn’t start with surface form of

the word the node is ignored. The traversing continues until all nodes are traversed or

all generated surface forms are mismatch the beginning of the word being analyzed.

A sample result of Turkish gülseydim word parsing is given in Figure 4.2. Map

path is the list of mapIds. The maximal stem is the stem obtained by affixing

derivational suffixes.

28

Figure 4.2: A sample parsing for Turkish word gülseydim

The morphologic analyzer has capability of returning the parsed word, the list of

mapIds, a list of suffixes in lexical form, the root and its part of speech, and maximal

stem and its part of speech. The maximal stem is the same as the root in this situation.

However, the maximal stem and its part of speech can change when the derivational

suffixes are used.

In Turkish language some words have more than one meaning. For example, yüz

(face, swim [imperative form], one hundred) can be treated as a nominal noun or a verb.

As a result, there is not a single lexical form for the word. In addition, some orders of

suffixes are realized equally on the surface, causing more than one lexical

representation of the word. Therefore, the morphological analyzer can produce more

than one lexical representation for a word. For example, hastalık (illness) is represented

as hasta + lHk (+Noun) and hasta + lH + Hk (+Noun+Verb) on lexical level. However,

some of the representations which have no corresponding mapping are eliminated by

the target language word generator.

4.4 MORPHOLOGIC GENERATOR

Morphologic generator generates the surface form of a word from lexical form.

The generator have internal module used to translate the stem of source language to the

stem of target language. However, not the root of the word, but maximal stem is

translated, since it is difficult to create relation between derivational suffixes.

The stem dictionary represented as a table which has the following fields: id, word

stem, word stem’s speech part, and word language. The id field is a primary key for the

1st Person Single: gül + SA + yDH + m
Map Path: 3~81~106~94
Suffixes used for lexical level
SA
yDH
m
Root: gül
Root’s Part of Speech: verb
Maximal Stem: gül
Maximal Stem’s Part of Speech: verb

29

table. For example, the word gül(laugh) is stored as 1, gül, verb, Turkish. Another, row

from the same table is 2, gül(laugh), verb, Turkmen. The translations between those

words are stored in second table which has the following fields: id, source id,

destination id, and order of the stem. The source and destination ids are referenced to

the stem dictionary table’s id. Using this table one source stem can be related to more

than one destination stem. The order of stem field specifies primary and secondary

orders of translation stems.

The morphologic generator uses map ids referring to states of the morphological

analyzer’s finite state automaton. When a word is passed from one state to another state

the map ids are combined in a list. The system then takes this list and uses it to generate

a word by passing the list of map ids and a translated stem to the morphological

analyzer of the target language. However, Turkmen and Turkish languages have

differences in terms of lexical structures. Therefore, the generated list of map ids in

Turkmen is different from that in Turkish. To deal with such differences a map

translator was introduced. It takes a map ids list of source language and returns the map

ids list or map ids lists of the destination language. Therefore the translation of a given

word can have more than one result. For example, the word gülseydim (if I laughed) in

Turkish, have two translations in Turkmen: gülsedim and gülsemdim.

The current translation mechanism is designed to take a sentence and translate

words or group of words, the syntactical structure is not taken into account. Due to this

some translated sentences may be meaningless. In addition, a word can have many

translations, since there is no way to resolve meaning of the word. An example for this

is Turkmen word abadan, which can be translated as durgun(calm), geçimli(easygoing),

or babadan(from father), dededen(from grandfather). First two words are translations

for stem abadan, but last two are translations for stem aba taking ablative inflection

suffix.

30

CHAPTER 5

IMPLEMENTATION

5.1 MORPHOLOGIC ANALYZER

The software for morphologic analyzer and translator was developed in Java. The

web page interface was implemented with Java Server Page technology. The

morphotactics and morphotactic rules for Turkmen and Turkish were defined in xml

files. This approach was used because of flexibility of XML. Later on, same xml

schema can be used for other languages without making any changes to the software.

5.2 XML SCHEMA FOR MORPHOTACTICS

The DTD for morphologic analyzer’s finite state machine is given in Figure 5.1.

Figure 5.1: The DTD for the finite state automaton of the morphological analyzer

The DTD starts with the element called finiteStateMachine, which can include

only one element called states. In addition, the finiteStateMachine element has an

attribute called language, which specifies what language the morphological analyzer

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT finiteStateMachine (states)>
<!ELEMENT states (state+)>
<!ELEMENT state (name, action*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT action (suffix+)>
<!ELEMENT suffix (#PCDATA)>
<!ATTLIST state type (initialState | middleState | endState) #REQUIRED stateId ID

#REQUIRED rootType (noun | verb | adverb | adjective | pronoun| proper noun)
#IMPLIED mapId CDATA #REQUIRED isNotSolution (Y) #IMPLIED>

<!ATTLIST finiteStateMachine language (Turkish | Turkmen | Kyrgyz | Uzbek | Kazakh |
Azerbaijani) #REQUIRED>

<!ATTLIST action resultStateId IDREF #REQUIRED>

31

was defined for. The states element can have one or more elements called state. Each of

the state elements has a name element and zero or more action elements. The action

element specifies the states to which the owner of the action leads to. The state element

has a set of attributes. The first one is the type, which defines the kind of the state. The

values it can take are initialState, middleState, or endState. The type attribute is

required. The next attribute is stateId, which defines a unique state id. Another attribute

for the state element is called rootType, which is optional and should appear within the

element whenever the type attribute’s value is initialState. The values for the rootType

attribute are noun, verb, adverb, and adjective. The state element has mapId required

attribute, which is used for the mapping between two different finite state automata of

morphological analyzers. The last attribute that the state element can have is the

isNotSolution attribute, which have the only one possible value Y meaning yes. That

attribute has to appear at the states generating a lexical word with no meaning on the

surface. The action element can have one or more suffix elements. The attribute it takes

is resultStateId. This attribute’s value specifies the state action leads to. The value for

the suffix element is the lexical representation of the suffix morpheme. An example for

the xml structure provided by the DTD is shown in Figure 5.2. The graphical

representation for the example is given in Figure 5.3.

Figure 5.2: A simple xml representation for finite state automaton.

The finite state automaton presented in the Figure 5.3 consists of two states. The

name for the first state is Nominal Root, and the name for the second state is Plural.

Each of the states has one action; the first state’s action leads to the second state, and the

<finiteStateMachine language="Turkish">
<states>

<state type="initialState" stateId="s-1" rootType="noun" mapId="1">
<name> Nominal Root</name>
<action resultStateId="s-2">

<suffix>lAr</suffix>
</action>

</state>
<state type="middleState" stateId="s-2" mapId="2">

<name>Plural</name>
<action resultStateId="s-1">

<suffix>lH</suffix>
<suffix>SHz</suffix>

</action>
</state>

</states>
</finiteStateMachine>

32

second state’s action leads to the first state. In addition, the first state is an initial state

and the root types it accepts are nouns, therefore it is an entry point for the finite state

machine. So the lexical representations of the word that can be generated are word root

+ lAr, word root + lAr + lH, and word root + lAr + SHz.

Figure 5.3: A graphical representation for finite state automaton.

5.3 XML SCHEMA FOR MORPHOTACTIC RULES

The DTD for two – level rules given in Figure 5.4 is a bit more complicated than

that of morphotactics.

The DTD starts with element named rules which can have element called letters

followed by one or more elements called rule. The rules element has an attribute called

language, which is required and specifies the language the rules were defined for. The

letters element consists of one or more elements called consonant, which is followed by

one or more elements called vowel. The vowel element can be followed by the elements

called conversion. The consonant element defines the consonant letters available for the

language. The vowel element defines the vowel letters for the language. The conversion

element is defining conversion for the letters. It has two attributes called from and to,

and specifying that value of from attribute is substituted with value of to attribute. There

are cases when the last letter of the word is changing when a suffix is affixed. The

conversion element is introduced to deal with such situations. An example for such case

is Turkmen word düýä (camal + Dat). The root for this word is düýe. The root of first

word is hidden since the roots last letter is dropped when a dative suffix taken. So using,

the values of conversion element the last letter of the word can be replaced. In this case,

ä with e, as a result the words will match.

The rest of DTD is explained using the examples bellow, since it is better to

understand from examples than from writing.

33

Figure 5.4: The DTD for the two – level rules of morphological analyzer.

An XML for orthographic rule V:0  _ + H:@yor (Oflazer, 1994) is shown in

Figure 5.5.

Figure 5.5: XML representation for V:0  _ + H:@yor rule.

From rule’s attribute order it can be clear that the rule should be applied in third

order. There is a condition which checks that the suffix is Hyor and word ends with a

<rule order="3">
<condition>

<expression operator="equals" operandOne="suffix" operandTwo="Hyor"/>
<expression operator="endsWith" operandOne="word" operandTwo="vowel"/>
<operator>AND</operator>

</condition>
<statement operator="deleteLastChar" operandOne="word"/>

</rule>

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT rules (letters, rule+)>
<!ATTLIST rules language (Turkish | Turkmen | Kyrgyz | Uzbek | Kazakh | Azerbaijani)

#REQUIRED>
<!ELEMENT letters (consonant+, vowel+, conversion*)>
<!ELEMENT consonant EMPTY>
<!ATTLIST consonant char CDATA #REQUIRED>
<!ELEMENT vowel EMPTY>
<!ATTLIST vowel char CDATA #REQUIRED>
<!ELEMENT conversion EMPTY>
<!ATTLIST conversion from CDATA #REQUIRED>
<!ATTLIST conversion to CDATA #REQUIRED>
 <!ELEMENT rule (((condition, statement+) | (condition, statement+, otherwise+) | statement+) |

for-each)>
 <!ATTLIST rule order CDATA #REQUIRED>
<!ELEMENT condition ((expressionGroup) | (expression) | (expressionGroup?, expression+,

operator))>
<!ELEMENT for-each (((condition, statement+) | (condition, statement+, otherwise+) |

statement+)+)>
<!ATTLIST for-each select (suffixVowelLetter) #REQUIRED>
<!ELEMENT expressionGroup (expressionGroup?, expression+, operator?)>
<!ELEMENT expression EMPTY>
<!ATTLIST expression
operator (equals | not_equals | endsWith | contains | startsWith | not_endsWith | preLastCharEquals

| lastVowelEquals | previousVowelEquals | firstVowelEquals | vowelCountEquals |
preLastVowelEquals | isFirst | vowelCountNotEquals | secondCharIs) #REQUIRED
operandOne (word | suffix | suffixLetter | wordLetter) #REQUIRED

operandTwo CDATA #REQUIRED>
<!ELEMENT operator (#PCDATA)>
<!ELEMENT statement EMPTY>
<!ATTLIST statement operator (replace | deleteLastChar | deleteFirstChar | addToEnd)

#REQUIRED oldPattern CDATA #IMPLIED newPattern CDATA #IMPLIED flag
(firstOccurrence | lastOccurrence | All) #IMPLIED operandOne (word | suffix | suffixLetter
| wordLetter) #REQUIRED operandTwo CDATA #IMPLIED>

<!ELEMENT otherwise (condition?, statement+)>

34

vowel. If the conditions a satisfied then the last letter of the word is deleted before

affixation.

An XML for orthographic rule V:0  $:0_C +:0 @:0V:@ (Oflazer, 1994) is

shown in Figure 5.6.

Figure 5.6: XML representation for V:0  $:0_C +:0 @:0V:@ rule.

The XML representation states that $. characters are deleted when the word have

a $ symbol and suffix starts with a vowel. Dot means any character. However, if the

conditions are not satisfied the word is checked for containing $ symbol and suffix is

checked for starting with a consonant. If the condition is satisfied the $ symbol is

deleted.

The next example is related to the application of a rule repeatedly. The reason for

such need is appearance of suffixes which consist of two or more syllables. An example

for such suffix is mAktA. Therefore, each vowel should be processed separately. The

XML representation for rule A:a  V:Vb‘:’*C*@:0* + :0*_ (Oflazer, 1994) is shown

in Figure 5.7

The vowels in suffix are checked repeatedly by introducing for-each element and

providing a suffixVowelLetter value to its select attribute. So, each vowel is processed

one by one. Firstly, the previous, according to processed one, vowel is checked using

first condition. If the checked vowel is the first in the suffix then the second condition is

used to check last vowel of the word.

<rule order="4">
<condition>

<expression operator="contains" operandOne="word" operandTwo="$"/>
<expression operator="startsWith" operandOne="suffix" operandTwo="vowel"/>
<operator>AND</operator>

</condition>
<statement operator="replace" operandOne="word" oldPattern="$." newPattern=""

flag="lastOccurrence"/>
<otherwise>

<condition>
<expression operator="contains" operandOne="word" operandTwo="$"/>
<expression operator="startsWith" operandOne="suffix" operandTwo="consonant"/>
<operator>AND</operator>

</condition>
<statement operator="replace" operandOne="word" oldPattern="$" newPattern=""

flag="lastOccurrence"/>
</otherwise>

</rule>

35

Figure 5.7: XML representation for A:a  V:Vb‘:’*C*@:0* + :0*_ rule.

5.4 IMPLEMENTATION OF MORPHOTACTIC RULES

The finite state automaton for the morphological analyzer is represented as a

directed graph. Each edge of the graph has a list of suffixes. The vertexes of the graph

are stored in the list. Therefore they can be visited one by one. In addition, they can be

visited using the edges. When the graph is traversed the lexical form of the word is

generated. The generation is achieved by passing the word root into the initial state.

Starting from that state each of the suffixes located on the edge is added to the word.

For example, if the edge has two suffixes, two lexical representations will be generated

for each word from the outgoing vertex. Those words are passed to the vertex, to which

the edge leads. The traversing of the tree is done using the breath first search algorithm.

The pseudo code for the generation of the lexical word representation is given in Figure

5.8.

<rule order="17">
<for-each select="suffixVowelLetter">

<condition>
<expressionGroup>

<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="a"/>

<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="ı"/>

<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="o"/>

<expression operator="previousVowelEquals" operandOne="suffixLetter"
operandTwo="u"/>

<operator>OR</operator>
</expressionGroup>
<expression operator="equals" operandOne="suffixLetter" operandTwo="A"/>
<operator>AND</operator>

</condition>
<statement operator="replace" operandOne="suffixLetter" oldPattern="A" newPattern="a"/>
<condition>

<expressionGroup>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="a"/>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="ı"/>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="o"/>
<expression operator="lastVowelEquals" operandOne="word" operandTwo="u"/>
<operator>OR</operator>

</expressionGroup>
<expression operator="equals" operandOne="suffixLetter" operandTwo="A"/>
<operator>AND</operator>

</condition>
<statement operator="replace" operandOne="suffixLetter" oldPattern="A" newPattern="a"/>

</for-each>
</rule>

36

Figure 5.8: The pseudo code for the function used to parse a surface word.

Dictionary is the list containing the structure, which has two elements: the lexical

root and a lexical root’s part of speech. SolutionCandidates is the list of the candidates

to be a solution. NodeList is the list of the nodes of the finite state automaton for the

morphological analyzer. The solution is a global variable and filled by the traverse

function. The function actually takes a word and tries to match it with the one in the

root dictionary. The root from the root dictionary is said to match the comparison word

if the comparison word begins with the root from the dictionary. All located words are

candidates for the solution. After that, the initial node, whose speech part the same with

the speech part of candidate root, and the candidate root are passed to the traverse

function. The pseudo code for traverse function is given in Figure 5.9.

Figure 5.9: The pseudo code for traverse function.

Input: state, wordToParse
Output: N/A
function traverse

if state.stateType != ‘endState’ then
k ← 0
for i ← 0 to sizeof(state.actions) do

processedStates[k] ← state.getNextState(wordToParse)
k ← k +1

k ← 0
for i ← 0 to sizeof(processedStates) do

if sizeof(processedState[i].candidates) > 0 then
NextStates[k] ← processedState[i]
if getSolutionSetSize() > 0 then

solution.add(processedState[i])
k ← k + 1

for i ← 0 to sizeof(NextStates) do
for j ← sizeof(NextStates [i].candidates) do

NextStates [i].candidate[j].wordList ← NextStates [i].wordList
traverse(NextStates[i], wordToParse)

Input: wordToParse
Output: list of word lexical representations
function parseWord

Dictionary←get all roots from dictionary
for i ← 0 to sizeof(Dictionary) do

j ← 0
if wordToParse starts with Dictionary[i].lexicalRoot then

SolutionCanditates[j].lexicalRoot ← Dictionary[i].lexicalRoot
SolutionCanditates[j].rootType ← Dictionary[i].rootType
j ← j + 1

for i ← 0 to sizeof(SolutionCanditates) do
for j ← 0 to sizeof(NodeList) do

if NodeList[j].stateType = ‘initialState’ AND NodeList [j].rootType =
SolutionCanditates [i].rootType then
traverse(NodeList [j], wordToParse)

return solution

37

The traverse function is recursive function which returns when the passed state is

an end state or the list of the states that can be processed is empty. The function takes a

state node and evaluates each child. The number of children is defined by number of

actions for state node. The evaluation of each child is achieved by calling getNextState

function. The getNextState function is calling the NextState function of the action

object. The pseudo code for the NextState function of the state is given in Figure 5.10.

The getNextState function returns the state, which is stored in the processedStates list.

Each element of this list has a list of candidates or list of solutions. The state whose

candidates list is not empty is added to the NextStates list and those whose solutions list

is not empty are added to the solution list. Some nodes can be child of themselves. An

example is the node named noun in Figure 3.2. In addition, some morphemes consist of

one vowel which is deleted on the surface in certain situations. As a result, in these

circumstances the traverse function will fall in endless loop. To avoid those loops the

number of repeatable same morphemes is limited. Each element of NextStates points to

the state to be processed next, but this state has no information about candidate words.

Therefore the list of candidate words is copied to the state list of words. And then, each

element of the NextStates list is passed to traverse function with the word to be parsed.

The NextState function in Figure 5.10 is used to get the state that can be the

candidates or the solution for word lexical representation. First of all the lexical word

representations are generated by concatenating words from child state’s list of words

and each suffix from suffixes list. The suffixes list contains suffixes that are located on

the edge from parent vertex to child vertex. After that, the rules are applied and the sur-

Figure 5.10: The pseudo code for NextState function.

Input: wordToParse
Output: next state to process
function NextState

k ← 0
for i ← 0 to sizeof(suffixes) do

for j ← 0 to sizeof(childState.wordList) do
generatedWords[k] ← wordList[j] + ‘ + ’ + suffixes[i]
k ← k + 1

for i ← 0 to sizeof(generatedWords) do
surfaceWord ← applyRules(generatedWords[i])
if wordToParse starts with surfaceWord then

processedState.candidatesList.add(generatedWords[i])
if wordToParse = surfaceWord then

processedState.addSolution(generatedWords[i])
processedState.candidatesList.add(generatedWords[i])

return processedState

38

face word representation is obtained. The surface word form is compared with the word

to parse. If the word to parse starts with the surface word form then the lexical

representation of the word is added to the candidate list of the processedState structure.

This structure consists of such information as candidates list, solution list and pointer to

the state. If the word surface representation is the same with word to parse then the

word’s lexical representation is added to the list of solutions. When the list of generated

lexical word’s representations is processed the processedState is returned.

5.5 TRANSLATION SYSTEM

The translation is implemented outside of the morphological analyzer’s

implementation. It was implemented as a simple function which takes source language

morphological analyzer, destination language analyzer and word as parameters and

outputs the list of translations. The pseudo code for the function is given in the Figure

5.11.

Figure 5.11: The pseudo code for translation function.

Input: sourceLanguageAnalyzer, targetLanguageAnalyzer, word
Output: list of translations
function translate

listOfLexicalWords ← sourceLanguageAnalyzer.parseWord(word)
for i ← sizeof(listOfLexicalWords) do

maximalStem ← listOfLexicalWords[i].maximalStem
wordRoot ← listOfLexicalWords[i].wordRoot
stemType ← listOfLexicalWords[i].maximalStemType
if maximalStem = wordRoot then

mapPath ← listOfLexicalWords[i].mapPath
else

for j ← 0 to sizeof(listOfLexicalWords[i].suffixes) do
genWord ← applyRules(wordRoot,listOfLexicalWords[i].suffixes[j])
if maximalStem = genWord then

break
mapIds = split(wordRoot,listOfLexicalWords[i].mapPath,’~’) j ← j + 1

for k ← j to sizeof(mapIds) do
if k = j then

mapPath = mapIds[k]
else

mapPath ← mapPath + ‘~’ + mapIds[k]
listOfTranslatedStems ←

getTranslationFromDictionary(sourceLanguageAnalyzer.language,
targetLanguageAnalyzer.language, maximalStem, stemType)

for i ← 0 to sizeof(listOfTranslatedStems) do
translatedWords ← targetLanguageAnalyzer.getWordFromMapPath(

listOfTranslatedStems[i], mapPath, stemType)
for j ← 0 to sizeof(translatedWords) do

result.add(translatedWords[j])
return result

39

In translate function the word wished to be translated is firstly given to the

morphological analyzer of source language. The result from morphological analyzer is

the list of structures. Each structure consists of lexical word form, word root, word

speech part, word maximal stem, word maximal stem speech type, list of map ids, and a

list of suffixes. An example for the structure content is given in Figure 4.2.

After the word is parsed, the new list of map ids is created. This list is created by

taking last map id of derivational suffix and all following it map ids. The reason for

such approach is the difficulty to create relation between derivational suffixed of two

any language. After the list of map ids has been constructed the translation is looked up

in the dictionary. The resulting list of translation stems, list of map ids, and maximal

stem‘s speech are then passed to the getWordFromPath function of destination

analyzer. The getWordFromPath function is used to generate a word from the given

path. The result of the function is the list of generated words. The pseudo code for the

function is given in Figure 5.12.

In getWordFromPath function the first element of map ids list is used to

determine the entrance point to the morphological analyzer. This is achieved by visiting

each node of the morphological analyzer and comparing its map id with the first

element from the map ids list. In addition, type of node is checked for being initial state

and node’s speech part is checked to be the one passed to the function. If no of these

conditions is satisfied an empty list is returned. Once the conditions are satisfied such

information as state satisfied condition, word stem, and map id is stored in the structure

vState. The structure then added to the list of visited states.

For the rest of the element of the map ids list each element from visited states list

is processed. For each child, if any, of the visited state, the map id is compared with the

processed one. If the map ids match then the list of words for the visited state is

appended the suffixes of the child node and then rules are applied. After that the child

node is added to the visited states list. After that the states that were added from

previous loop but are not the solution for the problem are removed from the list of

visited states.

40

And finally, the list of words is copied to the result list from visited states’ word

list. During this operation the words lists are copied from states that are marked to be a

solution.

Figure 5.12: The pseudo code for getWordFromPath function.

Input: wordStem, mapPath, rootType
Output: the list of words generated from path
function getWordFromPath

mapIds ← split(mapPath, ‘~’)
for i ← 0 to sizeof(mapIds) do

if i = 0 then
for j ← 0 to sizeof(states) do //states is the list of state in the morphologicanalyzer

if states[j].mapId = mapIds[i] and states[j].stateType = ‘initialState’ and
states[j].rootType = rootType then
vState.state = states[j]
vState.words.add(wordStem)
vState.visitedPath = states[j].mapId
visitedStates.add(vState)

else
if sizeof(visitedStates) = 0 then

return empty
else

statesSize ← sizeof(visitedStates)
for j ← 0 to sizeof(visitedStates) do

state ← visitedStates[j].state
if state.stateType != ‘endState’ then

wordsSize ← sizeof(state.words)
for k ← 0 to sizeof(state.actions) do

action ← state.actions[k]
if action.resultingState.getType != ‘initialState’ then

if visitedStates[j].visitedPath != mapPath then
constructPath ← visitedStates[j].visitedPath + ‘~’ +

action. resultingState.mapId
if mapPath starts with constructedPath then

for m ← 0 to sizeof(action.suffixes) do
vState.state = action.resultingState
for n ← 0 to wordsSize do

state.words.add(applyRules(state.words[n],
action.suffixes[m]))

vState.wordStem = wordStem
vState.visitedPath = constructPath
visitedStates.add(vState)

k ← 0
for m ← 0 to statesSize do

if visitedStates[k].visitedPath != mapPath then
visitedStates.removeAt(k)

else
k ← k + 1

for i ← 0 to sizeof(visitedStates) do
//some nodes not accepted as a solution when they are located at the end of the chain
if visitedStates[i].visitedPath = mapPath and visitedStates[i].state.canBeSolution then

for j ← 0 to sizeof(visitedStates[i].words) do
resultList.add(visitedStates[i].words[j])

return words

41

5.6 SAMPLE TRANSLATION

A sample translation from Turkmen to Turkish is shown in Figure 5.13.

Figure 5.13: A sample for translation from Turkmen to Turkish.

The words that have more than one translation are shown in combo boxes such as

biz. The words that were not translated are followed by the possible reason for failure in

square brackets. There can be two possible reasons: one is no root meaning that

morphological analysis failed. The second is no stem meaning that translation dictionary

doesn’t have this stem.

42

CHAPTER 6

CONCLUSIONS

The machine translation is the one of the fundamental problems in Natural

Language Processing. It is a challenging task. However, the design of translators for

languages similar in terms of morphological, syntactical and lexical structures seems to

be relatively easier. A translation framework between Turkic languages was designed

and implemented in this study. The framework was used to implement Turkmen –

Turkish and Turkish – Turkmen translators.

A common approach used in morphological machine translation has three

components: the two–level morphological analyzer, stem translator and word generator.

The two–level morphological analyzer is used to get a word’s lexical form. The stem

translator uses the stems of the word’s lexical form as an input, and outputs a list of

stems for the target language. After that, the stems in target language are passed to the

word generator. The output of the word generator is a list of words in the target

language.

The morphotactics for Turkmen language was studied and orthographic rules for

Turkmen were written. After the design these rules were encoded in XML. And finally,

a two–level morphological analyzer was implemented in Java. The encoding of

morphotactics and orthographic rules into XML gives users unfamiliar with

programming ability to define morphotactics and orthographic rules for agglutinative

languages.

Initially the system was designed for two-way Turkmen-Turkish translation.

However, isolating morphotactics and orthographic rules from the system and storing

them in XML gave the system ability to work with other languages as long as their

morphotactics and orthography can be represented in the XML format set forth here.

43

The root dictionary is a must for two - level morphological analyzer. Two root

dictionaries were used, one for Turkish, and the other for the Turkmen. Current

dictionaries contain 14.888 word roots for Turkish and 10.349 word roots for Turkmen.

However, new roots can be added in the future thru the web interface. The words in the

dictionary are divided into eleven categories (part of speech). These are noun, adjective,

verb, compound noun, adverb, exclamation, proper noun, preposition, compound verb,

conjunction, and pronoun.

In initial testing, it was noticed that the words which should take inflectional

suffixes are also can be presented as root and a chain of derivational suffixes, therefore

producing unexpected results. For example, gelir (income) and gelir (he comes) have

same morphological representation gel + Hr. These cases will be dealt with in the

future.

The translation component is one of the important components of the system. It

consists of two stem dictionaries (lexicons). This component simply performs a lookup

on a target language stem and returns the corresponding list of destination language

stems. A web interface was designed to manage stem dictionaries.

The word generator component was implemented using the list of unique ids

referring to states of the morphological analyzer’s finite state automaton. Each state has

a unique id. When a word is passed from one state to another state the ids are combined

in a list. The system then takes this list and uses it to generate a word by passing the list

of ids and a translated - stem to the morphological analyzer of the target language.

Naturally Turkmen and Turkish languages have differences in terms of lexical

structures. Since, the generated list of ids in Turkmen was different from that in

Turkish. To deal with such differences a map translator was introduced. The differences

of such mappings were encoded into XML to provide flexibility to users. The map

translator takes a list of ids of source language and returns the one or more lists of ids

for the destination language. As a result, a word can be translated to one or more words.

Current machine translator is designed to translate words on one to one basis.

Therefore, the created output can be misunderstanding since the syntactical structure of

the sentences may differ for languages. To remedy this problem to some extend we use

word groups in addition to the single word in the dictionary. So the word in any

44

language can correspond to a word or a group of words (phrases) in the other language.

The part of the system is experimental. As indicated above, a word or phrase can have

many translations. Therefore, a sentence translated in such manner can have many more

translations than a single word or phrase. Choosing the best translation among many is

another challenging task and outside this study. Currently web interface produces all

possible translations.

45

REFERENCES

Altıntaş K. & Çiçekli İ., "A Morphological Analyzer for Crimean Tatar", Proceedings
of the 10th Turkish Symposium on Artificial Intelligence and Neural Networks,
TAINN, pp. 180-189, North Cyprus, 2001

Canals-Marote R., Esteve-Guillén A., Garrido-Alenda A., Guardiola--Savall M.I.,

Iturraspe-Bellver A., Montserrat-Buendia S., Pérez-Antón-Rojas P., Ortiz-Pina S.,
Pastor-Antón H. & Forcada M.L., "interNOSTRUM: a Spanish-Catalan Machine
Translation System", Machine Translation Review, Vol.11, pp. 21-25, 2000

Dvořák B., Homola P. & Kuboň V., "Exploiting similarity in the MT into a minority

language", LREC-2006: Fifth International Conference on Language Resources and
Evaluation, Genoa, Italy, 2006

Garrido-Alenda A., Gilabert-Zarco P., Pérez-Ortiz J.A., Pertusa-Ibáñez A., Ramírez-

Sánchez G., Sánchez-Martínez F., Scalco M.A. & Forcada M.L., "Shallow Parsing
for Portuguese-Spanish Machine Translation", TASHA 2003: Workshop on Tagging
and Shallow Processing of Portuguese, Lisbon, Portugal, 2003

Jurafsky D. & Martin J. H., Speech and language processing: An introduction to

natural language processing, computational linguistics, and speech recognition,
Prentice Hall, New Jersey, 2000

Hajič J., Hric J. & Kuboň V., “Machine translation of very close languages”,

Proceedings of the sixth conference on Applied natural language processing, pp. 7-
12, 2000

Hajič J., Homola P. & Kuboň V., "A simple multilingual machine translation system"

MT Summit IX, New Orleans, USA, 2003

Kara M., Türkmen Türkçesi Grameri, Ankara, 2005

Koskenniemi K., “Two – level morphology: A general computational model of word-

form recognition and production”, Tech. rep. Publication, No. 11, Department of
General Linguistics, University of Helsinki, 1983.

Oflazer K., “Two – level Description of Turkish Morphology”, Literary and Linguistic

Computing, Vol. 9, No. 2, 1994

Tantuğ A. C., Adalı, E. & Oflazer K., “Computer Analysis of the Turkmen Language

Morphology”, in T. Salakoski (Eds.), FinTAL 2006, Lecture Notes in Computer
Science, pp. 186-193, Springer, 2006

46

Tantuğ A. C., Adalı, E. & Oflazer K., A MT System from Turkmen to Turkish
Employing Finite State and Statistical Methods, Proceedings of MT Summit XI, 2007

