
Liver Illness Diagnosis Based on CMAC

 (Cerebellar Model Articulation Controller) Neural Network Approach

by

Semra Baki

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

February 2009
Istanbul, Turkey

 ii

APPROVAL PAGE

Student : Semra Baki

Institute : Institute of Sciences and Engineering

Department : Computer Engineering

Thesis Subject: Liver Illness Diagnosis Based on CMAC

 (Cerebellar Model Articulation Controller) Neural Network Approach

Thesis Date : February 2009

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Assist. Prof. Tuğrul YANIK
 Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. İhsan Ömür BUCAK
 Supervisor

Examining Committee Members

Assist. Prof. İhsan Ömür Bucak ……………………….

Prof. Dr. Bekir Karlık ……………………….

Prof. Dr. Sadık Kara ……………………….

It is approved that this thesis has been written in compliance with the formatting
rules laid down by the Graduate Institute of Sciences and Engineering.

 Assist. Prof. Nurullah ARSLAN
Director

 iii

Liver Illness Diagnosis Based on CMAC

(Cerebellar Model Articulation Controller) Neural Network Approach

Semra Baki

M. S. Thesis – Computer Engineering
 February 2009

Supervisor: Assist. Prof. İhsan Ömür Bucak

ABSTRACT

The liver is one of the most important organs of the human body because of its

vital functions. If the liver malfunctions in anyway, people know that they are putting
their life at risk. For this reason, diagnosing any disease in the liver is important and
sometimes difficult. It is also important to notice the diagnosis of the patient at an early
stage as the symptoms arise so that the patient might be able to carry on a normal life.
In the diagnosis of the disease, the physician can run a liver function test, a urine test,
and other comparable tests to test the liver enzyme and assess the phase of the disease.
The objective of this thesis is to diagnose the liver disease using an application of the
CMAC (Cerebellar Model Articulation Controller) neural network.

Keywords: Liver disease, Liver enzymes, CMAC neural networks, Medical diagnosis.

 iv

CMAC Yapay Sinir Ağı ile Karaciğer Hastalıklarının Teşhisi

Semra Baki

Yüksek Lisans Tezi – Bilgisayar Mühendisliği
Şubat 2009

Tez Yöneticisi: Yrd. Doç. Dr. İhsan Ömür Bucak

ÖZ

Karaciğer, gerçekleştirdiği fonksiyonlar dolayısı ile insanın hayati organlarından
biridir. Karaciğerin bu fonksiyonlardan herhangi birini yerine getirememesi insan
hayatını tehlikeye atma anlamına gelir. Bu sebeple karaciğer hastalıkları teşhisi oldukça
önemli ve bazen bir o kadar da zahmetli olmaktadır. Teşhis aşamasında hastada var olan
semptomların erken farkına varılması, hastalığın ilerleyip daha ciddi bir boyuta
ulaşmaması için önem arz eder. Hastalığın teşhisinde, karaciğer fonksiyon testi, idrar
testi gibi testler uygulanarak bu testlerde ki karaciğer enzimleri değerlendirilip
hastalığa ve evresine karar verilmektedir. Bu tezde CMAC (Cerebellar Model
Articulation Controller) tabanlı sinir ağı kullanılarak karaciğer hastalıklarının teşhisini
sağlamaya yönelik bir uygulama gerçekleştirilmiştir.

Anahtar Kelimeler: Karaciğer Hastalıkları, Karaciğer Enzimleri, CMAC Yapay Sinir,
Tıbbi Tanıma.

 v

To my parents,

 vi

ACKNOWLEDGEMENT

I would like to thank all the people who directly or indirectly collaborated in the
completion of this thesis work. First of all, I would especially like to thank my thesis
supervisor Assist. Prof. İhsan Ömür Bucak for his guidance throughout the research.

I would like to thank my jury members, Prof. Dr. Bekir Karlık and Prof. Dr. Sadık

Kara for their valuable suggestions and comments. I would also like to thank MD.
Yavuz Pehlivan for providing us with the clinical data.

I express my thanks and appreciation to my family for their advice and patience.

Moreover, I want to thank my intended, Musa Baki, for always helping me and being
such a good influence. I also thank my friends for their motivation.

 vii

TABLE OF CONTENTS

ABSTRACT.. iii

ÖZ... iv

DEDICATION... v

ACKNOWLEDGMENT ... vi

TABLE OF CONTENTS ... vii

LIST OF TABLES ..viii

LIST OF FIGURES... ix

LIST OF SYMBOLS AND ABBREVIATIONS .. x

CHAPTER 1 INTRODUCTION.. 1

 1.1 Liver and Liver Illness Based on CMAC Neural Netwrok.............................. 1

CHAPTER 2 CMAC NEURAL NETWORK... 7

2.1 General Description of CMAC Neural Network... 7

2.2 Input Quantization in CMAC Neural Network ... 10

2.3 Properties of the CMAC... 13

CHAPTER 3 CMAC BASED LIVER ILLNESS DIAGNOSIS SYSTEM 15

3.1 Enzymes and their signifiance in the Diagnosis of the Liver Disease.................... 16

3.2 Pattern Collection ... 18

3.3 CMAC Liver Diagnosis System.. 21

3.3.1 Training Mode .. 24

3.3.2 Quantization Mode.. 25

3.3.3 Learning Rule.. 25

3.3.4 Learning Convergences ... 26

 3.4 Diagnosis Mode .. 26

 3.4.1. Training and Diagnosis Algorithm .. 26

 3.5 Case Study and Discussion ... 34

CHAPTER 4 CONCLUSION.. 41

REFERENCES... 43

 viii

LIST OF TABLES

TABLE

3.1 The enzymes used to diagnose the liver disease..18

3.2 Original value of liver enzymes ... 20

3.3 Child-Pugh Classification of Severity of Liver Disease...22

3.4 Modified Child-Pugh scoring table .. 23

3.5 The data for the patients with cirrhosis... 23

3.6 Liver test and train data ... 35

3.7 Performance table of the MATLAB CMAC program.. 37

 ix

LIST OF FIGURES

FIGURE

2.1 A block diagram of CMAC ANN .. 9

2.2 Functional schematic of Cerebellar Model Articulation Controller (CMAC) 11

2.3 CMAC Segment Mapping Function... 12

2.4 CMAC Input Quantization... 13

3.1 An example of normalization process .. 21

3.2 The CMAC ANN model used to diagnose the liver disease................................ 24

3.3 Output of the MATLAB program .. 36

3.4 Learning rate vs. Learning steps.. 38

3.5 Desired error vs. Learning steps... 39

3.6 Desired error vs. Learning time.. 40

 x

LIST OF SYSMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION

ALAP Alkaline Phosphatase

ALT Alanin Aminotransferaz

ANN Artificial Neural Network

AST Aspartat Aminotransferaz

CMAC Cerebellar Model Articulation Controller

CT Computerized Tomography

GGT Gamma-Glutamyl Transpeptidase

HAV Hepatitis A

HBV Hepatitis B

HCV Hepatitis C

LAP Leucine Aminopeptidase

LMS Least Mean Square

PLT Pletalet

PROT Protein

CHAPTER 1

INTRODUCTION

Medical diagnosis process realized by using Articial Neural Networks illustrates a

very good way a combination of technology and medicine. In this study, we have tried

to bring an approach to the liver disease by the technological perspective.

This study aims to develop an illness diagnosis system for liver cells. Neural

network is exactly suitable for diagnosis process with many different applications and

worldwide.

1.1 Liver and Liver Illness Based on CMAC Neural Network

The liver is one of the most important organs in the human body that lies below

the diaphragm (Hopkins, 2008). The liver has both largest gland and largest internal

organ in the human body (Petska, 2007). It performs several numbers of metabolic

functions that are essential to human life.

Some of the more well-known functions of the liver (Darwin, 2008), and (McLaughlin,

2000):

• Production of bile, which helps carry away waste and break down fats in the

small intestine during digestion,

• production of certain proteins for blood plasma,

• production of cholesterol and special proteins to help carry fats through the

body,

• conversion of excess glucose into glycogen for storage. This glycogen can later

be converted back to glucose for energy,

1

 2

• regulation of blood levels of amino acids, which form the building blocks of

proteins,

• processing of hemoglobin for use of its iron content (The liver stores iron.),

• conversion of poisonous ammonia to urea (Urea is one of the end products of

protein metabolism that is excreted in the urine.),

• clearing the blood of drugs and other poisonous substances,

• regulating blood clotting,

• resisting infections by producing immune factors and removing bacteria from

the blood stream.

 If the liver cannot do the things we mentioned above, there might arise various

diseases. There are diseases that occur in liver in short time (acute) and long time

(chronic) period. These diseases could occur because of medications, alcohol, viruses or

fat. Some of these disease are the inflammation of the liver, insufficient liver

performance, Hepatitis A, B, C, D and liver cirrhosis.

Hepatitis is the inflammation of the liver, resulting in liver cell damage and

destruction (Adams, B., 2008). Hepatitis diseases are caused by hepatitis viruses.

Hepatitis viruses have six main types (Adams, B., 2008). The viruses identified until

now have been named as A, B, C, D, E, and G, from which A and E are contagious

(Dimitriou, 2008).

Hepatitis A virus (HAV) is heat stable and will survive for up to a month at

ambient temperatures in the environment (Gott, 2008).

Hepatitis B virus (HBV) can cause lifelong infection, cirrhosis (scarring) of the

liver, liver cancer, liver failure, and death. Hepatitis B vaccine is available for all age

groups to prevent Hepatitis B virus infection (Gott, 2008).

Hepatitis C virus (HCV) is spread by contact with the blood of an infected person.

The progression of Hepatitis C is typically silent until it is late in the course of disease.

When symptoms are present, often liver cirrhosis (scarring) has been occurred. The

progression to liver cirrhosis only occurs in 20 percent of those with Hepatitis C and

 3

liver failure develops in about 5 percent. From the time of acquisition of the virus it can

take up to 50 years to develop cirrhosis. Most people with Hepatitis C are unaware that

they have it (Gott, 2008).

Hepatitis D can only occur in the presence of Hepatitis B. If an individual has

Hepatitis B and does not show symptoms, or shows very mild symptoms, infection with

Hepatitis D can put that person at risk for full-blown liver failure that progresses

rapidly. Hepatitis D can occur at the same time as the initial infection with B, or it may

show up much later. Transmission of Hepatitis D occurs the same way as Hepatitis B,

except that the transmission from mother to baby is less common (Adams, B., 2008).

Hepatitis E is similar to Hepatitis A. Transmission occurs through fecal-oral

contamination. It is less common than Hepatitis A. Hepatitis E is the most common in

poorly developed nations and rarely seen in the United States. There is no vaccine for

Hepatitis E at this time (Adams, B., 2008).

Hepatitis G is the newest strain of hepatitis and very little is known about it.

Transmission is believed to occur through blood and is most commonly seen in drug

users, individuals with clotting disorders such as hemophilia, and individuals who

require hemodialysis for renal failure (Adams, B., 2008).

Fatty liver is excessive accumulation of fat inside the liver cells. Fatty liver is the

most common alcohol-induced liver disorder. The liver is enlarged, causing upper

abdominal discomfort on the right side (Darwin, 2008).

 Liver cirrhosis is a term that refers to a group of chronic diseases of the liver in

which normal liver cells are damaged and replaced by scar tissue. Liver cirrhosis does

not develop overnight. It takes several years to develop. There are usually no symptoms

while liver cirrhosis is developing. Symptoms usually appear when liver cirrhosis is

fully developed. The symptoms will depend on how severe liver cirrhosis is (Gott,

2008). The list of diagnostic test cirrhosis of the liver includes physical exam, liver

function tests, computerized axial tomography scan, and liver biopsy (Icer and Kara,

2006).

 4

Liver tumors are abnormal masses of tissue that form when cells begin to

reproduce at an increased rate. The liver can grow both noncancerous (benign) and

cancerous (malignant) tumors. Often they are not diagnosed until an ultrasound, CT

(computerized tomography) scan, or MRI is performed (Darwin, 2008).

When diagnosing liver disease, the physician looks at the patient's symptoms and

conducts a physical examination. In addition, the physician may request a liver biopsy,

liver function tests (AST, ALT, biluribin), an ultrasound, or a CT scan (Darwin, 2008).

Liver function tests can diagnose viral hepatitis and autoimmune liver diseases. An

ultrasound scan will show blockage of the bile duct, fatty liver, cirrhosis and liver

tumors (Babe, 2007).

 Diagnosing a liver problem can be a difficult task, because symptoms do not

often appear until the later stages of most liver diseases and conditions. By then the

liver may have suffered serious or permanent damage.

Liver disease diagnosing process can be difficult by that time the liver may have

suffered critical or permanent damage, because symptoms of liver disease do not often

appear the later stages of most liver diseases and conditions (Dupage, 2007).

When symptoms do begin to appear, they might include (Dupage, 2007):

• Irregular sleep, including a tendency to sleep at odd hours and wake up in the

middle of the night,

• low or fluctuating energy levels. Lows tend to come in mid morning and mid

afternoon,

• losing weight becomes even more difficult than usual, even though you eat

smarter and start exercising,

• your skin and eyes will start to have a yellowish tint. Other skin problematic

conditions like acne, eczema, psoriasis, and general itchiness may appear,

• You may experience bad reactions to drugs and medications such as headache

pills, antibiotics and anti-histamines,

 5

• drinking even small amounts of alcohol can make you feel inebriated. You will

feel intense hangovers when you drink,

• caffeine will have a much stronger effect and could keep you awake for hours,

• you may experience digestion problems, especially with creamy, oily and fatty

foods. You may even feel nauseous after you eat them,

• you have stomach bloating and gas more often than usual,

• eating asparagus will cause a strange smell in your urine. This is a classic liver

disease symptom,

• you will occasionally experience a warm, flush feeling will start in your trunk

and rise upward toward the head,

• you will begin to get frequent headaches, heartburn and acid reflux,

• certain substances may cause a severe reaction, especially cleaning products,

gasoline, paint, perfumes, bleaches, and so on.

 In this thesis, we provide an alternative way to medical diagnosis. The physician

may spend very long time for the assessment of the enzyme numbers during normal

diagnostic period while making a decision based on those enzymes. This study provides

a contribution to the medical diagnosis process by shortening the time through the use

of an intelligent model and helps the physician to diagnose complex cases which are

otherwise difficult to perceive. Physicians make a decision according to enzyme values

in normal diagnosis stage of this method .

A multilayer neural network is used as one of the most popular methods for

diagnostic processes. In this paper, the CMAC neural network has been preferred over

the multilayer neural network. Because the multilayer neural network requires many

iterations and a large number of computations per iteration to converge an output so that

the algorithm runs slowly (Miller et all, 1990). However, the CMAC presents many

attractive features that are useful for real time applications. The CMAC has been used to

solve various robotic problems, control applications, medical applications, pattern

recognition, signal processing and image processing applications (Albus, 1975a),

(Albus, 1975b), and(Miller, Glanz, and Kraft, 1990). For example Hormel has applied

Kohonen-type algorithms to adapt the storage mechanisms of the CMAC to match the

input distribution (Hormel, 1990). Campanga (Kraft, and Campanga, 1990) have

 6

compared a CMAC-based controller with two traditional adaptive controllers. Bucak

(Bucak, 2008), and (Karlık, and Bucak, 2009) has applied a diagnosis process such as

odor recognition and detection of drinking water quality with CMAC algorithm. Chin-

Pao and others (Hung et all, 2003) have investigated the fault tolerance of CMAC

Networks. Chin-Pao Hung has applied a diagnosis process such as PIC microcontroller

based fault diagnosis apparatus design for water circulation system using CMAC neural

network approach (Hung et all, 2007).

In addition to CMAC research, there is a remarkable research on prediction of

liver disease. In this research, Zhu and others have investigated prediction of radiation

induced liver disease using artificial neural network (Zhu et all, 2006). This research

shows an example of identification process of liver diseases by using neural Networks.

 In Chapter 1, we describe liver, liver disease and its symptoms. It also discusses

why we chose the CMAC Neural Network algoritm for diagnosing of the liver disease.

Chapter 2 gives a detailed discussion of the CMAC neural network and its significant

properties. Chapter 3 discusses the CMAC based liver diagnostic system which covers

all the steps used in this thesis such as pattern collection, the CMAC liver diagnostic

system, training data, quantization process, learning rule, learning convergence and

performance evaluation, diagnosis algorithm and case study, and finally discussion. The

last chapter summarizes the results and presents future research.

7

CHAPTER 2

CMAC NEURAL NETWORK

2.1 General Description of CMAC Neural Network

Cerebellar Model Articulation Controllers (CMACs) is firstly proposed during

1970s by James Albus at National Bureau of Standarts. J. Albus’s idea was based on a

model of cerebellum, which is part of a brain and is responsible for learning process.

Albus used the CMAC to do rote learning of movements of an artificial arm (Miller et

al, 1990). The CMAC have been popularized by group of professors at the robotics

laboratory of the Department of Electrical and Computer Engineering at The University

of New Hampshire (Miller et al, 1990).

A general description of the CMAC is that it is a conversion device that converts

given input vectors into associated output vectors (Burgin, 1992). The CMAC is an

algorithm which quantizes and generalizes its input, produce active memory addresses,

and produce an output with summing all the weights in the active memory adresses

(Handelman, 1990). This process of finding the output have several steps. Figure 1

shows a CMAC Neural Network with two inputs and one output. This figure describes

how to find an output process. According to this figure, there exist four steps to produce

the outputs in the CMAC algorithm. Firstly, input state space have one or more input

vectors. These vectors re composed of discrete points. These discrete points are

connected to the second step of CMAC known as state space detectors. The state space

detectors is often called the CMAC’s virtual memory (Burgin, 1992). During this

transformation input quantization and input generalization processes are carried out.

These process will be explained in detail in the next section. The next step is

mapping from the state space detectors into the physical memory. This mapping process

 8

may be realized in two different ways. First one is one-to-one mapping and the other

one is many-to-one mapping or random mapping. Once the physical memory is

assumed to be smaller than the number of state space detectors, this mapping process is

called many-to-one mapping (Burgin, 1992). If the state space detectors are not

small enough for one-to-one mapping with physical memory, then random mapping

should be used. In other words, if the state space detectors are small enough for one-to-

one mapping with pysical memory, we should use one-to-one mapping. The last step

includes summing all the weigths in the physical memory to produce the output vectors.

During the training, if the output vectors of the CMAC do not match a desired output

for a given input state, the weights pointed to by the physical addresses are updated

using the following simple steepest-descent update (the least mean square-LMS) rule

(Handelman, 1990):

g

yy
ww d

oldjnewj

)(
)()(

−
+← β (2.1)

 In this update equation, jw is the weight, dy , the desired output of the CMAC

system, y, the actual output of system, and β , the learning factor. β can take any value

between 0 and 1. Values of β , too close to 1, can produce unstable learning behavior

in certain situations (Rumelhart and McClelland, 1986). The goal is to find the weights

that minimize the error, which is defined as the difference between desired and actual

output as indicated earlier as based on the LMS delta rule.

 9

∑

Figure 2.1 A block diagram of CMAC ANN.

 Mapping between the input state space and state space detectors (virtual

memory) employed by CMAC has such a property that any two input vectors that are

similar (close together in input space) will select an overlapping subset of locations in

the virtual memory. Thus, the output response of CMAC to similar input vectors will

tend to be similar because of the memory locations which are in common. Hence

CMAC tends to generalize (Albus, 1975b), and (Burgin, 1992). In this mapping, distant

inputs will have a finite probability of sharing some of the same memory locations in

virtual memory causing an undesirable generalization. The propability of such collisions

depends on the size of the input spate, the generalization parameter g, and the size of

the virtual memory (Comoglio, 1991). Generalization parameter is the ratio of the width

of receptive field (virtual memory) between adjacent layers of receptive fields. The

width of the receptive fields produces input generalization, while the offset of the

adjacent layers of receptive fields produces input quantization, (Miller, and Glanz,

1996). Generalization parameter determines how many addresses in the virtual memory

are excited by the vectors. According to Figure 2.1, g is 3, so that all the input vectors

overlay 3 distinct locations from the virtual memory.

 10

2.2 Input Quantization in CMAC Neural Network

 In this section, we will describe the process of input quantization. In order to store

information in memory, dividing the continuous input space into discrete sample

intervals is a necessary process in CMAC learning procedure. This process is called

quantization (Lu et all, 2006). Quantization concept has been developed due to the fact

that the minimum variations in the input values do not affect the output values. During

the quantization process, quantization levels affect the values of the input vector, so that

the quantization has three levels; each input vector can only assume the three values,

such as zero, one or two (Burgin, 1992). The stability of inputs depends on the level of

quantization. If the quantization level increases, the stability of inputs increases.

),,,(maxmaxmin iiiii qXXXQq = i=1,…,m (2.2)

 The values of each input vector are quantized with equation (2.2), where m is the

number of inputs. The resolution of this quantization depends on the expected minimum

and maximum input values,
miniX and

maxiX , and on the number of quantization levels,

maxiq (Handelman, 1990).

 Figure 2.2 shows a functional schematic of a three-input, single output CMAC

module that was designed by Handelman, where the inputs are represented by 1x , 2x ,

3x while the output is by y (Handelman, 1990). The generalization parameter, g is 4.

To compute the output, the CMAC algorithm quantizes its inputs, generate active

memory addresses, and sum all the weights in the active memory addresses so as to

compute the output. Figure 2.2 shows that the mapping Q produces 1q , 2q , and 3q , the

quantized versions of the three inputs 1x , 2x , and 3x . The next mapping, V [Eq (2.3)],

computes the segments of addresses that, when concatenated [Eq (2.4)], from virtual

weight addresses shown 1v , 2v , 3v and 4v is composed of three segments, one from each

input. The quantization and segment mappings enable the CMAC to generalize, i.e., to

produce similar outputs in response to similar inputs. Continuous variants in input

values translate into discrete variations in input quantization levels. In the case that an

input quantization level changes by 1, the same change occurs only in one of its virtual

address segments.

 11

Figure 2.2 Functional schematic of Cerebellar Model Articulation Controller (CMAC)

(Handelman, 1990).

),,,(jgqVV iji = gj ,...,1= (2.3)

),....,(21 jmjjj VVVconcatV = (2.4)

 We will, now, summarize the quantization concept with an example to

understand better. Assume that the value of input 2x produces quantization 2q = 4. In

this case, Figure 2.3 shows that the virtual address segments associated with this input

would be ,7,6,5 322212 === vvv and 442 =v . If 2q shifts from 4 to 5, all virtual

address segments remain the same except 42v as it shifts from 4 to 8. Consequently, for

the network of Figure 2.2 and Figure 2.3, as only one address will have changed (with

the assumption that the other two input levels remain constant), outputs associated with

neighboring input quantization levels will have three of four virtual weight addresses in

common (Handelman, 1990).

 The number of weights summed to obtain an output depends on the amount of

network generalization, g. For a specific input quantization mapping, an increase in g

means an increase in the amount of shared weights between neighboring input/output

 12

pairs. An increase in the number of quantization levels,
maxiq , results in higher input

resolution, but concurrently increases the size of virtual address space (Handelman,

1990).

Figure 2.3 CMAC Segment Mapping Function (Handelman, 1990).

 13

Figure 2.4 CMAC Input Quantization (Handelman, 1990).

2.3 Properties of the CMAC

In this section, we will summarize the properties of the CMAC and mention pros

and cons of these properties over the CMAC. The CMAC has several potential

advantages over other neural network structures.

The CMAC accepts real inputs and produce real outputs.The input components are

quantized, but the number of levels can be as large as desired so that any degree of

accuracy is achievable (Miller et all, 1990).

The CMAC has built-in local generalization which means that during mapping

between input state and state space detectors, the CMAC has the property that any two

input vectors that are similar or close in the input space will select a highly overlapping

subset of locations in the state space detectors. Thus, the output response of the CMAC

to similar input vectors will tend to be similar because of many memory locations

 14

which are in common. Hence, CMAC tends to local generalization. The amount of

generalization depends on the number of overlapping memory locations in the state

space detectors (Burgin, 1992).

 The CMAC can learn a wide variety of functions. It is easy to show, for example,

that a one-input CMAC can learn early any discrete one-dimensional single-valued

function, given a few mild conditions on the parameters of the CMAC (Miller et all,

1990).

The CMAC calculations are summations of output memory locations instead of

multiple calculations per iteration.The time required per iteration will be much smaller

with the CMAC than that of backpropagation. Therefore, given the same number of

iterations, the CMAC will learn faster than backpropagation (Comoglia, 1991). The

CMAC may actually take fewer iterations than multilayer perceptrons for certain

problems (Miller et all, 1990) and is suitable for real time and on-line practical

applications. The CMAC is appropriate for real time and on-line applications because of

the properties above (Comoglia, 1991).

The CMAC has a practical hardware realization using logic cell arrays (Miller et

all, 1990).

15

CHAPTER 3

CMAC BASED LIVER ILLNESS DIAGNOSIS SYSTEM

Today, early diagnosis and correct assessment of many diseases have great

importance in terms of disease treatment. Therefore, diagnostic and classification

process of a disease to be made by using today’s technology and medical data would

present many uses. In this paper, we have considered the diagnosis of liver diseases

such as Hepatitis B, Hepatitis C, Cirrhosis and the cirrhotic phases.

Liver is vital part of our body (Hopkins, 2008). If the liver does not perform any

of its vital missions such as production of bile, regulation of blood levels of amino

acids, and production of certain proteins for blood plasma etc. (Darwin, 2008), human

being would face a serious health consequences. Therefore, early diagnosis of the liver

disease is extremely important. When diagnosing the liver disease, the physician looks

at the patient's symptoms first such as irregular sleep, jaundice, and portal hypertension,

and conducts a physical examination. In addition, the physician may request a liver

biopsy, liver function tests (AST, ALT, biluribin), an ultrasound, or a computerized

tomography (CT) scan (Darwin, 2008). Liver function tests can diagnose viral hepatitis

and autoimmune liver diseases. An ultrasound scan will show blockage of the bile duct,

fatty liver, cirrhosis, and liver tumors (Babe, 2007).

During the sate of information gathering related to the liver disease, we made

various inferences (Table 3.1). Here, we also would like to deal with the properties of

enzymes used as the liver data while we explain one of these inferences.

The physician may spend very long time for the assessment of the enzyme values

during normal diagnostic period while making a decision based on those enzymes.

 16

This study provides a contribution to the medical diagnosis process by shortening

the time through the use of an intelligent model and helps the physician to diagnose

complex cases which are otherwise difficult to perceive. Neural networks have already

proven its effectiveness and popularity for the medical diagnostic processes with

different existing applications worldwide. In this study, the CMAC neural network

approach using human liver test data composed of liver enzymes has been used to

diagnose the liver disease in four classes. Enzmyes used to identify the classes were

ALT, AST, PT, ALT/AST, Albumin, Protein, PLT. This classification process of the

CMAC model is a supervised classification model.

3.1 Enzymes and their signifiance in the Diagnosis of the Liver Disease

As mentioned in the previous section, the first thing that comes to mind is the liver

enzyme numbers in diagnosing the liver disease. These enzymes are briefly described as

follows:

AST (a.k.a. SGOT) is normally found in a diversity of tissues including liver,

heart, muscle, kidney, and brain. For example, its level in serum rises with heart attacks

and with muscle disorders. It is therefore, not a highly specific indicator of liver injury

(Nabili, 2007), and (Şentürk et all, 2004).

ALT (a.k.a. SGPT) is normally found in the liver. This is not to say that it is

exclusively located in liver, but that is where it is most concentrated. It is released into

the bloodstream as the result of liver injury. It therefore serves as a fairly specific

indicator of liver status (Nabili, 2007), and (Şentürk et all, 2004).

GGT (Gamma-Glutamyl Transpeptidase) is mainly kidney, liver, and pancreas

original enzyme. GGT activity rises during all type of liver diseases (Centro, 2008), and

(Moseley, 1995). The GGT test is extremely sensitive and may be elevated due to any

type of liver disease or by the use of different drugs, including alcohol, even when liver

disease is minimal (Batey, and Geoff, 2004).

 17

Albumin is synthesized in the liver. Measurement of total concentration of serum

albumin is useful test of liver cells (Moseley, 1995).

Alkaline Phosphatase (a.k.a. ALAP) is a substance found in abundance in the liver

and bones. When this enzyme is high, Lecuine aminopeptidase enzyme is checked; if

this one is also high, then the damage is said to exist in the liver (Moseley, 1995).

Leucine Aminopeptidase (a.k.a. LAP) is also called a protein that is normally

found in liver cells. LAP is released into the blood when your liver cells are damaged.

Drugs or infections such as hepatitis can damage liver cells (Alexander, 2007).

 Now, we can infer the liver state of a person with regard to the blood levels of

these enzymes. First, let us deal with the normal levels of these enzymes (Jaeger, and

Hedegaard, 2002), and (Ghange, and Raste, 2004).

AST: Normal Adult Range: 0 - 42 U/L

ALT: Normal Adult Range: 0 - 48 U/L

ALAP: Normal Adult Range: 20 - 125 U/L

GGT: Normal Adult Female Range: 0 - 45 U/L

 Normal: Adult Male Range: 0 - 65 U/L

LAP: Normal Adult Range:28-42 U/L

 18

Table 3.1 The enzymes used to diagnose the liver disease.

 Cirrhosis Acute

Hepatitis

(alcohol or

drug related)

Hepatitis C Non-patient

ALT Normal Increase more

than 20 times of

the normal

Normal Higher,

Normal

AST Higher Increase more

than 20 times of

the normal

Light or

Moderately

increased

Higher,

Normal

ALP Icreased up to 3

times of the

normal

Light or

Moderately

increased

Higher Higher,

Normal

LAP Higher Higher Higher Normal

GGT Higher, Normal Higher, Normal Higher, Normal Normal

3.2 Pattern Collection

One of the most significant problems of medical diagnosis is the subjectivity of

the specialist and the data. Various medical data can be applied to the CMAC models:

1. Electro physical signals like EEG, EKG,

2. Medical Imaging like tomography, ultrasonography or MR,

3. Indicators of disease or tests like blood pressure, blood sugar or cholesterin.

 In this study, we have used the data of the published research carried out by

Pehlivan and his collaborators (Pehlivan et all., 2008). Hematological, radiological,

serological, and biochemical examinations have been carried out on the patients with

 19

the risk of having hemorrhage, and an additional liver biopsy has also been done on the

patients with no risk of having hemorrhage, all of whom were included in this study.

These results have been considered to diagnose (Comoglio, 1991). The enzyme values

obtained as the result of these tests have been used as the liver data as well. Table 3.2

shows the real clinical data used in this thesis in which seven distinct enzyme values

have been used for diagnosing the liver disease. These are ALT, AST, PT, ALT/AST,

Albumin, Protein, and PLT.

In this study, the samples have been collected from twenty eight patients. Each

data set representing one patient consists of approximately eight different attributes.

Twenty four of those data have been used for training, and four of them for testing. We

have determined four different classes in the liver disease as Hepatitis B (HBV),

Hepatitis C (HCV), Cirrhosis A , and Cirrhosis B and C. For each disease, there are six

different data collection occurrence.

 20

Table 3.2 Original value of liver enzymes.

İSİM SOYADI CİNS YAŞ PT AST ALT AST/ALT TİP ALB TPROT PLT

ŞENEL ERTÜRKMEN K 52 12,2 43 155 0,277419 1 3,6 6,7 154000

ABDURRAHMAN ÖZDEMİR E 47 13 74 60 1,233333 1 4,5 8,5 221000

ZÜBEYDE KILIÇ K 34 13 97 209 0,464115 1 4,4 7,9 244000

AYŞE HABEŞOĞLU K 34 12,8 48 69 0,695652 1 3,4 7,6 195000

AYNUR TURGUT K 24 12,6 83 172 0,482558 1 3,7 7,1 217000

YAKUP ÇOLAK E 24 12,6 74 174 0,425287 1 4,3 8,3 208000

CELAL SENCEM E 18 11,6 60 112 0,535714 2 4,7 8,6 251000

HASAN YAPRAK E 50 14,6 71 163 0,435583 2 4,3 8,4 117000

 FİRDEVS POLAT K 47 12,3 28 31 0,903226 2 3,3 216000

ALİ ÜSTEK E 67 12,3 32 36 0,888889 2 4,3 8 262000

MEHMET ÖZYURT E 49 15,4 116 174 0,666667 2 3,5 8,5 93000

CEVHER OĞUZ E 62 23,3 116 134 0,865672 2 4,3 7,4 190000

AHMET ALTIOK E 45 16,2 26 53 0,49 3 3,5 7,5 46000

AYŞE KELEŞ K 60 17,2 41 15 2,73 3 2,2 6,1 57000

ASİYE TURAN K 60 18 37 49 0,75 3 3,2 5,8 120000

DAVUT AĞBAĞ E 55 15,9 59 85 0,69 3 3,4 8 75000

GÜLSÜM BİNGÖL K 60 16 146 87 1,67 3 2,8 5,6 103000

FİKRET YARIMAĞA E 70 16 68 56 1,21 3 3,5 6 64000

NEZAKET PARLAK K 33 19 60 32 1,88 4 2,1 5,2 70000

KADİR YILMAZ E 55 25 86 51 1,69 4 1,3 5,5 132000

ÜNAL ÇOŞKUNER E 55 19,4 57 43 1,30 4 2,6 6,8 101000

ARİF TORİN E 60 17,4 295 154 1,90 4 2,1 5,1 177000

HALİL TAŞ E 65 29 70 31 2,26 4 1,5 3,6 71000

CUMA KARAKAYA E 79 18 56 18 3,11 4 2,3 5,6 79000

Each data has been normalized according to the following formula:

normalized_value = (current_value -(min_value-1))/((max_value-min_value)+2) (3.1)

According to Eq.3.1, the entire range of the liver data is normalized to vary

between 0 and 1, and thereafter the normalized data is used to train and test the CMAC

artificial neural network. Figure 3.1 shows how the normalization process is performed

 21

to find the normalized equivalents of the original data for the AST enzyme in this

example.

Figure 3.1 An example of normalization process with Eq.(3.1).

3.3 CMAC Liver Diagnosis System

In the previous section, we have mentioned the enzymes used to make a decision

for the liver disease. In this section, we are going to mention the liver disease

considered in this study with respect to the enzyme values.

In this study, we have succesfully completed the classification of four different

diseases toward Hepatitis B, Hepatitis C, Cirrhosis (Phase A), and Cirrhosis (Phases B

& C). We have given a brief explanation about these diseases in Chapter 1, we now

would like to give an information about the phases of cirrhosis. In this classification

process a table of criterion called the Child-Pugh is used. The Child-Pugh score

(sometimes the Child-Turcotte-Pugh score) is used to assess the prognosis of chronic

liver disease, mainly cirrhosis. Although it was originally used to predict mortality

during surgery, it is now used to determine the prognosis, as well as the required

strength of treatment and the necessity of liver transplantation (Child, 1964), and (Pugh

 22

et all, 1973). Table 3.3 shows Modified Child-Pugh classification of severity of liver

disease according to the degree of ascites, the plasma concentrations of bilirubin and

albumin, the prothrombin time, and the degree of encephalopathy (Pugh et all, 1973),

and (Lucey et all, 1997).

Table 3.3 Child-Pugh Classification of Severity of Liver Disease.

Points assigned Parameter

1 2 3

Ascites Absent Slight Moderate

Bilirrubin, mg/dL </= 2 2-3 >3

Albumin, g/dL >3.5 2.8-3.5 <2.8

Prothrombin time

* Seconds over control

* INR

1-3

<1.8

4-6

1.8-2.3

>6

>2.3

Encephalopathy None Grade 1-2 Grade 3-4

Table 3.4 shows Modified Child Pugh scoring table. A total score of 5-6 is

considered grade A (well-compensated disease); 7-9 is grade B (significant functional

compromise); and 10-15 is grade C (descompensated disease). These grades correlate

with one- and two-year patient survival (Pugh et all, 1973), and (Lucey, 1997).

 23

Table 3.4 Modified Child-Pugh scoring table.

Grade Points One-year patient

survival (%)

Two-year patient

survival (%)

A: well-

compensated

disease

5-6 100 85

B: significant

functional

compromise

7-9 80 60

C: descompensated

disease

10-15 45 35

Table 3.5 shows the values of cirrhosis data used in this thesis according to the

Child-Pugh scoring table.

Table 3.5 The data for the patients with cirrhosis

PT AST ALT AST/ALT Albumin Protein Platelet(Trombosit) Child Skor

15 82 91 0,90 3,6 7 122000 A 5

16,2 26 53 0,49 3,5 7,5 46000 A 5

16 59 55 1,07 3,5 9,7 144000 A 5

14 15 22 0,68 2,5 6,3 98000 A 6

14 62 53 1,17 3,1 7,6 164000 A 6

13 62 106 0,58 3,5 6,8 149000 A 6

16 24 30 0,80 4,4 7,4 172000 A 6

17,2 41 15 2,73 2,2 6,1 57000 A 6

14,4 180 178 1,01 2,9 5,9 62000 B 8

15 69 73 0,95 2,4 6,9 148000 B 8

17,9 18 16 1,13 3 5,9 177000 B 8

17 133 85 1,56 2,6 8,9 101000 B 8

13 49 28 1,75 2,6 5 143000 B 9

16 52 26 2,00 2,7 5,3 180000 B 9

24 23 17 1,35 2,2 5,6 76000 C 10

16,1 37 23 1,61 3 6 89000 C 10

18 97 65 1,49 2,5 5,4 116000 C 10

19 33 36 0,92 2,5 6 65000 C 10

 24

In this study, the CMAC artificial neural network ANN with 24-input vector and

5-output vector has been used. The input vectors can be called training data and the

output vectors can be called Hepatitis B, Hepatitis C, Cirrhosis A, Cirrhosis B and C

and other types. The class that we call other type can either be any unclassified disease

associated with the liver or the liver data with no liver disease. Figure 3.2 shows the

CMAC artificial neural network with 24 inputs and 5 outputs.

Figure 3.2 The CMAC ANN model used to diagnose the liver disease.

3.3.1 Training mode

In the training mode, the normalized enzyme data are used to train the CMAC

artificial neural network. These data perform the mapping process first between

quantization and memory locations to start with the network training after being loaded

into the CMAC ANN. Later, the output vector is formed by summing the weights in the

physical addresses so that the training process gets done. The recognition is decided

upon the similarity process which seeks similarity between the output vector of the test

data and the training data after the test data has been gone through the similar process as

the training data.

 25

3.3.2 Quantization mode

As shown in Figure 3.2, the input signals are first reduced by the quantization

process to produce a quantization level output. The quantization output can be

calculated in MATLAB as follows (Dunphy, 1993).

function [quantizedInput] = QuantizeInput(realInput)

global quantization;

[row col]=size(realInput);

%fprintf('Quantization:%d',quantization);

qInput = zeros(col,1);

for k=1:col

 qInput(k)=uint8(floor((realInput(k)-0.00000000000001)*quantization));

 %fprintf('[%d]',qInput(k));

end

%fprintf('\n');

quantizedInput=qInput;

According to the equation in the code above, the real input can take values

between 0 and the quantization level. For example, if the quantization level is 4, the

actual input at the end of the quantization process can take the value of 0, 1, 2, or 3.

This process can be realized through the formula provided in the code above.

3.3.3 Learning rule

The CMAC ANN model is a supervised learning algorithm (Hung, and Wang,

2004). According to this algorithm, sample inputs and desired outputs related with the

problem are provided to the system. This algorithm uses delta rule during the training as

we have mentioned earlier. The CMAC is capable of fast learning because of this

learning rule (Moody, 1989).

 26

3.3.4 Learning convergence

To be able to say that the CMAC ANN has the property of learning convergence,

then the CMAC should be capable of learning any mapping (Wong, 1992). Miller

showed that the CMAC learning rule was LMS (Widrow, and Stearns, 1984), (Miller,

1989), and (Miller et all, 1990), and LMS rule was not a satisfactory one in terms of a

global learning convergence as it only guaranteed local minima (Wong, 1992). If the

CMAC had a big enough memory for the mapping between the virtual memory and the

physical memory, the research has shown that there is no need for hashing (Wong,

1992). It is proven that the CMAC is capable of learning any mapping, (Wong, 1992).

As a result, the CMAC NN satisfies the learning convergence, i.e., it guarantees it

(Wong, 1992), (Chiang, 1995), and (Hung, and Yang, 2007).

3.4 Diagnosis Mode

The trained CMAC NN is now ready for the recognition process. The totally

different data from the data of the training, which goes through the same normalization

process and is called test data, are inputted to the network for the recognition process.

The operations of the CMAC ANN will be the same as the training mode when the test

data is inputted to the diagnostic system. But in diagnosis mode, the weights of the same

excited memory addresses of each memory layer are summed up and each layer has one

output value. If the input signals are the same as the training patterns, they will excite

the same memory addresses (Hung, and Yang, 2007). So, the output of CMAC ANN

can be HBV, HCV, Cirrhosis A, Cirrhosis B and C; Otherwise, the output of CMAC

ANN will be called other types in the program.

3.4.1 Train and Diagnosis algorithm

In this section, the CMAC algorithm is described as based on the configuration in

Figure 3.2:

Step 1 Build configuration of CMAC liver illness diagnostic system. It

 27

 includes 24-input liver data and 5 output nodes.

Step 2 Normalize, load and input the training data, through quantization,

 memory addressing, and the weights of the summation of excited

 memory addresses to produce the output nodes.

Step 3 Calculate the difference between actual output and desired

 output to find the weights, which minimize the error as based

 on the LMS rule.

Step 4 Training is finished. Save the memory weights.

Step 5 Normalize, load and input the testing data, through quantization, memory

addressing, and summation of the weights of the excited memory addresses to

produce the outputs. (If the input signals are the same as the training patterns,

they will excite the same memory addresses).

Step 6 Output the testing result.

We initially studied a code (Dunphy, 1993). We have developed our own code as

based on our own needs. The algorithm mentioned above has been implemented by

MATLAB programming language with the codes shown below. This MATLAB

program is composed of seven separate sections. These sections are CMAC_run,

Initialize CMAC, QuantizeInput, FromInterconnection, Train, Test and ComputeOutput

respectively. We will deal with each section separately and explain the significant

details.

 In the first section, the train and test data are loaded, and the digital values of the

quantization, maximum iteration, Learning rate (β), desired error are expressed as a

matrix of the size 1*5 with a name of Prm. Later on, the desired output is reached by

invoking initialization, training, quantization, and testing functions respectively.

 28

clear all; clc;

global n_inputs; global pass; global maxIteration;

global data; global input; global error;

global desired; global totalError; global maxError;

global desiredError;global test; global inputCount;

global output;

fprintf('Loading Files...\n');

load traindata.txt;

load testdata.txt;

fprintf('Initializating CMAC...\n');

Prm=[4 2 200 0.1 0.1];%[quantization width maxIteration learningRate targetError]

timeInitStart=clock;

initializeCMAC(Prm(1),Prm(2),Prm(3),Prm(4),traindata,testdata,Prm(5));

timeInitFinish=clock;

fprintf('Initialization is Completed.\nStarting Training\n');

timeTrainingStart=clock;

maxError=1.0;

while (maxError>=desiredError) &&(pass<maxIteration) % for each pass */

 totalError=0.0;

 maxError=0.0;

 for i=0:n_inputs-1 % for each possible input */

 input = data(i+1,1:inputCount);

 input = QuantizeInput(input);

 desired = data (i+1,inputCount+1);

 Compute_Output();

 Train();

 fprintf('Input:');

 for sc=1:inputCount

 fprintf('[%d]',input(sc));

 end

 fprintf('\tTarget:%d\tActual:%f\t\tError:%f\n',desired,abs(output),error);

 totalError=totalError+abs(error);

 maxError=max(abs(error),maxError);

 end

fprintf('PASS=%d \tMaximum Error=%g\tAverage Error=%f\n', pass,maxError,(totalError/n_inputs));

 29

fprintf('__

_\n');

 pass=pass+1;

 if pass>maxIteration

 break;

 end

end

timeTrainingFinish=clock;

fprintf('\nTraining is Completed !\nStarting Testing....\n');

timeTestStart=clock;

TestCMAC(test);

timeTestFinish=clock;

initDuration = etime(timeInitFinish,timeInitStart);

trainingDuration = etime(timeTrainingFinish,timeTrainingStart);

testDuration = etime(timeTestFinish,timeTestStart);

fprintf('\nInitialization Duration:%f\n',initDuration);

fprintf('Training Duration:%f\n',trainingDuration);

fprintf('Test Duration:%f\n',testDuration);

fprintf('Training Step:%d\n',pass-1);

fprintf('%d\t%d\t%f\t%f\t%d\t%f\t%f\t%f\n',Prm(1),Prm(2),Prm(4),Prm(5),pass-

1,initDuration,trainingDuration,testDuration);

In this section, initalization process is started by receiving the values inside Prm[.]

matrix. Firstly, the size of the traning data is computed, and then, the input dimension is

determined, and lastly, the possible number of input vectors are determined. The other

most significant part of this section is to input the maximum iteration number to the

program. Then, FromInterCon() function, which makes the intermemory mapping

operations, is invoked.

 30

function InitializeCMAC(quant,w,maxIt,beta,trainData,testData,targetError)

global n_inputs; global pass; global n_sensors;

global inputCount; global quantization; global width;

global maxNeurons; global conn; global maxIteration;

global data; global weight; global learningRate;

global desiredError;global test; global numberOfNeurons;

 data=trainData

 test =testData

 recordCount=size(data);

 inputCount=recordCount(2)-1 ;% input dimensions */

 n_inputs=recordCount(1); % number of possible input vectors */

 quantization=quant; % input quantization per dimension */

 width=w ;% width of input sensors */

 maxNeurons=500000;

 n_sensors = (quantization + width - 1) ^ inputCount;

 conn = zeros(quantization,inputCount,maxNeurons+5);

 numberOfNeurons=FormInterConnection()

 n_sensors=numberOfNeurons * inputCount;

 weight = zeros(numberOfNeurons+1,1);

 pass=1;

 desiredError=targetError; % maximum error for any input */

 maxIteration = maxIt;

 learningRate = beta;

 %fprintf('Sensor Count:%d\n',n_sensors);

 fprintf('Training Data Row Count:%d, Col Count:%d\n',n_inputs,inputCount);

 fprintf('Quantization:%d\n',quantization);

 fprintf('Target Min Error:%f\n',desiredError)

This section does the mapping operations between the virtual memory and the

physical memory.

function [neuronCount] =FormInterConnection()

global maxNeurons; global quantization; global width;

global conn; global n_sensors; global inputCount;

%global numberOfNeurons;

 31

numberOfNeurons=0;

k1 = (quantization + width - 1); % intermediate calculation */

 for i=0:width-1

 for j=0:n_sensors-1

 found=1;

 m=1;

 for k=0:inputCount-1

 mod0=floor(j/m);

 mod1=mod(mod0,k1);

 mod1=floor(mod1);

 mod2=mod(mod1,width);

 if mod2 ~=i %if((((j/m)%k1)%width)!=i){

 found=0;

 break;

 end

 m=m*k1;

 end

 if found==1

 m=1;

 for k=0:inputCount-1

 n=mod(floor(j/m),k1);

 for p=max(0,n-width+1): min(n,(quantization-1))

 col=conn(p+1,k+1,maxNeurons+1)+1;

 conn(p+1,+k+1,col) =numberOfNeurons;

 num=conn(p+1,k+1,maxNeurons+1);

 conn(p+1,k+1,maxNeurons+1)=num+1;

 end

 m=m*k1;

 end

 numberOfNeurons=numberOfNeurons+1;

 if numberOfNeurons > maxNeurons

 fprintf('cmac: error, maximum number of gates exceeded');

 end

 end

 end

 end

 neuronCount=numberOfNeurons;

 fprintf('Mapping Completed !\n');

 32

 This function forms an output for all the given input values by being invoked

after the initialization process.

function Compute_Output()

global output; global activatedNeurons; global input;

global weight; global neurons; global inputCount;

global maxNeurons; global currentNeuronCount; global conn;

global numberOfNeurons;

 activatedNeurons(numberOfNeurons+1)=0;

 output=0;

 neurons = zeros(numberOfNeurons,1);

 for u=0:inputCount-1 % for all inputCounts */

 inp=input(u+1);

 currentNeuronCount=conn(inp+1,u+1,maxNeurons+1);

 for v=0:currentNeuronCount-1 %increment all Neurons in list */

 g=conn(inp+1,u+1,v+1);

 neurons(g+1)=neurons(g+1)+1;

 if ((u+1)==inputCount) && (neurons(g+1)==inputCount) % if activated */

 pu= activatedNeurons(numberOfNeurons+1);

 activatedNeurons(numberOfNeurons+1)=pu+1; % generate list of activ’d Neurons */

 activatedNeurons(pu +1) =g;

 output=output + weight(g+1);

 end

 end

 end

Train function is essentially the weight update process in which firstly compares

the actual output with the desired output is compared, and then the weights of the active

neurons if a difference exists between the actual and desired outputs are updated with

the predetermined learning rate according to the LMS (Eq. 2.1). This is basically no

different from updating the weights of the active neurons.

function Train()

global inputCount; global numberOfNeurons; global output;

global activatedNeurons;global input; global weight;

global learningRate; global error; global desired;

 33

error=desired-output;

for E=0:activatedNeurons(numberOfNeurons+1)-1

 % using list of activated neurons */

 ind=activatedNeurons(E+1)+1;

 agirlik=weight(ind);

 hesap=agirlik+ (learningRate*error);

 weight(ind)=hesap;

end

This is a lastly invoked function. It determines the size of the test data and assigns

the inputs in the data file to a matrix. Later on, it quantizes the inputs in this matrix one

by one, it forms an output by invoking Compute-Output function. Lastly, it classifies

according to the output value.

function TestCMAC(test)

global input;

global output;

[testRowCount,testColCount] = size(test);

for i=1:testRowCount

 input = test(i,1:testColCount-1);

 fprintf('Test %d\nReal Input:\t',i);

 for j=1:testColCount-1

 fprintf('[%f]',input(j));

 end

 input=QuantizeInput(input);

 fprintf('\nQuantized:\t');

 for j=1:testColCount-1

 fprintf('[%d]',input(j));

 end

 Compute_Output();

 fprintf('\nOutput:%f\t',output);

 intOutput = uint8(output);

 switch intOutput

 case 1

 fprintf('(HVB)');

 34

 case 2

 fprintf('(HVC)');

 case 3

 fprintf('(child-A)');

 case 4

 fprintf('(child-BC)');

 otherwise

 fprintf('(Other Types)');

 end

 fprintf('\n___\n');

end

3.5. Case study and discussion

To demonstrate the effectiveness of the proposed algorithm, we have sieved to

seven sets of data for each liver illness type. Six sets are utilized as the training pattern

and the last one is the test data. All the data are listed in Table 3.6 and the bold typed

rows represent the test data.

Table 3.6 Liver test and train data.

 35

Patient

no

 Normalized liver data

 Age ALT AST ALT/AST Albumin Protein Platelet PT Illness Type

1 0,56 0,05 0,07 0,72 0,21 0,61 0,59 0,42 HBV

2 0,48 0,1 0,18 0,22 0,4 0,78 0,86 0,68 HBV

3 0,27 0,1 0,27 0,99 0,25 0,76 0,77 0,77 HBV

4 0,27 0,09 0,08 0,27 0,29 0,57 0,72 0,58 HBV

5 0,11 0,07 0,21 0,8 0,25 0,63 0,65 0,66 HBV

6 0,11 0,07 0,18 0,81 0,24 0,74 0,83 0,63 HBV

7 0,02 0,02 0,13 0,49 0,26 0,81 0,87 0,8 HCV

8 0,52 0,18 0,17 0,76 0,24 0,74 0,84 0,28 HCV

9 0,48 0,06 0,01 0,07 0,34 0,56 0,78 0,66 HCV

10 0,79 0,06 0,03 0,1 0,33 0,74 0,78 0,84 HCV

11 0,51 0,22 0,34 0,81 0,29 0,59 0,86 0,18 HCV

12 0,71 0,64 0,34 0,61 0,33 0,74 0,7 0,56 HCV

13 0,44 0,27 0 0,19 0,25 0,59 0,71 0 Child-A

14 0,68 0,32 0,06 0,01 0,72 0,35 0,51 0,04 Child-A

15 0,68 0,36 0,04 0,17 0,3 0,54 0,46 0,29 Child-A

16 0,6 0,25 0,13 0,35 0,29 0,57 0,78 0,11 Child-A

17 0,68 0,26 0,45 0,36 0,5 0,46 0,43 0,22 Child-A

18 0,84 0,26 0,16 0,2 0,4 0,59 0,49 0,07 Child-A

19 0,25 0,41 0,13 0,08 0,54 0,33 0,38 0,09 Child-BC

20 0,6 0,73 0,23 0,18 0,5 0,19 0,42 0,33 Child-BC

21 0,6 0,44 0,12 0,13 0,42 0,43 0,61 0,21 Child-BC

22 0,68 0,33 1 0,71 0,54 0,33 0,36 0,51 Child-BC

23 0,76 0,95 0,17 0,07 0,62 0,22 0,14 0,1 Child-BC

24 0,98 0,36 0,11 0,01 0,79 0,37 0,43 0,13 Child-BC

25 0,12 0,07 0,2 0,8 0,25 0,62 0,65 0,65 HBV

26 0,51 0,22 0,34 0,81 0,29 0,59 0,86 0,18 HCV

27 0,68 0,36 0,04 0,17 0,3 0,54 0,46 0,29 Child-A

28 0,6 0,43 0,11 0,13 0,42 0,43 0,61 0,21 Child-BC

Figure 3.3 gives us the results of the CMAC NN program which we have formed

with a predetermined quantization, width, learning rate, and the desired error values.

Table 3.7 shows the obtained results when we give various values to the variables.

 36

Figure 3.3 Output of the MATLAB program.

 37

Table 3.7 Performance table of the MATLAB CMAC program.

Q W Beta Desired Error Init Time Learning T. Test Time Step

3 2 0,1 0,1 0.34400 3.765.000 0.016000 199

3 2 0,1 0,01 0.312000 3.719.000 0.015000 199

3 2 0,1 0,001 0.328000 3.609.000 0.016000 199

3 2 0,1 0,0001 0.313000 3.625.000 0.016000 199

3 2 0,1 0,00001 0.312000 3.735.000 0.015000 199

3 2 0,1 0,000001 0.328000 4.000.000 0.016000 199

3 2 0,4 0,1 0.328000 3.625.000 0.016000 199

3 2 0,4 0,01 0.328000 3.625.000 0.016001 199

3 2 0,4 0,001 0.328000 3.578.000 0.016000 199

3 2 0,4 0,0001 0.328000 3.750.000 0.016000 199

3 2 0,4 0,00001 0.329000 3.593.000 0.016000 199

3 2 0,4 0,000001 0.313000 3.610.000 0.015000 199

4 2 0,4 0,1 1.375.000 0.469000 0.016000 6

4 2 0,4 0,01 1.344.000 0.656000 0.031000 9

4 2 0,4 0,001 1.390.000 0.891000 0.031000 13

4 2 0,4 0,0001 1.391.000 1.187.000 0.031000 17

4 2 0,4 0,00001 1.359.000 1.407.000 0.031000 20

4 2 0,4 0,000001 1.359.000 1.657.000 0.031000 24

4 3 0,4 0,1 13.453.000 0.750000 0.032000 16

4 3 0,4 0,01 13.453.000 1.234.000 0.032000 27

4 3 0,4 0,001 13.656.000 1.750.000 0.031000 37

4 3 0,4 0,0001 13.281.000 2.141.000 0.031000 47

4 3 0,4 0,00001 13.406.000 2.750.000 0.031000 58

4 3 0,4 0,000001 13.609.000 3.360.000 0.157000 68

5 3 0,4 0,1 46.140.000 2.172.000 0.063000 16

5 3 0,4 0,01 45.718.000 4.985.000 0.047000 38

5 3 0,4 0,001 45.984.000 7.735.000 0.046000 60

5 3 0,4 0,0001 45.844.000 11.188.000 0.062000 82

5 3 0,4 0,00001 45.938.000 13.907.000 0.062000 104

5 3 0,4 0,000001 45.843.000 16.437.000 0.047000 126

4 2 0,6 0,1 3.015.000 0.719000 0.031000 6

4 2 0,6 0,01 2.984.000 1.063.000 0.047000 9

4 2 0,6 0,001 3.016.000 1.532.000 0.046000 13

4 2 0,6 0,0001 3.032.000 1.875.000 0.046000 16

4 2 0,6 0,00001 3.016.000 2.265.000 0.031000 19

4 2 0,6 0,000001 2.985.000 2.750.000 0.047000 23

4 2 0,5 0,1 1.500.000 0.406000 0.157000 5

4 2 0,5 0,01 1.344.000 0.593000 0.016000 8

4 2 0,5 0,001 1.344.000 0.719000 0.015000 11

4 2 0,5 0,0001 1.344.000 0.969000 0.031000 14

4 2 0,5 0,00001 1.359.000 1.250.000 0.015000 17

4 2 0,5 0,000001 1.359.000 1.360.000 0.031000 20

 38

4 2 0,3 0,1 1.329.000 0.484000 0.016000 11

4 2 0,3 0,01 1.344.000 0.938000 0.031000 14

4 2 0,3 0,001 1.359.000 1.250.000 0.031000 18

4 2 0,3 0,0001 1.359.000 1.641.000 0.031000 24

4 2 0,3 0,00001 1.343.000 2.047.000 0.031000 29

4 2 0,3 0,000001 1.375.000 2.329.000 0.015000 34

4 2 0,8 0,1 1.375.000 0.766000 0.031000 11

4 2 0,8 0,01 1.375.000 1.328.000 0.015000 19

4 2 0,8 0,001 1.375.000 2.156.000 0.031000 27

4 2 0,8 0,0001 1.375.000 2.532.000 0.031000 36

4 2 0,8 0,00001 1.344.000 3.000.000 0.015000 44

4 2 0,8 0,000001 1.375.000 3.609.000 0.016000 53

According to Table 3.7, the variables of quantization=4, width=2, learning

rate=0,5 have shown us that the program runs with the best performance overall.

Learning Rate vs Learning Steps
 for Quant=4 and Width=2

0

10

20

30

40

50

60

0.1 0.001 0.00001

Error

L
ea

rn
in

g
 S

te
p

s

Beta=0.6

Beta=0.5

Beta=0.8

 Figure 3.4 Learning rate vs. Learning steps.

Figure 3.4 shows that, as the learning rate β is decreased, it takes shorter steps for

the algorithm to classify the input states accurately. That can also be justified from the

resulting table data in Table 3.7.

 39

Desired Error vs Learning Steps
 for Quant=4 and Beta=0,5

0

5

10

15

20

25

0,1 0,01 0,001 0,0001 0,00001 0,000001

Figure 3.5 Desired error vs. Learning steps.

Figure 3.5 indicates that the learning steps for the algorithm that learns to classify

the data correctly will increase linearly for all the desired errors.

 40

Desired Error vs Learning Time
for Quant =4 Beta =0.5

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

0,1 0,01 0,001 0,0001 0,00001 0,000001

Error

L
ea

rn
in

g
 T

im
e

(m
ili

S
ec

o
n

d
)

Figure 3.6 Desired error vs. Learning time.

Figure 3.6 shows the relationship between the desired error and the learning time

when the quantization is 4, and the learning rate is 0,5. According to the figure, there is

no any recordable variation in the learning time until the desired error becomes 0.0001.

Nonetheless, the learning time increases sharply at the desired error which is much

smaller than the value of 0.0001 as shown in the figure.

41

CHAPTER 4

 CONCLUSION

In this chapter we will summarize the major findings of our study. As the use of

artificial neural networks in various recognition processes is widespread, the

applications of the CMAC ANN to such recognition processes has been known for a

long time. Melancholia Diagnosis based on CMAC Neural Network Approach (Hung,

and Yang, 2007), and CMAC based neural networks detection for drinking water

quality (Bucak, 2008) can be given as the two recent applications in this field.

In this thesis, we provide an alternative way to medical diagnosis. The physician

may spend very long time for the assessment of the enzyme numbers during normal

diagnostic period while making a decision based on those enzymes. This study provides

a contribution to the medical diagnosis process by shortening the time through the use

of an intelligent model and helps the physician to diagnose complex cases which are

otherwise difficult to perceive. Physicians make a decision according to enzyme values

in normal diagnosis stage of this method .

In addition, with the learning ability of the CMAC neural network models,

adaptability to various problems, minimum data requirements and minimum processing

time period help modeling problems efficiently.

A system to recognize all types or phases of the liver disease in the future can be

developed by using the data and the method in this study. The future research may

present many advantages in the recognition of the process and the performance of the

algorithm by increasing both the number of training and the testing data. Other enzymes

not used in this study can be included to the research to refine and diversify the results.

A comparison can be made between the current algorithm and a future extraction

method to be used with the liver data in this study. Additionally, a fuzzy neural network

 42

application can serve to explain and illustrate the unknown transitional period between

the phases of the liver disease.

43

REFERENCES

Adams, B., Liver, Biliary, & Pancreatic Disorders, 2008,
 http://www.healthsystem.virginia.edu/uvahealth/adult_liver/virhepov.cfm

Babe, T., The Liver and its Diseases, 2007,
 http://www.bbc.co.uk/dna/h2g2/A134920

B. Karlık and I. O. Bucak, “Hazardous Odor Recognition by CMAC Based Neural

Networks, 5th International Advanced Technologies Symposium (IATS’09), Karabük,
Turkey 13-15 May 2009.

B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ:

Prentice- Hall, 1984.

Centro, G., Gama Glutamil Transpeptidaz (GGT), 1997
 http://www.centro.com.tr/testarama.asp?action=view&viewid=27

C. P. Hung, Mang-Hui Wang, “Diagnosis of incipient faults in power transfers using

CMAC Neural Network approach”, Electric Power Systems Research, Vol. 71,
pp235-244, 2004.

Chin-Pao Hung, Mang-Hui Wang, Chin-Hsing Cheng and Wen-Lang Lin, “Fault

Diagnosis of Steam Turbine- generator Using CMAC Neural Network Approach”,
Neural Networks, 2003. Proceedings of the International Joint Conference of
IEEE, 20-24 July 2003, Vol.4, pp.2988-2993, 2003.

Chin-Pao Hung , Shi-Liang Yang, “Melancholia diagnosis based on CMAC neural

network approach”, Proceedings of the 8th Conference on 8th WSEAS International
Conference on Neural Networks, 19-21 June, 2007, p.25-30, Vancouver, British
Columbia, Canada , 2007.

Child CG, Turcotte JG., “Surgery and portal hypertension. In: The liver and portal

hypertension”, Saunders, Philadelphia, pp.50-64, 1964.

C. P. Hung, Yi-shin, Wei-Ging Liu, “PIC microcontroller based fault diagnosis

apparatus design for water circulation system using CMAC neural network
approach”, WSEAS Trans. On Information Science & Application, Vol. 4, Issue 2,
pp. 393-399, February, 2007.

C. T. Chiang, CMAC Addressing Technique Based Learning Structures,
 the Faculty of Graudate School the University of Missouri- Colombia, May, 1995.

 44

Daniel R. Alexander, Health Information, Department of Internal Medicine, St. Mary's
Hospital, Leonardtown, MD. Review provided by VeriMed Healthcare Network, 5,
2007.

Darwin, P., Liver Disease, 2008,
 http://www.umm.edu/liver/liver.htm

Dimitriou, D., 2008, What is Hepatitis, 2008,
 http://www.hepatitis.org.uk/s-crina/whatis-fs.htm

Dupage, K., Liver Disease Symptoms, 2007,
 http://www.healthinfoarticles.com/liver-disease-symptom.html

D. Rumelhart and J. McClelland, Paralel Distributed Processing: Explorations in

the Microstructere of Cognition, Foundations, MA: MIT Pres,Vol. 1, 1986.

George Burgin, “Using Cerebellar Arithmetic Computers”, AI Expert , pp. 32-41, June

1992.

Gott, Liver Cirrhosis, 2008,
 http://www.mamashealth.com/stomach/livcir.asp

Hakan Şentürk, Billur Canbakan, İbrahim Hatemi, “Karaciğer Enzim Yüksekliklerine

Klinik Yaklaşım”, İ.Ü. Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri,
Gastroenterolojide Klinik Yaklaşım Sempozyum Dizisi, No: 38 , pp.9-13, 2004.

Handelman, D.A., S. H. Lane, and J.J. Gelfand, “Integrating neural networks and

knowledge-based systems for intelligent robotic control”, IEEE Control Systems
Magazine, vol. 10, no. 3, pp. 77-87, 1990.

Hopkins, J., Liver, 2008,
 http://en.wikipedia.org/wiki/Liver

Howard Worman, “The Hepatitis C Council of NSW Inc is a community-based, non-

government organisation”, funded by the NSW Health Department, April 2004.
(Adapted with assistance from Prof Bob Batey & Prof Geoff Farrell from an article
in PositiveLiving, using additional internet information by (USA)).

Hung-Ching Lu, Ming-Feng Yeh, and Jui-Chi Chang, “CMAC Study with Adaptive

Quantization”, 2006 IEEE International Conference on Systems, Man, and
Cybernetics, 8-11 October, 2006, pp. 2956-2601, Taipei, Taiwan, 2006.

I.O. Bucak, "CMAC Based Neural Networks Detection for Drinking Water Quality",

Regional Process of the 5th World Water Forum, Regional Meeting on Water in the
Mediterranean Basin, Oct. 2008, TRNC, 2008.

Ji Zhu, Xiao-Dong Zhu, Shi-Xiong Liang, Zi-Yong Xu, Jian-Dong Zhao, Qi- Fang

Huang, An-Yu Wang, Long Chen, Xiao-Long Fu, and Guo-Liang Jiang, “Prediction
of Radiation Induced Liver Disease Using Artificial Neural Networks”, Jpn J Clin
Oncol, Vol.36, No.12, pp.783–788, 2006.

 45

J. J. Jaeger and H. Hedegaard, About blood tests, 2002,
 http://home3.inet.tele.dk/omni/alttest.htm#sgot

J.Moody, “Fast learning in multi-resolution hierarchies,” Advances in Neural

Information Processing Syst. 1, D.S. Touretzy, Ed. Los Altos, 1989, pp. 29-39, 1989.

J.S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model

Articulation Controller (CMAC)”, Journal of Dyn. Syst. Meas. Control, Trans.
ASME 97, pp.220-227, 1975.

J.S. Albus, A New Approach to Manipulator Control: The Cerebellar Model

Articulation Controller (CMAC), NIST - National Institute of Standards and
Technology, 237-240, 1975.

L.G. Kraft and D.P. Campanga, “A comparison between CMAC neural network control

and two traditional adaptive control systems”, IEEE Contr. Syst. Mag., pp.36-43,
Apr. 1990.

Lucey MR, Brown KA, Everson GT, Fung JJ, Gish R, Keeffe EB, Kneteman NM, Lake

JR, Martin P, McDiarmid SV, Rakela J, Shiffman ML, So SK, Wiesner RH,
“Minimal criteria for placement of adults on the liver transplant waiting list”, Liver
Transpl Surg., Vol.3, No.6, pp.628-37. November, 1997.

McLaughlin, E., Liver Disease, 2000,
 http://uimc.discoveryhospital.com/main.php?id=3307

Doebelin, E., Control System Principles and Design, John Wiley, New York, 1985.

M. Hormel, A self- organizing associative memory system for control applications, in

Advances in Neural Information Processing Systems 2, Morgan Kaufmann, 1990.

Michael T Dunphy, CMAC - Cerebellum Model Articulation Controller, 1993
http://www.cs.cmu.edu/afs/cs/project/airepository/ai/areas/neural/systems/cmac/cma
c.txt

M.S. Ghadge and A.S. Raste, “Leusine Amino Peptidase a beter indicator of

disseminated maligmant disease”, Indian Journal of Clinical Biochemistry,
Department of Biochemistry, Tata Memorial Hospital, Parel, pp. 149-151, 2004.

Nabili, S., Liver Blood Test, 2008
 http://www.medicinenet.com/liver_blood_tests/article.htm

Petska, J., What is the Largest Gland in the Body?, 2007,
 http://www.ehow.com/about_4570848_what-largest-gland-body.html

Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R., “Transection of the

oesophagus for bleeding oesophageal varices”, Br J Surg. 60(8):646-9. Aug, 1973.

 46

Richard H. Moseley, Approach to the Patient With Abnormal Liver Chemistries,
Textbook of Gastoenterology, Tadataka Yamada, pp.909-922, JB Lippincott
Company, Philadelphia, 1995.

Rick F. Comoglio, Using a Cerebellar Model Arithmetic Computer Neural Network to

Control An Autonomous Underwater Vehicle, M.S. Thesis Faculty of Florida
Atlantic University, 1991.

Semra Icer, Sadik Kara, “Spectral analysing of portal vein Doppler signals in the

Cirrhosis patients”, Computers in Biology and Medicine 37, pp.1303-1307,
December, 2006.

Y. Pehlivan, M. Koruk, M. T. Gülşen, C. Savaş, A. Kadayıfçı, “The Relation Between

AST, ALT Ratio And Stage of The Disease in Chronic Viral Hepatitis - Importance
of AST/ALT in Chronic Hepatitis”, Gaziantep University Medicine Magazine, Vol.
14, pp.28-31, 2008.

Wong, Y. F., Sideris, A., “Learning convergence in the cerebellar model articulation

controller”, IEEE Trans. on Neural Network, Vol. 3, No. 1, pp.115-121, 1992.

W.Thomas Miller, Filson H. Glanz and L. Gordon Kraft, “CMAC: An Associative

Neural Network Alternative to Backpropagation”, IEEE Proceedings, Vol. 75, pp.
1561-1567, October 1990.

W. T. Miller and Filson H. Glanz, The University of New Hampshire Implementtion of

tthe Cerebellar Model Arithmetic Computer-CMAC, Robotics Laboratory University
of New Hampshire Durham, New Hampshire No.03824, August 31,1994 (last
modified July, 1996).

W.T. Miller, B. A. Box, and E. C. Whitney, Design and implemantation of high speed

CMAC neural network using programmable CMOS logic celle arrays, University of
New Hampshire, Rept. No. ECE.IS.90.01, Feb.6, 1990.

W. T. Miller, “ Real-time application of neural networks for sensor-based control of

robot with vision”, IEEE Trans. Syst., Man, Cybern., Vol. 19, pp. 825-831, 1989.

W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Kraft, “Real- time dynamic control of

an industrial manipulator using a neural- network- based learning contreoller”, IEEE
Trans. on Robotics and Automation, Vol. 5, No. 1, pp.1-9, February, 1990.

