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Semra Baki 

 
 

M. S. Thesis – Computer Engineering 
 February 2009 

 
 

Supervisor: Assist. Prof. İhsan Ömür Bucak 
 
 

ABSTRACT 

 
 

 
The liver is one of the most important organs of the human body because of its 

vital functions. If the liver malfunctions in anyway, people know that they are putting 
their life at risk. For this reason, diagnosing any disease in the liver is important and 
sometimes difficult. It is also important to notice the diagnosis of the patient at an early 
stage as the symptoms arise so that the patient might be able to carry on a normal life.  
In the diagnosis of the disease, the physician can run a liver function test, a urine test, 
and other comparable tests to test the liver enzyme and assess the phase of the disease. 
The objective of this thesis is to diagnose the liver disease using an application of the 
CMAC (Cerebellar Model Articulation Controller) neural network. 
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CMAC Yapay Sinir Ağı ile Karaciğer Hastalıklarının Teşhisi 
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Yüksek Lisans Tezi – Bilgisayar Mühendisliği 
Şubat 2009 

 
 

Tez Yöneticisi: Yrd. Doç. Dr. İhsan Ömür Bucak 
 
 

ÖZ 

 
 
 

Karaciğer, gerçekleştirdiği fonksiyonlar dolayısı ile insanın hayati organlarından 
biridir. Karaciğerin bu fonksiyonlardan herhangi birini yerine getirememesi insan 
hayatını tehlikeye atma anlamına gelir. Bu sebeple karaciğer hastalıkları teşhisi oldukça 
önemli ve bazen bir o kadar da zahmetli olmaktadır. Teşhis aşamasında hastada var olan 
semptomların erken farkına varılması, hastalığın ilerleyip daha ciddi bir boyuta 
ulaşmaması için önem arz eder. Hastalığın teşhisinde, karaciğer fonksiyon testi, idrar 
testi gibi testler uygulanarak bu testlerde ki karaciğer enzimleri  değerlendirilip 
hastalığa ve evresine karar verilmektedir. Bu tezde CMAC (Cerebellar Model 
Articulation Controller) tabanlı sinir ağı kullanılarak karaciğer hastalıklarının teşhisini 
sağlamaya yönelik bir uygulama gerçekleştirilmiştir.  
 
Anahtar Kelimeler: Karaciğer Hastalıkları, Karaciğer Enzimleri, CMAC Yapay Sinir, 
Tıbbi Tanıma. 
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CHAPTER 1 

 

 

INTRODUCTION 

 
 
 

Medical diagnosis process realized by using Articial Neural Networks illustrates a 

very good way  a combination of technology and medicine. In this study, we have tried 

to bring an approach to the liver disease by the technological perspective. 

 

This study aims to develop an illness diagnosis system for liver cells. Neural 

network is exactly suitable for diagnosis process with many different applications and 

worldwide. 

 
 
 

1.1 Liver and Liver Illness Based on CMAC Neural Network 

The liver is one of the most important organs in the human body that  lies below 

the diaphragm (Hopkins, 2008). The liver has both largest gland and largest internal 

organ in the human body (Petska, 2007). It performs several numbers of metabolic 

functions that are essential to human life. 

Some of the more well-known functions of the liver (Darwin, 2008), and (McLaughlin, 

2000): 

• Production of bile, which helps carry away waste and break down fats in the 

small intestine during digestion, 

• production of certain proteins for blood plasma, 

• production of cholesterol and special proteins to help carry fats through the 

body, 

 

• conversion of excess glucose into glycogen for storage. This glycogen can later 

be converted back to glucose for energy, 

1 
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• regulation of blood levels of amino acids, which form the building blocks of 

proteins,

• processing of hemoglobin for use of its iron content (The liver stores iron.), 

• conversion of poisonous ammonia to urea (Urea is one of the end products of 

protein metabolism that is excreted in the urine.), 

• clearing the blood of drugs and other poisonous substances,  

• regulating blood clotting,  

• resisting infections by producing immune factors and removing bacteria from 

the blood stream. 

      

 If the liver cannot do the things we mentioned above, there might arise various 

diseases. There are diseases that occur in liver in short time (acute) and long time 

(chronic) period. These diseases could occur because of medications, alcohol, viruses or 

fat. Some of these disease are the inflammation of the liver, insufficient liver 

performance, Hepatitis A, B, C, D and liver cirrhosis. 

 

Hepatitis is the inflammation of the liver, resulting in liver cell damage and 

destruction (Adams, B., 2008). Hepatitis diseases are caused by hepatitis viruses. 

Hepatitis viruses have six main types (Adams, B., 2008). The viruses identified until 

now have been named as A, B, C, D, E, and G, from which A and E are contagious 

(Dimitriou, 2008).  

 

Hepatitis A virus (HAV) is heat stable and will survive for up to a month at 

ambient temperatures in the environment (Gott, 2008). 

 

Hepatitis B virus (HBV) can cause lifelong infection, cirrhosis (scarring) of the 

liver, liver cancer, liver failure, and death. Hepatitis B vaccine is available for all age 

groups to prevent Hepatitis B virus infection (Gott, 2008). 

Hepatitis C virus (HCV) is spread by contact with the blood of an infected person. 

The progression of Hepatitis C is typically silent until it is late in the course of disease. 

When symptoms are present, often liver cirrhosis (scarring) has been occurred. The 

progression to liver cirrhosis only occurs in 20 percent of those with Hepatitis C and 
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liver failure develops in about 5 percent. From the time of acquisition of the virus it can 

take up to 50 years to develop cirrhosis. Most people with Hepatitis C are unaware that 

they have it (Gott, 2008). 

 

Hepatitis D can only occur in the presence of Hepatitis B. If an individual has 

Hepatitis B and does not show symptoms, or shows very mild symptoms, infection with 

Hepatitis D can put that person at risk for full-blown liver failure that progresses 

rapidly. Hepatitis D can occur at the same time as the initial infection with B, or it may 

show up much later. Transmission of Hepatitis D occurs the same way as Hepatitis B, 

except that the transmission from mother to baby is less common (Adams, B., 2008). 

 

Hepatitis E is similar to Hepatitis A. Transmission occurs through fecal-oral 

contamination. It is less common than Hepatitis A. Hepatitis E is the most common in 

poorly developed nations and rarely seen in the United States. There is no vaccine for 

Hepatitis E at this time (Adams, B., 2008). 

 

Hepatitis G is the newest strain of hepatitis and very little is known about it. 

Transmission is believed to occur through blood and is most commonly seen in drug 

users, individuals with clotting disorders such as hemophilia, and individuals who 

require hemodialysis for renal failure (Adams, B., 2008). 

 

Fatty liver is excessive accumulation of  fat inside the liver cells. Fatty liver is the 

most common alcohol-induced liver disorder. The liver is enlarged, causing upper 

abdominal discomfort on the right side (Darwin, 2008). 

 

 Liver cirrhosis is a term that refers to a group of chronic diseases of the liver in 

which normal liver cells are damaged and replaced by scar tissue. Liver cirrhosis does 

not develop overnight. It takes several years to develop. There are usually no symptoms 

while liver cirrhosis is developing. Symptoms usually appear when liver cirrhosis is 

fully developed. The symptoms will depend on how severe liver cirrhosis is (Gott, 

2008). The list of  diagnostic test cirrhosis of the liver includes physical exam, liver 

function tests, computerized axial tomography scan, and liver biopsy (Icer and Kara, 

2006). 
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Liver tumors are abnormal masses of tissue that form when cells begin to 

reproduce at an increased rate. The liver can grow both noncancerous (benign) and 

cancerous (malignant) tumors. Often they are not diagnosed until an ultrasound, CT 

(computerized tomography) scan, or MRI is performed (Darwin, 2008). 

 

When diagnosing liver disease, the physician looks at the patient's symptoms and 

conducts a physical examination. In addition, the physician may request a liver biopsy, 

liver function tests (AST, ALT, biluribin), an ultrasound, or a CT scan (Darwin, 2008). 

Liver function tests can diagnose viral hepatitis and autoimmune liver diseases. An 

ultrasound scan will show blockage of the bile duct, fatty liver, cirrhosis and liver 

tumors (Babe, 2007). 

 

 Diagnosing a liver problem can be a difficult task, because symptoms do not 

often appear until the later stages of most liver diseases and conditions. By then the 

liver may have suffered serious or permanent damage. 

 

Liver disease diagnosing process can be difficult by that time the liver may have 

suffered critical or permanent damage, because symptoms of liver disease do not often 

appear the later stages of most liver diseases and conditions (Dupage, 2007). 

 

When symptoms do begin to appear, they might include (Dupage, 2007): 

 

• Irregular sleep, including a tendency to sleep at odd hours and wake up in the 

middle of the night, 

• low or fluctuating energy levels. Lows tend to come in mid morning and mid 

afternoon,  

• losing weight becomes even more difficult than usual, even though you eat 

smarter and start exercising,  

• your skin and eyes will start to have a yellowish tint. Other skin problematic 

conditions like acne, eczema, psoriasis, and general itchiness may appear, 

• You may experience bad reactions to drugs and medications such as headache 

pills, antibiotics and anti-histamines,  



 

 
 

                                                                                                                                        5             
 

• drinking even small amounts of alcohol can make you feel inebriated. You will 

feel intense hangovers when you drink,  

• caffeine will have a much stronger effect and could keep you awake for hours, 

• you may experience digestion problems, especially with creamy, oily and fatty 

foods. You may even feel nauseous after you eat them, 

• you have stomach bloating and gas more often than usual,  

• eating asparagus will cause a strange smell in your urine. This is a classic liver 

disease symptom,  

• you will occasionally experience a warm, flush feeling will start in your trunk 

and rise upward toward the head,  

• you will begin to get frequent headaches, heartburn and acid reflux,  

• certain substances may cause a severe reaction, especially cleaning products, 

gasoline, paint, perfumes, bleaches, and so on.    

 

 In this thesis, we provide an alternative way to medical diagnosis. The physician 

may spend very long time for the assessment of the enzyme numbers during normal 

diagnostic period while making a decision based on those enzymes. This study provides 

a contribution to the medical diagnosis process by shortening the time through the use 

of an intelligent model and helps the physician to diagnose complex cases which are 

otherwise difficult to perceive. Physicians make a decision  according to enzyme values 

in normal diagnosis stage of this method . 

A multilayer neural network is used as one of the most popular methods for 

diagnostic processes. In this paper, the CMAC neural network has been preferred over 

the multilayer neural network. Because the multilayer neural network requires many 

iterations and a large number of computations per iteration to converge an output so that 

the algorithm runs slowly (Miller et all, 1990). However, the CMAC presents many 

attractive features that are useful for real time applications. The CMAC has been used to 

solve various robotic problems, control applications, medical applications, pattern 

recognition, signal processing and image processing applications (Albus, 1975a), 

(Albus, 1975b), and(Miller, Glanz, and Kraft, 1990). For example Hormel has applied 

Kohonen-type algorithms to adapt the storage mechanisms of the CMAC to match the 

input distribution (Hormel, 1990). Campanga (Kraft, and Campanga, 1990)  have 
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compared a CMAC-based controller with two traditional adaptive controllers. Bucak 

(Bucak, 2008), and (Karlık, and Bucak, 2009) has applied a diagnosis process such as 

odor recognition and detection of drinking water quality with CMAC algorithm. Chin-

Pao and others (Hung et all, 2003) have investigated the fault tolerance of CMAC 

Networks. Chin-Pao Hung has applied a diagnosis process such as PIC microcontroller 

based fault diagnosis apparatus design for water circulation system using CMAC neural 

network approach (Hung et all, 2007).  

In addition to CMAC research, there is a remarkable research on prediction of 

liver disease. In this research, Zhu and others have investigated prediction of radiation 

induced liver disease using artificial neural network (Zhu et all, 2006). This research 

shows an example of identification process of liver diseases by using neural Networks. 

 In Chapter 1, we describe liver, liver disease and its symptoms. It also discusses 

why we chose the CMAC Neural Network algoritm for diagnosing of the liver disease. 

Chapter 2 gives a detailed  discussion of the CMAC neural network and its significant 

properties. Chapter 3 discusses the CMAC  based liver diagnostic system which covers 

all the steps used in this thesis such as pattern collection, the CMAC liver diagnostic 

system, training data, quantization process, learning rule, learning convergence and 

performance evaluation, diagnosis algorithm and case study, and finally discussion. The 

last chapter summarizes the results and presents future research. 
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CHAPTER 2 

 

 

CMAC NEURAL NETWORK 
 

 

 

2.1 General Description of CMAC Neural Network 

Cerebellar Model Articulation Controllers (CMACs) is firstly proposed during 

1970s by James Albus  at National Bureau of Standarts. J. Albus’s idea was based on a 

model of cerebellum, which is part of a brain and is responsible for learning process. 

Albus used the CMAC to do rote learning of movements of an artificial arm (Miller et 

al, 1990). The CMAC  have been popularized  by group of professors at the robotics 

laboratory of the Department of Electrical and Computer Engineering at The University  

of New Hampshire (Miller et al, 1990). 

A general description of the CMAC is that it is a conversion device that converts 

given input vectors into associated output vectors (Burgin, 1992). The CMAC is an 

algorithm  which quantizes and generalizes its input, produce active memory addresses, 

and produce an output with  summing all the weights in the active memory adresses 

(Handelman, 1990). This  process of finding the output have several steps. Figure 1 

shows a CMAC Neural Network  with two inputs and one output. This figure describes 

how to find an output process. According to this figure, there exist four steps to produce 

the outputs in the CMAC algorithm. Firstly, input state space have one or more input 

vectors. These vectors re composed of discrete points. These discrete points are 

connected to the second step of CMAC known as state space detectors. The state space 

detectors is often called the CMAC’s virtual memory (Burgin, 1992). During this 

transformation input quantization and input generalization processes are carried out.

These process will be explained in detail in the next section. The next step is 

mapping from the state space detectors into the physical memory. This mapping process 
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may be realized in two different ways. First one is one-to-one mapping and the other 

one is many-to-one mapping or random mapping. Once the physical memory is 

assumed to be smaller than the number of state space detectors, this mapping process is 

called many-to-one mapping (Burgin,  1992).  If the state space detectors are not 

small enough for one-to-one mapping with physical memory, then random mapping 

should be used. In other words, if the state space detectors are small enough for one-to-

one mapping with pysical memory, we should use one-to-one mapping. The last step 

includes summing all the weigths in the physical memory to produce the output vectors. 

During the training, if the output vectors of the CMAC do not match a desired output 

for a given input state, the weights pointed to by the physical addresses are updated 

using the following simple steepest-descent update (the least mean square-LMS) rule 

(Handelman, 1990): 

                        
g

yy
ww d

oldjnewj

)(
)()(

−
+← β                                                               (2.1) 

 In this update equation, jw  is the weight, dy , the desired output of the CMAC 

system, y, the actual output of system, and β , the learning factor. β  can take any value 

between 0 and 1. Values of β , too  close to 1, can produce unstable learning behavior 

in certain situations (Rumelhart and McClelland, 1986). The goal is to find the weights 

that minimize the error, which is defined as the difference between desired and actual 

output as indicated earlier as based on the LMS delta rule. 
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∑

 

Figure 2.1  A block diagram of CMAC ANN. 

 Mapping between  the input state space and state space detectors (virtual 

memory) employed by CMAC has such a property that any two input vectors that are 

similar (close together in input space) will select an overlapping subset of locations in 

the virtual memory. Thus,  the output response of CMAC to similar input vectors will 

tend to be similar because of the memory locations which are in common. Hence 

CMAC tends to generalize (Albus, 1975b), and (Burgin, 1992). In this mapping, distant 

inputs will have a finite probability of sharing some of the same memory locations in 

virtual memory causing an undesirable generalization. The propability of such collisions 

depends on  the size of the input spate, the generalization parameter g, and the size of 

the virtual memory (Comoglio, 1991). Generalization parameter is the ratio of the width 

of receptive field (virtual memory) between adjacent layers of receptive fields. The 

width of the receptive fields produces input generalization, while the offset of the 

adjacent layers of receptive fields produces input quantization, (Miller, and Glanz, 

1996). Generalization parameter determines how many addresses in the virtual memory 

are excited by the vectors. According to Figure 2.1, g is 3, so that all the input vectors 

overlay 3 distinct locations from the virtual memory. 
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2.2 Input Quantization in CMAC Neural Network 

 In this section, we will describe the process of input quantization. In order to store 

information in memory, dividing the continuous input space into discrete sample 

intervals is a necessary process in CMAC learning procedure. This process is called 

quantization (Lu et all, 2006). Quantization concept has been developed due to the fact 

that the minimum variations in the input values do not affect the output values. During 

the quantization process, quantization levels affect the values of the input vector, so that 

the quantization has three levels; each  input vector can only assume the three values, 

such as zero, one or two (Burgin, 1992).  The stability of inputs depends on the level of 

quantization. If the quantization level increases, the stability of inputs increases.  

                 ),,,( maxmaxmin iiiii qXXXQq =       i=1,…,m                                 (2.2) 

     The values of each input vector are quantized with equation (2.2), where m is the 

number of inputs. The resolution of this quantization depends on the expected minimum 

and maximum input values, 
miniX  and 

maxiX , and on the number of quantization levels, 

maxiq  (Handelman, 1990).  

        Figure 2.2 shows a functional schematic of a three-input, single output CMAC 

module that was designed by Handelman, where the inputs are represented by 1x , 2x , 

3x  while the output is by y (Handelman, 1990).  The generalization parameter, g is 4. 

To compute the output, the CMAC algorithm quantizes its inputs, generate active 

memory addresses, and sum all the weights in the active memory addresses so as to 

compute the output. Figure 2.2 shows that the mapping Q  produces 1q , 2q , and 3q , the 

quantized versions of the three inputs 1x , 2x , and 3x . The next mapping, V [Eq (2.3)], 

computes the segments of addresses that, when concatenated [Eq (2.4)], from virtual 

weight addresses shown 1v , 2v , 3v  and 4v  is composed of three segments, one from each 

input. The quantization and segment mappings enable the CMAC to generalize, i.e., to 

produce similar outputs in response to similar inputs. Continuous variants in input 

values translate into discrete variations in input quantization levels. In the case that an 

input quantization level changes by 1, the same change occurs only in one of its virtual 

address segments. 
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Figure 2.2 Functional schematic of Cerebellar Model Articulation Controller (CMAC) 

(Handelman, 1990). 

),,,( jgqVV iji =                                gj ,...,1=                                       (2.3) 

),....,( 21 jmjjj VVVconcatV =                                                                        (2.4) 

 

           We will, now, summarize the quantization concept with an example to 

understand better. Assume that the value of input 2x  produces quantization 2q = 4. In 

this case, Figure 2.3 shows that the virtual address segments associated with this input 

would be  ,7,6,5 322212 === vvv  and 442 =v . If 2q  shifts from 4 to 5, all virtual 

address segments remain the same except 42v  as it shifts from 4 to 8. Consequently, for 

the network of  Figure 2.2 and Figure 2.3, as only one address will have changed (with 

the assumption that the other two input levels remain constant), outputs associated with 

neighboring input quantization levels will have three of four virtual weight addresses in 

common (Handelman, 1990). 

       The number of weights summed to obtain an output depends on the amount of 

network generalization, g. For a specific input quantization mapping, an increase in g 

means an increase in the amount of shared weights between neighboring input/output 
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pairs. An increase in the number of quantization levels,
maxiq , results in higher input 

resolution, but concurrently increases the size of virtual address space (Handelman, 

1990). 

 

 

Figure 2.3 CMAC Segment Mapping Function (Handelman, 1990). 
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Figure 2.4 CMAC Input Quantization (Handelman, 1990). 

 

 

2.3  Properties of the CMAC 

In this section, we will summarize the properties of the CMAC and mention pros 

and cons of these properties over the CMAC. The CMAC has several potential 

advantages over other neural network structures.     

The CMAC accepts real inputs and produce real outputs.The input components are 

quantized, but the number of levels can be as large as desired so that  any degree of 

accuracy is achievable (Miller et all, 1990).  

The CMAC has built-in local generalization which means that during mapping 

between input state and state space detectors, the CMAC has the property  that any two 

input vectors that are similar or close in the input space will select a highly overlapping 

subset  of locations in the state space detectors. Thus, the output response of the CMAC 

to similar input vectors will tend to be similar because of many  memory locations 
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which are in common. Hence, CMAC tends to  local generalization. The amount of 

generalization  depends on the number of overlapping memory locations in the state 

space detectors (Burgin, 1992).      

 The CMAC can learn a wide  variety of functions. It is easy to show, for example, 

that a one-input CMAC can learn early any discrete one-dimensional single-valued 

function, given a few mild conditions on the parameters of the CMAC (Miller et all, 

1990).  

The CMAC calculations are summations of output memory locations instead of 

multiple calculations per iteration.The time required per iteration will be much smaller 

with the CMAC than that of backpropagation. Therefore, given the same number of 

iterations, the CMAC will learn faster than backpropagation (Comoglia, 1991). The 

CMAC may actually take fewer iterations than multilayer perceptrons for certain 

problems (Miller et all, 1990) and is suitable for real time and  on-line practical 

applications. The CMAC is appropriate for real time and on-line applications because of 

the properties above (Comoglia, 1991).  

The CMAC has a practical hardware realization using logic cell arrays (Miller et 

all, 1990). 
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CHAPTER 3 

 

 

CMAC BASED LIVER ILLNESS DIAGNOSIS SYSTEM 

 

 

Today, early diagnosis and correct assessment of many diseases have great 

importance in terms of disease treatment. Therefore, diagnostic and classification 

process of a disease to be made by using today’s technology and medical data would 

present many uses. In this paper, we have considered the diagnosis of liver diseases 

such as Hepatitis B, Hepatitis C, Cirrhosis and the cirrhotic phases.  

Liver is vital part of our body (Hopkins, 2008). If the liver does not perform any 

of its vital missions such as production of bile, regulation of blood levels of amino 

acids, and production of certain proteins for blood plasma etc. (Darwin, 2008), human 

being would face a serious health consequences. Therefore, early diagnosis of the liver 

disease is extremely important. When diagnosing the liver disease, the physician looks 

at the patient's symptoms first such as irregular sleep, jaundice, and portal hypertension, 

and conducts a physical examination. In addition, the physician may request a liver 

biopsy, liver function tests (AST, ALT, biluribin), an ultrasound, or a computerized 

tomography (CT) scan (Darwin, 2008). Liver function tests can diagnose viral hepatitis 

and autoimmune liver diseases. An ultrasound scan will show blockage of the bile duct, 

fatty liver, cirrhosis, and liver tumors (Babe, 2007). 

During the sate of information gathering related to the liver disease, we made 

various inferences (Table 3.1). Here, we also would like to deal with the properties of 

enzymes used as the liver data while we explain one of these inferences. 

The physician may spend very long time for the assessment of the enzyme values 

during normal diagnostic period while making a decision based on those enzymes.
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This study provides a contribution to the medical diagnosis process by shortening 

the time through the use of an intelligent model and helps the physician to diagnose 

complex cases which are otherwise difficult to perceive. Neural networks have already 

proven its effectiveness and popularity for the medical diagnostic processes with 

different existing applications worldwide. In this study, the CMAC neural network 

approach using human liver test data composed of liver enzymes has been used to 

diagnose the liver disease in four classes. Enzmyes used to  identify  the classes were 

ALT, AST, PT, ALT/AST, Albumin, Protein, PLT. This classification process of the 

CMAC model is a supervised classification model. 

 
 
 

3.1 Enzymes and their signifiance in the Diagnosis of the Liver Disease  

As mentioned in the previous section, the first thing that comes to mind is the liver 

enzyme numbers in diagnosing the liver disease. These enzymes are briefly described as 

follows: 

AST (a.k.a. SGOT) is normally found in a diversity of tissues including liver, 

heart, muscle, kidney, and brain. For example, its level in serum rises with heart attacks 

and with muscle disorders. It is therefore, not a highly specific indicator of liver injury 

(Nabili, 2007), and (Şentürk et all, 2004). 

ALT (a.k.a. SGPT) is normally found in the liver. This is not to say that it is 

exclusively located in liver, but that is where it is most concentrated. It is released into 

the bloodstream as the result of liver injury. It therefore serves as a fairly specific 

indicator of liver status (Nabili, 2007), and (Şentürk et all, 2004). 

GGT (Gamma-Glutamyl Transpeptidase) is mainly kidney, liver, and pancreas 

original enzyme. GGT activity rises during all type of liver diseases (Centro, 2008), and 

(Moseley, 1995). The GGT test is extremely sensitive and may be elevated due to any 

type of liver disease or by the use of different drugs, including alcohol, even when liver 

disease is minimal (Batey, and Geoff, 2004). 
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Albumin is synthesized in the liver. Measurement of total concentration of serum 

albumin is useful test of liver cells (Moseley, 1995).  

Alkaline Phosphatase (a.k.a. ALAP) is a substance found in abundance in the liver 

and bones. When this enzyme is high, Lecuine aminopeptidase enzyme is checked; if 

this one is also high, then the damage is said to exist in the liver (Moseley, 1995).  

Leucine Aminopeptidase (a.k.a. LAP) is also called a protein that is normally 

found in liver cells. LAP is released into the blood when your liver cells are damaged. 

Drugs or infections such as hepatitis can damage liver cells (Alexander, 2007). 

           Now, we can infer the liver state of a person with regard to the blood levels of 

these enzymes. First, let us deal with the normal levels of these enzymes (Jaeger, and 

Hedegaard, 2002), and (Ghange, and Raste, 2004). 

 

AST: Normal Adult Range: 0 - 42 U/L  

ALT: Normal Adult Range: 0 - 48 U/L 

ALAP: Normal Adult Range: 20 - 125 U/L 

 

GGT: Normal Adult Female Range: 0 - 45 U/L 

           Normal: Adult Male Range: 0 - 65 U/L 

LAP: Normal Adult Range:28-42 U/L               
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Table 3.1 The enzymes used to diagnose the liver disease. 

 Cirrhosis Acute 

Hepatitis 

(alcohol or 

drug related) 

Hepatitis C Non-patient 

ALT Normal Increase more 

than 20 times of 

the normal 

Normal Higher, 

Normal 

AST Higher Increase more 

than 20 times of 

the normal 

Light or 

Moderately 

increased 

Higher, 

Normal 

ALP Icreased up to 3 

times of the 

normal 

Light or 

Moderately 

increased 

Higher Higher, 

Normal 

LAP Higher Higher Higher Normal 

GGT Higher, Normal Higher, Normal Higher, Normal Normal 

 

 

3.2 Pattern Collection 

One of the most significant problems of medical diagnosis is the subjectivity of 

the specialist and the data.  Various medical data can be applied to the CMAC models: 

1. Electro physical signals like EEG, EKG, 

2. Medical Imaging like tomography, ultrasonography or MR, 

3. Indicators of disease or tests like blood pressure, blood sugar or cholesterin. 

 In this study, we have used the data of the published research carried out by 

Pehlivan and his collaborators (Pehlivan et all., 2008). Hematological, radiological, 

serological, and biochemical examinations have been carried out on the patients with 
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the risk of having hemorrhage, and an additional liver biopsy has also been done on the 

patients with no risk of having hemorrhage, all of whom were included in this study. 

These results have been considered to diagnose (Comoglio, 1991). The enzyme values 

obtained as the result of these tests have been used as the liver data as well. Table 3.2 

shows the real clinical data used in this thesis in which seven distinct enzyme values 

have been used for diagnosing the liver disease. These are ALT, AST, PT, ALT/AST, 

Albumin, Protein, and PLT.  

In this study, the samples have been collected from twenty eight patients. Each 

data set representing one patient consists of approximately eight different attributes. 

Twenty four of those data have been used for training, and four of them for testing. We 

have determined four different classes in the liver disease as Hepatitis B (HBV), 

Hepatitis C (HCV), Cirrhosis A , and Cirrhosis B and C.  For each disease, there are six 

different data collection occurrence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

                                                                                                                                        20             
 

Table 3.2 Original value of liver enzymes. 

İSİM SOYADI CİNS YAŞ PT AST ALT AST/ALT TİP ALB TPROT PLT 

ŞENEL ERTÜRKMEN K 52 12,2 43 155 0,277419 1 3,6 6,7 154000 

ABDURRAHMAN ÖZDEMİR E 47 13 74 60 1,233333 1 4,5 8,5 221000 

ZÜBEYDE KILIÇ K 34 13 97 209 0,464115 1 4,4 7,9 244000 

AYŞE HABEŞOĞLU K 34 12,8 48 69 0,695652 1 3,4 7,6 195000 

AYNUR TURGUT K 24 12,6 83 172 0,482558 1 3,7 7,1 217000 

YAKUP ÇOLAK E 24 12,6 74 174 0,425287 1 4,3 8,3 208000 

CELAL  SENCEM E 18 11,6 60 112 0,535714 2 4,7 8,6 251000 

HASAN YAPRAK E 50 14,6 71 163 0,435583 2 4,3 8,4 117000 

 FİRDEVS POLAT K 47 12,3 28 31 0,903226 2 3,3  216000 

ALİ ÜSTEK E 67 12,3 32 36 0,888889 2 4,3 8 262000 

MEHMET ÖZYURT E 49 15,4 116 174 0,666667 2 3,5 8,5 93000 

CEVHER OĞUZ E 62 23,3 116 134 0,865672 2 4,3 7,4 190000 

AHMET ALTIOK E 45 16,2 26 53 0,49 3 3,5 7,5 46000 

AYŞE KELEŞ K 60 17,2 41 15 2,73 3 2,2 6,1 57000 

ASİYE TURAN K 60 18 37 49 0,75 3 3,2 5,8 120000 

DAVUT  AĞBAĞ E 55 15,9 59 85 0,69 3 3,4 8 75000 

GÜLSÜM BİNGÖL K 60 16 146 87 1,67 3 2,8 5,6 103000 

FİKRET YARIMAĞA E 70 16 68 56 1,21 3 3,5 6 64000 

NEZAKET PARLAK K 33 19 60 32 1,88 4 2,1 5,2 70000 

KADİR YILMAZ E 55 25 86 51 1,69 4 1,3 5,5 132000 

ÜNAL ÇOŞKUNER E 55 19,4 57 43 1,30 4 2,6 6,8 101000 

ARİF TORİN E 60 17,4 295 154 1,90 4 2,1 5,1 177000 

HALİL TAŞ E 65 29 70 31 2,26 4 1,5 3,6 71000 

CUMA KARAKAYA E 79 18 56 18 3,11 4 2,3 5,6 79000 

 

Each data has been normalized according to the following formula: 

normalized_value = (current_value -(min_value-1) )/((max_value-min_value)+2)   (3.1)                                                  

According to Eq.3.1, the entire range of the liver data is normalized to vary 

between 0 and 1, and thereafter the normalized data is used to train and test the CMAC 

artificial neural network. Figure 3.1 shows how the normalization process is performed 
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to find the normalized equivalents of the original data for the AST enzyme  in this 

example. 

 

Figure 3.1 An example of normalization process with Eq.(3.1). 

 

 

3.3 CMAC Liver Diagnosis System  

In the previous section, we have mentioned the enzymes used to make a decision 

for the liver disease. In this section, we are going to mention the liver disease 

considered in this study with respect to the enzyme values. 

In this study, we have succesfully completed the classification of four different 

diseases toward Hepatitis B, Hepatitis C, Cirrhosis (Phase A), and Cirrhosis (Phases B 

& C). We have given a brief explanation about these diseases in Chapter 1, we now 

would like to give an information about the phases of cirrhosis. In this classification 

process a table of criterion called the Child-Pugh is used. The Child-Pugh score 

(sometimes the Child-Turcotte-Pugh score) is used to assess the prognosis of chronic 

liver disease, mainly cirrhosis. Although it was originally used to predict mortality 

during surgery, it is now used to determine the prognosis, as well as the required 

strength of treatment and the necessity of liver transplantation (Child, 1964), and (Pugh 



 

 
 

                                                                                                                                        22             
 

et all, 1973). Table 3.3 shows Modified Child-Pugh classification of severity of liver 

disease according to the degree of ascites, the plasma concentrations of bilirubin and 

albumin, the prothrombin time, and the degree of encephalopathy (Pugh et all, 1973), 

and (Lucey et all, 1997).  

 

Table 3.3 Child-Pugh Classification of Severity of Liver Disease. 

 
Points assigned Parameter 

1 2 3 

Ascites Absent Slight Moderate 

Bilirrubin, mg/dL </= 2 2-3 >3 

Albumin, g/dL >3.5 2.8-3.5 <2.8 

Prothrombin time 

* Seconds over control 

* INR 

  

1-3 

<1.8 

  

4-6 

1.8-2.3 

  

>6 

>2.3 

Encephalopathy None Grade 1-2 Grade 3-4 

             

Table 3.4 shows Modified Child Pugh scoring table. A total score of 5-6 is 

considered grade A (well-compensated disease); 7-9 is grade B (significant functional 

compromise); and 10-15 is grade C (descompensated disease). These grades correlate 

with one- and two-year patient survival (Pugh et all, 1973), and (Lucey, 1997). 
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Table 3.4 Modified Child-Pugh scoring table. 

Grade Points One-year patient 

survival (%) 

Two-year patient 

survival (%) 

A: well-

compensated 

disease 

5-6 100 85 

B: significant 

functional 

compromise 

7-9 80 60 

C: descompensated 

disease 

10-15 45 35 

          

Table 3.5 shows the values of cirrhosis data used in this thesis according to the 

Child-Pugh scoring table. 

Table 3.5 The data for the patients with cirrhosis 

PT AST ALT AST/ALT Albumin Protein Platelet(Trombosit) Child Skor 

15 82 91 0,90 3,6 7 122000 A 5 

16,2 26 53 0,49 3,5 7,5 46000 A 5 

16 59 55 1,07 3,5 9,7 144000 A 5 

14 15 22 0,68 2,5 6,3 98000 A 6 

14 62 53 1,17 3,1 7,6 164000 A 6 

13 62 106 0,58 3,5 6,8 149000 A 6 

16 24 30 0,80 4,4 7,4 172000 A 6 

17,2 41 15 2,73 2,2 6,1 57000 A 6 

14,4 180 178 1,01 2,9 5,9 62000 B 8 

15 69 73 0,95 2,4 6,9 148000 B 8 

17,9 18 16 1,13 3 5,9 177000 B 8 

17 133 85 1,56 2,6 8,9 101000 B 8 

13 49 28 1,75 2,6 5 143000 B 9 

16 52 26 2,00 2,7 5,3 180000 B 9 

24 23 17 1,35 2,2 5,6 76000 C 10 

16,1 37 23 1,61 3 6 89000 C 10 

18 97 65 1,49 2,5 5,4 116000 C 10 

19 33 36 0,92 2,5 6 65000 C 10 
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In this study, the CMAC artificial neural network ANN with 24-input vector and 

5-output vector has been used. The input vectors can be called training data and the 

output vectors can be called Hepatitis B, Hepatitis C, Cirrhosis A, Cirrhosis B and C 

and other types. The class that we call other type can either be any unclassified disease 

associated with the liver or the liver data with no liver disease. Figure 3.2 shows the 

CMAC artificial neural network with 24 inputs and 5 outputs. 

 

 

 

 

Figure 3.2 The CMAC ANN model used to diagnose the liver disease. 

3.3.1 Training mode 

In the training mode, the normalized enzyme data are used to train  the CMAC 

artificial neural network. These data perform the mapping  process first between 

quantization and memory locations to start with the network training  after being loaded 

into the CMAC ANN. Later, the output vector is formed by summing the weights in the 

physical addresses so that the training process gets done. The recognition is decided 

upon the similarity process which seeks similarity between  the output vector of the test 

data and the training data after the test data has been gone through the similar process as 

the training data. 
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3.3.2 Quantization mode 

As shown in Figure 3.2, the input signals are first reduced by the quantization 

process to produce a quantization level output. The quantization output can be 

calculated in MATLAB as follows (Dunphy, 1993). 

 

function [ quantizedInput ] = QuantizeInput( realInput ) 

global quantization; 

[row col]=size(realInput); 

%fprintf('Quantization:%d',quantization); 

qInput = zeros(col,1); 

for k=1:col 

    qInput(k)=uint8(floor((realInput(k)-0.00000000000001)*quantization)); 

    %fprintf('[%d]',qInput(k)); 

end 

%fprintf('\n'); 

quantizedInput=qInput; 

According to the equation in the code above,  the real input can take values 

between 0 and the quantization level. For example, if the  quantization level is 4, the 

actual input at the end of the quantization process can take the value of 0, 1, 2, or 3. 

This process can be realized  through the formula provided in the code above. 

3.3.3 Learning rule 

The CMAC ANN model is a supervised learning algorithm (Hung, and Wang, 

2004). According to this algorithm, sample inputs and desired outputs related with the 

problem are provided to the system. This algorithm uses delta rule during the training as 

we have mentioned earlier. The CMAC is capable of fast learning because of this 

learning rule (Moody, 1989). 
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3.3.4 Learning   convergence  

To be able to say that the CMAC ANN has the property of learning convergence, 

then the CMAC should be capable of learning any mapping (Wong, 1992). Miller 

showed that the CMAC learning rule was LMS (Widrow, and Stearns, 1984), (Miller, 

1989), and (Miller et all, 1990), and LMS rule was not a satisfactory one in terms of a 

global learning convergence as it only guaranteed local minima (Wong, 1992). If the 

CMAC had  a big enough memory for the mapping between the virtual memory and the 

physical memory, the research has shown that there is no need  for hashing (Wong, 

1992). It is proven that the CMAC  is capable of learning any mapping, (Wong, 1992). 

As a result, the CMAC NN satisfies the learning convergence, i.e., it guarantees it 

(Wong, 1992), (Chiang, 1995), and (Hung, and Yang, 2007).   

 

 

3.4 Diagnosis Mode 

The trained CMAC NN is now ready for the recognition process. The totally 

different data from the data of the training, which goes through the same normalization 

process and is called test data, are inputted to the network for the recognition process. 

The operations of the CMAC ANN will be the same as the training mode when the test 

data is inputted to the diagnostic system. But in diagnosis mode, the weights of the same 

excited memory addresses of each memory layer are summed up and each layer has one 

output value. If the input signals are the same as the training  patterns, they will excite 

the same memory addresses (Hung, and Yang, 2007). So, the output of CMAC ANN 

can be HBV, HCV, Cirrhosis A, Cirrhosis B and C; Otherwise, the output of CMAC 

ANN will be called other types in the program. 

3.4.1 Train and Diagnosis algorithm 

In this section, the CMAC algorithm is described as based on the configuration in 

Figure 3.2: 

Step 1      Build configuration of CMAC liver illness diagnostic system. It                              
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                includes 24-input liver data and 5 output nodes. 

Step 2     Normalize, load and input the training data, through quantization,  

                memory addressing, and the weights of the summation of excited  

                 memory addresses to produce the output nodes. 

Step 3      Calculate the difference between actual output and desired           

                output to  find the weights, which minimize the error as based    

                on the LMS rule. 

Step 4     Training is finished. Save the memory weights. 

Step 5  Normalize, load and input the testing data, through quantization, memory 

addressing, and summation of the weights of the excited memory addresses to 

produce the outputs. (If the input signals are the same as the training patterns, 

they will excite the same  memory addresses). 

Step 6    Output the testing result. 

We initially studied a code (Dunphy, 1993). We have developed our own code as 

based on our own needs. The algorithm mentioned above has been implemented by 

MATLAB programming language with the codes shown below. This MATLAB 

program is composed of seven separate sections. These sections are CMAC_run, 

Initialize CMAC, QuantizeInput, FromInterconnection, Train, Test and ComputeOutput 

respectively. We will deal with each section separately and explain the significant 

details. 

 In the first section, the train and test data are loaded, and the digital values of the 

quantization, maximum iteration, Learning rate ( β ), desired error are expressed as a 

matrix of the size 1*5 with a name of Prm. Later on, the desired output is reached by 

invoking initialization, training, quantization, and testing functions respectively. 
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clear all; clc; 

global n_inputs;    global pass;            global maxIteration;     

global data;        global input;           global error;            

global desired;     global totalError;      global maxError; 

global desiredError;global test;            global inputCount;    

global output;      

fprintf('Loading Files...\n'); 

load traindata.txt; 

load testdata.txt; 

fprintf('Initializating CMAC...\n'); 

Prm=[4 2 200 0.1 0.1];%[quantization width maxIteration learningRate targetError] 

timeInitStart=clock; 

initializeCMAC(Prm(1),Prm(2),Prm(3),Prm(4),traindata,testdata,Prm(5)); 

                

timeInitFinish=clock; 

fprintf('Initialization is Completed.\nStarting Training\n'); 

timeTrainingStart=clock; 

maxError=1.0; 

while (maxError>=desiredError) &&(pass<maxIteration)     % for each pass */ 

        totalError=0.0; 

        maxError=0.0; 

        for i=0:n_inputs-1                               % for each possible input */ 

            input = data(i+1,1:inputCount); 

            input = QuantizeInput(input); 

            desired = data (i+1,inputCount+1); 

            Compute_Output(); 

            Train(); 

            fprintf('Input:'); 

            for sc=1:inputCount 

                fprintf('[%d]',input(sc)); 

            end 

            fprintf('\tTarget:%d\tActual:%f\t\tError:%f\n',desired,abs(output),error); 

           totalError=totalError+abs(error); 

           maxError=max(abs(error),maxError); 

        end 

        

  

fprintf('PASS=%d   \tMaximum Error=%g\tAverage Error=%f\n', pass,maxError,(totalError/n_inputs)); 
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fprintf('______________________________________________________________________________

_\n'); 

        pass=pass+1; 

        if pass>maxIteration 

          break; 

        end 

end 

timeTrainingFinish=clock; 

fprintf('\nTraining is Completed !\nStarting Testing....\n'); 

timeTestStart=clock; 

TestCMAC(test); 

timeTestFinish=clock; 

initDuration = etime(timeInitFinish,timeInitStart); 

trainingDuration = etime(timeTrainingFinish,timeTrainingStart); 

testDuration = etime(timeTestFinish,timeTestStart); 

fprintf('\nInitialization Duration:%f\n',initDuration); 

fprintf('Training Duration:%f\n',trainingDuration); 

fprintf('Test Duration:%f\n',testDuration); 

fprintf('Training Step:%d\n',pass-1); 

fprintf('%d\t%d\t%f\t%f\t%d\t%f\t%f\t%f\n',Prm(1),Prm(2),Prm(4),Prm(5),pass-

1,initDuration,trainingDuration,testDuration); 

 

 

 

In this section, initalization process is started by receiving the values inside Prm[.] 

matrix. Firstly, the size of the traning data is computed, and then, the input dimension is 

determined, and lastly, the possible number of input vectors are determined. The other 

most significant part of this section is to input the maximum iteration number to the 

program. Then, FromInterCon() function, which makes the intermemory mapping 

operations, is invoked. 
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function InitializeCMAC( quant,w,maxIt,beta,trainData,testData,targetError) 

global n_inputs;    global pass;            global n_sensors; 

global inputCount;  global quantization;    global width;    

global maxNeurons;  global conn;            global maxIteration;     

global data;        global weight;          global learningRate; 

global desiredError;global test;            global numberOfNeurons; 

     data=trainData 

    test =testData 

    recordCount=size(data); 

    inputCount=recordCount(2)-1 ;% input dimensions */ 

    n_inputs=recordCount(1);  % number of possible input vectors */ 

    quantization=quant; % input quantization per dimension */ 

    width=w ;% width of input sensors */ 

    maxNeurons=500000; 

    n_sensors = (quantization + width - 1) ^ inputCount; 

    conn = zeros(quantization,inputCount,maxNeurons+5); 

    numberOfNeurons=FormInterConnection() 

    n_sensors=numberOfNeurons * inputCount; 

    weight = zeros(numberOfNeurons+1,1); 

    pass=1; 

    desiredError=targetError; % maximum error for any input */ 

    maxIteration = maxIt; 

    learningRate = beta; 

    %fprintf('Sensor Count:%d\n',n_sensors); 

    fprintf('Training Data Row Count:%d, Col Count:%d\n',n_inputs,inputCount); 

    fprintf('Quantization:%d\n',quantization); 

    fprintf('Target Min Error:%f\n',desiredError) 

 

This section does the mapping operations between the virtual memory and the 

physical memory. 

 

 

function [neuronCount] =FormInterConnection( ) 

global maxNeurons;      global quantization;    global width; 

global conn;            global n_sensors;       global inputCount; 

%global numberOfNeurons; 
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numberOfNeurons=0; 

k1 = (quantization + width - 1); % intermediate calculation */ 

        for i=0:width-1 

           for j=0:n_sensors-1                                            

              found=1; 

                  m=1; 

                for k=0:inputCount-1                             

                   mod0=floor(j/m); 

                   mod1=mod(mod0,k1); 

                   mod1=floor(mod1); 

                   mod2=mod(mod1,width); 

                   if  mod2 ~=i          %if((((j/m)%k1)%width)!=i){ 

                      found=0; 

                      break; 

                   end 

                   m=m*k1; 

                end 

                if found==1  

                        m=1; 

                        for k=0:inputCount-1 

                            n=mod(floor(j/m),k1);                                             

                            for p=max(0,n-width+1): min(n,(quantization-1)) 

                                col=conn(p+1,k+1,maxNeurons+1)+1; 

                                conn(p+1,+k+1,col) =numberOfNeurons; 

 

                                num=conn(p+1,k+1,maxNeurons+1); 

                                conn(p+1,k+1,maxNeurons+1)=num+1; 

                            end 

                            m=m*k1; 

                        end 

                        numberOfNeurons=numberOfNeurons+1; 

                            if numberOfNeurons > maxNeurons  

                                fprintf('cmac: error, maximum number of gates exceeded'); 

                            end 

                     end 

            end 

         end 

    neuronCount=numberOfNeurons; 

    fprintf('Mapping Completed !\n'); 
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    This function forms an output for all the given input values by being invoked 

after the initialization process. 

function Compute_Output(  ) 

global output;      global activatedNeurons;    global input; 

global weight;      global neurons;             global inputCount; 

global maxNeurons;  global currentNeuronCount;  global conn; 

global numberOfNeurons; 

   activatedNeurons(numberOfNeurons+1)=0; 

        output=0; 

        neurons = zeros(numberOfNeurons,1); 

            for u=0:inputCount-1                                            % for all inputCounts */ 

                  inp=input(u+1); 

                  currentNeuronCount=conn(inp+1,u+1,maxNeurons+1); 

                  for v=0:currentNeuronCount-1                                       %increment all Neurons in list */ 

                        g=conn(inp+1,u+1,v+1); 

                        neurons(g+1)=neurons(g+1)+1; 

                        if ((u+1)==inputCount) && (neurons(g+1)==inputCount)                % if activated */ 

                               pu=  activatedNeurons(numberOfNeurons+1);   

                               activatedNeurons(numberOfNeurons+1)=pu+1; % generate list of activ’d Neurons */ 

                               activatedNeurons(pu +1) =g; 

                               output=output + weight(g+1); 

                        end 

                  end 

            end 

 

Train function is essentially the weight update process in which firstly compares 

the actual output with the desired output is compared, and then the weights of the active 

neurons if a difference exists between the actual and desired outputs are updated with 

the predetermined learning rate according to the LMS (Eq. 2.1). This is basically no 

different from updating the weights of the active neurons. 

 

function  Train( ) 

global inputCount;      global numberOfNeurons; global output;       

global activatedNeurons;global input;           global weight;          

global learningRate;    global error;           global desired; 
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error=desired-output; 

for E=0:activatedNeurons(numberOfNeurons+1)-1                      

    % using list of activated neurons */ 

      ind=activatedNeurons(E+1)+1; 

      agirlik=weight(ind); 

      hesap=agirlik+ (learningRate*error); 

      weight(ind)=hesap; 

end   

 

      

This is a lastly invoked function. It determines the size of the test data and assigns 

the inputs in the data file to a matrix. Later on, it quantizes the inputs in this matrix one 

by one, it forms an output by invoking Compute-Output function. Lastly, it classifies 

according to the output value.  

 

function TestCMAC( test ) 

global input; 

global output; 

[testRowCount,testColCount] = size(test); 

for i=1:testRowCount 

    input = test(i,1:testColCount-1); 

    fprintf('Test %d\nReal Input:\t',i); 

    for j=1:testColCount-1 

        fprintf('[%f]',input(j));  

    end 

    input=QuantizeInput(input); 

    fprintf('\nQuantized:\t'); 

    for j=1:testColCount-1 

 

        fprintf('[%d]',input(j));  

    end 

    Compute_Output(); 

    fprintf('\nOutput:%f\t',output); 

    intOutput = uint8(output); 

    switch intOutput 

        case 1 

            fprintf('(HVB)'); 
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        case 2 

            fprintf('(HVC)'); 

        case 3 

            fprintf('(child-A)'); 

        case 4 

            fprintf('(child-BC)'); 

        otherwise 

            fprintf('(Other Types)'); 

    end 

    fprintf('\n_____________________________________________________\n'); 

end 

 

 

 

 

3.5. Case study and discussion 

To demonstrate the effectiveness of the proposed algorithm, we have sieved to 

seven sets of data for each liver illness type. Six sets are utilized as the training pattern 

and the last one is the test data. All the data are listed in Table 3.6 and the bold typed 

rows represent the test data. 

 

 

 

 

 

 

 

 

Table 3.6 Liver test and train data.  
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Patient 

no 

                                                 Normalized liver data 

    Age         ALT            AST        ALT/AST    Albumin   Protein         Platelet      PT Illness Type 

1 0,56 0,05 0,07 0,72 0,21 0,61 0,59 0,42 HBV 

2 0,48 0,1 0,18 0,22 0,4 0,78 0,86 0,68 HBV 

3 0,27 0,1 0,27 0,99 0,25 0,76 0,77 0,77 HBV 

4 0,27 0,09 0,08 0,27 0,29 0,57 0,72 0,58 HBV 

5 0,11 0,07 0,21 0,8 0,25 0,63 0,65 0,66 HBV 

6 0,11 0,07 0,18 0,81 0,24 0,74 0,83 0,63 HBV 

7 0,02 0,02 0,13 0,49 0,26 0,81 0,87 0,8 HCV 

8 0,52 0,18 0,17 0,76 0,24 0,74 0,84 0,28 HCV 

9 0,48 0,06 0,01 0,07 0,34 0,56 0,78 0,66 HCV 

10 0,79 0,06 0,03 0,1 0,33 0,74 0,78 0,84 HCV 

11 0,51 0,22 0,34 0,81 0,29 0,59 0,86 0,18 HCV 

12 0,71 0,64 0,34 0,61 0,33 0,74 0,7 0,56 HCV 

13 0,44 0,27 0 0,19 0,25 0,59 0,71 0 Child-A 

14 0,68 0,32 0,06 0,01 0,72 0,35 0,51 0,04 Child-A 

15 0,68 0,36 0,04 0,17 0,3 0,54 0,46 0,29 Child-A 

16 0,6 0,25 0,13 0,35 0,29 0,57 0,78 0,11 Child-A 

17 0,68 0,26 0,45 0,36 0,5 0,46 0,43 0,22 Child-A 

18 0,84 0,26 0,16 0,2 0,4 0,59 0,49 0,07 Child-A 

19 0,25 0,41 0,13 0,08 0,54 0,33 0,38 0,09 Child-BC 

20 0,6 0,73 0,23 0,18 0,5 0,19 0,42 0,33 Child-BC 

21 0,6 0,44 0,12 0,13 0,42 0,43 0,61 0,21 Child-BC 

22 0,68 0,33 1 0,71 0,54 0,33 0,36 0,51 Child-BC 

23 0,76 0,95 0,17 0,07 0,62 0,22 0,14 0,1 Child-BC 

24 0,98 0,36 0,11 0,01 0,79 0,37 0,43 0,13 Child-BC 

25 0,12 0,07 0,2 0,8 0,25 0,62 0,65 0,65 HBV 

26 0,51 0,22 0,34 0,81 0,29 0,59 0,86 0,18 HCV 

27 0,68 0,36 0,04 0,17 0,3 0,54 0,46 0,29 Child-A 

28 0,6 0,43 0,11 0,13 0,42 0,43 0,61 0,21 Child-BC 

 

Figure 3.3 gives us the results of the CMAC NN program which we have formed 

with a predetermined quantization, width, learning rate, and the desired error values. 

Table 3.7 shows the obtained results when we give various values to the variables.  
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Figure 3.3 Output of the MATLAB program. 
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Table 3.7 Performance table of the MATLAB CMAC program. 

Q W Beta Desired Error Init Time Learning T. Test Time Step 

3 2 0,1 0,1 0.34400 3.765.000 0.016000 199 

3 2 0,1 0,01 0.312000 3.719.000 0.015000 199 

3 2 0,1 0,001 0.328000 3.609.000 0.016000 199 

3 2 0,1 0,0001 0.313000 3.625.000 0.016000 199 

3 2 0,1 0,00001 0.312000 3.735.000 0.015000 199 

3 2 0,1 0,000001 0.328000 4.000.000 0.016000 199 

3 2 0,4 0,1 0.328000 3.625.000 0.016000 199 

3 2 0,4 0,01 0.328000 3.625.000 0.016001 199 

3 2 0,4 0,001 0.328000 3.578.000 0.016000 199 

3 2 0,4 0,0001 0.328000 3.750.000 0.016000 199 

3 2 0,4 0,00001 0.329000 3.593.000 0.016000 199 

3 2 0,4 0,000001 0.313000 3.610.000 0.015000 199 

4 2 0,4 0,1 1.375.000 0.469000 0.016000 6 

4 2 0,4 0,01 1.344.000 0.656000 0.031000 9 

4 2 0,4 0,001 1.390.000 0.891000 0.031000 13 

4 2 0,4 0,0001 1.391.000 1.187.000 0.031000 17 

4 2 0,4 0,00001 1.359.000 1.407.000 0.031000 20 

4 2 0,4 0,000001 1.359.000 1.657.000 0.031000 24 

4 3 0,4 0,1 13.453.000 0.750000 0.032000 16 

4 3 0,4 0,01 13.453.000 1.234.000 0.032000 27 

4 3 0,4 0,001 13.656.000 1.750.000 0.031000 37 

4 3 0,4 0,0001 13.281.000 2.141.000 0.031000 47 

4 3 0,4 0,00001 13.406.000 2.750.000 0.031000 58 

4 3 0,4 0,000001 13.609.000 3.360.000 0.157000 68 

5 3 0,4 0,1 46.140.000 2.172.000 0.063000 16 

5 3 0,4 0,01 45.718.000 4.985.000 0.047000 38 

5 3 0,4 0,001 45.984.000 7.735.000 0.046000 60 

5 3 0,4 0,0001 45.844.000 11.188.000 0.062000 82 

5 3 0,4 0,00001 45.938.000 13.907.000 0.062000 104 

5 3 0,4 0,000001 45.843.000 16.437.000 0.047000 126 

4 2 0,6 0,1 3.015.000 0.719000 0.031000 6 

4 2 0,6 0,01 2.984.000 1.063.000 0.047000 9 

4 2 0,6 0,001 3.016.000 1.532.000 0.046000 13 

4 2 0,6 0,0001 3.032.000 1.875.000 0.046000 16 

4 2 0,6 0,00001 3.016.000 2.265.000 0.031000 19 

4 2 0,6 0,000001 2.985.000 2.750.000 0.047000 23 

4 2 0,5 0,1 1.500.000 0.406000 0.157000 5 

4 2 0,5 0,01 1.344.000 0.593000 0.016000 8 

4 2 0,5 0,001 1.344.000 0.719000 0.015000 11 

4 2 0,5 0,0001 1.344.000 0.969000 0.031000 14 

4 2 0,5 0,00001 1.359.000 1.250.000 0.015000 17 

4 2 0,5 0,000001 1.359.000 1.360.000 0.031000 20 
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4 2 0,3 0,1 1.329.000 0.484000 0.016000 11 

4 2 0,3 0,01 1.344.000 0.938000 0.031000 14 

4 2 0,3 0,001 1.359.000 1.250.000 0.031000 18 

4 2 0,3 0,0001 1.359.000 1.641.000 0.031000 24 

4 2 0,3 0,00001 1.343.000 2.047.000 0.031000 29 

4 2 0,3 0,000001 1.375.000 2.329.000 0.015000 34 

4 2 0,8 0,1 1.375.000 0.766000 0.031000 11 

4 2 0,8 0,01 1.375.000 1.328.000 0.015000 19 

4 2 0,8 0,001 1.375.000 2.156.000 0.031000 27 

4 2 0,8 0,0001 1.375.000 2.532.000 0.031000 36 

4 2 0,8 0,00001 1.344.000 3.000.000 0.015000 44 

4 2 0,8 0,000001 1.375.000 3.609.000 0.016000 53 

 

According to Table 3.7, the variables of quantization=4, width=2, learning 

rate=0,5 have shown us that the program runs with the best performance overall. 

Learning Rate vs Learning Steps
 for Quant=4 and Width=2
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                       Figure 3.4 Learning rate vs. Learning steps. 

Figure 3.4 shows that, as the learning rate β is decreased, it takes shorter steps for 

the algorithm to classify the input states accurately. That can also be justified from the 

resulting table data in Table 3.7. 
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Desired Error vs Learning Steps         
  for Quant=4 and Beta=0,5
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Figure 3.5 Desired error vs. Learning steps. 

Figure 3.5 indicates that the learning steps for the algorithm that learns to classify 

the data correctly will increase linearly for all the desired errors. 
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Desired Error vs Learning Time
for Quant =4 Beta =0.5
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Figure 3.6 Desired error vs. Learning time. 

 

Figure 3.6 shows the relationship between the desired error and the learning time 

when the quantization is 4, and the learning rate is 0,5. According to the figure, there is 

no any recordable variation in the learning time until the  desired error becomes 0.0001. 

Nonetheless, the learning time increases sharply at the desired error which is much 

smaller than the value of  0.0001 as shown in the figure. 
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CHAPTER 4 

 

 

                                       CONCLUSION 
 

 

In this chapter we will summarize the major findings of our study. As the use of 

artificial neural networks in various recognition processes is widespread, the 

applications of the CMAC ANN to such recognition processes has been known for a 

long time. Melancholia Diagnosis based on CMAC Neural Network Approach (Hung, 

and Yang, 2007), and CMAC based neural networks detection for drinking water 

quality (Bucak, 2008) can be given as the two recent applications in this field. 

In this thesis, we provide an alternative way to medical diagnosis. The physician 

may spend very long time for the assessment of the enzyme numbers during normal 

diagnostic period while making a decision based on those enzymes. This study provides 

a contribution to the medical diagnosis process by shortening the time through the use 

of an intelligent model and helps the physician to diagnose complex cases which are 

otherwise difficult to perceive. Physicians make a decision  according to enzyme values 

in normal diagnosis stage of this method . 

In addition, with the learning ability of the CMAC neural network models, 

adaptability to various problems, minimum data requirements and minimum processing 

time period help modeling problems efficiently.  

A system to recognize all types or phases of the liver disease in the future can be 

developed by using the data and the method in this study. The future research may 

present many advantages in the recognition of the process and the performance of the 

algorithm by increasing both the number of training and the testing data. Other enzymes 

not used in this study can be included to the research to refine and diversify the results. 

A comparison can be made between the current algorithm and a future extraction 

method to be used with the liver data in this study. Additionally, a fuzzy neural network
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application can serve to explain and illustrate the unknown  transitional period between 

the phases of the liver disease. 
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