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Supervisor: Prof. Dr. Allaberen ASHYRALYEV

ABSTRACT

In the present work a fourth order differential operator A* defined by the formula

- d*u
Au:@—i-éu,

with domain

D(Aff):{uecﬂo,u:u(O):u(l):o, W' (0) = u (1):0}

and a fourth order difference operator Aj defined by the formula

N—-2

—4 6uy, —4uy_ _
Axuh — ) oAUt U2k Up—1+UE—2 + 5Uk
h h 9

ug=uny =0, —uy+2u; —ug=uny_o—2uny_1+uy =0

are studied. Here 6 > 0.The positivity of differential operator A* in C'[0, 1] and of the

difference operator Aj in C}, are established.

In applications the stability, the almost coercive stability and the coercive stability

estimates for the solution of difference schemes in difference analogues of Holder spaces

are obtained.

Keywords: Positivity, stability estimate, almost coercive stability estimate,

coercive stability estimate.



FARK SEMALARI iCIN POSITIiF
OPERATORU METODU

Esat GEZGIN
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Tez Yoneticisi: Prof. Dr. Allaberen ASHYRALYEV

OZET

Bu calismada,
. dw

formiiliiyle verilen ve tanim kiimesi
D (4% = {ue * 0,1] s u(0) = u () =0, v (0) =’ (1) = 0}

olan dordiincii derece A* differensiyal operatorii ile

N—-2

—4 6uy, —4uy_ _
Awuh — ) Uk —AUpit U2k Up—1+UK—2 + §Uk :
h h 9

up=uy =0, —us+2u; —uy=un—2—2un—1 +uy =0

verilen dordiincii derece A} fark operatorii aragtirilmigtir. A* differensiyal
operatoriiniin  C' [0, 1] uzayindaki pozitifligi ve A7 fark operatoériiniin C, uzayimndaki

pozitifligi incelenmistir.

Uygulamalarda, fark semalarimin Holder uzaymndaki fark analoguyla ¢oziimii icin
kararlilik kestirimleri, hemen hemen koersif kestirimleri ve koersif kestirimleri elde

edilmistir.

Anahtar Kelimeler: Pozitiflik, kararlhilik kestirimi, hemen hemen koersif kestirimi,

koersif kestirimi.
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CHAPTER 1

INTRODUCTION

It is a well -known that various local and non-local boundary value problems for
PDE can be reduced to the abstract boundary value problem for ordinary differential
equation in a Banach space E with an unbounded differential operator A. The study
of various properties of partial differential equation is based on a positivity property of
this differential operator in a Banach space. The positivity of wider class of differential
operators have been studied by Yosida K. (Japan), Kato T. (Japan, USA), Agmon S.
(Israel), Friedman A. (USA), Solomyak M.Z. (USSR, Israel), Sobolevskii P.E. (USSR,
Israel), Stewart H.B. (USA) at all.

Important progress has been made in the study of positive operators from the view-
point of the stability analysis of higher order accuracy difference schemes for partial
differential equations. It is a well-known that the most useful methods for stability
analysis of difference schemes are difference analogue of maximum principle and energy
method. The application of theory of positive difference operators permits us to in-
vestigate the stability and coercive stability properties of difference schemes in various
norms for partial differential equations specially when we can not be able to use of

maximum principle and energy method.

It is known that fourth order differential equations can be solved by the Fourier

series method, by the Fourier transform method and by the Laplace transform method.

Now let us consider some examples.

First let us consider the following simple fourth order boundary value problem

( 82@;(;?) +u(x)= (7t +1)sinmz, 0 <z <1,
u(0) = (1) =0, (1)
\ u' (0)=u" (1) =0.

For the solution of problem (1.1), we use the Fourier series method. Let

u(z) = 5 + Z Ay, cos krx + By sinkmx.
k=1



Substituting in the equation we get

NE

A
70 + (k*'r* +1) (Apsinkrz + Bysinkrz) = (7' 4+ 1) sinma
k=1
and
Ag=0, Bp=0for k=1,2,...,
for k #£ 1
(k47r4 + 1) Apsinkrx = 0.
Therefore
Ak = 07
for k=1
(7‘[’4 + 1) Aisinme = (7?4 + 1) sinmzx.
Thus
Al - 1,
and

u(r) =sinmr

is the solution of the fourth order boundary value problem (1.1)

Note that using the same manner one obtains the solution of the following 2m order

boundary value problem

u® (0) = u?, u® (1) = uf?,

K=0,1,2,...m

\

where o and f(z) are given smooth functions. However, the method of Fourier series

can be used only in the case when it has constant coefficients. It is well-known that the

most useful method for solving boundary value problems with dependent coefficients is

difference method.

Second, we consider the fourth order differential equation

9*u(z)
ozt

+u(zr)=2e" —0<z<o00,



Here, we will use the Laplace transform method to solve the problem (1.2). Let

u(s) = L{u(z)}.

So our problem becomes

2
1 2 3
| 1— _ =
(s"+1)u(s)+1—s+s"—s s
and .
u(s):1+8.

Finally taking the inverse of Laplace we obtain

u(r)=e"
is the solution of the given fourth order differential equation (1.2).

Note that using the same manner one obtains the solution of the following 2m order
differential equation

(=)™ L2e (1) + ou(x) = f(2), 0 <z < 00,

dx2m

u) (0) :ugK), 0<K<2m-1

where o and f(x) are given smooth functions. However, the Laplace transform method
can be used only in the case when it has constant coefficients. It is well-known that
the most useful method for solving differential equations with dependent coefficients is
difference method.

Third, we consider the following fourth order differential equation

d*u (z)

dr?

tu(r) = (13 — 4822 + 162%) e, z € RL. (1.3)
We will use the Fourier transform method to solve the problem (1.3). Let

We take the Fourier transform of both sides of the equation (1.3) and, we get

F {dz;ix) } + F{u(x)} =F { (13 — 482® + 162*) 6_362} .



From that it follows

((is)* + 1) u(s) = F { <e)} +F {e”“"?} .

Then our problem becomes

Finally taking the inverse of Fourier transformation we obtain the solution for the

problem (1.3) as

Note that using the same manner one obtains the solution of the following 2m order

differential equation

(—)™ 2;;: () +ou(x)=f(x), v €R"

where o, f(z) are given smooth functions. However, the Fourier transform method
can be used only in the case when it has constant coefficients. It is well-known that
the most useful method for solving fouth order differential equations with dependent

coefficients is difference method.

Now let us give the definition of positive operators.

Definition 1.1 The operator A is said to be strongly positive if its spectrum o (A)
lies in the interior of the sector of angle ¢, 0 < 2¢ < w, symmetric with respect to
the real axis, and if on the edges of this sector, S (¢) = {pe® : 0 < p < o0 } and
Sy (@) = {pe™ : 0 < p < 00}, and outside of the resolvent (A — A)™" is subject to the

bound M ()
1
||E—>E < 1+W'

|(A—=A4)~

The infimum of all such angles ¢ is called the spectral angle of the strongly positive
operator A and is denoted by ¢ (A) = ¢ (A, E). Since the spectrum o (A) is a closed
set, it lies inside the sector formed by the rays Sy (¢ (A)) and Ss (¢ (A)), and some
neighborhood of the apex of this sector does not intersect o (A). We shall consider
contours T' =T (¢, r) composed by the rays Sy (¢), Sz (¢) and an arc of circle of radius
r centered at the origin; ¢ and r will be chosen so that o (A) < |o| < 7/2 and the arc

of circle of radius r lies in the resolvent set p (A) of the operator A.

In the present work a fourth order differential operator A* defined by the formula

- du
Au:@—i-éu,



with domain
<DMﬂ:{uECﬂQHmM®:uO):Qu%@zu%DzO}

and a fourth order difference operator A} defined by the formula

)

— gy + Gup — dup g+ g N=2
Aﬁuh — {uk‘“ Uk+1 ;k Uk—1 T Uk 2+5uk}

2

u" = {u )y

are studied. Here 6 > 0.The positivity of differential operator A* in C'[0, 1] and of the

difference operator Aj in C}, are established.

Let us briefly describe the contents of the various sections. It consists four chapters.
First chapter is the introduction. Second chapter consists of three sections. A brief
survey of all investigations in this area can be found in the first section. In the second
section the Green’s function is constructed. Third section is devoted to the study of
the positivity of the operator A with constant coefficients generated by the nonlocal
boundary value problem in C' Banach space. The third chapter consists of three sections.
A brief survey of all investigations in this area can be found in the first section. In the
second section the Green’s function is constructed. Third section is devoted to the study
of the positivity of the operator A; with constant coefficients generated by the nonlocal

boundary value problem in ', Banach space. The last chapter is the conclusions.



CHAPTER 2

POSITIVITY OF THE FOURTH ORDER
DIFFERENTIAL OPERATORS

2.1 Introduction

Let us consider a differential operator A* defined by the formula

- d*u
A u:@—l—(m,

with domain
_mez{uecﬂaumum:uuyzau(m:u(nzo}

Here 6 > 0.
We introduce C'[0, 1], the space of all continous functions ¢ (x) defined on [0, 1] with

the following norm

el = max ¢ (2)] .

0<z<1

We will investigate the resolvent of the operator A”; that is, in solving the equation
A"u+du=f

or

2.2 Green’s function of the operator A”

Lemma 2.1 For all )\ the equation

A+ = f (2.1)



is uniquely solvable and the following formula holds

1

w(@) = (A" + N7 f (@) = /J (2,5, LA+ 8) £ (1) dl, (2.2)

0

where

J(z,8, ;A +0) = 8k:2/{T —k(1+i)(1-z) _ (1+i)(1+x))

x (e~ HA+)(A=5) _ o—k(1+i)(1+5))

— (e HOHDl—sl _ ook (a+9))

—e
X Ty(e~FA=D(=5) _ o—k(1=i)(1+5))
x (e~ *A=D0=D) _ o—h(1-D)(1+D)

_ (efk(lJri)(sfl) _ 67k(1+i)(s+l))} ds

for 0 <1 <s<1,and

T (@8, 5A+0) = / [T (e HMH00) _ k(i)

x (e~ HA+I(A=5) _ o—k(1+i)(1+5))

_ (e—k(1+i)|a:—s\ —k(1+i)(:c+s)>

—e
X Ty(e~FA=D(=5) _ o—k(1=i)(1+5))
x (e~ FA=D0=D) _ o—h(1-D)(1+D)

_ (6fk(1+i)(lfs) _ efk(lJri)(erl))} ds

for 0 < s <[ <1. Here

Proof. We see that the problem (2.1) can be obviously written as two boundary value
problems for the second order linear differential equations
d*u

—@—i-,uu:z(x), 0<z<1l,



and

Here pp = iV A+ 9.
We have the following formula

Ty { (e HA+0@) _ kD=0 o,
4 (e—k(1+i)(1—x) _ e—k(1+i)(l+x)> b,
1

- ( —k(1+4)(1—x)
2k(1 + 1)

e

_ k(1) (14a)

1
></‘(ek(lJri)(ls) . efk(1+i)(1+s))z (S) ds
0
1
i “k(i)es| _ k() ()
)| x—S . INTTS8 d
+2/€(1+i)/(6 e )z (s)ds,
0

T, = (1 . ef2k(1+i))*1

for the solution of the boundary value problem

d*u
_@_uu:z(:ﬁ), 0<z<1, u(0)=, u(l)=1y,

for second order linear differential equations. Applying formula (2.3) and boundary

conditions
w(0)=u(1)=0, u (0)=u (1) =0,
we get
Y1 = Oa ,lvbl =0
and
2(0) =0, 2(1) =0
We have the following formula

(2.4)



Ty { (e HA-D@) _ g~h1-D@-2)) ;) (2.5)
+ (e—k(l—i)(l—a:) . e—k(l—i)(l—i—a})) ¢2

1 ) )
- (e—k(l—z)(l—z) o e—k(l—z)(l-l-m))

2k(1 — i)

1

></(e—k(l—i)(l—l) o e—k(l—i)(l-l—l))f (l) dl

1

—k(1—i)|z=1| _ —k(l_i)(w"'l) ) dl
o / ) f (D,

Ty=(1- e‘Qk(l_i))il
for the solution of the boundary value problem

d2
di—l—,uz—f(l")a 0<z <1, 2(0) =y, 2(1) =1y,

for second order linear differential equations. Applying formula (2.5) and boundary

conditions

we get
=0, ¥y =0. (2.6)

Finally, applying formulas (2.3), (2.4), (2.5), (2.6), we obtain

(Ax+/\) 8k2// {Tl —k(144)(1—2) _e—k(1+i)(1+x))

s (e FOHI(=5) _ o=k(140)(14+5))
B (e—k(1+z’)\x—s| B 6—k(1+i)(m+s))
XT2(€—k(1—i)(1—s) . 6—k(1—i)(1+s))

X(e—k(l—i)(l—l) _ e—k(l—z‘)(l—f—l))

_ (e_k(l-i-i)\s—ll _ e—k(1+i)(5+l))} f(l)dsdl

Lemma 2.1 is proved. m
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The function J (z, s,l; A + 0) is called the Green’s function of the resolvent equation
(2.1).

Thus, we obtain the formula for the resolvent (Al + A*)~" in the case A > 0. In the
same way we can obtain a formula for the resolvent (Al + Ax)_l in the case of complex

\. But we need to obtain that k2, T 1, T 5 are not equal to zero.
2.3 Positivity of A” in C|0, 1]

Theorem 2.1 For all X\, A € R, = {\: |arg\| < ¢, ¢ < 2} the resolvent (A + An)7!
defined by the formula (2.2) is subject to the bound

(AL + A7)” < M (p,8) (1+ A7,

1
”0[0,1]%0[0,1}
where M (¢, ) does not depend on \.

The proof of this theorem is based on the following lemmas.

Lemma 2.2 Let

Then

Proof. It is easy to see that

A+ = 0+ pcosy +ipsing,
psin
(5—|—pcosg0)
psin ¢
P COS P
= arctan(tan @)

arg(A+0) = arctan(

)

< arctan(

Therefore

arg(k) = arg(A +9)

IA
=16

Lemma 2.2 is proved. m



11

Lemma 2.3 The following estimate holds

A+ 3| > \/cosp(d + p).

Proof. Using the notations of lemma 2.2, we get

A+6| = {(5+pCOS(,0)2+(PSin90)2}%
— {52 + 2p8 cos p + p? cos® p + p* sin? 90}%
— {8+ 2bcosp+ )
> o5 {02+ 200 + p?) 2
= Jcosp(d + p).

Lemma 2.3 is proved. m

Lemma 2.4 The following estimates are satisfied

|€—k(1+i)(1—x) . 6—k(1+i)(1+1‘)| < 2€—|k|(cosw—sin¢)(1—x)

|€—k(1+i)(1—s) _ e—k(l-l-i)(l—l—s)‘ < 26—|k|(cos¢—sin¢)(1—s)’

‘efk(lfi)(lfs) - efk(lfz')(les)‘ < 2€7|k|(cosw+sin1/;)(lfs)

Y

’e—k(l—i)(l—l) _ e—k(l—i)(l-&-l)‘ < Qe Hl(coswtsing)(1-1)

Proof. Using semigroup property of exponential function, we get

o kA+)(1-2) _ efk(1+i)(1+x)| _ ‘efk(1+i)(lfx)‘ |1 _ o2kt

< €—|k|(cosz/)—sinw)(1—a:) (1 + ’6—2k(1+i)$‘)
e—|k|(cos1/;—sin7/;)(1—ac)
% (1 + €—2|k|(cosd}—sinlp)z>

< 2€7|k\(coswfsinw)(lf:r)'

Using semigroup property, we get



o~ kOH+)(1-5) —k(1+i)(1+s)| _ ‘e_k(1+¢)(1_s)} ‘1 _ g 2k(1+i)s

— €

< e—\k\(cost/)—sinl/))(l—s) (1 + ‘G—Qk(1+i)s|)

< 26—|k|(cos Y—siny)(1—s)

— Y

o—h=)(1=s) _ efk(lfi)(1+s)| _ ‘efk(lfi)(lfs)} ‘1 _ - 2k(1=i)s

< e—\k\(cos¢+sin¢)(1—s) (1 + ‘e—2k(1—i)s|)
< 26—|k|(cosw+sinw)(1—s)

— Y

and

o~ kA-D)(1-1) _ e—k(l—i)(l+l)| _ ]e‘k(l_i)(l_l)] |1 _ e—2k(1—i)l‘

IN

6—|k|(cosl[1+sin1/))(1—l) (1 + ’e—2k(l—i)l‘)

267|k|(cos Y+siny)(1-1) )

IN

Lemma 2.4 is proved. m

Lemma 2.5 The following estimates hold

‘e—k(1+i)|m—s| . e—k(1+i)(a:+s)| < 26—|k|(cos1/)—sinw)(a:—s)

for0 <s<u,

‘e—k(1+i)|ac—s| _ e—k(l—l—i)(a:—i—s) < 26—|k|(cosz/)—sinw)(s—a:)

for0 <x <s, and

|6—k(1—i)\s—l| . e—k(l—i)(s-&-l)} < 26—\k\(cos¢+sin¢)(s—l)

for0 <[ <s,
|efk(lfi)\sfl| . efk(lfi)(s+l)} < Qef\k\(costrsinw)(lfs)

for0 <s <lI.

12



Proof. for 0 < s <z

le

—k(1+i)|w—s| efk:(1+i)(x+s)} _

13

|efk(l+i)(xfs) _ ekt (ats) |

Using semigroup property, we get

o k(i) (@—s) _ efk(1+i)(x+s)| _ ‘efk(1+i)(:(:fs)| |1 _ o 2k(1+)s

for0<z<s

e~ kA+i)z—

< €—|k|(cos1/;—sin1/;)(x—s) (1 + e—2k(1+i)s)

< 26—\k\(cos 1 —sin 11))(1—3)7

s| _ e—k(1+i)(x+s)} — | =k +i)(s—z) _ 6—k(1+i)(:c+s)

le
— e—k‘(l-ﬁ-i)(s—a})‘ ‘1 _ e—?k(l—&-i)x}

< €7|k:|(cos1bfsinw)(sfx) (1 + 67216(1+i)x)

< 267‘k‘(0081/)7$in1/))(87$),
and for 0 <[ <s
efk(lfi)\sfﬂ - efk(lfi)(s+l)‘ — |efk(lfi)(sfl) - efk(lfi)(s+l)
e—k(l—i)(s—l)‘ ‘1 . 6—2k(1—i)l}
< €—|k|(cosw+sin1/))(s—l) (1 +€—2k(1—i)l)
< 26—\k\(cos¢+sin1/;)(s—l)’

and using the notations of lemma 2.5 for 0 < s <[, we get

o—kA=Dls—1| _ e—k(l—i)(s-&-l)} _ |€—k(1—z‘)(l—s) _ p—k=i)(s+)

Lemma 2.5 is proved. m

efk(14)(zfs)| }1 _ 6721@(171')3‘

IN

6f\k\(cosw+sinw)(lfs) (1 + 67216(171')8)
2e—|k|(cos Y+siny)(l—s) )

IN



Lemma 2.6 The following estiamtes for T1 and Ty are satisfied.

1

|T1’ < 1 — e—2lk|(cos p—sine)’
1

To| < 1 — o—2lkl(cos gtsing) "

Proof. Using the formula of 77, we get

1

’T1| = |1 _ e—2k(1+i)|
< 1

= 1_ |e—2k(1+i)|

1
1 — e—2lk[(cos¢p—sinp)’

and using the formula of T3, we get

1
KPS 1 — 2k
< 1
=1 |e 2k

1
1 — e—2lk[(cosyp+siny) ’

Lemma 2.6 is proved. m

Lemma 2.7 Let

4
1 — e—2lk|(cos¢+sinp)

e—|k:\(c051/)—sinw)(l—s) (1 . €—|k|(cosw+sinw))

+2 [1 _ €—|k|(cosw+sinw)s + (1 _ e—\k\(cos¢+sin¢)(1—s))] _ Kla

and
4

1— €—2|k|(cos Y—sin)

6—\k\(cos¢—sin¢)(1—a¢) (1 . €—|k|(cosw—sin¢))
+2 (2 o €7|k|(coswfsin1/1)x . ef\k\(coswfsinw)) - K

2.

The following estimates hold.
Ky, Ky <8

Proof. Using the following estimates,

eﬂk\(cos P—siny)(1—s) < 1’



(1 _ ef\k\(costrsinw))
- <1
1 — e—2lk[(costp+sinyy) — 77

[1 o e—\k\(coszﬁ-‘rsinw)s . (1 . e—\k\(coszﬁ-{—sinlﬁ)(l—s))]

we get
Kl S 8a

and using

e—\k\(cosz/z—sinzb)(l—a:) <1,

1 — e—\k\(cosd)—sinw)

- <1
1 — e—2lkl(cosyp—siny) — 7’
9 _ ef\k|(cosz/)7sin1/))m . €7|k|(coswfsinw) < 2.

Then, we get

Ky < 8.

Lemma 2.7 is proved. =

Lemma 2.8 The following estimate is satisfied.
1 1

z S :

cos & ~ /COsQ

Proof. Using trigonometric identity of cosine function, we get

1 1
- 2¢ 29
cos cos? & — sin” £
1
2 ¢
COS 5
1 1
<

¢ =
COS2 4/ COS

Lemma 2.8 is proved. m

Using the triangle inequality, we get

1

1 1
(A+ M) f ()] < i / / (|73 [=H0+D0=) _ =K+ 01+2)
00



|€ (1+3)(1—s) _ 6—k(1+i)(1+s)|

t [emkaFdle=s] _ gmk(1+)(+9) |}

% |T | ‘6 (1-i)(1—s) _ (l—i)(l—i-s)‘
% |€ (1-9)(1-1) _ e—k(l—i)(l-l—l)’
—k(1+3d)|s—1] k(1+z )(s+1)
e )} dsd s £()].

Using the estimates on Lemmas 2.4, 2.5, 2.6, we get

—|k|(cosp—sin ) (1—zx)
‘(A"‘)‘I) 8|k:| /{ —2|k|(cos1p smy)

% ef\k|(cos Y—siny)(1—s)

1 |efk(1+i)\xfs| _ efk(lJri)(achs)‘}

1 4
>< .
|| (cos 1) + sinep) {1 — e~ 2lk|(cos Y+sin )
% e—\k|(cos Pp—sin)(1—s)

% (1 _ €7|k|(cosw+sind))) ) [1 _ f\k\(costrsinw)s
+ (1 — e e U=9) 1} ds max | (1)

using the estimate on lemma 2.7 we get,

—|k|(cosp—sin ) (1—z)
‘(A—i_ )‘I) 8|]€| /{ —2|k|(cos¢ s1n1/))e

% ef|k|(cos Y—siny)(1—s)

4 |€—k(1+i)|w—8| _ e—k(1+i)(w+8)‘}

8
8 |k| (cos ) + sinw) % 02iet £

IN

1 1 4
8 |k|? [k| (cosp — sinep) | 1 — e~ 2kl(cosv—siny)
Xe—|k|(cosz/;—sin1,/;)(1—x) (1 . e—|k\(cosw—sinw))
+2 (2 _ €—|k|(cosw—sin1/1)a: . €—|k|(cos1j)—sin'¢)))}
8
X .
|k| (cos ) + sin 1)) 1£llegon

16
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using the estimates on lemmas 2.2, 2.3, 2.7, 2.8 we get,

8
|k|* (cos p + sin 1) (cos ) — sin @)

|(A + )‘I)il f (x)| < ||fHC[0,1}

< -
ML
32
= MT% HfHC[o,l]
32
<
~ (|)\| + 5) COS%\/W Hf”C[O,H
< |l
(IA| + ) cos ¢ ’
M (¢,9)
< 1+‘)\| ||fHC[01]
It follows that,
< M(p,0)
H(A—l— )™ fHC[O I ‘)\| ”fHC[O 1]
and
AT M (p,0)
”( + f”c[o 1=C01] — 1 4 |)\| ’

Here M (p,0) does not depend on A.

Theorem 2.1 is proved.

Now, we consider the nonlocal boundary-value problem for two dimensional elliptic

equation

%2t2+ax4+5u—f(t7$), O<t<T, O<x<1,

w(0,2) =p(x), u(T,z) =19 (z), 0 <z <1, (2.7)

u(t,0) =u(t,1) =0, g (t,0) = uy (£,1) =0, 0 <t < T,

where ¢ (x), ¢ (z) and f (¢,z) are given sufficiently smooth functions and § > 0 is a

sufficiently large number.

Theorem 2.2 For the solution of the boundary value problem (2.7) the following coer-

cive inequalities are valid:

?

o
Oxt

i
ot?

‘
Co+(10,77,C[0,1])

Co([0,71,C[0,1])
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1
(4) (4) - -
< 16ty + 09 o+ ey W lestom

where M is independent of a, f(t, x), p(x), ¥ (x).

The proof of Theorem 2.2 is based on the positivity of the operator A* gener-
ated by problem (2.7) and on the following theorem about coercivity inequalities in
Cy (10,17, E) for the solution of the abstract boundary-value problem for the differ-

ential equation.

W +Avt)=f1t) (0<t<T),v(0)=vy,v(T)=uvr (2.8)
in an arbitrary Banach space F with the linear positive operator A.
Theorem 2.3 Suppose vy, vr € D (A), f(t) € Cgr (E) (0 < a <1). Then the bound-
ary value problem (2.8) is well posed in the Holder space Gy (E), if A is the positive

operator in the Banach space E. For the solution v (t) in Cgr (E) of the boundary-value

problem the coercive inequality

|

holds, where M does not depend on «, v, vr and f (t) .Here, we denote Cyr ([0, T], E)

M
1 Av] gea ey < all=a) 1 lezse iy + M ([ Avoll p + | Avr ]l g]

Cor (B)

the Banach space obtained by completion of the set of smooth E—valued functions ¢(t)

on [0,T] in the norm

||90||C(‘)":’F°‘([O,T],E) = Org%}% o ()]l

T—1t)"(t @ t — t
) W (R P s B O]
0<t<t+r<T T



CHAPTER 3

POSITIVITY OF THE FOURTH ORDER
DIFFERENCE OPERATORS

3.1 Introduction

Let us define the grid space [0,1], = {zx =kh, 0< k<N, Nh=1}, N is a fixed
positive integer. The number A is called the step of the grid space. A function ¢" =
{gpk}év defined on [0, 1], will be called a grid function. To the operator A” we assign

the difference operator A7 of a first order of approximation defined by the formula

—4 Gy — 4wy - N2
Ayt = {Uk+2 Upt1 + :Zk Up—1 + Up—2 +5uk} 7 (3.1)

2

uh = {uk}é\[ )
which acts on grid functions defined on [0, 1], with

uOZUNZO, —U2+2U1—UOZUN_Q—QUN_1+UNZO.

We denote by Cj, = C'[0, 1], and equipped with the norm

= max |vg|.

[v"]]
Ch  2<k<N-2

We will investigate the resolvent operator A} in solving the equation
Afu + d = (3.2)

or
Ugro — dUpr1 + 6up — dup—1 + Up—o

12 —+ 5uk + /\uk = fk,

fe=[f(zr), 2<k<N -2,

ug=uny =0, —us+2u; —ug=uny_o — 2uy_1 +uy =0.

19
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The positivity of the difference operator Aj in Cj, is established.

3.2 Green’s function of the operator Aj

Lemma 3.1 For all A the equaiton (3.2) is uniquely solvable, and the following formula
holds.

N-1 N
u = (A7 + N7 = {Z J(k, I\ + 6)flh} , (3.3)
=1 0

where
(1= R¥™) (1+ pyh) (1 + poh)

J(k, 7, LN+ 0) =
(. ) piy o R Ry (2 + p1yh) (2 + piph)

< {[([Tn (1 = Ry)?
s (Rf/_j_l - R{V”_1> RY—1 1]

=1

—_

i
N-1
X [Z h(Tha (RYF — RYTH)

J

1
X (Rffﬁ _ RiV+J'> _ (R'lk*ﬂ _ Rllerj)) R%-,l}

=z

-1
T (1= Ry)? (R?*J’l - R{V+H> Ry — RY?

1

<.
Il

[N—1

| Do h (T (R = RY) (R - RYY)

Lj=1

(1t =) )

=2

-1

X (Thl (1— 31)2 <R{_1 - R%N_j_1> [Tha

N——

% (Ré\f—j _ Ré\f—"—j Ré\f—l _ RéV—H) o <R\2]*l\ _ R%—H)]
£(1- ) (R — YY)
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N-1
T (1 — 31)2 Z (R{_l B RfN_j_1> Rév_j_l _ RY-2

J=1

N-1
x [Zh T (RY* = RYF) (RY - RYV)

J=1

~ (R R )R

N-1
+ | T (1 = Ry)? (R{;l - R?Nijil) Ry — 1]
j=1
N-1 4 '
xS h (T (RYF = R (RYY = R
j=1

(At ) )

N-1
(Thl 1 - Rl 2 Z <RN7j71 RNJrjil) [ThQ

( Ré\/+]; Ry RNH (R\ijl\_R%Jrl)]
H- R (R R

) {(I = R = RN + RIVR3Y ™) + h (207 Ry

% (RN T RN72) Ryil — Rgil o (1 4 RNRN72)
! ? (g — 1) Ro b
1 — RNIRY!

X — (1= Ry) 2R
(f1 + g + Pty piy) RJ ( Uik
y < 1 — RN-1RY-! )2

(Hy + o + hpy p1g) Ro

R RN
- < (Ho — py) Ro >

N—-1
300 T (R = R (RY - R
j=1

_ <_Rllk—j| B Rllmﬂ [Tm ( RV _ Ré\f-&-j)

x (R = Ry — (R - R ]
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for1<I< N-—-—1and0< k< N. Here

T = (=R Ri=Q+p) ",

- 1<z‘h\/)\—+5+\/i\/)\—+5(4+ih2\/)\—+5)>,

2

and

Tho = (1=RM)7™ Ry=(1+m) ",

n o= % (—ih\/A T4/ —iVAto (—4 TSN 5)) .

Proof. We see that the problem (3.2) can be obviously written as the equivalent

boundary value problem for the second order linear difference equations

( _%erkzzkﬂgng—l,

up=uny =0, —ug+2u; —up=un_2—2uy_1+uy =0,

Here 1 = v A+ 6.

We have the following formula

up, = T {(Rf = RPN %), + (RY " — R oy (3.4)
RN—k_RN+k N-1 ] )
s T R21 >on (Rf[—j - Rf/ﬂ) zj
1 N-1
D DU (S T B

for the solution of the boundary value problem

Ugy1 — 2up + U1
h2

+ puy = Zg,

zr=2z2(xp), 1<kE<N-—1,

Uy = ¢y, un =,

for second order of linear difference equations.
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We have the following formula

2 = T {(Rs — RN ") oy + (RY " — Ry, (3.5)
RN-k _ pN+k N-1
_ﬁ Z B2 (Ré\ffl . RéVH) fz}
2 =1
1 N-1
k—1
+1_R32h2 <R|2 | ngﬂ)f
=1

for the solution of the boundary value problem

2kl — 22k + 2p1
12

— U2 = fka
szj.(:ck)v 1§k§N—17
20 = P9, ZN =Py
for second order linear difference equations.

Applying (3.4), (3.5) and the boundary conditions ug = 0, uy = 0 we get,

N-1
o= == Th;ﬁ 3w [Thl (RN=F — RN+H) (R{V RN ﬂ') (3.6)

=1
- (R'f‘jj— BEN (B — B ) o+ (RS = R
1 N—-1N-1

(1-R3)(1—RY) DD W [T (RYF = RYH)

=1 =1
% ( RN wa) _j ( RIFII R’f”)] [Tm ( RY RQV”)

< (R = Ry = (R - R

_|_

applying the boundary conditions —us + u; — ug = uy_o2 — 2uny_1 + uy = 0 we get,

N-1
T
_1 h2R2 th [Thl (—R:{Viz +Ri\7+2 + 2R:]L\/71 o 2Ri\7+1>
— R ‘=

x (RY7 = RY) = (<R R 4 2R - 2]

x| (B = B ) oo+ (R = BYY)
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2

—1N-1
h* [Ty (—RyY > + R
7j=1 I=1
— N j—2 j+2
+2RN 1_2R{V+1 (R -j +y) _ (_R\la ‘_}_R{-F]
+2RY N — 2R

+(1—R2 - R

)_I

% [Tm (Rév_j _ RéV—&-j) (RY-! — RY*) — (R|2j—l\ _ R%'H) fl] _0,

and

N-1
- Th; 5> 02 [T (R? - RN — 2R, + 2R3N )
153

x (RY = RY) = (R - RYVT 2R oRY )|

< [(R = BV g+ (RYT — BY) )

% [Th2 (Rév_j _ RéV-&-j) (RY— RY*) — <R|2j—l\ _ R%'—f—l) fl] —o.

Solving last system of equations we obtain,

N-1

T (1— Ry)’ Z ( 2N*j) (3.7)

R2R;?
0 = T g {
- 2

% (Ré\ffj _ RéV+J> _ (Ré\/—l _ Ré\f+1>i|
N-1N-1

T (L= R)? Y0 Y 0 (RY Y - R

=1 I=1




y [ThQ (RéV—j B Réwrj) (RY-' — RY*) — (lefll _ R§+l>] f

=

-1
—Tha (1 — R3)

(]

(R = RYY) g

l

0

-1
Nrw = Ry (Ri\ffj _ Ri\HJ’) (R;H _ Révﬂ')

1

J

N—-1N-1

T ( 1_R12ZZh2

1 =1
(R{—REN—J) [Thz (R;V-J RN‘JH) RY-! — RY+1)

_ (jo*l‘ - Rg“)] Ji+The (1— R3)

N-1
% Z h2 (ngl _ Rnglq) fl] }

=1

— (R, — RN7Y)]

x (1= BN 2 (1= R [(RY + BY?)
A A 1- Riv—lRéV-l}

— (1+RYR)?
Ry — Ry (+ L ) 1= Ry fp

1— RY'RY?
< 1—RiRy )

R R

+Th1 (1 — R1>4

and

P N-1
= T { Tia (1= R 3 (R = 1)
j=1
(= RE") = (R - R

25
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Let

X [Thg (RQV i _ RN+j> (RY™ — RY*) — (R‘;*l' - Ré“)] fi

N—-1
+Th (1— R3) > W (R — R3VH) fl]
=1

N-1

T (1= B> (R = BV (RS- B3V

Jj=1

—-1N-1

~Tin (1 - Ry) ZZ}F

j=1 =1

-
< (RY = RYY) [Da (B - B (R = RY™)

- (R‘; I R%“)] fi= Tz (1 - R3)

R2 R2N 1):|

N-1

% B2 (Ré\fflfl _ Ré\[Hl)] }

=1

x {1 — RN 4 2T3, (1 — R)* [(RY + RY?)
RN-1 _ RN-1 1 — RNIRY!
Rl — RQ 1- R1R2

— (1+RYRY™?)
1— RV-IRY-1\?
< 1— RiRs )

RV RN
_( Ry — R, )

+ T (1 — Ry)*

R = {1-R¥ 42T, (1 - R)?[(RY + RY7?)

RIURET sy L B
Rl - Rg 1o 1— RlRZ

_ _ 2
1 - RVRY
1—RiRy
_ i 27) !
_(R{V ' RY 1)
R, — Ry ’

+Th (1 — Ry)*

26



27

and
2 N N-2 Riv_l _Rév_l N pN-2
6 = 2/1,1R1 (Rl +R2 )m—(1+R1R2 )
1 — RN-IRY? }
X — (1= R)) 3R
(kg + tg + hpty 1) Ro ( Vit
. ( 1 — RN-LRN-! )2 - <Rf"1 - R§V‘1>2
(11 + po + hpigpiy) Ry (1g — pq) Ro
Then
R=T!A™ (1 +hBA )",
1
— T—l 1 o 2N —4 1 o 2N 2 1 _
(e T s
1
_ _ _ T
(RY+ B (RY! = R —— 8
1+pq.h 1+pgh
N pN—2 N—1pN-1 1- 1+11¢1h
—(1+R1R2 )(1—R1 R; )1_ T T
14+ph 1+psh
1 2
1—R)(1- [1—RN*1RN*1
=) (1 ) [0- B
 —— 2
8 (1 e i ) — (R = R
14+p1h 14poh
—1
% ( - 1+H1 )
1+N1 N 1+H2
—1
X ( o 1+M1 )
1+H1 N 1+#2
= T,'"(A+hp)”
and

AL~ (A+hB) = hBATH A + hB) !

-1

(A+hB8)"t=AT(1+hrBAT)



Finally, applying the formulas (3.6), (3.7), (3.8) and formula for R, we obtain

(1 - R%N) (1+ pyh) (1 + poh)

T piipo R Re (2 + pyh) (24 poh)
{[([Thl (1= Ri)”
XZ<RN j—1 RN-i-j 1>RN j—1 1]
N-—1
x [Zh (T (RY ™ = RYHF)
7j=1
X (R{V j RNﬂ) (R'f‘j‘ - R’f“)) R;‘l]
T (1= Ry (R{V—H - Rf””_1> R — R
L 7j=1
[N—1 ‘ '
x |S™h (Th1 (RN-F — RIV+F) (RlN - R{V“)

— (R - R’f”)) RéfoD

28
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N-1
|0 (5 ) |
j=1
N-1
<3 b (T (R = R (R - YY)
Jj=1

~

1

+]3 Rév 1 RNH) <R|2j—l| _R%'HH £
(

N-1
(1_R2 Zh RNll RN+I 1)fl>}

1

X
A

XA (+hﬁA R

N—-1N-1

+33 w [T,ﬂ (RN-F — RI+F) (R{H _ R{Vﬂ)

i=1 1=1
_]< Rl _ R’f“)] [Tm < RV~ ng)

< (R =Ry = (R - R ]

Lemma 3.1 is proved. m

The grid function J(k,j,l; A 4+ ) is called the Green’s function of the resolvent
equation (3.2).

Thus, we obtain the formula for the resolvent (A + A#)~" in the case A > 0. In the
same way we can obtain a formula for the resolvent (Al + Ai)_1 in the case of complex
A. But we need to obtain that (2 + ph), (2 + psh) , A, and (1 + hBA™!) are not equal

to zero.
3.3 Positivity of A7 in (),

Theorem 3.1 For all \, A € R, = {\: |argA| < ¢, [X=p, ¢<Z} the resolvent
(M + A2)~" defined by the formula (3.3) is subject to the bound

[(M + Af)” <M (p,0)(1+|A)7",

||C —Cp —



where M (p, ) does not depend on h.

The proof of this theorem is based on the following lemmas

Lemma 3.2 The following estimates hold

‘,U’l‘ Z 4\/ ’)‘+5’7

and

|bal > VA + 6]

Proof. Using the formula for ;,, we have that

VA + 6

‘JVA+‘
We denote that A + d = re?, here r = |\ + §|. Then
IV + 6 = retn,

here 1, = £ + 5

Now since h is sufficiently small, we have

h ~ / h? A
_4/’*7’%—‘[- ]_—’—Z\/Fe“l)l

h , h v
—%61% +1—=Vre 7
2 2

1.

Nezes

Vv

v

Therefore

ml = |Viva+|

VI + 6

2
o,

30
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Using the notations above, we get

h ‘g / h? .
5%61% + 14 Z\/Few}2

h . h .
’5\“/?6”22—1-1—5%6 "*1’22

1.

‘FW

A%

A%

—iVA+ 6 = /re'z,

since h is sufficiently small, we get
h , / h? .
5%62% +14/1+ Z\/;el%

LVRE SRR
2 2
1.

s

v

v

Therefore

il = V=R

V) + 0

Lemma 3.2 is proved. m

Lemma 3.3 The following intervals for i, and p, are satisfied.

3T

< ar < —
= g:ul—87

T
4
and

m m
] < arg iy < 3

Proof. We denote ji; = |u| @8+, Since h is sufficiently small,

argp, = arg(VivA+0)

then



and, we denote i, = |u,| €"®8H2. Since h is sufficiently small,

arg jr, = arg(v—ivA+0)
T

¥

IN

4 4
then
s s
) < arg iy < 3

Lemma 3.3 is proved. m

Lemma 3.4 The following estimates hold.

1
Ry <
] < 1+ /|A 4+ 0|hcos ¢,
< 1
where p, = arg (u;, and
1
Ry <
ol < 14+ /|A+ 6]hcos p,
< 1,

where @, = arg [i,.

Proof. We have the following estimate for |1 + pyh|, |1 + pyh|

1
2

11+ pyh| = {(1+h|uy|cospy)® + (h|puy|sing;)*}
1
= {1+2h|ﬂl|005¢1+h2|#1|2}2
> 1+ h|u|cos ey,

D=

11+ poh| = {(1 + I || cos 902)2 + (A || sin 902)2}
1
= {1+2h‘ﬂ2‘005902+h2 ’M2’2}2
> 14 h|ps| cos g,



Using the formula of R;, Ry and the notations of lemma 3.3, we obtain

1
1+ pyhl
1

1+ R |py| cos ¢y
L,

|| =

IN

IA

and

1
11+ a0
1

1+ h[py| cos ¢,
1.

IN

IN

Lemma 3.4 is proved. m

Lemma 3.5 The following estimate holds.

‘1 - R%N‘ |1+ pyh| [1+ pph
12 4 gy b |2 + pohl

Proof.

11— R < 1+|RY|
2.

IN

Let ¢, = arg 11;. Using the notations of Lemma 3.3, we obtain

‘1—1—,ulh

_ V14 lmlh(cosp, +ising,)
V2 + || B (cos py + ising,)
_ \/<1+|u1|hcossol>2+<m1|hsinsol>2
(24 |pa| hcos 901)2 + (I hSinSO1)2

_ 1+2’N1|h005§01+‘ﬂ1‘2h2
44 2|py| heos gy + ‘M1‘2h2

24+ i h

< 1

33
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Let ¢, = arg y,. Using the notations of Lemma 3.3, we obtain

‘1+u2h

2+ psh

V14 [pa] i (cos gy + i sin y)

V2 + | o] B (cos p, + isinp,)
_ \/<1+thosgog)%<m2\hsm¢2>2
(24 |po| hcos @2)2 + (|| hsin @2)2

_ 1+2’M2|hCOS<P2+‘M2‘2h2
44 2|py| hcos p, + ‘M2‘2 h?

IA

1.

Lemma 3.5 is proved. m

Lemma 3.6 The following estimates hold.

9

N—j—1 N+j—1
‘Rl J . Rl +J

N—j—1
§2‘R1 /

|RYF — RY*M <2,

Y

(B~ Y| < 2|R

’ RN _ R+ ’

SQ‘RQH

Ry = Ry < 2[Ry

|Ry — RV < 2| RS

Proof. Since 1 < 7 < N — 1, we have

R | = R - R
< | o)
< 2[RV,

since 0 < £ < N, we have

RY-F_ RYH| = |RNH|[1— R
< RV R
< 2



R R%N—j—l’ _ ’le'—l} 1— R?(ij)‘
< R (14 |RO))
< 2[R,

RY-T _ g+ < ‘ RYI| |1 - RY|
< [y e R
< 2|m)|,
since 1 <[ < N — 1, we have
Ry =R < [RYT1— RY
< R (L +[R)
< 2[Ry,

Ré’l . R§N7171| < ‘Rl{w 1 Rg(Nfl)‘
< RS (14 [BYY))
< 2R

Lemma 3.6 is proved. m
Lemma 3.7 The following estimates hold.

’R‘lkijl . R11€+j <2 ‘Rllﬂ*j
Jor1<j <k,

RI - R < 2| R

fork+1<j<N-1,
L -
RV~ R{Y| < 2| BRI

for1 <1< j and
RV — R{Y| < 2| Ry




for j+1 <1< N —1.

Proof. for1 < j<k:

i . . :
R|1 Jl Rllf-i—] _ ‘le Jj_ RIIH-J
— Ry (1= RY)
< 2[R,
fork+1<j<N-1:
o : . .
R|1 Jl Riﬁ-] ’le k le—H
= |R{H (1- R2)
< ol
for1 <1<y
- . . :
R R = R R
— R0 - R
< 2R,
for j+41 <I <N -1
- , » .
Rllj \_R{H‘ _ ’Ri J _Rllﬂ
= |R| (1- RY)
< 2 ‘lej
Lemma 3.7 is proved. m
Lemma 3.8 The following estimates hold.
1
Th| < ———+,
| h1| — 1 |R1‘2N
and
1
|Tha| <

1 — |R2‘2N'

36
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Proof. Using the formula of T}, we get

1
Th| = ——
ol = R
< 1
— 1— |R1|2N'
Using the formula of T}, we get
1
Tho| = ——
el =
< 1
- 1 ‘R2|2N'

Lemma 3.8 is proved. m

Lemma 3.9 The following estimate holds.

A7

(141887 < Ce0).
Proof. Using the formula for A™!, we get

A7 = 1 RN - RN 4 RIVRINAT
< O

Using the formula for 5, we get

N—-1 N—-1
Ry — I

(e — pq) Ro
] —(1- 1) N?Rl

8 = \2@& [(35 LR (14 RYRY)
L Lo RIRT

(p1 + pig + hpigpig) Ry

. < 1 — RN-LRY-! )2_ (R{V—l—R;V—l)Z
(Ml + o + h#lﬂz) Ry (N2 - Ml) Ry

< (s

Therefore for sufficiently small h, we obtain

A7
h|BIA

a7+ hsa) 7 < —
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Ch
<
- 1—hCC,
= C(p,9).

Lemma 3.9 is proved. m

Lemma 3.10 The following estimates hold.

h 1
< ;
1 - |R1| ‘Ml‘COS‘Pl

1-R| 1
< J
1—[Ry| = cospy

where p, = arg j,, and
h 1

< ;
1 — | Ryl |112] cos oy

where py = arg fiy.

Proof. Using the notations on Lemma 3.4, and since h is sufficiently small, we obtain

h < h (1 + |py| heospy)

L— R — |141] B cos
1
|M1|COSS@1’
1
|1 — Ry < ‘1_1+u1h
_ = 7 __ 1
1 |R1| 1 14| a1 |h cos 4

1+ |py| heos g
|1+ pyhlcos oy
L+ |p|hcosp, 1

1+ |pq| hcos p; cos ¢,
1

cos

and

1—|Ry| — 2| B cos @,
1

|N2|C05902'

h < h (1 + [po| hcos @)



Lemma 3.10 is proved. m

Lemma 3.11 Let

4h |R2|N+lfj 1— |R2|N71

L, —
' 1—[Ro|  1—|Ry™
|Ra| — |Ro|V ™ +1— |Rof
+2h :
1 — |Ry|
Lo bRy 1R
P 1R 1 RN
+2h|Rl|—|Rl|N_k+1—\Rl|k
1 —|Ry| ’
411 — Ry|1— RV !
Ly 641 — Ry | R

1_ |R1| 1— |R1|2N
1 8
X + ,
|11o] cOS 0y |15 cOS iy

Then, the following estimates hold.
8

Ly < —F——
|112] cOS y

8
2 < i —,
|M1|COS<P1

72
LS < ’
| 12| cos ¢y cos py

L

Proof. Using the estimate of Lemma 3.10 and the following estimates
’R2|N+1_j S 17

1=l [Bof ! <1
2N —
1 — | Ry

bl

(\RQ| RN 41— |Rg|ﬂ') <2,
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we get
8

1< .
|M2|COS<P2

Using the estimate of Lemma 3.10 and the following estimates

L

[’a| <1,
1—|R1|N_1
1—|R1|2N -

(1R = (R 1= R)) <2,
we obtain
8
|1y] cos ;-

Using the estimate of Lemma 3.10 and the following estimate

Ly <

1 - ‘Rl’N_l
1 . ’R1|2N —
we have that
64 8
Ly < +
15| cOS 1 cOs g |pag] cOS oy
72

|1a| cos @y cos py

Lemma 3.11 is proved. m

Lemma 3.12 The following estimates hold.
41— Ry|1—|Ry )V 5
LR R ) 5
1—[R| 1—|R COS ¢,

4h 11— |Ry|N 4
1—|Ry| 1— |R2|2N = |pglcos @y

Proof. Using the estimate of Lemma 3.10 and the following estimate

1—|R1|2N —

41— Ry|1— Ry V! 4 5
L1 el LT P I +1< .
1—|Ri| 1—|R,| oS oS

b

we get




Using the estimate of Lemma 3.10 and the following estimate

1— ‘RQ’N_I
1 ’R2|2N —

b

we get
4h 11— |Ry|N ! 4
<

1—|Ry| 1— |R2|2N = [pg| cos oy

Lemma 3.12 is proved. m
Using the triangle inequality, we get

(1 - R%N) (1+ ph) (1 + poh)
piipo R Re (24 pyh) (24 poh)

‘()\I + Aﬁ)_l fh| <

<A [([Tal L = Raf?

N—-1
3[R - RV R 4
j:

N-—1
> b (|Thal |[RYF = RY™]

J=1

N—j N—+j

X

+ ’R|1k—J| . Rllf-i-j

) 7]

i N-1
| [Tl L= Rl Y[R = R R 4 R
I =1
[N—1 ’ ) 4
x|S0k (1Tl [RY = Y| |RY — R
Lj=1

+ ’R'lkiﬂ . Rllerj

) [

)

N—-1N-1
GRS 9 SRR [

j=1 1=1

N—j N+j

N-1
+1—-R3| Y h|RS! - R%N—l—l\)
=1

|RY-! — BRI+ + )R';"” — RQ”H
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N—-1
1T - R1|2 Z ’R{—l B R?N—J—l‘ ‘Ré\f—J—l 4 ‘RéV_Q‘
j=1
[N—1 ) 4
x|S0k (1Tl [RY = R |RY — Y
Lj=1
+| R - R R
N-1 ) ' ‘
+ Tl 1= RS \Rﬂ;l — RV R 41
j=1
N-1

S h (\Thly | RN~k — RN+ }R{V—j _ RN

)

J
+ ‘R\lk*ﬂ _ le+j

N—-1N-1 ' '
X (\Thly 1-R3I> > h ‘Rivfm = RV 7

j=1 =1

v ’ RN _ R+

Ry — Ry 4 [RE - R

N-1
+ 1= R} ) h|RY T - R§V+l—1|> }

=1
< |+ nga) |
N—-1N-1 ‘ ‘
+ Z Z h2 [|Th1| |Ri\7—k _ Ri\/-‘rk‘ ‘Rl -J _ Ri\/-‘r]
j=1 =1
4| R Rit } [|Th2| )Rév‘j _ R+

RN _ RN+ ‘R\HI _ Rj+lm .
><| 2 2 ’4‘ 2 ) 15123}\)[(_1”1’

Using the estimates on Lemmas 3.4, 3.5, 3.7 and 3.8, we get

2
|| o] | o] [ o]

|\ + A7) fu] <



9 _4’1_R1|1—’R1\N_1
| LR 1= Ry
[ 4h|Ry| 1 —|RyN

L= Bl 1Ry

Rl = |R)" "+ 1 Ry
1— Ry

+1] x

+2h

)

N-1

41— Ry| o

N T s N [Ra™ + B[
(1_|R1|2N

AR |Ro)V T T 1 — | Ry V!
L—[Re| 1R

=1

|Ro| = |Ro)" ™7 +1— |Ryf
1 — | Ry

L 8h 1—|Ry|¥!
1_|R2‘ 1—|R2’2N

(1+hpa=)™

+2h

X ‘A‘1|

4h |Ry N

Th ‘ Rkl _ phti
1 — |R1|2N 1 1

7j=1
A |Ry[N T 1 — | Ry N
L—|Ro| 1R

|Ro| — |Ro|" ™ +1— | Ryl

+2h
1 — | Ry

1<I<N—1

Using the estimates on Lemmas 3.11, 3.12 and, we obtain

max |[fi|.

2 80
M+ ANl < {
} " | || | pta] [ Ra| | Ral | |pe1] cos? ¢y
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641 — Ry|1— |Ry |V
1—|Ri| 1— RN

1 8 )
X +
’M2’ COS ¥y |M2| COS Yo
x| A7 | (1 +hpa~) ™

.8 Ah|Ry| 1— |RyV !
[1g] cos oy \ 1 —|Ry| 1 — ‘R1|2N
op Bl = B 41— ||

Using the estimates of Lemmas 3.9 and 3.11, we obtain

M,y

(AL + A7) fu] < 1flle,
‘ | |M1| |M2| CoS (py €08y | Ry | | Ry e
Since

/‘1’1/“1’1 - R]_RQ’
and

COS (V] COS Py > COS Py COS Py — SIN (P SIN (P,

= cos(p; — p3)

_ b

= s,
we have M,

M+ A5)7! <
O+ 407 £l < G sen Il
Using estimates of Lemmas 2.3 and 3.2 we get
_ M,
MA+ADT ] <
‘( + h) fh| = ((5+|>\|)\/WCOS£HJ£HC}L
M,
< -
~ (0+ M) cose I#le,
It follows that,
" M (p,9)
IOT+ 407 fallg, < T2 IMlle,

1+ Al
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and
M (¢, 9)

IO+ 4D o, < T

Here M (p,6) does not depend on h.

Theorem 3.1 is proved.

Now, we consider the difference scheme of the second order of accuracy
( %2 (UZH — 2uy + szl)
o (™ — At + 6u — Au T ) 4 oup = o,

901]3 = f (tk7xn) ; tk = kT? Tp = TLh,

1<k<N-1,2<n<M-2, Nr=T, Mh=1,
(3.9)
ug = ", uy =", " = (),

V' =9 (xy), vp =nh, 0<n <M,

0_ M _ 2 1 _ .0 _ , M-2 M-1 M _
up =uy =0, —up+2up —uy =wu, ~—2u, ~ +u =0,

0<k<N,

\

for the approximate solution of the boundary value problem (3.9).

Theorem 3.2 The solution of the difference scheme (3.9) satisfy the following stability

estimate

[

IN

cocy < M (19, + 19, + 15 leae,)

0 < a<l,
where M does not depend on f™", ", U, o, hoand T

The proof of Theorem 3.2 is based on the positivity of the operator Aj in C} and

generated by problem (3.9) and on the following theorem about stability inequalities in
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C>* (E) for the solution of the difference scheme

(

%5 (urgr — 2up + up—1) + Aug = @y,

or=[f(y), ts =k, 1<k<N-1, N7 =T, (3.10)

\ U =, uy =1
Theorem 3.3 The solution of the difference scheme (3.10) satisfy the following stabil-

1ty estimate

[ulozemy < Mllele +1¥1e + 1 eeem) -
0 < a<l,

where M does not depend on 7, ¢, ¥, a and T.Here, we denote C** (E) (0 < a < 1)

the Banach space of the mesh E—valued functions o™ = {(pk}g:_ll with the norm

”SOTHcS’“(E) = ||‘PT||CT(E) +

+ Sup (NT—]{)T)Q (k—{_r)a”@kJrr_gOkHE’

1<k<k+r<N-—1 T

T —
197l ey = v el

Theorem 3.4 The solution of the difference scheme (3.9) satisfy the following almost

coercitive stability estimates:

H {772 (uir — 20 + i) 'fN:HoT(ch)
4 2 1 ! 2yt
[ (g = g b - e ) P
"= D=1 |y

<M M e G e ) i
h

[t 2 = 4wt by — agn ) P

h

+In = HfT’h|
7_+ h Cr(ch)

where M does not depend on f™", ", U hoand T.
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The proof of Theorem 3.4 is based on the positivity of the operator A} in C}, and on

the following theorem on almost coercivity inequality for the solution of problem (3.10)

in C; (E).

Theorem 3.5 The solution of the difference scheme (3.10) satisfy the following almost
coercivity inequality

N-1

k=1 C-(B)

1
) (U1 — 2ug + Up—1)

+ H{Auk}ff:}l‘
Oy (E)

(1 .
< 81 [IAgll + 1400 +min {10 2,1 Al 1 N

where M does not depend on f7, o, 1 and T.

Theorem 3.6 The solution of the difference scheme (3.9) satisfy the coercivity esti-

mates
N-1

4772 (s — 20+ ) 1

C7%(Ch)

-4 ( n+2 4, 0+l n_ 4,n—1 n—2y M2V
+ {h (uk 4uk +6Uk 4uk +uk )}n:2 k=1

CH(Cr)

<M [H {h™* (" — 4™ + 60" — 40" + " 7?) }M_2

n=2

Ch

+ H{h—4 (072 — 4y 4 Gy — 4yt W_Q)}M_Q‘

n=2

Ch

1 ™,h
a1

(0 0<a<l,

where M does not depend on f7, ", " h,a and 7.

The proof of Theorem 3.6 is based on the positivity of the operator A} in C) and

on the following theorem on coercivity inequality for the solution of problem (3.10) in
Cae (B)

Theorem 3.7 The solution of the difference scheme (3.10) satisfy the following coer-

city inequality

N-1
1 —
{—2 (Urt1 — 2uy + Ukl)} + H{Auk}kN=11 o0
7 . o2 (B)
1 T
< M || A¢ll g + [[Adl 5 + a(l— a) I1f ”C?’a(E) ’

where M does not depend on f7, p, ¥, and T.
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Note that in a similar manner we can construct the difference schemes of a high order
of accuracy generated by Taylor’s decomposition of the function on three points with
respect to one variable for approximate solutions of the boundary value problem (3.9).
Abstract theorems given above permit us to obtain the stability, the almost coercive

stability and the coercive stability estimates for the solutions of these difference schemes.



CHAPTER 4
CONCLUSION

This work is devoted to the study of the positivity of differential operator A” in
C'[0, 1] and of the difference operator A7 in Cj,. The following original results

are obtained:
- Green’s function of the differential operator A* defined by the formula

- d*u
Au:@—i-&i,

where § > 0, with the domain
D (A% = {u e 0, 1] u(0)=u(1) =0, u" (0) =u" (1) = o}

is constructed.
- The positivity of the fourth order differential operator A* in C'[0, 1] is proved.

- The coercive stability estimates for the solution of two-dimensional elliptic

differential problem defined by the formula

( Py T du=f(tx), 0<t<T, 0<az<l,

u(0,2) =¢ (), u(l,2)=v¢(z), 0 <z <1,

L u(t,0) =u(t,1) =0, uyy (t,0) =uy, (¢,1) =0, 0 <t <T,

where ¢ (z), ¥ () and f (¢, z) are given sufficiently smooth functions and § > 0 is

a sufficiently large number, in Holder spaces are obtained.

- Green’s function of the difference opeartor Aj defined by the formula

N-2
—4 6ur—4uy_ _
Agcuh ) Ukt —dupgt uzk Up—1+Uk—2 +(5uk :

h h 9

UOZUNZO, —uz+2u1—uozuN_g—QuN_l—i—uN:O

where § > 0, is constructed.

- The positivity of the fourth order difference operator Ay in Cj, is proved.
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- The stability, the almost coercive stability and the coercive stability estimates for

the solution of difference scheme

;

\

= (ufy — 20} +ujly)

o (U™ = 4t 4 Gup — 4 ?)  up = o,
o = f(tk,xn), tx = kT, x, = nh,
1<kE<N-1,2<n<M-2, Nr=T, Mh=1,
ug = " uy =9, 9" = ¢ (),

Y =1 (x,), T, =nh, 0<n < M,

u) =ud =0, —u+2ut —u) =u)? —2u "t uM =0,

0<EZSN

in difference analogues of Holder spaces are obtained.
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