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ABSTRACT

Multipoint nonlocal boundary value problems for reverse parabolic equations in a
Hilbert space H with the self-adjoint positive definite operator are is considered. The
well-posedness of this problem in Holder spaces without a weight is established. The
coercivity inequalities for solutions of multipoint nonlocal boundary value problems for
reverse parabolic equations are obtained. The first order of accuracy difference scheme
and the second order of accuracy difference scheme for the approximate solutions of
this nonlocal boundary value problem are presented. The stability estimates, coercivity
and almost coercivity inequalities for the solution of these difference schemes are
established. The well-posedness of these difference schemes in Holder spaces without
a weight are proved. The Matlab implementation of these difference schemes for the
multipoint nonlocal boundary value problems for reverse parabolic equations are
presented. We support the theoretical results for the solution of these difference

schemes by the results of numerical examples.
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TERS PARABOLIK DENKLEMLER iCiN LOKAL OLMAYAN SINIR DEGER
PROBLEMLERIN NUMERIK COZUMU
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Yiiksek Lisans Tezi - Matematik
Mart 2009

Tez yoneticisi: Prof. Dr. Allaberen ASHRALYEV

(0Y4

H Hilbert uzayinda, pozitif taniml1 6zeslenik (self-adjoind) A operator olmak iizere gok
noktali yerel olmayan ters tip parabolik sinir deger problemleri diisliniilmiistiir. Bu
problemlerin iyi konumlanmishg agirliksiz Holder uzaylarinda dogrulugu elde
edilmistir. Cok noktali yerel olmayan ters tip parabolik sinir deger problemlerinin
coziimleri i¢in koersatif esitsizlikleri elde edilmistir. Bu yerel olmayan ters tip
parabolik sinir deger problemlerinin yaklasik ¢éziimleri i¢in birinci dereceden ve ikinci
dereceden fark semasi kurulmustur. Bu fark semalarinin ¢oziimii i¢in kararlilik
kestirimleri kurulmustur. Bu fark semalarinin iyi konumlanmisligi Holder uzaylarinda
ispatlanmistir. Bu fark semalarinin ¢oziimleri i¢in koersatif esitsizlikleri, hemen hemen
koersatif esitsizlikleri saglanmistir. Ters tip parabolik siir deger problemleri i¢in fark
semasinin Matlab ile ¢oziimleri elde edilmistir. Bu fark semalarinin ¢oziimleri icin elde

edilen teorik sonuglar, sayisal 6rneklerle desteklenmistir.



Anahtar Kelimeler: Cok noktali yerel olmayan sinir deger problemleri, Ters tip
parabolik denklemler, Fark semalar1, Kararlilik kestirimleri, Iyi konumlanmislik.
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CHAPTER 1

INTRODUCTION

It is known that most problems in fluid mechanics (dynamics, elasticity) and financial
mathematics lead to partial differential equations of the parabolic type. These equations
can be derived as models of physical systems and are considered as the methods for solving
boundary value problems. It is known that the mixed problem for inverse parabolic
equations can be solved by Fourier series method, by Fourier transform method and by

Laplace transform method.

Example 1.1. We consider the inverse parabolic problem

.

Qu — _Pu oyt (2t — 82 + 8t — 2t sin(z),
O0<t<l, O0<t<m,

w0.2) =u(l,z),  O<z<m

u(t,0) =u(t,m) =0, 0 <t <1.

(1.1)

\

Solution. For the solution of problem (1.1), let us use the Fourier series method or the
method of separation of variables. To do this, let u(t, z) = v(t, x)+w(t, z), where v(t, x) is

the solution of

W= Popp0<t<l 0<t<m,
v(0,2) =v(l,2),0 <z <m, (1.2)

v(t,0) =v(t,m) =0,0 <t <1

and w(t, x) is the solution of

O — 0w 4y (2t — 812 + 8% — 2tY)sin(z),0 <t < 1, 0 <t <,
w(0,7) =w(l,2),0 <z <m, (1.3)

w(t,0) =w(t,m)=0,0<t<1.



Let us first obtain the solution v(t, z) of problem (1.2) . Introducing v(¢,z) = X (2)T'(t) #

0, taking partial derivative, and inserting into equation (1.2) , we get
T't)X(x) = =T(t)X"(x) = T(t)X(2)

or

(T'(t) + T(t)) X (z) = —T() X" (x).

Thus, we obtain

Hence, we need to solve the boundary value problem

X(0) = X(7) = 0, X"(z) — A\X(z) = 0,0 < z < 1.

(1.5)

Note that the axiulary equation of (1.5) is m? + A = 0. If A < 0, we obtain the trivial

solution. Therefore, we consider the case A > 0. The nontrival solution of (1.5) in this

case are

rp(z) =sinkz , k=12,

Next, we need to solve

T'(t) — (1+k)T(t) = 0.

Clearly, we have

Ti(t) = cpe™ ™ k=12,
Thus,
u(t,z) = Z cpe M) gin k.
k=1
Using the nonlocal condition v(1,0) = v(0,x), we get

(14+k2)t _

cre Ci k=1,2,---

and hence

Therefore,



Next, we obtain the solution of (1.3). We seek a solution of the form
w(t,z) = Z Ay sin kx
k=1

Then, it follows from (1.3) that

o0

Wy + Wy + W = Z (A, (1) — K2 Ag(t) + Ap(t)) sinkx = (2t — 8% + 8¢> — 2t*) sinx

k=1

If k# 1, then
A+ (1= k) A(t) =0

or

Ap(t) = Ap(0)e++1,

Using condition

Ar(1) = Ax(0),

we get

A(0) = 0.
If £k =1, then
Al (t) — 2A,(t) = 2t — 8t + 8% — 2t*.

From that it follows

t

Ay(t) = A1(0)e* + /eZ(ts)(2s — 85 + 85% — 2s5%)ds.

0
Using the condition w(0,z) = w(1, x), we obtain A;(0) = A;(1).
From (1.6) it follows that
1
Ai(1) = A1(0)e* + / e?179)(25 — 85 + 85 — 2s")ds

0

or

e?179)(25 — 852 + 85% — 25*)ds.

I
i
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]
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Hence,
, 1 ¢
Ay(t) = 1 ‘ 5 /62(1_8)<2S — 85% +8s% — 25%)ds + /eQ(t_S)(Qs — 8s? + 857 — 2s5)ds
—e
0 0
=1? -2t + 1%,
Thus, the solution of (1.3) is
w(t,z) = Z Apsinkr = (£ — 2t° +t*)sinx.
k=1

Finally, using (1.2), we get

u(t,r) = v(t,z) +w(t,z) =0+ (t* — 23 + t*)sin .

Thus, u(t,z) = (2 — 2t3 + t*)sin(x) is the solution of nonlocal boundary value problem

(1.1).

Similarly, we obtain the solution of the following multi-dimensional non-local boundary
value problem of reverse parabolic type
(

ou(t,x < A2u(t,x
%"’_ ZO‘T% :f<tv$)u

r=1 "
x= (1), ..., Tp) €eQ0<t<T,
u(0,) = u(T,2) + plx), €T,
u(t,z) =0, x€S,

\

where o, are constants, f(t,z) (t € [0,T],2 € Q), ¢(x)(z € Q) are given smooth functions,
and € is the unit open cube in the n-dimensional Euclidean space R" (0 < z;, < 1,1 <

k < n) with boundary S, Q = QU S.

However, the method of separation of variables can be used only in the case when it has
constant coefficients. It is well-known that the most useful method for solving such type

of problem is the difference method.

Example 1.2. We consider the inverse parabolic problem

%:—%+u+(l+4m2t—3t)e’x2, 0<t<l —oco<z<o0 (1.7)
w(0,2) = u(l,z) — e, —00 < x <00 .



Solution. For the solution of the problem in Examplel.2;we use the Fourier transform

method.
We take the Fourier transform of both sides of the equation.

So, our problem becomes
Up = —Ugy + U+ (1 + 422t — 3t) e T

Flu} = —F{up} + F{u} + F { (14 422 — 3t) e—xa}

or

(F{u(t,z)}), = —(is)*F{u(z,t)} + F{u(z,t)} + F { (1+ 42°t — 3t) e_mQ} :

Let
Flu(t,z)} = v(t, s).

Then our problem becomes
v(t,s) + (=5 — 1) v(s, t) = F{(l + 4a*t — 3t) 6_"”2} :
By using the nonlocal boundary conditions, we get v(t, s) as

U(ta S) _ 66(32+1)(t71) +

a2
82+1F{(1+4x2t—3t)e }

Since

F { (1 + 4t — 3t) 6_302} =F {e‘xQ} + F {t6_$2} - F {t (2 — 4332) e_‘”2}

So our problem becomes
vi(t,s) + (—=s* = Do(t,s) = (1+t — s°t)F {e"”Q} :

The solution is
t
oft,s) = HED0(0,5) + / e (1 -y -2y F e bay
0

or

v(t,s) =tF {e’mz} :



Now using the nonlocal boundary conditions we get u(t, s) as

v(t,s) =tF {e_“’j}

u(t,x) = F~* {tF {e_w2}} :

Finally taking the inverse of Fourier transformation we obtain the solution for the problem
as

u(t,z) = te ™.

Note that using the same manner one obtains the solution of the following nonlocal

boundary value problem for the multidimensional inverse parabolic equation

Il

r|=2m
O<t<T,x,r € R"|rl =11+ ..+,
uw(0,z) =uw(T,x) + ¢(z), =€ R",

Here, «, are constants. (z € R") f(t,z)(t € [0,T],z € R™) are given smooth functions.

However, the Fourier Transform method can be used only in the case when it has constant
coefficients. It is well-known that the most useful method for solving such type of problem

is the difference method.
Example 1.3. We consider the inverse parabolic problem

2—7;:—%+u+1—t—e*x+xe*1+2t6*m, 0<t<l, O<z<o

w0,2) =u(l,z) =1+ (1+2z)e ™, 0<z<oo,
w(t,0) =0, uy(t,0)=0, 0<t<1.

Solution. Here, we will use the Laplace transform method to solve the problem
U= —Upp +u+1—t—e " +xe ™+ 2",
we can write
L{uw} = —L{ug,} + L{u} + L{1 —t —e " + ze " + 2te™"}

or

—t 1 1 2t

(L{u(t,2)}), = —L{u(t, 2)}+su(t, 0)-+uuy(t, 0)+ L{u(t, 1)} + IR R P T A



Let
L{u(t,x)} =wv(ts).
Then our problem becomes

, 1-t 1 1 2t
v (t,s) +sv(t,s) —v(t,s) = . _S+1+(S—|—1)2+8+1

or

1—+¢ 1 1 2t
t 2_Du(t,s) = — .
ve (t,8) + (s Ju(t,s) S S+1+(8+1)2+S+1

Now the complementary solution is
vy (t,8) + (s> — v (t,s) =0

or

ve(t,s) = e "D,

The particular solution is

1 1 1 1 1 1 2 1 1 2

ts) = Z_ _ _ - 2 ;
up(t, ) 82—1(8 s+1 (s+1)2 (3—1—1)2( s+3+1)) 82—1( s s—l—l)
/11 L,
o \s s+l (s+1)2)7
So,
1 1 1
t,s)=e (FHDe (2 - - t.
v(t,s) =e c+ s 541l r1p
Then,

Up = —Ugy + U+ 11—t —€F+xze™® + 2",

By taking the Laplace transform of both sides of the last differential equation, we obtain
L{iw} = —L{ug} + L{u} + L{1 —t — e +xe ® + 2t "}

or

—t 1 1 2t

) 1
(Lt 2)}), = =s* Lt 2)}+su(t, 0)+ua (t, 0)+ Liult, o) ===t =y

Let
L{u(t,x)} =wv(ts).
Then, our problem becomes

, 1—t 1 1 21
v (t,8) +sv(t,s) —v(t,s) = . _s+1+(s—|—1)2+8+1




)t

or
1—t 1 1 2t
t 2 _1w(t,s) = - :
v(bs)+ (= Dolts)=——= = 3+ eqp T 511
So,
1 1 1 1 1 12 1 1 2
" _ (1)t Z_ — — —— -
u(t,s) =€ C+32_1(s s+1 (s+1)2 (8+1)2< s+3+1>>+52—1( s+3+1

by using the nonlocal boundary condition, we get

1

v(s,t) = mt

or
1 1 1

vl s) = (E_s+1_ (s+1)2)t'

Hence taking the inverse Laplace transform

u(t,z) = L™ {u(t,s)} = (L—1 {%} — L {Sil} —L—l{(sil)th

— (1 —e ¥ = xe_m) t=1t— (1 + x)e_mt.

So,
u(t,z) = (1— (1+z)e )t

is the solution of the given nonlocal boundary value problem.

Finally taking the inverse of Laplace we obtain

I7|
% + Z Oérawi?...gm:ﬁ - f(t,l’),

|r|=2m

O0<t<T,xeQt|rl=ri+..+r,
w(0,2) = u(T,z) + ¥(x), x€ o,
Here, «, are constants. (z € Q1) f(t,2)(t € [0,T],x € Q7),¥(x) are given smooth

functions. Here Q"is the unit open cube in the n-dimensional Euclidean space R™ (0 <

1 < 00,1 < k < n) with boundary S,ﬁ+ =QTuUSs.

However, the Laplace Transform method can be used only in the case when it has constant
coefficients. It is well-known that the most useful method for solving such type of problem

is the difference method.
In the present work the nonlocal boundary value problem
MO~ Au(t) = f(t)  (0<t<1),

dt

u(l) = Zaku(ﬁk) + o,

| 0<0i << <O, <1



for differential equation in a Hilbert space H with the self-adjoint positive definite operator
A is considered. The well-posedness of this problem in Holder spaces is established. The
coercivity inequalities for the solutions of the boundary value problems for reverse par-
abolic equations are obtained. The first and second order of accuracy difference schemes
for the approximate solutions of this nonlocal boundary value problem are presented.
The well-posedness of these difference schemes in Holder spaces is established. In applica-
tions, the coercivity inequalities for the solutions of difference schemes for the approximate
solutions of the nonlocal boundary value problems for reverse parabolic equation are ob-
tained.The theoretical statements for the solution of this difference schemes are supported

by the results of numerical experiments.

We briefly describe the contents of the various chapters.

First chapter is the introduction.

Second chapter presents all the elementary Hilbert space theory that is needed for this

work.

Third chapter considers the multipoint nonlocal boundary value problems. The well-
posedness of these problems in the space of smooth functions is established. More-
over, new coercivity estimates for the solution of parabolic differential equations are

obtained.

Fourth chapter is devoted to the Rothe difference scheme for the approximate solution
of the abstract reverse parabolic equation in a Hilbert space with the nonlocal
boundary condition. The stability, coercivity and almost coercivity estimates for the
solution of the difference scheme are established. Furthermore, using the abstract
result, new coercivity inequalities for the solution of multipoint nonlocal boundary

value difference equations of reverse parabolic type are obtained.

Fifth chapter is about the well-posedness of the second order of accuracy difference
scheme for approximately solving the multipoint nonlocal boundary value differen-

tial equation.

Sixth chapter is about Numerical Analysis. The matlab implementation of first and

second order of accuracy difference schemes for two multipoint nonlocal boundary
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value problem for reverse parabolic equations are presented. The theoretical re-
sults for the solution of these differential solutions are supported by the results of

numerical examples.

Seven chapter is the conclusiouns.
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CHAPTER 2

BASIC ELEMENTS OF HILBERT SPACES

In this section, we provide the necessary definitions and facts about Hilbert spaces. For

more information, we refer to [Krein, S.G., 1966].

2.1 Inner Product and Hilbert Space

Definition 2.1. An inner product space is a couple (H, < - >), where H is a complex
vector space and < - >: H x H — C is a complex-valued function with the following

properties:

l. <z,z>2>0 and <z, >=0<= 2 =0,
2. <z,y>=(y,z) forall z,y € H,
3. (ax,y) = a(x,y) forall z,ye€ H and « € C,

4. (x +y,z) = (x,2) + (y,z) forall z,y,z€H,

where 0 is the zero vector of H, and the bar denotes the complex conjugate.

(x,y) is called the inner product of the vector = and y. A Hilbert space is a complete
inner product space, where the norm on H is defined by ||z| = +/{(x,z). Thus, inner

product spaces are normed spaces, and Hilbert spaces are Banach spaces.

2.2 Bounded Linear Operators Between Hilbert Spaces

Definition 2.2. Let H; and H; be two Hilbert spaces. A linear operator A : Hy — H,

is a function with the following property: for all o, 5 € C and z,y € Hy,

A(ax + By) = aAzx + [Ay.

Let D (A) = {z € Hy,3Ax € Hy} and R(A) = {y = Az,Va € D (A)} denote respectively
the domain of A and the range of A.
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A linear operator A : H — H is called bounded, if there is a real number M > 0 such that
|Az||; < M ||z||, for all z € H.
For bounded linear operator A: H — H,
[A]] = inf{M : [[Az||; < M |[z[|, V> € H}
is called the norm of A.
Theorem 2.1. The norm of the bounded linear operator A satisfies the following

Ax
1Al = sup Az] = sup 2T — g jaa).
=) <1 «#0 |7 lzl|=1

2.3 The Adjoint of an Operator

Definition 2.3. If A: H; — H, is a linear operator, where H; and H, are Hilbert spaces,
then the Hilbert adjoint operator A* of A is the operator

A" HQ — Hl,
such that for all x € H; and y € H,

(Az,y) = (z,A™y) .

Theorem 2.2. The Hilbert adjoint operator A* of bounded A is unique and bounded linear
operator with the norm

AT = Nl

O

Definition 2.4. A bounded linear operator A : H — H on a Hilbert space H is called
self-adjoint if (Ax,y) = (x, Ay) for all x,y € H.

Definition 2.5. A self-adjoint operator A is called positive denoted as A > 0 if (Ax, x) >
0 for all x € H.

Definition 2.6. Let A : D (A) — H be a linear operator with D (A) = H. A is called
a symmetric if (Az,y) = (z, Ay) for all z,y € D (A).

If A is symmetric and D (A) = D (A*), then A is a self-adjoint operator.
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2.4 Spectrum

Definition 2.7. Let H be a Hilbert space and A : H — H be a linear operator with
D (A) C H. We associate the operator Ay = A — Al , where A € C and I is the identity

operator on D(A).

If A, has an inverse, we denote it by Ry (A) and we call it the resolvent operator of A,

or simply, resolvent of A.

Ry(A)=(A- )",

Definition 2.8. Let A be a linear operator with the D (A) subsetH and H is a Hilbert

space. A € C is called a regular value of A if

(R1) Ry (A) exists.
(R2) R, (A) is bounded.

(R3) Ry (A) is defined on a set which is dense in H.

The resolvent set p(A) of A is the set of all regular values of A. Its complement
o(A) = C — p(A) is called spectrum of A , and a A\ € o(A) is called spectral value

of A. Furthermore, the spectrum p(A) is partitioned into three disjoint sets as follows.

The point spectrum or discrete spectrum o, (A) is the set such that Ry (A) does not exist.

A € 0 (A) is called an eigenvalue of A.

The continuous spectrum o.(A) is the set such that Ry (A) exists and satisfies (R3) but
not (R2), that is Ry (T") unbounded.

The residual spectrum o, (A) is the set such that Ry (A) exists (and may be bounded or
not) but does not satisfy (R3), that is the domain of R (A) is not dense in H.

If Axx = (A—Al)x =0 for some = # 0, then A\ € g, (A), by definition, that is, A is an

eigenvalue of A.

The vector z is called an eigenvector of A corresponding to eigenvalue \. The subspace
of D(A) consisting of 0 and all eigenvectors of A corresponding to an eigenvalue \ of A is

called the eigenspace of A corresponding to that eigenvalue .
0g(A)=0.(A)Uo,(A)Uo, (A),

g(A)Up(A) =C.
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Definition 2.9. Let H be a Hilbert space over the field of real numbers and for any
x € H , let ||z|| denote the norm of x. Let J be any interval of the real line R. A function

x:J— H iscalled an abstract function.

A function z(t) is said to be continuous at the point ty € J, if

lim [|(t) — z(to)[| = 0.

t—to

If x : J — H is continuous at each point of J, then we say that x is continuous on J and

we write z € C'[J, H].

Definition 2.10. Let H, H,, H, be Hilbert spaces. A bilinear operator P : H x H; — H,

with norm less than or equal to 1 i.e.

1P (=, 9) (< =l vl

is called a product operator. We write P (x,y) = xy. Let z : [a,b0] — H and y : [a,b] — H;
be two bounded functions such that the product z(t)y(t) € Ha, for each t € [a, 1] is linear

in both x, y, and
@)y < =@ (@]

(for example, z(t) = A(t) is an operator with domain D [A (t)] D H;, or one of the

function z, y is a scalar function).

Let us denote the partition (a =ty < t; < ty < ... < t, = b) together with the points ;

(t; <71 <tiy1,1=0,1,2,....,n — 1) by 7 and set |7|=max; |t;11 — t;| . The Stieltjes sum is

fay

n—

Sp = x(73) [y (tiv1) —y (4:)] .

i=1

If the lim S, exist as 7| — 0 and defines an element I in Hy independent of 7, then we
call I the Stieltjes integral of the function x (t) with respect to the function y (¢), and is

denoted by
b

/x(t) dy (t).

Theorem 2.3. If z € C ([a,b],H) and y : [a,b] — Hy is of bounded variation on [a,b],
then the Stieltjes integral

/x (t)dy (t) exists.
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Consider the function y : [a,b] — H; and the partition
Tia= tg<ti <ty <..<t,=0b

Form the sum

V=3l (ten) -~y 0]

The supremum of the set of all possible sums V' is called the (strong) total variation of
the function y (t) on the interval [a, b] and is denoted by V,? (y) . If V?(y) < oo, then y (¢)

is called an abstract function of bounded variation on [a,b].

Example 2.4. If v € C([a,b],H) and y : [a,b] — H; is of bounded variation on |a,b],

then
b

[awas®| < [z @lavi o) < max o 0] V2 1y 0).

t€la,b]
a

2.5 Projection Operator. Spectral Family

Let H be a Hilbert space and C' be a closed subspace of H. Then, H can be written as

the direct sum of C' and its orthogonal complement C*. More precisely,

H=CaoC+ (2.1)

r=y+z , where yeC,zeCt.

Since the sum is direct, y is uniquely determined for each given x € H. Thus, the spectral
representation of unit matrix defines a linear operator P : H — H by x — y = Px. P is

called an orthogonal projection or projection on H.

Theorem 2.4. A bounded linear operator P : H — H on a Hilbert space H is projection
if and only if P is self-adjoint and idempotent i.e. P?> = P. a

Recall the spectral family from dimensional case. Let A be an n x n matrix with n distinct
eigenvalues, say \; < --- < \,. Then, A has an orthogonal set of n vectors xy,--- ,z,,
where z; corresponds to A; and for convenience we write these vectors as column vectors.

This basis for H has a unique representation:

n
_ _ T
T = E virg s v = (v x) = 1T,
Jj=1
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x; is an eigenvector of A, so that we have Ax; = A;z;.

Az = Z AiY T
j=1

We can define an operator

Pi:H— H,

T —y,xj .

Obviously, P; is the projection (orthogonal projection) of H onto the eigenspace of A

corresponding to A; .

Theorem 2.5. (Spectral Theorem) Let A : H — H be a bounded self-adjoint linear

operator on a complex Hilbert space H. Then there is a family of orthogonal projections

{E(N)}, X €R such that

E(A+¢)— E(\) (strongly) ase— 0F;
E(X\) — 0 (strongly) as A\ — —oo,

and

E(\) — 1 (strongly) as A — +00;

1. A has the spectral representation

M

A= / AE),

m—0
where Ey is the spectral family associate with A; the integral is to be understood in
the sense of uniform operator convergence, and for all x,y € H.

(Az,y) = / Adw () w(A) = (Ehz,y)

m—0

where the integral is an ordinary Riemann-Stieltjes integral.

2. If P is a polynomial in A with real coefficients,

P()\) = apa" + ap_12™ 4+ ag



then the operator P (A) defined by

P(A) = a, A" + a1 A"+ L agl

has the spectral representation

P(A) = / P () dE)

m—

[e=]

forall x,y € H.

17

O

Theorem 2.6. Let A : D(A) — H be a self-adjoint linear operator, where H is a

complex Hilbert space and D (A) is dense in H. Then A has the spectral representa-

tion - -
A= /)\dEA and [:/dE,\.

For continuously bounded function F' on [m, oo],

From Theorem 2.6, properties of E\, and Stieltjes integral it follows that

1# )l < [150ldIEa] < [ 17 ] dE o)

m<A<oo

< sup |f ()] / dE) |12
Thus,

£ Az < sup [f (V)] ]|

m<A<oo

or

IF (A < sup [f(N)].

m<A<oo

Example 2.5. Let A be the operator defined on the Example 2.3. Prove that

lexp(—At)|| < e,
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Solution. Using the spectral representation of the self-adjoint positive defined operators

we can write
exp(—At)p = / exp(—pt)dE,p,
1

where (E,,) is the spectral family associated with A. Hence, for all ¢ > 0 we have

lexp(=At)[[p—p < sup |exp(—put)| = exp(—t).

1<pu<oo
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CHAPTER 3

MULTTPOINT NONLOCAL BOUNDARY VALUE

PROBLEMS
REVERSE PARABOLIC EQUATIONS

In this chapter, we consider multipoint nonlocal boundary value problems for reverse
parabolic equations. We establish the well-posedness of these problems in the space of
smooth functions. In applications, we obtain new coercivity estimates for the solution of

parabolic differential equations.

3.1 The Differential Problem

The role played by coercivity inequalities (well-posedness) in the study of boundary value
problems for partial differential equations is well known (see, e.g., [Ladyzhenskaya O.A.,
Solonnikov V.A., 1967]-[Vishik M.L., Myshkis A.D., Oleinik O.A., 1959]). Well-posedness
of nonlocal boundary value problems for partial differential equations parabolic and elliptic
types has been studied extensively by many researchers (see, e.g., [Ashyralyev A., 2006]-
[Shakhmurov V.B., 2004], and the references given therein).

In the present chapter, we study the well-posedness of the nonlocal boundary value prob-

lem

(WO _ gy = f) (0<t<1),

dt
p
u(l) = azu(dy) + ¢, (3.1)
k=1
\ 0<0,<b<---<0,<1

for the differential equation in a Hilbert space H with self -adjoint positive definite oper-

ator A.

A function u(t) is said to be a solution of the problem (3.1) if the following conditions
are satisfied:
1. wu(t) is continuously differentiable on the segment [0, 1].

2. The element u(t) belongs to D(A) for all £ € [0, 1] and the function Au(t) is contin-

uous on the segment [0, 1].
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3. u(t) satisfies the equation and the nonlocal boundary conditions (3.1).

A solution of problem (3.1) defined in this manner is from now referred as a solution of
problem (3.1) in the space C(H) = C([0, 1], H) of all continuous functions ¢(t) defined

on [0, 1] with values in H equipped with the norm

I ¢ lewn= ma lo(t) -

Problem (3.1) is said to be well-posed in C'(H), if the solutions of (3.1) satisfy the following

coercivity inequality

1 e + [Au®) lean < Me ([ fllow + 1Al k)

where 1 < Mo < oo, which is independent of f(t) € C(H), ¢ € D(A).
It is well known that problem (3.1) is ill-posed in C'(H).

For a« € [0,1], we let C{(H) and C*(H) denote the Banach spaces obtained by the

completion of the set of all smooth H—valued functions ¢(t) on [0, 1] with the norms

(1=l +7) = e®)llu

HSO”C?(H) = |lellc +  sup - :
0<t<t+r<1 T
t+7)— ot
lellcamy = lellew +  sup L2 )a POl
0<t<t+7<1 T

We say problem (3.1) is well-posed in F(H), if for each f(t) € F(H) problem (3.1) is

uniquely solvable and the following coercivity inequality hold:

1y + [ Aullzny < M (L llzm + 1 Agllr) |

where H' C H, M(«) does not depend on f(t) and .

We are interested in studying the well-posedness of problem (3.1) under the assumption
p

D ok <1 (3.2)
k=1

In present chapter, the well-posedness of the multipoint nonlocal boundary value problem
(3.1) in space C{(H) and C*(H)(0 < o < 1) is established. In applications, this abstract
result permits us to obtain coercivity estimates in various Holder norms for the solutions

of nonlocal boundary value problems for parabolic equations.
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3.2 Theorem on well-posedness

Now, let us give some lemmas we need in the sequel. Throughout, let H be a Hilbert

space, A be a positive definite self-adjoint operator with A > 01, where § > 0.

Lemma 3.7. ([Ashyralyev A., Sobolevskii P.E.,2004]) For every 0 <t <t+7 <1 and

0 < B <1, we have

—tA
el = 1. (3.3)
Jeae 4, <1, 3
B
—tA —(t+7)A T
o™ = ey < M (3.5)
—tA —(t+7)A 0
for some M > 0. O
Lemma 3.8. Suppose that assumption (3.2) holds. Then, the operator
P
1 — Z ape”(10k)A
k=1
has an inverse
» -1
T = <I — Z ake_(l_e’“)A)
k=1
and the following estimate is satisfied:
T lirarr < < C(5,0,). (3.7)

1 — e (1-0p)8

Proof. The proof follows from the triangle inequality, assumption (3.2), and estimate

~1
»
1
([ _ Zake—(l—ekm) < sup T - (1—9k)>\|'
k=1

© 5<A<oo p—1 k€™
H—H

]

Let us now obtain the formula for solution of problem (3.1). It is clear that for smooth

data, the inverse Cauchy problem

.E_AMQZf@ﬁ<t<LMD=5

has a unique solution

u(t) = e” D4 (1) — /tl e~ DA f(s)ds. (3.8)
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Using (3.8) and the nonlocal boundary condition

§=u(l) = Zaku<6k) + ¢

it can be written as follows
1

p
u(l) = Z o { e 1704y (1) — /e_(s_e’“)Af(s)ds + .
k=1

O

By Lemma 3.8, we obtain

» 1

wl)=T | — Z ay, / e~ CTIAf(5)ds + ¢ | . (3.9)
k=1 5
Thus, the nonlocal boundary value problem (3.1) is uniquely solvable and for the solution,

formulas (3.8) and (3.9) are valid.

Theorem 3.9. Assume that ¢ € D(A), f(t) € C{(H) and (3.2). Then, problem (3.1) is
well-posed in CY(H) and the following coercivity estimate

1

I legn + ullepan < €66, (oM leran + 1421 )

is valid, where C(6,0,) is independent of ¢ and f(t), t € [0,1].
Proof. Using formula (3.8), we get for t € (0,1)

Au(t) = e(lt)AAu(l)—/1 Ae 6704 f(5)ds

t

= =04 4y(1) / A DAf(s) — F(B)ds + (00— 1)£(0).(3.10)

From estimates (3.3), (3.4), and definition of C¢(H)—norm it follows that

HfHCa(H) ! ds
< i )
l4uOlln < JAun + T [ e 2 g
4
< ||Au(1)||H+a||f||C?(H)- (3.11)

Next, let us estimate ||Au(1)]| 4.

Using formula (3.9), we obtain

1
p

Au(l) = T —Zak/Ae_(s_e’“)Af(s)ds+Agp (3.12)
k=1 g

= (e {= [ A ) — o) (1= N0 |+ A

k=1 O
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It follows from assumption (4.2), estimates (3.3), (3.4), (3.7), the definition of C{*( H)—norm
and formula (3.12) that

Au(lln < [Zl (e [t et | + 14

< 0.6, (31 lean + I4¢l). (313

Thus, combining estimates (3.11), (3.13), we get

1
4ulleun, < €6.6,) (1 legn + [ 4pl ) (3.14)

Now, we estimate
1 — )| Au(t — Au(t
=0 AU( +7) = Aut)
0<t<t+r<1 T
If 1 — ¢t <27, then estimate (3.14) yields

[ Au(t +7) <>||H<o<ae>%( T +||A¢||H). (3.15)

Now, let 1 — ¢ > 27. From identity (3.10) it follows that

Au(t) — Au(t+71) = (e_(l_t)A — e (1=t=7) )Au( )

- / A0 e U (f(s) — f(t)ds
+ (70T = T (f(t 4 7) — f(1)
(67(1715),4 . 67(17t7-r)A)f<t + 7_)

= L0t + L(t) + L) + Li(t) + Is(t) + Ig(1). (3.16)

Let us first estimate [;(¢). Using estimates (3.5), (3.13), we obtain

1B < e 0P8 — e 0D Au()
Mrt* 1
< ——C(0,0 — o A . 1
< G000 (S leran + 140l ) (3.17)

Now, from estimate (3.4) and the definition of C{*( H)—norm it follows that

t+2r
TACIES / JAe D4 g £(5) — F(0) s

2a7_a

< A=t a [ flleg - (3.18)
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Using estimate (3.4), the definition of C{'(H)—norm, and the fact 1 — ¢ < 27, we get

t+27
1 15(t)]| = S/ [Ae= =D || £ () = f(E+7) | uds
t+1

2&,7_&

< A—tra 1 llop ey (3.19)

It follows from estimate (3.6) for 5 = 1, the definition of C{(H)—norm, and the fact
s >t + 27 that

1
Ha@)]la < /t 1A= e — e DN | £(s) — £(8)llmds

+27
2—1+o¢ Ta
< M ([ 3.20
< Mt flesan (3.20)
By estimate (3.3) and the definition of C{'(H)—norm, we obtain
15Ol < e = e gyl £t +7) = fF(BO)ln
27°
< o (H)- 3.21
S G- | fllegp (3.21)
Finally, from estimate (3.5) and the definition of C¢(H)—norm it follows that
sl < e — e DA g |l £t +7)m
Mo
< — a(H)- 22
< e lflesn (322
Hence, combining estimates (3.17)-(3.22), for 1 — ¢ > 27 we get
(1 =) Au(t + 1) — Au(t)|| g 1
<C,0,) | —— o A .
- < 0166 (=g levan + 1 4el
Thus,
(1 —t)*Au(t + 7) — Au(t)||x ( 1 )
su <C6,0,) | —— oy + ||A .
s N < C(6.0,) (e I llevan + el
(3.23)
From estimates (3.14), (3.23) it follows that
1
Iullrn < €16, (<l lesan + ¢l ). (3.24)

Using differential equation (3.1), estimate (3.24) and the triangle inequality, we obtain

1

||| comy < C(6,0,) (m

Fllosun + ||A¢||H) . (3.25)

This finishes the proof of Theorem 3.9. O
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Note that the spaces C{*( H) in which coercive solvability has been established, depend on
the parameter o € [0,1]. However, the constants in the coercive inequalities depend on

ﬁ. Hence, we can not choose the parameter « freely from [0, 1], where problem (3.1)

is well posed. As we note above problem (3.1) is ill posed in C(H) (C{(H) for a = 0).

We cannot establish well-posedness of problem (3.1) in C{(H) for a = 1.

Let H, = H, (H, A) be the fractional space, consisting all v € H for which the following
norm

[0l = o]l + sup [\~ Ae Mo
A>0
is finite.

Theorem 3.10. Assume that f(t) € C*(H), f(1)—> 7_, apf(0x) + Ap € H, and (3.2).
Then problem (3.1) is well-posed in C*(H) and the following coercivity estimate

||| cerry + (| Awl| oy + [0 |ogma)

P (4,0
< M (é”f(l) =) f(br) + Aplm, + %Ilfllcaw))

i a(l —a)

holds, where M does not depend on ¢ and f(t), t € [0, 1].
Proof. From formula (3.10) it follows that for t € (0,1)

Au(t) = —f(t) +e U4 Au(1) + (1))
- / AeCDA(f(s) = f(1))ds + e~ TDAF(E) — £(1))

t

= Ji(t) + Jo(t) + J3(t) + Ju(t). (3.26)

Let us establish the estimate for || Au|ca ).

Clearly, we have

[Jillco ) = [ fllcem- (3.27)
Using the definition of H,—norm and the equality

1-t
/ _AefsAdS _ ef(lft)A . ef(lfth)A’
1

—t—T

we get

I llesn < ~Au(1) + fOlln.. (3.28)
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It follows from estimate (3.4) and the definition of C“(H)—norm that

(1—1)°

sl < | Fllcaay, for any ¢ € [0,1]. (3.29)

Hence, using estimate (3.29), we obtain
1
[ 3]l < a”fHC”(H)- (3.30)

Let us now estimate
J3(t+ 1) — J3(t
sup [[/3( ) 3( )||H.

0<t<t+r<1 T

Let 1 —t < 27. Then, from the triangle inequality, estimate (3.29) it follows that

| Js(t +7) — J5(t)| < | J3(t + )l + || J3(t) ||
TN - T
(1=t —7) 4 (1 —)°
< g | fll oo
2% + 1
< D) o, (331)

Now, let 1 —t > 27. Then, we can write as
J3(t> — J3(t + 7') = ng(t) + Jgg(t) + Jgg(t) + J34<t),
where Jz1(t) = I>(t), Js2(t) = I3(f), Ja3(t) = La(?) (see page 5), and

Jsa(t) = (e TDA — e (f(t+ 1) — f(1)).

Thus, we have

2@,7.@
1 a1l = —— 1 fllcecm, (3.32)
2047_01
| J32(t) || m < 5 | fllce (3.33)
2—1+a To
[ J33(t) ]| < Mm”f”@(H)- (3.34)

Finally, from estimate (3.3) and the definition of C“(H)—norm it follows that

[J3a (D)l < 27| fll e (- (3.35)

Therefore, estimates (3.32)-(3.35) result that for 1 — ¢ > 27,

[3(t +7) = Js(t) [

7-Oé

< s Wl (3.36)
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Using estimates (3.31), (3.36), we get

qp 1T = SOl M Sl llomn (3.37)

0<t<t+r<l T T ol -«

So, it follows from estimates (3.30), (3.37) that

M

(3 < - < [e% . .
I llemm < gy leean (339)

By estimate (3.3) and the definition of C*—norm, we obtain
sl < (X =) flleaqmn < [ flloagm), for all # € [0,1]. (3-39)
Hence, estimate (3.39) results that
[ alley < 1 lleacm- (3.40)
Using estimates (3.3), (3.5), we get for all 0 <t <t 47 <1,

1ot +7) = L)l < e — e g1 £(2) = fF(D)
+ e allf ) = fOlla
Ta [e% «
M (=) fllcecm + 7 fllcam

= Ma—oe
< (M + D)) floman (3.41)

A

Thus, it follows from estimate (3.41) that

Jo(t+ 1) — Jyu(t
sup WD) =IOl yp . (3.42)

0<t<t+r<1 T

Combining estimates (3.40), (3.42), we obtain
[ alleagmy < Ml fllca ). (3.43)
From estimates (3.27), (3.28), (3.38) and (3.43) it follows that

1 1
[Aullowny < M 5140 + FDln, +

m”f”ca(m) : (3.44)

Using the triangle inequality, estimate (3.44), and differential equation (3.1), we get

1

1
v < 8 (S14uD) + SOl + e sllewan ) @19

Now, let us establish the estimate for ||u'||c(s,).-
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Formula (3.8) and differential equation (3.1) result that for ¢ € (0,1)

W) = e O Au() + F0) + A0 - 1)
- / Ae~6=0A(f(s) — £(1))ds

t

Using estimate (3.3) and the definition of H,—norm, we obtain

1G1 @O [ < [[Au(1) + f(D)]| - (3.46)

Next, from estimate (3.4) and the definition of C*—norm it follows that
1G2(O)]l o < [[fllcoam- (3.47)
Finally, by estimate (3.3) and the definition of C*—norm, we get
IG5l < = Fllowqn (3.45)
Hence, estimates (3.46)-(3.48) result that

Ilewan < 8 (14u(0) + £, + =1l ) (3.49)

Therefore, combining estimates (3.44), (3.45) and (3.49), we obtain

||| e ey + | Aull oy + |4 o)

1

< 01 (S + FO, + s o (3.50

Let us now estimate ||Au(1) + f(1)||z, . From formula (3.9) it follows that
» 1

Au(D)+£1) = T{= Y [ A C0A(1(s) - f6))ds
=1 g

+ Y ape CTAF(0,) — £(1))
k=1

+ f1) =) f(Or) + Ap}

= P +DP+D;

Using estimates (3.4), (3.7), the assumption (3.2), and the definition of C*(H )—norm, we
get
1
1P, < €6, 0p) 7l fllcaqm, (3.51)
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1ol < €, 0p) || fllcecany. (3.52)
p
13l = 1F() = D onf(0x) + Al .. (3.:53)
k=1
Estimates (3.50), (3.51)-(3.53) concludes the proof of Theorem 3.10. O

3.3 Application

In this section, we consider the applications of Theorem 3.9 and Theorem 3.10.

First, the nonlocal boundary value problem of parabolic type

(

w4 (a(x)ug)e —ou= f(t,z), 0<t<1l, 0<x<l,

p
u(l,z) = > anu(lny,,z) + ¢(x),0 <z <1,
m=1 (3.54)

0<b<0,<--- <0, <1,

\u(t,()) =u(t,1), uy(t,0) = u,(t,1), 0<t <1

under assumption (3.2) is considered. The problem (3.54) has a unique smooth solution
u(t,z) for (3.2), 6 > 0 and the smooth functions a(x) > a >0 (z € (0,1)), ¢(z) (z €
[0,1]) and f(¢,x) (t,x € [0,1]). This allows us to reduce the nonlocal boundary values
problem (3.54) to the nonlocal boundary value problem (3.1) in a Hilbert space H =
L»[0,1] with a self-adjoint positive definite operator A* defined by (3.54).Let us give a

number of corollaries of the abstract Theorem 3.9.

Theorem 3.11. For solutions of the problem (3.54), we have the following stability in-

equalities
| w Nleg ooy + Il w llcawzqoy)
1
< C(0,0y) (m I f leg o) +||90||W22([0,1])) :
where C(0,0,) does not depend on p(x), f(t,x). O

Theorem 3.12. Let
(a(x)@, (1)), — 6p(x) = f(1,2) = Y apf(Or, ).

Then, for solutions of the problem (3.54), we have the following stability inequalities

C(6,0,)
[ Hca(L2([o,1})) + || u HCa(WQZ’([o,u))S m | f ||C°‘(L2([071]))’

where C(0,0,) is independent of p(x), f(t,x).
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The proofs of Theorem 3.11 and Theorem 3.12 are based on the abstract Theorem 3.9,
Theorem 3.10, and the symmetry properties of the space operator generated by problem

(3.54).

Second, let 2 be the unit open cube in the n-dimensional Euclidean space R" = {z =
(1, -+ ,,2,) 0 < m; <1,i=1,---,n} with boundary S, @ = QU S. In [0,1] x Q, the
boundary value problem for the multi-dimensional parabolic equation

;

(0 (2t ), — O = f(1,2),

r=

r=(x1,...,2,) €2, 0 <t <1,
p —

u(l,z) = > au(bi, x) + (x), x € §, (3.55)
i=1

0<0 <Oy <---<0,<1,

u(t,x) =0, z€ 5, 0<t<1

\

under assumption (3.2) is considered. Here a,.(7), (z € Q), p(z) (z € Q), and f(t,7) (t €

(0,1), z € Q) are given smooth functions and a,(z) > a > 0,0 > 0.

We consider the Hilbert space Ly(Q) of the all square integrable functions defined on €,
equipped with the norm

= ([ ] 1@ - d%)é.

The problem (3.55) has a unique smooth solution u(¢, x) for (3.2) and the smooth func-
tions (), a,(z) and f(¢,x). This allows us to reduce the problem (3.55) to the nonlocal
boundary value problem (3.1) in the Hilbert space H = L(2) with a self-adjoint positive
definite operator A* defined by (3.55).

Theorem 3.13. For the solutions of the problem (3.55), the following stability inequalities

1
I gy + 11 g €60 (s 1 lepisan +1elzen )
hold, where C(6,0,) does not depend on ¢(z), f(t,z). O

Theorem 3.14. Let

n

> (ar(@)py, (2))e, — 6 = f(1,2) Zoékf Or, )

r=1
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Then, for the solutions of the problem (3.55), the following stability inequalities

C(0,0,)
[ we llcoa@y + 1w llcomz@) < all—a) I f leera@):

hold, where C(6,6,) is independent of p(z), f(t,x).

The proofs of Theorem 3.13 and Theorem 3.14 are based on the abstract Theorem 3.9,
Theorem 3.10, and the symmetry properties of the operator A* defined by formula (3.55)
and the following theorem on the coercivity inequality for the solution of the elliptic

differential problem in Ly(€2).

Theorem 3.15. ([Sobolevskii P.E., 1975]) For the solutions of the elliptic differential

problem

A*u(x) =w(z),z € Q,
u(z) =0,z €S,

the following coercivity inequality holds :

Z ||u$r1‘7‘||L2(ﬁ) S M||w||L2(§)

r=1
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CHAPTER 4

WELL-POSEDNESS OF THE ROTHE DIFFERENCE FOR
REVERSE PARABOLIC EQUATIONS

We consider the Rothe difference scheme for the approximate solution of the abstract
parabolic equation in a Hilbert space with the nonlocal boundary condition. Theorems
on stability estimates, coercivity and almost coercivity estimates for the solution of this
difference scheme are established. In applications, new coercivity inequalities for the
solution of multi-point nonlocal boundary value difference equations of parabolic type are

obtained.

In the previous chapter, we considered the abstract nonlocal boundary value problem

(0 gy = f1)  (0<t<1),

dt
p
u(1l) = azu(By) + ¢, (4.1)
k=1
\ 0<0,<b<---<0,<1

in a Hilbert space H with self-adjoint positive definite operator A, under the assumption

p

> ] < 1. (4.2)

k=1
The well-posedness of multi-point nonlocal boundary value problem (4.1) in spaces C{'(H)
and C*(H) was established. Moreover, as applications, these abstract results enabled us
to obtain new coercivity estimates in various Holder norms for the solutions of nonlocal

boundary value problems for parabolic equations.

In the present chapter, our focus is the well-posedness of the first order of accuracy Rothe

difference scheme

;

T ug — up—1) — Ay = @5, 0 = fte),
th=kr 1<k<N, Nr =1,

for approximately solving problem (4.1).

Let [0,1], = {t, = kr,k =1,--- | N, N7 = 1} be the uniform grid space with step size

7 > 0, where N is a fixed positive integer.



33

Throughout the chapter, F([0,1],, H) denotes the linear space of grid functions ¢™ =
{1V with values in the Hilbert space H.

Let C.(H) = C([0, 1], H) be the Banach space of bounded grid functions with the norm

o7 lle- ) = max oyl

For o € [0,1], let C*(H) = C*([0,1],, H) and C{(H) = C([0,1],, H) be respectively the

Holder space and the weighted Holder space with the following norms

”S%Jrr - SDkHH

e lleairy = Nl¢7lle-cn + | _max ()"
. _ (N = K)7)* [ nsr = eullm
e lleg i =Ml llerm + | _max (rr)e '

We say that difference problem (4.3) is stable in F([0,1],, H), if we have the following

stability estimate

{we—1}1 70,110, < M (17 |7 o,110.m) + 10l )

where M is independent of ¢, v and 7.

Difference problem (4.3) is said to be well-posed in F([0,1],, H), if for every ¢™ €
F([0,1],, H) problem (4.3) is uniquely solvable and we have the following coercivity esti-

mate:

_ N N T
{7 ue — un-1) }, Nlrogem + | {Aur-1} 7qoa..m < M (|7l #01,.0) + |A@] a7)

where H' C H, M does not depend on ¢”, ¢ and 7.

Throughout the chapter, M shall indicate positive constants which can be different from
time to time and we are not interested to precise. We shall write M (a, 3, - -) to stress

the fact that the constant depends only on «, 3, - - .

In this chapter, we prove the well-posedness of the multi-point nonlocal boundary value
problems (4.3) in the spaces C{*(H) and C*(H). Furthermore, we apply these abstract
results to obtain new coercivity estimates in various Holder norms for the solutions of

nonlocal boundary value problems for parabolic equations.

4.1 The First Order of Accuracy Difference Scheme

Let us start with some lemmas we need below.
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Lemma 4.16. ([Ashyralyev A., Sobolevskii P.E., 1994]) The following estimates hold:

|tFARe | gy < M, t >0, k>0, (4.4)
1
Rilpon < —r, k> 1 4.5
H ”H H = (1—|—(57’)k’ = b ( )
1
ITAR"|| —p < T k=1, (4.6)
-
| AP (R — RM)|| gy < M%, 1<k<k+r<N, ge{0,1},0<~y<1, (4.7)
T

for some M,6 > 0, which are independent of T, where T is a positive small number and
R = (I+7A)™! is the resolvent of A. O

Lemma 4.17. Assume that (4.2) holds. Then, the operator
p 6
-y V%] (4.8)
k=1
has an inverse
» -1
-[2]
T,=(1-) xR L~
k=1
and the following estimate is satisfied:

I T < C(6,0p). (4.9)

Proof. The proof of estimate (4.9) is based on the triangle inequality, assumption (4.2),

and the estimate

» -1
(I - Z oszN_[ng]> < sup L
k=1

H—H o=n I Zizl ak(l + TM)

]|

O

Let us now obtain the formula for the solution of problem (4.3). It is clear that the first

order of accuracy difference scheme

4
771(% - Uk—l) — Aupy = Py Pr = f(tk)a
ty,=kr, 1< k<N, Nt =1,

P (4.10)
Uy = ) Gy, + ¢,
m=1

\
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has a solution and the following formula holds:
N
up =R Fuy — Y RFor 0<k<N-1 (4.11)
j=k+1

Applying formula (4.11) and the nonlocal boundary condition

p
E=un =) iy, +¢,

m=1

we can write

p N
£=> (RN—% -y Rj—fkgojr> + .

J=lp+1

Using Lemma 4.17, we get

D N
uy =T, (— akRj_f’“gojT + go) . (4.12)
k=1 j={;+1

Hence, difference equation (4.10) is uniquely solvable and for the solution, formulas (4.11)

and (4.12) are valid.

Theorem 4.18. Suppose that (4.2) holds and ¢ € H. Then, for the solution of difference

scheme (4.10) the following stability estimate

max furlla < C@,0,) (Il + ¢ lle. ) - (4.13)

holds, where C(6,6,) is independent of T, ¢, and 7.

Proof. From estimate (4.5), formula (4.11), and N7 = 1 it follows that

< illH -
omax uwlle < flunlln + max llg;lln

Using assumption (4.2), estimates (4.5), (4.9), formula (4.12), and N7 = 1, we obtain

lun e < C1(5,0,) (lella + 117 le.n) -

From these estimates it follows (4.13).

This concludes the proof of Theorem 4.18. O]

It is well-known that problem (4.1) in the space C([0,1], H) is not well-posed for the
general positive definite self-adjoint operator A and Hilbert space H. Hence, the well-
posedness of difference problem (4.10) in C([0, 1], H) norm does not take place uniformly

with respect to 7 > 0.
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Theorem 4.19. Let (4.2) hold and ¢ € D(A). Then, for the solution of difference problem
(4.10), the almost coercivity inequality

_ N
{7 (e —un-1) }] e + I Au-1 3 Nl

) 1 ,
< C(é,Hp)(mln{ln; L+ || Allg—a} - e lle.y + 1 A¢lla) (4.14)

is valid, where C(6,6,) does not depend on 7, ¢, and ¢'.

Proof. Using formula (4.11), estimate (4.5), we get for 1 <k < N

N
lAwerlln < Auxlg + 197 le.cn > ITARTF g (4.15)
=k

It follows from Theorem 1.2 [Ashyralyev A., Sobolevskii P.E., 1994] on page 87 that

N N—k+1 N
S NTAR gy = Y Tl AR|ly—u <> TllAR™||g—n
7=k m=1 m=1
. 1
< M min {ln—,1+|1n|| A ||H_>H|} (4.16)
T

By formula (4.12), estimate (4.9), and assumption (4.2), we obtain
T : 1
lAunlle < €(0,0)(l"lle, ¢y min{ln —, 1+ [In | Ally_ [} + | A¢lm). (4.17)

Thus, from estimates (4.15)-(4.17) it follows that

T : 1
I (i} e < 0,8,) (1l min {1n 2,1+ I A Ly + 46 ).
(4.18)
Using difference equation (4.10), the triangle inequality, and estimate (4.18), we get esti-

mate (4.14).

This finishes the proof of Theorem 4.19. O]

Theorem 4.20. Suppose that (4.2) holds and p € D(A). Then, the solution of difference
scheme (4.10) satisfy the following stability estimate

1

_ N
| (g — Uk—l)}l lleg e+ {Auy_1}Y ey < C(0,0,) (m

197l + 4 )
(4.19)
where C(0,0,) is independent of T, ¢, and ¢7.

Proof. Tt follows from formula (4.11) and identity

TAR=1-R (4.20)
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that for 1 <k < N

N
Aug_y = RN Auy =S 7 ART (@) — oy y) + (R — gy . (4.21)
j=k

Using estimates (4.5), (4.6), and the definition of C¢(H)—norm, we get for 1 <k < N

[ e ——" T
[Aue—rllr < [|Aunlz + . : — +2]l¢7 |leo
((N—k+1)7)ajz:;((.7—k+1)7)1 a H)
4 T
< | Aunlln + EHSO leg (- (4.22)

Now, we estimate ||Auy| y.

From formula (4.12) and TAR = I — R it follows that

P N

Auy = TA=) on( Y TART(p; — ¢,) + (I — RN %), ) + Ap}.

k=1 j=lp+1
Hence, by estimates (4.5), (4.6), (4.9), the definition of C{*( H)—norm, and assumption
(4.2), we obtain

4 T
Jux L < €006, (516 legan + 14¢la ) (1.23)
Thus, from estimates (4.22), (4.23) it follows that

1
v e < €06.0,) (2167 legan + 14¢ln ). (1.21)

Let us now estimate

e (V= k4 D7) Aupair — Aupali
1<k<ktr<N (rr)
First, let N — k + 1 < 2r. By estimate (4.24) and the triangle inequality, we obtain

(N =k + 1)7)*Aug_14r — Aup_ ||z
(rr)>

1 T
< €6.0,) (2lerin + 1Avln ) . (429

Next, let N — k + 1 > 2r. From formula (4.11) it follows that

k+2r—2
Aug_y — A4, = (RN?kJrl - RN?IHI*T)AUN - Z TARjikJrl(SOj — Qr_1)
=k
k+2r—2
+ Z TARJ*(FHT)(%’ — Pr_14r)
j=k+r
N
S Y AR R )
j=kt2r—1

+ (I =R 10r — pa) + (RNTHH - RV

= L(k) + L(k) + Is(k) + La(k) + Is(k) + Is(k). (4.26)
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We first estimate I; (k). Using estimates (4.7) for § = 0, (4.23), and the fact N—k+1 > 2r,

we get

(rr)«

I < CO.0) 5 T Ty

1 T
(2167 lepan + 14l ). a2

Next, it follows from estimate (4.6) and the definition of C{(H)—norm that

k+2r—2

¢ lleg T
LK)y < 1
e (§ ;;(Q—k+1ﬁﬂﬂ
20 (r7)° .
< a7 lleg (4.28)

o (N=k+1)7)
By using estimate (4.6), the definition of C{'( H)—norm, and the fact N — k +1 > 2r, we

obtain
2% Ml eo ) kgzz T
(N —=k+1)7)> ((J—(k=147r))7)t

j=k+r

[ 13(k)||z <

2% gy (r7)>
- (N=k+1D7n)> a

(4.29)

It follows from estimate (4.7) for = 1, the definition of C{( H)—norm, and the fact
J—k+12>2r that

N

2°([7 lleg ) T
I4(k < M !
e (v DD DI (v e
j=k+2r—1
2a T o o
< 67 legry (1) (4.30)
(N—k+1)71)*(1—«)
Using estimate (4.5) and the definition of C¢(H)—norm, we obtain
2|l¢" lleg )
I5(k < : e, 4.31
|| 5( )”H = ((N —k+ 1)7-)(1 (TT) ( )
Finally, from estimate (4.7) for § = 0 and the fact N — k + 1 > 2r it follows that
16 (F) [z < 2°Ml¢7 [leg ) - (4.32)

Thus, combining estimates (4.27)-(4.32), we get for N — k+ 1 > 2r

(N = b+ 1)) A1y — Aug sl
(r7)«

167 lleg
<060 (oSO gl ) . (439)

From estimates (4.25) and (4.33) it follows that

e WV =k D7) Aupair — Aupalm <C(6,0) (

1<k<k+r<N (rr)>

107 [leg )
a(l — )

n ||A¢1|H)<4.34>
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Combining estimates (4.24), (4.34), we obtain that

1
1A} o) < C(6,6,) ( el + ||A<,0||H) S 43)

all —«
Hence, estimate (4.19) follows from difference equation (4.10), estimate (4.35) and the
triangle inequality.

This concludes the proof of Theorem 4.20. O

Let H, = H, o (H, A) be the fractional space, consisting all v € H for which the following
norm

[0l = [|v]lm + sup [\ *Ae | g
A>0
is finite.

Theorem 4.21. Assume that ¢ — Y arp, + Ap € Hy and (4.2). Then, problem
(4.10) is well-posed in C*(H) and the following coercivity estimate

_ N N _ N
{7 e — un—1) }, lleaqmy + I {Aur-1 3} lleaqmn + I {77 (ur — uie1) } lles )

1 - C(9,0,)
<M [ =)oy — A SO0
< (al\w ;akwk + Al + T s el <H>>

holds, where M does not depend on p, ™, and T.

Proof. Let us establish the estimate for ||{Aug_1}Y ||ca(rr). Similar arguments introduced

in the proof of estimate (4.24) result that
1 T
w1} ey < C0.8) (51 e + el ) (1.36)

Next, we estimate
HAUk—H-r - Auk—lHH

max
1<k<k+r<N (r7)e

Using formula (4.11), we obtain for 1 < k£ < N that

Auk,1 = —Pr_1 -+ RNikJrl(AUN + SON)
N

— Z TAijkH(st — 1) + RV o — o)
j=k

It is clear that

[ Tilleaceny = 1@ lex - (4.38)
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Let us now estimate ||J2||ce(z). To alleviate the notation, let v = (Auy + ¢y ).

From the definition of H,—norm, the equality

k+r—1
Z _TARij — RN*(k*lJr'r) . RN*kJrl
j=k

and the formula connecting the resolvent of the generator of a semigroup with the semi-

group it follows that

—Ttd

Il +) = Bl < o /°° e
2 r 2 H V|| Hq X € TrNi—a
(N —j—1) ()
l1-a a2

<2 ||U||Ha(7“7) " (4.39)

Thus, using estimate (4.39), we get
4
1 2lleo ey < — vl (4.40)

It follows from estimate (4.6), the definition of C“(H)—norm, and N7 =1 that

N
[Js(B)lla < [l@7lleam Z DE
J:k
+1)7
< W=kl ) 167 e (4.41)
for all .
Hence, using estimate (4.41), we obtain
1 T
1slle, iy < —li@Tlleaqm- (4.42)

Next, we estimate
[J5(k + 1) = J5(k)|u
max .

1<k<kir<N (rr)>

First, let us consider the case N — k + 1 < 2r. Using the triangle inequality, estimate
(4.41), we get

| J3(k + 1) — J3(k)||m
(rr)e

(2*+1)

IA

167 [lcacen- (4.43)
Next, we consider the case N — k 4+ 1 > 2r. We can write as

Jg(k) — Jg(k -+ 7") = ng(k/’) + Jgg(k) + Jgg(k) + J34(]€),



where J31 (k) = Ix(t), Jsa(k) = I3(k), Js33(k) = I14(k) (see equation (4.26)), and

J34(k) = (qu - RNf(kar))(‘Pk—Hr - (pk—l)'

So, we have

2%(rT)™
a

2%(r1)
o

27 (pry>
L e

| J51(K) ||z <

7 | ca ey,

| J32(K)||m < ™ [lco (),

Finally, using estimate (4.5) and the definition of C*(H)—norm, we get
[ Jsa(k)ll e < 20r7) (0" llcecan) -

Hence, it follows from estimates (4.44)-(4.47) that for N — k + 1 > 2r,

Vst +7) = Jy(®)llw _ M

(rr)> T al—-a

)IIwTHca<H>-

Combining estimates (4.43), (4.48), we get

[J5(k + 1) — J3(K)|[u <M
1<k<k+r<N (r7)e T a(l -«

) ||<PTHCa(H)-

Thus, estimates (4.42), (4.49) result that

M
Jalleary < ———[1&" lloacm.
[ J3llce () < g _a)||80 e ()

Using estimate (4.5) and the definition of C*(H )—norm, we obtain

174l < (V= &+ D)0 o < 197 lleagan, for all &,

Hence, estimate (4.51) gives

| Jalle. iy < @7 lleomy-

By using estimates (4.5), (4.7) for 5 =0, we get forall 1 <k <k+r <N

1Ja(k +7) = Ja(B)llzr < IRV — RN g pllo 1 — onlln

+ IR aenllor1r — oralla

< (M A+ D7) @7 lex -

41

(4.44)
(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
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So, from estimate (4.53) it follows that

| Ja(k + 1) — Ju(k)|| T
< o (. ‘
1gkglzi)f~gzv (r7)e < M7 [|com) (4.54)

Thus, by combining estimates (4.52), (4.54), we obtain
[ allea(rry < MilloTlleam).- (4.55)
From estimates (4.36), (4.38), (4.40), (4.50), and (4.55) it results that

1 1
I{Aur—1 37 leaqmy < M (EHAUN + onllm. + m“%ﬁTHCQ(H)) : (4.56)

Hence, using the triangle inequality, estimate (4.56), and difference equation (4.10), we

get

_ N
{7 ue — ur—1) }, Nleam

1 1
<M|—|A ——||¢7 || . 4.57
< (aH uy + oy, + a(l_a)H@ le (H)) (4.57)

Let us now establish the estimate for || {77 (us, — uk,l)}jlv le(ra)-

It results from formula (4.11) and difference equation (4.10) that for all &,

Up — Up—1 RNf(k71)<AuN + o)+ RNf(kfl)@k )
T
N
— S rARTE (g, )
j=k

Using estimate (4.5) and the definition of H,—norm, we obtain

1G1(F)| . < [[Aun + on ||, (4.58)

Now, using the definition of H,—norm and the formula connecting the resolvent of the

generator of a semigroup with the semigroup, we get

IG2(k)[l, = sup [N Ae™ MRV (g — o) ln

A>0
. W (%s) tN—ke—t A
= sup||AT%Ae” / —e 7 — dt
A0 H 0 (N_k)' (gpk SON) HH

< e llea .- (4.59)
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Next, let us estimate ||G3(k)||x,. Let A > 0. From estimates (4.4), (4.5), (4.7) for § =1,
and identity (4.20) it follows that

T T T

AeMARTFH |y <mind ————, 5 ¢t <M : 4,
Irac AR N < min{ o T S M (00
Using estimate (4.60) and the definition of C*(H )—norm, we get
al T
Gs(k < M|¢7||¢ocmy sup A7 ,
Gt < MmN 3 1
< M%. (4.61)
Hence, combining estimates (4.58)-(4.61), we obtain
- N e lleo (e
rurww—uknhummsﬂf@mW+wmmﬁ~7tﬁi . (4.62)

Thus, estimates (4.56), (4.57), and (4.62) result that

_ N _ N
{7 (ur — we—1) }, lleoqan + {AwI Nlewcmy + I {7 ue — ur—1) }; lleqa)

1 1
<M|-—|A ——||¢7 || : 4.63
< 01 (1A + onlln, + o 19 e (4.63)

Now, we estimate || Auy + @y || m, . Using formula (4.12), we get

4 N
Auy +oy = T {- Z ay, Z TARj*Zk(SOj — ¥q,)
k=1 j=lp+1

p
+ > RV (g, —oy)
k=1

p
+ on— Y awpy, + Ap}
k=1

= P+ P+ P

It follows from estimates (4.6), (4.9), (4.60), assumption (4.2), and the definition of C*(H)-

norm that
C(6,0,)

P < »Up || he 4.64
1P|, < i—a) o™ lleo (), (4.64)
1 P2l o < €6, 0p) 107 lleo sy, (4.65)

p
1Pl = CO,0)llon — S aney, + Aglln,. (4.66)

k=1

Therefore, estimates (4.63), (4.64)-(4.66) finishes the proof of Theorem 4.21. O
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4.2 Application

We, in this section, consider applications of Theorem 4.20 and Theorem 4.21.

First, let us consider the nonlocal boundary value problem for one dimensional parabolic

equation
(

up + (a(z)ug)y —ou= f(t,z), 0 <t <1, 0<z<l,

P
u(l,z) = > anu(@m, ) + ¢(z),0 <z <1,
m=1 (4.67)

0<0, << - <0, <1,

u(t,0) = u(t,1), u(t,0) = u,(t,1), 0<t <1
\
under assumption (4.2), where § > 0, a(z) > a >0 (z € (0,1)), ¢(z) (z € [0,1]) and

f(t,z) (t,x € [0,1]) are smooth functions.

The discretization of problem (4.67) is carried out in two steps. In the first step, we define
the grid space
0,1, ={z =2z, :2,=nh, 0<n< M, Mh=1}.

Let us introduce the Hilbert space Ly, = Ly(]0, 1]1,) of the grid functions ¢”(z) = {p, }*
defined on [0, 1], equipped with the norm
1/2
16 = | 32 Jela) 2
z€[0,1],
To the differential operator A generated by problem (4.67), we assign the difference op-

erator A} by the formula

A" (x) = {~(a(2)pz)em + 0pu 11 (4.68)

acting in the space of grid functions ¢"(z) = {, }'! satisfying the conditions ¢, = @,
©1— Yo = P — Pu—1- It is well-known that A7 is a self-adjoint positive definite operator

in Loj,. With the help of A7, we arrive at the nonlocal boundary value problem

4
W5)  peh(g 0) = fr(t ), 0 <t <1,z €0,1],

(1, 7) = izl At (O, ) + (), € [0, 1, (4.69)

\0§61<‘92<'“<6p<1.
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In the second step, we replace (4.69) with the difference scheme (4.10)

“Z(I)*UZ—l(w) Az h __ rh
S = Apuy o (x) = [ (2),

fi(x) = fity,2), ty =kr, 1<k <N, 2 €[0,1],
, (4.70)
ul (z) = 2::1 amu?m(m) + o(x),z € [0,1],

0<0,<b<---<0,<1.
\

Theorem 4.22. Let 7 and h be sufficiently small numbers. Then, the solutions of differ-

ence scheme (4.70) satisfy the following coercivity stability estimate:

_ N N
| {7' 1(“2 - UZ—1)}1 ||C?([0,1]T,L2h) + || {UZ—l}l HC‘f([O,l]T,WZ?h)

1 N
< C(4,0,) (m” {3 Nesqo,mwz,) + ||90h||wgh)

hold, where C(6,0,) is independent of T, f{(x), and "(x), 1 <k < N — 1. O

Theorem 4.23. Let )
Ap (@) = fi(x) =D amfl (x).
k=1

Then, for solutions of the problem (4.70), we have the following stability inequalities

_ N N
| {T 1(“2 - UZ_1)}1 ||ca([0,1]T,Lzh) + | {“2—1}1 Hca([o,l]nwz?h,)

(6,6,
< S e

holds, where M does not depend on p, ©™, and T. O

The proof of Theorem 4.22, Theorem 4.23 is based on the abstract Theorem 4.20, Theo-
rem 4.21 and the symmetry properties of the difference operator Aj defined by formula

(4.68).

Second, let €2 be the unit open cube in the n-dimensional Euclidean space R" = {z =
(21, -+ ,,2,) : 0 <3 <1,i=1,---,n} with boundary S, @ = QU S. In [0,1] x Q, the

boundary value problem for the multi-dimensional parabolic equation

(

augtﬂ:) + Z(ar(x)uazr)xr - f(t,$),

n
r=1

x=(21,...,2,) €Q, 0 <t <1,

u(l,z) = i au(0;, ) + o(z), v € Q, (4.71)

=1

0<b <by<---<0,<1,

u(t,z) =0, z€ 5, 0<t<1
\



46

under assumption (4.2) is considered. Here a,(x), (x € Q), o(z) (x € Q), and f(t,2) (t €

(0,1), x € Q) are given smooth functions and a,(x) > a > 0.

The discretization of problem (4.71) is carried out in two steps.

In the first step, define the grid space Qn = {z = xpn = (hamy, -, hymy,);m =
(my, - ,my), 0<m, <N, h, N,=1,r=1,--+ ,n}, Q=0,N0,8,=0,N5.

Let Lsj denote the Hilbert space
1/2
Lon = Lo() = { ¢"'(2) : Z " () [Py - - - By, < 00

xeﬁh

The differential operator A in (4.71) is replaced with

n

Apu(z) ==Y (ar(@)ug, ), ;5 (4.72)

r=1
where the difference operator A? is defined on those grid functions u"(z) = 0, for all

x € Sp. It is well-known that A7 is a self-adjoint positive definite operator in Loy,

Using (4.71), we get

( ~
WD) pgul(t,x) = f(ta), 0 <t <1, z€Qy,

p ~
W(1,2) = Y At (O, 7) + 9 (2),2 € O, (4.73)

m=1

k0§01<62<"'<9p<1.
From (4.73) it follows that

up (z)—up_ () Aruh o h
St = Ay (7) = @ (),

oh(x) = fr(ty, x), b, =k, 1<k <N, z €,

p ~ (4.74)

ul(z) = 3 amuy (2) + ¢"(2), 2 €
m=1

0§(91<‘92<"'<9p<1.
\
Theorem 4.24. Let 7 and |h| = \/h? + -+ + h2 be sufficiently small numbers. Then,

the solutions of difference scheme (4.74) satisfy the following coercivity stability estimate:

_ N N
{77 (i = i)}y Nlegoae,zan + 1 {ui-1 1) llewoar-wz,)

1 N
< C(0,0p) | ———I{fi'}y llegcoa-mwz,) + 19" lwe,
a(l — )

hold, where C(6,0,) is independent of T, f(x), and " (z), 1 <k < N — 1. O
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Theorem 4.25. Let Afo"(x) = of(x) — D0_ amep} (x). Then, for solutions of the
problem (4.74), we have the following stability inequalities

C(6,0,)

_ N N
| {T I(UZ - uiﬁ)}l llea0,137,20m) + [ {ur—1} ||Ca([0,1]T,W22h) < mﬂ{f?}ivﬂca(m

holds, where M does not depend on ", fI', h, and 7. a

The proof of Theorem 4.24, Theorem 4.25 is based on the abstract Theorem 4.20, Theo-
rem 4.21, and the symmetry properties of the difference operator Aj defined by formula

(4.72), and the following theorem:

Theorem 4.26. ([Sobolevskii P.E. S, 1975]) For the solutions of the elliptic differential
problem

Azuh(z) = wh(z), = € Q.

u'(z) =0, € Sy,
the following coercivity inequality holds :

n
Z H (UZ)ETET,J;

r=1

< MHwh”Lzh'

Lop —




CHAPTER 5

WELL-POSEDNESS OF THE SECOND ORDER OF
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ACCURACY DIFFERENCE SCHEME DIFFERENCE FOR

REVERSE PARABOLIC EQUATIONS

In this chapter, we establish the well-posedness of the second order of accuracy differ-

ence scheme

(

T M g — up1) = AL+ Fupr = (T + 5@y,

V1 = f(tk_%), ty,=kr, 1<k<N, Nt =1,

un = Y py ak {(I+ (O — bn7) A)ue,, + ¢p, (O — buT) } + o,
o =[] 1sm<p

\

for approximately solving problem (5.1).

5.1 The Second Order Difference Scheme

We state the following lemmas we need in the sequel.

Lemma 5.27. ([Ashyralyev, A., 1987 ]) The following estimates hold.
M 2
D™ — ™ Ay < —— m > 1,

(m7)2"  —
I(TA)*Dllg—u <1, @ €{0,1,2}

A
1(A)*D(I + %)HH% <1, ac{0,1}

TA
I+ 740D + )l < 2.

TA TA
(I + T)D([ + T)HHHH <1,

1
1(TA)’ D™ |- < —m>1,0<A<1,

m-r m (TT)’Y
|A%(D™ " — D >||HaH§M(mTW, 1<m<m+r<N, 0<B,9<1,

for some M, > 0 independent of T, where T is a positive small number and D =

TA+ —(T’;)Q)_l.

Clearly, we have

TAD(I+ —)=1-D.

(5.1)

(5.2)

(5.3)

(5.4)
(5.5)
(5.6)
(5.7)

(5.8)

(I+
O

(5.9)
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Lemma 5.28. Let assumption (4.2) hold. Then, the operator

I— zp: an(I + dy A) DN #] (5.10)

k=1

has an inverse
0

T = (I - i ap(I + dkA)DN‘M) _

k=1
and the following estimate is satisfied:

| T3 lr—m< C(5,0,). (5.11)

Proof. The proof of estimate (5.11) follows from the estimates (3.7), (5.7) for 5 =1, and

the triangle inequality:. O

Now, we obtain the formula for the solution of problem (5.12). Clearly, the second order

of accuracy difference scheme

(

T up = upr) = AL+ Fuer = (I + 5y,
ora = [t 1), ti=hr, 1<k <N, Nr=1,
un =0 o {1+ diA)ug, + dnpy, } + o,
dmzﬁm—[gm}ﬁ by = [97’”}, 1<m<p

\ T

(5.12)

has a solution and the following formula holds:

N
_ - TA
up =DV Fuy — Y DITHI + 7)<pj,1r, 1<k<N-1 (5.13)
j=k+1

Using formula (5.13) and the nonlocal boundary condition

p
é = Uun = Z QAm {(I + dmA>u€m + dm@zm} + @,

m=1

we obtain

p N
E = ) anll +dnd) <DN_Z"”§ - ), DI+ %)%—17>

m=1 j=lm+1

p
+ Z OémdeOgm + 2

m=1

It follow from Lemma 5.28 that

p N
, A
uy = TT'{—Z Z ak(]‘l’dk:A)D]_Ek([—{'%)(pjflT

k=1 j=0,+1

p
+ > ondipy, + 0} (5.14)
k=1
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Thus, difference equation (5.12) is uniquely solvable and solutions satisfy formulas (5.13)

and (5.14).

Theorem 5.29. Let assumption (4.2) hold and ¢ € D(A). Then, the solution of the

difference scheme (5.12) satisfy the following stability estimate

I {wh? lle.an < €6,6,) (Il + 11 {oih ) (5.15)

where C(6,0,) does not depend on 7, ¢, and ¢".

Proof. Using estimates (5.3), (5.4) for @ = 0, formula (5.13), and N7 = 1, we get for
1 <k<N-—1that

< N
Nurllzr < |lun||a + max ol 22

From assumption (4.2), estimates (5.3) for a = 0, (5.6), (5.11), formula (5.14), and N7 =1
it follows estimate (5.15). O

Theorem 5.30. The solution of difference problem (5.12) satisfies the following almost

coercivity inequality

_ N
{7 (uk — wr1) }5 ller ) + I{ A e, )

. 1
Sﬂ&%<mMMjJ+mMM%ﬁWWﬁﬁhw+WWM) (5.16)

where C(6,0,) is independent of on 7, ¢, and ¢".

Proof. From formula (5.13), estimate (5.3) for a = 0 it follows that for 1 <k < N —1

N

_ . TA
[Aullr < IDYHlaomlAulla + ) ITAD k([_*—?)”H—’HHSOjleH
j=k+1

N
. TA
< NAuylla + 1H{exh e Y IITADTH(T + 5 M-
Jj=k+1
Following the arguments of Theorem 1.2 [Ashyralyev A., Sobolevskii P.E.; 1994] on page
87, using the estimates (5.4) for o = 1, (5.7) for 5 = 1, we get

3 ‘ TA TA
> IrADI I + )l = [ADU + )l
Jj=k+1
N—k—1 TA )
+ mzz Tl[AD™ (I + =) |- < min{ln(2), 1+ I | Al gor ). (5.17)
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By assumption (4.2), estimates (5.3) for o = 2, (5.4) for « = 0, (5.7) for 5 = 1,m = 1,

and N7 = 1, we obtain

1
1 Aunll < €0, 0p) (I{ei e min{ln — 1+ [In [ A,y [} + [ Ae]ln).  (5.18)

Hence, combining estimates (5.17), (5.18), we get

1
H{Aw} lle,mnC (8. ) (IHpi} lle, ) min{In o+l Al g} + I Aela). (5.19)

Thus the estimate (5.16) follows from difference equation (5.12), the triangle inequality,
and estimate (5.19).

This is end of the proof of Theorem 5.29. O]

Theorem 5.31. Assume that (4.2) holds and ¢ € D(A). Then, the solution of the dif-
ference scheme (5.12) satisfy the following stability estimate

_ N N
{7 (ur — we1) ¥, llea ) + 1 {Auw}, lles

< 06.0,) (gl 0 esan + 1461 (5.20)

hold, where C(6,6,) does not depend on 7, ¢, and ¢".

Proof. Using formula (5.13) and identity (5.9), we get for 1 <k < N — 1 that

N
A A
Auk = DN_kAUN — Z TAD]_l_kD<] + %)(ijfl - ¢k)
j=k+1
+ (DNTF — D). (5.21)

Hence, it follows from estimates (5.3), (5.4) for a = 0, (5.7) for § = 1, and the definition
of CY(H)—norm that

H{Sﬁk}{VHc%(H)

|Aupllr < [JAuy]la +

Z ((j—1 jk)T)la + 2”{90k}§v|’(31°‘(H)

(N —Fyr) 2=,
H{on}iVHCQ(H) N=R)7 g
< ||A R — 2 M oo
< Aunln + RS [ ol e
4
< ||AUN||H+EH{%}{VHC;M(H)- (5.22)

Next, let us estimate ||[Auy| g-
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Using formula (5.14) and identity (5.9), we obtain

P N 4
Auy = TH=D ap(I +dpA) > 7AD" (I + ﬂ)%_l + ) opdiAgy, + ¢}
k=1 j=lp+1 2 k=1
b N TA
= T{- Zak(f + diA) Z TADj*Ek(I + ) (pj-1 — ¥e,)
k=1 Jj=l+1 2
p p
— > g, + Yokl +dA)DV g, + A}, (5.23)
k=1 k=1

Thus, from estimates (5.5), (5.7) for § =1, (5.11), and the definition of C{( H)—norm it
follows that

p
lAunln < C@,0,){ lawlli{er}? llegan
k=1

N

1 2T
" {Wj%l G=1—tr)= " 2} + ([ Aelln}
< C0,0,)4 |ak|”{90k}iv||0‘f‘(H)

1 (N=L)T e
1 A .
Rt et RN ERIR EE 1
Hence, using assumption (4.2), we obtain
1
sl < €66, (5140} legan + 14¢ln ) (5.24)

It follows from estimates (5.22), (5.24) that

1
ueH e, < €06, (21HoeH lepan + 14l ). (5.25)

We now estimate
(Y = ) A, — Auly
1<k<ktr<N (rr)

Let N — k < 2r. Using estimate (5.25) and the triangle inequality, we get

(N = k)7)* [ Augyr — Auk|n
(r7)«

1
< (5.0,) (HeH lesan + el ). 620
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Let us now consider N — k > 2r. It follows from formula (5.13) that

A'Lbk — AukH = (DNik — DNikir)AuN
k+2r

. TA
— Z TADITVRD(rA) (1 + 7)(%‘—1 — k)
j=k+1
N
— 1 (k) TA
_ Z TA(D? - D’ )D(I + 7)(%'_1 — )
j=k+2r+1
k+2r TA
+ Z TADjfl*(kH)D(I + 7)(%‘—1 — Prtr)
j=k+r+1
+ (I = D" ) gy — 94) + (DVF = DV,
= Pi(k) + Po(k) + Py(k) + Pi(k) + Ps(k) + Ps(k). (5.27)

Let us start with estimate P;(k). By using estimates (5.8) for 5 =0, (5.24), and the fact

N — k > 2r, we obtain

1PL(k)ller < D70 — DOy | A

7y .
M2 006.0) (2 leran + 14l )

C0.0) e (a1t leran + 4l ). 629

<

IN

From estimates (5.4) for a = 0, (5.7) for § = 1, and the definition of C{(H)—norm it
follows that

k+2r

. TA
12l < D IPADT g | DU + =)=l 951 — il
j=k+1
k+2r

||{80k}1 ||ca(H)

<

= (N =k)r) Z ((J—1—=Fk)m)-
1{erty HC;*(H) /2” dx

- (N =k)7)~ zl-e
2 (rr)* N
EWH{%}l leo ) (5.29)

Using estimates (5.4) for a = 0, (5.8) for § = 1, the definition of C{*( H)—norm, and the



o4

fact j —k > 2r + 1, we get
N

o e A
1Pl < ) lrADITR - DI ))IIHHHIID(I+7)|IH~HII%_1 — opllu
j=k+2r+1
- rr ((G—1-k)7)°
< > M e g
it U=1=k+m)n)? (N —F)7)
N 2 . o
rT j—1—k > 1 N
j:l;m G-1-Ginye <] T ket e
2°1{er 1 llep Y T
< M —rT _
B (N = k)7)° 2 ((G—1=(k+r)7)*"

j=k+2r+1
o N o 1
YAl Ty
((N - k>7—)a rT VA
- M2a|\{<ﬂk}{v|10f(H) (r7)®
- (N=Fk)r)* 1—-«

(5.30)

Estimates (5.4) for a = 0, (5.7) for § = 1, and the definition of C{*(H)—norm, and the

fact N — k > 2r result that
k+2r

[ Pa(R)l|er < Z HTADjl(k”)HHHHHD(IJF%)HHHHH%1—90k+r“H
L (=1 k) e e
SRID DI s e () (N = (k)
_ ’“i T e lezan (N = B)7)®
2 (G- ke (N =Ry (N~ (k+n)me
2o H e [T dv 2 oy
< s [ - S ey e 63D

It follows from estimate (5.3) for o = 0 and the definition of C{'( H)—norm that
2((N = k)7)*{es 1 lleg
(rr)e

Finally, using estimate (5.8) for § = 0 and the fact N — k > 2r it follows that

1Pl < I =D Hla—nllors, — eilla <

.(5.32)

1Ps()ller < 1DV = DY gl opller < 22 I{ou 1t Nep e (5.33)

Combining estimates (5.28)-(5.33), for N — k > 2r we get

(N = k)7)|| Auprr — Aug|l g 1 N
(TT)Z: M < 0(6,6,) <m||{90k}1 lleo ) + ||As0||H) . (5.34)

From estimates (5.26) and (5.34) it follows that
max (N = B)7)* || Atgeyr — Awg||m

1<k<k+r<N (rr)

< 0(5.6,) ( e e + ||A¢||H) . (5.35)

o
a(l —a)
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Thus, combining estimates (5.25), (5.35), we obtain

1
HAw}Y oo < C(6.6,) ( o lerun + ||Aso||H) O (5.30)

a(l —a

Therefore, we obtain estimate (5.20) by using difference equation (5.12), estimate (5.36)
and the triangle inequality. O

Let H; = H/ (H,A) denote the fractional space, consisting all v € H for which the
following norm

|vlla:, = o]z + A% &

is finite.

Recall that
1

m /(; Sail(s + A)ilAUdS. (537)

Theorem 5.32. Suppose " = {p}Y € C*(H), on — > by oy, + Ap € H), and (3.2).

A% = A 1Ay =

Then, problem (5.12) is well-posed in C*(H) and the following coercivity estimate

_ N _ N
{77 (e = ur—1) by Mooy + 1| {AuRYY oo + 11 {77 (e = ur—1) }, lle, )
p
C(5,6,)
<M <||<PN — > awpy, + Aplla, + W_Z)H{S%HVHCQ(H))

k=1

holds, where M does not depend on p, ©™, and T.

Proof. First, we establish the estimate for ||[{Aug}] ||co(sr). By similar arguments given in

the proof of estimate (5.25), we get
1
1w e < C.0) (10 e + el ) (5.38)

Let us now estimate
|Avgyr — Augllg
max
1<k<k+r<N (r7)«

From formula (5.13) it follows that for all 1 <k < N —1

Aup, = —¢p + DV (Aun + py)
N

: A
— > rADITED(I 4 ) — )
j=k+1

+ DV, — o)
= Q1(k) + Q2(k) + Qz(k) + Qu(k). (5.39)
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Clearly, we have

1Qullew ety = {1 llea - (5.40)

Next, we estimate ||Q2||co(m). Let v = (Auy + ¢y ).

Note that

k—+r TA

DN—k: . DN—(k-H”) — _ N—j J—
'Z TADYD(I + )
j=k+1
- N—k—m pAl—« TA

= Y —1D ATOD(I+ =) A (5.41)

m=1

Thus, from the spectral theorem for A, the definition of H/, and estimate (5.4) for a = 0
it follows that

TA
1Q2(k) — Q2(k +7)|lw < Z [T DR AT DT + 5 M-l A%

m=1

ul‘“(l + &)

S v / T Sup
H HH e spcoo (14 pr + (N;’)2)N—k—m+l
T
< Ml Y = F—m)re
m=1
rT dl’
< MHU”H,;/ (N — k)1 — z)l-o (5-42)

Considering the case N — k < 2r and N — k < 2r separately, estimate (5.42) results that
M (6%
1Q2(k) — Qa(k + 1)l < — vl (r7)*. (5.43)
Hence, it follows from (5.43) that
4
1Qzllcary < — v (5.44)

Now, let us estimate ||Qs||ce(m). Using estimate (5.7) for f = 1, and the definition of
C“(H)—norm that

N
1Qs(K)llr < D ITAD" (e A)lm—nllo;os — @ulln

j=k+1
N T
< Hetllewany > — s
S (G=1=R)7)
N (N=K)T T
< “{on}l ||CQ(H) ((] 1 _ /{3)7‘)1_0‘
N —k)r)*
< T o W o, for all & (5.45)
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Thus, it follows from estimate (5.41) that

1
1@sllc, ) < EH{%}{VHca(m- (5.46)

Let us now estimate

Qs ) — Qs

1<k<k+r<N (rr)
Let N — k < 2r. Then, by the the triangle inequality, estimate (5.41), we obtain
|1Qs(k +7) = Qs(R)lla _ [Qs(k+7)|m +[|@s(K)la
(r7) - (rr)>
(N —k—r)7)* + (N - k)7)°

a(rr)e

@i}t e (5.47)

<

I{@r 1t lleeca

(2*+1)

<
Next, let us consider the case N — k > 2r. Easily, we have
Q3(k) — Qs(k + 1) = Qa1(k) + Qs2(k) + Qs3(k) + Qsa(k),
where Qs1(k) = Pa(t), Qs(k) = Ps(k), Qss(k) = Py(k) (see equation (5.27)), and
Qaa(k) = =(D"(74) = D""MD) (1 A)(@rp — 1)

Hence, we get

1@ < 2 oY oo, (5.48)
1@l < 2 o e (5.49)
1Qaa(k)llr < MQ_(IQ_—Z;)QH{sok}f lewn. (5.50)

By estimate (5.3) for @ = 0 and the definition of C*(H )—norm, we get

1Qsa ()l < 20r7)* [{ox 32 Nl any- (5.51)

From estimates (5.48)-(5.51) it follows that for N — k > 2r

1Qs(t +7) — Qs(D)llm < M
(r7)e ~a(l—-a)

||{90k}J1V||ca(H)- (5.52)

Estimate (5.3) for & = 0 and the definition of C*—norm result that for all k,
1Qs(B) [ < (N = k)7)* {211l < IHpi}2 lewany (5.53)

So, estimate (5.53) gives us

1Qulle. a1y < {211 llew - (5.54)
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It follows from estimates (5.3) for o = 0, (5.8) for 5 = 0, and the definition of C*—norm
that forall 1 <k <k+r <N,

1Qalk +7) = Qu(K)llz < 1QV" (7 A) = QY (T A) |-l o ir — onllm
+ 1Y (A a-nllersr — exllu

M(rT)” o N
< W((N— k)T)* I{exht lleam

+ (TT)a||{90k}]1V||Ca(H)
< (M +1)(rm)* {1 llea - (5.55)

Thus, using estimate (5.55), we obtain

1Qa(k + 1) — Qu(k)| u N
|<kShir<N (rr)e < Mil{ertt lleaqm)- (5.56)

From estimates (5.54), (5.56) it results that
1Qallce () < Mill{wi}y lleacm- (5.57)
Combining estimates (5.40), (5.44), (5.52), and (5.57) it results that
A oo < M ( Ay + ol + = oK (5.5%)
kyi llce(H) = o N NI H, a(l—a) kS1 llce(H) | - :

From the triangle inequality, estimate (5.58), and difference equation (5.12), we get

_ N 1
{7 ue = ur—1) }, lleaqm < M{ | Auy + ol + H{erd leagm}. (5.59)

a(l — a)

Let us now establish the estimate for || {77! (uy — uk_l)}év leerry-

Using difference equation (5.12) and formula (5.13), we obtain that for all &,

— Up_ A
M — ([_|_ %)DN—(k—l)(AuN +90N)
T
TA o
+ <I+ T)DN k 1)(<Pk—1 - SON)
N
TA o TA
- U+5) > rADTEI(T + 5 (@1 = r)
j=k

= Si(k) + Sa(k) + S3(k).
It follows from estimates (5.3), (5.4) for a = 0, and the definition of H/ —norm that

151 (k)| mz, < | Aun + ol a2z, (5.60)
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By estimates (5.4) for a = 0, (5.7) for § = «, and the definition of H! —norm, we get

1S2(k) 1z, < MI{2 11" llew - (5.61)

Now, from estimates (5.6), (5.7) for 5 =1, and the definition of C*(H)—norm it gives

N
. TA TA
[S3(k)|lz < Z T||AD’ k||H—>H||<]+7)D([+7)HH—>H”Q@]‘—1_QOk—IHH
j=k+1
< o] i r_ Henlenan 5.62)
5 e L (GRS a |

j=k+1

Next, using the spectral theorem for A, formula (5.37), and the definition of C*(H )-norm,

we get
al 1
«a < -
T S
j=k+1
* a1 T+ Z)H{em 1 Nl (G — k)7)”
X s sup 7. ds
0 §<pu<oco ([/J—l— s)(l + T+ %)]—k-‘rl
{31 ey /°° ds i T
L@l —a) Jo st(0+s) 4« (- k)7)ie
o Hewhlleac /°° ds /1 dx
- Tl -a) J, st0+s) ), i@
C(0) N
m”ﬂ%h ey (5.63)
Estimates (5.62), (5.63) result that
c(9) N
< o .64
I8a06)z < a7 s M} e (5.64)

Combining estimates (5.60)-(5.64), we obtain

{231 llee ()
a?(1 - a) }

Now, let us establish estimate ||Auy + ¢y ||z, . From formula (5.14) it follows that

_ N
{7 e = un—1) ¥, ey < M{IlAuy + oy llm, + (5.65)

P N
. TA
Auxtoy = TH=S oI +did) 3 rAD (1 + )0, )
k=1 j=t+1
P
+ Z ay (I + d A) DN (¢e, — )
k=1

p

+ 9N — Z appy, + Ap}

k=1

= U +Uy+ Us.
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Estimates (5.5), (5.8) for § =1, (5.11), formula (5.37), assumption (3.2), and the defini-

tion of C*(H )—norm give us

C(5.6,)
U1, < W_pa)ﬂ{%}ivﬂca(m’ (5.66)
1Us |1, < C(8,0,)[{@i 31 oy, (5.67)
p
1Uslls, = C(8,0,)lon = > anpy, + Apllmy- (5.68)

k=1

Thus, estimates (5.65), (5.66)-(5.68) concludes the proof of Theorem 5.32. O
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CHAPTER 6

NUMERICAL RESULTS

We consider the reverse type parabolic problem

oulte) L P _ f(tx), O<a<1,0<t<1,
u(0,z) = u(l,z) + p(x), 0<z <1,
u(t,0) =u(t,1) =0, 0<t<1,

p(x) = 0.

(6.1)

\

The exact solution of this problem is u(t, ) = t*(1 — t)?sin 7.

For approximate solutions of the nonlocal value problem,we will use the first order of
accuracy and a second order of accuracy difference schemes. We have the first order or
second order difference equations with respect to n with matrix coefficients. To solve this
difference equations we have applied a procedure of modified Gauss elimination method
for difference equations with respect to n with matrix coefficients. The results of numerical
experiments permit us to show that the second order of accuracy difference schemes are

more accurate comparing with the first order of accuracy difference scheme.

6.1 First order of accuracy of difference scheme

For approximate solution of nonlocal boundary-value problem (6.1), consider the set

[0,1]_ x [0, 7], of a family of grid points depending on the small parameters Tand h

[071]7' X [071]h = {(taxn> ity =kT,1<k<N -1,

Nt = lLixz,=nh,1<n<M-1,Mh=1}.

Applying Rother difference scheme and formula

w(Tpy1) — 2u}(;:n) + u(@n_1) — " (2,) = 0(h?), (6.2)
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we get the first order of accuracy in ¢ for the approximate solutions of the nonlocal

boundary value problem (6.1)

or

So,
Aty + Buy +Cupy = Rp,, 1 <n< M —1,

DeIlOte
- b 2
a = y = h y C = — .



and C=-A.
[ 1
0
0
R—
0
0

o o o = o o o o

= o O O

o
o o o o o
o o o o =] o o o O o o o O

o o o O
o o o O

(N+1)x(N+1)

o o o o o o o o O

o

o o o

o o o O

o o o O
o o o O

o o o o

—1
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(N+1)x (N+1)

(N+1x(1)

(N+1)x(N+1)

,s=n—1nn+1.
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L 1 (v11)x(1)
cp?l = plz,),1<n<M-1,

Using Gauss elimination procedure, we can obtain the approximate solution of the prob-

lem.

Up = Qpi1Upgr + By, =M —1,---21,

ap(n=1,---,M —1) are (N 4+ 1) x (N + 1) square matrix and 3, (n = 1,---, M — 1) are

(N + 1) x 1 column matrices.

For the solution of difference equations we need to find ayand/;.
We can find them from uy = 0 = arug + By,

Thus, we have

é
ug = 0 = aquy + 1,we can obtain

000 .. 00 0
000 ..00 0
000 ..0®O0 0
M= L o By =
000 ..00 0
000 ..00 0
L 4 (N+1)x(N+1) L I (N+1)x(1)

Formulas for a1, 8,41 :

App1 = _(B+Can)_1Av

Boi1 = (B+Ca,) (Ryp, —CB,),n=1,2,3,...,M—1.
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So,
_
Uy = 0 s
Up = QpiiUng1 + Bpp,n=M—1,---2,1.
Algorithm
1. Step Input time increment 7 = % and space increment h:ﬁ.

2.

Step Use the first order of accuracy difference scheme and write in matrix form

Aupiq + Buy + Cupg = Ry, 1 <n < M — 1.

. Step Determine the entries of the matrices A, B, C and R.
. Step Find a4, 3.
. Step Compute a1, 5,41

. Step Compute u,, 's (n =M —1,...,2,1), (uM = 6) using the following formula

Up = Op41Un+1 + ﬁn—l—l'

6.2 Matlap Implementation of the First Order of Accuracy Dif-

ference Scheme

function [table,es,p]=EulerRotherMethod(N,M)

% Computers numerical solution of the equation by

% The Euler Rother Method.

if nargin < 1; N= 40 ; M= 40 ; end;

90%0%0% %% % %0%%0%0 %0 %0 %0 %0 %0 %% %0 %0 %0 0 0 %0 %0 %0 %0 %0 %0 %0 %% %0 %0 Yo 1

tau=1/N;

h=1/M;

aaa=1; %u(0)=aaa.u(1)+alx(x)



66

v=1/(h"2);
for i=2:N+1;
A(ii)=v;
end ;

alfa =(1/tau)-2/(h"~2);

for i=2:N+1;
B(i,i)=alfa;
end;

beta = - 1/ tau ;

for i=1:N;

B(i+1,i)= beta ;

end;

B(1,1)=1; B(1,N+1)=-aaa ;

C=A;

for i=1:N+1;

D(ii)=1;

end ;

%% %0 %0 %0 %0 %0 %0 %0 %6 %0 %0 %o %o %0 %6 %o %0 %6 %0 %0 %0 %0 %0 %0 %0 % % % % % % % % % % % % % % 2
alpha{l} = zeros(N+1,N+1) ; betha{l} = zeros(N+1,1) ;
fii(:,j) :j-th column matrix’ ;

for j=1:M;

x=j*h;

for k=1:N+1;

t=(k-1)*tau ; 'to avoid zero indices’;

fii( k, j:;j ) = f(t,x); 'right side function ’;

end;

fii(1,j:j)=rox(x); ’given sub function ’;



end;

%%% %% % %% %% % % % %% %6 % % %0 % %6 % % %0 %% %6 % % %0 %0 %% % %0 % %% % % % % 3
‘alpha(:,:,j) : j. alpha and betha(:,j) :j-th betha’ ;

for j=1:M-1;

Q=inv(B+C*alpha{j});

alpha{j+1}= - Q*A ;

betha{j+1}= Q*(D*( fii(:,j))-(C* betha{j}) );

end;

%%% %% % %% %% % %% %0 % %% % %0 % %0 % % %0 % %% % %0 % %% % %0 % %% % % % %o 4
"COMPUTE U(n)’;

U( N+1,M:M ) = 0; % U(M)=0 ;

for z = M-1:-1:1 ;

U(:,z) = alpha{z+1}* U(:z+1) + betha{z+1};

end;

for z = 1:M ;

p(:,24+1)=U(:,2);"U(0)=0%

end;

% %%% % %% % % %% % % %% % %0 %% % %0 % % % %% % % %% % % %% % % %% % % % 5
"EXACT SOLUTION OF THIS PDE’ ;

for j=1:M-+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j) = exact(t,x);

end;

end;

90%0%0% %% % %7070 %0 %0 %0 %0 %0 70700 %0 %0 %0 0 %0 %070 %0 %0 %0 0 0 %0700 %0 Yo %o o 0 %0 Vo6
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"ERROR ANALYSIS' ;

maxes=max(max(es)) ;

maxapp=max(max(p)) ;

maxerror=max(max(abs(es-p)));

relativeerror=max(max((abs(es-p)))) /max(max(abs(p)) );

cevap = [maxes,maxapp,maxerror,relativeerror]

%%% %% %% % %% %% % %% %6 % % %% %% % % % %% % % % %% % % % %% % % % % 7
table=[es;p|;table(1:2:end,:)=es; table(2:2:end,:)=p;

%%% %% % %% %% % % % %% % % % %0 % %6 % % %0 %% %6 % % %0 % %% % %0 % %% % % % % 8
% %% % % %% % % %% % % %% GRAPH OF THE SOLUTION %% % % %% % %%% % %% % %
q=min(min(table)); w=max(max(table));

figure;

surf(es); title("EXACT SOLUTION); view(-60,16);

set(gca, ZLim’,[q w));

rotate3d;

figure;

surf(p); titleCEULER-ROTHER); rotate3d ;view(-60,16);

set(gca, ZLim’,[q w));

%%% %% %% % %% % % % %% %6 % % %0 % %6 % % %0 %% %% %0 %0 %% %% %6 %0 % %0 % %6 % % %% %6 % %9
%%% %% %% % %% %% % %% %% % %% %SUB FUNCTIONS %% %% %

function rx=rox(x)

E=exp(1);

rx=0;

function estx=exact(t,x)

E=exp(1);

estx=t"2%(1-t) ~ 2*sin(pi*x);

function ftx=f(t,x)
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E=exp(1);

ftx=sin(pi*x)*(2*t-6%t ~2+4*t " 3-t " 2%pi~24-2%t " 3*pi~2-t"4*pi~2)

6.3 Second order of accuracy of difference scheme

First, we consider again the nonlocal boundary value problem (6.1). Applying the second

order difference scheme, formulas (6.2) and

wW(Xpia) — 4u(Tpyr) + 6ul(xy,) — du(z,—1) + u(z,_q)

—u(z,) = o(h?),

h4
2u(0) — 5u(h) —i;;lu(?h) — u(3h) —"(0) = o(h?),
2u(1) = 5u(l = ) +4u(l = 2) —u(L =30) _ ey

we get the second order of accuracy in ¢ for the approximate solutions of the nonlocal

boundary value problem (6.1)

( wk—ubl | up i —2un T ul T k—1 k-1 _ k-1, k-1
o :—L + . }?2 L — # [un+2 - 4u'n+1 + 6“1]2 1— 4un71 + unf2] = 90];;:
O =f(te—F.2n) — 52 (f (e — 5o @ng1) = 2f (b — 5, 20) + f (tk — 5, 0m1))

ft,x)=sinma [2t — 62+ 483 — 72 (- (1-1)))]; 1<k <N, 2<n< M -2,

4 1
u’f:5u'§—5u’§,0§k§]\f7
4,k 1,k
Upr_y = 5Upr—p — 5UN_3, 0 <k <N,

\

We will write in the matrix form. We will resort the system



\
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We have that

where

.
Atpio + Bugyy + Cup + Dup 1 + Eup o = Ry, ,2 <n < M — 2,
Ug = O,Um = 07

4 1
sU2 — 5U3;

U1:5

4 1
Up—-1 = gUM-2 — 5UM-3,

h
ol
Yn = 90721
N
_(’On_(N—&—l)xl
000 ..00O00O0
z 00 ... 000
0Oz 0 .. 00O
A=1002z .. 0 00 )

L J (V1) x(N+1)
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0 0 0 0 0O
y 0 0 0 0O
0 y O 0 0O
B=10 0y 0 0O
00 0 y 0 0
00 0 .. y 0
L d(N+1)x(N+1)
1 00 0 —1
p z 0 0 0
0 z 0 O
c=| "7
0 0O z 0
000 ... p =z
L J (N+1)x(V+1)
where
-
T
1 2T
Yy = ﬁ Fa
1
P = -,
T
2 3T
Zz = —— — — — —
T h? pY’
and R=B,E = A,
1 00 .. 00
010 .. 00
001 00
R =

L J (N+1)x(N+1)
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<

I

IS4

Ug = ,s=n—2,n—1,nn+1,n+ 2.

.8
» W [V ) » = nw O

L Jvx
For the solution of the last matrix equation, we use the modified variant Gauss elimination

method. We seek a solution of the matrix equation of the matrix equation by the following

form:
Up = Ap41Un+1 + 5n+1un+2 + Tnt1, 0 = M — 27 T 27 17 Oa
Upr = 0,
-1
urr—1 = [(Bar_o +5I) — (4T — anra) anr1] ™ [(41 = aar—2) Yasy — Yasoa)
where

000 .. 0 000 0
000 .. 0 000 0
ap=000 .. 0 Bi=1000 ... 0
000 .. 0 000 0
L J (V1) x(N41) L 4 (N+1)x(N+1)
0 0
0 0
71: 0 772: O
0 0
L I (N+1)x(1) L (v+1)x(1)
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4
100 0 -1 0 o0 0
4 1
020 0 0 -t 0 .. 0
az=100 3 .. 0 Ba=1 0 0 —% 0
000 .1 o 0 0 0 -
L 4 (N+1)x(N+1) L 4 (N4+1)x(N+1)
and
Boin = —(C+Day+EB,_; + Ea, 10,,)" (A),
anp1 = —(C+ Day+ EB,_ + Eay 100,)" (B+ DB, + Ea, 1f,),
TYn+1 — — (C + DO_/n + Eﬁnfl + Ean—lan)il (Rgpn - D’yn - Ea?’b—l’yn - Erynfl) )

n o= 2,-- M~—2.

Algorithm

1
N

L

1. Step; Input time increment 7 = & and space increment i = ;.

2. Step; Substitute the second order difference approximations into the equations and

write these equations in matrix from to obtain the equality

Aupio + Bupyq + Cup + Duy1 + Eupo = Ry, 2<n <M —2.

3. Step; Determine the entries of the matrices A, B, C, E and R.
4. Step; o, 81,7, and s, B, 7, are put.

5. Step; Compute 41, 3,41, Vni1, using the following formulas (n = 2to M — 2),

Bn—i-l = — (C + DOdn + Eﬁn—l + Ean—lan)_l (A) )
"(B+ DB, + Ea, 14,),

— —(C+ Day + EB,_, + Eay 10,,) " (Ro, — Dy, — Eay 17, — Ev,_1)

Opy1 = — (C + Do, + EB,,_, + Eozn_lozn)_

P)/n—l-l
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6. Step; Compute

Upr = 0,
up—1 = [(By—g +5I) — (41 — apg—s) a1 - (41 — anr—2) Va1 — Va2 »
urr—z = [(4 — ange)] [(Bara +5I) upr—1 4+ Yar_o) -

7. Step; compute u, 's (n =M —3,---,2,1), (uM = 6) using the following formula

Up = Op41Up41 + Bn+1un+2 + Vn+1-

6.4 Matlap Implementation on Second Order of Accuracy Dif-

ference Scheme

function [table,es,p]=secondorder(N,M)

% Computers numerical solution of the equation

% Ut+Uxx=ftx(t,x);

if nargin < 1; N= 40 ; M= 40 ; end;

close;close;

%% %%%%% % % % %0 %% %0 %0 % %0 %0 %0 %% %0 %0 %o %o %0 %0 %0 %0 %0 % Yo %0 %0 %0 %0 %0 %0 Yo %o %0 %0 %0 %0 %0 %0 Yo 1
tau=1/N; h=1/M;

aaa=1; %u(0)=aaa.u(1)+alx(x)

x=-tau/(2*(h"4));  A=zeros(N+1,N+1);

for i=2:N+1; A(ii-1)=x; end ;

E=A ;

y = 1/(h"2) +2*tau/(h~4) ;B=zeros(N-+1,N+1);

for i=2:N+1; B(i,i-1)=y; end ;

D=B :

z =-1/tau - 2 /(h"2) - 3*tau/(h~4) ; C=zeros(N+1,N+1);
for i=2:N-+1; C@i,i-1)=12z; end;

s = 1/tau ;



()

for i=1:N; C(i+l,i+1)=s;  end;

C(1,1)=1; C(1,N+1)=-1;

R=eye(N+1,N+1);

%% %% %% % % % % % % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % % % % % % % % % %2
alpha{1} = zeros(N+1,N+1) ;

betha{1} = zeros(N+1,N+1) ;

gamma{1}= zeros(N-+1,1) ;

alpha{2} = (4/5)*eye(N-+1) ;

betha{2} = (-1/5)*eye(N+1);

gamma{2} = zeros(N+1,1);

'fi(j) = fi(k,j) hesaplantyor ’ ;

for j=1:M ;

x=j*h;

for k=2:N+1 ;

t =(k-1)*tau - tau/2;

fii( k, j;j ) = rsf(t,x,tau)-tau/2/h~2*(rsf(t,x+h,tau)-2*rsf(t,x,tau)+rsf(t,x-h,tau));
end;

fii(1,j:j)=rox(x);

end;

%% %% % % % % % % %6 % %6 % %6 % %6 % %6 % %6 % %6 %o %6 %o %6 % %o %o %6 %o %6 %o %6 %o %6 %o %6 % %6 % %6 % %6 % %03
‘alpha(N+1,N+1,j) ve betha(N+1,j) ler hesaplanacak’ ;

for n = 2:M-2 ;

K=C+D*alpha{n}+E*betha{n-1}+E*alpha{n-1}*alpha{n} ;

betha{n+1} = - inv(K)*(A) ;

alpha{n+1} = - inv(K)*(B +D*betha{n}+E*alpha{n-1}*betha{n});
gamma{n+1} = inv(K)*( R*fii(:;nm) - D*gammad{n} ...

-E*alpha{n-1}*gamma{n} - E*gamma{n-1} );



76

end;

%%%% % %% % % %% % %0 %% % %0 % % %0 %% %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 % %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %o Yok
"EXACT SOLUTION OF THIS PDE’ ;

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j) =exact(t,x);

end;

end ;

% %%% % %% % % %% % % %% % %0 % % % %0 % % % 0% % %0 %0 % % %6 %0 % % %0 % % % %0 % % % %% % 6
INITIAL VALUES OF U IS OBTAINED HERE’ ;

I=eye(N+1); U(L:N+1,M:M ) =0 ;

U(:, M-1) = inv( betha{M-2} + 5*I - (4*I-alpha{M-2} )*alpha{M-1} )*...

( 4*gamma{M-1} - alpha{M-2}*gamma{M-1} - gamma{M-2});

%% %%%COMPUTE U (n)%%%%% %%

for z = M-2:-1:1 ;%% % %M-3;

U(:,z )=alpha{z+1}*U(:,z+1)+betha{z+1}*¥U(:,2+2) +gammafz+1};

end;

for z=1: M ; p(:,24+1)=U(:,2); end;

%% % %0 % %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %05
Y%table=les;p|;table(1:2:end,:)=es; table(2:2:end,:)=p;

% %%% % %% % % %% % %6 %% % %0 % % %0 %% % %0 %% % %0 %0 % % %0 % %0 % %0 % % %0 %0 %0 % %0 %0 % % %0 %06
% %% % % %% % % %% % % %% GRAPH OF THE SOLUTION %% % % %% % % %% % %% % %
Yoq=min(min(table)); w=max(max(table));

figure;surf(es); titleCEXACT SOLUTION’); view(-60,16);

%oset(gea, ZLim’,[q w]);
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rotate3d;

figure;surf(p); title(’Second order of approximate solution’);

rotate3d ;view(-60,16); %set(gca,’ZLim’,[q w]);

% %%% % %% % % %% % % %% % %0 %% % %0 % % %0 %% % %0 %0 % % %0 %% % %0 % % % %0 % % % %0 % %o T
"ERROR ANALYSIS’ ;

maxes=max(max(es)) ;

maxapp=max(max(p)) ;

maxerror=max(max(abs(es-p)));

relativeerror=max(max((abs(es-p)))) /max(max(abs(p)) );

cevap=[maxes,maxapp,maxerror,relativeerror]

% %%% % %% % % %% % %0 % % % %% %% % 0% % %6 % % % %0 % % % %0 % %% %0 %% % %0 %0 % % %% % % %08
%% % %% %% SUB FUNCTIONS- SECOND ORDER. %% %% %% % %% %% %%
function rx=rox(x)

E=exp(1);

rx=0;

function estx=exact(t,x)

E=exp(1);

estx=t"2%(1-t) ~ 2*sin(pi*x);

function rsftx=rsf(t,x,tau)

E=exp(1);

rsftx=sin(pi*x)*(2*t-6*t ~2+4%t " 3-t " 2%pi~2+42%t " 3*pi~2-t " 4*pi~2);
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The Errors

Now, we will give the results of the numerical analysis. In order to get the solution, we use
MATLAB programs. The numerical solutions are recorded for different values of N=M
and u¥ represents the numerical solutions of these difference schemes at (t, z,,). For their
comparison, the errors computed by

N _ B k}
Ex —N<k<I]\r[{211§n<M_1‘u(tk7mn) uk

Table gives the error analysis between the exact solution and solutions derived by differ-

ence schemes. Table is constructed for N=M=20, 40 and 60 respectively.

Table 1. Error analysis for the exact solution u(t, x).

Difference schemes N=M=20 | N=M=40 | N=M=60

The first order accuracy difference scheme 0.0037 0.0017 0.0011

The second order accuracy difference scheme | (0.0009 0.0002 0.0001




EXACT SOLUTION
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Figure 1: Exact Solution
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Figure 2: First order of accuracy diference scheme
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SECOMND ORDER APPROXIMATE SOLUTION
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III.III2~§' ; ';ji&‘fﬁ
D.m—é--"" —
. B0
&0

e

Figure 3: Second order of accuracy diference scheme
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CHAPTER 7

CONCLUSIONS

This work is devoted to study the well-posedness of multi-point nonlocal boundary value

parabolic differential problems of reverse type. The following original results are obtained:

e The abstract theorem on the coercive stability estimate for the solution of multi-
point nonlocal boundary value parabolic differential equation of reverse type in the

weighted Holder space is proved.

e The abstract theorem on the coercive stability estimate for the solution of multi-
point nonlocal boundary value parabolic differential equation of reverse type in the

Holder space is proved.

e The first and second order of accuracy difference schemes for the approximate so-
lutions of multi-point nonlocal boundary value parabolic differential equation of

reverse type are presented.

e Theorems on the stability estimates, almost coercive stability estimates, and coer-
cive stability estimates for the solution of difference schemes for multi-point nonlocal

boundary value parabolic differential equation of reverse type are proved.
e The MATLAB implementation of these difference schemes is presented.

e The theoretical results for the solution of these difference schemes are supported by

the results of numerical examples.
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