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ABSTRACT 

Forecasting is the way of making predictions about a variable. Time series 

methods are utilized to make forecasting. The bootstrap method is a method of 

computational inference that simulates the creation of new data by resampling from a 

single data set. In this study natural gas consumptions of Istanbul and Turkey are 

forecasted by using time series methods. The natural gas consumption data are provided 

by Istanbul Gaz Dagitim A.S. (IGDAS), Boru Hatlari ile Petrol Tasima A.S. (BOTAS), 

and International Energy Agency (IEA). Time series methods such as exponential 

smoothing, Winters‟ forecasting and Box-Jenkins methods are used to predict future 

natural gas consumption values of Istanbul and Turkey on different time periods. These 

methods are compared in order to determine the best fitted one to related time series 

data. Different natural gas consumption scenarios about Istanbul are generated by using 

bootstrap method. 

Keywords: Natural Gas Consumption, Forecasting, Time Series, Winters‟ method, 

Box-Jenkins methods, Bootstrap, Scenario Generation. 
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ÖZ 

Tahminleme bir değişkene ait öngörüler yapmanın yoludur. Zaman serileri 

metotları tahminler yapmak için zaman serileri verilerinin analizidir. Bootstrap, bir veri 

setinden tekrar örnekleme ile yeni bir seri üretimini benzeten sayısal bir metottur. Bu 

çalışmada İstanbul ve Türkiye‟nin doğalgaz tüketimleri zaman serileri metotları 

kullanılarak tahmin edilmiştir. Doğalgaz tüketim verileri İstanbul Gaz Dağıtım A.Ş. 

(İGDAŞ), Boru Hatları ile Petrol Taşıma A.Ş. (BOTAŞ) ve Uluslararası Enerji Ajansı 

(IEA) „dan temin edilmiştir. Üssel yumuşatma, Winters‟ metodu ve Box-Jenkins 

metotları gibi zaman serileri metotları kullanılarak gelecek İstanbul ve Türkiye 

doğalgaz tüketim değerleri değişik zaman aralıkları üzerinden tahmin edilmiştir. Bu 

metotlar ilgili zaman serisi verisine uyan en iyi metodu belirlemek için 

karşılaştırılmıştır. İstanbul için değişik doğalgaz tüketim senaryoları bootstrap metodu 

kullanılarak üretilmiştir. 

Anahtar Kelimeler: Doğalgaz Tüketimi, Tahminleme, Zaman Serileri, Winters 

metodu, Box-Jenkins Metotları, Bootstrap, Senaryo Üretimi. 
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CHAPTER 1  
 

 

INTRODUCTION 

 

 

 
Forecasting is very important in many types of organizations since predictions of 

future events must be incorporated into the decision making process. The government of 

a country must be able to forecast such things as air quality, water quality, 

unemployment rate, inflation rate, and welfare payments in order to formulate its 

policies. Business firms, in particular, require forecasts of many events and conditions 

in all phases of their operations. Forecasters use past data and must base the forecast on 

the results of this analysis. Forecasters use past data in the following way. First, the 

forecaster analyzes the data in order to identify a pattern that can be used to describe it. 

Then this pattern is extrapolated, or extended, into the future in order to prepare a 

forecast. The basic strategy is employed in most forecasting techniques and rests on the 

assumption that the pattern that has been identified will continue in the future 

(Bowerman, O‟Connell, Koehler, 2004). 

The choice of forecasting method depends on a variety of considerations, 

including: 

 How the forecast is to be used. 

 The type of time series and its properties, such as presence/absence of trend 

and/or seasonality. Some series are very regular and hence „very predictable‟, 

but others are not. As always, a time plot of the data is very helpful. 

 How many past observations are available. 

 The length of the forecasting horizon. For example, short-term forecasting.
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 The skill and experience of the analyst and the computer programs available. 

The analyst should select a method he feels „happy‟ with, and also consider the 

possibility of trying more than one method (Chatfield, 1996). 

Monitoring and controlling forecasts is very important to make accurate 

predictions. Different types of error measurements such as MAD can be employed to 

see forecasting errors.  

Regardless of the system, each company faces that forecasts are seldom perfect. 

This means that outside factors that we cannot predict or control often impact the 

forecast. Companies need to allow for this reality (Heizer and Render, 2001). 

Demand forecasting is very important to enable efficient and economic operation 

of the relevant system. Energy consumption forecasting is a type of demand forecasting. 

Natural gas production and transmission businesses require accurate consumption 

forecasts to satisfy maximum amount of natural gas needs. 

Usually, weather conditions and consumer behaviors affect the natural gas 

consumption values strongly. These factors are taken into considerations by forecasters 

and different types of forecasting methods are applied to find out future values. 

In this study different kinds of univariate forecast techniques are employed in 

order to investigate which technique is appropriate to estimate future natural gas 

consumption values. In addition to these techniques we used bootstrap method to 

generate consumption scenarios. This approach is realized to draw better forecast range 

compared to other forecasting methods‟ prediction limits.  

We have daily and monthly Istanbul natural gas consumption data provided by 

Istanbul Gaz Dagitim A.S.(IGDAS) and Boru Hatlari ile Petrol Tasima A.S. (BOTAS). 

Monthly and annual natural gas consumption data of Turkey are provided by Boru 

Hatlari ile Petrol Tasima A.S. (BOTAS) and International Energy Agency (IEA) 

(BOTAS and IGDAS Reports). Box-Jenkins methods such as ARIMA and SARIMA 

are utilized to make forecasts. Trend analysis and Winters‟ method are also applied to 

fitting time series data of natural gas consumption. These methods are compared in 

order to suggest a forecast method. Using bootstrap method we generated natural gas 

consumption scenarios about Istanbul.  
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1.1 NATURAL GAS CONSUMPTION FORECASTING 

Turkey is an important candidate to be the „„energy corridor‟‟ in the transmission 

of the abundant oil and natural gas resources of the Middle East and Middle Asia 

countries to the Western market. Furthermore, Turkey is planning to increase its oil and 

gas pipeline infrastructure to accommodate its increased energy consumption. Naturally, 

Turkish natural gas usage is projected to increase remarkably in coming years, with the 

prime consumers, expected to be industry and power plants (Kilic, 2006). 

Estimation of natural gas demand is an important part of gas production and 

transmission business. The challenges of this forecasting are the volatility of consumer 

profile, the strong dependency on weather conditions and the lack of historical data 

(Viet and Mandziuk, 2000).  

1.1.1 Importance of Natural Gas Usage 

Energy is one of the most important inputs required to maintain social and 

economical improvement in a country. It is necessary that energy demand should be 

performed at the right time economically, and be of good quality and respectful of 

increasing environmental consciousness in order to preserve national development and a 

high standard of living. Natural gas is an alternative energy source that has cleanliness, 

burning easiness, high thermal value and resource availability (Aras and Aras, 2003). 
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Figure 1.1 The total consumption of natural gas at residents for Turkey (MENR) 

All over the world, the use of natural gas is projected to nearly double between 

1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power 

plants. The largest increases in gas use are expected in Central and South America and 

in developing Asia, and the developing countries as a whole are expected to add a larger 

increment to gas use by 2020 than are the industrialized countries. Turkish energy 

consumption has risen dramatically over the past 20 years due to the combined demands 

of industrialization and urbanization.  For instance, residential use of natural gas 

increases through years (Figure 1.1). Turkey is located at a strategic place between the 

Middle and Near East, where rich oil and natural gas reserves prevail, and the Western 

world, where the main energy consumption takes place. Turkey is also situated near the 

Caspian Sea, where natural gas and oil production are expected to increase 

substantially. Turkey has made a remarkable contribution to the stability of the region 

and still continues to maintain this policy. It is accepted that creating a balanced 

international cooperation setting is an important factor for acquiring more reliable 

energy supply (Ozturk and Hepbasli, 2003). 
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1.1.2 Review of Studies about Natural Gas Consumption 

There is wide range of studies about forecasting natural gas consumption in the 

literature. Liu and Lin (1991) estimated the residential consumption of natural gas in 

Taiwan by using linear transfer function method.  Brown and Matin (1995) made a 

study about development of feed-forward artificial neural network models to forecast 

daily gas consumption in Wisconsin. Durmayaz et al. (2000) estimated the residential 

heating energy requirement and fuel consumption in Istanbul based on degree-hours 

method. Khotanzad et al. (2000) has used the artificial neural network (ANN) 

forecasters with application the prediction of daily natural gas consumption needed by 

gas utilities. Gumrah et al. (2001) analyzed the factors and their relationships that 

influencing the gas consumption in Ankara, and they suggested a model based on 

degree-day concept including annual number of customers, average degree days, and 

the usage per customer. Sarak and Satman (2003) forecast the residential heating natural 

gas consumption in Turkey by using degree-day method. Aras and Aras (2003) have 

described an approach to obtain appropriate models for forecasting residential monthly 

natural gas consumption in terms of time series analyses and degree-day method. Viet 

and Mandziuk (2003) analyzed and tested the several approaches to prediction of 

natural gas consumption with neural and fuzzy neural systems for natural gas load in 

two different regions of Poland. Siemek et al. (2003) implemented the Hubbert model 

based upon Starzman modification to describe the possible scenario of the development 

of the Poland gas sector. Liu et al.(2004) used the support vector regression (SVM) 

technique for natural gas load forecasting of Xi‟an city, and they compared the result 

with the 7-lead day forecasting of neural network based model. Gil and Deferrari (2004) 

presented a generalized model which predicts mainly the residential and commercial 

natural gas consumption in urban areas of Argentina, for the short and intermediate 

ranges of time. Brown et al. (2005) presented the mathematical models for gas 

forecasting in their study. Gutiérrez et al. (2005) used Gompertz-type innovation 

diffusion process as a stochastic growth model of natural gas consumption in Spain and 

compared stochastic logistic innovation modeling and stochastic lognormal growth 

modeling of a non-innovation diffusion process. Al-Fattah (2006) presents a 

methodology for developing forecasting models for predicting U.S. natural gas 

production, proved reserves, and annual depletion to year 2025 using time series 

modeling approach. Kenisarin and Kenisarina (2006) investigated the energy saving 
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potential in the residential sector of Uzbekistan. Ivezić (2006) showed the results of 

investigation of an artificial neural network (ANN) model for short term natural gas 

consumption forecasting. This methodology uses multilayer artificial neural networks to 

incorporate historical weather and consumption data. Wong-Parodi et al. (2006) 

compared the accuracy of the forecasts for the natural gas prices of Energy Information 

Administration‟s short term energy outlook and the futures market for the period from 

1999 to 2004. Potocnik et al. (2007) proposed a strategy to estimate forecasting risk of 

natural gas consumption in Slovenia. This strategy combines an energy demand 

forecasting model, an economic incentive model and a risk model. Sanchez-Ubeda and 

Berzosa (2007) presented a model based on decomposition approach to capture demand 

patterns in a very large number of different historical profiles. Ediger and Akar (2007) 

used ARIMA and SARIMA methods to estimate the future primary energy demand of 

Turkey from 2005 to 2020. Kızılaslan and Karlık (2009) used seven neural networks 

algorithms as forecasting models they tried to find the best solution on forecasting of 

monthly natural gas consumption. 

1.1.3 Characteristics of Natural Gas Consumption  

The usage of the natural gas can be classified into 3 groups; the residential users, 

the industrial users and the commercial users. The demand characteristics of these three 

categories differ significantly. The residential customer demands are typically 

temperature sensitive, increasing on weekends. The commercial customers are also 

typically temperature sensitive, but decreasing on weekends. Industrial customer 

demand is much less temperature sensitive, decreasing significantly on weekends. 

Historically, many methods have been used to predict daily demand. Gas controllers 

have used methods such as looking at use patterns on similar historical days and scatter 

plots of use versus temperature. Often these methods are only successfully applied by 

experts with years of experience at a Local Distribution Company (LDC). LDC firms 

are taken into consideration as distributors for cities. Importation and distribution of 

natural gas to cities is undertaken presently by BOTAS. The city gas distribution 

companies such as IGDAS in Istanbul, EGO in Ankara, BURSAGAZ in Bursa, ESGAZ 

in Eskisehir and IZGAZ in Izmit are the distributors of natural gas (Aras and Aras, 

2003). 
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LDC faces many challenges in the business of supplying gas to their customers. 

The gas supply system of an LDC consists of gate stations, compressors, gas storage, 

and customers. The LDC must operate these systems to assure delivery of gas in 

adequate volumes at required pressures under all circumstances. For efficient, 

economical, and safe operation, the daily gas demanded by the customers must be 

known in advance with some degree of accuracy. The customer base of an LDC consists 

of many individual customers, each with unique demand characteristics. Customers use 

gas for space heating, known as heating load, for heating water, drying, cooking and 

baking, and other processes, known as base load, and for electric power generation 

(Brown et al., 2005). 
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CHAPTER 2  
 

 

FORECASTING TIME SERIES DATA 

2.1 WHAT IS FORECASTING? 

Forecasting is a methodology that helps us for the estimation of the future. 

Forecasting is an important activity in economics, commerce, marketing and various 

branches of science (Chatfield, 2000). A forecast may be short-range, medium-range or 

long-range forecast. Short-range is usually 3 months, medium-range is up to 3 years and 

long-range is over 3 years.  There are three main types of forecasts; economic forecasts, 

technological forecasts and demand forecasts (Heizer and Render, 2001). 

Generally, there are two different forecasting approaches; one is qualitative 

methods and the other is quantitative methods.  

Qualitative methods are subjective and numerical or statistical calculations are not 

needed for these types of methods. These methods are such as executive opinion, 

market research and Delphi method.  

Quantitative methods are based on mathematical calculations. They grouped into 

two classes; casual models and time series models. Casual models investigate the 

relationship between independent and dependent data. Linear regression is the common 

form of this model (Stevenson, 2007).  

Time series models examine the patterns through the past data and estimate the 

future. This type of data is based on a sequence of evenly spaced (weekly, monthly, 

quarterly, and so on) data points. Time series forecasting requires time series analyses. 

That means breaking down past data into components and then projecting them forward. 

Several time series methods are presented in Table 2.1. 
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Table 2.1 Several Time Series Methods 

Method Explanation 

Simple Moving Average Simply takes average of past periods  

Single Exponential Smoothing 

Forecast is the weighted average of 

the last forecast and the current value 

of data 

Holt‟s Linear Exponential Smoothing Technique 

This technique allows smoothing 

trend and slope by using different 

smoothing constants  

Winter‟s Method 

This is a kind of exponential 

smoothing adjusted for trend and 

seasonal variation.  

2.2 STATIONARY AND NON-STATIONARY DATA  

Stationarity of a data set guarantees spatially invariant statistical properties, such 

as mean and variance. Stationarity has always played a major role in the time series 

analysis. Broadly speaking a time series is said to be stationary if there is no systematic 

change in mean (no trend), if there is no systematic change in variance, and if strictly 

periodic variations have been removed. In contrast, non-stationary data may have a 

trend or seasonality. Most of the probability theory of time series is concerned with 

stationary time series, and for this reason time-series analysis often requires one to turn 

non-stationary series into a stationary one so as to use this theory (Chatfield, 1996).  

2.3 ANALYSIS OF TIME SERIES 

The analysis of time series helps to detect regularities in the observations of a 

variable and derive „laws‟ from them, and/or exploit all information included in this 

variable to better predict future developments (Kirchgässner and Wolters, 2007). There 

are many methods to model and forecast time series. These models are univariate and 

multivariate models. Univariate models refer to a time series that consists of single 

(scalar) observations recorded sequentially over equal time increments. Common 
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approaches about univariate models are decomposition of time series, autoregressive 

(AR) time series model, moving average (MA) model and Box-Jenkins method. 

Extensions of these models to deal with vector-valued data available under the heading 

of multivariate time series models. 

2.3.1 Classical Decomposition of Time Series 

The decomposition into unobserved components that depend on different causal 

factors, as it is usually employed in the classical time series analysis, was developed by 

Persons (1919). He distinguished four different components: a long-run development, 

the trend, a cyclical component with periods of more than one year, the business cycle, 

a component that contains the ups and downs within a year, the seasonal cycle, and a 

component that contains all movements which neither belong to the trend nor to the 

business cycle nor to the seasonal component, the residual. 

A multiplicative relationship among the components is assumed by this method as 

follows: 

ttttt CA               (2.1) 

where  

A = actual visitor number in the time series 

Ψ = the trend factor 

C = the cyclical factor 

ξ = the seasonal factor 

Θ = the irregular factor 

The first three components are deterministic which are called “signal”, while the 

last component is a random variable, which is called “noise”. To be able to make a 

proper forecast, one must know to what extent each component is present in the data 

(Kirchgässner and Wolters, 2007). 

2.3.2 Box-Jenkins Methods 

 Box and Jenkins (1970) described a new approach to time series analyses. This 

approach identifies a specific model on the basis of certain statistical figures. They 
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assumed that there was a common stochastic model for the whole generation process of 

time series. Stages of Box-Jenkins methods are model identification, model parameters 

estimation, and diagnostic checking. 

2.3.2.1 Model Identification 

Data should have constant mean, variance, autocorrelation in order to be 

examined which member of the class ARIMA processes appears to be most appropriate. 

First of all, take the difference of the data until they are stationary. This is achieved by 

examining the correlograms of various differenced series until one is found which 

comes down to zero „fairly quickly‟ and from which any seasonal cyclic effect has been 

largely removed. If the data are non-seasonal, an ARMA model can now be fitted. If the 

data are seasonal, then the SARIMA model may be fitted.  

2.3.2.2 Model Parameters Estimation 

Secondly, the parameters of this model are estimated. After selection of the 

model, different orders of the model can be tested to estimate the parameters.  

2.3.2.3 Diagnostic Checking 

Thirdly, the specification of the model is checked by statistical tests. This 

essentially consists of examining the residuals from the fitted model to see if there is 

any evidence of non-randomness. If specification errors become obvious, the 

specification has to be changed and the parameters have to be re-estimated. The 

correlograms of the residuals is calculated then can be seen how many coefficients are 

significantly different from zero and whether any further terms are indicated for the 

ARIMA model. This procedure is re-iterated until it generates a model that satisfies the 

given criteria. If the fitted model appears to be inadequate, then alternative ARIMA 

models may be tried until a satisfactory one is found.  

This model can finally be used for forecasts. This univariate forecasting method is 

to find an appropriate formula so that the residuals are as small as possible and exhibit 

no pattern. The model-building process involves a few steps, repeated as necessary, to 

end up with a specific formula that replicates the patterns in the series as closely as 
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possible and also produces accurate forecasts (Chatfield, 1996; Kirchgässner and 

Wolters, 2007).  

2.3.2.4 Autoregressive Model 

A time series is said to follow an autoregressive (AR) model of order p if the 

current value of the series can be expressed as a linear function of the previous values of 

the series plus a random term (Al-Fattah, 2006). Suppose that {Zt} is a purely random 

process with mean zero and variance
2

Z . Then a process {Xt} is said to be an 

autoregressive process of order p if 

tptptt ZXXX    11
                    (2.2) 

This is rather like a multiple regression model, but Xt is regressed not on 

independent variables but on past values of Xt; hence the prefix “auto”. An 

autoregressive process of order p is generally abbreviated to an AR(p) process 

(Chatfield, 1996).  

2.3.2.5 Moving Average Model 

A moving average model is conceptually a linear regression of the current value 

of the series against the white noise or random shocks of one or more prior values of the 

series (NIST/SEMATECH e-Handbook of Statistical Methods). Suppose that {Zt} is a 

purely random process with mean zero and variance
2

Z . Then a process {Xt} is said to 

be a moving average process of order q (abbreviated to an MA(q) process) if  

qtqttt ZZZX    110
          (2.3) 

where {βi} are constants. The Zs are usually scaled so that β0=1 (Chatfield, 1996). 

2.3.2.6 Mixed Autoregressive Moving Average (ARMA) Model 

This mixed process contains p AR terms and q MA terms. An ARMA (p, q) 

process is given by  
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qtqttptptt ZZZXXX     1111
       (2.4) 

2.3.2.7 Autoregressive Integrated Moving Average (ARIMA) Model 

Most of the time series are non-stationary. As mentioned above, stationary time 

series have constant mean and variance. In order to fit a stationary model, it is necessary 

to remove non-stationary sources of variation (Chatfield, 1996). Removing trend, 

seasonality and other variations, then transforming back to original series result 

autoregressive integrated moving average model (ARIMA). ARIMA(p, d, q) is written 

as: 

 
  tt
B

B
w 




                        (2.5) 

where  

p is the order of the autoregressive component, d the order of the differencing, and 

q the order of the moving-average process, 

tw = is the response series or a difference of the response series, 

 = a constant or intercept,  

B = the backshift operator (i.e. 1 tt xBx ), 

 B = the moving average operator, represented as a polynomial in the backshift 

operator:  B = 1-  ...1B q

q B , 

 B = the autoregressive operator, represented as a polynomial in the backshift 

operator:  B = 1- q

p BB   ...1
 and 

t = the random error or shock (Al-Fattah, 2006).  
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2.3.2.8 The Box-Jenkins Seasonal (SARIMA) Model 

In practice, many time series contain a seasonal periodic component which repeats 

every s observations. For example, with monthly observations, where s = 12, we may 

typically expect tX  to depend on terms such as 12tX , and perhaps 24tX , as well as 

terms such as ,, 21  tt XX Box and Jenkins have generalized the ARIMA model to 

deal with seasonality, and define a general multiplicative seasonal ARIMA model 

(abbreviated SARIMA model) as 

        t

s

Qqt

s

Pp ZBBWBB             (2.6) 

where B denotes the backward shift operator, 
QqPp  ,,,  are polynomials of order p, 

P, q, Q respectively, tZ denotes a purely random process, and  

t

D

s

d

t XW               (2.7) 

The variables }{ tW  are formed from the original series }{ tX  not only by simple 

differencing (to remove trend) but also by seasonal differencing, s , to remove 

seasonality.  The model in equations above is said to be a SARIMA model of order 

   
s

QDPqdp ,,,,   (Chatfield, 1996). 
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CHAPTER 3  
 

 

TIME SERIES DATA BOOTSTRAP 

In this chapter, time series data bootstrap and its methods are explained deeply. 

Studies about scenario generation by bootstrap and forecasting by bootstrap scenarios 

are other topics of this section. 

3.1 BOOTSTRAP OF TIME SERIES DATA AND BOOTSTRAP METHODS 

The bootstrap is a method of computational inference that simulates the creation 

of new data by resampling from a single data set. Although developed first for cross-

sectional data, in recent years several bootstrap methods for dependent data have 

developed. Like the conventional bootstrap, these methods focus on estimates derived 

from bootstrap replicates.  

There are two approaches to bootstrapping dependent data. One is the model 

based approach (parametric method), and the other is model free approach 

(nonparametric methods). 

3.1.1 Parametric Bootstrap Method 

The parametric bootstrap method first fits a model to the dependent data, and then 

resamples residuals instead of the original data. A bootstrap sample is generated by 

using the resampled residuals and the parameters of the model (Romano and Thombs, 

1996). Efron and Tibshirani (1986) gave an example of parametric bootstrapping of 

time series data in which they fit a first order autoregressive model to a data set and 

calculated the residuals. They applied the parametric bootstrap method by resampling 

the residuals in order to estimate the standard error of  , which is the estimated 
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parameter of AR (1) process. Thombs and Schucany (1990) applied the parametric 

bootstrap to autoregressive processes for finding the prediction intervals. Unlike the 

Box-Jenkins method, which is a classical way of obtaining prediction intervals, the 

method they proposed did not require normality of the residuals. Extensions of the 

parametric bootstrap to the mixed autoregressive moving average (ARMA) processes 

were considered by Thombs (1987) and Souza and Neto (1996). The main difficulty in 

parametric method is fitting a reasonable model to the data. It requires the modeler to 

know the correct underlying dependence structure of the series (Carlstein, 1993). 

ARMA models are not able to model basic features of many real time series, and fitting 

models beyond ARMA is a very difficult task (Kunsch, 1989).  

3.1.2 Nonparametric Bootstrap Methods 

The most appealing point of the bootstrap technique is that it is a nonparametric 

method and, therefore using model free resampling techniques for a dependent data will 

be more appropriate (Carlstein, 1993) 

3.1.2.1 Moving Block Bootstrap 

Technique was introduced by Kunch (1989) and Liu and Singh (1992) 

independently. Let X1, X2, …, Xn be the sample of a stationary time series and Bi be the 

block of b consecutive observations starting from i
th

 observation. Bi = (Xi,…, Xi+b-1), 

where i = 1,2, …, n-b+1, forms n-b+1 overlapping blocks from the original sample. 

Resampling n/b blocks with replacement from the set {B1, B2,…, Bn-b+1} produces the 

bootstrap sample (Romano and Thombs, 1996). In the moving blocks bootstrap (MBB) 

method, the reason for blocking the series is to preserve the dependence structure within 

blocks and pass it to the bootstrap sample. The assumption made in MBB is that, for 

block size b, observations more than b time units apart are independent. MBB becomes 

the conventional bootstrap when the block size is 1.  

3.1.2.2 Linked Blockwise Bootstrap  

In moving blocks bootstrap, the dependence structure of the data is disregarded 

near the block end points. To correct this problem, Kunch and Carlstein (1990) 
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proposed a modification to the moving blocks bootstrap. In the linked blockwise 

bootstrap, the p nearest neighbors of the final observation of the first block are 

identified after randomly drawing the first block from the data. Then one of these p 

nearest neighbors is selected randomly as the starting observation of the second block.  

3.1.2.3 Matched-Block Bootstrap  

Another modification to the MBB was proposed by Carlstein et al. (1998). They 

were trying to match the blocks by resampling them according to a Markov chain whose 

transition probabilities depended on the series. They proposed two types of matching 

algorithms: the first algorithm is based on a kernel estimate of the conditional lag one 

distribution, and the second is a fitted autoregression of small order. They made a 

simulation study comparing the performance of matched-block bootstrap versus moving 

blocks bootstrap. They generated series from two AR (1) processes, and tried to 

estimate the variance of the sample mean by bootstrapping. They used the mean squared 

error (MSE) of the algorithm of the variance as a measure of accuracy. The simulation 

experiment showed that the matched-block bootstrap gave lower MSE than the MBB. 

The main conclusion of the study was that matching the blocks reduces the bias 

significantly but has little effect on variance. 

3.1.2.4 Stationary Bootstrap 

Stationary bootstrap (SB) was proposed by Politis and Romano (1994) for 

resampling weakly dependent stationary time series. Just like moving block bootstrap, 

the stationary bootstrap also uses blocks for resampling. However, in the SB the number 

of observations in each block is not fixed number b, rather it is a random number from 

geometric distribution (Leger et al., 1992). SB wraps the series around in a circle before 

resampling; therefore, unlike the MBB, a block can begin with the last observation of 

the series. Then it resamples the blocks whose starting points have a discrete uniform 

distribution {1, 2,…, n) where n is the number of observations. The average block size 

will be 1/p, as the block size has a geometric distribution with design parameter p.  
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3.1.2.5 Threshold Bootstrap  

This method was introduced by Kim et al.(1993b,c) as a generalization of binary 

bootstrap. This method was modified and theoretically by Park (1997). Park and 

Willemain (1999) proposed the threshold bootstrap and the threshold jackknife for 

weakly dependent time series. Willemain et al. (2001) presented the simulation output 

analysis using the threshold bootstrap. The threshold can either be the sample mean or 

the sample median of the series. Data sequences above and below the threshold form 

high and low runs, respectively. A cycle consists of one successive high and low run.  

3.1.2.6 Nearest Neighbor Bootstrap  

The nearest neighbor bootstrap was developed by Lall and Sharma (1996) for 

resampling hydrologic time series. It can be applied to both univariate and multivariate 

processes. This method assumes a known dependence structure, i.e., the number of lags 

upon which the future flow will depend. The number of lags will determine the 

dimension of a “feature vector”. For instance if the serial dependence is limited to three 

previous lags, then the feature vector will be (Xt-1, Xt-2, Xt-3). Then the k nearest 

neighbors of the feature vectors are determined from the k closest vectors in terms of 

weighted Euclidean distance. The simulated value is resampled from the successors of 

these k vectors. Instead of resampling uniformly, a discrete resampling kernel, which 

decreased monotonically with the increase in distance from feature vector, was used.  

There are two choices required in applying nearest neighbor bootstrap. The first is 

the determining the number of lags to consider, which is a difficult task in real series. 

The second is choosing the number of neighbors of k.  

3.1.2.7 Subseries Method  

The subseries method was proposed by Carlstein (1986) to estimate the variance 

of the statistic of interest. Although this method does not rely on resampling, one could 

resample the subseries and compute bootstrap replicates (Hall et al., 1995). Let X1, 

X2,…, Xn be a stationary series. The subseries are formed by dividing this series into k 

non-overlapping subseries of size l, such that k * l = n. The subseries Si, i=1, 2,…,k 

consists of l consecutive observations starting from X(i-1)l+1:Si={X(i-1)l+1, X(i-1)l+2,…,X(i-
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1)l+1}. We want to estimate the Var(t), given that t = t(X1, X2,…,Xn) is the statistic of 

interest. The subseries replicate of t is ti = t(Si), i = 1,2,…,k. (Demirel, 2000) 

Then the estimator for Var(t) is 

kttltVar
k

i

i /)()( 2

1

 


           (3.1) 

where ktt
k

i

i /
1




             (3.2) 

3.2 SCENARIO GENERATION BY BOOTSTRAP 

Scenarios are the possible events which will occur in the future. A simulation is 

mainly based on scenario(s). Model simulation was used to investigate whether scenario 

generation would show such all options for the best preference. A good scenario 

generation method should be able to generate large numbers of realistic scenarios. If 

one is designing a new system or product, inputs are scenarios representing the 

conditions with which the new system must cope. When the scenarios take the form of 

univariate stationary time series, the moving blocks bootstrap has the potential to be a 

good automatic scenario generator. Demirel and Willemain (2002a) determined the 

proper bootstrap block length. They have developed a method of setting the block 

length based on the distribution of a statistic computed from zero crossing counts. 

Higher Order Crossing (HOC) counts of the zero crossings made by the mean-centered 

series and mean-centered series first, second, third and so on differences (Kedem,1993). 

To test whether this way of setting the block length results in realistic scenarios, they 

performed two Turing tests. These visualization experiments confirmed that, when a 

bootstrap is optimally tuned, it is difficult for sophisticated subjects to identify a 

bootstrap sample plotted among several real samples.  

Simulation modelers frequently face a choice between fidelity and variety in their 

input scenarios. Using an historical trace provides only one realistic scenario. Using the 

input modeling facilities in commercial simulation software may provide any number of 

unrealistic scenarios. Demirel and Willemain (2002b) eased this dilemma by developing 

a way to use the moving blocks bootstrap to convert a single trace into an unlimited 
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number of realistic input scenarios. They did this by setting the bootstrap block size to 

make the bootstrap samples mimic independent realizations in terms of the distribution 

of distance between pairs of inputs. They measured the distance using a new statistic 

computed from zero crossings. They estimated the best block size by scaling up an 

estimate computed by analyzing subseries of the trace. 

The need for large numbers of realistic scenarios applies to every domain in 

which simulation is used as part of the system design process. To be useful, scenarios 

should mimic the underlying data generating process by reflecting the auto- and cross-

correlations of the historical data. Huang and Willemain (2006) describe a new scenario 

generation procedure based on the nearest-neighbor bootstrap. They also propose a new 

performance evaluation criterion for multivariate time-series scenario generators based 

on the distribution of a composite correlation discrepancy measure. They illustrate the 

new method and measure by generating simulated scenarios for the US Treasury yield 

curve. 

3.3 FORECASTING BY BOOTSTRAP SCENARIOS 

In this research, we developed on idea of using the bootstrap scenarios to forecast 

natural gas consumption data. Moving block bootstrap is used to produce bootstrap 

series of original data. 

In order to bootstrap the data, we transformed non-stationary natural gas 

consumption data into stationary one. After transformation, we produced 100 bootstrap 

series. These series transformed back into non-stationary series by several calculation 

steps. Subsequently, we have 100 sibling series. Those series are used to generate 100 

different forecasted series by the Winters‟ method. That 100 different forecasted series 

are averaged in our study to produce predictions of 2008 and 2009 months. 
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CHAPTER 4  
 

 

FORECASTING NATURAL GAS CONSUMPTION DATA  

OF ISTANBUL 

In this chapter we will examine the daily and monthly natural gas consumption 

data of Istanbul. Several time series methods are applied and the best of them will be 

recommended for each data. 

4.1 DAILY NATURAL GAS CONSUMPTION DATA OF ISTANBUL 

Daily natural gas consumption records exhibits the total daily usage of natural gas 

in Istanbul. This information includes all consumption data of natural gas for residential 

and industry usage at Istanbul.   

4.1.1 The Plot of Daily Natural Gas Consumption of Istanbul 

In order to understand the characteristics of daily natural gas consumption of 

Istanbul, the daily data is plotted through the period 01.01.2004-31.12.2006. As clearly 

seen in the Figure 4.1, there is seasonality and trend throughout the days. The seasonal 

component seems strongly; it is like a top of mountain that starts with November and 

ends with April months and it is like a bottom of U shape that starts with May and ends 

with October. That means consumption reaches maximum at winter days. On the other 

hand it has minimum values through the summer days. Also the plot exhibits an 

increasing trend. That occurs as a result of new consumers added to natural gas usage 

system in Istanbul. 
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For the purpose of handling seasonality and trend, Winters‟ forecasting method is 

selected in this part of study. This method smoothes the data by using Holt-Winters 

exponential smoothing and calculates the estimates for level, trend and seasonal 

components of time series (MINITAB). 



 

 23 

 

Figure 4.1 Daily natural gas consumption of Istanbul (IGDAS) 
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4.1.2 Parameter Search 

As seen clearly seen above in Figure 4.1, seasonality has great impact on the 

natural gas consumption data but trend and level terms have not as much as impact like 

seasonal factor. For stable forecasts the parameter values usually considered between 

0,1 and 0,3 in literature. We have decided to fix the seasonal factor to 0,3 and the level 

parameter to search with 0,01; 0,05; 0,06 and trend parameter to search with 0,01; 0,02; 

0,03. The parameter search has shown in Table 3.1.  

Table 4.1 Parameters‟ test results 

Parameters MAD 

(0,01;0,01;0,30) 2.345.313 

(0,01;0,02;0,30) 2.035.112 

(0,01;0,03;0,30) 3.001.006 

(0,05;0,01;0,30) 2.097.866 

(0,05;0,02;0,30) 2.091.689 

(0,05;0,03;0,30) 2.069.182 

(0,06;0,01;0,30) 2.126.273 

(0,06;0,02;0,30) 2.174.865 

(0,06;0,03;0,30) 2.210.376 

The second line of Table 4.1 with 0,01; 0,02; 0,30 parameters produces better 

MAD than others. Figure 4.2 and Figure 4.3 are the related plots of 0,01; 0,02; 0,30 

smoothing constants that show how these constants fit well to real values. 
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Figure 4.2 Winters‟ method plot with 0,01; 0,02; 0,30 smoothing constants 
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Figure 4.3 Forecast and real values of 2007 with 0,01;0,02;0,30 smoothing constants
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When we examine the plot of the data it is clear that the daily natural gas 

consumption data of Istanbul depends on temperature. The summer consumption values 

are very low and winter consumption values are high. That is the result of the majority 

of consumption data is from households. For a better forecasting some should use 

temperature values in the forecasting model. We do think the results obtained with 

using temperature values will outperform than our time series method. 

4.2 MONTHLY NATURAL GAS CONSUMPTION DATA OF ISTANBUL 

Monthly natural gas consumption of Istanbul consists twelve data points for a 

year. The data is from 10 IGDAS natural gas station consumption and natural gas taken 

directly from TPAO (Turkish Petroleum Corporation).  

4.2.1 The Plot of Monthly Natural Gas Consumption Data of Istanbul 

The plot of monthly data illustrates an increasing trend and seasonality in Figure 

4.4. Seasonal component of this series is very strong. It appears that every year 

consumption increases with the rising demand. 

4.2.2 Forecasting Monthly Natural Gas Consumption of Istanbul 

At this point of study firstly, predictions are made by using SmartForecasts 

software. SmartForecasts is a forecasting software specifically designed to forecast data 

for businesses. 

The maximum number of data points SmartForecasts can handle is 108 for 

forecasting 12 points. We used 108 natural gas consumption data points starting from 

1999 to 2007 in order to use SmartForecasts. SmartForecasts makes automatic search 

for which forecasting method is suitable for monthly consumption data. Program 

compares the methods and reports as a list in Table 4.2.  
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Figure 4.4 Monthly natural gas consumption of Istanbul from 1993 to 2009
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Table 4.2 Forecasting methods‟ results 

Rank % Worse Avg Error Forecasting Method 

1 (winner) 38773028.00 Winters' Multiplicative, weights = 15% 15% 15% 

2 48.0% 57374576.00 Winters' Additive, weights = 9% 9% 9% 

3 280.0% 147354096.00 Simple Moving Average of 12 periods 

4 296.1% 153581968.00 Double Exponential Smoothing, weight = 3% 

5 300.8% 155396880.00 Single Exponential Smoothing, weight = 13% 

6 309.8% 158897072.00 Linear Moving Average of 12 periods 

According to above results, Winters‟ multiplicative method presents the minimum 

average error with 0,15;0,15;0,15 smoothing constants. Forecasts about the year 2008 

and 5 months of 2009 are shown below in Table 4.3 using Winters‟ multiplicative 

method. 

Table 4.3 Winters‟ Multiplicative Method results 

Forecasts of V1 using Winters' Multiplicative Method 

with weights = 15% 15% 15% and seasonal cycle length = 12 periods. 

Based on 108 cases: C1  to C108 . 

Time Period Lower Limit Forecasts Upper Limit 

C109 675,062,464 741,058,304 807,054,144 

C110 577,301,696 648,262,976 719,224,256 

C111 493,846,624 566,773,632 639,700,672 

C112 273,310,112 348,020,320 422,730,528 

C113 89,844,608 166,103,424 242,362,240 

C114 36,632,200 113,786,528 190,940,848 

C115 24,535,288 104,504,560 184,473,824 

C116 21,498,724 103,196,392 184,894,064 

C117 27,264,040 114,185,544 201,107,040 

C118 114,357,648 203,004,400 291,651,136 

C119 361,471,904 451,654,368 541,836,800 

C120 582,065,472 676,583,296 771,101,120 

C121 713,710,401 787,053,347 860,396,294 

C122 593,261,168 667,663,106 742,065,044 

C123 526,155,075 601,648,259 677,141,443 

C124 286,329,419 362,944,725 439,560,030 

C125 94,996,521 172,763,488 250,530,455 
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With the 0,15; 0,15; 0,15 smoothing constants, forecasts are plotted in Figure 4.5. 

Blue line is the real, red line is the lower limit, purple line is the upper limit and green 

line is the forecasts.  
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Figure 4.5 Winters‟ method plot with 0,15; 0,15; 0,15 parameters 
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SmartForecasts calculations are accepted as starting point, and then we 

investigated the possible better parameter combination. January, February and March, 

which also known as the peak consumption months, are selected for the determination 

of better parameters with lower MAD. Using smoothing constants with levels 

respectively 0,05; 0,15; 0,30; MINITAB Winters‟ multiplicative method gives forecasts 

about 3 months of 2008 and MAD results are calculated in Table 4.4 with the assist of 

real values of these 3 months. 

Table 4.4 Parameter search 

Parameters MAD 

[0,05;0,05;0,05] 124.241.060 

[0,05;0,05;0,15] 94.381.252 

[0,05;0,05;0,30] 86.995.994 

[0,05;0,15;0,05] 114.872.310 

[0,05;0,15;0,15] 85.848.622 

[0,05;0,15;0,30] 94.072.682 

[0,05;0,30;0,05] 98.046.461 

[0,05;0,30;0,15] 67.472.348 

[0,05;0,30;0,30] 109.465.478 

[0,15;0,05;0,05] 79.053.843 

[0,15;0,05;0,15] 78.991.745 

[0,15;0,05;0,30] 101.072.490 

[0,15;0,15;0,05] 90.485.810 

[0,15;0,15;0,15] 90.385.094 

[0,15;0,15;0,30] 111.384.939 

[0,15;0,30;0,05] 93.498.502 

[0,15;0,30;0,15] 92.975.757 

[0,15;0,30;0,30] 113.077.317 

[0,30;0,05;0,05] 95.389.196 

[0,30;0,05;0,15] 83.242.962 

[0,30;0,05;0,30] 92.554.031 

[0,30;0,15;0,05] 97.146.907 

[0,30;0,15;0,15] 84.741.688 

[0,30;0,15;0,30] 93.578.490 

[0,30;0,30;0,05] 92.614.970 

[0,30;0,30;0,15] 79.782.189 

[0,30;0,30;0,30] 100.316.148 

0,05; 0,30; 0,15 constants give the minimum MAD. Comparisons of real and 

forecast values are listed in Table 4.5. Winters‟ method MAD with 0,05 level, 0,30 

trend and 0,15 seasonality constant is lower than SmartForecasts Winters‟ 

Multiplicative MAD. Note that 0,05; 0,30; 0,15 Winters‟ method‟s limits are in Table 
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4.6 and Winters‟ method with 0,15; 0,15; 0,15 limits are in Table 4.3. It is clear that 

Winters‟ method with 0,05; 0,30; 0,15 parameters produce better forecasts of 2008 and 

5 months of 2009.  

Table 4.5 Comparisons of forecasts and real value of 2008 and 2009 

Year Month Real 

Winters' 
Method with 

0,05; 0,30; 
0,15 Error 

Winters' 
Method with 

0,15; 0,15; 
0,15 Error 

2008 January 843,618,178 849,079,233 5,461,056 741,058,304 -102,559,874 

2008 February 713,833,255 639,215,416 -74,617,839 648,262,976 -65,570,279 

2008 March 450,535,818 572,873,968 122,338,150 566,773,632 116,237,814 

2008 April 283,844,118 344,767,357 60,923,239 348,020,320 64,176,202 

2008 May 178,506,683 162,962,311 -15,544,372 166,103,424 -12,403,259 

2008 June 119,554,899 111,505,827 -8,049,072 113,786,528 -5,768,371 

2008 July 111,280,773 102,472,124 -8,808,649 104,504,560 -6,776,213 

2008 August 104,610,386 100,599,219 -4,011,167 103,196,392 -1,413,994 

2008 September 118,546,882 110,956,076 -7,590,806 114,185,544 -4,361,338 

2008 October 180,355,252 196,323,181 15,967,929 203,004,400 22,649,148 

2008 November 343,461,253 434,005,451 90,544,198 451,654,368 108,193,115 

2008 December 550,464,497 623,020,610 72,556,113 676,583,296 126,118,799 

2009 January 652,857,140 809,169,997 156,312,857 787,053,347 134,196,207 

2009 February 594,104,138 609,052,253 14,948,115 667,663,106 73,558,968 

2009 March 583,689,727 545,734,590 -37,955,137 601,648,259 17,958,532 

2009 April 344,758,520 328,369,585 -16,388,935 362,944,725 18,186,205 

2009 May 153,624,534 155,180,680 1,556,146 172,763,488 19,138,954 

  MAD 40,534,383 MAD 117,716,283 

4.2.3 The Box-Jenkins Seasonal (SARIMA) Model 

The time plot of monthly natural gas consumption of Istanbul has strong seasonal 

component over the periods. Observations with s = 12, one can expect t  to depend on 

terms of 12 t  and perhaps 24 t , as well as terms such as ,, ,21   tt

(Chatfield,1996).  

SPSS has the capability of estimating the models for autoregressive moving 

average and produces the forecasts. In this part of study, SPSS is used to explore best-

fitting ARIMA model.  
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Monthly natural gas consumption observations of Istanbul from 1993 to 2007 are 

entered into SPSS spreadsheet. Time series analyses function is selected under the 

related menu of SPSS. Time series modeler makes a deep search to find the suitable 

forecasting method.  

Then SPSS prints the output onto screen. ARIMA(0,1,1)(0,1,1) is the 

recommended model for monthly natural gas consumption of Istanbul. SPSS takes the 

first difference of original data set. MA(1) parameter estimate is 0,302. Also SPSS takes 

the first seasonal difference of the original data set. Seasonal MA(1)‟s parameter 

estimate is 0,810.  

So the ARIMA(0,1,1)(0,1,1) model turns out to be 

tt ZBBW )810,01)(302,01( 12           (4.1) 

Model‟s residual ACF and PACF plots are shown in Figure 4.6. Winters‟ method 

with 0,05; 0,30; 0,15 smoothing constants is preferred in the previous section of this 

chapter. Here comparisons of these two models are listed in Table 4.6.  

Table 4.6 Comparison of forecasts by using Winters‟ method and SARIMA  

against real value of 2008 and 2009 

Year Month Real 

Winters' 
Method with 

0,05; 0,30; 
0,15 Lower Limit Upper Limit Error 

2008 January 843,618,178 849,079,233 762,841,024 935,317,443 5,461,056 

2008 February 713,833,255 639,215,416 549,886,076 728,544,755 -74,617,839 

2008 March 450,535,818 572,873,968 479,970,935 665,777,000 122,338,150 

2008 April 283,844,118 344,767,357 247,861,442 441,673,272 60,923,239 

2008 May 178,506,683 162,962,311 61,675,195 264,249,426 -15,544,372 

2008 June 119,554,899 111,505,827 5,506,093 217,505,560 -8,049,072 

2008 July 111,280,773 102,472,124 -8,529,442 213,473,690 -8,808,649 

2008 August 104,610,386 100,599,219 -15,656,070 216,854,508 -4,011,167 

2008 September 118,546,882 110,956,076 -10,772,217 232,684,369 -7,590,806 

2008 October 180,355,252 196,323,181 68,930,863 323,715,499 15,967,929 

2008 November 343,461,253 434,005,451 300,782,447 567,228,454 90,544,198 

2008 December 550,464,497 623,020,610 483,821,203 762,220,017 72,556,113 

2009 January 652,857,140 809,169,997 663,866,446 954,473,547 156,312,857 

2009 February 594,104,138 609,052,253 457,532,258 760,572,248 14,948,115 

2009 March 583,689,727 545,734,590 387,899,118 703,570,063 -37,955,137 

2009 April 344,758,520 328,369,585 164,131,025 492,608,144 -16,388,935 

2009 May 153,624,534 155,180,680 -15,538,718 325,900,077 1,556,146 

  MAD 40,534,383 

  

Year Month Real SARIMA Lower Limit Upper Limit Error 

2008 January 843,618,178 798,647,973 535,528,306 1,147,501,684 -44,970,205 
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Year Month Real SARIMA Lower Limit Upper Limit Error 

2008 February 713,833,255 739,313,322 451,848,264 1,144,483,456 25,480,067 

2008 March 450,535,818 684,978,877 386,531,404 1,127,806,900 234,443,059 

2008 April 283,844,118 423,930,695 222,717,789 736,241,159 140,086,577 

2008 May 178,506,683 209,141,816 102,902,894 380,854,887 30,635,133 

2008 June 119,554,899 147,538,166 68,292,610 280,453,278 27,983,267 

2008 July 111,280,773 139,178,714 60,824,182 275,178,774 27,897,941 

2008 August 104,610,386 140,143,408 57,993,596 287,363,082 35,533,022 

2008 September 118,546,882 158,518,529 62,266,656 336,271,678 39,971,647 

2008 October 180,355,252 279,276,671 104,348,712 611,629,028 98,921,419 

2008 November 343,461,253 650,057,690 231,456,363 1,467,103,124 306,596,437 

2008 December 550,464,497 950,541,121 323,031,230 2,207,208,563 400,076,624 

2009 January 652,857,140 1,066,779,663 337,116,429 2,586,608,677 413,922,523 

2009 February 594,104,138 991,273,003 294,736,631 2,489,676,429 397,168,865 

2009 March 583,689,727 921,900,003 258,450,426 2,393,410,351 338,210,276 

2009 April 344,758,520 572,723,932 151,661,573 1,534,172,978 227,965,412 

2009 May 153,624,534 283,619,517 71,056,651 782,631,404 129,994,983 

  MAD 117,716,283 

ARIMA(0,1,1)(0,1,1) is referred as SARIMA in Table 4.6. SARIMA model has 

worse MAD value than Winters‟ multiplicative method. Also there are bigger gaps 

between forecast limits in SARIMA compared to Winters‟ method ones. Only two real 

values of 2008 March and 2009 February are out of Winters‟ method‟s related forecast 

limits. As the forecasting period lengthens or increases, forecasting accuracy decreases 

in prediction of monthly natural gas consumption of Istanbul. 

It is reasonable that Winters‟ multiplicative method should be employed to 

forecast the next monthly gas consumptions of Istanbul with the level, trend and 

seasonal constants that are 0,05; 0,30 and 0,15 correspondingly.    
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Figure 4.6 ARIMA(0,1,1)(0,1,1) residuals‟ ACF and PACF plots 
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CHAPTER 5  
 

 

FORECASTING NATURAL GAS CONSUMPTION DATA  

OF TURKEY 

In this chapter, natural gas consumption data of Turkey will be examined on 

monthly and annual time basis. BOTAS and IEA are the providers of the data. 

5.1 MONTHLY NATURAL GAS CONSUMPTION DATA OF TURKEY 

At this part of study monthly natural gas consumption data of Turkey are taken 

into account to make predictions about the future. The data covers from 1999 to 2008 

years and these 120 points are observed and provided through that period by 

International Energy Agency (IEA). 

5.1.1 The Plot of Natural Gas Consumption Data of Turkey 

Natural gas consumption based on months of Turkey exhibits seasonality and 

increasing trend among nine years as clearly seen in Figure 5.1. As other natural gas 

consumption data, this one has same pattern; increasing consumption in winters and 

decreasing consumption in summer periods. 
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Figure 5.1 Monthly natural gas consumption of Turkey from 1999 to 2008 (IEA)
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5.1.2 Forecasting Monthly Natural Gas Consumption 

SmartForecasts is run for automatic search on forecasting methods. The data 

entered into SmartForecasts is from 1999 to 2007. We have natural gas consumption 

data of 2008, and it would be used for validation. SmartForecasts gives the below 

results in Table 5.1.  

Table 5.1 SmartForecasts results 

Rank % Worse Avg Error Forecasting Method 

1 (winner) 160.10 Winters' Multiplicative, weights = 26% 26% 26% 

2 33.8% 214.21 Winters' Additive, weights = 54% 54% 54% 

3 37.1% 219.49 Simple Moving Average of 1 periods 

4 37.4% 219.93 Single Exponential Smoothing, weight = 97% 

5 76.2% 282.05 Double Exponential Smoothing, weight = 69% 

6 82.4% 292.01 Linear Moving Average of 12 periods 

Winters‟ multiplicative method with weights 0,26; 0,26; 0,26 is suggested by 

SmartForecasts. That method‟s forecasts about 2008 are presented in Table 5.2.  

 

Table 5.2 Winters‟ multiplicative method forecasts 

2008 Real 
Winters' Method with 

0,26; 0,26; 0,26 Lower Limit Upper Limit Error 

January 3647 3,831 3,480 4,182 184 

February 3680 3,622 3,261 3,982 -58 

March 3685 3,574 3,202 3,945 -111 

April 3001 2,874 2,491 3,258 -127 

May 3000 2,579 2,182 2,975 -421 

June 2753 2,442 2,031 2,852 -311 

July 2368 2,552 2,127 2,977 184 

August 2882 2,576 2,135 3,017 -306 

September 2880 2,557 2,100 3,015 -323 

October 2947 2,778 2,303 3,252 -169 

November 3121 3,241 2,749 3,733 120 

December 3164 3,657 3,146 4,167 493 

  MAD 234 
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5.1.3 Autoregressive Integrated Moving Average Model for Forecasting Monthly 

Natural Gas Consumption of Turkey 

At this part of study, monthly natural gas consumption data of Istanbul from 1999 

to 2007 are entered into SPSS sheet for determining the Box-Jenkins model.  

SPSS Time Series function recommends ARIMA(0,0,2)(1,1,0) model. Model 

constant is estimated as 263,224.       MA(1) parameter estimate is -0,473;        MA(2) is 

also -0,471. Seasonal AR(1) parameter estimate is -0,425. Residual ACF and PACF 

plots are given in Figure 5.2. 
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Figure 5.2 Residual ACF and PACF plots of ARIMA(0,0,2)(1,1,0) 
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Winters multiplicative method with weights 0,26; 0,26; 0,26 and 

ARIMA(0,0,2)(1,1,0) with their 2008 forecasts are compared below in Table 5.3. 

(ARIMA(0,0,2)(1,1,0) is abbreviated as SARIMA.) 

Table 5.3 Comparison of two forecasting types 

2008 Real 

Winters' 
Method with 

0,26; 0,26; 0,26 
Lower 

Limit 
Upper 
Limit Error 

January 3647 3,831 3,480 4,182 184 

February 3680 3,622 3,261 3,982 -58 

March 3685 3,574 3,202 3,945 -111 

April 3001 2,874 2,491 3,258 -127 

May 3000 2,579 2,182 2,975 -421 

June 2753 2,442 2,031 2,852 -311 

July 2368 2,552 2,127 2,977 184 

August 2882 2,576 2,135 3,017 -306 

September 2880 2,557 2,100 3,015 -323 

October 2947 2,778 2,303 3,252 -169 

November 3121 3,241 2,749 3,733 120 

December 3164 3,657 3,146 4,167 493 

  MAD 233.95 

      

2008 Real SARIMA 
Lower 

Limit 
Upper 
Limit Error 

January 3647 3,364 2,889 3,839 -283 

February 3680 3,323 2,746 3,900 -357 

March 3685 3,332 2,683 3,982 -353 

April 3001 2,971 2,321 3,621 -30 

May 3000 2,715 2,065 3,365 -285 

June 2753 2,625 1,975 3,274 -128 

July 2368 2,553 1,904 3,203 185 

August 2882 2,586 1,936 3,236 -296 

September 2880 2,701 2,051 3,351 -179 

October 2947 2,916 2,266 3,565 -31 

November 3121 3,357 2,707 4,006 236 

December 3164 3,604 2,954 4,254 440 

  MAD 233.64 

Winters‟ multiplicative method and SARIMA have nearly same MAD values. 

Winters‟ method has one real value out of its limits at 2008 May. SARIMA has slightly 
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better MAD value. SARIMA should be selected for forecasting method in monthly 

natural gas consumption of Turkey estimation.  

5.2 ANNUAL NATURAL GAS CONSUMPTION DATA OF TURKEY 

Turkey has a grown need for energy sources. Among the increment of natural gas 

demand in the electricity, fertilizer, residential, industry usages; the overall natural gas 

consumption rises rapidly. 

Annual natural gas consumption data of Turkey is provided by BOTAS. It 

includes yearly natural gas consumption values from 1987 to 2008 of Turkey.  

5.2.1 The Plot of Natural Gas Consumption Data of Turkey 

The diagram about annul data of natural gas consumption shows an obvious 

increasing trend and no seasonality in Figure 5.3. Trend analysis would be meaningful 

to explore future expectations about annual natural gas consumption of Turkey. 

5.2.2 Forecasting the Annual Natural Gas Consumption of Turkey with Trend 

Analysis 

Trend analysis can be done with different ways of time series models. Commonly 

used models are linear trend model and quadratic trend model. Linear trend model 

accounts for linearity in the trend. Quadratic trend model accounts for curvature in the 

trend.  
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Figure 5.3 Annual natural gas consumption of Turkey from 1987 to 2008 (BOTAS) 
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According to above models, observations between 1987 and 2006 are used to 

calculate the forecast about 2007. Also double exponential smoothing is investigated 

whether or not suitable for annual natural gas consumption of Turkey. Note that double 

exponential smoothing‟s level and trend weights are set to optimal by automatically in 

MINITAB. The plots of all three methods are drawn as Figure 5.4, Figure 5.5 and 

Figure 5.6 on the next pages respectively. Error values of these models are listed in the 

Table 5.4. 

Table 5.4 Error values of different models 

Methods MAPE MAD MSE 

Regression 57 2.042 5.750.200 

Quadratic Trend  25 676 686.926 

Double Exponential Smoothing 
with 0,23 and 3,43 weights 13 676 741.555 

Because the mean absolute percentage error (MAPE) and the mean absolute 

deviation (MAD) values of quadratic trend and double exponential smoothing are lower 

than regression in Table 5.4 they are appropriate methods for predictions. Also 

SmartForecasts is used to guess 2007 consumption. SmartForecasts runs automatic 

search to select forecasting method with minimum error. Program decided to use double 

exponential smoothing method with both 0,71 weights. We also investigated the long-

term forecasting by making the prediction of 2008 using same parameters with above 

methods. Forecasts about 2007 and 2008 are shown below in Table 5.5. Note that DES 

means Double Exponential Smoothing with related parameters. LL is lower limit and 

UL is upper limit of forecasts. 

Table 5.5 Forecasts about 2007 and 2008 

Years Real 

DES 
(0,23; 
3;43) UL LL Error 

Quadratic 
Trend Error 

DES 
(0,71; 
0,71) UL LL Error 

2007 35,064 34,394 36,049 32,738 -670 31,842 
-

3,222 34,031 36,440 31,623 
-

1,033 

2008 37,128 39,251 54,445 24,058 2,123 34,928 
-

2,200 37,864 40,922 34,805 736 

 MAD 1,397 MAD 2,711  MAD 884 
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Both plots and forecast values demonstrate that double exponential smoothing 

model fits very well to annual natural gas consumption data. Moreover double 

exponential smoothing method has minimum error and acceptable lower and upper 

limits. Tracking the pattern is the concerning criteria which gives an idea about the 

future. Quadratic trend method and SmartForecasts do not fit as well as double 

exponential smoothing. So the double exponential smoothing model is suggested to 

make forecasts in the long term by using 0,71 and 0,71 weights. 

For further improvement, we made a parameter search on double exponential 

smoothing. For level and trend constants we tried 0,2; 0,4 and 0,6 values. Table 5.6 

results are shown and also compared with SmartForecasts recommended parameters. 

Table 5.6 Parameter search on double exponential smoothing 

DES 

MAD Level Trend 

0.2 0.2 7811 

0.2 0.4 5826 

0.2 0.6 3635 

0.4 0.2 4482 

0.4 0.4 2754 

0.4 0.6 2001 

0.6 0.2 3019 

0.6 0.4 1671 

0.6 0.6 866 

(0,6; 0,6) combination has a lower MAD value than others. Its limits and MAD 

value in Table 5.7 are compared with double exponential smoothing with (0,71; 0,71) 

parameters. 

Table 5.7 Comparison of double exponential smoothing models 

DES (0.6; 0.6) DES (0.71; 0.71) 

Year Real Forecast LLr UL Error Forecast LLr UL Error 

2007 35,064  33,437  30,870  36,004  (1,627) 34,031  36,440  31,623  (1,033) 

2008 37,128  37,023  33,961  40,086  (105) 37,864  40,922  34,805  736  

  MAD 866   MAD 884 

Double exponential smoothing with 0.6 and 0.6 parameters has better MAD value. 

So we can take that model as our forecasting model. 
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Figure 5.4 Trend analysis plot of annual natural gas consumption of Turkey by applying regression model 
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Figure 5.5 Trend analysis plot of annual natural gas consumption of Turkey by applying quadratic trend model 
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Figure 5.6 Plot of annual natural gas consumption in Turkey by applying double exponential smoothing model 



 

 

50 

5.2.3 Forecasting the Annual Natural Gas Consumption of Turkey with 

Autoregressive Integrated Moving Average Model 

As clearly seen in Figure 5.3, annual natural gas consumption of Turkey has an 

increasing trend. That makes the data non-stationary one. This kind of series must be 

transform into stationary form in order to make time series analysis according to Box-

Jenkins procedure.  

Differencing is one of the transformation methods to make the data stationary. It 

is particularly useful for removing a trend. For non-seasonal data, first-order 

differencing is usually sufficient to attain apparent stationarity, so that the new series 

 11 ,, Nyy   is formed from the original series Nxx ,,1   by 

11   tttt xxxy             (5.1) 

First-order differencing is widely used. Occasionally second-order differencing is 

required using the operator
2 , where (Chatfield, 1996) 

tttttt xxxxxx   12122

2 2          (5.2) 

Firstly, we take the first difference of the data and then we plot the new data in 

Figure 5.7. Time series plot of first difference of the data has a trend. Autocorrelation 

function (ACF) is reducing slowly in Figure 5.8. The autocorrelation function shows 

high correlation coefficients with lags. The slow decline of the ACF and time plot of 

first difference of data suggests that second differencing is required.  
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Figure 5.7 Time series plot after first difference of annual natural gas consumption of Turkey 
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Figure 5.8 Autocorrelation function plot of first difference of annual natural gas consumption of Turkey 
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Second difference of the data is plotted in Figure 5.9. Now it has no trend, 

stationarity is obviously seen in Figure 5.9. Its autocorrelation and partial 

autocorrelation function plots are shown in Figure 5.10 and Figure 5.11 respectively. 

ACF decreases rapidly and changes its sign at each lag level. 
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Figure 5.9 Time series plot after second difference of annual natural gas consumption of Turkey 
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Figure 5.10 Autocorrelation function plot of second difference of annual natural gas consumption of Turkey 
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Figure 5.11 Partial autocorrelation function plot of second difference of annual natural gas consumption of Turkey 
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Second order differencing is enough for the transformation of data to stationary 

one. Order of autoregressive process of the ARIMA model is determined by the number 

of partial autocorrelation function coefficients. Similarly order of moving average of the 

ARIMA model is decided by the number of autocorrelation function coefficients. The 

peak points of these functions show the order of models (Goktas, 2005). 

The criterion mentioned in the previous paragraph is employed to find out the 

orders of annual natural gas consumption ARIMA model. Autocorrelation function plot 

of the second difference in Figure 5.10 has the peak point at the first lag. Moving 

average order should be first order. Partial correlation function plot of second difference 

in Figure 5.11 has the peak at the first lag. So autoregressive process order should be 

first order for the model. As a result of that analysis, ARIMA(1,2,1) is decided to make 

annual natural gas consumption forecasts of Turkey. 

In order to check our findings, we run SPSS which is used for the seeking the 

ARIMA model of monthly gas consumption of Istanbul before. SPSS made an 

automatic search on orders of ARIMA and it suggested the ARIMA(1,2,0) model for 

annual gas consumption data of Turkey. Its residual ACF and PACF plots are shown as 

Figure 5.12. Coefficients of ARIMA models are listed in Table 5.6. Both models are 

shown with their statistics in Table 5.7. ARIMA(1,2,1) model is fitting to 2007 and 

2008 with lower MAD than ARIMA(1,2,0) model. 

Table 5.8 Coefficients of ARIMA models 

  Coefficients 

Model AR(1) MA(1) 

ARIMA(1,2,0) -0,708   

ARIMA(1,2,1) -0,642 0,194 

 

Table 5.9 Results of ARIMA models 

Years Real ARIMA(1,2,0) UL LL Error ARIMA(1,2,1) UL LL Error 

2007 35,064 34,920 37,080 32,760 -144 34,872 37,103 32,642 -192 

2008 37,128 38,782 42,311 35,253 1,654 38,725 42,331 35,119 1,597 

  MAD 899   MAD 894 
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As a conclusion, ARIMA(1,2,1) model compared with double exponential 

smoothing in terms of forecast and limit values in Table 5.8. Double exponential 

smoothing with 0,60 and 0,60 parameters error value is lower than ARIMA(1,2,1). As a 

result, double exponential smoothing produces better long term forecasts than ARIMA 

for annual natural gas consumption of Turkey. 

Table 5.10 Comparison between ARIMA model and double exponential smoothing 

Years Real DES (0.6; 0.6) UL LL Error ARIMA(1,2,1) UL LL Error 

2007 35,064 33,437  36,004  30,870  -1,627 34,872 37,103 32,642 -192 

2008 37,128 37,023  40,086  33,961  -105 38,725 42,331 35,119 1,597 

  MAD 866   MAD 894 
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Figure 5.12 ARIMA(1,2,1) residual ACF and PACF plots 
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5.3 Forecasting the Last Four Years of Annual Natural Gas Consumption of 

Turkey and Comparing with Literature Study 

Ediger and Akar (2007) made a study about forecasting of primary energy 

demand by fuel in Turkey. They used autoregressive integrated moving average 

(ARIMA) and seasonal ARIMA (SARIMA) methods to predict future primary energy 

demand of Turkey from 2005 to 2020.  

The results of their have shown that the average annual growth rates of individual 

energy sources and total primary energy will decrease in all cases except wood and 

animal–plant remains which will have negative growth rates. The decrease in the rate of 

energy demand may be interpreted that the energy intensity peak will be achieved in the 

coming decades. Another interpretation is that any decrease in energy demand will slow 

down the economic growth during the forecasted period. At the end of their study, they 

proposed some policy recommendations.  

One of the findings of Ediger and Akar is that natural gas will continue to be a 

key element of the Turkish energy system in the future. In order to understand the future 

changes, they forecasted the consumption values of natural gas period between 2005 

and 2020.  

This section of our study provides the comparison of forecast values between our 

study and the Ediger and Akar‟s study. Annual natural gas consumption data of Turkey 

from 1987 to 2004 is used and SPSS software is run to determine the autoregressive 

integrated moving average model. Also same data are employed to make forecasts using 

double exponential smoothing. Note that same data and time period is used by Ediger 

and Akar. Table 5.9 represents the comparison table of forecasts related to applied 

methods. 
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Table 5.11 Comparison table of methods 

Methods 2005 2006 2007 2008 MAD 

Ediger and Akar's Study Forecast 22,319 24,155 26,569 28,378 7,032 

ARIMA(0,1,0) Forecast 23,378 24,648 25,917 27,187 7,105 

Upper Control Limit of ARIMA(0,1,0) 25,244 27,286 29,149 30,919   

Lower Control Limit of ARIMA (0,1,0) 21,512 22,009 22,686 23,456   

Double Exponential Smoothing 
Forecast 24,623 26,919 29,216 31,512 4,320 

Upper Control Limit of Double Exp. 
Smoothing 26,096 29,830 33,589 37,353   

Lower Control Limit of Double Exp. 
Smoothing 23,150 24,008 24,843 25,671   

Real Values 26,865 30,493 35,064 37,128   

SPSS suggested the ARIMA(0,1,0) model to make forecasts. Predicted values of 

Ediger and Akar‟s study are slightly better than ARIMA(0,1,0). On the other hand, 

double exponential smoothing MAD and forecasts are far better than all other methods. 

Double exponential smoothing with 0,41 and 1,37 parameters should be considered as 

the forecasting method of 2005, 2006, 2007 and 2008.   
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CHAPTER 6  
 

 

GENERATING CONSUMPTION SCENARIOS BY BOOTSTRAP 

 

 

 
Scenarios are projected sequences of events, detailed plans or possibilities of 

related subject. Generating scenarios is the important part of strategic planning process. 

Bootstrap is a resampling method that generates lots of sibling series from a series, so 

one could use them to produce scenarios. 

The original sample represents the population from which it was drawn. So 

resamples from this sample represent what we would get if we took many samples from 

the population.  

Bootstrapping requires stationary data. Non-stationary data can be transformed 

into stationary data by different methods in order to apply bootstrap. 

We apply Demirel and Willemain (2002)‟s scenario generation technique to 

generate bootstrap scenarios. This technique requires a certain time series length. 

Therefore we used monthly natural gas consumption data of Istanbul which has enough 

observations to apply the method. 

6.1 ESTIMATING THE BEST BLOCK SIZE 

First we need to determine best block size to generate new data series. Subseries 

technique is a solution for this problem. The steps of subseries technique are explained 

briefly below: 

1. Divide the original series into s ≥ 5 subseries with m observations each. 

(Choosing s = 5 produces 10 reference values of Δ. There is a tradeoff 

here: more subseries provide a smoother estimate of the reference
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distribution, but subseries that contain too few observations yield 

unstable estimates of Δ.) 

2. Compute  s
2
  values of Δ using all pairs of subseries.  

3. Create r = 100 or more bootstrap samples of each subseries, beginning 

with a block size of one and incrementing by one. More bootstrap 

samples give better results.  

4. For each block size, compute the r values of Δ* between each of the 

subseries and its bootstrap samples.  

5. Compare the sample distributions of Δ and Δ* using the K-S two sample 

test.  

6. The block size which gives the minimum K-S statistic value D is the best 

block size for subseries, 𝑏 𝑚 .  

7. Estimate the best block size for the whole series by using the square root 

rule, 𝑏 𝑛 = 𝑠1/2 𝑏 𝑚 . (Demirel and Willemain, 2002b) 

Δ is the index of difference. The Δ statistic is a measure of the distance between 

two sample time series. It is based on the characterization of series by higher order 

crossing (HOC) counts (Kedem, 1993). Higher order crossings (HOC) are counts of the 

zero crossings made by the mean-centered series and its first, second, and higher 

differences. Any stationary process can be characterized by its HOC (Demirel and 

Willemain, 2002b). 

6.2 HOW TO DEAL WITH NON-STATIONARITY 

Monthly natural gas consumption of Istanbul is a non-stationary data which is 

shown in Figure 4.4. It should be transformed into stationary one and then get back to 

non-stationary data to make analyses. Non-stationary natural gas consumption data of 

Istanbul has three components which are seasonality, trend and increasing variance. 

Removal of these components results the stationary data. Then above steps of subseries 

technique are used for prediction of best block size.  
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6.2.1 Removal of Non-Stationary Components of Monthly Natural Gas 

Consumption of Istanbul 

In this data as shown in Figure 4.4, we have three components of non-stationarity. 

1
st
 component is seasonality. Data is monthly seasonal. 2

nd
 component is trend. Data has 

increasing trend. 3
rd

 component is non-constant variance. Data has increasing 

variability. We start with non-constant variance. Box and Jenkins (1970) took 

logarithms to make the seasonal effect additive. Increasing variance would be removed 

by taking logarithm of the natural gas consumption data of Istanbul. 
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Figure 6.1 Natural logarithms of monthly natural gas consumption data of Istanbul 
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Figure 6.1 shows the plot of logged data of natural gas consumption of Istanbul. 

The data has still seasonal and trend components.  Firstly it is guaranteed that we should 

take the seasonal differencing in order to eliminate the seasonality. Seasonal 

differencing is calculated by the taking difference of each month‟s logged value from 

seasonal factor. Seasonal factor is computed i.e. as the summation of first months of 

years and then dividing this sum to the number of first months. Seasonal differencing is 

applied to natural logarithms of the data. Results are shown on the next page as Figure 

6.2.  
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Figure 6.2 The plot of seasonally differenced logged natural gas consumption data of Istanbul 
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Figure 6.2 shows the plot of seasonally differenced logged natural gas 

consumption data of Istanbul. Increasing variance and seasonality are removed as a 

result of previous computations. The last component that should be removed is the trend 

of data. First difference of logged and seasonally differenced data would eliminate the 

trend. It is shown on the next page as Figure 6.3. 

Also the ACF and PACF plots of final stationary data are shown in Figure 6.4 and 

6.5 respectively. Spikes of the lags are in the limits of autocorrelation function as shown 

in Figure 6.4. Moreover ACF dies down fairly quickly and cuts off rapidly. In addition, 

PACF plot in Figure 5.5 supports the idea that we reach a stationary data.  
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Figure 6.3 First difference of logged and seasonally differenced natural gas consumption data of Istanbul 
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Figure 6.4 Autocorrelation function plot of logged, seasonally differenced and first differenced natural gas consumption data of Istanbul 
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Figure 6.5 Partial autocorrelation function plot of logged, seasonally differenced and first differenced natural gas consumption data of Istanbul 
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6.2.2 Estimation of Best Block Size  

After getting the stationary data, best block size is investigated in order to produce 

different monthly natural gas consumption scenarios of Istanbul.  

The stationary data is divided into 5 subseries firstly. From each pair of subseries 

which is  5
2
 = 10 , delta values are calculated. These are called “golden deltas” and 

shown in Table 6.1. An Excel file with formulas is created to calculate all these steps to 

produce golden deltas. 

Table 6.1 Golden deltas‟ normalized zero-crossing rates 

Delta 1 4.81 

Delta 2 0.60 

Delta 3 0.65 

Delta 4 2.61 

Delta 5 6.70 

Delta 6 3.23 

Delta 7 1.33 

Delta 8 0.80 

Delta 9 3.93 

Delta 10 1.68 

The second issue is about generating bootstraps of each subseries. We set up 

Excel files to generate r = 1000 bootstraps of subseries and compute r values of Δ* 

between each of the subseries and its bootstraps. We start with block size = 1 and 

increment by one up to 5. So we got 1000 different Δ* for each subseries with one block 

size. Totally we have 5000 Δ* for each block size. 

The third step is the comparison between golden deltas and Δ*‟s. This evaluation 

of deltas is made with Kolmogrov-Smirnov (K-S) 2-sample test. SPSS can handle two 

sample K-S test. The minimum K-S statistic value D is chosen for the determination of 

best block size. This block size is symbolized as 𝑏 𝑚 . The best block size of monthly 

natural gas consumption of Istanbul is 3 as shown in Table 6.2 and Figure 6.6. 
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Table 6.2 Kolmogrov-Smirnov (K-S) 2-sample test results 

Block Size K-S Statistics 

1 0.1978 

2 0.1668 

3 0.1600 

4 0.1748 

5 0.2410 

 

 

 

 

 

 

 

𝑏 𝑚  is used in square root rule, 𝑏 𝑛 = 𝑠1/2 𝑏 𝑚  . 𝑏 𝑚 = 3 and 𝑏 𝑛 = 6.7082 for our 

data. If we rounded up the 𝑏 𝑛  , the result is 7. In order to generate scenarios of monthly 

natural gas consumption of Istanbul, block size is equal to 7.  

Finally we have concluded the best block size estimation, and we could go further 

with generating sibling series of original monthly natural gas consumption of Istanbul. 

 

Figure 6.6 K-S Statistics results related with block sizes 
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6.3 GENERATING BOOTSTRAPS AND SIBLING SERIES OF MONTHLY 

NATURAL GAS CONSUMPTION DATA OF ISTANBUL 

In the previous section, we have calculated the best block size for the scenarios of 

monthly natural gas consumption of Istanbul. We set up an Excel file with macros based 

on Visual Basic codes. That file generates 100 bootstraps of our original consumption 

data, and then takes them back to original like (sibling) series by using moving block 

bootstrap. ACF and PACF plots of a bootstrap show us that, in this study, we preserve 

the dependence structure within blocks and pass it to the bootstrap sample as understand 

through Figure 6.7 and Figure 6.8. Those plots are nearly same with Figure 6.4 and 

Figure 6.5 

 

Figure 6.7 Autocorrelation function plot of a bootstrap  
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Figure 6.8 Partial autocorrelation function plot of a bootstrap 

Sibling series are generated from bootstraps. We take a bootstrap data set and 

make reverse calculations of what we have done in the removal of non-stationary 

components section. Reverse calculation starts with the production of the first 

differentiated data set. At that step, we add up previous data point to current data point 

in order to get 1
st
 differentiated data set or “detrended data set”. Then, seasonal index is 

added on detrended data set. So we get seasonality added data set. As the final step, we 

applied the exponential function that returns e raised to the power of a number which is 

the sibling series‟ data point. 

Eventually, we have generated 100 bootstraps and 100 sibling series of monthly 

natural gas consumption data of Istanbul.  
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6.4 PRODUCTION OF MONTHLY NATURAL GAS CONSUMPTION 

SCENARIOS OF ISTANBUL 

After determining the best block size and generating bootstraps and sibling series, 

we could produce different monthly scenarios about the natural gas consumption of 

Istanbul.  

In the 4
th

 chapter, Winters‟ method with 0.05, 0.30 and 0.15 parameters is the 

recommended estimation technique for monthly natural gas consumption of Istanbul. 

These parameters are employed for the production of 100 scenarios. 

A MINITAB macro that uses above Winters‟ method is written and run for our 

generation of 100 scenarios. Samples are shown in Appendix A. Average of the 100 

scenarios could be recommended as the forecast of 2008 and 2009 months which is 

listed in Table 6.3.  

Table 6.3 Bootstrap forecasts of 2008 and 2009 

Year Months Bootstrap based Forecast Real Error 

2008 January 848,226,260 843,618,178 4,608,082 

2008 February 768,579,496 713,833,255 54,746,241 

2008 March 728,386,441 450,535,818 277,850,623 

2008 April 452,581,345 283,844,118 168,737,227 

2008 May 218,704,507 178,506,683 40,197,824 

2008 June 153,703,880 119,554,899 34,148,981 

2008 July 147,288,895 111,280,773 36,008,122 

2008 August 148,533,172 104,610,386 43,922,786 

2008 September 170,882,829 118,546,882 52,335,947 

2008 October 321,548,798 180,355,252 141,193,546 

2008 November 689,343,330 343,461,253 345,882,077 

2008 December 1,062,275,441 550,464,497 511,810,944 

2009 January 987,801,205 652,857,140 334,944,065 

2009 February 892,393,276 594,104,138 298,289,138 

2009 March 841,755,027 583,689,727 258,065,300 

2009 April 524,505,659 344,758,520 179,747,139 

2009 May 253,490,831 153,624,534 99,866,297 

 MAD 169,550,255 

 

In order to compare the forecast performance of bootstrap based Winters‟ forecast 

with the recommended method for monthly natural gas consumption in Chapter 4, 

results are shown in Table 6.4.  
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Bootstrap based forecast has good performance from May 2008 to September 

2008 as seen in Figure 6.9. After October 2008 with the effect of economical crisis 

natural gas consumption decreases and the forecasts are overestimated from the real. 

Table 6.4 Comparison of Winters‟ method and Bootstrap based forecast 

Year Month Real 

Winters' 
Method with 

0,05; 0,30; 
0,15 Error 

Bootstrap 
based 

Forecast Error 

2008 January 843,618,178 849,079,233 5,461,056 848,226,260 4,608,082 

2008 February 713,833,255 639,215,416 -74,617,839 768,579,496 54,746,241 

2008 March 450,535,818 572,873,968 122,338,150 728,386,441 277,850,623 

2008 April 283,844,118 344,767,357 60,923,239 452,581,345 168,737,227 

2008 May 178,506,683 162,962,311 -15,544,372 218,704,507 40,197,824 

2008 June 119,554,899 111,505,827 -8,049,072 153,703,880 34,148,981 

2008 July 111,280,773 102,472,124 -8,808,649 147,288,895 36,008,122 

2008 August 104,610,386 100,599,219 -4,011,167 148,533,172 43,922,786 

2008 September 118,546,882 110,956,076 -7,590,806 170,882,829 52,335,947 

2008 October 180,355,252 196,323,181 15,967,929 321,548,798 141,193,546 

2008 November 343,461,253 434,005,451 90,544,198 689,343,330 345,882,077 

2008 December 550,464,497 623,020,610 72,556,113 1,062,275,441 511,810,944 

2009 January 652,857,140 809,169,997 156,312,857 987,801,205 334,944,065 

2009 February 594,104,138 609,052,253 14,948,115 892,393,276 298,289,138 

2009 March 583,689,727 545,734,590 -37,955,137 841,755,027 258,065,300 

2009 April 344,758,520 328,369,585 -16,388,935 524,505,659 179,747,139 

2009 May 153,624,534 155,180,680 1,556,146 253,490,831 99,866,297 

  MAD 40,534,383 MAD 169,550,255 

In Table 5.4, MAD value of Winters‟ method with 0,05; 0,30; 0,15 is lower than 

bootstrap based forecast. This is showing that bootstrap based forecasting is 

outperformed by Winters‟ method. 
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Figure 6.9 Average of consumption scenarios as forecasts of 2008 and 2009 months
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CHAPTER 7  
 

 

CONCLUSIONS 

 

 

In this study, natural gas consumption data of Istanbul and Turkey are examined 

in terms of time series analysis on daily, monthly and monthly, annual basis 

respectively. Istanbul consumption data between 1992 and 2009 years is provided from 

IGDAS. Turkey consumption data between 1987 and 2008 years is provided from 

BOTAS and IEA.  

Demand forecasting is an important issue for service and manufacturing 

industries. Time series analysis is one of the most popular forecasting methods. Recent 

studies about the natural gas consumption are the applications of time series analysis 

methods. 

In Chapter 4, several time series methods are investigated by using SPSS, 

Minitab, SmartForecasts or on hand manual calculations. Winters‟ method is overall 

recommendation of software packages for daily and monthly consumption data of 

Istanbul. In application of Winters‟ method, it is hard to determine the smoothing 

constants. In order to handle that situation, we made parameter searches on data, and 

then we use these parameters to forecast coming time periods. On daily basis, 

consumption of natural gas depends on temperature. Also major consumers of natural 

gas are households. So, one should use temperature effect on his/her forecasting 

technique for further studies. On monthly basis, data has seasonality and trend, so 

Winters‟ method is applied via SmartForecasts and Minitab. Parameters search is done 

to reach better smoothing constants with lower mean absolute deviation (MAD). In 

addition to Winters‟ method, seasonal autoregressive integrated moving average model 

(SARIMA) is applied on that data. SARIMA is one the Box-Jenkins methods which is 

explained in Chapter 2. Finally, Winters‟ method and SARIMA are compared, we find 

out forecasts of Winters‟ method with 0,05; 0,30; 0,15 have lower MAD and better 
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limits than SARIMA. As the forecasting period lengthens or increases, forecasting 

accuracy decreases in prediction of monthly natural gas consumption of Istanbul. 

Natural gas consumption of Turkey is examined on monthly and annual basis in 

Chapter 5. Monthly consumption of Turkey has seasonality and trend as shown in 

Figure 5.1. We run SmartForecasts to investigate which forecasting method is more 

appropriate for that type of data, and then it turns Winters‟ method as the best one. 

Besides, SPSS is used to establish an autoregressive integrated moving average model 

(ARIMA). It recommended SARIMA, and then it is compared with Winters‟ method. 

They have same MAD value and also nearly same limits. Winters‟ method has a real 

value out of its limits. SARIMA(ARIMA(0,0,2)(1,1,0)) can be used for forecasting of 

monthly natural gas consumption of Turkey. Annual natural gas consumption has an 

increasing trend only. Trend analysis is applied thorough annual consumption data of 

Turkey. Double exponential smoothing fits well that data. Also ARIMA model is 

applied by manual calculations and SPSS ARIMA tool. ARIMA results are compared 

with double exponential smoothing, ARIMA has higher MAD value. At the end of 

Chapter 5, Ediger and Akar‟s study (2007) is compared with ours in terms of 

forecasting 4 years of annual natural consumption of Turkey. Double exponential 

smoothing forecasts in our study are closer to real values than Ediger and Akar‟s (2007) 

proposed ARIMA method. 

Bootstrap of time series data have developed in recent years. Bootstrapping is the 

generation of sibling series of an original data. In our study at Chapter 6, we make a 

research on bootstrapping natural gas consumption data. We used the monthly natural 

gas consumption data of Istanbul because it has enough data points for bootstrap. 

Original data is non-stationary one. In order to bootstrap the data, we transformed that 

data into stationary one. After transformation, we produced 100 bootstrap series. These 

series transformed back into non-stationary series by several calculation steps. 

Subsequently, we have 100 sibling series. Those series are used to generate 100 

different forecasted series by the Winters‟ method which is chosen as the best 

estimation technique for the monthly natural gas consumption in Chapter 4. That 100 

different forecasted series are averaged in our study to produce predictions of 2008 and 

2009 months. Those predictions are not close as SARIMA estimations to monthly 
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natural gas consumption data of Istanbul. Winters‟ method performs well compared to 

all other methods for that consumption data.  

Time series methods depend on time and past values of data. Those methods take 

into consideration past pattern of the data, and then make predictions based on that 

pattern. Natural gas consumption data is affected from various factors such as season, 

temperature, weekend-weekday, etc. In addition, economical crisis affects the 

consumption rate. Peak natural gas consumption of Istanbul occurs generally at 1
st
, 2

nd
, 

3
rd

, 11
th

, 12
th

 months‟ of a year. The 1
st
, 2

nd
, 3

rd
 months‟ of 2008, consumptions are 

higher than 2007‟s same period. By the beginning of economical crisis, 11
th

, 12
th

 

months‟ of 2008, consumptions remained below of same period of 2007. At the 1
st
, 2

nd
, 

3
rd

 months‟ of 2009, consumptions are very close to 2007‟s same months. As a result of 

those changes of data, time series forecasting methods overestimate the consumption 

values. This yields worse MAD values. 

For further assignments, one should seek for the methods which consider all 

natural gas consumption factors. This will produce better forecasts but never same as 

real values. 
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APPENDIX A 

SAMPLES OF BOOTSTRAPS, SIBLING SERIES AND MONTHLY 

CONSUMPTION SCENARIOS OF ISTANBUL
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No. 
Bootstrap 

1 
Bootstrap 

2 
Sibling Series 

1 
Sibling Series 

2 Forecasts 1 Forecasts 2 

1 0.20059 0.03632 
        

75,687,921  
        

75,687,921  715,681,905 811,252,139 

2 0.02983 0.04506 
        

83,281,408  
        

70,665,300  662,635,993 650,215,511 

3 0.17739 -0.04360 
        

80,397,177  
        

69,265,047  546,715,580 585,825,770 

4 0.11365 -0.00746 
        

58,408,569  
        

40,344,002  363,500,334 322,944,577 

5 -0.00713 0.01789 
        

30,867,253  
        

18,888,744  172,514,915 154,261,004 

6 -0.10320 -0.31938 
        

21,666,954  
        

13,594,704  127,299,777 113,814,241 

7 0.03506 0.20059 
        

18,311,277  
          

9,255,563  117,146,524 104,423,300 

8 0.22665 0.00908 
        

18,871,853  
        

11,256,129  122,280,638 100,906,109 

9 -0.32240 0.11747 
        

26,619,096  
        

12,772,632  144,724,300 105,066,061 

10 -0.01278 0.04696 
        

35,836,149  
        

26,695,777  257,683,483 196,954,551 

11 0.26469 0.21054 
        

75,616,447  
        

59,797,359  547,085,732 415,412,293 

12 0.08640 -0.52043 
       

147,815,748  
       

110,731,386  810,139,438 567,990,336 

13 0.12084 0.44997 
       

150,708,724  
        

61,538,838  810,518,263 557,196,089 

14 0.19256 -0.18035 
       

153,117,066  
        

86,891,209  749,484,104 441,134,131 

15 0.01197 0.13029 
       

173,935,886  
        

67,981,060  617,596,465 392,262,564 

16 -0.01630 -0.45006 
       

107,099,154  
        

47,116,221  410,123,904 213,218,965 

17 -0.06546 0.17987 
        

49,701,665  
        

14,170,228  194,408,153 100,321,102 

18 -0.08513 0.18707 
        

32,910,723  
        

11,991,932    

19 0.28737 0.04855 
        

28,320,768  
        

13,547,893    

20 0.10292 -0.37873 
        

37,564,834  
        

14,152,371    

21 0.06472 0.27847 
        

46,819,429  
        

10,896,699    

22 -0.09310 0.06403 
        

92,828,035  
        

26,753,138    

23 -0.00996 -0.18358 
       

180,755,773  
        

60,957,754    

24 0.03460 0.51389 
       

268,483,672  
        

76,111,863    

25 0.03669 -0.13909 259,919,832 118,994,947   

26 0.19938 -0.03053 242,761,981 93,224,051   

27 -0.27432 -0.34468 
       

277,657,730  
        

84,724,345    

28 0.03252 0.29565 
       

128,402,158  
        

36,518,406    
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No. 
Bootstrap 

1 
Bootstrap 

2 
Sibling Series 

1 
Sibling Series 

2 

29 0.05261 0.03252 
        

62,569,531  
        

23,151,333    

30 0.02234 0.22865 
        

46,623,722  
        

16,908,247    

31 0.00097 -0.01224 
        

44,673,435  
        

19,913,135    

32 0.06421 -0.11953 
        

44,498,190  
        

19,574,635    

33 0.07987 0.04988 
        

53,355,157  
        

19,531,256    

34 -0.14785 0.03632 
       

107,401,071  
        

38,153,600    

35 0.26221 0.04506 
       

197,990,561  
        

84,557,796    

36 -0.04860 0.03428 
       

386,076,949  
       

132,701,205    

37 -0.10138 -0.02006 
       

343,923,571  
       

128,427,271    

38 -0.09013 0.19851 
       

279,794,868  
       

113,331,395    

39 0.32836 -0.05387 
       

239,571,811  
       

129,509,479    

40 -0.19270 -0.22195 
       

202,412,375  
        

74,662,596    

41 -0.01331 0.32126 
        

78,743,223  
        

28,208,237    

42 -0.02905 -0.04860 
        

54,932,790  
        

27,497,522    

43 0.13979 -0.52043 
        

49,998,255  
        

24,542,776    

44 0.34245 0.44997 
        

57,218,679  
        

14,513,670    

45 -0.32297 -0.18035 
        

90,617,316  
        

25,594,416    

46 0.06094 0.02038 
       

121,924,809  
        

39,715,734    

47 0.00220 -0.02360 
       

276,950,804  
        

86,627,850    

48 0.06849 -0.00993 
       

416,397,988  
       

126,928,400    

49 -0.03624 -0.18942 
       

417,014,649  
       

117,528,280    

50 0.26221 -0.34468 
       

362,093,123  
        

87,555,370    

51 -0.00303 0.29565 
      

440,997,750  
        

58,120,088    

52 0.19377 -0.08009 
       

267,496,646  
        

47,525,164    

53 0.03499 -0.02527 
       

153,157,144  
        

20,692,113    

54 -0.50505 0.01374 
       

112,132,385  
        

14,263,597    

55 0.22056 0.02856 
        

63,405,824  
        

13,549,800    

56 0.05983 0.13029 
        

78,665,955  
        

13,874,231    
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No. 
Bootstrap 

1 
Bootstrap 

2 
Sibling Series 

1 
Sibling Series 

2 

57 -0.00746 0.01789 
        

93,911,598  
        

17,772,197    

58 0.01789 -0.31938 
       

173,229,425  
        

33,624,366    

59 -0.31938 0.20059 
       

376,908,749  
        

52,214,835    

60 0.20059 0.02983 
       

410,849,229  
        

95,732,707    

61 0.02983 0.17739 
       

469,562,797  
        

92,238,269    

62 0.17739 0.11365 
       

435,566,797  
        

99,164,252    

63 0.11365 -0.00713 
       

487,338,158  
       

104,099,730    

64 0.13834 0.20036 
       

332,188,806  
        

62,885,519    

65 0.06403 0.14075 
       

179,940,296  
        

36,243,627    

66 -0.18358 0.20743 
       

135,623,445  
        

29,495,379    

67 0.51389 0.05261 
       

105,765,737  
        

34,007,704    

68 -0.13909 0.02234 
       

175,952,801  
        

35,669,374    

69 -0.03053 0.00097 
       

172,161,907  
        

41,015,455    

70 -0.34468 0.06421 
       

310,329,165  
        

76,297,927    

71 -0.19626 0.22865 
       

469,864,798  
       

173,877,690    

72 0.06175 -0.01224 
       

579,283,719  
       

327,867,274    

73 0.04585 -0.11953 
       

576,244,887  
       

302,884,542    

74 0.04461 0.04988 
       

543,157,531  
       

241,975,926    

75 0.04592 0.03632 
       

532,154,242  
       

238,326,449    

76 -0.10341 0.04506 
       

338,982,445  
       

150,363,921    

77 0.02802 -0.04360 
       

144,189,459  
        

74,195,663    

78 -0.09013 -0.00529 
       

104,833,668  
        

50,216,011    

79 0.32836 0.00845 
        

89,762,900  
        

46,804,106    

80 -0.19270 0.22665 
       

124,042,693  
        

46,970,575    

81 -0.01331 -0.32240 
       

115,035,036  
        

66,252,860    

82 -0.02905 -0.01278 
       

210,957,480  
        

89,193,388    

83 0.00177 0.26469 
       

437,950,307  
       

188,203,457    

84 -0.14230 0.08640 
       

658,179,028  
       

367,901,905    
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No. 
Bootstrap 

1 
Bootstrap 

2 
Sibling Series 

1 
Sibling Series 

2 

85 -0.13909 -0.13909 
       

533,877,621  
       

375,102,297    

86 -0.03053 -0.03053 
       

418,255,026  
       

293,865,888    

87 -0.34468 -0.34468 
       

380,120,608  
       

267,072,654    

88 0.29565 0.29565 
       

163,841,911  
       

115,115,290    

89 -0.08009 -0.08009 
       

103,869,777  
        

72,978,882    

90 -0.02527 -0.02527 
        

67,780,135  
        

47,622,308    

91 0.01374 0.01374 
        

61,925,254  
        

43,508,670    

92 -0.04360 0.14075 
        

62,474,758  
        

43,894,751    

93 -0.00746 0.20743 
        

67,254,150  
        

56,817,972    

94 0.01789 0.05261 
       

124,057,070  
       

129,931,434    

95 -0.31938 0.02234 
       

269,920,627  
       

292,688,837    

96 0.20059 0.00097 
       

294,226,871  
       

449,015,907    

97 0.02983 0.06421 
       

336,274,191  
       

420,319,669    

98 0.17739 0.07987 
       

311,928,188  
       

403,526,761    

99 -0.00993 -0.33244 
       

349,003,895  
       

409,542,778    

100 -0.18942 0.00908 
       

210,240,266  
       

178,698,762    

101 0.28784 0.11747 
        

82,056,863  
        

85,060,913    

102 0.12903 0.04696 
        

77,360,457  
        

67,631,013    

103 -0.03737 0.21054 
        

82,469,938  
        

66,416,903    

104 0.09015 -0.52043 
        

79,056,842  
        

81,580,646    

105 -0.14691 0.44997 
        

97,283,744  
        

54,515,174    

106 0.03428 0.03460 
       

156,093,047  
       

158,884,266    

107 -0.02006 0.03669 
       

345,234,922  
       

351,520,944    

108 0.19851 0.19938 
       

507,636,273  
       

547,063,080    

109 -0.05387 -0.27432 
       

578,977,959  
       

624,488,675    

110 -0.22195 0.03252 
       

493,937,264  
       

427,361,457    

111 0.32126 0.22865 
       

370,695,836  
       

413,674,716    

112 -0.04860 -0.01224 
       

310,982,869  
       

316,344,297    
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No. 
Bootstrap 

1 
Bootstrap 

2 
Sibling Series 

1 
Sibling Series 

2 

113 -0.08009 -0.10138 
       

139,731,210  
       

147,403,547    

114 -0.02527 -0.09013 
        

91,181,483  
        

94,162,147    

115 0.01374 0.32836 
        

83,305,182  
        

80,625,504    

116 0.02856 -0.19270 
        

84,044,404  
       

111,415,793    

117 0.13029 -0.01331 
        

97,243,716  
       

103,325,069    

118 -0.45006 -0.02905 
       

205,868,184  
       

189,483,108    

119 0.17987 0.00177 
       

280,527,538  
       

393,369,248    

120 0.04461 0.19256 
       

503,781,452  
       

591,179,833    

121 0.04592 -0.35280 
       

492,619,911  
       

670,259,952    

122 -0.10341 -0.02618 
       

464,365,422  
       

424,064,949    

123 0.02802 0.00270 
       

392,364,066  
       

387,081,855    

124 0.01024 0.01948 
       

245,503,479  
       

236,142,005    

125 -0.01028 0.04015 
       

116,996,166  
       

113,578,654    

126 -0.02169 0.22268 
        

81,866,443  
        

83,585,295    

127 0.05261 0.26221 
        

75,063,110  
        

97,853,922    

128 0.02234 -0.00303 
        

78,730,810  
       

126,569,018    

129 0.00097 0.19377 
        

90,530,886  
       

141,892,369    

130 0.06421 0.03499 
       

168,407,711  
       

320,078,342    

131 0.07987 -0.50505 
       

383,789,508  
       

708,431,670    

132 -0.14785 0.22056 
       

623,639,073  
       

641,370,870    

133 0.26221 0.05983 
       

503,060,730  
       

747,811,059    

134 -0.33244 -0.06546 
       

588,714,669  
       

714,797,237    

135 0.00908 -0.08513 
       

395,609,777  
       

627,321,816    

136 0.11747 0.28737 
       

242,889,464  
       

350,524,185    

137 0.04696 0.10292 
       

128,852,402  
       

220,388,181    

138 0.21054 0.06472 
        

95,473,773  
       

172,695,938    

139 -0.52043 -0.46821 
       

110,423,027  
       

172,635,461    

140 0.44997 0.13979 
        

65,300,005  
       

107,562,055    
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No. 
Bootstrap 

1 
Bootstrap 

2 
Sibling Series 

1 
Sibling Series 

2 

141 -0.14785 -0.09013 
       

115,154,575  
       

139,097,322    

142 0.26221 0.32836 
       

184,593,121  
       

236,221,825    

143 -0.00303 -0.19270 
       

512,788,703  
       

701,080,829    

144 0.19377 -0.01331 
       

766,961,548  
       

867,422,247    

145 0.03499 -0.02905 
       

870,609,950  
       

800,475,668    

146 -0.50505 0.00177 
       

811,758,435  
       

700,066,903    

147 0.22056 -0.14230 
       

459,012,787  
       

657,121,175    

148 -0.02905 -0.09013 
       

348,184,540  
       

346,772,929    

149 0.00177 0.32836 
       

159,536,295  
       

149,474,843    

150 -0.14230 -0.19270 
       

112,985,933  
       

146,746,685    

151 0.21458 -0.01331 
        

91,825,671  
       

113,401,186    

152 -0.19626 -0.02905 
       

113,246,468  
       

111,355,119    

153 0.06175 0.00177 
       

104,650,080  
       

121,630,650    

154 0.04585 -0.14230 
       

206,872,395  
       

226,440,562    

155 -0.00529 0.04506 
       

462,870,773  
       

419,759,638    

156     
       

690,740,111  
       

658,751,916    
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