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EFFECTIVENESS OF BOUNDARY INTEGRAL EQUATIONS SOLUTI ON
TECHNIQUES

Mehmet Emin OZTURK

M. S. Thesis — Electrical Electronics Engineering
August 2009

Supervisor: Assist. Prof. Dr. Erdal KORKMAZ

ABSTRACT

The scattering of an electromagnetic wave by aeg#yf electrically conducting
material is formulated by using either the electoic the magnetic field integral
equations (EFIE or MFIE). When the scatterer iadmted by an incident wave a
surface current will be induced. The formulationsurface integral equations is based
on the calculation of this unknown surface curréntirawback of using surface integral
equations is related to the uniqueness of theirtisois. In the literature several methods
are introduced as a remedy. The most popular onthescombined-field integral
equation (CFIE) which uses a linear combinatiorinef MFIE and EFIE to provide a
unique stable solution. A less-known method is tlhastrained conjugate gradient
method (CCG) that minimizes a cost functional cstisj of two terms. The first term
is the error norm with respect to boundary integ@liation, while the second term is
the error norm with respect to the interior equatiwer a closed interior surface.

In this thesis, our objective is to discuss thecedhcy of both CCG and CFIE
methods. The accuracy of the methods will be coetbéor closed surfaces, and at the
resonant frequencies.

Keywords: uniqueness, electric field, magnetic field, conelirfield, constrained
conjugate gradient
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0z

Elektrigi tam ileten maddelerden sacgilan elektromanyetigajaelektrik alan veya
manyetik alan (EFIE veya MFIE) integralleri ile foile edilir. Sagici madde gelen
dalga ile aydinlatilggnda yizey akimi endiklengni olur. Ylzey integral
denklemlerinin formulasyonu bilinmeyen bu ylzeyrnakiin hesaplanmasina dayanir.
Yuzey integral denklemlerinin kullaniimasi, bu igtallerin ¢6zUmlerindeki
cbzuimsuzliklerine kg olarak sorun tgkil etmektedir. Bu soruna literatiirde bircok
¢6zim sunulmgtur. En ¢ok bilinen metot olan bigi alan integral denklemi (CFIE)
MFIE ile EFIE’nin lineer birlgimlerini kullanarak kararl bir sonu¢ elde etmeigr.
Daha az bilinen bir metot olan kisitlarymeslenik gradyan metodu (CCGjlevsel
degeri iki terim oluturarak minimum dgerine indirir. Ik terim simir integral
denklemine bgi hata normuyken ikinci terim i¢ ylzeydeki i¢c déeke bgll hata
normudur.

Bu tezin amaci CCG ve CFIE metotlarinin verirgifi tartisimak ve bu
metotlarin  kapali yuzeylerde ve rezonans frekamglaki dg@ruluklarini
karsilastirmaktir.

Anahtar sozcuk: ¢6zumsuz, elektrik alan, manyetik alan, Btildmis alan,
kisitlanms eslenik gradyan.



“Real life for humankind, will be possible with tkeowledge and wisdom, who
neglected to teach and learn, are considered dead @ life. After all, the most
important goal of the creation of people is thavbdaeen and learned to know and is
simply to inform others.”



Vi

ACKNOWLEDGEMET

| express sincere appreciation to Assist Prof. Brdal KORKMAZ for his
guidance and insight throughout the research.

| also express my thanks and appreciation to baoa Prof. Dr. A. Arif ERGN
and Assist. Prof. Dr. Ali UZER for reading and coemting on this thesis.

| also express my thanks and appreciation to mylyafor their understanding,

motivation and patience.

| also express my thanks to TUBITAK for their fircdal support during the two
years of my researches.

Lastly, but in no sense the least, | am thankfuhltacolleagues and friends who

made my stay at the university a memorable anchbéduexperience.



vii

TABLE OF CONTENTS

ABSTRACT ...ttt et ii
O Z e bbbt ettt iv
DEDICATION ...ttt ettt ettt sttt b et b e bt ne s b s v
ACKNOWLEDGEMET ..ottt et vi
TABLE OF CONTENTS ..ottt vii
LIST OF TABLES . ...ttt sttt X
LIST OF FIGURES........co ottt sttt Xi
LIST OF SYSMBOLS AND ABBREVIATIONS.......ccooiiriinieeneeieeeeeeeeeeeees Xii
CHAPTER 1 INTRODUCTION ...c.ootiitiirieiricinietrtetsteesiet ettt 1
1.1 BACKGROUND.......ccoetiitiietiieteeeieteiest ettt ettt 1
1.2 MOTIVATION ..ottt ettt 1
1.3 CONTRIBUTIONS.......ciitiieiiirttince ettt 3
1.4 SIMULATION EVIRONMENT ....cociiiinieinctntetretretrreenee ettt 4
CHAPTER 2 INTEGRAL EQUATIONS ...ttt 5
2.1 CONFIGURATION. ....citttitetirieitrtettstei sttt sttt 5
2.2 ELECTRIC FIELD INTEGRAL EQUATION......ccectiitrreiricictrcesceseeeeee 6
2.3 MAGNETIC FIELD INTEGRAL EQUATION.....ccccctriiriiirieinicineeseeseeie e 8
2.4 COMBINED FIELD INTEGRAL EQUATION......cctiiirieirieeneeereeesee e 9
CHAPTER 3 METHOD OF MOMENTS......ccoootiiinetrtetreeeeeeeiee e s 10
3.1 GEOMETRY MODELLING.......ccceotiiiiriiineicnceeesc e 11
3.2 TRIANGULAR ROOFTOP BASIS FUNCTIONS........cccoeirineiiieeriereeeeene 12
CHAPTER 4 MOM IMPLEMENTATION WITH INTEGRAL EQUATIONS............ 15

4.1 MOM IMPLEMENTATION WITH THE EFIE.......cocooiieeeeeeee, 15



viii

4.1.1 FOrMUIBLION.....c.oitiiitiiieiitctc ettt 15
4.1.2 Singularity EXIraCtion...........ccoccvvieierineeereeceese et 19
4.1.3 Evaluation of Impedance Matrix Elements..........ccccoevevereinininenennne. 20
4.1.4 Numerical Evaluation of IntegralS..........cccceeevireevenicceece e 21

4.2 MOM IMPLEMENTATION WITH THE MFIE........ccccooiiiiiiiiinieenceeeieeee. 22
4.2.1 FOrMUIALION. ...c..iiiieiieiiriesetceee e st 22
4.2.2 Singularity EXIraCtion..........ccccovvieiieriiieserereeese et 23
4.2.3 Evaluation of Impedance Matrix Elements...........cccccevevevveceneneerienneenn, 24
4.2.4 Numerical Evaluation of IntegralS.........ccccceeeeireeveniieceececeeee e 26

4.2 MOM IMPLEMENTATION WITH THE CFIE......cccoooiiiiiieeeee 27
CHAPTER 5 COSTRAINED CONJUGATE GRADIENT METHORD.........ccccc....... 28
5.1 INTEGRAL EQUATIONS..... .ottt ettt sttt st se s 28
5.1.1 Electric Field Integral EQUAtiON...........ccoeveieviiiiecececeeese e 28
5.1.2 Magnetic Field Integral EQUAtION............ccccoeverieverieeececeeee e 29

5.2 DISCRETIZATION. ...ttt ettt st st st 29
5.2.1 Discretization Of EFIE...........coooiiieeeeeeeeeee e 29
5.2.2 Discretization Of MFIE........cccccccviiiniicincinctncscee s 30

5.3 CONSTRAINED CONJUGATE GRADIENT......ccccectiiininieieneneeieseeeenee e 31
CHAPTER 6 COMPUTATIONAL RESULTS... oottt e 34
6.1 COMBINED FIELD INTEGRAL EQUATION METHOND..........cccoeeiirirrienen. 34
6.1.1 Structure of The Programl.........ccccoceeeeverieeerieseeeere et 34
6.1.2 A Numerical Example for CFIE.........cccoioireiiieeeeeee e 35

6.2 CONSTARINED CONJUGATE GRADIENT METHOD........ccccocciniirirnienen. 37
6.2.1 Structure of The Program.........ccccoeveeereneeeerereeeere et 37
6.2.2 A Numerical Example for CCG......ooviiiiieierereeere et 37
CHAPTER 7 CONCLUSIONS........ooteieetetee ettt sttt sttt sae e 39
REFERENCES...... ..ottt st st st sttt et et esaees 41

APPENDIX A CARTESIAN COORDINATE TRANSFORMATION........ccccvvvrueenee. 43



A.1 POINT TRANSLATION.....cctiiiiieiiteireeeeeeste e 43
A.2 ROTATION ABOUT X-AXIS ...ttt 44
A.3 ROTATION ABOUT Y-AXIS.... ettt 44
A.4 ROTATION ABOUT Z-AXIS ..ottt e 45
APPENDIX B DISCRETIZATION OF THE GEOMETRY.......ccveviiiininiiieiens 46

APPENDIX C WEAK FORM OF GREEN’S FUNCTION.......ceceviiireeniiereeeen 49



LIST OF TABLES

TABLE

6.1: # of iteration for different patched spheres



Xi

LIST OF FIGURES

FIGURE

2.1: The scattering CONfIQUIAtION........c.oieeiei ettt s ae e 5
3.1: Example of sphere with 960 triangles..........cccoiriieriiiceceeee e 12
3.2: RWG function defined on the triangular domains...........cccocvveverenenicieenieneneeeeen 13
4.1: Location of the basis and testing triangles dfeamrsformation.............c.ccccecevvenerenennenens 18
4.2: Geometric variables introduced to express thdtseestianalytical integrals................... 19
6.1: Flow chart of the Fortran Program of CFIE Methad............cccooviieieninieceeeeeee 35
6.2: Result for CFIE that 2.208 plane triangles patcb@tere.........ccccvveeeeceveceececeeee, 36
6.3: Result for CFIE that 11.448 plane triangles padcghere.......ccoovvveeevevecceececeeee, 36
6.4: Surface field for both CG-MFIE and CFIE that 2.20&ne triangles patched sphere. 38

6.5:
A.l:
A.2:
A.3:
A.4:

B.1:

Normalized Error where datal:CG-MFIE, data2:Ckl&a3:MFIE and data4:EFIE.... 38

A point translation for 3D........ccviveeeiiieeeeeecee e 43
ROtatioN ADOUL X-8XIS.. ..ot s 44
ROtatioN ADOUL Y-AXIS.....cciiieieiiieieseeeeese ettt st te e ae s ae 45
ROtatioN @DOUL Z-AXIS.....cciiieieieieeee ettt ee 45
Perpendicular VIEBW OB, .........ccccoiiiiiiiii s 46



LIST OF SYSMBOLS AND ABBREVIATIONS

LIST OF SYSMBOLS AND ABBREVIATIONS

EFIE
MFIE
CFIE
MOM
CCG
PEC
GHz
mm
Err

* ‘Bold’ characters on the equations and text mieat it's vectorial element.

Electric Field Integral Equation
Magnetic Field Integral Equation
Combined Field Integral Equation
Method of Moments

Constrained Conjugate Gradient
Perfectly Electrically Conducting
Gigaherz

Milimeter

Error

Electric Field Intensity

Magnetic Field Intensity

Xii



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Many of electromagnetic problems like scatteringdiation, etc. are not
analytically calculable, for the very large ancegular geometries designed and used.
The inability to derive closed form solutions of keell's equations under various
fundamental relations of media, and boundary com{ is overcome by
computational numerical techniques. This makes catipnal electromagnetic
(CEM), an important field in the design, and moaglof antenna, radar, satellite and
other such communication systems. CEM problemsrg#yesolve for the problem of
computing the electric and magnetic fields acrbssdomain of the problem. Generally,
all the available numerical techniques in CEM mayclassified into two groups: partial
differential equation (PDE) and integral equatiti) techniques. The finite difference
time domain technique (FDTD) and the finite elemerdgthod (FEM) are the most
popular PDE techniques, even though the method ahemts (MOM) and the fast
multiple method (FMM) are the most popular IE tagues.

1.2 MOTIVATION

Usually the scattering of an electromagnetic wayeabperfectly electrically
conducting material is formulated by using eithlee lectric or the magnetic field
integral equations (EFIE or MFIE). When the scattés irradiated by an incident wave

a surface current will be induced. The formulatimsurface integral equations is based

1



on the calculation of this unknown surface currémam the theoretical point of view

both equations are expected to give a solutionaforarbitrary scatterer. In MFIE

formulation the extra cross product with the umittor can cause numerical instabilities
when it is used for thin bodies or bodies with exdlgad corners. On the other hand
EFIE does not suffer the same limitations and geeted to be capable to solve both for
closed and open surfaces. However for arbitrahigpged objects the regularization of
EFIE is more difficult from the presence of secaladivatives appearing in conjunction

with its singular kernel in the integral equation.

A drawback of using surface integral equationseisited to the uniqueness of
their solutions. For a given geometry surface irdegquations can represent both an
interior and exterior electromagnetic problem. Thguations can represent the
electromagnetic field solution of a cavity enclosgtthe boundary of the object as well
as the exterior surface of a solid scatterer. Aterex scattering problem involves
external source, however in contrast, the cavippblam involves source-free solutions.
That is why, at certain eigenfrequencies associavétl the cavity problem, the
homogenous type of integral equation yields sotree-solutions. Hence, the solution
of the integral equations for the exterior problesii not be unique when a nontrivial

solution exists to the interior problem.

The theoretical problem of the internal resonanceblpm has been well
understood. In the literature several methods am®duced as a remedy. The most
popular one is the combined-field integral equati@FIE) which uses a linear
combination of the MFIE and EFIE to provide a umigstable solution for closed
scatterers. This method is well established forstamt and linear basis functions, in
most of the cases Rao-Wilton-Glisson (RWG) basixtions are used. If the higher
order basis functions are used for the numericaluation of the singular integrals then
more complicated form of the basis functions neetldé used. However, using higher
order basis functions suffer accuracy problemsisadi/antage of this method is the ad-
hoc definition of linear combination of these egoas. In addition, since the MFIE is
not capable to yield a stable solution for operfag@s, however incorporating it in
combined form for arbitrary surfaces brings théatglity in questions. Another method
is the use of dual surfaces to establish a welbitmmed problem. The dual surface is

located at approximately one quarter wavelengtid@nthe actual scatterer surface. The



disadvantage is the extra computation time of tlagrimnelements of the interior dual
surface. A less-known method is the constrainegugate gradient method (CCG) that
minimizes a cost functional consisting of two termbe first term is the error norm
with respect to boundary integral equation, while second term is the error norm with
respect to the interior equation over a closedimteurface. In order to limit the extra
computation time due to the presence of the canstitie interior surface is chosen as
small as possible, but such that the field vamatwer this surface remains visible in

computational sense.

In this thesis, our objective is to discuss thecedhcy of both CFIE and CCG
methods. The accuracy of the methods will be coetbéor closed surfaces, and at the

resonant frequencies.

1.3 CONTRIBUTIONS

In Chapter 2, we obtain the surface integral equatito solve the scattering
problems of objects that have arbitrarily shapednggries. In this thesis, the objects

are assumed to be perfectly electrically conducting

In Chapter 3, the method of moments (MOM) will b&aduced for the numerical
solution of the problem that involves the continsidields and current density. MOM
expands the currents density in terms of knownsbiasictions. Also, triangular rooftop

basis functions are introduced.

In Chapter 4, the application of the MOM on EFIEFI and CFIE are
introduced. We use RWG functions for both basistasting functions. The impedance
matrix is modified and divided into smaller intelgrafor high efficiency. Also,
singularity extraction method is introduced to sallie singularity due to the singularity

of the Green’s function.

In Chapter 5, constrained conjugate gradient methai®fined by examining the

electric and magnetic field integral equations. mtieeir discretization is produced. The



detail information about discretization of the gextry and the weak form of the
Green’s function which are concerned with this ¢apre located in appendices.

In Chapter 6, a spherical perfectly electricallyndocting material is taken as a
example to test the program that is written for patar environment. Then both CFIE
and CCG methods are compared with under differemditions.

1.4 SIMULATION EVIRONMENT

In this thesis, we need to mesh the objects imdies that will be shown in
chapter 3. To overcome this problem, we use thgrpm that named as a Rhinoceros,
NURB modeling for Windows, which is used to get tt@mordinates of the meshed
object. However, output file of this program cah& used directly. So that, we also

write a program in Fortran to convert this fileusable input file to our main program.

The simulation program is written in Fortran tov&the integral equations that
EFIE and MFIE. Also, Matlab is used for getting hecal results that helps us to
compare CFIE and CCG methods easily. The solutmasperformed on Intel Core 2

Duo 2.4 GHz processor with 2 GB memory.



CHAPTER 2

INTEGRAL EQUATIONS

2.1 CONFIGURATION

Consider the electromagnetic scattering by an raryitobject occupying the

domain D,,; with boundary surfac@D,, . The electromagnetic radiation originates

from an antenna in a domaid,,. The configuration is depicted in Fig. 2.1.

£a-Hy {E°, H"}

>

"\
{E' . H'} /\/

Figure 2.1: The scattering configuration

The total electromagnetic field quantitiesandH can be written as the sum of

the incident and scattered fieldS=E' +E®, H =H' +H*, where the superscripts "
and “s” denote the incident and scattered fieldspectively. These fields satisfy the

Maxwell equation in the frequency domain in vacuum,

OxH(x)+iwe,E(X) =J(X), (2.1)
OxE(X) —ia,H(X) =-K (X), (2.2)



whereJ is the volume density of the electric current ahds the volume density of

the magnetic current.

2.2 ELECTRIC FIELD INTEGRAL EQUATION

We have a material that perfect electrically conitigc(PEC) in the free space. A
known current source creates incident electric magnetic fields E'and H'). These
fields constitute surface curredt on the object. The surface current causes scdttere

electric and magnetic field&Efand H®).

EFIE can be obtained by using boundary conditiahesurface of PEC.

v, xE=E, =0

E,=E +E=0=FE =-F° where subscript of “t” donates tangential
component of electric field. And;  is the unit vector along the normal to the scatter

surfaceS at position x and, x,

_Jw

From Lorentz gauge conditionsp, =-—[I[A
Kk
E=-00, - jwA
Sron _ jw o 1
E;(x)=-0 FDD\ —JaA——JwA+FDDE\ (2.3)

where A is vector potential.

g(x/x,) :ﬁRe‘ij Green’s function (2.4)

where R:‘x—xp‘
D?A+K*A =4

scalar Helmholtz equation (2.5)

A :,ULJ(xp)g(x/xp)ds' solution of the equation (2.4) and (2.5) (2.6)



Combining equation (2.3) and (2.6) we get

E3(x) = —jw(LJ(xp)g(x/xp)ds'+k—12DD ELJ(x ) ax/x ) ds}

(2.7)
From E, = -E; we get the incident electric field as
i . 1 1
E,(x) = qu(jle(xp)g(x/xp)ds +FDD [L‘J(x o) AX/ X ) dsj (2.8)
Second term of equation (2.8) is
Dqsq(xp)g(x/xp)ds-:jsﬂ MI(x,) gdx/x )] ds 2.9)
Using vector identity ] [(wV) = W [V +V [Mw
OmI(x,)9(x/x )] =o(x/x )OLI(x ) +I(x ) Mgx/x) (2.10)

In equation (2.10) first term &(x/ x )0 LI(x,) =0

From symmetry of the Green’s functidng(x/x,)=-0_,g(x/x,) and using

above vector identity second term of equation (Rbs@zomes,
J(x,)Mg(x/x,) ==J(x,) M ,g(x/x )

= -0, I(x,) g(x/ X )] + ox/x ) O J(x ) (2.11)

The gradient divergence operatof represents the spatial differentiations with

respect tox .

From divergence theore<fn—Dp MI(x,)g(x/x)]ds =0 Therefore, second term

of equation (2.7) becomes;

0, 30)a0x/ x,)ds = [ gx/x,)0 I(x ) d (2.12)

So that, we get the EFIE;



El(x) = jcqu(L,J(xp)g(x/Xp)ds'+k—12DL ax/x )0 J(x ) dsj (2.13)

2.3 MAGNETIC FIELD INTEGRAL EQUATION

MFIE can be obtained by using boundary conditionhat surface of PEC. The
tangential magnetic field is discontinuous by theoant of current density induced on

the surface.
vp><Ht =J
I(x,) = v X[ H (x ) +H (X )] (2.14)
H® can be written in terms oA using equation (2.6)

Hs(xp)=%D><A =0x[ J(,) 0/ x,)ds (2.15)

Then, rewriting equation (2.15) using the vector eniity of
Ox(Vw) =wixV -V x[Ow

H(x,) :L'DX[J(X 29X/ x,)]ds

2.16
:L,[g(x/xp)mxa(xp)—J(xp)xmg(x/xp)] ds (19

Then,O0xJ(x,) =0 since first term of equation (2.16) is zero arahfrsymmetry

of the Green functiomlg(x/x,) =-0,9(x/x,) , equation (2.16) becomes;

He(x,) = L,J(x Jx[0,90/x ) ]ds (2.16)
Finally, if we insert equation (2.16) into equati@l4), we get the MFIE;

v xH (x ) =J(x p)—vpxjsq(x )x0 g(x/x )ds' (2.17)



2.4 COMBINED FIELD INTEGRAL EQUATION

In MFIE formulation the extra cross product withetlunit vector can cause
numerical instabilities when it is used for thindies or bodies with edges and corners.
On the other hand EFIE does not suffer the samgalions and is expected to be
capable to solve both for closed and open surfddesvever for arbitrarily shaped
objects the regularization of EFIE is more difficdiom the presence of second

derivatives appearing in conjunction with its silagikernel in the integral equation.

A drawback of using surface integral equationseisited to the uniqueness of
their solutions. To overcome this problem, CFIEused. Combined field integral
equation is linear combination of electric and metgn field integral equations as

shown in equation (2.18)

CFIE:a[EFIE]+iE(a—1)[MFIE] (2.18)

In this caser is a constant value between 0 and 1o K1, this implementation

reduces a pure EFIE whilg =0 reduces a pure MFIE. It should be remarked on that

MFIE is multiplied by the factork'—o, in order to weight the equations equally beftie t

linear combination.



CHAPTER 3

METHOD OF MOMENTS

The method of moments (MOM) has been extensivedyl s/ many scientist in
the solution of various types of scattering protderBy this method, an operator
equation is reduced to a matrix equation. Therefioreecomes possible to solve the

linear equations.

MOM can be described as;
Integral equation can be represented as
L{F(x)} =g(x) (3.1)
where L is the linear operator of the equation, wH#x) is the unknown function and

g(x) is the excitation function. To solve the equatier{x) can be expanded in a

series of basis functions as

N
F(x)=> af.(¥ (3.2)
n=1
where a, is the coefficient of the"" basis function. The basis functions should be

linearly independent. Then, defining the residusdreas

R(Y = L{i amn(»}—g(y;

n=1

=[im{fn( »}}—g(x)

(3.3)

10
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The aim is to make error arbitrarily small. Forstipurpose, another set of

functions called the testing functions,(x), can be used to weight both sides of

integral equation. Defining an inner product as
(a0, b(x)) = [[a() Tb( ) dx (3.4)
Equation (1.3) can be tested for=1,...,N as

jtm(xﬂﬁzcxufn( »}} dx= [t { X&( K d (3.5)

Finally, interchanging the order of summation antegration, equation (3.5)

becomes;
N
> &, [t (YW 3} dx= [t 0 XO( X o (3.6)
n=1
and a linear system can be formed as
N
> aZ,=V, (3.7)
n=1
where the matrix elements are
Zo0 = [t () IEF,( 3} clx (3.8)
and the vector elements are
Voo = [t () @(2) clx (3.9)

In equation (3.7), the matriX is usually called the impedance matrix, and the
vectorv is called the excitation vector. An element of thematrix at (m,n) is referred

to as the interaction betweer'esting and nth basis functions.

If testing and expansion functions are the sameMM® termed as Galerkin’s
method.
3.1 GEOMETRY MODELLING

To solve the integral equations by using MOM, tle®rmgetries of the problem

must be modeled in the computer environment. Thesn,surface models have to be



12

meshed according to the type of the basis fundiiohe used. The triangular rooft
basis functions are most commonly used one that wis usd. So that, we us

triangles.

If the size of the triangles is small, the accurgeys high. However, that mee
large number of triangles or unknown coefficientishhmakes difficult to solve th
linear systemTo apply the MOM with efficiently and sm error, he rule is to chose
the average size of the mesh about 1/10 of the leagt.

x 10

y-axes

X-aXes

Figure 3.1: Example of sphere with 960 trigles

3.2 TRIANGULAR ROOFTOP BASIS FUNCTIONS
Rao-WiltonGlisson (RWG) functions are linearly varying vectlinctions
defined on planar triangular domains. Due to thesieful properties, they have be

widely used as basis and testing functiin MOM applications.

In is the common edge of lengtnd RWG function of the nth edge
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I . xS’
2;\: (x=x3) n
I B —
L0 =5a06-0  HS (3.11)
0 otherwise

where A’ and A, are the area (S and S,

S,

Figure 3.2: RWG function defined on the triangular dome

As seen in the equation.12), RWG functions’ divergence is finite everywhi

00, (x) =

I, xOs;
A
In XS
- n (3.12)
A
0 otherwise

Therefore, the current has no component normahdéobbundary of the surfa

formed by the triangle paS’ and S;. Thus, no line charges exist along this bounc
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The current component normal to the nth edge istamm and continuous across
the edge. It is therefore implied that all edgetheftriangle pair are free of line charges.

The charge density is constant in each triangletia@dotal charge associated with

the pair is zero.



CHAPTER 4

MOM IMPLEMENTATION WITH INTEGRAL EQUATIONS

4.1 MOM IMPLEMENTATION WITH THE EFIE

4.1.1 Formulation

EFIE is defined in chapter 2 as;

E (x) = ja),u[L‘J(xp)g(x/xp)ds'+k—12DLl o(x /x )0, CI(x ) ds} (4.1)

f(x) is testing and expansion function where
N
I = J.f, (%) (4.2)
n=1

“n” denotes a specific edge of the mesh.

Testing equation (4.1) requires pre-multiplication f_ (x) and integration over
the domain of each testing function.
Lfm(x)[HE‘(x)ds: ijLfm(x)D(xp)g(x/xp) ds ds

+ J:ﬁ’uLfm(X)DDL,g(x/xp)DpD(x ;) ds'ds

(4.3)

for notational convenience;

15
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A= J'W,U{BJf% C} (4.4)
where

A= Lfm(x) [E' (x)ds (4.5)

B= j Lfm(x)l:](xp)g(x/xp)ds d (4.6)

C=|f,00m[ gx/x,)0,3(x)ds ds 4.7)

We change the order of integration to simpldy

C= L,Dp J(x) Lfm (x) [g(x/ x ,) dsds (4.8)
Then using vector identity;
OqQwv)=wJV +V [Mw as VIOw=0NVw-0QVw

C :LDp m(x)[jsm () ox/x,) | ds—LD @,(x) gx/x ) db ds  (4.9)

from | DO, 0090/ x,) |ds=¢ b, (x) dx/x ) di=0

C=-[.0,0(x,)| D, (x)g(x/x ) dsds (4.10)

Then by changing the order of integration

C:—LLD[ﬂm(x)DpD(xp)g(x/xp)des (4.11)

So that equation (4.4) becomes ; (redefin@dpy pulling out a minus sign)

. 1
A= WU B- L C 4.12

jwil % ] (4.12)
E'(x) =eg oK™ (4.13)

where
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k' =-X=-3,sing cosp, - g sirg sig -3 cof
X=xa +ya + Z
BT (4.12)
k' x=-xsing cosp -y sir sig — z co8
e=4 cosa+@ sy
From equation (4.2) and (4.12)
. 1
A= jwuy J | B-=C (4.15)
=] ko
Therefore combining equation (4.13) with (4.15) get
A= Lfm(x) e koK™ ge (4.16)
B :LLfm(x)fn(xp)g(x/x J)ds d (4.17)
C= j L G, 9(x/ x,) d d (4.18)
where
Cin = 0O, U, O (X)] (4.19)
Combining A, B, C back into (4.15)
) N
[fa() e ® D ds= gy J 20" (4.20)
n=1
where Z5"*  is EFIE impedance matrix
25 = [ [ gx/x )| f, (0 (¢ ) =G,y | s c (4.21)
nm sds p m n ko nt * '
Therefore;
[ Fn00) e ¥ ds=
(4.22)

jwuiJnLLg(x/x,,){fm(x)fn(x p)—%mfm@)[mpmn@)l}dws

By inserting the functions and their divergencethwising equation (3.11) and

(3.12), we get;
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ZiEuF'E :%L(x—xik )dsEL g(x/xp)(xp -X; ) ds

_kzlxlﬁ} II g(x/x,)ds ds

wherei and j indicate the interaction that is betwei™ and j™ triangles.| andk

(4.23)

represent the alignmeatf the basis and testing functions on basis artthtggiangles

We apply cartesian coordinate transformation ineortb easily evaluate tf

analytic integrals appearing in the singularityragtion

Testing Triangle

Basis Triangle

X

Figure 4.1: Location of the basis and testing triangles af@mgformatio

As shown in figure 4.1, basis triangle lays c-y plane and common edge
located on xaxis. More detail about coordinate transformat®ihovn in appendix A.
Also, in appendix A, sample example program in klaik giver

After transformation, the final expression for equation(4.2%) become,;

ZizrlE_él'::xj(x X, )Jds]_x, ox/x,) ds

iy o (xmx Jas] ox/ x,) a8 (4.24)
4AA1 Xi Y. ik < p '

_kzlxlp} II g(x/x,)ds'ds
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4.1.2 Singularity Extraction

From equation (2., when the observation and source points reachds @her,
R goes to zero. So thainner integral in equation (4.24liverges.Two part of the
equation (4.24) wich are shown in equation (4.25) and () causes singularityTo

overcome this situation, a suitable singularity@&stion method has to be appli

e dRf-1 1
L‘Fds = L.—Rds+ [ CE (4.25)
kR . dR_1 X,
L,xp?ds =[x, - o|s+js—R ds (4.26)
Note that;

kR _
imE Lok (4.27)

R-0 R

In order tha first terms of equation (4.2'and (4.2 can be solved numericall

But, second terms can be solved analytic

Observation 2
o Point

SN
LR

! ™
| I.I.. \ﬁ
1 \\Rf
\ N
A s

zZ N

e LA
X \ W

Figure 4.2: Geometric variables introduced to express the tesfilanalytica

integrals

In figure 4.2, geometric variabl are shown. We can explain these variable

R" andR™ are the distance between the observation pointilagend points ¢

i" edge.R° is the distanc between the observation point and i"" edge.R® is the
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distance between the projection of the observatimint. P° is the unit vector pointing
along the line between the projections of the ola@n point on the x-y plane and on

thei™ edge. And direction oP’ is towards to edgé’andl” have a magnitudes equal

to the ‘+’ and ‘-’ segments of th&" edge.

We can write the analytic result with respect testhvariables for equation (4.25);

(R) +|4R _ taﬁl( EQ)SI |Z'R] (4.28)
TR

J s =S m 4

Equation (4.26) can be rewritten as;

Xp o X=X 1
L,Eds =], ——dsx | CE (4.29)
Second term of equation (4.29) is solved in equai@28). So that, first term can
be solved as;
X —X 13 2 R +1
L ds'=-=>0|(R) In 22— |+IR-T 4.30
s' R 2; ||:( l) r{R-_'_’—j | 1 i R:| ( )

4.1.3 Evaluation of Impedance Matrix Elements

Equation (4.24) has to be divided into smallergné¢s. Firstly, we have to define
the vectors thak, x , X, andx, .
X=xa +yg+ 73
Xp = X8t Y, 8+ 2,3
Xi = %@+ Mkéy+ z 3
X =%8+yg+za

(4.31)

Then, if we expand equation (4.24), we get;



|k|j|
Zg == {[ +X% % + HJJ#LJLS

4AA

X e4 yj| e5 )ﬁklee_Yiklw}

where the basic integrals can be;

e LLI "ds'ds l, = LLXl rds'ds
= LLX| "ds'ds l = LLyI "ds'ds
:LLI "ds'ds

and, where the inner integrals are;

|kR

| = —ds |10 = Ix e

kR

4.1.4 Numerical Evaluation of Integrals

21

(4.32)

| :LLyI Pds'ds
= j LI "ds'ds  (4.33)

|kR

6= Yopmds  (439)

Numerical and analytical parts of the inner intégran equation (4.24) are

separated. Therefore, the numerical parts can dleaed by Gaussian quadrature rules.

There are many of rules operating different numloérsoints on the triangles. One of

the adaptive integration method will be presentecth

According to this method, following steps are apglito evaluate the inner

integrals on the basis triangle:

1. Three points are chosen each of which is at thalleidf an edge. The value

of the integral according to the Gaussian quadeatuie is

I, =[ f (p1)+f(p2)+ f(ps)]% (4.35)

where A is the area of the triangle.

2. Three more points that is located at 1/3 of theiaredearer to the vertices of

triangle are taken. Then, the value of the integezlomes
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5.
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lg=[ f (p1)+f(p2)+ f(pd+2f(pg+ 2f( p§+ 2f( p@}% (4.36)

6-point and 3-point integration values are compatethe error that can be

defined as

ery =l =14 (4.37)

is less than the given threshold,can be returned as the value of the integral.

If the error is high, each of three subtriangles ba considered as a separate
domains. Then, convergence is looked over thes&iangles likely to the

main triangle.

Whenever the convergence is satisfied in a sulgiearone branch of the
adaptive integration stops there. However, therdlgo may continue in other
subtriangles.

4.2 MOM IMPLEMENTATION WITH THE MFIE

4.2.1 Formulation

MFIE is defined in chapter 2 as;

voxH (x ) =J(x p)—vpr,J(x )x0 g(x/x )ds (4.38)

f(x) is testing and expansion function where

)= 3, 66,) (4.3

n” denotes a specific edge of the mesh.

Testing equation (4.38) requires pre-multiplicationf_ (x) and integration over

the domain of each testing function.
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Lfm(x)@pri(x p)ds:Lfm(x)UJ(x )

(4.40)
—Lfm(x) v, XL‘](Xp) x0 g(x/x )ds'ds

A similar approach of the MOM that is applied onlEFan be applied to the

MFIE
nm

ZymFlE =Lfm(x)[ﬂn(x)d5‘Lf L) prf (X ’)xD pg(x/x Q ds d (4.41)

MFIE. Therefore, we will get, magnetic field impeda matrix,Z

By inserting the functions and their divergencethwising equation (3.11) and
(3.12), we get;

MFIE Ly ji 1-ikR) d®r
Zikjl =WL(X—Xik ) Brp x(X—le )ds><L‘(xp —X)% ds  (4.42)

wherei and j indicate the interaction that is betwegh and j" triangles.| andk

represent the alignment of the basis and testingtions on basis and testing triangles.

We apply cartesian coordinate transformation ineortb easily evaluate the

analytic integrals appearing in the singularityragtion.

As shown in figure 4.1, basis triangle lays on plgne and common edge is
located on x-axis. More detail about coordinategfarmation is shown in appendix A.

Also, in appendix A, sample example program in klaik given.

4.2.2 Singularity Extraction

When the observation and source points reaches @hehn, R goes to zero. So
that, inner integral in equation (4.42) diverges.dvercome this singularity, a suitable

singularity extraction method has to be applied.
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10 =) (R = (x, ) 1 (B 05+ (x,~) &( B o

(4.43)
+[ (%, =%) fa(R) ds
where
(1-ikR) &% -(1+ K R /2)
fml(R) = R3
1
fm2 (R) _E
: (4.44)
fmg(R) :E
1-ikR) &%
()= (R Gl B (9=
When R goes to zerof , (R) has a finite value;
. ke
lim fo(R) =3 (4.45)

So that, first term of equation (4.43) can be sblmamerically. And, second term
of same equation is analytically solved previouslgingularity extraction of EFIE. For
third term of same equation can be analyticallyleated with the same condition of

figure 4.2.

J 06 =x) frg ds-—Zu R +t J 7 (4.46)

where ¢ is angle between the approach path and the plahe basis triangle.

4.2.3 Evaluation of Impedance Matrix Elements

Equation (4.42) has to be divided into smallergnés. Firstly, note that we have

defined the vectors that, x_, x, andx,; in equation (4.31). Then, if we expand

equation (4.42), we get;
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MFIE _— IikI il

b —M{(mm DY Y- DR Nyl

ey =y %) bt (¥ x- px ) bt pe- nx- g
H(zc-ny-ny) k(nx+ ny) k- 9yk

S (vit %)= 006 ] he (03— 6 Lo +[ 1y (X5 %)+ k] o
X gy + (n Ze= %) hiot Mlas= Nl N e N g

+ny| +n| x|n19 aneonxl/manrﬂz"'nlzm_nlyrz}a

(4.47)

wheren,, n, andn, are thex, y andz components o¥, .

Note that, normally when we expand the equatiof2y} we have 48 components.

However, in equation (4.47) there are 40 componéhtomponents are equal to zero
because of transformation of the basis triangle.

Basic integrals in equation (4.47) can listed as;

R EVE oo = [ 1 ndds s = [ 1 nfls
oo = [ XIids s = [ I Rds | = [ 2Inds
|y = [ XInds lus = [ Y1 —j zI™ ds
0= Lxl n ds | .= Lyl n ds j zI" ds (4.48)
s = [ Xnds | :szu:ﬂds |ous = | Y71 nds
e :Lyzu:lds _j xyl " ds _j xzI" ds
w08 =[0I, [ngs
nzz = | Y1 s —jyzl'“ds noa = | 21 ngds

and the inner integrals can be defined as;
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| =IS.me
e = [ (%, =%) fu(R) ds (4.49)
s = [ (¥,=Y) fu(R) ds

where thef, (R) is given in equation (4.44).

Note that, when observation point approaches to noom edge, we have
singularity. So that, we have singularity only be three components of basic integrals
in equation (4.48). Because of transformation, vee@ehno more singularity. These

components aré_,, | ,, and | _,,. These integrals can be rewritten as;

s =[ J[(vo=y) 1(R)+2in(R)] dsds[2 1h B ¢ (450)
o= [ X[ [(¥o=Y) f(R+2in(R)] dsds[2 xp § ¢ (451

Im21:Lx2L[(yp—y) f(R+2in(R)|dsds[2 %X 1p § « (452

First terms of equations (4.50), (4.51) and (4.6&2) be evaluated numerically
while second terms have to be evaluated by analigticSo that, the analytical integrals
can be evaluated as;

[ 2in(R?) ds= A{ In( h)—g}

szln(Fef)dSFJiA{Z I h)‘g} A{ - 18}
[ 2% )ds=fA[ ()~ 2}’“{ ) }
‘|1|2A[§m(h)_?ﬂ

(4.53)

4.2.4 Numerical Evaluation of Integrals
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The numerical evaluation of the EFIE can be usesbtee the inner integrals in
MFIE. The inner integrals in equation (4.49) candméved by an adaptive method.
Then, these results can be used for the outerraltethat are given in equation (4.48).
However, three of the outer integrals need singylaxtraction, when the observation
point reaches to common edge.

4.2 MOM IMPLEMENTATION WITH THE CFIE

If we combine the equations (4.24) and (4.42) vagkistance of equation (2.18),

we will get Z™ (impedance matrix of CFIE).

Zi(k:lelE = C’%“S(X_Xik )dSl:LXp QX/Xp) ds

4
- J (x=x s g(x/xp)dS—Fus dx/x,) ds d]s (4.54)

L,
+(1_a)IE167IT—AAL(X_X"‘)B,pX(X_X”)dsxj.s‘(xp -x)x0, gx/x,) ds

CFIE is the linear combination of EFIE and MFIEe¥ously we implement the
MOM to the EFIE and MFIE. So that, implementatioh tbe CFIE not needed.
Although, formulation of the EFIE and MFIE sharem&aof the inner and outer

integration. In addition, some basis operations am@mon (For example coordinate
transformation ).



CHAPTER 5

COSTRAINED CONJUGATE GRADIENT METHOD

With using Lorentz’s reciprocity theorem, we camide integral representations
for the electric and magnetic wave fields in temhghe tangential components of the
electric and magnetic field on a closed surfaceéer®implifying the representations for
the scattered field by assuming that the scatteobgect is electrically perfectly
conducting material, we get the both electric aragynetic field integral equations.

5.1 INTEGRAL EQUATIONS

5.1.1 Electric Field Integral Equation

So that, the unknown surface field for EFIE is

[vo XET(x)) = v, x k2 +0 0 ] §, A x—x Y[ vxH( 3 dA (5.)

iwe,

in which v is the unit vector along the normal to the scadtefaceS at positionx
and, x, while E' is the incident electric fieldk, is the free space wave number and
vxH is the unknown surface current field. The gradidnergence operatdn [,
represents the spatial differentiations with resgecx, . All fields have a harmonic

time dependence of the forexp(-iat ).

28
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The free space Green’s function is given by

_explk, [x-x, )

G(x-x,)= 5.2
( o) 4| x-x, | (52)
5.1.2 Magnetic Field Integral Equation
MFIE as fallows
i 1
Vo xH () =2V xH X ) = X[ pngSG(x—x )vxH(x)dA (5.3)

in which v is the unit vector along the normal to the scaitefaceS at position x
and, x, while k, is the free space wave number andH is the unknown surface
current field. The gradient divergence operdfqr represents the spatial differentiations

with respect tox . All fields have a harmonic time dependence offtmen exp(-iat ).

5.2 DISCRETIZATION

To compute the solution, numerical techniques aady found. In all expressions
we have integrations over a surface of the boundftiye object, and for that reason we
need the discretization of the geometry of theasafof the object. In Appendix B, we

examine the discretization of the geometry.

5.2.1 Discretization Of EFIE

We discretize the integral equations straightfodkausing a linear interpolation
of the integrand with the aid of Appendix B. Furth&e consider a finite set of

equations by requiring consistency in each ngdef each trianglem with normal
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vectorv,, . Finally, after interchanging the order of diffetiation and integration we

end up for Eq. (2.1) with a linear set of equations

VXEN06) =X S35 G, Xy JIVXHIK,)
0 n=1 i=1 (54)
N l N 3i ) 9
BBt e

In which 0,0 [ operator denotes the differentiation whep=x_,. In the
equation we have differentiation with respectxtowhich has to be carried out. The

second derivative as

0,0,6(x=x,) DvxH](x)

= ¢ £ =x, Jexpkolx—x,| o X=X, JxH )

|k0‘x—x

_471A3 expk, [x —x,| ¥xH K *Tgp‘ exjilo[x =X, | xH K

(5.5)

5.2.2 Discretization Of MFIE

The summation with respect to donates the summation over the triangles, while
the summation with respect todonates the summation over the particular nodéiseof
triangle with ordinal numben. Finally, we consider a finite set of equations by

requiring consistency in each nogleof a each trianglen with normal vector,, . We

then end up with a linear set of equations

[vxH(x,, ) =%[va](xm,;
, (5.6)

m=12,....N, i=12,3
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In the equation we have differentiation with respfecx , which has to be carried

out. The first derivative as

(X=X%,)

0,G(x=x,) = ik, [x = | ~L]exp(iky|x x| ;
4ﬂ‘X—Xp‘

(5.7)

5.3 CONSTRAINED CONJUGATE GRADIENT

A modified conjugate gradient scheme is used, shi@hboth the normalized error
norm in the satisfaction of the boundary integrquaion and the normalized error
norm in the satisfaction of the integral equatimerathe interior surface are minimized

simultaneously,

ERR=[ERR. +ERR_ % (5.8)

Where our error criterions are based on

e v
R T
WL el (5.9)
ERR, =H lﬁm[y .
L

In which the operatot andL,, acting on the unknown surface curremtH or

S. The norms orS and S, are defined as
3

»3

m=1 j=1

oI = (vx HLLvxHI) = 0 2Lvx HC x, ) BVxH( x,)
, (5.10)

[

; =(H'HY) :2,6,n H' (b,)TH' (b,)

where the over line denotes the complex conjuggtether, we need the adjoint

operators



vV =Qg-=

2 N 3
LD[VXf]:VmXVmX g ZZ

n=1 i=1
[

3

N 3

afo n=1 i=1

And the adjoint operator mappirfgy, into S

|m

L. f=-v xv XZAnD G(b,- X, )xf(b)

A‘DDG

+ VXV X_ZZB

(X =X ) v F](x )

Now we define the residual error &and S, as

P =VXE'-l[vxH]
2 =Hi _Lint[VxH] ,

As initial estimate we levx H equal to zero, then it computes

(ij_xn)[vx f](xn)

p° =vxE!
A =H'
Next, the scheme chooses
(p° ), <nm1|-mt e
g el
e, WS, [, I,
el W

with the updates

[VXxH]' =[vxH]°+a'Vv?

pl = pO
B = B

-atv?

1 1
-a Lintv

And computes successively far=2,3.... ,P

32

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)



33

2
o G o
g° = |—,0_ 2+Lintgr12t VP =gP+ 9 szvp—1
o< ] o™
Sht S

(o 7)., (Bt L), 547

in? i112
VX E H
S St

at=

2
Sht

|1,
S+

foet, ]

with the updates
[vxH]P =[vxH] " +aPvP
p° = pPt-afly? (5.18)

1 — 4Pl p p
A = Qe @ Lintv



CHAPTER 6

COMPUTATIONAL RESULTS

6.1 COMBINED FIELD INTEGRAL EQUATION METHOD

6.1.1 Structure of The Program

As shown in Figure 6.1, structure of the program is

1-

In topology part, we produce coordinates of theheamrner of triangles that
modeled and meshed by using the program that isddriinoceros. After

that, we convert the output data of Rhinocerossean Fortran as an input.

We calculate the incident fields with assuming tBpantenna as an excitation

type.

We select the triangles as a couple which has camedge.

We apply coordinate transformation on selecteahdyies.

We calculate the inner integrals that are show@hapter 4.

We calculate the outer integrals with using resaftthe inner integrals.

Finally, we use iterative method to solve the indégquations.

34



Topology

Incident Fields

Selecting Triangles

35

'y

Transformation

Inner Integral

k

lterative Method e

SOLUTION

Outer Integral

Figure 6.1: Flow chart of the Fortran Program of CFIE Met

6.1.2A Numerical Example for CFIE

We consider the scattering of a plane wave by gepily conducting sphere wit

radius 50nm. We discretize the boundary surfiS of the sphere in.368 and 2.208

and 11.44%lane triangles patch. Also, we take the frequenoy 5.4 GHz and antenna

is 10m away from Zirection

Figure 6.2 and figure 6.3 show that surfaceld versus angular coordinate

2.208 and 11.448lane triangles patch. In figure 6.5 we can obsen that residual
error of theMFIE, EFIE andCFIE for 2.208 plane triangles patches where table

shows total number of iterations to get 1% e



Sutface fisld
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1.5 F e
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Figure 6.2: Result for CFIE that 2.208 plane triangles patchygtere
25 1 1 T 1 1 1 1
2k 4
1.5 F / e
1F 4
0.5 - _
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0 =0 100 1=0 200 250 ann 3=0 400

Angular Coordinale

Figure 6.3: Result for CFIE that 11.448 plane triangles patct@tere
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6.2 CONSTARINED CONJUGATE GRADIENT METHOD

6.2.1 Structure of The Program

The structure of the CCG resembles to the CFIE. éd@n there are some
differences that CCG uses barycentric coordinateé iaterior surface to calculate

residual error.

6.2.2 A Numerical Example for CCG

We consider the scattering of a plane wave by tepily conducting sphere with
radius 50mm. We discretize the boundary surfd@cef the sphere in 1368 and 2208

plane triangles patches. To save the computatioa the interior surfac&  is taken

int
as small as possible, but this surface shouldige lanough such that the field variation
of the incident field is visible within numericat@uracy. Here, we take a sphere with a
radius of 6mm, subdivided in 110 plane triangulaiches. Also, we take the frequency
of 3 GHz and antenna is 10m away from z-direction.

Figure 6.4 shows that surface field versus angatardinate for 2.208 plane
triangles patches for both CG-MFIE (Magnetic Fieldtegral Equation with
Constrained Conjugate Gradient) and CFIE

In figure 6.5 we can observe that residual errothef CG-MFIE for 2.208 plane
triangles patches where table 6.1 shows total numobaterations to decrease the

residual error to 1%.

Table 6.1:# of iteration for different patched spheres

# of plane # iteration for # iteration for # iteration for

triangles MFIE CFIE CG-MFIE
1368 51 47 15
2208 52 47 15
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Figure 6.4: Surface field for both CG-MFIE and CFIE that 2.2)&ne triangles
patched sphere
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Figure 6.5 Normalized Error where datal:CG-MFIE, data2:Ckl&a3:MFIE and
data4:EFIE



CHAPTER 7

CONCLUSIONS

Computational electromagnetic fields rely heavily surface integral equations
for the efficient calculation of scattering from €bodies. MFIE and EFIE are applied
only to the surface current of the scatterer ang trequire a number of unknowns
proportional to the surface area in square wavéhsngf a PEC scattered. Unfortunately
both the MFIE and EFIE have a serious limitatiolneyt fail to produce a unique
solution for the current on a PEC scatterer atueegies equal to the resonant

frequencies of the interior cavity formed by theface of the scatterer.

In chapter 2, , the method of moments is presewigdthe formulation of three
integral equations: the electric-field integral ation, the magnetic-field integral

equation, and the combined-field integral equation.

In chapter 3, the models of the object are mesh#dlimear triangular elements
to define the basis and testing functions in theNW@ this level, two error sources are
defined which are the inexact modelling of the earsurfaces with linear triangles and
the discrete approximation of continuous unknowmcfions. Both of the errors can be

controlled by adjusting the size of the triang@dlaments.

In chapter 4, MOM implementation is presents wisiing the EFIE formulation
and the Rao-Wilton-Glisson (RWG) functions to exgatie current density. An
efficient implementation of the MOM requires thenehation of the computational
redundancies, singularity extraction in the evatuaof the integrals. When the MFIE is

used since the singularity becomes stronger andrties product increases the number
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of basic integrals, each of which has to be evatliahdependently, the procedure
becomes more difficult. An efficient implementatiai the MOM using the MFIE

formulation and the RWG functions is given.

The drawback of CFIE method is the extra computatiime. But the constrained
conjugate gradient method that minimizes a costtfanal consisting of two term3.he
first term is the error norm with respect to bouydategral equation, while the second

term is the error norm with respect to the integquation over a closed interior surface.

For further work, to improve the accuracy of thelEFpreconditioning can be

used. Also, different basis functions can be used.



REFERENCES

Abubakar, A.,Three-Dimensional Nonlinear Inversion of Electri€xnductivity Ph.D.
Thesis, Delf University, 2000.

Adams, R. J., Combined Field Integral Equation Formulations foke&iromagnetic
Scattering From Convex GeometfiedEEE Transactions On Antennas And
Propagation, Vol. 52, No. 5, May 2004.

Correia, L. M. ‘A Comparison of Integral Equations with Unique $olu in the
Resonance. Region for Scattering by Conducting éHdiEEE Transactions On
Antennas And Propagation, Vol. 41, No. 1, Janu&g§31

Ergul, O. S, Fast Multipole Method for The Solution of Electamnetic Scattering
Problems M.S. Thesis, Bilkent University, 2003

Ergul, O. S. and L. Gurel, Combined-Field Solution of Composite Geometries
Involving Open and Closed Conducting Surfac2805 ACES.

Gulick, J. R.,A Combination of Rao-Wilton-Glisson and Asympt®itase Basis
Functions to Solve The Electric and Magnetic Figldtgral EquationsM.S. Thesis,
Michigan State University, 2001.

Korkmaz, E., Calculation of EFIE by Means of Constrained Conjigg&radient
Method, Gebze, 2006.

Korkmaz, E.,Electromagnetic Interaction Modeling on Radio Proiky Fuzes for

Incoming TargetsDrukkerij Deniz, 2002.

41



42

Niku, S. B.,Introduction to Robotics Analysis, Systems, Appbos Prentice Hall,
New Jersey, 2001.

Parkinson, J. R. and M.J. Mehler, “Uniqueness Ommirical Solutions To Electric-
Magnetic- And Combined-Field Integral Equations FOpen-Ended Circular
Waveguides”, IEEE Proceedings, Vol. 136, Pt. H, Blalune 1989.

Rao, S. M. et al, Electromagnetic Scattering by Surfaces of Arbitr&tyapé IEEE
Transactions On Antennas And Propagation, Vol. Aphb. 3, H4ay 1982.

Rius, J. M. et al, On the Testing of the Magnetic Field Integral Eqomatwith RWG
Basis Functions in Method of MomentsEEE Transactions On Antennas And
Propagation, Vol. 49, No. 11, November 2001.

Shanker, B. et al, “Analysis of Transient Electrgmetic Scattering from Closed
Surfaces Using a Combined Field Integral Equatiof2EE Transactions On
Antennas And Propagation, Vol. 48, No. 7, July 2000

Shore, R. A. and A. D. YaghjianDtial-Surface Integral Equations In Electromagnetic
Scattering, U.S. Air Force Office of Scientific Research (B5R).

Van Bladel, J.Electromagnetic Fieldslohn Wiley, New Jersey, 2007.

Van den Berg, P. M. et alA*Constrained Conjugate Gradient Method for Solviimg
Magnetic Field Boundary Integral EquatignEEE Transactions On Antennas And
Propagation, Vol. 51, No. 6, June 2003.

Yla-Oijala, P. and Taskinen, M.Calculation of CFIE Impedance Matrix Elements
with  RWG and nxRWG Functign IEEE Transactions On Antennas And
Propagation, Vol. 51, No. 8, August 2003.



APPENDIX A

CARTESIAN COORDINATE TRANSFORMATION

A.1 POINT TRANSLATION

The point (P) that is shown in figure Alcan be translated any poirP') in
cartesiarcoordinate system. The new paP' can be find asTP =P' whereT is the

translation matrix.

100 t][R] [P
01 0t P P!

y y — y (Al)
00 1¢l|P| P,
0 0 0 1y 1 1

AZ

AR
N )
i A4 y

Figure A.1: A point translation for 3D
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A.2 ROTATION ABOUT X -AXIS

The point (P) that is shown in figure Acan berotated about-axis with a angle.

The new pointP' can be find asTP =P' whereT is the translation matri

1 0 0 0|| P, P
0 coxn - sixy P P
. 1= S (A2)
0 sina cosr P, P,
0O O 0 1 1 1

X

Figure A.2: Rotation about x-axis

A.3 ROTATION ABOUT Y -AXIS

The point (P) that is shown in figure Acan berotated about-axis with a angle.

The new pointP' can be find asTP =P' whereT is the translation matri

siny P P,
0 O||R P
’ (A3)

cosa

x

<

0

1 -
-sina 0 coxr P, P,

0 1 1

o
[EY
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X

Figure A.3: Rotation about y-axis

A.4 ROTATION ABOUT Z -AXIS

The point P) that is shown in figure Acan berotated about-axis with a angle.

The new pointP' can be find asTP = P' whereT is the translation matri

cosa -sir O P, P,
sing cox O P P!
Y= Y (A4)
0 0 1 0of|RP| |P!
0 0 0 1j| 1 1
bz
b

X

Figure A.4: Rotation about z-axis



APPENDIX B

DISCRETIZATION OF THE GEOMETRY

In our analysis Chapter 5, we need an expressionafdinear interpolation

function on a triangleS, . We therefore define the vectdrs that are oriented along the
outward normal to the respective edges in the ptEneS,, each of them having a

magnitude that equals the length of the relevageed

We have
L, =a, xv, (B.1)

and

iLi:o. (B.2)
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To arrive at a representation to express any dgwaintithe interior and on the
boundary of each planar triangle, we introduce llagycentric coordinates of the

position of observation in the triangle. Lé#:i=1,2,3} denote the barycentric
coordinates pertaining t8,. Then, the position of observationin the interior and on

the boundary ofS, can be specified by

3
x=> Ax, where0<A <1 with > A =1, forxO§ (A.3)
i=1 i=1
in which x; are the position vectors of the respective vestmfeS, . Eq. (A.3) yields the
value ofx for given values ofi . However, we want an expression that yields theeva

of A for a given value ok S,. We can do that by selecting one of the vertideS, o0

as the preferred one and eliminating the barycentordinates that has the value one at

that vertex.

We end up with the symmetrical expression,
-1 3
X—-b=— x—=b) L ]Jx, , A4
> AiZ:l][( ) L 1% (A.4)
in which

b= 23: X; (A.5)

i=1

IS the position vector of the barycenter§f. Finally when we compare Eq. (A.4) with

Eq. (A.3) we conclude that
(A.6)

Eq. (A.6) gives the desired representation to esgpany quantity in the interior

and on the boundary of each planar trian§le That is why, we will use Eq. (A.6) as a

linear interpolation function in the subsequentlgsia. Regarding this aspect we shall
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write a more general form linear interpolation ftioc @ . (x) instead of4,, i.e., Eq.

(A.6) is rewritten as

_ 1_ (X_bn) |:I]-n,i
3 2A,

in which b is the position vector of the barycenter §f andL

(Dn,i (X) ' (A7)

. are the vectors

normal to the respective edges in the plan&.ofand A, is the scalar area &, . We

can express now local expansion of any vectoriattion A(x) as

F(x) = i F(x.)®, (X). (A.8)



APPENDIX C

WEAK FORM OF GREEN'S FUNCTION

In view of the continuity of the kernel, it is alled to replace the kernel in a
discretized configuration by its spherical meane Tadius of the spherical domain is
taken equal to the average discretization &izaf the object under consideration. But
we restrict the spherical mean over the singular @aly. Subsequently we define our

mean ofJ G over a spherical domaib, with radius A as
U,g(X=x%,) = —[iko‘x—xp‘ —1]exp@ko‘x—xp‘)D g X=X ), (C.1)

where

3 1
AT Ix'[]DA 477_‘)(, T _Xp‘ dv. (C.2)

g(x-x,)=

The simplest way to evaluate this integral is pbesical coordinates in the'
space with center at'=0 and the directiorx - x, as polar axis. Let =[x| and @ the
polar angle betweer' and x - x, , then the range of integration@s=r <A, 0<sf<7m

, 0< ¢ <21, where¢ is the azimuth angle in the plane perpendicular o .
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Let further R:‘x—xp‘ . Then in the integral we have

1
‘x' +X —xp‘:[r2+R2+2chosQ9)]z , (C.3)

anddV = r’sin(@)drdddg . In the resulting integral we first carry out thetegration
with respect tap. Since the integrand is independentggfthis merely amounts to a

multiplication by a function oR/7. Next we carry out the integration with respectto

which is elementary. After this we have

1 14
J-X'DDAde :ﬁl[( R+ 1) —| R~ ] rdr (C.4)

Integration with respect to is straightforward and yields

EAZ——l‘x—xp‘z, when &‘x—xp‘<A
VI L (C.5)
X TID, 4771x'+x —xp‘ A—, whems‘x—x ‘<°°

3‘x—xp‘ "

Hence, the spherical mean of the inverse distasicefine in Eq. (B2) is given by

3 ,1,, 1 2
4m3(§A %‘x xp‘ ), when &‘x xp‘<A
g(x-x,)= 1 (C.6)
_, whems‘x—x ‘<oo
4H‘X—Xp‘ P

The gradient of this function is obtained as
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P when Q‘x—xp‘<A

O.g(x—-x,)=
p P X=X, (C.7)
, when As‘x—xp‘<oo




