
PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

by

Ruslan MAMEDSAIDOV

July 2009

PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

by

Ruslan Mamedsaidov

A thesis submitted to

the Graduate Institute of Science and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial Engineering

July 2009
Istanbul, Turkey

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Assist. Prof. Mehmet SEVKLI

Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Mehmet SEVKLI

Supervisor

Examining Committee Members

Assist. Prof. Mehmet SEVKLI _____________________

Assist. Prof. Fatih CAMCI _____________________

Assist. Prof. Fahrettin ELDEMIR _____________________

It is approved that this thesis has been written in compliance with the formatting
rules laid down by the Graduate Institute of Sciences and Engineering.

 Assoc. Prof. Dr. Nurullah ARSLAN

 Director

Date
July 2009

iv

PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

Ruslan Mamedsaidov

M. S. Thesis – Industrial Engineering
July 2009

Supervisor: Assist. Prof. Mehmet Şevkli

ABSTRACT

In this work, a discrete particle swarm optimization algorithm (DPSO) is

proposed for the p-median problem. Although the algorithm has all major

characteristics of the classical particle swarm optimization (PSO), the search

strategy of the algorithm is different. The algorithm is applied to the p-median

problem with the objective of minimizing distance between demand points and

facilities. A novel proposed continuous particle swarm optimization (NCPSO)

algorithm for p-median problem is introduced as well. The results of both

algorithms are compared against each other. And the performance of proposed

DPSO is compared with against other algorithms in literature, Neural model,

Reduced Variable Neighborhood Search and Simulated Annealing. The

experiments have shown that the proposed algorithm results in better

performance.

Keywords: Swarm Intelligence, Particle Swarm Optimization, P-Median Problem, NP-

hard.

v

P-MEDİAN PROBLEM İÇİN PARÇACIK SÜRÜ OPTİMİZASYONU

Ruslan Mamedsaidov

Yüksek Lisans Tezi – Endüstri Mühendisliği
Temmuz 2009

Tez Yöneticisi: Yrd. Doç. Dr. Mehmet Şevkli

ÖZ

Bu tezde, p-median problem için yeni bir parçacık sürü optimizasyonu (DPSO)

önerilmiştir. Önerilen algoritmada klasik Parçacık Sürüsü Optimizationunun

(PSO) bütün karakteristikleri olmasına rağmen, algoritmanın arama stratejisi

farklıdır. Algoritma, talep noktaları ve tesislerin arasında mesafeyi en aza

indirme amacı ile p-median problemine uygulanmıştır. Bunun dışında

literatürde bulunan Sürekli Parçacık Sürü optimizasyonundan farklı bir Sürekli

Parçacık Sürü optimizasyonunu önerilmiştir. Önerilen iki algoritmanın

sonuçları literatürde bulunan başka algoritmaların sonuçları ile karşılaştırılmış

ve daha iyi olduğu görülmüştür.

Anahtar Kelimeler: Sürü Zekası, Parçacık Sürü Optimizasyonu, p-Median Problemi, NP-

Zor

vi

To my Family,

vii

ACKNOWLEDGMENT

I express sincere appreciation to Assist Prof. Mehmet ŞEVKLİ for his guidance and

insight throughout the research.

Thanks go to Assist. Prof. Fahrettin ELDEMİR, Assist. Prof. Fatih Camcı and PhD.

Student Recep Kızılaslan for their valuable suggestions and comments.

I express my thanks and appreciation to my family for their understanding,

motivation and patience. Lastly, but in no sense the least, I am thankful to all colleagues

and friends who made my stay at the university a memorable and valuable experience.

viii

TABLE OF CONTESTS

Chapter 1 Introducıon ...1

1.1. Discrete Location Problems...1

1.1.1. Uncapacitated Facility Location Problem...2

1.1.2. Capacitated Facility Location Problem...2

1.1.3. Multi Stage Uncapacitated Facility Location Problem...4

1.1.4. P-Center Problem..4

1.2. The Particle Swarm Optimization..5

1.2.1. Discrete particle swarm optimization ...6

Chapter 2 The P-Median Problem ..10

2.1. Basic Problem Definition...10

2.2. Literature review..11

Chapter 3 Heuristic Algorithms..13

3.1. Proposed Discrete Particle Swarm Optimization Algorithm.....................................13

3.2. Proposed Continuous Particle Swarm Optimization Algorithm................................15

3.3. Local Search ..16

3.4. Variable Neighborhood Search Algorithm ..17

3.4.1. Reduced Variable Neighborhood Search..18

3.5. Simulated Annealing..19

Chapter 4 Implementation and Experimental Results ..20

4.1. Comparison of DPSO to neural model ..21

4.2. Comparison of DPSO to NCPSO ..23

4.3. Comparison of DPSO to RVNS for 1000 generations ..25

4.4. Comparison of DPSO to RVNS for 5000 generations ..27

4.5. Comparison of DPSO to Simulated Annealing for 1000 generations29

4.6. Comparison of DPSO to Simulated Annealing for 5000 generations31

ix

Chapter 5 Conclusion..33

References...35

Appendix A Dataset...39

Appendix B Example of runs...44

x

LIST OF TABLES

Table 3.1: Deriving open facility vector from position ..16

Table 3.2: Sequence of facilities opened derived from Open Facilities Vector (Yi).............16

Table 4.1 proposed DPSO -L+ and NA-L+ performances for OR Library test problems ...22

Table 4.2 proposed DPSO -L+ and NCPSO performances for OR Library test problems ..24

Table 4.3 Comparison of DPSO to RVNS for 1000 generations ...26

Table 4.4 Comparison of DPSO to RVNS for 5000 generations ...28

Table 4.5 Comparison of DPSO to Simulated Annealing for 1000 generations30

Table 4.6 Comparison of DPSO to Simulated Annealing for 5000 generations32

xi

LIST OF FIGURES

Figure 1.1 Hierarchical multi stage production system. (Sobolev Institute of Mathematics,

2009) ...4

Figure 1.2 Individual generation in proposed algorithm (Afshinmanesh et al., 2005)...........9

Figure 3.1 Pseudo-code for the DPSO algorithm ...15

Figure 3.2 Diversification by shake function..17

Figure 3.3 Steps of the VNS procedure ..18

1

CHAPTER 1

INTRODUCION

1.1. Discrete Location Problems

Discrete Optimization has set up as an important component in modern applied

mathematics. Many problems from business and industry can be modeled as discrete

optimization problems. Discrete location problems typically involve a finite set of sites at

which supply points can be located, and a finite set of clients to be fulfilled by the supply

points which demands for service or good. The most well known discrete location problems

are the Uncapacitated (and Capacitated) Facility Location Problem, Multi Stage

Uncapacitated Facility Location Problem. Evidently many extensions of these basic

location problems have been developed depending on the objective function. We want to

state that the main differentiator in the most classical location models is the objective

function. A great variety of objective functions have been considered, for instance a median

objective where the task is to minimize the sum of the costs of fulfilling all the demand

requests from the clients. The center objective is to minimize the maximum cost of

fulfilling all the demand requests from the clients, using the sites chosen. The convex

combination of the above mentioned median and center objectives is considered as well and

can be called as a centdian objective where the aim is to keep both the average cost

behavior as well as the highest cost in balance. So the well known p-median Problem and

p-center Problem are defined. Below we are going to show briefly some of the Discrete

Location Problems.

2

1.1.1. Uncapacitated Facility Location Problem

Simple Plant Location Problem is another title for Uncapacitated Facility Location

Problem. It is assumed that in Uncapacitated Facility Location Problem given a set I

={1…N} potential facility locations by providing some uniform product. A facility can be

opened in any location iI, opening a facility at location i has nonnegative cost as well as

the transportation cost of satisfying the customer requirements from a facility. Each open

facility can provide an unlimited amount of products.

Let a set J ={1…M} assign customers that require service. For each pair (i, j) is given

the process or transportation costs gij0. The goal is to determine a subset of the set of

potential facility locations ,S I S , at which to open facilities and an assignment of all

clients to these facilities so as to minimize the overall total cost. The problem can be

written as the following:

IS

Jj SiSi
i ijCSF g

 minmin 1.1

Stated problem is the generalization of the well-known set covering problem and,

therefore, it is NP-hard problem (G. Cornuéjols et al, 1990). Exact algorithms,

approximation algorithms with constant performance guarantee, Lagrangian heuristics,

Particle Swarm Optimization (Guner and Sevkli, 2008) and randomized iteration

algorithms of local search were developed for solving simplest location problem.

Polynomially solvable classes of problem were found. The reader can find the review of

results for this problem, for example, in (Mirchandani et al. 1990).

1.1.2. Capacitated Facility Location Problem

Capacitated Facility Location Problem (CFLP) is generalization of the Uncapacitated

Facility Location Problem. The main differentiator is the very important assumption that In

contrast to Uncapacitated Facility Location Problem we now suppose each facility can

provide a limited number of production. And although mathematical models of those

3

problems do not vary too much, solving methods for CFLP are more difficult. There has

been done much related to this problem. (Sridharan R, 1995)

Now we describe the mathematical model as integer programming problem. Let a set

I={1,..., I} give potential facility locations by providing some uniform product. The number

ci 0 is the opening cost of facility at location iI , Vi0 is the maximum value of

production the facility can provide.

A set J ={1,…,J} assign customers that require service. For each pair i,j gij0 is the

production and transportation costs and pij0 is a value of product from facility i needed to

client j.

Let us define the following notations:

1

0i

if facility i is opened
y

otherwise

1.2

1 ,

0ij

if client j is serviced by facility i
x

otherwise

1.3

Then the Capacitated Facility Location Problem may be written as:

, ,ij i i
j J

p x V y i I

 1.4

min i i ij ij
i I i I j J

c y g x

1.5

1, ,ij
i J

x j J

1.6

 , 0, 1 , , ij ix y i I j J 1.7

4

1.1.3. Multi Stage Uncapacitated Facility Location Problem

In the Multi Stage Uncapacitated Facility Location Problem we are given a set of

facilities and a set of customers. Each customer must be serviced by a sequence of different

facilities. These sequences are defined by hierarchy of production and distribution system

and can be presented as facility paths. The set of admissible facility paths is given. Each

facility has fixed cost. Each customer has transportation costs for servicing by the facility

paths. The problem is to select facilities in order to service the customers with minimal

total cost.

Below we present an illustrated example of hierarchical multi stage production

system. A feasible solution of the problem is marked in black.

Figure 1.1 Hierarchical multi stage production system. (Sobolev Institute of Mathematics,
2009)

1.1.4. P-Center Problem

The p-center problem, in other words the minimax problem, aims to find the location

of p number of facilities (centers) on a network so that the maximum distance traveled from

each customer (demand point) to its nearest facility minimized. (Daskin, 1995; Kariv and

Hakimi, 1979a). This problem may address, for instance, the location of public facilities,

schools, emergency services, where the generally accepted objective is to design a system

5

so that no customer has to travel too far (or each customer could be reached in a reasonable

amount of time).

In this work we concentrated much more on the problem which can be described as a

minisum, the p-median problem.

1.2. The Particle Swarm Optimization

Particle swarm optimization (PSO) is based on the metaphor of social interaction and

communication among different spaces in nature, such as bird flocking and fish schooling.

It is different from other evolutionary methods in a way that it does not use the genetic

operators (such as crossover and mutation), and the members of the entire population are

maintained through out the search procedure. Thus, information is socially shared among

individuals to direct the search towards the best position in the search space. In a PSO

algorithm, each member is called a particle, and each particle moves around in the multi-

dimensional search space with a velocity constantly updated by the particle’s experience,

the experience of the particle’s neighbors, and the experience of the whole swarm. PSO was

first introduced to optimize various continuous nonlinear functions by (Eberhart and

Kennedy, 1995). PSO has been successfully applied to a wide range of applications such as

automated drilling (Onwubolu and Clerc, 2004), neural network training (Van den Bergh

and Engelbecht, 2000), scheduling problems (Tasgetiren et. al., 2006), (Tseng and Liao,

2008), (Allahverdi and Al-Anzi, 2006), (Tasgetiren et. al., 2007), and (Pan et al., 2008),

power and voltage control (Yoshida, 2000), and task assignment (Salman, 2003). The PSO

algorithm was successfully applied to the similar problem as p-median problem which is

Uncapacitated Facility Location Problem by (Guner and Sevkli, 2008). More information

about PSO can be found in (Kennedy et al. 2001).

In PSO, each single solution, called a particle, is considered as an individual, the

group becomes a swarm (population) and the search space is the area to explore. Each

particle has a fitness value calculated by a fitness function, and a velocity to fly towards the

optimum. All particles fly across the problem space following the particle that is nearest to

6

the optimum. PSO starts with an initial population of solutions, which is updated iteration-

by-iteration. The principles that govern PSO algorithm can be stated as follows:

 n dimensional position (),...,,(21 iniii xxxX) and velocity vector

(),...,,(21 iniii vvvV for ith particle starts with a random position and velocity.

 Each particle knows its position and value of the objective function for that

position. The best position of ith particle is donated as),...,,(21 iniii pppP , and the

best position of the whole swarm as,),...,,(21 ngggG respectively. The PSO

algorithm is governed by the following main equations:

)()(2211
1 t

in
t
i

t
in

t
in

t
in

t
in xgrcxprcwvv , 1.8

t
in

t
in

t
in xvx 11

1.9

where t represents the iteration number, w is the inertia weight which is a coefficient

to control the impact of the previous velocities on the current velocity. c1 and c2 are called

learning factors. r1 and r2 are uniformly distributed random variables in [0, 1].

The original PSO algorithm can optimize problems in which the elements of the

solution space are continuous real numbers. The major obstacle for successfully applying

PSO to combinatorial problems in the literature is due to its continuous nature. To remedy

this drawback, (Tasgetiren et al. 2006, 2007) presented the smallest position value (SPV)

rule. Another approach to tackle combinatorial problems with PSO is done by (Pan et al.,

2008). They generate a similar PSO equation to update the particle’s velocity and position

vectors using one and two cut genetic crossover operators.

1.2.1. Discrete particle swarm optimization

As we mentioned before Particle Swarm Optimization initially was introduced for

Continuous problems. In (Kennedy and Eberhart, 1997) the modification to the algorithm

was proposed by utilizing a probability value in a range of [0.0, 0.1] according to which the

7

position vector takes discrete values, 0 or 1. The probability value was derived through the

sigmoid function:

 ii VVs exp11 1.10

The position of the vector value is set to 1 if the random number (from a uniform

distribution between 0.0 and 1.0) less than the value of the sigmoid function or set to 0

otherwise or vice versa, as in Equation (1.11)

otherwise

Vsr
X i

i 0

1

1.11

Another Discrete Particle Swarm Optimization was proposed by (Afshinmanesh et al.,

2005) where the idea is to implement artificial immune system within the PSO algorithm,

i.e. the theory of negative selection was used for calculation of velocity vector and the

movements of the particle in the proposed technique.

The process of generating a new position vector for a selected individual in a swarm

is as follows: two different particles are generated out of the particle position vector and

two “desired positions” (the global best position vector and individual’s best position

vector). It is done using an XOR logical operation, as in Equations (11) and (12). Each bit

in the developed vector shows whether this bit is different from the desired one or not (i.e.

the Hamming distance). The “exploration ability”, diversity, has been added into the

method by creating two random discrete vectors consisting 0 or 1 values that will be

processed with previously generated vectors by an ‘and’ logical operation. The velocity

vector, which shows which bits should be changed, is produced by performing an ‘or’

operation between the two vectors produced as a result of the ‘and’ operation in the

previous step, as in Equation (13). As a result, a new position vector will be computed by

applying an ‘xor’ logical operation to the velocity vector and the particle’s current position

vector, shown in Equation (14). The negative selection was applied just at this stage for the

reason that the number of ones and zeros are predefined. So if the number of ones exceeds

predefined value the negative selection is applied to convert ones into zeros.

8

Application of Discrete Particle Swarm Optimization to condition-based maintenance

and comparison with genetic algorithm was analyzed in (Camci, F., 2009)

Below is given the algorithm expressed in formulas and the illustration for the

proposed algorithm.

 tiiti XPbestXORd ,, ,1 1.12

 tiiti XGbestXORd ,, ,2
1.13

 tititi dmrandANDdmrandANDORV ,,1, 2,,1,1,,1 1.14

 1,,1, , tititi VXXORX
1.15

9

Figure 1.2 Individual generation in proposed algorithm (Afshinmanesh et al., 2005)

10

CHAPTER 2

THE P-MEDIAN PROBLEM

2.1. Basic Problem Definition

P-median problem is a well known facility-location problem where the task is to

allocate p facilities in a way that the total distance between n demand points and p facilities

minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv

and Hakimi, 1979b).

Mathematical formulation of p-median problem is as follows, (ReVelle and Swain,

1970).

n

i

n

j
ijiji xda

1 1

min 2.1

Subject to:

1
1

n

j
ijx , i=1, 2, . . . , n, 2.2

jij yx , i, j=1, 2, . . . , n, 2.3

n

j
j py

1

2.4

 1,0, jij yx , i, j=1, 2, . . . , n, 2.5

11

where

n = total number of nodes in the graph,

ai = demand of node i,

dij = distance from node i to node j,

p = number of facilities used as medians

ai, dij are positive real numbers,

if node i is assigned to facility at point j,

0

1
ijx

Otherwise

If facility is locate at point j,1

0jy

 Otherwise

2.2. Literature review

P-median problem is a well known facility-location problem where the task is to

allocate p facilities in a way that the distance between n demand points and facilities

minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv

and Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-

bounded algorithms. Small size instances of p-median problem can be solved with

reasonable computational time by exact algorithms such as branch-and-bound (Järvinen et

al., 1972). Where the method works by finding (n – p) nodes thus leaving p-medians.

However, as the problem size increases, the computation time of exact methods increases

exponentially. On the other hand, heuristic algorithms generally have acceptable time and

memory requirements, but do not guarantee optimal solution. That is, a feasible solution is

obtained which is likely to be either optimal or near optimal. One of the first heuristics that

was applied to the p-median problem is a greedy heuristic by (Kuehn and Hamburger,

1963), as well heuristic method proposed by Teitz and Bart is one of the oldest and most

popular where an interchange algorithm is applied (Teitz and Bart, 1968).

12

The most popular Metaheuristics appeared in literature are, Genetic Algorithm where

the gene of a chromosome consists of indexes of nodes that were selected for the solutions,

(Alp et al., 2003). The population size in the introduced algorithm was presented as

follows,

d

d

Sn
pnP

ln

100
,2max, , 2.6

where,

p

n
CS

is number of all possible solutions to the problem and pnd the

rounded up density to the problem. According to the formula, the result of the max operator

is at least two, guaranteeing that every gene appears at least twice in the initial population.

This algorithm is simple, fast and generates excellent solutions. (Correa et al., 2006)

proposed a genetic algorithm for capacitated p-median problem. (Lorena and Furtado,

2001) offered a genetic algorithm which differs from classical one where a dynamic

population and two separate fitness functions are introduced. (Murray and Church, 1996),

applied simulated annealing to location-planning models. And more recently (Levanova

and Loresh, 2004) implemented the ant systems and simulated annealing algorithm to solve

p-median problem. One of the most recent works is related to Variable Neighborhood

Search where a new technique is proposed by (Crainic et al 2003, 2004) Cooperative

Neighborhood VNS. More information about p-median problem can be found in

(Mladenović Nenad et al. 2007).

13

CHAPTER 3

HEURISTIC ALGORITHMS

3.1. Proposed Discrete Particle Swarm Optimization Algorithm

In proposed Discrete Particle Swarm Optimization algorithm (DPSO), the initial

population is generated randomly. Initially, each individual with its position, and fitness

value is assigned to its personal best (i.e., the best value of each individual found so far).

The best individual in the whole swarm with its position and fitness value, on the other

hand, is assigned to the global best (i.e., the best particle in the whole swarm). Then, the

position of each particle is updated based on the personal best and the global best. These

operations in proposed DPSO are similar to classical PSO algorithm. However, the search

strategy of proposed DPSO is different. That is, each particle in the swarm moves based on

the following equations.

)(1
t
i

t Xws

 wwt 1

)(12
t

iPcs

)(23
tGcs

);;(321
1 sssbestX t

i

3.1

At each iteration, the position vector of each particle, its personal best and the global

best are considered. First of all, a random number of U(0,1) is generated to compare with

the inertia weight to decide whether to apply Exchange function() to the particle or not.

14

Exchange function () implies the exchange of randomly chosen facility with another

randomly chosen node. For instance, for the p-median problem of p=4, suppose a sequence

of {5, 11, 17, 32} is a possible solution set. In order to apply Exchange function, we also

need to derive two random numbers; one is for determining the facility to be changed and

the other is for the node to be accepted as a new facility. Let’s say those numbers are 11

and 20 (that is, the node number 11 will not serve as a facility anymore and the node

number 20 will be accepted as a new facility {5, 11, 17, 32}). The new sequence will be {5,

20, 17, 32}. Note that the order of the facilities shown in the solution set is not important.

In other words the solution set can be shown in another way too {32, 20, 17, 5}.

If the random number chosen is less than the inertia weight, the particle is

manipulated with this Exchange function, and the resulting solution, say s1, is obtained.

Meanwhile, the inertia weight is discounted by a constant factor at each iteration, in order

to tighten the acceptability of the manipulated particle for the next generation, that is, to

diminish the impact of the randomly operated solutions on the swarm evolution.

The next step is to generate another random number of U(0,1) to be compared with c1,

cognitive parameter, to make a decision whether to apply Exchange function to personal

best of the particle considered. If the random number is less than c1, then the personal best

of the particle undertaken is manipulated and the resulting solution is spared as s2.

Likewise, a third random number of U(0,1) is generated for making a decision whether to

manipulate the global best with the Exchange function. If the random number is less than

c2, social parameter, then Exchange is applied to the global best to obtain a new solution of

s3. Unlike the case of inertia weight, the values of c1 and c2 factors are not increased or

decreased iteratively, but are fixed at 0.5. That means the probability of applying Exchange

function to the personal and global bests remains the same. The new replacement solution

is selected among s1, s2 and s3, based on their fitness values. This solution may not always

be better than the current solution. This is to keep the swarm diverse. The convergence is

traced by checking the personal best of each new particle and the global best. As it is seen,

proposed equations have all major characteristics of the classical PSO equations. The

following pseudo-code describes in detail the steps of the proposed DPSO algorithm.

15

Begin

Initialize particles (population) randomly
For each particle

Calculate fitness value
Set to position vector and fitness value as personal best (Pit)
Select the best particle and its position vector as global best(Gt)

End
Do{

Update inertia weight
For each particle
Apply insert with the probability of inertia weight (s1)
Apply insert to (Pit) with the probability of c1 (s2)
Apply insert to (Gt) with the probability of c2 (s3)
Select the best one among the s1,s2 and s3
Update personal best (Pit)

End
Update global best (Gt)

}While (Maximum Iteration is not reached)

End

Figure 3.1 Pseudo-code for the DPSO algorithm

3.2. Proposed Continuous Particle Swarm Optimization Algorithm

In a proposed novel Continuous Particle Swarm Optimization algorithm (NCPSO),

the operations are similar to classical PSO algorithm. However, the initialization of

population strategy of NCPSO is different. The position and velocity vectors of initial

population are generated randomly and each individual sorted according to its position

vector ascendingly. And the first p nodes are opened as facilities to serve the demanding

nodes. Initially, each individual with its position, and fitness value is assigned to its

personal best (i.e., the best value of each individual found so far). The best individual in the

whole swarm with its position and fitness value, on the other hand, is assigned to the global

best (i.e., the best particle in the whole swarm). Then, all particles fly across the problem

space following the particle that is nearest to the optimum as in the classical PSO

algorithm.

16

Table 3.1: Deriving open facility vector from position

ith Particle Vectors Particle Dimension (k)
1 2 3 4 5

Position Vector(Xi) 1.8 0.72 -0.99 3.01 -5.45
Open Facility Vector (Yi) 0 1 1 0 1

Below it is shown how sequence is derived from the vector (Yi) which was derived

from the Position Vector (Xi).

Table 3.2: Sequence of facilities opened derived from Open Facilities Vector (Yi)

ith Particle Vectors Sequence for p=3
1 2 3

Sequence of opened facilities 2 3 5

3.3. Local Search

Local search methods are important part of heuristic optimization which allows us to

avoid the local minima. This method starts from some initial solution and iteratively tries to

replace the current solution by a better solution in an appropriately defined neighborhood of

the current solution. Alternatively, it is called neighborhood search algorithm. First

applications of local search have been presented in the late fifties and the early sixties

(Croes, 1958), (Lin, 1965).

The proposed local search method in DPSO is applied as, choosing a random facility in

a solution set and changing with the demanding nodes which were not selected before in a

solution set. However in NCPSO in spite of experimenting various local search methods it

did not improve the performance of the algorithm, so we did not use any local search

method in a NCPSO.

17

3.4. Variable Neighborhood Search Algorithm

VNS is one of the most recent metaheuristics developed in combinatorial

optimization problem solving in an easier way. It is known as one of very well-known

local search methods. VNS gets more attention day-by-day due to its ease of use and

accomplishments in solving combinatorial optimization problems.

The VNS is a simple and effective search procedure that proceeds to a systematic

change of neighborhood. An ordinary VNS algorithm gets an initial solution Sx , where

S is the whole set of search space, then manipulates it through a two nested loop in which

the core one alters and explores via two main functions so called shake and local search.

The outer loop works as a refresher reiterating the inner loop, while the inner loop carries

the major search. Local search explores an improved solution within the local

neighborhood, while shake diversifies the solution by switching to another local

neighborhood.

Figure 3.2 Diversification by shake function

The inner loop iterates as long as it keeps improving the solutions, where an integer,

k, controls the length of the loop. Once an inner loop is completed, the outer loop re-iterates

until the termination condition is met. Since the complementariness of neighborhood

functions is the key idea behind VNS, the neighborhood structure should be chosen very

rigorously in order to achieve an efficient VNS. (Uysal, H. 2006).

In order to develop an effective VNS algorithm, one needs two kinds of

neighborhood functions: shake functions ()(xN s
k) and local search functions ()(xN LS

l
). Each

neighborhood function has a particular neighborhood structure. The neighborhood

18

structures may be used more than one for each function (shake and local search) so as to

achieve a valuable neighborhood change. For that purpose, the counters k (max1 kk) and

l (max1 ll) are used for shake and local search functions respectively in order to ease

switching from one to another neighborhood.

Begin

Find an initial solution x
Do{

Shake Procedure: Generate at random a starting solution
)(xNx S

k
.

Local Search: Apply a local search from the starting solution x’

 using the base neighborhood structure
)(xN LS

l until

 a local minimum
)(xNx LS

l
 is found.

Improve or not: If x” is better than x, do x ← x’

}While (the stopping condition is not met)

End

Figure 3.3 Steps of the VNS procedure

The stopping condition may be a maximum CPU time allowed, a maximum number

of iterations, or maximum number of iterations between two improvements.

One of the most recent works on Variable Neighborhood Search related to p-median

problem where a new technique is proposed, Cooperative Neighborhood VNS (Crainic et al

2003, 2004).

3.4.1. Reduced Variable Neighborhood Search

Reduced VNS has the same analogy as the Basic VNS except that no Local Search

procedure is applied. The Reduced VNS explores only randomly different neighborhoods.

It can be faster than standard local search algorithms for reaching good quality solutions.

19

3.5. Simulated Annealing

As its name implies, the Simulated Annealing (SA) exploits an analogy between the

way in which a metal cools and freezes into a minimum energy crystalline structure (the

annealing process) and the search for a minimum in a more general system.

The algorithm is based upon that of (Metropolis et al., 1958) which was originally

proposed as a means of finding the equilibrium configuration of a collection of atoms at a

given temperature. The connection between this algorithm and mathematical minimization

was first noted by (Pincus, 1970) but it was (Kirkpatrick et al., 1983) who proposed that it

form the basis of an optimization technique for combinatorial (and other) problems.

SA's major advantage over other methods is an ability to avoid becoming trapped at

local minima. The algorithm employs a random search which not only accepts changes that

decrease objective function f, but also some changes that increase it. The latter are accepted

with a probability

T

f
p

exp 3.2

where f is the increase in f and T is a control parameter, which by analogy with the

original application is known as the system “temperature” irrespective of the objective

function involved. (Oak Ride National Laboratory, 1996)

20

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, a comparison study is carried out on the effectiveness of the proposed

DPSO and NCPSO algorithms. Proposed DPSO was exclusively tested in comparison with

NCPSO algorithm and result of (Domínguez and Muñoz, 2008). The results for DPSO were

compared to the simple Simulated Annealing and Reduced Variable Neighborhood Search

algorithm as well which were coded according to the pseudo-code in previous chapters. A

data set of 40 p-median problems with known optimal solutions in the OR Library (Beasley

JE., 1990) was used in testing of performances of algorithms. All proposed DPSO and

NCPSO algorithms as well as simple Simulated Annealing and Reduced Variable

Neighborhood Search algorithm are coded in C and run on a PC with the configuration of

2.6 GHz CPU and 512MB memory. The size of the population considered by all algorithms

is twice the number of nodes.

For DPSO and NCPSO, the social and cognitive parameters were taken as 5.021 cc ,

initial inertia weight is set to 0.5 and, and the decrement factor is fixed at 0.9995.

Relative percentile deviation is taken as a performance measure to compare the

performance of the algorithms.

100

opt

opt

f

ff
4.1

where f denotes best solution found by the algorithm and fopt denotes the optimum

value of the objective function.

21

4.1. Comparison of DPSO to neural model

Table given below summarizes the comparison of computational results for 10

replications of DPSO and neural model by (Domínguez and Muñoz, 2008) (NA-L+)

solving 40 test problems from OR Library. The objective function values found by the

algorithms are shown in column 4 and 5. The % error is shown in columns 6 and 7 and the

computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs

better not only in terms of the percentile error but it finds the “near optimal” solution in less

computational time as well.

For the reason that in the published work some of the results were not presented we

were not able to compare the average relative percentile deviation and the average

computational time more logically but considering just the once that the authors are

presenting in the work (Domínguez and Muñoz, 2008).

The average percentile deviation in the work by Domínguez and Muñoz is 0,48%

while in problem solution proposed by our algorithm it is 0,45%.

The same situation is with the computational time where it is 2169,31 seconds in the

work by Domínguez and Muñoz while in our work it is 358,62 seconds.

22

Table 4.1 proposed DPSO -L+ and NA-L+ performances for OR Library test problems

Problem (n, p) Optimum Objective function % Error CPU time (s)

DPSO-L+ NA-L+ DPSO-L+ NA-L+ DPSO-L+ NA-L+

pmed1 (100, 5) 5819 5819 5819 0 0 0,56 0,27

pmed2 (100, 10) 4093 4099 4093 0,15 0 21,60 1,86

pmed3 (100, 10) 4250 4250 4250 0 0 2,02 0,83

pmed4 (100, 20) 3034 3034 3038 0 0,13 11,84 21,37

pmed5 (100, 33) 1355 1356,5 1359 0,11 0,3 33,79 27,46

pmed6 (200, 5) 7824 7824 ***** 0 ***** 1,37 *****

pmed7 (200, 10) 5631 5631 5631 0 0 18,72 7,37

pmed8 (200, 20) 4445 4445 4448 0 0,07 21,06 77,5

pmed9 (200, 40) 2734 2740,5 2751 0,24 0,62 119,44 120,89

pmed10 (200, 67) 1255 1256,5 1264 0,12 0,72 105,80 167,07

pmed11 (300, 5) 7696 7696 7696 0 0 2,04 3,23

pmed12 (300, 10) 6634 6634 ***** 0 ***** 5,13 *****

pmed13 (300, 30) 4374 4374 ***** 0 ***** 42,93 *****

pmed14 (300, 60) 2968 2972,9 2983 0,17 0,51 144,05 388,51

pmed15 (300, 100) 1729 1733,7 1751 0,27 1,27 150,24 526,11

pmed16 (400, 5) 8162 8162 ***** 0 ***** 6,36 *****

pmed17 (400, 10) 6999 7000,2 6999 0,02 0 57,98 94,02

pmed18 (400, 40) 4809 4817,5 4811 0,18 0,04 150,48 787,03

pmed19 (400, 80) 2845 2863,7 2863 0,66 0,63 158,84 1024,5

pmed20 (400, 133) 1789 1805,4 1815 0,92 1,45 293,66 1317

pmed21 (500, 5) 9138 9138 ***** 0 ***** 4,24 *****

pmed22 (500, 10) 8579 8579 ***** 0 ***** 33,00 *****

pmed23 (500, 50) 4619 4650,6 4624 0,68 0,11 155,87 1889,5

pmed24 (500, 100) 2961 2989,6 2986 0,97 0,84 394,75 2157,2

pmed25 (500, 167) 1828 1845,3 1865 0,95 2,02 727,81 2634,6

pmed26 (600, 5) 9917 9917 ***** 0 ***** 20,79 *****

pmed27 (600, 10) 8307 8307,9 8307 0,01 0 74,44 171,75

pmed28 (600, 60) 4498 4539,6 4508 0,92 0,22 260,62 3368,7

pmed29 (600, 120) 3033 3062 3060 0,96 0,89 708,85 3827,8

pmed30 (600, 200) 1989 2007,5 2016 0,93 1,36 1972,30 4705,3

pmed31 (700, 5) 10086 10086,1 ***** 0 ***** 53,87 *****

pmed32 (700, 10) 9297 9297,4 ***** 0 ***** 77,96 *****

pmed33 (700, 70) 4700 4744 4706 0,94 0,13 451,27 5927,2

pmed34 (700, 140) 3013 3042,2 3038 0,97 0,83 1303,58 6747,6

pmed35 (800, 5) 10400 10400 ***** 0 ***** 25,38 *****

pmed36 (800, 10) 9934 9945,5 ***** 0,12 ***** 113,79 *****

pmed37 (800, 80) 5057 5104,7 5071 0,94 0,28 948,08 9243,1

pmed38 (900, 5) 11060 11060 ***** 0 ***** 29,19 *****

pmed39 (900, 10) 9423 9423 ***** 0 ***** 111,10 *****

pmed40 (900, 90) 5128 5177,8 5155 0,97 0,53 1393,01 13331

***** The results were not presented in published work

23

4.2. Comparison of DPSO to NCPSO

And the next presented Table summarizes the comparison of computational results for

10 replications of proposed DPSO to proposed Novel Continuous Particle Swarm

Algorithm solving 40 test problems from OR Library. The objective function value found

by the algorithms is shown in column 4 and 5. The % error is shown in columns 6 and 7

and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the DPSO algorithm performs better

than the proposed NCPSO algorithm in terms of the percentile error and it finds the “near

optimal” solution in less computational time as well.

The average percentile deviation in the solution method by DPSO it is 0,30% while in

the problem solution proposed by NCPSO algorithm is 4,08%.

The same situation is with the computational time where it is 255,20 seconds in the

solution by the proposed DPSO algorithm and 1925,46 seconds in the solution method by

the proposed CPSO algorithm.

24

Table 4.2 proposed DPSO -L+ and NCPSO performances for OR Library test problems

Problem (n, p) Optimum Objective function % Error CPU time (s)

DPSO-L+ NCPSO DPSO-L+ NCPSO DPSO-L+ NCPSO

pmed1 (100, 5) 5819 5819 5829 0 0,17 0,56 5,69

pmed2 (100, 10) 4093 4099 4116,3 0,15 0,57 21,60 13,30

pmed3 (100, 10) 4250 4250 4312,3 0 1,47 2,02 13,13

pmed4 (100, 20) 3034 3034 3114,9 0 2,67 11,84 20,63

pmed5 (100, 33) 1355 1356,5 1402,6 0,11 3,51 33,79 24,76

pmed6 (200, 5) 7824 7824 7839,1 0 0,19 1,37 19,43

pmed7 (200, 10) 5631 5631 5746 0 2,04 18,72 48,00

pmed8 (200, 20) 4445 4445 4603,6 0 3,57 21,06 89,17

pmed9 (200, 40) 2734 2740,5 2870,4 0,24 4,99 119,44 114,44

pmed10 (200, 67) 1255 1256,5 1326,9 0,12 5,73 105,80 153,27

pmed11 (300, 5) 7696 7696 7732,6 0 0,48 2,04 88,64

pmed12 (300, 10) 6634 6634 6754,4 0 1,81 5,13 129,86

pmed13 (300, 30) 4374 4374 4598,2 0 5,13 42,93 308,74

pmed14 (300, 60) 2968 2972,9 3139,4 0,17 5,77 144,05 441,22

pmed15 (300, 100) 1729 1733,7 1841,7 0,27 6,52 150,24 476,61

pmed16 (400, 5) 8162 8162 8183,7 0 0,27 6,36 215,99

pmed17 (400, 10) 6999 7000,2 7206,8 0,02 2,97 57,98 258,98

pmed18 (400, 40) 4809 4817,5 5043,6 0,18 4,88 150,48 782,04

pmed19 (400, 80) 2845 2863,7 3033,5 0,66 6,63 158,84 1079,54

pmed20 (400, 133) 1789 1805,4 1929,3 0,92 7,84 293,66 1424,29

pmed21 (500, 5) 9138 9138 9297,8 0 1,75 4,24 344,63

pmed22 (500, 10) 8579 8579 8798,2 0 2,56 33,00 514,93

pmed23 (500, 50) 4619 4650,6 4871,4 0,68 5,46 155,87 1938,42

pmed24 (500, 100) 2961 2989,6 3168,5 0,97 7,01 394,75 2055,73

pmed25 (500, 167) 1828 1845,3 2009,4 0,95 9,92 727,81 2776,58

pmed26 (600, 5) 9917 9917 10006,4 0 0,90 20,79 592,48

pmed27 (600, 10) 8307 8307,9 8554 0,01 2,97 74,44 873,10

pmed28 (600, 60) 4498 4539,6 4732,4 0,92 5,21 260,62 3842,83

pmed29 (600, 120) 3033 3062 3282,7 0,96 8,23 708,85 4589,88

pmed30 (600, 200) 1989 2007,5 2184 0,93 9,80 1972,30 5668,41

pmed31 (700, 5) 10086 10086,1 10153,7 0 0,67 53,87 1005,50

pmed32 (700, 10) 9297 9297,4 9667 0 3,98 77,96 1569,79

pmed33 (700, 70) 4700 4744 4987,3 0,94 6,11 451,27 5869,41

pmed34 (700, 140) 3013 3042,2 3285,5 0,97 9,04 1303,58 7609,70

pmed35 (800, 5) 10400 10400 10543,4 0 1,38 25,38 1608,46

pmed36 (800, 10) 9934 9945,5 10241,3 0,12 3,09 113,79 2790,84

pmed37 (800, 80) 5057 5104,7 5383,571 0,94 6,46 948,08 9838,69

pmed38 (900, 5) 11060 11060 11173,2 0 1,02 29,19 2170,54

pmed39 (900, 10) 9423 9423 9790,3 0 3,90 111,10 2528,09

pmed40 (900, 90) 5128 5177,8 5469,333 0,97 6,66 1393,01 13122,63

25

4.3. Comparison of DPSO to RVNS for 1000 generations

Table given below summarizes the comparison of computational results for 10

replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40

test problems from OR Library. The smallest and the biggest percentile error made for the

RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for

the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in

the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs

better not only in terms of the percentile error but it finds the “near optimal” solution in less

computational time for some of the problems.

The average percentile deviation in RVNS is 8,84% while in problem solution

proposed by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below RVNS was run 1000 generations.

The generation number was selected in a such way in order to compare the results after

running the algorithms under the same conditions. In most cases it resulted in less

computational time compared to DPSO.

26

Table 4.3 Comparison of DPSO to RVNS for 1000 generations

Error% CPU time (s)
RVNS DPSOProblem (n, p) Optimum

Best Worst Best Worst
RVNS DPSO

pmed1 (100, 5) 5819 0 0,60 0 0 23,05 0,56
pmed2 (100, 10) 4093 0,17 2,71 0 0,29 25,87 21,6
pmed3 (100, 10) 4250 0 3,67 0 0 25,58 2,02
pmed4 (100, 20) 3034 1,45 6,43 0 0 25,92 11,84
pmed5 (100, 33) 1355 2,51 8,63 0 0,22 25,95 33,79
pmed6 (200, 5) 7824 0 0,55 0 0 23,09 1,37
pmed7 (200, 10) 5631 0,66 3,46 0 0 26,00 18,72
pmed8 (200, 20) 4445 2,72 5,96 0 0 26,08 21,06
pmed9 (200, 40) 2734 3,44 7,50 0 0,62 26,19 119,44

pmed10 (200, 67) 1255 3,35 10,12 0 0,40 26,34 105,8
pmed11 (300, 5) 7696 0 1,53 0 0 25,38 2,04
pmed12 (300, 10) 6634 1,39 4,16 0 0 26,16 5,13
pmed13 (300, 30) 4374 2,95 6,93 0 0 26,38 42,93
pmed14 (300, 60) 2968 6,10 8,66 0 0,47 26,63 144,05
pmed15 (300, 100) 1729 6,54 11,57 0,06 0,52 26,92 150,24
pmed16 (400, 5) 8162 0,01 2,28 0 0 26,19 6,36
pmed17 (400, 10) 6999 1,70 5,33 0 0,06 26,34 57,98
pmed18 (400, 40) 4809 3,78 6,49 0,04 0,48 26,82 150,48
pmed19 (400, 80) 2845 6,15 9,00 0,35 0,98 27,22 158,84
pmed20 (400, 133) 1789 9,39 13,47 0,84 0,95 27,71 293,66
pmed21 (500, 5) 9138 0 3,30 0 0 25,50 4,24
pmed22 (500, 10) 8579 1,08 4,57 0 0 26,53 33
pmed23 (500, 50) 4619 5,59 7,64 0,26 0,97 27,09 155,87
pmed24 (500, 100) 2961 7,16 10,37 0,91 0,98 27,70 394,75
pmed25 (500, 167) 1828 9,52 13,02 0,82 0,98 28,50 727,81
pmed26 (600, 5) 9917 0,30 2,86 0 0 26,15 20,79
pmed27 (600, 10) 8307 1,66 4,78 0 0,04 26,43 74,44
pmed28 (600, 60) 4498 6,07 8,14 0,78 0,98 27,62 260,62
pmed29 (600, 120) 3033 8,90 11,61 0,86 0,99 28,43 708,85
pmed30 (600, 200) 1989 11,31 14,88 0,80 0,96 29,59 1972,3
pmed31 (700, 5) 10086 0,35 3,54 0 0,01 26,52 53,87
pmed32 (700, 10) 9297 2,07 5,16 0 0,04 26,38 77,96
pmed33 (700, 70) 4700 5,47 8,57 0,83 0,98 26,81 451,27
pmed34 (700, 140) 3013 10,36 13,84 0,93 1,00 27,23 1303,58
pmed35 (800, 5) 10400 0,01 3,90 0 0 26,02 25,38
pmed36 (800, 10) 9934 1,80 4,02 0 0,31 26,50 113,79
pmed37 (800, 80) 5057 7,10 9,55 0,83 0,99 27,15 948,08
pmed38 (900, 5) 11060 0,80 2,88 0 0 26,08 29,19
pmed39 (900, 10) 9423 1,89 4,75 0 0 26,32 111,1
pmed40 (900, 90) 5128 7,61 10,04 0,90 0,99 27,39 1393,01

Average 3,53 6,66 0,23 0,38 26,49 255,20

27

4.4. Comparison of DPSO to RVNS for 5000 generations

Table given below summarizes the comparison of computational results for 10

replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40

test problems from OR Library. The smallest and the biggest percentile error made for the

RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for

the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in

the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs

better not only in terms of the percentile error but it finds the “near optimal” solution in less

computational time for some of the problems for sure.

The average percentile deviation in RVNS is 2,1% while in problem solution

proposed by our algorithm it is 0,3%.

In average computational time it seems like the RVNS performs better but we should

not forget that in most of the solved problems the RVNS performance was far away

compared to DPSO in terms of percentile error. And in most of the cases the percentile

error for DPSO is better. The RVNS was run 5000 generations in this case. Compared to

1000 generations run the computational time is more “near” to the computational time in

DPSO.

28

Table 4.4 Comparison of DPSO to RVNS for 5000 generations

Error% CPU time (s)
RVNS DPSO RVNS DPSOProblem (n, p) Optimum

Best Worst Best Worst
pmed1 (100, 5) 5819 0 0,00 0 0 30,79 0,56
pmed2 (100, 10) 4093 0 0,29 0 0,29 95,22 21,6
pmed3 (100, 10) 4250 0 0,87 0 0 94,65 2,02
pmed4 (100, 20) 3034 0 0,76 0 0 115,09 11,84
pmed5 (100, 33) 1355 0 1,48 0 0,22 129,11 33,79
pmed6 (200, 5) 7824 0 0,00 0 0 40,01 1,37
pmed7 (200, 10) 5631 0 1,17 0 0 121,48 18,72
pmed8 (200, 20) 4445 0,20 2,92 0 0 130,10 21,06
pmed9 (200, 40) 2734 0,51 2,41 0 0,62 130,48 119,44

pmed10 (200, 67) 1255 1,12 4,46 0 0,40 131,14 105,8
pmed11 (300, 5) 7696 0 0,35 0 0 74,76 2,04
pmed12 (300, 10) 6634 0 1,06 0 0 121,16 5,13
pmed13 (300, 30) 4374 1,07 3,77 0 0 131,21 42,93
pmed14 (300, 60) 2968 2,32 5,26 0 0,47 132,26 144,05
pmed15 (300, 100) 1729 1,74 5,09 0,06 0,52 133,57 150,24
pmed16 (400, 5) 8162 0 0,26 0 0 114,06 6,36
pmed17 (400, 10) 6999 0 2,71 0 0,06 129,87 57,98
pmed18 (400, 40) 4809 1,35 3,10 0,04 0,48 132,84 150,48
pmed19 (400, 80) 2845 2,81 5,27 0,35 0,98 134,92 158,84
pmed20 (400, 133) 1789 4,42 7,55 0,84 0,95 137,12 293,66
pmed21 (500, 5) 9138 0 0,45 0 0 89,04 4,24
pmed22 (500, 10) 8579 0,05 2,07 0 0 132,22 33
pmed23 (500, 50) 4619 2,66 5,82 0,26 0,97 135,53 155,87
pmed24 (500, 100) 2961 3,48 6,72 0,91 0,98 138,45 394,75
pmed25 (500, 167) 1828 4,21 7,06 0,82 0,98 141,85 727,81
pmed26 (600, 5) 9917 0 0,85 0 0 94,33 20,79
pmed27 (600, 10) 8307 0,46 1,66 0 0,04 133,05 74,44
pmed28 (600, 60) 4498 3,07 4,54 0,78 0,98 138,72 260,62
pmed29 (600, 120) 3033 5,31 6,26 0,86 0,99 142,38 708,85
pmed30 (600, 200) 1989 4,52 6,99 0,80 0,96 147,67 1972,3
pmed31 (700, 5) 10086 0 0,74 0 0,01 117,65 53,87
pmed32 (700, 10) 9297 0,26 1,23 0 0,04 132,54 77,96
pmed33 (700, 70) 4700 3,11 4,96 0,83 0,98 140,00 451,27
pmed34 (700, 140) 3013 4,88 6,77 0,93 1,00 145,14 1303,58
pmed35 (800, 5) 10400 0 1,02 0 0 118,00 25,38
pmed36 (800, 10) 9934 0,32 1,41 0 0,31 132,99 113,79
pmed37 (800, 80) 5057 2,79 5,99 0,83 0,99 142,65 948,08
pmed38 (900, 5) 11060 0 0,90 0 0 130,68 29,19
pmed39 (900, 10) 9423 0,33 2,10 0 0 133,32 111,1
pmed40 (900, 90) 5128 3,69 5,21 0,90 0,99 145,89 1393,01

Average 1,37 3,04 0,23 0,38 122,30 255,20

29

4.5. Comparison of DPSO to Simulated Annealing for 1000 generations

Table given below summarizes the comparison of computational results for 10

replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR

Library. The smallest and the biggest percentile error made for the SA is shown in column

4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in

column 6 and 7 and the computational time in seconds is shown in the column 8 and 9

respectively.

From the Table given below you can see that the proposed DPSO algorithm performs

better not only in terms of the percentile error but it finds the “near optimal” solution in less

computational time for some of the problems.

The average percentile deviation in SA is 6,01% while in problem solution proposed

by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below SA was run 1000 generations. The

generation number was selected in a such way in order to compare the results after running

the algorithms under the same conditions. In most cases it resulted in less computational

time compared to DPSO.

30

Table 4.5 Comparison of DPSO to Simulated Annealing for 1000 generations

Error% CPU time (s)
SA DPSOProblem (n, p) Optimum

Best Worst Best Worst
SA DPSO

pmed1 (100, 5) 5819 0 1,12 0 0 21,79 0,56
pmed2 (100, 10) 4093 0,29 2,96 0 0,29 26,05 21,6
pmed3 (100, 10) 4250 0 3,67 0 0 24,71 2,02
pmed4 (100, 20) 3034 0,96 6,36 0 0 25,89 11,84
pmed5 (100, 33) 1355 3,03 8,56 0 0,22 25,86 33,79
pmed6 (200, 5) 7824 0,12 1,94 0 0 25,86 1,37
pmed7 (200, 10) 5631 0,64 4,49 0 0 25,93 18,72
pmed8 (200, 20) 4445 3,24 6,57 0 0 25,98 21,06
pmed9 (200, 40) 2734 3,69 7,72 0 0,62 26,03 119,44

pmed10 (200, 67) 1255 5,82 15,14 0 0,40 26,08 105,8
pmed11 (300, 5) 7696 0,35 2,29 0 0 25,96 2,04
pmed12 (300, 10) 6634 1,45 6,21 0 0 26,05 5,13
pmed13 (300, 30) 4374 3,06 7,84 0 0 26,18 42,93
pmed14 (300, 60) 2968 6,77 8,96 0 0,47 26,29 144,05
pmed15 (300, 100) 1729 7,98 14,23 0,06 0,52 26,41 150,24
pmed16 (400, 5) 8162 0,29 2,96 0 0 26,10 6,36
pmed17 (400, 10) 6999 1,19 4,91 0 0,06 26,21 57,98
pmed18 (400, 40) 4809 4,53 7,49 0,04 0,48 26,42 150,48
pmed19 (400, 80) 2845 7,21 11,63 0,35 0,98 26,57 158,84
pmed20 (400, 133) 1789 10,96 22,30 0,84 0,95 26,78 293,66
pmed21 (500, 5) 9138 1,26 5,37 0 0 26,31 4,24
pmed22 (500, 10) 8579 2,30 5,47 0 0 26,24 33
pmed23 (500, 50) 4619 5,72 9,37 0,26 0,97 26,44 155,87
pmed24 (500, 100) 2961 8,48 13,41 0,91 0,98 26,63 394,75
pmed25 (500, 167) 1828 13,02 19,58 0,82 0,98 26,95 727,81
pmed26 (600, 5) 9917 1,01 4,13 0 0 26,03 20,79
pmed27 (600, 10) 8307 2,19 5,51 0 0,04 26,21 74,44
pmed28 (600, 60) 4498 5,96 9,52 0,78 0,98 26,68 260,62
pmed29 (600, 120) 3033 9,89 16,16 0,86 0,99 27,00 708,85
pmed30 (600, 200) 1989 13,88 21,72 0,80 0,96 27,43 1972,3
pmed31 (700, 5) 10086 0,20 3,39 0 0,01 26,52 53,87
pmed32 (700, 10) 9297 2,59 4,88 0 0,04 26,38 77,96
pmed33 (700, 70) 4700 8,11 13,06 0,83 0,98 26,81 451,27
pmed34 (700, 140) 3013 12,58 18,39 0,93 1,00 27,23 1303,58
pmed35 (800, 5) 10400 0,53 4,06 0 0 26,02 25,38
pmed36 (800, 10) 9934 2,18 4,59 0 0,31 26,50 113,79
pmed37 (800, 80) 5057 7,53 11,94 0,83 0,99 27,15 948,08
pmed38 (900, 5) 11060 0,37 2,73 0 0 26,08 29,19
pmed39 (900, 10) 9423 3,41 6,02 0 0 26,32 111,1
pmed40 (900, 90) 5128 8,39 11,91 0,90 0,99 27,39 1393,01

Average 4,28 8,46 0,23 0,38 26,24 255,20

31

4.6. Comparison of DPSO to Simulated Annealing for 5000 generations

Table given below summarizes the comparison of computational results for 10

replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR

Library. The smallest and the biggest percentile error made for the SA is shown in column

4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in

column 6 and 7 and the computational time in seconds is shown in the column 8 and 9

respectively.

From the Table given below you can see that the proposed DPSO algorithm performs

better not only in terms of the percentile error but it finds the “near optimal” solution in less

computational time for some of the problems.

The average percentile deviation in SA is 2,36% while in problem solution proposed

by our algorithm it is 0,3%. These values are not shown in the given table.

In average computational time it seems like the SA performs better but we should not

forget that in most of the solved problems the SA performance was far away compared to

DPSO in terms of percentile error. And in most of the cases the percentile error for DPSO

is better. The SA was run 5000 generations in this case. Compared to 1000 generations run

the computational time is more “near” to the computational time in DPSO.

32

Table 4.6 Comparison of DPSO to Simulated Annealing for 5000 generations

Error% CPU time (s)

SA DPSOProblem (n, p) Optimum
Best Worst Best Worst

SA DPSO

pmed1 (100, 5) 5819 0 0 0 0 29,07 0,56
pmed2 (100, 10) 4093 0 0,29 0 0,29 97,96 21,6
pmed3 (100, 10) 4250 0 0,47 0 0 92,20 2,02
pmed4 (100, 20) 3034 0 1,52 0 0 128,31 11,84
pmed5 (100, 33) 1355 0 2,44 0 0,22 126,85 33,79
pmed6 (200, 5) 7824 0 0 0 0 56,29 1,37
pmed7 (200, 10) 5631 0 0,55 0 0 113,30 18,72
pmed8 (200, 20) 4445 0,13 2,34 0 0 129,53 21,06
pmed9 (200, 40) 2734 0,80 4,24 0 0,62 129,77 119,44

pmed10 (200, 67) 1255 2,07 5,98 0 0,40 130,04 105,8
pmed11 (300, 5) 7696 0 0,44 0 0 75,53 2,04
pmed12 (300, 10) 6634 0 0,69 0 0 120,85 5,13
pmed13 (300, 30) 4374 1,07 3,54 0 0 130,30 42,93
pmed14 (300, 60) 2968 2,80 5,76 0 0,47 130,67 144,05
pmed15 (300, 100) 1729 3,53 6,07 0,06 0,52 131,25 150,24
pmed16 (400, 5) 8162 0 0,34 0 0 125,23 6,36
pmed17 (400, 10) 6999 0,06 1,74 0 0,06 130,23 57,98
pmed18 (400, 40) 4809 1,89 4,70 0,04 0,48 131,12 150,48
pmed19 (400, 80) 2845 3,90 6,50 0,35 0,98 131,87 158,84
pmed20 (400, 133) 1789 4,92 8,27 0,84 0,95 132,89 293,66
pmed21 (500, 5) 9138 0 1,01 0 0 116,59 4,24
pmed22 (500, 10) 8579 0,15 2,02 0 0 131,72 33
pmed23 (500, 50) 4619 3,27 4,87 0,26 0,97 133,21 155,87
pmed24 (500, 100) 2961 3,68 5,81 0,91 0,98 134,27 394,75
pmed25 (500, 167) 1828 5,14 8,75 0,82 0,98 135,78 727,81
pmed26 (600, 5) 9917 0 1,03 0 0 116,48 20,79
pmed27 (600, 10) 8307 0,42 1,78 0 0,04 131,35 74,44
pmed28 (600, 60) 4498 2,78 4,82 0,78 0,98 133,67 260,62
pmed29 (600, 120) 3033 4,88 6,96 0,86 0,99 135,14 708,85
pmed30 (600, 200) 1989 5,53 7,44 0,80 0,96 137,30 1972,3
pmed31 (700, 5) 10086 0 0,77 0 0,01 124,90 53,87
pmed32 (700, 10) 9297 0,41 2,08 0 0,04 131,46 77,96
pmed33 (700, 70) 4700 3,11 5,57 0,83 0,98 134,29 451,27
pmed34 (700, 140) 3013 5,34 7,04 0,93 1,00 136,25 1303,58
pmed35 (800, 5) 10400 0 1,62 0 0 117,19 25,38
pmed36 (800, 10) 9934 0,49 2,32 0 0,31 131,80 113,79
pmed37 (800, 80) 5057 3,94 5,14 0,83 0,99 135,47 948,08
pmed38 (900, 5) 11060 0 0,84 0 0 129,83 29,19
pmed39 (900, 10) 9423 0,36 1,51 0 0 131,37 111,1
pmed40 (900, 90) 5128 3,92 5,50 0,90 0,99 136,69 1393,01

Average 1,62 3,32 0,23 0,38 122,20 255,20

33

CHAPTER 5

CONCLUSION

The main objective in this work is to allocate p facilities in a way that the total

distance between n demand points and facilities minimized. This is a well know facility-

location problem and in literature is known as a p-median problem.

It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and

Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-bounded

algorithms. Small size instances of p-median problem can be solved with reasonable

computational time by exact algorithms such as branch-and-bound (Järvinen et al., 1972).

On the other hand, heuristic algorithms generally have acceptable time and memory

requirements, but do not guarantee optimal solution. That is, a feasible solution is obtained

which is likely to be either optimal or near optimal.

Particle swarm optimization (PSO) is one of the latest metaheuristic methods in

literature, which is based on the metaphor of social interaction and communication among

different spaces in nature, such as bird flocking and fish schooling. PSO was first

introduced to optimize various continuous nonlinear functions by (Eberhart and Kennedy,

1995).

p-Median problem is related to the Discrete Location Problems while the Particle

swarm optimization (PSO) is manly designed for the continuous problems. Thus it may

have some drawbacks when applying PSO to discrete problems. Recently a few researches

34

have been related to the discrete combinatorial optimization problems. However, still it is

considered that the applications of PSO on discrete problems are limited.

In this thesis Novel proposed Continuous Particle Swarm (NCPSO) algorithm and a

proposed Discrete Particle Swarm Optimization algorithms (DPSO) are proposed. The

algorithms have been tested on benchmark problem instances from OR Library and

compared to the other algorithms in literature and shown that the proposed algorithm

results in better computational time. To the best of our knowledge the proposed PSO

algorithms in this thesis are the first PSO algorithms applied to the p-median problem.

35

REFERENCES

Afshinmanesh, F., Marandi, A., and Rahimi-Kian, A., A novel binary particle swarm
optimization method using artificial immune system, International Conference on
Computer as a Tool, EUROCON, pp.217–220, 2005

Allahverdi, A., Al-Anzi, F.S., Evolutionary heuristics and an algorithm for the two-stage
assembly scheduling problem to minimize makespan with setup times, International
Journal of Production Research, 44(22), 4713–4735, 2006.

Alp, O., Erkut, E. and Drezner Z., An efficient genetic algorithm for the p-median problem,
Annals of Operations Research, 122:21–42, 2003.

Beasley JE. OR-Library: “distributing test problems by electronic mail”, Journal of the
Operational Research Society, 41(11), 1069–72, 1990.

Daskin M.S., Network and Discrete Location: Models, Algorithms and Applications. John
Wiley and Sons, Inc., New York, 1995.

Camci, F., Comparison of genetic and binary particle swarm optimization algorithms on
system maintenance scheduling using prognostics information, Engineering
Optimization,41:2, pp.119 -136, 2009

Cornuéjols G., Nemhauser G. L., and Wolsey L. A., The uncapacitated facility location
problem, in Discrete Location Theory, pp. 119–171, John Wiley & Sons, New York,
NY, USA, 1990.

Correa, E. S. Steiner, M. T. A. Freitas, A. A. and Carnieri, C., A genetic algorithm for
solving a capacitated p-median problem. Numerical Algorithms, 35:373–388, 2004

Crainic, T. G. Gendreau, M. Hansen, P. and Mladenovi´c, N. Parallel variable
neighborhood search for the p-median. Les Cahiers du GERAD, G-2003-4, 2003

Crainic, T. G. Gendreau, M. Hansen, P. and N. Mladenovi´c. Cooperative parallel variable
neighborhood search for the p-median. Journal of Heuristics, 10(3):293–314. 2004

Croes, G.A., A Method for Solving Traveling-Salesman Problems, Operations Research 6,
791-812, 1958

36

Domínguez E. and Muñoz, J., A neural model for the p-median problem. Computers &
Operations Research 35, 404 – 416, 2008.

Eberhart, R.C., and Kennedy, J., A new optimizer using particle swarm theory, Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, Nagoya,
Japan, 39-43, 1995.

Guner A.R., Sevkli M., A Discrete Particle Swarm Optimization Algorithm for
Uncapacitated Facility Location Problem, Journal of Artificial Evolution and
Applications. No. 10, pp. 1687-6229, 2008.

Järvinen, P., Rajala, J. and Sinervo, H. A branch-and-bound algorithm for seeking the p-
median, Operations Research, 20(1): pp.173–178, 1972.

Kariv, O., Hakimi, S.L., An algorithmic approach to network location problems. Part 1.
The p-centers. SIAM Journal on Applied Mathematics 37, 513–538, 1979.

Kariv, O., Hakimi, S. L., An algorithmic approach to network location problems. II. The p-
medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979

Kennedy, J. and Eberhart, R.C., A discrete binary version of the particle swarm algorithm.
Proceedings of the International Conference on Systems, Man, Cybernetics. Piscataway,
NJ, 4104–4109, 1997.

Kennedy, J., Eberhart, R.C. and Shi, Y. Swarm Intelligence, San Mateo, Morgan
Kaufmann, CA, USA, 2001.

Kirkpatrick, S., Gerlatt, C. D. Jr., and Vecchi, M.P., Optimization by Simulated Annealing,
Science 220, 671-680, 1983

Kuehn, A.A. and Hamburger, M.J.. A heuristic program for locating warehouses.
Management Science, 9(4):643–666, 1963

Levanova, T. V. and Loresh, M. A. Algorithms of ant system and simulated annealing for
the p-median problem. Automation and Remote Control, 65(3):431–438, 2004.

Lin, S., Computer Solutions of the Travelling Salesman Problem, Bell Systems Technical
Journal 44, 2245–2269, 1965

Lorena, L. A. N. and Furtado, J. C.. Constructive genetic algorithm for clustering
problems. Evolutionary Computation, 9(3):309–328, 2001.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A.H. and Teller, E.,
Equations of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087-
1092, 1958.

Mirchandani P.B., Francis R.L., Discrete Location Theory, John Wiley & Sons, 1990.

37

Mladenović Nenad, Brimberg Jack, Hansen Pierre, Moreno-Pérez Jose A., The p-median
problem: A survey of metaheuristic approaches. European Journal of Operational
Research 179: 927–939, 2007.

Murray A.T, Church R.L. Applying simulated annealing to location-planning models.
Journal of Heuristics, 2:31–53. 1996.

Ride National Laboratory, http://www.phy.ornl.gov, 1996

Onwubolu, G.C. and M. Clerc. Optimal Operating Path for Automated Drilling Operations
by a New Heuristic Approach Using Particle Swarm Optimization. International Journal
of Production Research 42(3), 473-491, 2004

Pan, Q-K., Tasgetiren, M.F., and Liang,Y-C, A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem, Computers & Operations
Research, 35(9), 2807-2839, 2008.

Pincus, M., A Monte Carlo Method for the Approximate Solution of Certain Types of
Constrained Optimization Problems, Oper. Res. 18, 1225-1228, 1970

ReVelle, C. and R. Swain. Central Facilities Location. Geographical Analysis 2, 30–42,
(1970).

Sobolev Institute of Mathematics, http://www.math.nsc.ru/AP/benchmarks/english.html,
2009

Sridharan R., The capacitated plant location problem. European Journal of Operational
Research. v. 87 1995, pp. 203–213, 1995

Tasgetiren M.F, Liang, Y-C, Sevkli, M., Gencyilmaz, G. Particle swarm optimization and
differential evolution for the single machine total weighted tardiness problem,
International Journal of Production Research, 44(22), 4737–4754, 2006

Tasgetiren, M.F., Liang, Y-C., Sevkli, M. and Gencyilmaz, G, Particle Swarm Optimization
Algorithm for Makespan and Total Flowtime Minimization in Permutation Flowshop
Sequencing Problem, European Journal of Operational Research 177 (3), 1930-1947,
2007.

Teitz, M. B. and Bart, P., Heuristic methods for estimating the generalized vertex median
of a weighted graph, Operations Research, 16(5):955–961, 1968.

Tseng, C-T. and Liao, C-J. A particle swarm optimization algorithm for hybrid flow-shop
scheduling with multiprocessor tasks, International Journal of Production Research,
46(17), 4655–4670, 2008.

38

Uysal, H., A variable neighborhood search algorithm for identical parallel machine
problem, M.S. Thesis, Fatih University, 2006.

Van den Bergh, F. and A.P. Engelbecht. Cooperative Learning in Neural Networks Using
Particle Swarm Optimizers. South African Computer Journal 26, 84-90, 2000

39

APPENDIX A

DATASET

Here shown 5 example problems of dataset used from OR Library (Beasley, 1990) for

testing the proposed algorithms.

Data are shown in the following format:

Two nodes are given a and b separated by sign “–”the distance between two nodes is

shown just after them.

pmed1: n-100 edge-200 optimal-5819
1-2 30 2-3 46 3-4 1 4-5 28 5-6 31
6-7 69 7-8 39 8-9 14 9-10 84 10-11 59
11-12 10 12-13 28 13-14 63 14-15 9 15-16 100
16-17 98 17-18 70 18-19 94 19-20 22 20-21 14
21-22 87 22-23 82 23-24 55 24-25 2 25-26 32
26-27 77 27-28 95 28-29 29 29-30 59 30-31 91
31-32 89 32-33 50 33-34 40 34-35 88 35-36 94
36-37 60 37-38 21 38-39 89 39-40 47 40-41 63
41-42 45 42-43 46 43-44 24 44-45 77 45-46 60
46-47 45 47-48 50 48-49 93 49-50 22 50-51 84
51-52 16 52-53 85 53-54 68 54-55 93 55-56 37
56-57 26 57-58 29 58-59 38 59-60 10 60-61 32
61-62 67 62-63 66 63-64 52 64-65 19 65-66 39
66-67 12 67-68 86 68-69 72 69-70 73 70-71 65
71-72 2 72-73 8 73-74 96 74-75 43 75-76 39
76-77 61 77-78 90 78-79 8 79-80 58 80-81 91
81-82 58 82-83 13 83-84 79 84-85 59 85-86 28
86-87 46 87-88 24 88-89 63 89-90 81 90-91 14
91-92 52 92-93 64 93-94 75 94-95 71 95-96 51
96-97 75 97-98 57 98-99 31 99-100 49 100-1 88
80-5 90 85-69 51 20-19 30 85-13 22 81-95 54
58-73 37 64-51 89 39-76 89 13-8 77 91-76 51
52-95 96 91-75 33 80-91 84 35-80 46 54-86 35
30-70 5 19-7 9 74-53 50 11-37 4 19-92 70

40

62-94 96 60-52 34 24-59 63 42-45 68 19-60 53
60-27 86 15-50 31 38-18 27 81-30 99 1-29 6
22-52 11 54-59 75 5-7 8 41-44 80 41-76 42
44-12 56 61-65 73 20-93 35 9-99 28 45-68 19
16-79 96 13-42 3 68-4 28 58-17 60 21-81 34
35-7 7 21-14 82 26-32 26 6-63 83 31-69 53
91-78 32 45-59 33 42-57 5 8-53 66 65-94 61
94-90 63 73-33 88 39-21 59 42-85 34 30-57 37
34-94 52 62-38 56 26-29 20 48-98 53 4-33 45
31-63 82 8-52 31 37-81 14 50-27 16 27-14 48
88-33 8 56-30 76 87-91 17 33-49 77 70-30 74
25-99 19 95-30 96 14-85 90 49-8 96 96-5 87
73-4 41 99-32 35 95-1 31 99-3 49 18-75 100
58-47 68 35-60 5 38-16 70 54-40 52 95-55 47
54-17 45 9-83 75 97-66 81 9-48 92 90-95 96
4-27 27 75-22 48 62-7 55 79-3 57 15-69 46

pmed2: n-100 edge-200 optimal-4093
1-2 24 2-3 49 3-4 72 4-5 46 5-6 22
6-7 86 7-8 7 8-9 52 9-10 48 10-11 72
11-12 10 12-13 33 13-14 50 14-15 98 15-16 96
16-17 39 17-18 89 18-19 80 19-20 77 20-21 3
21-22 63 22-23 45 23-24 8 24-25 84 25-26 22
26-27 9 27-28 71 28-29 99 29-30 77 30-31 65
31-32 71 32-33 18 33-34 81 34-35 67 35-36 11
36-37 21 37-38 85 38-39 62 39-40 36 40-41 1
41-42 52 42-43 100 43-44 25 44-45 43 45-46 61
46-47 41 47-48 72 48-49 93 49-50 45 50-51 100
51-52 27 52-53 27 53-54 76 54-55 49 55-56 71
56-57 24 57-58 8 58-59 91 59-60 81 60-61 100
61-62 83 62-63 27 63-64 58 64-65 98 65-66 50
66-67 5 67-68 26 68-69 94 69-70 100 70-71 19
71-72 58 72-73 27 73-74 94 74-75 64 75-76 48
76-77 19 77-78 83 78-79 87 79-80 94 80-81 41
81-82 1 82-83 67 83-84 37 84-85 69 85-86 52
86-87 83 87-88 6 88-89 78 89-90 1 90-91 57
91-92 60 92-93 22 93-94 99 94-95 25 95-96 11
96-97 11 97-98 54 98-99 69 99-100 7 100-1 94
2-83 2 35-61 56 32-95 37 70-58 18 14-73 96
97-55 36 49-54 84 37-1 39 22-77 16 3-74 98
28-60 77 11-14 94 2-36 47 20-58 42 3-25 50
83-96 40 97-29 87 52-33 41 37-72 38 32-44 53
68-14 80 60-18 54 45-78 56 7-86 36 55-23 57
89-88 39 37-18 80 83-48 43 56-3 30 19-50 94
54-99 11 88-50 46 36-16 14 22-77 17 37-16 12
80-79 56 84-96 42 69-89 64 84-37 40 21-22 79
65-23 45 22-83 95 46-94 75 14-21 50 84-44 41

41

64-71 15 62-84 97 67-30 8 34-38 56 58-91 2
57-90 98 79-88 80 96-5 40 61-94 99 98-79 77
5-51 80 28-41 64 18-47 78 53-97 76 67-1 48
23-71 9 52-41 25 11-50 94 18-24 26 6-27 5
18-53 71 40-73 48 51-64 42 50-72 4 18-86 85
91-2 7 12-63 23 2-56 85 19-36 14 53-24 68
73-40 37 93-6 5 98-73 3 51-43 57 63-11 79
85-51 27 10-31 30 42-4 15 19-65 79 98-20 32
99-14 91 67-30 15 8-55 46 91-12 63 10-33 54
72-48 93 64-30 83 23-37 2 87-16 21 81-73 86
44-26 55 81-12 32 54-26 82 79-88 61 34-67 63

pmed3: n-100 edge-200 optimal-4250
1-2 77 2-3 62 3-4 90 4-5 22 5-6 17
6-7 19 7-8 11 8-9 4 9-10 3 10-11 16
11-12 67 12-13 35 13-14 21 14-15 14 15-16 43
16-17 11 17-18 91 18-19 55 19-20 33 20-21 80
21-22 90 22-23 81 23-24 91 24-25 23 25-26 49
26-27 62 27-28 96 28-29 25 29-30 92 30-31 77
31-32 41 32-33 40 33-34 97 34-35 1 35-36 14
36-37 18 37-38 69 38-39 72 39-40 17 40-41 56
41-42 94 42-43 78 43-44 25 44-45 99 45-46 51
46-47 24 47-48 33 48-49 47 49-50 87 50-51 71
51-52 88 52-53 60 53-54 96 54-55 10 55-56 34
56-57 56 57-58 56 58-59 99 59-60 35 60-61 86
61-62 85 62-63 18 63-64 29 64-65 48 65-66 82
66-67 43 67-68 59 68-69 8 69-70 10 70-71 58
71-72 62 72-73 49 73-74 94 74-75 84 75-76 69
76-77 5 77-78 36 78-79 17 79-80 47 80-81 88
81-82 39 82-83 84 83-84 56 84-85 82 85-86 98
86-87 93 87-88 91 88-89 73 89-90 65 90-91 26
91-92 73 92-93 19 93-94 30 94-95 76 95-96 31
96-97 37 97-98 46 98-99 9 99-100 39 100-1 66
65-66 39 61-6 96 15-81 44 95-43 37 13-57 53
78-7 7 32-26 15 14-66 49 25-44 42 80-84 33
79-58 99 25-59 38 4-37 32 1-51 49 54-20 5
39-18 87 74-8 71 69-3 64 13-30 38 1-66 62
48-72 30 33-31 57 79-94 79 35-92 54 77-69 28
41-49 88 82-44 18 36-24 6 47-41 26 4-31 53
84-56 42 2-37 75 43-3 55 58-57 3 26-42 51
80-62 32 50-70 98 55-60 87 9-77 10 45-23 73
39-83 95 1-35 71 80-26 82 81-26 57 91-37 89
83-42 53 21-84 33 45-21 14 52-23 74 88-99 95
18-90 84 99-52 43 2-45 61 74-58 11 41-33 21
47-33 31 21-33 30 80-10 11 58-99 93 49-56 79
45-25 58 40-82 76 89-73 32 44-96 46 74-5 12
96-14 89 2-73 67 54-4 80 39-68 34 52-26 82

42

24-28 37 66-40 49 40-48 45 17-61 72 73-63 45
70-96 87 68-53 34 59-26 67 46-30 85 17-90 76
45-85 82 95-60 90 96-65 59 94-26 30 69-20 67
67-52 54 12-44 1 85-36 11 42-88 97 76-62 1
91-99 49 80-76 45 55-95 27 66-59 44 81-59 36
23-56 26 13-85 79 48-96 12 73-85 31 22-27 9

pmed4: n-100 edge-200 optimal-3034
1-2 45 2-3 23 3-4 96 4-5 59 5-6 24
6-7 78 7-8 24 8-9 70 9-10 5 10-11 66
11-12 93 12-13 31 13-14 67 14-15 89 15-16 93
16-17 22 17-18 83 18-19 83 19-20 89 20-21 59
21-22 11 22-23 85 23-24 24 24-25 94 25-26 79
26-27 3 27-28 53 28-29 62 29-30 36 30-31 77
31-32 14 32-33 65 33-34 13 34-35 72 35-36 44
36-37 84 37-38 17 38-39 11 39-40 98 40-41 70
41-42 80 42-43 61 43-44 35 44-45 5 45-46 51
46-47 35 47-48 4 48-49 8 49-50 43 50-51 19
51-52 63 52-53 46 53-54 97 54-55 73 55-56 23
56-57 87 57-58 37 58-59 15 59-60 28 60-61 9
61-62 78 62-63 27 63-64 92 64-65 81 65-66 82
66-67 30 67-68 67 68-69 88 69-70 54 70-71 76
71-72 16 72-73 60 73-74 95 74-75 10 75-76 86
76-77 76 77-78 9 78-79 82 79-80 94 80-81 6
81-82 72 82-83 84 83-84 41 84-85 80 85-86 31
86-87 29 87-88 24 88-89 76 89-90 84 90-91 35
91-92 71 92-93 28 93-94 57 94-95 76 95-96 50
96-97 25 97-98 92 98-99 44 99-100 46 100-1 10
96-48 8 15-22 31 44-17 76 43-7 56 90-46 49
19-98 62 24-9 68 55-90 80 12-62 70 8-98 38
48-89 58 86-81 76 94-11 93 2-31 46 64-34 54
27-32 33 69-74 68 3-14 62 74-77 27 97-39 57
8-22 56 96-2 33 16-27 24 54-22 53 39-63 57
34-46 12 76-24 48 89-20 57 92-57 80 10-9 17
91-10 86 66-26 96 13-19 60 7-70 38 54-93 98
38-89 18 78-23 64 85-9 3 44-90 31 92-17 55
73-8 9 69-87 18 87-52 33 21-43 20 44-55 31
77-21 74 89-23 77 40-55 7 95-73 96 88-68 87
9-88 59 22-81 24 62-72 70 76-77 19 95-62 70
76-98 14 32-7 67 47-69 75 12-7 91 23-14 63
63-62 42 71-57 60 23-26 62 99-55 10 11-3 71
71-77 99 67-77 84 52-38 81 63-86 45 17-57 76
26-29 36 72-88 37 66-24 48 48-47 15 83-42 99
87-78 77 55-4 57 15-89 31 99-19 24 69-2 97
48-20 63 91-64 33 26-54 61 62-1 89 83-8 67
81-31 71 26-77 36 18-22 28 88-61 73 23-43 70
81-89 91 94-74 54 26-58 22 95-88 83 52-47 35

43

19-55 48 12-3 68 22-36 67 68-58 18 48-88 58

pmed5: n-100 edge-200 optimal-1355
1-2 38 2-3 71 3-4 66 4-5 73 5-6 51
6-7 66 7-8 28 8-9 90 9-10 82 10-11 48
11-12 97 12-13 75 13-14 44 14-15 90 15-16 44
16-17 70 17-18 65 18-19 24 19-20 40 20-21 79
21-22 37 22-23 70 23-24 8 24-25 54 25-26 100
26-27 50 27-28 43 28-29 23 29-30 83 30-31 5
31-32 35 32-33 16 33-34 20 34-35 79 35-36 74
36-37 87 37-38 69 38-39 21 39-40 51 40-41 15
41-42 24 42-43 80 43-44 75 44-45 38 45-46 81
46-47 87 47-48 34 48-49 39 49-50 95 50-51 39
51-52 9 52-53 67 53-54 65 54-55 30 55-56 5
56-57 35 57-58 38 58-59 63 59-60 29 60-61 43
61-62 48 62-63 59 63-64 69 64-65 11 65-66 2
66-67 95 67-68 22 68-69 96 69-70 85 70-71 95
71-72 10 72-73 45 73-74 96 74-75 63 75-76 99
76-77 95 77-78 22 78-79 65 79-80 52 80-81 81
81-82 89 82-83 37 83-84 75 84-85 70 85-86 59
86-87 84 87-88 81 88-89 4 89-90 99 90-91 93
91-92 75 92-93 29 93-94 6 94-95 73 95-96 91
96-97 15 97-98 53 98-99 85 99-100 71 100-1 17
78-97 3 16-69 19 3-99 50 44-5 3 76-28 78
49-50 9 57-52 23 88-24 5 23-86 33 59-15 84
81-64 72 27-36 32 80-49 81 78-59 45 52-66 77
43-33 62 94-3 46 87-19 14 57-10 53 54-99 67
47-73 70 72-61 51 87-46 37 8-29 86 6-68 37
98-41 68 84-91 6 36-3 68 43-10 40 27-81 6
59-8 73 79-74 84 15-96 42 47-75 7 69-66 65
69-15 11 61-41 19 63-72 36 93-26 82 38-63 40
97-22 14 36-7 81 10-51 12 34-87 93 35-75 19
14-12 50 48-81 2 97-52 56 1-60 56 62-94 6
76-74 20 67-27 47 32-45 62 79-16 72 80-49 52
66-40 8 87-83 16 79-49 7 99-93 24 77-14 2
48-14 58 75-44 67 5-96 86 1-69 84 56-69 94
36-11 59 82-36 63 52-96 10 51-90 1 15-60 93
27-29 99 69-72 11 60-27 27 23-15 53 55-10 33
46-97 3 99-48 8 32-60 19 14-44 15 74-88 3
16-97 38 68-69 1 22-92 48 34-51 48 68-25 84
36-54 5 40-57 60 15-7 24 74-78 42 58-57 77
2-94 5 17-41 10 26-36 83 16-48 94 77-83 46
35-68 32 90-59 51 42-45 80 11-19 49 52-79 59

44

APPENDIX B

EXAMPLE OF RUNS

Example of 5 generations for first replication for the problem pmed1.txt where n=100

number of edges is 200, p=5, popsize=2*n,

Replication.........=1
Generation..........=0
Globalbest..........=6300.00
Optimum.............=5819
Weight..............=0.500
Problem.............=pmed1.txt

Replication.........=1
Generation..........=1
Globalbest..........=6300.00
Optimum.............=5819
Weight..............=0.500
Problem.............= pmed1.txt

Replication.........=1
Generation..........=2
Globalbest..........=6285.00
Optimum.............=5819
Weight..............=0.500
Problem.............= pmed1.txt

Replication.........=1
Generation..........=3
Globalbest..........=6162.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

45

Replication.........=1
Generation..........=4
Globalbest..........=6056.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

Replication.........=1
Generation..........=5
Globalbest..........=6056.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

Replication.........=1
Generation..........=6
Globalbest..........=5975.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

Replication.........=1
Generation..........=7
Globalbest..........=5926.00
Optimum.............=5819
Weight..............=0.498
Problem.............= pmed1.txt

Replication.........=1
Generation..........=8
Globalbest..........=5926.00
Optimum.............=5819
Weight..............=0.498
Problem.............= pmed1.txt

Replication.........=1
Generation..........=9
Globalbest..........=5926.00
Optimum.............=5819
Weight..............=0.498
Problem.............= pmed1.txt

PAGE

PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

by

Ruslan Mamedsaidov

July 2009

PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

by

Ruslan Mamedsaidov

A thesis submitted to

the Graduate Institute of Science and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial Engineering

July 2009

Istanbul, Turkey

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Assist. Prof. Mehmet SEVKLI

Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Mehmet SEVKLI

Supervisor

Examining Committee Members

Assist. Prof. Mehmet SEVKLI

Assist. Prof. Fatih CAMCI

Assist. Prof. Fahrettin ELDEMIR

It is approved that this thesis has been written in compliance with the formatting rules laid down by the Graduate Institute of Sciences and Engineering.

 Assoc. Prof. Dr. Nurullah ARSLAN

 Director

Date

July 2009

PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

Ruslan Mamedsaidov

M. S. Thesis – Industrial Engineering

July 2009

Supervisor: Assist. Prof. Mehmet Şevkli

Abstract

In this work, a discrete particle swarm optimization algorithm (DPSO) is proposed for the p-median problem. Although the algorithm has all major characteristics of the classical particle swarm optimization (PSO), the search strategy of the algorithm is different. The algorithm is applied to the p-median problem with the objective of minimizing distance between demand points and facilities. A novel proposed continuous particle swarm optimization (NCPSO) algorithm for p-median problem is introduced as well. The results of both algorithms are compared against each other. And the performance of proposed DPSO is compared with against other algorithms in literature, Neural model, Reduced Variable Neighborhood Search and Simulated Annealing. The experiments have shown that the proposed algorithm results in better performance.

Keywords: Swarm Intelligence, Particle Swarm Optimization, P-Median Problem, NP-hard.

P-MEDİAN PROBLEM İÇİN PARÇACIK SÜRÜ OPTİMİZASYONU

Ruslan Mamedsaidov

Yüksek Lisans Tezi – Endüstri Mühendisliği

Temmuz 2009

Tez Yöneticisi: Yrd. Doç. Dr. Mehmet Şevkli

ÖZ

Bu tezde, p-median problem için yeni bir parçacık sürü optimizasyonu (DPSO) önerilmiştir. Önerilen algoritmada klasik Parçacık Sürüsü Optimizationunun (PSO) bütün karakteristikleri olmasına rağmen, algoritmanın arama stratejisi farklıdır. Algoritma, talep noktaları ve tesislerin arasında mesafeyi en aza indirme amacı ile p-median problemine uygulanmıştır. Bunun dışında literatürde bulunan Sürekli Parçacık Sürü optimizasyonundan farklı bir Sürekli Parçacık Sürü optimizasyonunu önerilmiştir. Önerilen iki algoritmanın sonuçları literatürde bulunan başka algoritmaların sonuçları ile karşılaştırılmış ve daha iyi olduğu görülmüştür.

Anahtar Kelimeler: Sürü Zekası, Parçacık Sürü Optimizasyonu, p-Median Problemi, NP-Zor

To my Family,

Acknowledgment

I express sincere appreciation to Assist Prof. Mehmet ŞEVKLİ for his guidance and insight throughout the research.

Thanks go to Assist. Prof. Fahrettin ELDEMİR, Assist. Prof. Fatih Camcı and PhD. Student Recep Kızılaslan for their valuable suggestions and comments.

I express my thanks and appreciation to my family for their understanding, motivation and patience. Lastly, but in no sense the least, I am thankful to all colleagues and friends who made my stay at the university a memorable and valuable experience.

Table of contests

1Chapter 1 Introducıon

11.1. Discrete Location Problems

21.1.1. Uncapacitated Facility Location Problem

21.1.2. Capacitated Facility Location Problem

41.1.3. Multi Stage Uncapacitated Facility Location Problem

41.1.4. p-Center Problem

51.2. The Particle Swarm Optimization

61.2.1. Discrete particle swarm optimization

10Chapter 2 The P-Median Problem

102.1. Basic Problem Definition

112.2. Literature review

13Chapter 3 Heuristic Algorithms

133.1. Proposed Discrete Particle Swarm Optimization Algorithm

153.2. Proposed Continuous Particle Swarm Optimization Algorithm

163.3. Local Search

173.4. Variable Neighborhood Search Algorithm

183.4.1. Reduced Variable Neighborhood Search

193.5. Simulated Annealing

20Chapter 4 Implementation and Experimental Results

214.1. Comparison of DPSO to neural model

234.2. Comparison of DPSO to NCPSO

254.3. Comparison of DPSO to RVNS for 1000 generations

274.4. Comparison of DPSO to RVNS for 5000 generations

294.5. Comparison of DPSO to Simulated Annealing for 1000 generations

314.6. Comparison of DPSO to Simulated Annealing for 5000 generations

33Chapter 5 Conclusion

35References

39Appendix A Dataset

44Appendix B Example of runs

list of Tables

16Table 3.1: Deriving open facility vector from position

16Table 3.2: Sequence of facilities opened derived from Open Facilities Vector (Yi)

22Table 4.1 proposed DPSO -L+ and NA-L+ performances for OR Library test problems

24Table 4.2 proposed DPSO -L+ and NCPSO performances for OR Library test problems

26Table 4.3 Comparison of DPSO to RVNS for 1000 generations

28Table 4.4 Comparison of DPSO to RVNS for 5000 generations

30Table 4.5 Comparison of DPSO to Simulated Annealing for 1000 generations

32Table 4.6 Comparison of DPSO to Simulated Annealing for 5000 generations

list of Figures

4Figure 1.1 Hierarchical multi stage production system. (Sobolev Institute of Mathematics, 2009)

9Figure 1.2 Individual generation in proposed algorithm (Afshinmanesh et al., 2005)

15Figure 3.1 Pseudo-code for the DPSO algorithm

17Figure 3.2 Diversification by shake function

18Figure 3.3 Steps of the VNS procedure

Chapter 1

Introducıon

1.1. Discrete Location Problems

Discrete Optimization has set up as an important component in modern applied mathematics. Many problems from business and industry can be modeled as discrete optimization problems. Discrete location problems typically involve a finite set of sites at which supply points can be located, and a finite set of clients to be fulfilled by the supply points which demands for service or good. The most well known discrete location problems are the Uncapacitated (and Capacitated) Facility Location Problem, Multi Stage Uncapacitated Facility Location Problem. Evidently many extensions of these basic location problems have been developed depending on the objective function. We want to state that the main differentiator in the most classical location models is the objective function. A great variety of objective functions have been considered, for instance a median objective where the task is to minimize the sum of the costs of fulfilling all the demand requests from the clients. The center objective is to minimize the maximum cost of fulfilling all the demand requests from the clients, using the sites chosen. The convex combination of the above mentioned median and center objectives is considered as well and can be called as a centdian objective where the aim is to keep both the average cost behavior as well as the highest cost in balance. So the well known p-median Problem and p-center Problem are defined. Below we are going to show briefly some of the Discrete Location Problems.

1.1.1. Uncapacitated Facility Location Problem

Simple Plant Location Problem is another title for Uncapacitated Facility Location Problem. It is assumed that in Uncapacitated Facility Location Problem given a set I ={1…N} potential facility locations by providing some uniform product. A facility can be opened in any location i

[image: image1.wmf]Î

I, opening a facility at location i has nonnegative cost as well as the transportation cost of satisfying the customer requirements from a facility. Each open facility can provide an unlimited amount of products.

Let a set J ={1…M} assign customers that require service. For each pair (i, j) is given the process or transportation costs gij

[image: image2.wmf]³

0. The goal is to determine a subset of the set of potential facility locations

[image: image3.wmf],

SIS

Í¹Æ

, at which to open facilities and an assignment of all clients to these facilities so as to minimize the overall total cost. The problem can be written as the following:

[image: image4.wmf](

)

I

S

J

j

S

i

S

i

i

ij

C

S

F

g

Í

Î

Î

Î

®

+

=

å

å

min

min

1.1

Stated problem is the generalization of the well-known set covering problem and, therefore, it is NP-hard problem (G. Cornuéjols et al, 1990). Exact algorithms, approximation algorithms with constant performance guarantee, Lagrangian heuristics, Particle Swarm Optimization (Guner and Sevkli, 2008) and randomized iteration algorithms of local search were developed for solving simplest location problem. Polynomially solvable classes of problem were found. The reader can find the review of results for this problem, for example, in (Mirchandani et al. 1990).

1.1.2. Capacitated Facility Location Problem

Capacitated Facility Location Problem (CFLP) is generalization of the Uncapacitated Facility Location Problem. The main differentiator is the very important assumption that In contrast to Uncapacitated Facility Location Problem we now suppose each facility can provide a limited number of production. And although mathematical models of those problems do not vary too much, solving methods for CFLP are more difficult. There has been done much related to this problem. (Sridharan R, 1995)

Now we describe the mathematical model as integer programming problem. Let a set I={1,..., I} give potential facility locations by providing some uniform product. The number ci 0 is the opening cost of facility at location i

[image: image5.wmf]Î

I , Vi

[image: image6.wmf]³

0 is the maximum value of production the facility can provide.

A set J ={1,…,J} assign customers that require service. For each pair i,j gij

[image: image7.wmf]³

0 is the production and transportation costs and pij

[image: image8.wmf]³

0 is a value of product from facility i needed to client j.

Let us define the following notations:

[image: image9.wmf]1

0

i

iffacilityiisopened

y

otherwise

ì

=

í

î

1.2

[image: image10.wmf]1,

0

ij

ifclientjisservicedbyfacilityi

x

otherwise

ì

=

í

î

1.3

Then the Capacitated Facility Location Problem may be written as:

[image: image11.wmf],,

ijii

jJ

pxVyiI

Î

£Î

å

1.4

[image: image12.wmf]min

iiijij

iIiIjJ

cygx

ÎÎÎ

ìü

+

íý

îþ

ååå

1.5

[image: image13.wmf]1,,

ij

iJ

xjJ

Î

=Î

å

1.6

[image: image14.wmf]{

}

, 0, 1,,

iji

xyiIjJ

ÎÎÎ

1.7

1.1.3. Multi Stage Uncapacitated Facility Location Problem

In the Multi Stage Uncapacitated Facility Location Problem we are given a set of facilities and a set of customers. Each customer must be serviced by a sequence of different facilities. These sequences are defined by hierarchy of production and distribution system and can be presented as facility paths. The set of admissible facility paths is given. Each facility has fixed cost. Each customer has transportation costs for servicing by the facility paths. The problem is to select facilities in order to service the customers with minimal total cost.

Below we present an illustrated example of hierarchical multi stage production system. A feasible solution of the problem is marked in black.

[image: image15.png]

Figure 1.1 Hierarchical multi stage production system. (Sobolev Institute of Mathematics, 2009)

1.1.4. p-Center Problem

The p-center problem, in other words the minimax problem, aims to find the location of p number of facilities (centers) on a network so that the maximum distance traveled from each customer (demand point) to its nearest facility minimized. (Daskin, 1995; Kariv and Hakimi, 1979a). This problem may address, for instance, the location of public facilities, schools, emergency services, where the generally accepted objective is to design a system so that no customer has to travel too far (or each customer could be reached in a reasonable amount of time).

In this work we concentrated much more on the problem which can be described as a minisum, the p-median problem.

1.2. The Particle Swarm Optimization

Particle swarm optimization (PSO) is based on the metaphor of social interaction and communication among different spaces in nature, such as bird flocking and fish schooling. It is different from other evolutionary methods in a way that it does not use the genetic operators (such as crossover and mutation), and the members of the entire population are maintained through out the search procedure. Thus, information is socially shared among individuals to direct the search towards the best position in the search space. In a PSO algorithm, each member is called a particle, and each particle moves around in the multi-dimensional search space with a velocity constantly updated by the particle’s experience, the experience of the particle’s neighbors, and the experience of the whole swarm. PSO was first introduced to optimize various continuous nonlinear functions by (Eberhart and Kennedy, 1995). PSO has been successfully applied to a wide range of applications such as automated drilling (Onwubolu and Clerc, 2004), neural network training (Van den Bergh and Engelbecht, 2000), scheduling problems (Tasgetiren et. al., 2006), (Tseng and Liao, 2008), (Allahverdi and Al-Anzi, 2006), (Tasgetiren et. al., 2007), and (Pan et al., 2008), power and voltage control (Yoshida, 2000), and task assignment (Salman, 2003). The PSO algorithm was successfully applied to the similar problem as p-median problem which is Uncapacitated Facility Location Problem by (Guner and Sevkli, 2008). More information about PSO can be found in (Kennedy et al. 2001).

In PSO, each single solution, called a particle, is considered as an individual, the group becomes a swarm (population) and the search space is the area to explore. Each particle has a fitness value calculated by a fitness function, and a velocity to fly towards the optimum. All particles fly across the problem space following the particle that is nearest to the optimum. PSO starts with an initial population of solutions, which is updated iteration-by-iteration. The principles that govern PSO algorithm can be stated as follows:

· n dimensional position (

[image: image16.wmf])

,...,

,

(

2

1

in

i

i

i

x

x

x

X

=

) and velocity vector (

[image: image17.wmf])

,...,

,

(

2

1

in

i

i

i

v

v

v

V

=

for ith particle starts with a random position and velocity.

· Each particle knows its position and value of the objective function for that position. The best position of ith particle is donated as

[image: image18.wmf])

,...,

,

(

2

1

in

i

i

i

p

p

p

P

=

, and the best position of the whole swarm as,

[image: image19.wmf])

,...,

,

(

2

1

n

g

g

g

G

=

respectively. The PSO algorithm is governed by the following main equations:

[image: image20.wmf])

(

)

(

2

2

1

1

1

t

in

t

i

t

in

t

in

t

in

t

in

x

g

r

c

x

p

r

c

wv

v

-

+

-

+

=

+

,

1.8

[image: image21.wmf]t

in

t

in

t

in

x

v

x

+

=

+

+

1

1

1.9

where t represents the iteration number, w is the inertia weight which is a coefficient to control the impact of the previous velocities on the current velocity. c1 and c2 are called learning factors. r1 and r2 are uniformly distributed random variables in [0, 1].

The original PSO algorithm can optimize problems in which the elements of the solution space are continuous real numbers. The major obstacle for successfully applying PSO to combinatorial problems in the literature is due to its continuous nature. To remedy this drawback, (Tasgetiren et al. 2006, 2007) presented the smallest position value (SPV) rule. Another approach to tackle combinatorial problems with PSO is done by (Pan et al., 2008). They generate a similar PSO equation to update the particle’s velocity and position vectors using one and two cut genetic crossover operators.

1.2.1. Discrete particle swarm optimization

As we mentioned before Particle Swarm Optimization initially was introduced for Continuous problems. In (Kennedy and Eberhart, 1997) the modification to the algorithm was proposed by utilizing a probability value in a range of [0.0, 0.1] according to which the position vector takes discrete values, 0 or 1. The probability value was derived through the sigmoid function:

[image: image22.wmf](

)

(

)

(

)

i

i

V

V

s

-

+

=

exp

1

1

1.10

 The position of the vector value is set to 1 if the random number (from a uniform distribution between 0.0 and 1.0) less than the value of the sigmoid function or set to 0 otherwise or vice versa, as in Equation (1.11)

[image: image23.wmf](

)

î

í

ì

<

=

otherwise

V

s

r

X

i

i

0

1

1.11

Another Discrete Particle Swarm Optimization was proposed by (Afshinmanesh et al., 2005) where the idea is to implement artificial immune system within the PSO algorithm, i.e. the theory of negative selection was used for calculation of velocity vector and the movements of the particle in the proposed technique.

The process of generating a new position vector for a selected individual in a swarm is as follows: two different particles are generated out of the particle position vector and two “desired positions” (the global best position vector and individual’s best position vector). It is done using an XOR logical operation, as in Equations (11) and (12). Each bit in the developed vector shows whether this bit is different from the desired one or not (i.e. the Hamming distance). The “exploration ability”, diversity, has been added into the method by creating two random discrete vectors consisting 0 or 1 values that will be processed with previously generated vectors by an ‘and’ logical operation. The velocity vector, which shows which bits should be changed, is produced by performing an ‘or’ operation between the two vectors produced as a result of the ‘and’ operation in the previous step, as in Equation (13). As a result, a new position vector will be computed by applying an ‘xor’ logical operation to the velocity vector and the particle’s current position vector, shown in Equation (14). The negative selection was applied just at this stage for the reason that the number of ones and zeros are predefined. So if the number of ones exceeds predefined value the negative selection is applied to convert ones into zeros.

Application of Discrete Particle Swarm Optimization to condition-based maintenance and comparison with genetic algorithm was analyzed in (Camci, F., 2009)

Below is given the algorithm expressed in formulas and the illustration for the proposed algorithm.

[image: image24.wmf](

)

t

i

i

t

i

X

Pbest

XOR

d

,

,

,

1

=

1.12

[image: image25.wmf](

)

t

i

i

t

i

X

Gbest

XOR

d

,

,

,

2

=

1.13

[image: image26.wmf](

)

(

)

(

)

(

)

(

)

t

i

t

i

t

i

d

m

rand

AND

d

m

rand

AND

OR

V

,

,

1

,

2

,

,

1

,

1

,

,

1

=

+

1.14

[image: image27.wmf](

)

1

,

,

1

,

,

+

+

=

t

i

t

i

t

i

V

X

XOR

X

1.15

[image: image28.jpg]

Figure 1.2 Individual generation in proposed algorithm (Afshinmanesh et al., 2005)

Chapter 2

The P-Median Problem

2.1. Basic Problem Definition

P-median problem is a well known facility-location problem where the task is to allocate p facilities in a way that the total distance between n demand points and p facilities minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and Hakimi, 1979b).

Mathematical formulation of p-median problem is as follows, (ReVelle and Swain, 1970).

[image: image29.wmf]å

å

=

=

n

i

n

j

ij

ij

i

x

d

a

1

1

min

2.1

Subject to:

[image: image30.wmf]1

1

=

å

=

n

j

ij

x

,

i=1, 2, . . . , n,

2.2

[image: image31.wmf]j

ij

y

x

£

,

i, j=1, 2, . . . , n,

2.3

[image: image32.wmf]å

=

=

n

j

j

p

y

1

2.4

[image: image33.wmf]{

}

1

,

0

,

Î

j

ij

y

x

,

i, j=1, 2, . . . , n,

2.5

where

n = total number of nodes in the graph,

ai = demand of node i,

dij = distance from node i to node j,

p = number of facilities used as medians

ai, dij are positive real numbers,

		

[image: image34.wmf]î

í

ì

=

0

1

ij

x

		if node i is assigned to facility at point j,

		

		

		Otherwise

		

		

[image: image35.wmf]1

0

j

y

ì

=

í

î

		If facility is locate at point j,

		

		

		Otherwise

		

2.2. Literature review

P-median problem is a well known facility-location problem where the task is to allocate p facilities in a way that the distance between n demand points and facilities minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-bounded algorithms. Small size instances of p-median problem can be solved with reasonable computational time by exact algorithms such as branch-and-bound (Järvinen et al., 1972). Where the method works by finding (n – p) nodes thus leaving p-medians. However, as the problem size increases, the computation time of exact methods increases exponentially. On the other hand, heuristic algorithms generally have acceptable time and memory requirements, but do not guarantee optimal solution. That is, a feasible solution is obtained which is likely to be either optimal or near optimal. One of the first heuristics that was applied to the p-median problem is a greedy heuristic by (Kuehn and Hamburger, 1963), as well heuristic method proposed by Teitz and Bart is one of the oldest and most popular where an interchange algorithm is applied (Teitz and Bart, 1968).

The most popular Metaheuristics appeared in literature are, Genetic Algorithm where the gene of a chromosome consists of indexes of nodes that were selected for the solutions, (Alp et al., 2003). The population size in the introduced algorithm was presented as follows,

[image: image36.wmf](

)

(

)

d

d

S

n

p

n

P

þ

ý

ü

î

í

ì

ú

û

ù

ê

ë

é

*

=

ln

100

,

2

max

,

,

2.6

where,

[image: image37.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

p

n

C

S

 is number of all possible solutions to the problem and

[image: image38.wmf][

]

p

n

d

=

the rounded up density to the problem. According to the formula, the result of the max operator is at least two, guaranteeing that every gene appears at least twice in the initial population. This algorithm is simple, fast and generates excellent solutions. (Correa et al., 2006) proposed a genetic algorithm for capacitated p-median problem. (Lorena and Furtado, 2001) offered a genetic algorithm which differs from classical one where a dynamic population and two separate fitness functions are introduced. (Murray and Church, 1996), applied simulated annealing to location-planning models. And more recently (Levanova and Loresh, 2004) implemented the ant systems and simulated annealing algorithm to solve p-median problem. One of the most recent works is related to Variable Neighborhood Search where a new technique is proposed by (Crainic et al 2003, 2004) Cooperative Neighborhood VNS. More information about p-median problem can be found in (Mladenović Nenad et al. 2007).

Chapter 3

Heuristic Algorithms

3.1. Proposed Discrete Particle Swarm Optimization Algorithm

In proposed Discrete Particle Swarm Optimization algorithm (DPSO), the initial population is generated randomly. Initially, each individual with its position, and fitness value is assigned to its personal best (i.e., the best value of each individual found so far). The best individual in the whole swarm with its position and fitness value, on the other hand, is assigned to the global best (i.e., the best particle in the whole swarm). Then, the position of each particle is updated based on the personal best and the global best. These operations in proposed DPSO are similar to classical PSO algorithm. However, the search strategy of proposed DPSO is different. That is, each particle in the swarm moves based on the following equations.

		

[image: image39.wmf])

(

1

t

i

t

X

w

s

h

Å

=

[image: image40.wmf]b

×

=

+

w

w

t

1

[image: image41.wmf])

(

1

2

t

i

P

c

s

h

Å

=

[image: image42.wmf])

(

2

3

t

G

c

s

h

Å

=

[image: image43.wmf])

;

;

(

3

2

1

1

s

s

s

best

X

t

i

=

+

		3.1

At each iteration, the position vector of each particle, its personal best and the global best are considered. First of all, a random number of U(0,1) is generated to compare with the inertia weight to decide whether to apply Exchange function(

[image: image44.wmf]h

) to the particle or not.

Exchange function (

[image: image45.wmf]h

) implies the exchange of randomly chosen facility with another randomly chosen node. For instance, for the p-median problem of p=4, suppose a sequence of {5, 11, 17, 32} is a possible solution set. In order to apply Exchange function, we also need to derive two random numbers; one is for determining the facility to be changed and the other is for the node to be accepted as a new facility. Let’s say those numbers are 11 and 20 (that is, the node number 11 will not serve as a facility anymore and the node number 20 will be accepted as a new facility {5, 11, 17, 32}). The new sequence will be {5, 20, 17, 32}. Note that the order of the facilities shown in the solution set is not important. In other words the solution set can be shown in another way too {32, 20, 17, 5}.

If the random number chosen is less than the inertia weight, the particle is manipulated with this Exchange function, and the resulting solution, say s1, is obtained. Meanwhile, the inertia weight is discounted by a constant factor at each iteration, in order to tighten the acceptability of the manipulated particle for the next generation, that is, to diminish the impact of the randomly operated solutions on the swarm evolution.

The next step is to generate another random number of U(0,1) to be compared with c1, cognitive parameter, to make a decision whether to apply Exchange function to personal best of the particle considered. If the random number is less than c1, then the personal best of the particle undertaken is manipulated and the resulting solution is spared as s2. Likewise, a third random number of U(0,1) is generated for making a decision whether to manipulate the global best with the Exchange function. If the random number is less than c2, social parameter, then Exchange is applied to the global best to obtain a new solution of s3. Unlike the case of inertia weight, the values of c1 and c2 factors are not increased or decreased iteratively, but are fixed at 0.5. That means the probability of applying Exchange function to the personal and global bests remains the same. The new replacement solution is selected among s1, s2 and s3, based on their fitness values. This solution may not always be better than the current solution. This is to keep the swarm diverse. The convergence is traced by checking the personal best of each new particle and the global best. As it is seen, proposed equations have all major characteristics of the classical PSO equations. The following pseudo-code describes in detail the steps of the proposed DPSO algorithm.

		Begin

Initialize particles (population) randomly

For each particle

Calculate fitness value

Set to position vector and fitness value as personal best (Pit)

Select the best particle and its position vector as global best(Gt)

End

Do{

Update inertia weight

For each particle

Apply insert with the probability of inertia weight (s1)

Apply insert to (Pit) with the probability of c1 (s2)

Apply insert to (Gt) with the probability of c2 (s3)

Select the best one among the s1,s2 and s3

Update personal best (Pit)

End

Update global best (Gt)

}While (Maximum Iteration is not reached)

End

Figure 3.1 Pseudo-code for the DPSO algorithm

3.2. Proposed Continuous Particle Swarm Optimization Algorithm

In a proposed novel Continuous Particle Swarm Optimization algorithm (NCPSO), the operations are similar to classical PSO algorithm. However, the initialization of population strategy of NCPSO is different. The position and velocity vectors of initial population are generated randomly and each individual sorted according to its position vector ascendingly. And the first p nodes are opened as facilities to serve the demanding nodes. Initially, each individual with its position, and fitness value is assigned to its personal best (i.e., the best value of each individual found so far). The best individual in the whole swarm with its position and fitness value, on the other hand, is assigned to the global best (i.e., the best particle in the whole swarm). Then, all particles fly across the problem space following the particle that is nearest to the optimum as in the classical PSO algorithm.

Table 3.1: Deriving open facility vector from position

		ith Particle Vectors

		Particle Dimension (k)

		

		1

		2

		3

		4

		5

		Position Vector(Xi)

		1.8

		0.72

		-0.99

		3.01

		-5.45

		Open Facility Vector (Yi)

		0

		1

		1

		0

		1

Below it is shown how sequence is derived from the vector (Yi) which was derived from the Position Vector (Xi).

Table 3.2: Sequence of facilities opened derived from Open Facilities Vector (Yi)

		ith Particle Vectors

		Sequence for p=3

		

		1

		2

		3

		Sequence of opened facilities

		2

		3

		5

3.3. Local Search

Local search methods are important part of heuristic optimization which allows us to avoid the local minima. This method starts from some initial solution and iteratively tries to replace the current solution by a better solution in an appropriately defined neighborhood of the current solution. Alternatively, it is called neighborhood search algorithm. First applications of local search have been presented in the late fifties and the early sixties (Croes, 1958), (Lin, 1965).

The proposed local search method in DPSO is applied as, choosing a random facility in a solution set and changing with the demanding nodes which were not selected before in a solution set. However in NCPSO in spite of experimenting various local search methods it did not improve the performance of the algorithm, so we did not use any local search method in a NCPSO.

3.4. Variable Neighborhood Search Algorithm

VNS is one of the most recent metaheuristics developed in combinatorial optimization problem solving in an easier way. It is known as one of very well-known local search methods. VNS gets more attention day-by-day due to its ease of use and accomplishments in solving combinatorial optimization problems.

The VNS is a simple and effective search procedure that proceeds to a systematic change of neighborhood. An ordinary VNS algorithm gets an initial solution

[image: image46.wmf]S

x

Î

, where S is the whole set of search space, then manipulates it through a two nested loop in which the core one alters and explores via two main functions so called shake and local search. The outer loop works as a refresher reiterating the inner loop, while the inner loop carries the major search. Local search explores an improved solution within the local neighborhood, while shake diversifies the solution by switching to another local neighborhood.

[image: image47.png]

Figure 3.2 Diversification by shake function

The inner loop iterates as long as it keeps improving the solutions, where an integer, k, controls the length of the loop. Once an inner loop is completed, the outer loop re-iterates until the termination condition is met. Since the complementariness of neighborhood functions is the key idea behind VNS, the neighborhood structure should be chosen very rigorously in order to achieve an efficient VNS. (Uysal, H. 2006).

In order to develop an effective VNS algorithm, one needs two kinds of neighborhood functions: shake functions (

[image: image48.wmf])

(

x

N

s

k

) and local search functions (

[image: image49.wmf])

(

x

N

LS

l

). Each neighborhood function has a particular neighborhood structure. The neighborhood structures may be used more than one for each function (shake and local search) so as to achieve a valuable neighborhood change. For that purpose, the counters k (

[image: image50.wmf]max

1

k

k

£

£

) and l (

[image: image51.wmf]max

1

l

l

£

£

) are used for shake and local search functions respectively in order to ease switching from one to another neighborhood.

		Begin

Find an initial solution x

Do{

Shake Procedure: Generate at random a starting solution

[image: image52.wmf])

(

x

N

x

S

k

Î

¢

.

Local Search: Apply a local search from the starting solution x’

 using the base neighborhood structure

[image: image53.wmf])

(

x

N

LS

l

 until

 a local minimum

[image: image54.wmf])

(

x

N

x

LS

l

Î

¢

¢

 is found.

Improve or not: If x” is better than x, do x ← x’

}While (the stopping condition is not met)

End

Figure 3.3 Steps of the VNS procedure

The stopping condition may be a maximum CPU time allowed, a maximum number of iterations, or maximum number of iterations between two improvements.

One of the most recent works on Variable Neighborhood Search related to p-median problem where a new technique is proposed, Cooperative Neighborhood VNS (Crainic et al 2003, 2004).

3.4.1. Reduced Variable Neighborhood Search

Reduced VNS has the same analogy as the Basic VNS except that no Local Search procedure is applied. The Reduced VNS explores only randomly different neighborhoods. It can be faster than standard local search algorithms for reaching good quality solutions.

3.5. Simulated Annealing

As its name implies, the Simulated Annealing (SA) exploits an analogy between the way in which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) and the search for a minimum in a more general system.

The algorithm is based upon that of (Metropolis et al., 1958) which was originally proposed as a means of finding the equilibrium configuration of a collection of atoms at a given temperature. The connection between this algorithm and mathematical minimization was first noted by (Pincus, 1970) but it was (Kirkpatrick et al., 1983) who proposed that it form the basis of an optimization technique for combinatorial (and other) problems.

SA's major advantage over other methods is an ability to avoid becoming trapped at local minima. The algorithm employs a random search which not only accepts changes that decrease objective function f, but also some changes that increase it. The latter are accepted with a probability

[image: image55.wmf]÷

ø

ö

ç

è

æ

-

=

T

f

p

d

exp

3.2

where

[image: image56.wmf]f

d

 is the increase in f and T is a control parameter, which by analogy with the original application is known as the system “temperature” irrespective of the objective function involved. (Oak Ride National Laboratory, 1996)

Chapter 4

Implementation and Experimental Results

In this section, a comparison study is carried out on the effectiveness of the proposed DPSO and NCPSO algorithms. Proposed DPSO was exclusively tested in comparison with NCPSO algorithm and result of (Domínguez and Muñoz, 2008). The results for DPSO were compared to the simple Simulated Annealing and Reduced Variable Neighborhood Search algorithm as well which were coded according to the pseudo-code in previous chapters. A data set of 40 p-median problems with known optimal solutions in the OR Library (Beasley JE., 1990) was used in testing of performances of algorithms. All proposed DPSO and NCPSO algorithms as well as simple Simulated Annealing and Reduced Variable Neighborhood Search algorithm are coded in C and run on a PC with the configuration of 2.6 GHz CPU and 512MB memory. The size of the population considered by all algorithms is twice the number of nodes.

For DPSO and NCPSO, the social and cognitive parameters were taken as

[image: image57.wmf]5

.

0

2

1

=

=

c

c

, initial inertia weight is set to 0.5 and, and the decrement factor (is fixed at 0.9995.

Relative percentile deviation is taken as a performance measure to compare the performance of the algorithms.

[image: image58.wmf]100

×

-

opt

opt

f

f

f

4.1

where f denotes best solution found by the algorithm and fopt denotes the optimum value of the objective function.

4.1. Comparison of DPSO to neural model

Table given below summarizes the comparison of computational results for 10 replications of DPSO and neural model by (Domínguez and Muñoz, 2008) (NA-L+) solving 40 test problems from OR Library. The objective function values found by the algorithms are shown in column 4 and 5. The % error is shown in columns 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time as well.

For the reason that in the published work some of the results were not presented we were not able to compare the average relative percentile deviation and the average computational time more logically but considering just the once that the authors are presenting in the work (Domínguez and Muñoz, 2008).

The average percentile deviation in the work by Domínguez and Muñoz is 0,48% while in problem solution proposed by our algorithm it is 0,45%.

The same situation is with the computational time where it is 2169,31 seconds in the work by Domínguez and Muñoz while in our work it is 358,62 seconds.

Table 4.1 proposed DPSO -L+ and NA-L+ performances for OR Library test problems

		Problem

		(n, p)

		Optimum

		Objective function

		% Error

		CPU time (s)

		

		

		

		DPSO-L+

		NA-L+

		DPSO-L+

		NA-L+

		DPSO-L+

		NA-L+

		pmed1

		(100, 5)

		5819

		5819

		5819

		0

		0

		0,56

		0,27

		pmed2

		(100, 10)

		4093

		4099

		4093

		0,15

		0

		21,60

		1,86

		pmed3

		(100, 10)

		4250

		4250

		4250

		0

		0

		2,02

		0,83

		pmed4

		(100, 20)

		3034

		3034

		3038

		0

		0,13

		11,84

		21,37

		pmed5

		(100, 33)

		1355

		1356,5

		1359

		0,11

		0,3

		33,79

		27,46

		pmed6

		(200, 5)

		7824

		7824

		0

		1,37

		pmed7

		(200, 10)

		5631

		5631

		5631

		0

		0

		18,72

		7,37

		pmed8

		(200, 20)

		4445

		4445

		4448

		0

		0,07

		21,06

		77,5

		pmed9

		(200, 40)

		2734

		2740,5

		2751

		0,24

		0,62

		119,44

		120,89

		pmed10

		(200, 67)

		1255

		1256,5

		1264

		0,12

		0,72

		105,80

		167,07

		pmed11

		(300, 5)

		7696

		7696

		7696

		0

		0

		2,04

		3,23

		pmed12

		(300, 10)

		6634

		6634

		0

		5,13

		pmed13

		(300, 30)

		4374

		4374

		0

		42,93

		pmed14

		(300, 60)

		2968

		2972,9

		2983

		0,17

		0,51

		144,05

		388,51

		pmed15

		(300, 100)

		1729

		1733,7

		1751

		0,27

		1,27

		150,24

		526,11

		pmed16

		(400, 5)

		8162

		8162

		0

		6,36

		pmed17

		(400, 10)

		6999

		7000,2

		6999

		0,02

		0

		57,98

		94,02

		pmed18

		(400, 40)

		4809

		4817,5

		4811

		0,18

		0,04

		150,48

		787,03

		pmed19

		(400, 80)

		2845

		2863,7

		2863

		0,66

		0,63

		158,84

		1024,5

		pmed20

		(400, 133)

		1789

		1805,4

		1815

		0,92

		1,45

		293,66

		1317

		pmed21

		(500, 5)

		9138

		9138

		0

		4,24

		pmed22

		(500, 10)

		8579

		8579

		0

		33,00

		pmed23

		(500, 50)

		4619

		4650,6

		4624

		0,68

		0,11

		155,87

		1889,5

		pmed24

		(500, 100)

		2961

		2989,6

		2986

		0,97

		0,84

		394,75

		2157,2

		pmed25

		(500, 167)

		1828

		1845,3

		1865

		0,95

		2,02

		727,81

		2634,6

		pmed26

		(600, 5)

		9917

		9917

		0

		20,79

		pmed27

		(600, 10)

		8307

		8307,9

		8307

		0,01

		0

		74,44

		171,75

		pmed28

		(600, 60)

		4498

		4539,6

		4508

		0,92

		0,22

		260,62

		3368,7

		pmed29

		(600, 120)

		3033

		3062

		3060

		0,96

		0,89

		708,85

		3827,8

		pmed30

		(600, 200)

		1989

		2007,5

		2016

		0,93

		1,36

		1972,30

		4705,3

		pmed31

		(700, 5)

		10086

		10086,1

		0

		53,87

		pmed32

		(700, 10)

		9297

		9297,4

		0

		77,96

		pmed33

		(700, 70)

		4700

		4744

		4706

		0,94

		0,13

		451,27

		5927,2

		pmed34

		(700, 140)

		3013

		3042,2

		3038

		0,97

		0,83

		1303,58

		6747,6

		pmed35

		(800, 5)

		10400

		10400

		0

		25,38

		pmed36

		(800, 10)

		9934

		9945,5

		0,12

		113,79

		pmed37

		(800, 80)

		5057

		5104,7

		5071

		0,94

		0,28

		948,08

		9243,1

		pmed38

		(900, 5)

		11060

		11060

		0

		29,19

		pmed39

		(900, 10)

		9423

		9423

		0

		111,10

		pmed40

		(900, 90)

		5128

		5177,8

		5155

		0,97

		0,53

		1393,01

		13331

***** The results were not presented in published work

4.2. Comparison of DPSO to NCPSO

And the next presented Table summarizes the comparison of computational results for 10 replications of proposed DPSO to proposed Novel Continuous Particle Swarm Algorithm solving 40 test problems from OR Library. The objective function value found by the algorithms is shown in column 4 and 5. The % error is shown in columns 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the DPSO algorithm performs better than the proposed NCPSO algorithm in terms of the percentile error and it finds the “near optimal” solution in less computational time as well.

The average percentile deviation in the solution method by DPSO it is 0,30% while in the problem solution proposed by NCPSO algorithm is 4,08%.

The same situation is with the computational time where it is 255,20 seconds in the solution by the proposed DPSO algorithm and 1925,46 seconds in the solution method by the proposed CPSO algorithm.

Table 4.2 proposed DPSO -L+ and NCPSO performances for OR Library test problems

		Problem

		(n, p)

		Optimum

		Objective function

		% Error

		CPU time (s)

		

		

		

		DPSO-L+

		NCPSO

		DPSO-L+

		NCPSO

		DPSO-L+

		NCPSO

		pmed1

		(100, 5)

		5819

		5819

		5829

		0

		0,17

		0,56

		5,69

		pmed2

		(100, 10)

		4093

		4099

		4116,3

		0,15

		0,57

		21,60

		13,30

		pmed3

		(100, 10)

		4250

		4250

		4312,3

		0

		1,47

		2,02

		13,13

		pmed4

		(100, 20)

		3034

		3034

		3114,9

		0

		2,67

		11,84

		20,63

		pmed5

		(100, 33)

		1355

		1356,5

		1402,6

		0,11

		3,51

		33,79

		24,76

		pmed6

		(200, 5)

		7824

		7824

		7839,1

		0

		0,19

		1,37

		19,43

		pmed7

		(200, 10)

		5631

		5631

		5746

		0

		2,04

		18,72

		48,00

		pmed8

		(200, 20)

		4445

		4445

		4603,6

		0

		3,57

		21,06

		89,17

		pmed9

		(200, 40)

		2734

		2740,5

		2870,4

		0,24

		4,99

		119,44

		114,44

		pmed10

		(200, 67)

		1255

		1256,5

		1326,9

		0,12

		5,73

		105,80

		153,27

		pmed11

		(300, 5)

		7696

		7696

		7732,6

		0

		0,48

		2,04

		88,64

		pmed12

		(300, 10)

		6634

		6634

		6754,4

		0

		1,81

		5,13

		129,86

		pmed13

		(300, 30)

		4374

		4374

		4598,2

		0

		5,13

		42,93

		308,74

		pmed14

		(300, 60)

		2968

		2972,9

		3139,4

		0,17

		5,77

		144,05

		441,22

		pmed15

		(300, 100)

		1729

		1733,7

		1841,7

		0,27

		6,52

		150,24

		476,61

		pmed16

		(400, 5)

		8162

		8162

		8183,7

		0

		0,27

		6,36

		215,99

		pmed17

		(400, 10)

		6999

		7000,2

		7206,8

		0,02

		2,97

		57,98

		258,98

		pmed18

		(400, 40)

		4809

		4817,5

		5043,6

		0,18

		4,88

		150,48

		782,04

		pmed19

		(400, 80)

		2845

		2863,7

		3033,5

		0,66

		6,63

		158,84

		1079,54

		pmed20

		(400, 133)

		1789

		1805,4

		1929,3

		0,92

		7,84

		293,66

		1424,29

		pmed21

		(500, 5)

		9138

		9138

		9297,8

		0

		1,75

		4,24

		344,63

		pmed22

		(500, 10)

		8579

		8579

		8798,2

		0

		2,56

		33,00

		514,93

		pmed23

		(500, 50)

		4619

		4650,6

		4871,4

		0,68

		5,46

		155,87

		1938,42

		pmed24

		(500, 100)

		2961

		2989,6

		3168,5

		0,97

		7,01

		394,75

		2055,73

		pmed25

		(500, 167)

		1828

		1845,3

		2009,4

		0,95

		9,92

		727,81

		2776,58

		pmed26

		(600, 5)

		9917

		9917

		10006,4

		0

		0,90

		20,79

		592,48

		pmed27

		(600, 10)

		8307

		8307,9

		8554

		0,01

		2,97

		74,44

		873,10

		pmed28

		(600, 60)

		4498

		4539,6

		4732,4

		0,92

		5,21

		260,62

		3842,83

		pmed29

		(600, 120)

		3033

		3062

		3282,7

		0,96

		8,23

		708,85

		4589,88

		pmed30

		(600, 200)

		1989

		2007,5

		2184

		0,93

		9,80

		1972,30

		5668,41

		pmed31

		(700, 5)

		10086

		10086,1

		10153,7

		0

		0,67

		53,87

		1005,50

		pmed32

		(700, 10)

		9297

		9297,4

		9667

		0

		3,98

		77,96

		1569,79

		pmed33

		(700, 70)

		4700

		4744

		4987,3

		0,94

		6,11

		451,27

		5869,41

		pmed34

		(700, 140)

		3013

		3042,2

		3285,5

		0,97

		9,04

		1303,58

		7609,70

		pmed35

		(800, 5)

		10400

		10400

		10543,4

		0

		1,38

		25,38

		1608,46

		pmed36

		(800, 10)

		9934

		9945,5

		10241,3

		0,12

		3,09

		113,79

		2790,84

		pmed37

		(800, 80)

		5057

		5104,7

		5383,571

		0,94

		6,46

		948,08

		9838,69

		pmed38

		(900, 5)

		11060

		11060

		11173,2

		0

		1,02

		29,19

		2170,54

		pmed39

		(900, 10)

		9423

		9423

		9790,3

		0

		3,90

		111,10

		2528,09

		pmed40

		(900, 90)

		5128

		5177,8

		5469,333

		0,97

		6,66

		1393,01

		13122,63

4.3. Comparison of DPSO to RVNS for 1000 generations

Table given below summarizes the comparison of computational results for 10 replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems.

The average percentile deviation in RVNS is 8,84% while in problem solution proposed by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below RVNS was run 1000 generations. The generation number was selected in a such way in order to compare the results after running the algorithms under the same conditions. In most cases it resulted in less computational time compared to DPSO.

Table 4.3 Comparison of DPSO to RVNS for 1000 generations

		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)

		

		

		

		RVNS

		DPSO

		RVNS

		DPSO

		

		

		

		Best

		Worst

		Best

		Worst

		

		

		pmed1

		(100, 5)

		5819

		0

		0,60

		0

		0

		23,05

		0,56

		pmed2

		(100, 10)

		4093

		0,17

		2,71

		0

		0,29

		25,87

		21,6

		pmed3

		(100, 10)

		4250

		0

		3,67

		0

		0

		25,58

		2,02

		pmed4

		(100, 20)

		3034

		1,45

		6,43

		0

		0

		25,92

		11,84

		pmed5

		(100, 33)

		1355

		2,51

		8,63

		0

		0,22

		25,95

		33,79

		pmed6

		(200, 5)

		7824

		0

		0,55

		0

		0

		23,09

		1,37

		pmed7

		(200, 10)

		5631

		0,66

		3,46

		0

		0

		26,00

		18,72

		pmed8

		(200, 20)

		4445

		2,72

		5,96

		0

		0

		26,08

		21,06

		pmed9

		(200, 40)

		2734

		3,44

		7,50

		0

		0,62

		26,19

		119,44

		pmed10

		(200, 67)

		1255

		3,35

		10,12

		0

		0,40

		26,34

		105,8

		pmed11

		(300, 5)

		7696

		0

		1,53

		0

		0

		25,38

		2,04

		pmed12

		(300, 10)

		6634

		1,39

		4,16

		0

		0

		26,16

		5,13

		pmed13

		(300, 30)

		4374

		2,95

		6,93

		0

		0

		26,38

		42,93

		pmed14

		(300, 60)

		2968

		6,10

		8,66

		0

		0,47

		26,63

		144,05

		pmed15

		(300, 100)

		1729

		6,54

		11,57

		0,06

		0,52

		26,92

		150,24

		pmed16

		(400, 5)

		8162

		0,01

		2,28

		0

		0

		26,19

		6,36

		pmed17

		(400, 10)

		6999

		1,70

		5,33

		0

		0,06

		26,34

		57,98

		pmed18

		(400, 40)

		4809

		3,78

		6,49

		0,04

		0,48

		26,82

		150,48

		pmed19

		(400, 80)

		2845

		6,15

		9,00

		0,35

		0,98

		27,22

		158,84

		pmed20

		(400, 133)

		1789

		9,39

		13,47

		0,84

		0,95

		27,71

		293,66

		pmed21

		(500, 5)

		9138

		0

		3,30

		0

		0

		25,50

		4,24

		pmed22

		(500, 10)

		8579

		1,08

		4,57

		0

		0

		26,53

		33

		pmed23

		(500, 50)

		4619

		5,59

		7,64

		0,26

		0,97

		27,09

		155,87

		pmed24

		(500, 100)

		2961

		7,16

		10,37

		0,91

		0,98

		27,70

		394,75

		pmed25

		(500, 167)

		1828

		9,52

		13,02

		0,82

		0,98

		28,50

		727,81

		pmed26

		(600, 5)

		9917

		0,30

		2,86

		0

		0

		26,15

		20,79

		pmed27

		(600, 10)

		8307

		1,66

		4,78

		0

		0,04

		26,43

		74,44

		pmed28

		(600, 60)

		4498

		6,07

		8,14

		0,78

		0,98

		27,62

		260,62

		pmed29

		(600, 120)

		3033

		8,90

		11,61

		0,86

		0,99

		28,43

		708,85

		pmed30

		(600, 200)

		1989

		11,31

		14,88

		0,80

		0,96

		29,59

		1972,3

		pmed31

		(700, 5)

		10086

		0,35

		3,54

		0

		0,01

		26,52

		53,87

		pmed32

		(700, 10)

		9297

		2,07

		5,16

		0

		0,04

		26,38

		77,96

		pmed33

		(700, 70)

		4700

		5,47

		8,57

		0,83

		0,98

		26,81

		451,27

		pmed34

		(700, 140)

		3013

		10,36

		13,84

		0,93

		1,00

		27,23

		1303,58

		pmed35

		(800, 5)

		10400

		0,01

		3,90

		0

		0

		26,02

		25,38

		pmed36

		(800, 10)

		9934

		1,80

		4,02

		0

		0,31

		26,50

		113,79

		pmed37

		(800, 80)

		5057

		7,10

		9,55

		0,83

		0,99

		27,15

		948,08

		pmed38

		(900, 5)

		11060

		0,80

		2,88

		0

		0

		26,08

		29,19

		pmed39

		(900, 10)

		9423

		1,89

		4,75

		0

		0

		26,32

		111,1

		pmed40

		(900, 90)

		5128

		7,61

		10,04

		0,90

		0,99

		27,39

		1393,01

		Average

		

		3,53

		6,66

		0,23

		0,38

		26,49

		255,20

4.4. Comparison of DPSO to RVNS for 5000 generations

Table given below summarizes the comparison of computational results for 10 replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems for sure.

The average percentile deviation in RVNS is 2,1% while in problem solution proposed by our algorithm it is 0,3%.

In average computational time it seems like the RVNS performs better but we should not forget that in most of the solved problems the RVNS performance was far away compared to DPSO in terms of percentile error. And in most of the cases the percentile error for DPSO is better. The RVNS was run 5000 generations in this case. Compared to 1000 generations run the computational time is more “near” to the computational time in DPSO.

Table 4.4 Comparison of DPSO to RVNS for 5000 generations

		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)

		

		

		

		RVNS

		DPSO

		RVNS

		DPSO

		

		

		

		Best

		Worst

		Best

		Worst

		

		

		pmed1

		(100, 5)

		5819

		0

		0,00

		0

		0

		30,79

		0,56

		pmed2

		(100, 10)

		4093

		0

		0,29

		0

		0,29

		95,22

		21,6

		pmed3

		(100, 10)

		4250

		0

		0,87

		0

		0

		94,65

		2,02

		pmed4

		(100, 20)

		3034

		0

		0,76

		0

		0

		115,09

		11,84

		pmed5

		(100, 33)

		1355

		0

		1,48

		0

		0,22

		129,11

		33,79

		pmed6

		(200, 5)

		7824

		0

		0,00

		0

		0

		40,01

		1,37

		pmed7

		(200, 10)

		5631

		0

		1,17

		0

		0

		121,48

		18,72

		pmed8

		(200, 20)

		4445

		0,20

		2,92

		0

		0

		130,10

		21,06

		pmed9

		(200, 40)

		2734

		0,51

		2,41

		0

		0,62

		130,48

		119,44

		pmed10

		(200, 67)

		1255

		1,12

		4,46

		0

		0,40

		131,14

		105,8

		pmed11

		(300, 5)

		7696

		0

		0,35

		0

		0

		74,76

		2,04

		pmed12

		(300, 10)

		6634

		0

		1,06

		0

		0

		121,16

		5,13

		pmed13

		(300, 30)

		4374

		1,07

		3,77

		0

		0

		131,21

		42,93

		pmed14

		(300, 60)

		2968

		2,32

		5,26

		0

		0,47

		132,26

		144,05

		pmed15

		(300, 100)

		1729

		1,74

		5,09

		0,06

		0,52

		133,57

		150,24

		pmed16

		(400, 5)

		8162

		0

		0,26

		0

		0

		114,06

		6,36

		pmed17

		(400, 10)

		6999

		0

		2,71

		0

		0,06

		129,87

		57,98

		pmed18

		(400, 40)

		4809

		1,35

		3,10

		0,04

		0,48

		132,84

		150,48

		pmed19

		(400, 80)

		2845

		2,81

		5,27

		0,35

		0,98

		134,92

		158,84

		pmed20

		(400, 133)

		1789

		4,42

		7,55

		0,84

		0,95

		137,12

		293,66

		pmed21

		(500, 5)

		9138

		0

		0,45

		0

		0

		89,04

		4,24

		pmed22

		(500, 10)

		8579

		0,05

		2,07

		0

		0

		132,22

		33

		pmed23

		(500, 50)

		4619

		2,66

		5,82

		0,26

		0,97

		135,53

		155,87

		pmed24

		(500, 100)

		2961

		3,48

		6,72

		0,91

		0,98

		138,45

		394,75

		pmed25

		(500, 167)

		1828

		4,21

		7,06

		0,82

		0,98

		141,85

		727,81

		pmed26

		(600, 5)

		9917

		0

		0,85

		0

		0

		94,33

		20,79

		pmed27

		(600, 10)

		8307

		0,46

		1,66

		0

		0,04

		133,05

		74,44

		pmed28

		(600, 60)

		4498

		3,07

		4,54

		0,78

		0,98

		138,72

		260,62

		pmed29

		(600, 120)

		3033

		5,31

		6,26

		0,86

		0,99

		142,38

		708,85

		pmed30

		(600, 200)

		1989

		4,52

		6,99

		0,80

		0,96

		147,67

		1972,3

		pmed31

		(700, 5)

		10086

		0

		0,74

		0

		0,01

		117,65

		53,87

		pmed32

		(700, 10)

		9297

		0,26

		1,23

		0

		0,04

		132,54

		77,96

		pmed33

		(700, 70)

		4700

		3,11

		4,96

		0,83

		0,98

		140,00

		451,27

		pmed34

		(700, 140)

		3013

		4,88

		6,77

		0,93

		1,00

		145,14

		1303,58

		pmed35

		(800, 5)

		10400

		0

		1,02

		0

		0

		118,00

		25,38

		pmed36

		(800, 10)

		9934

		0,32

		1,41

		0

		0,31

		132,99

		113,79

		pmed37

		(800, 80)

		5057

		2,79

		5,99

		0,83

		0,99

		142,65

		948,08

		pmed38

		(900, 5)

		11060

		0

		0,90

		0

		0

		130,68

		29,19

		pmed39

		(900, 10)

		9423

		0,33

		2,10

		0

		0

		133,32

		111,1

		pmed40

		(900, 90)

		5128

		3,69

		5,21

		0,90

		0,99

		145,89

		1393,01

		Average

		

		1,37

		3,04

		0,23

		0,38

		122,30

		255,20

4.5. Comparison of DPSO to Simulated Annealing for 1000 generations

Table given below summarizes the comparison of computational results for 10 replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the SA is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems.

The average percentile deviation in SA is 6,01% while in problem solution proposed by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below SA was run 1000 generations. The generation number was selected in a such way in order to compare the results after running the algorithms under the same conditions. In most cases it resulted in less computational time compared to DPSO.

Table 4.5 Comparison of DPSO to Simulated Annealing for 1000 generations

		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)

		

		

		

		SA

		DPSO

		SA

		DPSO

		

		

		

		Best

		Worst

		Best

		Worst

		

		

		pmed1

		(100, 5)

		5819

		0

		1,12

		0

		0

		21,79

		0,56

		pmed2

		(100, 10)

		4093

		0,29

		2,96

		0

		0,29

		26,05

		21,6

		pmed3

		(100, 10)

		4250

		0

		3,67

		0

		0

		24,71

		2,02

		pmed4

		(100, 20)

		3034

		0,96

		6,36

		0

		0

		25,89

		11,84

		pmed5

		(100, 33)

		1355

		3,03

		8,56

		0

		0,22

		25,86

		33,79

		pmed6

		(200, 5)

		7824

		0,12

		1,94

		0

		0

		25,86

		1,37

		pmed7

		(200, 10)

		5631

		0,64

		4,49

		0

		0

		25,93

		18,72

		pmed8

		(200, 20)

		4445

		3,24

		6,57

		0

		0

		25,98

		21,06

		pmed9

		(200, 40)

		2734

		3,69

		7,72

		0

		0,62

		26,03

		119,44

		pmed10

		(200, 67)

		1255

		5,82

		15,14

		0

		0,40

		26,08

		105,8

		pmed11

		(300, 5)

		7696

		0,35

		2,29

		0

		0

		25,96

		2,04

		pmed12

		(300, 10)

		6634

		1,45

		6,21

		0

		0

		26,05

		5,13

		pmed13

		(300, 30)

		4374

		3,06

		7,84

		0

		0

		26,18

		42,93

		pmed14

		(300, 60)

		2968

		6,77

		8,96

		0

		0,47

		26,29

		144,05

		pmed15

		(300, 100)

		1729

		7,98

		14,23

		0,06

		0,52

		26,41

		150,24

		pmed16

		(400, 5)

		8162

		0,29

		2,96

		0

		0

		26,10

		6,36

		pmed17

		(400, 10)

		6999

		1,19

		4,91

		0

		0,06

		26,21

		57,98

		pmed18

		(400, 40)

		4809

		4,53

		7,49

		0,04

		0,48

		26,42

		150,48

		pmed19

		(400, 80)

		2845

		7,21

		11,63

		0,35

		0,98

		26,57

		158,84

		pmed20

		(400, 133)

		1789

		10,96

		22,30

		0,84

		0,95

		26,78

		293,66

		pmed21

		(500, 5)

		9138

		1,26

		5,37

		0

		0

		26,31

		4,24

		pmed22

		(500, 10)

		8579

		2,30

		5,47

		0

		0

		26,24

		33

		pmed23

		(500, 50)

		4619

		5,72

		9,37

		0,26

		0,97

		26,44

		155,87

		pmed24

		(500, 100)

		2961

		8,48

		13,41

		0,91

		0,98

		26,63

		394,75

		pmed25

		(500, 167)

		1828

		13,02

		19,58

		0,82

		0,98

		26,95

		727,81

		pmed26

		(600, 5)

		9917

		1,01

		4,13

		0

		0

		26,03

		20,79

		pmed27

		(600, 10)

		8307

		2,19

		5,51

		0

		0,04

		26,21

		74,44

		pmed28

		(600, 60)

		4498

		5,96

		9,52

		0,78

		0,98

		26,68

		260,62

		pmed29

		(600, 120)

		3033

		9,89

		16,16

		0,86

		0,99

		27,00

		708,85

		pmed30

		(600, 200)

		1989

		13,88

		21,72

		0,80

		0,96

		27,43

		1972,3

		pmed31

		(700, 5)

		10086

		0,20

		3,39

		0

		0,01

		26,52

		53,87

		pmed32

		(700, 10)

		9297

		2,59

		4,88

		0

		0,04

		26,38

		77,96

		pmed33

		(700, 70)

		4700

		8,11

		13,06

		0,83

		0,98

		26,81

		451,27

		pmed34

		(700, 140)

		3013

		12,58

		18,39

		0,93

		1,00

		27,23

		1303,58

		pmed35

		(800, 5)

		10400

		0,53

		4,06

		0

		0

		26,02

		25,38

		pmed36

		(800, 10)

		9934

		2,18

		4,59

		0

		0,31

		26,50

		113,79

		pmed37

		(800, 80)

		5057

		7,53

		11,94

		0,83

		0,99

		27,15

		948,08

		pmed38

		(900, 5)

		11060

		0,37

		2,73

		0

		0

		26,08

		29,19

		pmed39

		(900, 10)

		9423

		3,41

		6,02

		0

		0

		26,32

		111,1

		pmed40

		(900, 90)

		5128

		8,39

		11,91

		0,90

		0,99

		27,39

		1393,01

		Average

		

		4,28

		8,46

		0,23

		0,38

		26,24

		255,20

4.6. Comparison of DPSO to Simulated Annealing for 5000 generations

Table given below summarizes the comparison of computational results for 10 replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the SA is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems.

The average percentile deviation in SA is 2,36% while in problem solution proposed by our algorithm it is 0,3%. These values are not shown in the given table.

In average computational time it seems like the SA performs better but we should not forget that in most of the solved problems the SA performance was far away compared to DPSO in terms of percentile error. And in most of the cases the percentile error for DPSO is better. The SA was run 5000 generations in this case. Compared to 1000 generations run the computational time is more “near” to the computational time in DPSO.

Table 4.6 Comparison of DPSO to Simulated Annealing for 5000 generations

		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)

		

		

		

		SA

		DPSO

		SA

		DPSO

		

		

		

		Best

		Worst

		Best

		Worst

		

		

		pmed1

		(100, 5)

		5819

		0

		0

		0

		0

		29,07

		0,56

		pmed2

		(100, 10)

		4093

		0

		0,29

		0

		0,29

		97,96

		21,6

		pmed3

		(100, 10)

		4250

		0

		0,47

		0

		0

		92,20

		2,02

		pmed4

		(100, 20)

		3034

		0

		1,52

		0

		0

		128,31

		11,84

		pmed5

		(100, 33)

		1355

		0

		2,44

		0

		0,22

		126,85

		33,79

		pmed6

		(200, 5)

		7824

		0

		0

		0

		0

		56,29

		1,37

		pmed7

		(200, 10)

		5631

		0

		0,55

		0

		0

		113,30

		18,72

		pmed8

		(200, 20)

		4445

		0,13

		2,34

		0

		0

		129,53

		21,06

		pmed9

		(200, 40)

		2734

		0,80

		4,24

		0

		0,62

		129,77

		119,44

		pmed10

		(200, 67)

		1255

		2,07

		5,98

		0

		0,40

		130,04

		105,8

		pmed11

		(300, 5)

		7696

		0

		0,44

		0

		0

		75,53

		2,04

		pmed12

		(300, 10)

		6634

		0

		0,69

		0

		0

		120,85

		5,13

		pmed13

		(300, 30)

		4374

		1,07

		3,54

		0

		0

		130,30

		42,93

		pmed14

		(300, 60)

		2968

		2,80

		5,76

		0

		0,47

		130,67

		144,05

		pmed15

		(300, 100)

		1729

		3,53

		6,07

		0,06

		0,52

		131,25

		150,24

		pmed16

		(400, 5)

		8162

		0

		0,34

		0

		0

		125,23

		6,36

		pmed17

		(400, 10)

		6999

		0,06

		1,74

		0

		0,06

		130,23

		57,98

		pmed18

		(400, 40)

		4809

		1,89

		4,70

		0,04

		0,48

		131,12

		150,48

		pmed19

		(400, 80)

		2845

		3,90

		6,50

		0,35

		0,98

		131,87

		158,84

		pmed20

		(400, 133)

		1789

		4,92

		8,27

		0,84

		0,95

		132,89

		293,66

		pmed21

		(500, 5)

		9138

		0

		1,01

		0

		0

		116,59

		4,24

		pmed22

		(500, 10)

		8579

		0,15

		2,02

		0

		0

		131,72

		33

		pmed23

		(500, 50)

		4619

		3,27

		4,87

		0,26

		0,97

		133,21

		155,87

		pmed24

		(500, 100)

		2961

		3,68

		5,81

		0,91

		0,98

		134,27

		394,75

		pmed25

		(500, 167)

		1828

		5,14

		8,75

		0,82

		0,98

		135,78

		727,81

		pmed26

		(600, 5)

		9917

		0

		1,03

		0

		0

		116,48

		20,79

		pmed27

		(600, 10)

		8307

		0,42

		1,78

		0

		0,04

		131,35

		74,44

		pmed28

		(600, 60)

		4498

		2,78

		4,82

		0,78

		0,98

		133,67

		260,62

		pmed29

		(600, 120)

		3033

		4,88

		6,96

		0,86

		0,99

		135,14

		708,85

		pmed30

		(600, 200)

		1989

		5,53

		7,44

		0,80

		0,96

		137,30

		1972,3

		pmed31

		(700, 5)

		10086

		0

		0,77

		0

		0,01

		124,90

		53,87

		pmed32

		(700, 10)

		9297

		0,41

		2,08

		0

		0,04

		131,46

		77,96

		pmed33

		(700, 70)

		4700

		3,11

		5,57

		0,83

		0,98

		134,29

		451,27

		pmed34

		(700, 140)

		3013

		5,34

		7,04

		0,93

		1,00

		136,25

		1303,58

		pmed35

		(800, 5)

		10400

		0

		1,62

		0

		0

		117,19

		25,38

		pmed36

		(800, 10)

		9934

		0,49

		2,32

		0

		0,31

		131,80

		113,79

		pmed37

		(800, 80)

		5057

		3,94

		5,14

		0,83

		0,99

		135,47

		948,08

		pmed38

		(900, 5)

		11060

		0

		0,84

		0

		0

		129,83

		29,19

		pmed39

		(900, 10)

		9423

		0,36

		1,51

		0

		0

		131,37

		111,1

		pmed40

		(900, 90)

		5128

		3,92

		5,50

		0,90

		0,99

		136,69

		1393,01

		Average

		

		1,62

		3,32

		0,23

		0,38

		122,20

		255,20

Chapter 5

Conclusion

The main objective in this work is to allocate p facilities in a way that the total distance between n demand points and facilities minimized. This is a well know facility-location problem and in literature is known as a p-median problem.

It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-bounded algorithms. Small size instances of p-median problem can be solved with reasonable computational time by exact algorithms such as branch-and-bound (Järvinen et al., 1972).

On the other hand, heuristic algorithms generally have acceptable time and memory requirements, but do not guarantee optimal solution. That is, a feasible solution is obtained which is likely to be either optimal or near optimal.

Particle swarm optimization (PSO) is one of the latest metaheuristic methods in literature, which is based on the metaphor of social interaction and communication among different spaces in nature, such as bird flocking and fish schooling. PSO was first introduced to optimize various continuous nonlinear functions by (Eberhart and Kennedy, 1995).

p-Median problem is related to the Discrete Location Problems while the Particle swarm optimization (PSO) is manly designed for the continuous problems. Thus it may have some drawbacks when applying PSO to discrete problems. Recently a few researches have been related to the discrete combinatorial optimization problems. However, still it is considered that the applications of PSO on discrete problems are limited.

In this thesis Novel proposed Continuous Particle Swarm (NCPSO) algorithm and a proposed Discrete Particle Swarm Optimization algorithms (DPSO) are proposed. The algorithms have been tested on benchmark problem instances from OR Library and compared to the other algorithms in literature and shown that the proposed algorithm results in better computational time. To the best of our knowledge the proposed PSO algorithms in this thesis are the first PSO algorithms applied to the p-median problem.

References

Afshinmanesh, F., Marandi, A., and Rahimi-Kian, A., A novel binary particle swarm optimization method using artificial immune system, International Conference on Computer as a Tool, EUROCON, pp.217–220, 2005

Allahverdi, A., Al-Anzi, F.S., Evolutionary heuristics and an algorithm for the two-stage assembly scheduling problem to minimize makespan with setup times, International Journal of Production Research, 44(22), 4713–4735, 2006.

Alp, O., Erkut, E. and Drezner Z., An eﬃcient genetic algorithm for the p-median problem, Annals of Operations Research, 122:21–42, 2003.

Beasley JE. OR-Library: “distributing test problems by electronic mail”, Journal of the Operational Research Society, 41(11), 1069–72, 1990.

Daskin M.S., Network and Discrete Location: Models, Algorithms and Applications. John Wiley and Sons, Inc., New York, 1995.

Camci, F., Comparison of genetic and binary particle swarm optimization algorithms on system maintenance scheduling using prognostics information, Engineering Optimization,41:2, pp.119 -136, 2009

Cornuéjols G., Nemhauser G. L., and Wolsey L. A., The uncapacitated facility location problem, in Discrete Location Theory, pp. 119–171, John Wiley & Sons, New York, NY, USA, 1990.

Correa, E. S. Steiner, M. T. A. Freitas, A. A. and Carnieri, C., A genetic algorithm for solving a capacitated p-median problem. Numerical Algorithms, 35:373–388, 2004

Crainic, T. G. Gendreau, M. Hansen, P. and Mladenovi´c, N. Parallel variable neighborhood search for the p-median. Les Cahiers du GERAD, G-2003-4, 2003

Crainic, T. G. Gendreau, M. Hansen, P. and N. Mladenovi´c. Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics, 10(3):293–314. 2004

Croes, G.A., A Method for Solving Traveling-Salesman Problems, Operations Research 6, 791-812, 1958

Domínguez E. and Muñoz, J., A neural model for the p-median problem. Computers & Operations Research 35, 404 – 416, 2008.

Eberhart, R.C., and Kennedy, J., A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 39-43, 1995.

Guner A.R., Sevkli M., A Discrete Particle Swarm Optimization Algorithm for Uncapacitated Facility Location Problem, Journal of Artificial Evolution and Applications. No. 10, pp. 1687-6229, 2008.

Järvinen, P., Rajala, J. and Sinervo, H. A branch-and-bound algorithm for seeking the p-median, Operations Research, 20(1): pp.173–178, 1972.

Kariv, O., Hakimi, S.L., An algorithmic approach to network location problems. Part 1. The p-centers. SIAM Journal on Applied Mathematics 37, 513–538, 1979.

Kariv, O., Hakimi, S. L., An algorithmic approach to network location problems. II. The p-medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979

Kennedy, J. and Eberhart, R.C., A discrete binary version of the particle swarm algorithm. Proceedings of the International Conference on Systems, Man, Cybernetics. Piscataway, NJ, 4104–4109, 1997.

Kennedy, J., Eberhart, R.C. and Shi, Y. Swarm Intelligence, San Mateo, Morgan Kaufmann, CA, USA, 2001.

Kirkpatrick, S., Gerlatt, C. D. Jr., and Vecchi, M.P., Optimization by Simulated Annealing, Science 220, 671-680, 1983

Kuehn, A.A. and Hamburger, M.J.. A heuristic program for locating warehouses. Management Science, 9(4):643–666, 1963

Levanova, T. V. and Loresh, M. A. Algorithms of ant system and simulated annealing for the p-median problem. Automation and Remote Control, 65(3):431–438, 2004.

Lin, S., Computer Solutions of the Travelling Salesman Problem, Bell Systems Technical Journal 44, 2245–2269, 1965

Lorena, L. A. N. and Furtado, J. C.. Constructive genetic algorithm for clustering problems. Evolutionary Computation, 9(3):309–328, 2001.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A.H. and Teller, E., Equations of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087- 1092, 1958.

Mirchandani P.B., Francis R.L., Discrete Location Theory, John Wiley & Sons, 1990.

Mladenović Nenad, Brimberg Jack, Hansen Pierre, Moreno-Pérez Jose A., The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research 179: 927–939, 2007.

Murray A.T, Church R.L. Applying simulated annealing to location-planning models. Journal of Heuristics, 2:31–53. 1996.

Ride National Laboratory, http://www.phy.ornl.gov, 1996

Onwubolu, G.C. and M. Clerc. Optimal Operating Path for Automated Drilling Operations by a New Heuristic Approach Using Particle Swarm Optimization. International Journal of Production Research 42(3), 473-491, 2004

Pan, Q-K., Tasgetiren, M.F., and Liang,Y-C, A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem, Computers & Operations Research, 35(9), 2807-2839, 2008.

Pincus, M., A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained Optimization Problems, Oper. Res. 18, 1225-1228, 1970

ReVelle, C. and R. Swain. Central Facilities Location. Geographical Analysis 2, 30–42, (1970).

Sobolev Institute of Mathematics, http://www.math.nsc.ru/AP/benchmarks/english.html, 2009

Sridharan R., The capacitated plant location problem. European Journal of Operational Research. v. 87 1995, pp. 203–213, 1995

Tasgetiren M.F, Liang, Y-C, Sevkli, M., Gencyilmaz, G. Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem, International Journal of Production Research, 44(22), 4737–4754, 2006

Tasgetiren, M.F., Liang, Y-C., Sevkli, M. and Gencyilmaz, G, Particle Swarm Optimization Algorithm for Makespan and Total Flowtime Minimization in Permutation Flowshop Sequencing Problem, European Journal of Operational Research 177 (3), 1930-1947, 2007.

Teitz, M. B. and Bart, P., Heuristic methods for estimating the generalized vertex median of a weighted graph, Operations Research, 16(5):955–961, 1968.

Tseng, C-T. and Liao, C-J. A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks, International Journal of Production Research, 46(17), 4655–4670, 2008.

Uysal, H., A variable neighborhood search algorithm for identical parallel machine problem, M.S. Thesis, Fatih University, 2006.

Van den Bergh, F. and A.P. Engelbecht. Cooperative Learning in Neural Networks Using Particle Swarm Optimizers. South African Computer Journal 26, 84-90, 2000

Appendix A

Dataset

Here shown 5 example problems of dataset used from OR Library (Beasley, 1990) for testing the proposed algorithms.

Data are shown in the following format:

Two nodes are given a and b separated by sign “–”the distance between two nodes is shown just after them.

pmed1:
n-100

edge-200
optimal-5819

1-2
30
2-3
46
3-4
1
4-5
28
5-6
31

6-7
69
7-8
39
8-9
14
9-10
84
10-11
59

11-12
10
12-13
28
13-14
63
14-15
9
15-16
100

16-17
98
17-18
70
18-19
94
19-20
22
20-21
14

21-22
87
22-23
82
23-24
55
24-25
2
25-26
32

26-27
77
27-28
95
28-29
29
29-30
59
30-31
91

31-32
89
32-33
50
33-34
40
34-35
88
35-36
94

36-37
60
37-38
21
38-39
89
39-40
47
40-41
63

41-42
45
42-43
46
43-44
24
44-45
77
45-46
60

46-47
45
47-48
50
48-49
93
49-50
22
50-51
84

51-52
16
52-53
85
53-54
68
54-55
93
55-56
37

56-57
26
57-58
29
58-59
38
59-60
10
60-61
32

61-62
67
62-63
66
63-64
52
64-65
19
65-66
39

66-67
12
67-68
86
68-69
72
69-70
73
70-71
65

71-72
2
72-73
8
73-74
96
74-75
43
75-76
39

76-77
61
77-78
90
78-79
8
79-80
58
80-81
91

81-82
58
82-83
13
83-84
79
84-85
59
85-86
28

86-87
46
87-88
24
88-89
63
89-90
81
90-91
14

91-92
52
92-93
64
93-94
75
94-95
71
95-96
51

96-97
75
97-98
57
98-99
31
99-100
49
100-1
88

80-5
90
85-69
51
20-19
30
85-13
22
81-95
54

58-73
37
64-51
89
39-76
89
13-8
77
91-76
51

52-95
96
91-75
33
80-91
84
35-80
46
54-86
35

30-70
5
19-7
9
74-53
50
11-37
4
19-92
70

62-94
96
60-52
34
24-59
63
42-45
68
19-60
53

60-27
86
15-50
31
38-18
27
81-30
99
1-29
6

22-52
11
54-59
75
5-7
8
41-44
80
41-76
42

44-12
56
61-65
73
20-93
35
9-99
28
45-68
19

16-79
96
13-42
3
68-4
28
58-17
60
21-81
34

35-7
7
21-14
82
26-32
26
6-63
83
31-69
53

91-78
32
45-59
33
42-57
5
8-53
66
65-94
61

94-90
63
73-33
88
39-21
59
42-85
34
30-57
37

34-94
52
62-38
56
26-29
20
48-98
53
4-33
45

31-63
82
8-52
31
37-81
14
50-27
16
27-14
48

88-33
8
56-30
76
87-91
17
33-49
77
70-30
74

25-99
19
95-30
96
14-85
90
49-8
96
96-5
87

73-4
41
99-32
35
95-1
31
99-3
49
18-75
100

58-47
68
35-60
5
38-16
70
54-40
52
95-55
47

54-17
45
9-83
75
97-66
81
9-48
92
90-95
96

4-27
27
75-22
48
62-7
55
79-3
57
15-69
46

pmed2:
n-100

edge-200
optimal-4093

1-2
24
2-3
49
3-4
72
4-5
46
5-6
22

6-7
86
7-8
7
8-9
52
9-10
48
10-11
72

11-12
10
12-13
33
13-14
50
14-15
98
15-16
96

16-17
39
17-18
89
18-19
80
19-20
77
20-21
3

21-22
63
22-23
45
23-24
8
24-25
84
25-26
22

26-27
9
27-28
71
28-29
99
29-30
77
30-31
65

31-32
71
32-33
18
33-34
81
34-35
67
35-36
11

36-37
21
37-38
85
38-39
62
39-40
36
40-41
1

41-42
52
42-43
100
43-44
25
44-45
43
45-46
61

46-47
41
47-48
72
48-49
93
49-50
45
50-51
100

51-52
27
52-53
27
53-54
76
54-55
49
55-56
71

56-57
24
57-58
8
58-59
91
59-60
81
60-61
100

61-62
83
62-63
27
63-64
58
64-65
98
65-66
50

66-67
5
67-68
26
68-69
94
69-70
100
70-71
19

71-72
58
72-73
27
73-74
94
74-75
64
75-76
48

76-77
19
77-78
83
78-79
87
79-80
94
80-81
41

81-82
1
82-83
67
83-84
37
84-85
69
85-86
52

86-87
83
87-88
6
88-89
78
89-90
1
90-91
57

91-92
60
92-93
22
93-94
99
94-95
25
95-96
11

96-97
11
97-98
54
98-99
69
99-100
7
100-1
94

2-83
2
35-61
56
32-95
37
70-58
18
14-73
96

97-55
36
49-54
84
37-1
39
22-77
16
3-74
98

28-60
77
11-14
94
2-36
47
20-58
42
3-25
50

83-96
40
97-29
87
52-33
41
37-72
38
32-44
53

68-14
80
60-18
54
45-78
56
7-86
36
55-23
57

89-88
39
37-18
80
83-48
43
56-3
30
19-50
94

54-99
11
88-50
46
36-16
14
22-77
17
37-16
12

80-79
56
84-96
42
69-89
64
84-37
40
21-22
79

65-23
45
22-83
95
46-94
75
14-21
50
84-44
41

64-71
15
62-84
97
67-30
8
34-38
56
58-91
2

57-90
98
79-88
80
96-5
40
61-94
99
98-79
77

5-51
80
28-41
64
18-47
78
53-97
76
67-1
48

23-71
9
52-41
25
11-50
94
18-24
26
6-27
5

18-53
71
40-73
48
51-64
42
50-72
4
18-86
85

91-2
7
12-63
23
2-56
85
19-36
14
53-24
68

73-40
37
93-6
5
98-73
3
51-43
57
63-11
79

85-51
27
10-31
30
42-4
15
19-65
79
98-20
32

99-14
91
67-30
15
8-55
46
91-12
63
10-33
54

72-48
93
64-30
83
23-37
2
87-16
21
81-73
86

44-26
55
81-12
32
54-26
82
79-88
61
34-67
63

pmed3:
n-100

edge-200
optimal-4250

1-2
77
2-3
62
3-4
90
4-5
22
5-6
17

6-7
19
7-8
11
8-9
4
9-10
3
10-11
16

11-12
67
12-13
35
13-14
21
14-15
14
15-16
43

16-17
11
17-18
91
18-19
55
19-20
33
20-21
80

21-22
90
22-23
81
23-24
91
24-25
23
25-26
49

26-27
62
27-28
96
28-29
25
29-30
92
30-31
77

31-32
41
32-33
40
33-34
97
34-35
1
35-36
14

36-37
18
37-38
69
38-39
72
39-40
17
40-41
56

41-42
94
42-43
78
43-44
25
44-45
99
45-46
51

46-47
24
47-48
33
48-49
47
49-50
87
50-51
71

51-52
88
52-53
60
53-54
96
54-55
10
55-56
34

56-57
56
57-58
56
58-59
99
59-60
35
60-61
86

61-62
85
62-63
18
63-64
29
64-65
48
65-66
82

66-67
43
67-68
59
68-69
8
69-70
10
70-71
58

71-72
62
72-73
49
73-74
94
74-75
84
75-76
69

76-77
5
77-78
36
78-79
17
79-80
47
80-81
88

81-82
39
82-83
84
83-84
56
84-85
82
85-86
98

86-87
93
87-88
91
88-89
73
89-90
65
90-91
26

91-92
73
92-93
19
93-94
30
94-95
76
95-96
31

96-97
37
97-98
46
98-99
9
99-100
39
100-1
66

65-66
39
61-6
96
15-81
44
95-43
37
13-57
53

78-7
7
32-26
15
14-66
49
25-44
42
80-84
33

79-58
99
25-59
38
4-37
32
1-51
49
54-20
5

39-18
87
74-8
71
69-3
64
13-30
38
1-66
62

48-72
30
33-31
57
79-94
79
35-92
54
77-69
28

41-49
88
82-44
18
36-24
6
47-41
26
4-31
53

84-56
42
2-37
75
43-3
55
58-57
3
26-42
51

80-62
32
50-70
98
55-60
87
9-77
10
45-23
73

39-83
95
1-35
71
80-26
82
81-26
57
91-37
89

83-42
53
21-84
33
45-21
14
52-23
74
88-99
95

18-90
84
99-52
43
2-45
61
74-58
11
41-33
21

47-33
31
21-33
30
80-10
11
58-99
93
49-56
79

45-25
58
40-82
76
89-73
32
44-96
46
74-5
12

96-14
89
2-73
67
54-4
80
39-68
34
52-26
82

24-28
37
66-40
49
40-48
45
17-61
72
73-63
45

70-96
87
68-53
34
59-26
67
46-30
85
17-90
76

45-85
82
95-60
90
96-65
59
94-26
30
69-20
67

67-52
54
12-44
1
85-36
11
42-88
97
76-62
1

91-99
49
80-76
45
55-95
27
66-59
44
81-59
36

23-56
26
13-85
79
48-96
12
73-85
31
22-27
9

pmed4:
n-100

edge-200
optimal-3034

1-2
45
2-3
23
3-4
96
4-5
59
5-6
24

6-7
78
7-8
24
8-9
70
9-10
5
10-11
66

11-12
93
12-13
31
13-14
67
14-15
89
15-16
93

16-17
22
17-18
83
18-19
83
19-20
89
20-21
59

21-22
11
22-23
85
23-24
24
24-25
94
25-26
79

26-27
3
27-28
53
28-29
62
29-30
36
30-31
77

31-32
14
32-33
65
33-34
13
34-35
72
35-36
44

36-37
84
37-38
17
38-39
11
39-40
98
40-41
70

41-42
80
42-43
61
43-44
35
44-45
5
45-46
51

46-47
35
47-48
4
48-49
8
49-50
43
50-51
19

51-52
63
52-53
46
53-54
97
54-55
73
55-56
23

56-57
87
57-58
37
58-59
15
59-60
28
60-61
9

61-62
78
62-63
27
63-64
92
64-65
81
65-66
82

66-67
30
67-68
67
68-69
88
69-70
54
70-71
76

71-72
16
72-73
60
73-74
95
74-75
10
75-76
86

76-77
76
77-78
9
78-79
82
79-80
94
80-81
6

81-82
72
82-83
84
83-84
41
84-85
80
85-86
31

86-87
29
87-88
24
88-89
76
89-90
84
90-91
35

91-92
71
92-93
28
93-94
57
94-95
76
95-96
50

96-97
25
97-98
92
98-99
44
99-100
46
100-1
10

96-48
8
15-22
31
44-17
76
43-7
56
90-46
49

19-98
62
24-9
68
55-90
80
12-62
70
8-98
38

48-89
58
86-81
76
94-11
93
2-31
46
64-34
54

27-32
33
69-74
68
3-14
62
74-77
27
97-39
57

8-22
56
96-2
33
16-27
24
54-22
53
39-63
57

34-46
12
76-24
48
89-20
57
92-57
80
10-9
17

91-10
86
66-26
96
13-19
60
7-70
38
54-93
98

38-89
18
78-23
64
85-9
3
44-90
31
92-17
55

73-8
9
69-87
18
87-52
33
21-43
20
44-55
31

77-21
74
89-23
77
40-55
7
95-73
96
88-68
87

9-88
59
22-81
24
62-72
70
76-77
19
95-62
70

76-98
14
32-7
67
47-69
75
12-7
91
23-14
63

63-62
42
71-57
60
23-26
62
99-55
10
11-3
71

71-77
99
67-77
84
52-38
81
63-86
45
17-57
76

26-29
36
72-88
37
66-24
48
48-47
15
83-42
99

87-78
77
55-4
57
15-89
31
99-19
24
69-2
97

48-20
63
91-64
33
26-54
61
62-1
89
83-8
67

81-31
71
26-77
36
18-22
28
88-61
73
23-43
70

81-89
91
94-74
54
26-58
22
95-88
83
52-47
35

19-55
48
12-3
68
22-36
67
68-58
18
48-88
58

pmed5:
n-100

edge-200
optimal-1355

1-2
38
2-3
71
3-4
66
4-5
73
5-6
51

6-7
66
7-8
28
8-9
90
9-10
82
10-11
48

11-12
97
12-13
75
13-14
44
14-15
90
15-16
44

16-17
70
17-18
65
18-19
24
19-20
40
20-21
79

21-22
37
22-23
70
23-24
8
24-25
54
25-26
100

26-27
50
27-28
43
28-29
23
29-30
83
30-31
5

31-32
35
32-33
16
33-34
20
34-35
79
35-36
74

36-37
87
37-38
69
38-39
21
39-40
51
40-41
15

41-42
24
42-43
80
43-44
75
44-45
38
45-46
81

46-47
87
47-48
34
48-49
39
49-50
95
50-51
39

51-52
9
52-53
67
53-54
65
54-55
30
55-56
5

56-57
35
57-58
38
58-59
63
59-60
29
60-61
43

61-62
48
62-63
59
63-64
69
64-65
11
65-66
2

66-67
95
67-68
22
68-69
96
69-70
85
70-71
95

71-72
10
72-73
45
73-74
96
74-75
63
75-76
99

76-77
95
77-78
22
78-79
65
79-80
52
80-81
81

81-82
89
82-83
37
83-84
75
84-85
70
85-86
59

86-87
84
87-88
81
88-89
4
89-90
99
90-91
93

91-92
75
92-93
29
93-94
6
94-95
73
95-96
91

96-97
15
97-98
53
98-99
85
99-100
71
100-1
17

78-97
3
16-69
19
3-99
50
44-5
3
76-28
78

49-50
9
57-52
23
88-24
5
23-86
33
59-15
84

81-64
72
27-36
32
80-49
81
78-59
45
52-66
77

43-33
62
94-3
46
87-19
14
57-10
53
54-99
67

47-73
70
72-61
51
87-46
37
8-29
86
6-68
37

98-41
68
84-91
6
36-3
68
43-10
40
27-81
6

59-8
73
79-74
84
15-96
42
47-75
7
69-66
65

69-15
11
61-41
19
63-72
36
93-26
82
38-63
40

97-22
14
36-7
81
10-51
12
34-87
93
35-75
19

14-12
50
48-81
2
97-52
56
1-60
56
62-94
6

76-74
20
67-27
47
32-45
62
79-16
72
80-49
52

66-40
8
87-83
16
79-49
7
99-93
24
77-14
2

48-14
58
75-44
67
5-96
86
1-69
84
56-69
94

36-11
59
82-36
63
52-96
10
51-90
1
15-60
93

27-29
99
69-72
11
60-27
27
23-15
53
55-10
33

46-97
3
99-48
8
32-60
19
14-44
15
74-88
3

16-97
38
68-69
1
22-92
48
34-51
48
68-25
84

36-54
5
40-57
60
15-7
24
74-78
42
58-57
77

2-94
5
17-41
10
26-36
83
16-48
94
77-83
46

35-68
32
90-59
51
42-45
80
11-19
49
52-79
59

Appendix B

Example of runs

Example of 5 generations for first replication for the problem pmed1.txt where n=100 number of edges is 200, p=5, popsize=2*n,

Replication.........=1

Generation..........=0

Globalbest..........=6300.00

Optimum.............=5819

Weight..............=0.500

Problem.............=pmed1.txt

Replication.........=1

Generation..........=1

Globalbest..........=6300.00

Optimum.............=5819

Weight..............=0.500

Problem.............= pmed1.txt

Replication.........=1

Generation..........=2

Globalbest..........=6285.00

Optimum.............=5819

Weight..............=0.500

Problem.............= pmed1.txt

Replication.........=1

Generation..........=3

Globalbest..........=6162.00

Optimum.............=5819

Weight..............=0.499

Problem.............= pmed1.txt

Replication.........=1

Generation..........=4

Globalbest..........=6056.00

Optimum.............=5819

Weight..............=0.499

Problem.............= pmed1.txt

Replication.........=1

Generation..........=5

Globalbest..........=6056.00

Optimum.............=5819

Weight..............=0.499

Problem.............= pmed1.txt

Replication.........=1

Generation..........=6

Globalbest..........=5975.00

Optimum.............=5819

Weight..............=0.499

Problem.............= pmed1.txt

Replication.........=1

Generation..........=7

Globalbest..........=5926.00

Optimum.............=5819

Weight..............=0.498

Problem.............= pmed1.txt

Replication.........=1

Generation..........=8

Globalbest..........=5926.00

Optimum.............=5819

Weight..............=0.498

Problem.............= pmed1.txt

Replication.........=1

Generation..........=9

Globalbest..........=5926.00

Optimum.............=5819

Weight..............=0.498

Problem.............= pmed1.txt

_1308908433.unknown

_1310292520.unknown

_1310292524.unknown

_1310293830.unknown

_1310294199.unknown

_1310376189.unknown

_1310376296.unknown

_1310294283.unknown

_1310293984.unknown

_1310292526.unknown

_1310292527.unknown

_1310292525.unknown

_1310292522.unknown

_1310292523.unknown

_1310292521.unknown

_1310206380.unknown

_1310206858.unknown

_1310206859.unknown

_1310206857.unknown

_1310195605.unknown

_1310196654.unknown

_1310195580.unknown

_1309684150.unknown

_1308731640.unknown

_1308731913.unknown

_1308746581.unknown

_1308904942.unknown

_1308744254.unknown

_1308731758.unknown

_1308648927.unknown

_1308731162.unknown

_1308731521.unknown

_1308651616.unknown

_1308649016.unknown

_1276691001.unknown

_1276692453.unknown

_1308409143.unknown

_1308648089.unknown

_1303926426.unknown

_1276691827.unknown

_1276692440.unknown

_1276691841.unknown

_1276691816.unknown

_1276691652.unknown

_1276681552.unknown

_1276690998.unknown

_1261219414.unknown

_1261219549.unknown

_1266391211.unknown

_1261219295.unknown

