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PARTICLE SWARM OPTIMIZATION FOR P-MEDIAN PROBLEMS

Ruslan Mamedsaidov

M. S. Thesis – Industrial Engineering
July 2009

Supervisor: Assist. Prof. Mehmet Şevkli

ABSTRACT

In this work, a discrete particle swarm optimization algorithm (DPSO) is 

proposed for the p-median problem. Although the algorithm has all major 

characteristics of the classical particle swarm optimization (PSO), the search 

strategy of the algorithm is different. The algorithm is applied to the p-median 

problem with the objective of minimizing distance between demand points and 

facilities. A novel proposed continuous particle swarm optimization (NCPSO) 

algorithm for p-median problem is introduced as well.  The results of both 

algorithms are compared against each other. And the performance of proposed 

DPSO is compared with against other algorithms in literature, Neural model, 

Reduced Variable Neighborhood Search and Simulated Annealing. The 

experiments have shown that the proposed algorithm results in better 

performance.

Keywords: Swarm Intelligence, Particle Swarm Optimization, P-Median Problem, NP-

hard.
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P-MEDİAN PROBLEM İÇİN PARÇACIK SÜRÜ OPTİMİZASYONU

Ruslan Mamedsaidov

Yüksek Lisans Tezi – Endüstri Mühendisliği
Temmuz 2009

Tez Yöneticisi: Yrd. Doç. Dr. Mehmet Şevkli

ÖZ

Bu tezde, p-median problem için yeni bir parçacık sürü optimizasyonu (DPSO) 

önerilmiştir.  Önerilen algoritmada klasik Parçacık Sürüsü Optimizationunun 

(PSO) bütün karakteristikleri olmasına rağmen, algoritmanın arama stratejisi

farklıdır. Algoritma, talep noktaları ve tesislerin arasında mesafeyi en aza 

indirme amacı ile p-median problemine uygulanmıştır. Bunun dışında 

literatürde bulunan Sürekli Parçacık Sürü optimizasyonundan farklı bir Sürekli

Parçacık Sürü optimizasyonunu önerilmiştir. Önerilen iki algoritmanın 

sonuçları literatürde bulunan  başka algoritmaların sonuçları ile karşılaştırılmış 

ve daha iyi olduğu görülmüştür.

Anahtar Kelimeler: Sürü Zekası, Parçacık Sürü Optimizasyonu, p-Median Problemi, NP-

Zor
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CHAPTER 1

INTRODUCION

1.1. Discrete Location Problems

Discrete Optimization has set up as an important component in modern applied 

mathematics. Many problems from business and industry can be modeled as discrete 

optimization problems. Discrete location problems typically involve a finite set of sites at 

which supply points can be located, and a finite set of clients to be fulfilled by the supply 

points which demands for service or good. The most well known discrete location problems 

are the Uncapacitated (and Capacitated) Facility Location Problem, Multi Stage 

Uncapacitated Facility Location Problem. Evidently many extensions of these basic 

location problems have been developed depending on the objective function. We want to 

state that the main differentiator in the most classical location models is the objective 

function. A great variety of objective functions have been considered, for instance a median

objective where the task is to minimize the sum of the costs of fulfilling all the demand 

requests from the clients. The center objective is to minimize the maximum cost of 

fulfilling all the demand requests from the clients, using the sites chosen. The convex 

combination of the above mentioned median and center objectives is considered as well and 

can be called as a centdian objective where the aim is to keep both the average cost 

behavior as well as the highest cost in balance. So the well known p-median Problem and

p-center Problem are defined. Below we are going to show briefly some of the Discrete 

Location Problems.
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1.1.1. Uncapacitated Facility Location Problem

Simple Plant Location Problem is another title for Uncapacitated Facility Location 

Problem. It is assumed that in Uncapacitated Facility Location Problem given a set I 

={1…N} potential facility locations by providing some uniform product. A facility can be 

opened in any location iI, opening a facility at location i has nonnegative cost as well as 

the transportation cost of satisfying the customer requirements from a facility. Each open 

facility can provide an unlimited amount of products.

Let a set J ={1…M} assign customers that require service. For each pair (i, j) is given 

the process or transportation costs gij0. The goal is to determine a subset of the set of 

potential facility locations ,S I S   , at which to open facilities and an assignment of all 

clients to these facilities so as to minimize the overall total cost. The problem can be 

written as the following:

 
IS

Jj SiSi
i ijCSF g


 

  minmin 1.1

Stated problem is the generalization of the well-known set covering problem and, 

therefore, it is NP-hard problem (G. Cornuéjols et al, 1990). Exact algorithms, 

approximation algorithms with constant performance guarantee, Lagrangian heuristics,

Particle Swarm Optimization (Guner and Sevkli, 2008) and randomized iteration 

algorithms of local search were developed for solving simplest location problem. 

Polynomially solvable classes of problem were found. The reader can find the review of 

results for this problem, for example, in (Mirchandani et al. 1990).

1.1.2. Capacitated Facility Location Problem

Capacitated Facility Location Problem (CFLP) is generalization of the Uncapacitated 

Facility Location Problem. The main differentiator is the very important assumption that In 

contrast to Uncapacitated Facility Location Problem we now suppose each facility can 

provide a limited number of production. And although mathematical models of those 
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problems do not vary too much, solving methods for CFLP are more difficult. There has 

been done much related to this problem. (Sridharan R, 1995)

Now we describe the mathematical model as integer programming problem. Let a set 

I={1,..., I} give potential facility locations by providing some uniform product. The number 

ci  0 is the opening cost of facility at location iI , Vi0 is the maximum value of 

production the facility can provide. 

A set J ={1,…,J} assign customers that require service. For each pair i,j gij0 is the 

production and transportation costs and pij0 is a value of product from facility i needed to 

client j.

Let us define the following notations: 

1

0i

if facility i is opened
y

otherwise


 


1.2

1 ,

0ij

if client j is serviced by facility i
x

otherwise


 


1.3

Then the Capacitated Facility Location Problem may be written as:

, ,ij i i
j J

p x V y i I


  1.4

min i i ij ij
i I i I j J

c y g x
  

 
 

 
 

1.5

1, ,ij
i J

x j J


 
1.6

 ,  0,  1 , , ij ix y i I j J   1.7
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1.1.3. Multi Stage Uncapacitated Facility Location Problem

In the Multi Stage Uncapacitated Facility Location Problem we are given a set of 

facilities and a set of customers. Each customer must be serviced by a sequence of different 

facilities. These sequences are defined by hierarchy of production and distribution system 

and can be presented as facility paths. The set of admissible facility paths is given. Each 

facility has fixed cost. Each customer has transportation costs for servicing by the facility 

paths. The problem is to select facilities in order to service the customers with minimal 

total cost. 

Below we present an illustrated example of hierarchical multi stage production 

system. A feasible solution of the problem is marked in black. 

Figure 1.1 Hierarchical multi stage production system. (Sobolev Institute of Mathematics, 
2009)

1.1.4. P-Center Problem

The p-center problem, in other words the minimax problem, aims to find the location 

of p number of facilities (centers) on a network so that the maximum distance traveled from

each customer (demand point) to its nearest facility minimized. (Daskin, 1995; Kariv and 

Hakimi, 1979a). This problem may address, for instance, the location of public facilities, 

schools, emergency services, where the generally accepted objective is to design a system 
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so that no customer has to travel too far (or each customer could be reached in a reasonable 

amount of time).

In this work we concentrated much more on the problem which can be described as a 

minisum, the p-median problem. 

1.2. The Particle Swarm Optimization

Particle swarm optimization (PSO) is based on the metaphor of social interaction and 

communication among different spaces in nature, such as bird flocking and fish schooling. 

It is different from other evolutionary methods in a way that it does not use the genetic 

operators (such as crossover and mutation), and the members of the entire population are 

maintained through out the search procedure. Thus, information is socially shared among 

individuals to direct the search towards the best position in the search space. In a PSO 

algorithm, each member is called a particle, and each particle moves around in the multi-

dimensional search space with a velocity constantly updated by the particle’s experience, 

the experience of the particle’s neighbors, and the experience of the whole swarm. PSO was 

first introduced to optimize various continuous nonlinear functions by (Eberhart and 

Kennedy, 1995). PSO has been successfully applied to a wide range of applications such as 

automated drilling (Onwubolu and Clerc, 2004), neural network training (Van den Bergh 

and Engelbecht, 2000), scheduling problems (Tasgetiren et. al., 2006), (Tseng and Liao, 

2008), (Allahverdi and Al-Anzi, 2006), (Tasgetiren et. al., 2007), and (Pan et al., 2008),

power and voltage control (Yoshida, 2000), and task assignment (Salman, 2003). The PSO 

algorithm was successfully applied to the similar problem as p-median problem which is 

Uncapacitated Facility Location Problem by (Guner and Sevkli, 2008). More information 

about PSO can be found in (Kennedy et al. 2001).

In PSO, each single solution, called a particle, is considered as an individual, the 

group becomes a swarm (population) and the search space is the area to explore. Each 

particle has a fitness value calculated by a fitness function, and a velocity to fly towards the 

optimum. All particles fly across the problem space following the particle that is nearest to 
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the optimum. PSO starts with an initial population of solutions, which is updated iteration-

by-iteration. The principles that govern PSO algorithm can be stated as follows: 

 n dimensional position ( ),...,,( 21 iniii xxxX  ) and velocity vector 

( ),...,,( 21 iniii vvvV  for ith particle starts with a random position and velocity. 

 Each particle knows its position and value of the objective function for that 

position. The best position of ith particle is donated as ),...,,( 21 iniii pppP  , and the 

best position of the whole swarm as, ),...,,( 21 ngggG  respectively. The PSO 

algorithm is governed by the following main equations:

)()( 2211
1 t

in
t
i

t
in

t
in

t
in

t
in xgrcxprcwvv  , 1.8

t
in

t
in

t
in xvx   11

1.9

where t represents the iteration number, w is the inertia weight which is a coefficient 

to control the impact of the previous velocities on the current velocity. c1 and c2 are called 

learning factors. r1 and r2 are uniformly distributed random variables in [0, 1]. 

The original PSO algorithm can optimize problems in which the elements of the 

solution space are continuous real numbers. The major obstacle for successfully applying 

PSO to combinatorial problems in the literature is due to its continuous nature. To remedy 

this drawback, (Tasgetiren et al. 2006, 2007) presented the smallest position value (SPV) 

rule. Another approach to tackle combinatorial problems with PSO is done by (Pan et al.,

2008).  They generate a similar PSO equation to update the particle’s velocity and position 

vectors using one and two cut genetic crossover operators.

1.2.1. Discrete particle swarm optimization

As we mentioned before Particle Swarm Optimization initially was introduced for 

Continuous problems. In (Kennedy and Eberhart, 1997) the modification to the algorithm 

was proposed by utilizing a probability value in a range of [0.0, 0.1] according to which the 
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position vector takes discrete values, 0 or 1. The probability value was derived through the 

sigmoid function: 

    ii VVs  exp11 1.10

The position of the vector value is set to 1 if the random number (from a uniform 

distribution between 0.0 and 1.0) less than the value of the sigmoid function or set to 0 

otherwise or vice versa, as in Equation (1.11)

 


 


otherwise

Vsr
X i

i 0

1

1.11

Another Discrete Particle Swarm Optimization was proposed by (Afshinmanesh et al., 

2005) where the idea is to implement artificial immune system within the PSO algorithm, 

i.e. the theory of negative selection was used for calculation of velocity vector and the 

movements of the particle in the proposed technique.

The process of generating a new position vector for a selected individual in a swarm 

is as follows: two different particles are generated out of the particle position vector and 

two “desired positions” (the global best position vector and individual’s best position

vector). It is done using an XOR logical operation, as in Equations (11) and (12). Each bit 

in the developed vector shows whether this bit is different from the desired one or not (i.e. 

the Hamming distance). The “exploration ability”, diversity, has been added into the 

method by creating two random discrete vectors consisting 0 or 1 values that will be 

processed with previously generated vectors by an ‘and’ logical operation. The velocity 

vector, which shows which bits should be changed, is produced by performing an ‘or’ 

operation between the two vectors produced as a result of the ‘and’ operation in the 

previous step, as in Equation (13). As a result, a new position vector will be computed by 

applying an ‘xor’ logical operation to the velocity vector and the particle’s current position 

vector, shown in Equation (14). The negative selection was applied just at this stage for the 

reason that the number of ones and zeros are predefined. So if the number of ones exceeds 

predefined value the negative selection is applied to convert ones into zeros.
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Application of Discrete Particle Swarm Optimization to condition-based maintenance 

and comparison with genetic algorithm was analyzed in (Camci, F., 2009)

Below is given the algorithm expressed in formulas and the illustration for the 

proposed algorithm.

 tiiti XPbestXORd ,, ,1  1.12

 tiiti XGbestXORd ,, ,2 
1.13

      tititi dmrandANDdmrandANDORV ,,1, 2,,1,1,,1 1.14

 1,,1, ,   tititi VXXORX
1.15
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Figure 1.2 Individual generation in proposed algorithm (Afshinmanesh et al., 2005)
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CHAPTER 2

THE P-MEDIAN PROBLEM

2.1. Basic Problem Definition

P-median problem is a well known facility-location problem where the task is to 

allocate p facilities in a way that the total distance between n demand points and p facilities 

minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv 

and Hakimi, 1979b). 

Mathematical formulation of p-median problem is as follows, (ReVelle and Swain, 

1970). 


 

n

i

n

j
ijiji xda

1 1

min 2.1

Subject to:

1
1




n

j
ijx , i=1, 2, . . . , n, 2.2

jij yx  , i, j=1, 2, . . . , n, 2.3





n

j
j py

1

2.4

 1,0, jij yx , i, j=1, 2, . . . , n, 2.5
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where

n = total number of nodes in the graph,

ai = demand of node i,

dij = distance from node i to node j,

p = number of facilities used as medians

ai, dij are positive real numbers,

if node i is assigned to facility at point j,






0

1
ijx

Otherwise

If facility is locate at point j,1

0jy


 
 Otherwise

2.2. Literature review

P-median problem is a well known facility-location problem where the task is to 

allocate p facilities in a way that the distance between n demand points and facilities 

minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv 

and Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-

bounded algorithms. Small size instances of p-median problem can be solved with 

reasonable computational time by exact algorithms such as branch-and-bound (Järvinen et 

al., 1972). Where the method works by finding ( n – p ) nodes thus leaving p-medians. 

However, as the problem size increases, the computation time of exact methods increases 

exponentially. On the other hand, heuristic algorithms generally have acceptable time and 

memory requirements, but do not guarantee optimal solution. That is, a feasible solution is 

obtained which is likely to be either optimal or near optimal. One of the first heuristics that 

was applied to the p-median problem is a greedy heuristic by (Kuehn and Hamburger, 

1963), as well heuristic method proposed by Teitz and Bart is one of the oldest and most 

popular where an interchange algorithm is applied (Teitz and Bart, 1968).
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The most popular Metaheuristics appeared in literature are, Genetic Algorithm where 

the gene of a chromosome consists of indexes of nodes that were selected for the solutions, 

(Alp et al., 2003). The population size in the introduced algorithm was presented as 

follows,

   
d

d

Sn
pnP













 

ln

100
,2max, , 2.6

where, 










p

n
CS

is number of all possible solutions to the problem and  pnd  the 

rounded up density to the problem. According to the formula, the result of the max operator 

is at least two, guaranteeing that every gene appears at least twice in the initial population. 

This algorithm is simple, fast and generates excellent solutions. (Correa et al., 2006)

proposed a genetic algorithm for capacitated p-median problem. (Lorena and Furtado, 

2001) offered a genetic algorithm which differs from classical one where a dynamic 

population and two separate fitness functions are introduced. (Murray and Church, 1996), 

applied simulated annealing to location-planning models. And more recently (Levanova 

and Loresh, 2004) implemented the ant systems and simulated annealing algorithm to solve 

p-median problem. One of the most recent works is related to Variable Neighborhood 

Search where a new technique is proposed by (Crainic et al 2003, 2004) Cooperative 

Neighborhood VNS. More information about p-median problem can be found in 

(Mladenović Nenad et al. 2007).
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CHAPTER 3

HEURISTIC ALGORITHMS

3.1. Proposed Discrete Particle Swarm Optimization Algorithm

In proposed Discrete Particle Swarm Optimization algorithm (DPSO), the initial 

population is generated randomly. Initially, each individual with its position, and fitness 

value is assigned to its personal best (i.e., the best value of each individual found so far). 

The best individual in the whole swarm with its position and fitness value, on the other 

hand, is assigned to the global best (i.e., the best particle in the whole swarm). Then, the 

position of each particle is updated based on the personal best and the global best. These 

operations in proposed DPSO are similar to classical PSO algorithm. However, the search 

strategy of proposed DPSO is different. That is, each particle in the swarm moves based on 

the following equations.

)(1
t
i

t Xws 

 wwt 1

)(12
t

iPcs 

)(23
tGcs 

);;( 321
1 sssbestX t

i 

3.1

At each iteration, the position vector of each particle, its personal best and the global 

best are considered. First of all, a random number of U(0,1) is generated to compare with 

the inertia weight to decide whether to apply Exchange function( ) to the particle or not. 
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Exchange function ( ) implies the exchange of randomly chosen facility with another 

randomly chosen node. For instance, for the p-median problem of p=4, suppose a sequence 

of {5, 11, 17, 32} is a possible solution set. In order to apply Exchange function, we also 

need to derive two random numbers; one is for determining the facility to be changed and 

the other is for the node to be accepted as a new facility. Let’s say those numbers are 11 

and 20 (that is, the node number 11 will not serve as a facility anymore and the node 

number 20 will be accepted as a new facility {5, 11, 17, 32}). The new sequence will be {5, 

20, 17, 32}. Note that the order of the facilities shown in the solution set is not important. 

In other words the solution set can be shown in another way too {32, 20, 17, 5}.

If the random number chosen is less than the inertia weight, the particle is 

manipulated with this Exchange function, and the resulting solution, say s1, is obtained. 

Meanwhile, the inertia weight is discounted by a constant factor at each iteration, in order 

to tighten the acceptability of the manipulated particle for the next generation, that is, to 

diminish the impact of the randomly operated solutions on the swarm evolution. 

The next step is to generate another random number of U(0,1) to be compared with c1, 

cognitive parameter, to make a decision whether to apply Exchange function to personal 

best of the particle considered. If the random number is less than c1, then the personal best 

of the particle undertaken is manipulated and the resulting solution is spared as s2. 

Likewise, a third random number of U(0,1) is generated for making a decision whether to 

manipulate the global best with the Exchange function. If the random number is less than 

c2, social parameter, then Exchange is applied to the global best to obtain a new solution of 

s3.  Unlike the case of inertia weight, the values of c1 and c2 factors are not increased or 

decreased iteratively, but are fixed at 0.5. That means the probability of applying Exchange

function to the personal and global bests remains the same. The new replacement solution 

is selected among s1, s2 and s3, based on their fitness values. This solution may not always 

be better than the current solution. This is to keep the swarm diverse. The convergence is 

traced by checking the personal best of each new particle and the global best. As it is seen, 

proposed equations have all major characteristics of the classical PSO equations. The 

following pseudo-code describes in detail the steps of the proposed DPSO algorithm.
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Begin

Initialize particles (population) randomly
For each particle

Calculate fitness value
Set to position vector and fitness value as personal best (Pit) 
Select the best particle and its position vector as global best(Gt) 

End
Do{

Update inertia weight
For each particle
Apply insert with the probability of inertia weight (s1)
Apply insert to (Pit) with the probability of c1 (s2)
Apply insert to (Gt) with the probability of c2 (s3)
Select the best one among the s1,s2 and s3
Update personal best (Pit)

End
Update global best (Gt)

}While (Maximum Iteration is not reached)

End

Figure 3.1 Pseudo-code for the DPSO algorithm

3.2. Proposed Continuous Particle Swarm Optimization Algorithm

In a proposed novel Continuous Particle Swarm Optimization algorithm (NCPSO), 

the operations are similar to classical PSO algorithm. However, the initialization of 

population strategy of NCPSO is different. The position and velocity vectors of initial 

population are generated randomly and each individual sorted according to its position 

vector ascendingly. And the first p nodes are opened as facilities to serve the demanding 

nodes. Initially, each individual with its position, and fitness value is assigned to its 

personal best (i.e., the best value of each individual found so far). The best individual in the 

whole swarm with its position and fitness value, on the other hand, is assigned to the global 

best (i.e., the best particle in the whole swarm). Then, all particles fly across the problem 

space following the particle that is nearest to the optimum as in the classical PSO 

algorithm.
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Table 3.1: Deriving open facility vector from position 

ith Particle Vectors Particle Dimension (k)
1 2 3 4 5

Position Vector(Xi) 1.8 0.72 -0.99 3.01 -5.45
Open Facility Vector (Yi) 0 1 1 0 1

Below it is shown how sequence is derived from the vector (Yi) which was derived 

from the Position Vector (Xi).

Table 3.2: Sequence of facilities opened derived from Open Facilities Vector (Yi)

ith Particle Vectors Sequence for p=3
1 2 3

Sequence of opened facilities 2 3 5

3.3. Local Search

Local search methods are important part of heuristic optimization which allows us to 

avoid the local minima. This method starts from some initial solution and iteratively tries to 

replace the current solution by a better solution in an appropriately defined neighborhood of 

the current solution. Alternatively, it is called neighborhood search algorithm. First 

applications of local search have been presented in the late fifties and the early sixties 

(Croes, 1958), (Lin, 1965). 

The proposed local search method in DPSO is applied as, choosing a random facility in 

a solution set and changing with the demanding nodes which were not selected before in a 

solution set. However in NCPSO in spite of experimenting various local search methods it 

did not improve the performance of the algorithm, so we did not use any local search 

method in a NCPSO.
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3.4. Variable Neighborhood Search Algorithm

VNS is one of the most recent metaheuristics developed in combinatorial 

optimization problem solving in an easier way.  It is known as one of very well-known 

local search methods. VNS gets more attention day-by-day due to its ease of use and 

accomplishments in solving combinatorial optimization problems. 

The VNS is a simple and effective search procedure that proceeds to a systematic 

change of neighborhood. An ordinary VNS algorithm gets an initial solution Sx , where 

S is the whole set of search space, then manipulates it through a two nested loop in which 

the core one alters and explores via two main functions so called shake and local search. 

The outer loop works as a refresher reiterating the inner loop, while the inner loop carries 

the major search. Local search explores an improved solution within the local 

neighborhood, while shake diversifies the solution by switching to another local 

neighborhood. 

Figure 3.2 Diversification by shake function

The inner loop iterates as long as it keeps improving the solutions, where an integer, 

k, controls the length of the loop. Once an inner loop is completed, the outer loop re-iterates 

until the termination condition is met. Since the complementariness of neighborhood 

functions is the key idea behind VNS, the neighborhood structure should be chosen very 

rigorously in order to achieve an efficient VNS. (Uysal, H. 2006).

In order to develop an effective VNS algorithm, one needs two kinds of 

neighborhood functions: shake functions ( )(xN s
k ) and local search functions ( )(xN LS

l
). Each 

neighborhood function has a particular neighborhood structure. The neighborhood 
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structures may be used more than one for each function (shake and local search) so as to 

achieve a valuable neighborhood change. For that purpose, the counters k ( max1 kk  ) and 

l ( max1 ll  ) are used for shake and local search functions respectively in order to ease 

switching from one to another neighborhood.

Begin

Find an initial solution x
Do{

Shake Procedure: Generate at random a starting solution
)(xNx S

k
.

Local Search: Apply a local search from the starting solution x’

             using the base neighborhood structure 
)(xN LS

l  until 

             a local minimum 
)(xNx LS

l
 is found.

Improve or not: If x” is better than x, do x ← x’

}While (the stopping condition is not met)

End

Figure 3.3 Steps of the VNS procedure

The stopping condition may be a maximum CPU time allowed, a maximum number 

of iterations, or maximum number of iterations between two improvements.

One of the most recent works on Variable Neighborhood Search related to p-median 

problem where a new technique is proposed, Cooperative Neighborhood VNS (Crainic et al 

2003, 2004).

3.4.1. Reduced Variable Neighborhood Search

Reduced VNS has the same analogy as the Basic VNS except that no Local Search 

procedure is applied. The Reduced VNS explores only randomly different neighborhoods. 

It can be faster than standard local search algorithms for reaching good quality solutions.
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3.5. Simulated Annealing

As its name implies, the Simulated Annealing (SA) exploits an analogy between the 

way in which a metal cools and freezes into a minimum energy crystalline structure (the 

annealing process) and the search for a minimum in a more general system. 

The algorithm is based upon that of (Metropolis et al., 1958) which was originally 

proposed as a means of finding the equilibrium configuration of a collection of atoms at a 

given temperature. The connection between this algorithm and mathematical minimization 

was first noted by (Pincus, 1970) but it was (Kirkpatrick et al., 1983) who proposed that it 

form the basis of an optimization technique for combinatorial (and other) problems. 

SA's major advantage over other methods is an ability to avoid becoming trapped at 

local minima. The algorithm employs a random search which not only accepts changes that 

decrease objective function f, but also some changes that increase it. The latter are accepted 

with a probability 









T

f
p


exp 3.2

where f is the increase in f and T is a control parameter, which by analogy with the 

original application is known as the system “temperature” irrespective of the objective 

function involved. (Oak Ride National Laboratory, 1996)
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CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, a comparison study is carried out on the effectiveness of the proposed 

DPSO and NCPSO algorithms. Proposed DPSO was exclusively tested in comparison with 

NCPSO algorithm and result of (Domínguez and Muñoz, 2008). The results for DPSO were 

compared to the simple Simulated Annealing and Reduced Variable Neighborhood Search 

algorithm as well which were coded according to the pseudo-code in previous chapters. A 

data set of 40 p-median problems with known optimal solutions in the OR Library (Beasley 

JE., 1990) was used in testing of performances of algorithms. All proposed DPSO and 

NCPSO algorithms as well as simple Simulated Annealing and Reduced Variable 

Neighborhood Search algorithm are coded in C and run on a PC with the configuration of 

2.6 GHz CPU and 512MB memory. The size of the population considered by all algorithms 

is twice the number of nodes. 

For DPSO and NCPSO, the social and cognitive parameters were taken as 5.021 cc , 

initial inertia weight is set to 0.5 and, and the decrement factor  is fixed at 0.9995.

Relative percentile deviation is taken as a performance measure to compare the 

performance of the algorithms. 

100


opt

opt

f

ff
4.1

where f denotes best solution found by the algorithm and fopt denotes the optimum 

value of the objective function.
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4.1. Comparison of DPSO to neural model

Table given below summarizes the comparison of computational results for 10 

replications of DPSO and neural model by (Domínguez and Muñoz, 2008) ( NA-L+) 

solving 40 test problems from OR Library. The objective function values found by the 

algorithms are shown in column 4 and 5. The % error is shown in columns 6 and 7 and the 

computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs 

better not only in terms of the percentile error but it finds the “near optimal” solution in less 

computational time as well.

For the reason that in the published work some of the results were not presented we 

were not able to compare the average relative percentile deviation and the average 

computational time more logically but considering just the once that the authors are 

presenting in the work (Domínguez and Muñoz, 2008).

The average percentile deviation in the work by Domínguez and Muñoz is 0,48% 

while in problem solution proposed by our algorithm it is 0,45%.

The same situation is with the computational time where it is 2169,31 seconds in the 

work by Domínguez and Muñoz while in our work it is 358,62 seconds.
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Table 4.1 proposed DPSO -L+ and NA-L+ performances for OR Library test problems

Problem (n, p) Optimum Objective function % Error CPU time (s)

DPSO-L+ NA-L+ DPSO-L+ NA-L+ DPSO-L+ NA-L+

pmed1 (100, 5) 5819 5819 5819 0 0 0,56 0,27

pmed2 (100, 10) 4093 4099 4093 0,15 0 21,60 1,86

pmed3 (100, 10) 4250 4250 4250 0 0 2,02 0,83

pmed4 (100, 20) 3034 3034 3038 0 0,13 11,84 21,37

pmed5 (100, 33) 1355 1356,5 1359 0,11 0,3 33,79 27,46

pmed6 (200, 5) 7824 7824 ***** 0 ***** 1,37 *****

pmed7 (200, 10) 5631 5631 5631 0 0 18,72 7,37

pmed8 (200, 20) 4445 4445 4448 0 0,07 21,06 77,5

pmed9 (200, 40) 2734 2740,5 2751 0,24 0,62 119,44 120,89

pmed10 (200, 67) 1255 1256,5 1264 0,12 0,72 105,80 167,07

pmed11 (300, 5) 7696 7696 7696 0 0 2,04 3,23

pmed12 (300, 10) 6634 6634 ***** 0 ***** 5,13 *****

pmed13 (300, 30) 4374 4374 ***** 0 ***** 42,93 *****

pmed14 (300, 60) 2968 2972,9 2983 0,17 0,51 144,05 388,51

pmed15 (300, 100) 1729 1733,7 1751 0,27 1,27 150,24 526,11

pmed16 (400, 5) 8162 8162 ***** 0 ***** 6,36 *****

pmed17 (400, 10) 6999 7000,2 6999 0,02 0 57,98 94,02

pmed18 (400, 40) 4809 4817,5 4811 0,18 0,04 150,48 787,03

pmed19 (400, 80) 2845 2863,7 2863 0,66 0,63 158,84 1024,5

pmed20 (400, 133) 1789 1805,4 1815 0,92 1,45 293,66 1317

pmed21 (500, 5) 9138 9138 ***** 0 ***** 4,24 *****

pmed22 (500, 10) 8579 8579 ***** 0 ***** 33,00 *****

pmed23 (500, 50) 4619 4650,6 4624 0,68 0,11 155,87 1889,5

pmed24 (500, 100) 2961 2989,6 2986 0,97 0,84 394,75 2157,2

pmed25 (500, 167) 1828 1845,3 1865 0,95 2,02 727,81 2634,6

pmed26 (600, 5) 9917 9917 ***** 0 ***** 20,79 *****

pmed27 (600, 10) 8307 8307,9 8307 0,01 0 74,44 171,75

pmed28 (600, 60) 4498 4539,6 4508 0,92 0,22 260,62 3368,7

pmed29 (600, 120) 3033 3062 3060 0,96 0,89 708,85 3827,8

pmed30 (600, 200) 1989 2007,5 2016 0,93 1,36 1972,30 4705,3

pmed31 (700, 5) 10086 10086,1 ***** 0 ***** 53,87 *****

pmed32 (700, 10) 9297 9297,4 ***** 0 ***** 77,96 *****

pmed33 (700, 70) 4700 4744 4706 0,94 0,13 451,27 5927,2

pmed34 (700, 140) 3013 3042,2 3038 0,97 0,83 1303,58 6747,6

pmed35 (800, 5) 10400 10400 ***** 0 ***** 25,38 *****

pmed36 (800, 10) 9934 9945,5 ***** 0,12 ***** 113,79 *****

pmed37 (800, 80) 5057 5104,7 5071 0,94 0,28 948,08 9243,1

pmed38 (900, 5) 11060 11060 ***** 0 ***** 29,19 *****

pmed39 (900, 10) 9423 9423 ***** 0 ***** 111,10 *****

pmed40 (900, 90) 5128 5177,8 5155 0,97 0,53 1393,01 13331

***** The results were not presented in published work
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4.2. Comparison of DPSO to NCPSO

And the next presented Table summarizes the comparison of computational results for 

10 replications of proposed DPSO to proposed Novel Continuous Particle Swarm 

Algorithm solving 40 test problems from OR Library. The objective function value found 

by the algorithms is shown in column 4 and 5. The % error is shown in columns 6 and 7 

and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the DPSO algorithm performs better 

than the proposed NCPSO algorithm in terms of the percentile error and it finds the “near 

optimal” solution in less computational time as well.

The average percentile deviation in the solution method by DPSO it is 0,30% while in 

the problem solution proposed by NCPSO algorithm is 4,08%.

The same situation is with the computational time where it is 255,20 seconds in the 

solution by the proposed DPSO algorithm and 1925,46 seconds in the solution method by 

the proposed CPSO algorithm.
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Table 4.2 proposed DPSO -L+ and NCPSO performances for OR Library test problems

Problem (n, p) Optimum Objective function % Error CPU time (s)

DPSO-L+ NCPSO DPSO-L+ NCPSO DPSO-L+ NCPSO

pmed1 (100, 5) 5819 5819 5829 0 0,17 0,56 5,69

pmed2 (100, 10) 4093 4099 4116,3 0,15 0,57 21,60 13,30

pmed3 (100, 10) 4250 4250 4312,3 0 1,47 2,02 13,13

pmed4 (100, 20) 3034 3034 3114,9 0 2,67 11,84 20,63

pmed5 (100, 33) 1355 1356,5 1402,6 0,11 3,51 33,79 24,76

pmed6 (200, 5) 7824 7824 7839,1 0 0,19 1,37 19,43

pmed7 (200, 10) 5631 5631 5746 0 2,04 18,72 48,00

pmed8 (200, 20) 4445 4445 4603,6 0 3,57 21,06 89,17

pmed9 (200, 40) 2734 2740,5 2870,4 0,24 4,99 119,44 114,44

pmed10 (200, 67) 1255 1256,5 1326,9 0,12 5,73 105,80 153,27

pmed11 (300, 5) 7696 7696 7732,6 0 0,48 2,04 88,64

pmed12 (300, 10) 6634 6634 6754,4 0 1,81 5,13 129,86

pmed13 (300, 30) 4374 4374 4598,2 0 5,13 42,93 308,74

pmed14 (300, 60) 2968 2972,9 3139,4 0,17 5,77 144,05 441,22

pmed15 (300, 100) 1729 1733,7 1841,7 0,27 6,52 150,24 476,61

pmed16 (400, 5) 8162 8162 8183,7 0 0,27 6,36 215,99

pmed17 (400, 10) 6999 7000,2 7206,8 0,02 2,97 57,98 258,98

pmed18 (400, 40) 4809 4817,5 5043,6 0,18 4,88 150,48 782,04

pmed19 (400, 80) 2845 2863,7 3033,5 0,66 6,63 158,84 1079,54

pmed20 (400, 133) 1789 1805,4 1929,3 0,92 7,84 293,66 1424,29

pmed21 (500, 5) 9138 9138 9297,8 0 1,75 4,24 344,63

pmed22 (500, 10) 8579 8579 8798,2 0 2,56 33,00 514,93

pmed23 (500, 50) 4619 4650,6 4871,4 0,68 5,46 155,87 1938,42

pmed24 (500, 100) 2961 2989,6 3168,5 0,97 7,01 394,75 2055,73

pmed25 (500, 167) 1828 1845,3 2009,4 0,95 9,92 727,81 2776,58

pmed26 (600, 5) 9917 9917 10006,4 0 0,90 20,79 592,48

pmed27 (600, 10) 8307 8307,9 8554 0,01 2,97 74,44 873,10

pmed28 (600, 60) 4498 4539,6 4732,4 0,92 5,21 260,62 3842,83

pmed29 (600, 120) 3033 3062 3282,7 0,96 8,23 708,85 4589,88

pmed30 (600, 200) 1989 2007,5 2184 0,93 9,80 1972,30 5668,41

pmed31 (700, 5) 10086 10086,1 10153,7 0 0,67 53,87 1005,50

pmed32 (700, 10) 9297 9297,4 9667 0 3,98 77,96 1569,79

pmed33 (700, 70) 4700 4744 4987,3 0,94 6,11 451,27 5869,41

pmed34 (700, 140) 3013 3042,2 3285,5 0,97 9,04 1303,58 7609,70

pmed35 (800, 5) 10400 10400 10543,4 0 1,38 25,38 1608,46

pmed36 (800, 10) 9934 9945,5 10241,3 0,12 3,09 113,79 2790,84

pmed37 (800, 80) 5057 5104,7 5383,571 0,94 6,46 948,08 9838,69

pmed38 (900, 5) 11060 11060 11173,2 0 1,02 29,19 2170,54

pmed39 (900, 10) 9423 9423 9790,3 0 3,90 111,10 2528,09

pmed40 (900, 90) 5128 5177,8 5469,333 0,97 6,66 1393,01 13122,63
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4.3. Comparison of DPSO to RVNS for 1000 generations

Table given below summarizes the comparison of computational results for 10 

replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40 

test problems from OR Library. The smallest and the biggest percentile error made for the 

RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for 

the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in 

the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs 

better not only in terms of the percentile error but it finds the “near optimal” solution in less 

computational time for some of the problems.

The average percentile deviation in RVNS is 8,84% while in problem solution 

proposed by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below RVNS was run 1000 generations. 

The generation number was selected in a such way in order to compare the results after 

running the algorithms under the same conditions. In most cases it resulted in less 

computational time compared to DPSO.
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Table 4.3 Comparison of DPSO to RVNS for 1000 generations

Error% CPU time (s)
RVNS DPSOProblem (n, p) Optimum

Best Worst Best Worst
RVNS DPSO

pmed1 (100, 5) 5819 0 0,60 0 0 23,05 0,56
pmed2 (100, 10) 4093 0,17 2,71 0 0,29 25,87 21,6
pmed3 (100, 10) 4250 0 3,67 0 0 25,58 2,02
pmed4 (100, 20) 3034 1,45 6,43 0 0 25,92 11,84
pmed5 (100, 33) 1355 2,51 8,63 0 0,22 25,95 33,79
pmed6 (200, 5) 7824 0 0,55 0 0 23,09 1,37
pmed7 (200, 10) 5631 0,66 3,46 0 0 26,00 18,72
pmed8 (200, 20) 4445 2,72 5,96 0 0 26,08 21,06
pmed9 (200, 40) 2734 3,44 7,50 0 0,62 26,19 119,44

pmed10 (200, 67) 1255 3,35 10,12 0 0,40 26,34 105,8
pmed11 (300, 5) 7696 0 1,53 0 0 25,38 2,04
pmed12 (300, 10) 6634 1,39 4,16 0 0 26,16 5,13
pmed13 (300, 30) 4374 2,95 6,93 0 0 26,38 42,93
pmed14 (300, 60) 2968 6,10 8,66 0 0,47 26,63 144,05
pmed15 (300, 100) 1729 6,54 11,57 0,06 0,52 26,92 150,24
pmed16 (400, 5) 8162 0,01 2,28 0 0 26,19 6,36
pmed17 (400, 10) 6999 1,70 5,33 0 0,06 26,34 57,98
pmed18 (400, 40) 4809 3,78 6,49 0,04 0,48 26,82 150,48
pmed19 (400, 80) 2845 6,15 9,00 0,35 0,98 27,22 158,84
pmed20 (400, 133) 1789 9,39 13,47 0,84 0,95 27,71 293,66
pmed21 (500, 5) 9138 0 3,30 0 0 25,50 4,24
pmed22 (500, 10) 8579 1,08 4,57 0 0 26,53 33
pmed23 (500, 50) 4619 5,59 7,64 0,26 0,97 27,09 155,87
pmed24 (500, 100) 2961 7,16 10,37 0,91 0,98 27,70 394,75
pmed25 (500, 167) 1828 9,52 13,02 0,82 0,98 28,50 727,81
pmed26 (600, 5) 9917 0,30 2,86 0 0 26,15 20,79
pmed27 (600, 10) 8307 1,66 4,78 0 0,04 26,43 74,44
pmed28 (600, 60) 4498 6,07 8,14 0,78 0,98 27,62 260,62
pmed29 (600, 120) 3033 8,90 11,61 0,86 0,99 28,43 708,85
pmed30 (600, 200) 1989 11,31 14,88 0,80 0,96 29,59 1972,3
pmed31 (700, 5) 10086 0,35 3,54 0 0,01 26,52 53,87
pmed32 (700, 10) 9297 2,07 5,16 0 0,04 26,38 77,96
pmed33 (700, 70) 4700 5,47 8,57 0,83 0,98 26,81 451,27
pmed34 (700, 140) 3013 10,36 13,84 0,93 1,00 27,23 1303,58
pmed35 (800, 5) 10400 0,01 3,90 0 0 26,02 25,38
pmed36 (800, 10) 9934 1,80 4,02 0 0,31 26,50 113,79
pmed37 (800, 80) 5057 7,10 9,55 0,83 0,99 27,15 948,08
pmed38 (900, 5) 11060 0,80 2,88 0 0 26,08 29,19
pmed39 (900, 10) 9423 1,89 4,75 0 0 26,32 111,1
pmed40 (900, 90) 5128 7,61 10,04 0,90 0,99 27,39 1393,01

Average 3,53 6,66 0,23 0,38 26,49 255,20
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4.4. Comparison of DPSO to RVNS for 5000 generations

Table given below summarizes the comparison of computational results for 10 

replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40 

test problems from OR Library. The smallest and the biggest percentile error made for the 

RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for 

the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in 

the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs 

better not only in terms of the percentile error but it finds the “near optimal” solution in less 

computational time for some of the problems for sure.

The average percentile deviation in RVNS is 2,1% while in problem solution 

proposed by our algorithm it is 0,3%.

In average computational time it seems like the RVNS performs better but we should 

not forget that in most of the solved problems the RVNS performance was far away 

compared to DPSO in terms of percentile error. And in most of the cases the percentile 

error for DPSO is better. The RVNS was run 5000 generations in this case. Compared to 

1000 generations run the computational time is more “near” to the computational time in 

DPSO.
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Table 4.4 Comparison of DPSO to RVNS for 5000 generations

Error% CPU time (s)
RVNS DPSO RVNS DPSOProblem (n, p) Optimum

Best Worst Best Worst
pmed1 (100, 5) 5819 0 0,00 0 0 30,79 0,56
pmed2 (100, 10) 4093 0 0,29 0 0,29 95,22 21,6
pmed3 (100, 10) 4250 0 0,87 0 0 94,65 2,02
pmed4 (100, 20) 3034 0 0,76 0 0 115,09 11,84
pmed5 (100, 33) 1355 0 1,48 0 0,22 129,11 33,79
pmed6 (200, 5) 7824 0 0,00 0 0 40,01 1,37
pmed7 (200, 10) 5631 0 1,17 0 0 121,48 18,72
pmed8 (200, 20) 4445 0,20 2,92 0 0 130,10 21,06
pmed9 (200, 40) 2734 0,51 2,41 0 0,62 130,48 119,44

pmed10 (200, 67) 1255 1,12 4,46 0 0,40 131,14 105,8
pmed11 (300, 5) 7696 0 0,35 0 0 74,76 2,04
pmed12 (300, 10) 6634 0 1,06 0 0 121,16 5,13
pmed13 (300, 30) 4374 1,07 3,77 0 0 131,21 42,93
pmed14 (300, 60) 2968 2,32 5,26 0 0,47 132,26 144,05
pmed15 (300, 100) 1729 1,74 5,09 0,06 0,52 133,57 150,24
pmed16 (400, 5) 8162 0 0,26 0 0 114,06 6,36
pmed17 (400, 10) 6999 0 2,71 0 0,06 129,87 57,98
pmed18 (400, 40) 4809 1,35 3,10 0,04 0,48 132,84 150,48
pmed19 (400, 80) 2845 2,81 5,27 0,35 0,98 134,92 158,84
pmed20 (400, 133) 1789 4,42 7,55 0,84 0,95 137,12 293,66
pmed21 (500, 5) 9138 0 0,45 0 0 89,04 4,24
pmed22 (500, 10) 8579 0,05 2,07 0 0 132,22 33
pmed23 (500, 50) 4619 2,66 5,82 0,26 0,97 135,53 155,87
pmed24 (500, 100) 2961 3,48 6,72 0,91 0,98 138,45 394,75
pmed25 (500, 167) 1828 4,21 7,06 0,82 0,98 141,85 727,81
pmed26 (600, 5) 9917 0 0,85 0 0 94,33 20,79
pmed27 (600, 10) 8307 0,46 1,66 0 0,04 133,05 74,44
pmed28 (600, 60) 4498 3,07 4,54 0,78 0,98 138,72 260,62
pmed29 (600, 120) 3033 5,31 6,26 0,86 0,99 142,38 708,85
pmed30 (600, 200) 1989 4,52 6,99 0,80 0,96 147,67 1972,3
pmed31 (700, 5) 10086 0 0,74 0 0,01 117,65 53,87
pmed32 (700, 10) 9297 0,26 1,23 0 0,04 132,54 77,96
pmed33 (700, 70) 4700 3,11 4,96 0,83 0,98 140,00 451,27
pmed34 (700, 140) 3013 4,88 6,77 0,93 1,00 145,14 1303,58
pmed35 (800, 5) 10400 0 1,02 0 0 118,00 25,38
pmed36 (800, 10) 9934 0,32 1,41 0 0,31 132,99 113,79
pmed37 (800, 80) 5057 2,79 5,99 0,83 0,99 142,65 948,08
pmed38 (900, 5) 11060 0 0,90 0 0 130,68 29,19
pmed39 (900, 10) 9423 0,33 2,10 0 0 133,32 111,1
pmed40 (900, 90) 5128 3,69 5,21 0,90 0,99 145,89 1393,01

Average 1,37 3,04 0,23 0,38 122,30 255,20



29

4.5. Comparison of DPSO to Simulated Annealing for 1000 generations

Table given below summarizes the comparison of computational results for 10 

replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR 

Library. The smallest and the biggest percentile error made for the SA is shown in column 

4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in 

column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 

respectively.

From the Table given below you can see that the proposed DPSO algorithm performs 

better not only in terms of the percentile error but it finds the “near optimal” solution in less 

computational time for some of the problems.

The average percentile deviation in SA is 6,01% while in problem solution proposed 

by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below SA was run 1000 generations. The 

generation number was selected in a such way in order to compare the results after running 

the algorithms under the same conditions. In most cases it resulted in less computational 

time compared to DPSO. 
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Table 4.5 Comparison of DPSO to Simulated Annealing for 1000 generations

Error% CPU time (s)
SA DPSOProblem (n, p) Optimum

Best Worst Best Worst
SA DPSO

pmed1 (100, 5) 5819 0 1,12 0 0 21,79 0,56
pmed2 (100, 10) 4093 0,29 2,96 0 0,29 26,05 21,6
pmed3 (100, 10) 4250 0 3,67 0 0 24,71 2,02
pmed4 (100, 20) 3034 0,96 6,36 0 0 25,89 11,84
pmed5 (100, 33) 1355 3,03 8,56 0 0,22 25,86 33,79
pmed6 (200, 5) 7824 0,12 1,94 0 0 25,86 1,37
pmed7 (200, 10) 5631 0,64 4,49 0 0 25,93 18,72
pmed8 (200, 20) 4445 3,24 6,57 0 0 25,98 21,06
pmed9 (200, 40) 2734 3,69 7,72 0 0,62 26,03 119,44

pmed10 (200, 67) 1255 5,82 15,14 0 0,40 26,08 105,8
pmed11 (300, 5) 7696 0,35 2,29 0 0 25,96 2,04
pmed12 (300, 10) 6634 1,45 6,21 0 0 26,05 5,13
pmed13 (300, 30) 4374 3,06 7,84 0 0 26,18 42,93
pmed14 (300, 60) 2968 6,77 8,96 0 0,47 26,29 144,05
pmed15 (300, 100) 1729 7,98 14,23 0,06 0,52 26,41 150,24
pmed16 (400, 5) 8162 0,29 2,96 0 0 26,10 6,36
pmed17 (400, 10) 6999 1,19 4,91 0 0,06 26,21 57,98
pmed18 (400, 40) 4809 4,53 7,49 0,04 0,48 26,42 150,48
pmed19 (400, 80) 2845 7,21 11,63 0,35 0,98 26,57 158,84
pmed20 (400, 133) 1789 10,96 22,30 0,84 0,95 26,78 293,66
pmed21 (500, 5) 9138 1,26 5,37 0 0 26,31 4,24
pmed22 (500, 10) 8579 2,30 5,47 0 0 26,24 33
pmed23 (500, 50) 4619 5,72 9,37 0,26 0,97 26,44 155,87
pmed24 (500, 100) 2961 8,48 13,41 0,91 0,98 26,63 394,75
pmed25 (500, 167) 1828 13,02 19,58 0,82 0,98 26,95 727,81
pmed26 (600, 5) 9917 1,01 4,13 0 0 26,03 20,79
pmed27 (600, 10) 8307 2,19 5,51 0 0,04 26,21 74,44
pmed28 (600, 60) 4498 5,96 9,52 0,78 0,98 26,68 260,62
pmed29 (600, 120) 3033 9,89 16,16 0,86 0,99 27,00 708,85
pmed30 (600, 200) 1989 13,88 21,72 0,80 0,96 27,43 1972,3
pmed31 (700, 5) 10086 0,20 3,39 0 0,01 26,52 53,87
pmed32 (700, 10) 9297 2,59 4,88 0 0,04 26,38 77,96
pmed33 (700, 70) 4700 8,11 13,06 0,83 0,98 26,81 451,27
pmed34 (700, 140) 3013 12,58 18,39 0,93 1,00 27,23 1303,58
pmed35 (800, 5) 10400 0,53 4,06 0 0 26,02 25,38
pmed36 (800, 10) 9934 2,18 4,59 0 0,31 26,50 113,79
pmed37 (800, 80) 5057 7,53 11,94 0,83 0,99 27,15 948,08
pmed38 (900, 5) 11060 0,37 2,73 0 0 26,08 29,19
pmed39 (900, 10) 9423 3,41 6,02 0 0 26,32 111,1
pmed40 (900, 90) 5128 8,39 11,91 0,90 0,99 27,39 1393,01

Average 4,28 8,46 0,23 0,38 26,24 255,20
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4.6. Comparison of DPSO to Simulated Annealing for 5000 generations

Table given below summarizes the comparison of computational results for 10 

replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR 

Library. The smallest and the biggest percentile error made for the SA is shown in column 

4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in 

column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 

respectively.

From the Table given below you can see that the proposed DPSO algorithm performs 

better not only in terms of the percentile error but it finds the “near optimal” solution in less 

computational time for some of the problems.

The average percentile deviation in SA is 2,36% while in problem solution proposed 

by our algorithm it is 0,3%. These values are not shown in the given table.

In average computational time it seems like the SA performs better but we should not 

forget that in most of the solved problems the SA performance was far away compared to 

DPSO in terms of percentile error. And in most of the cases the percentile error for DPSO 

is better. The SA was run 5000 generations in this case. Compared to 1000 generations run 

the computational time is more “near” to the computational time in DPSO.
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Table 4.6 Comparison of DPSO to Simulated Annealing for 5000 generations

Error% CPU time (s)

SA DPSOProblem (n, p) Optimum
Best Worst Best Worst

SA DPSO

pmed1 (100, 5) 5819 0 0 0 0 29,07 0,56
pmed2 (100, 10) 4093 0 0,29 0 0,29 97,96 21,6
pmed3 (100, 10) 4250 0 0,47 0 0 92,20 2,02
pmed4 (100, 20) 3034 0 1,52 0 0 128,31 11,84
pmed5 (100, 33) 1355 0 2,44 0 0,22 126,85 33,79
pmed6 (200, 5) 7824 0 0 0 0 56,29 1,37
pmed7 (200, 10) 5631 0 0,55 0 0 113,30 18,72
pmed8 (200, 20) 4445 0,13 2,34 0 0 129,53 21,06
pmed9 (200, 40) 2734 0,80 4,24 0 0,62 129,77 119,44

pmed10 (200, 67) 1255 2,07 5,98 0 0,40 130,04 105,8
pmed11 (300, 5) 7696 0 0,44 0 0 75,53 2,04
pmed12 (300, 10) 6634 0 0,69 0 0 120,85 5,13
pmed13 (300, 30) 4374 1,07 3,54 0 0 130,30 42,93
pmed14 (300, 60) 2968 2,80 5,76 0 0,47 130,67 144,05
pmed15 (300, 100) 1729 3,53 6,07 0,06 0,52 131,25 150,24
pmed16 (400, 5) 8162 0 0,34 0 0 125,23 6,36
pmed17 (400, 10) 6999 0,06 1,74 0 0,06 130,23 57,98
pmed18 (400, 40) 4809 1,89 4,70 0,04 0,48 131,12 150,48
pmed19 (400, 80) 2845 3,90 6,50 0,35 0,98 131,87 158,84
pmed20 (400, 133) 1789 4,92 8,27 0,84 0,95 132,89 293,66
pmed21 (500, 5) 9138 0 1,01 0 0 116,59 4,24
pmed22 (500, 10) 8579 0,15 2,02 0 0 131,72 33
pmed23 (500, 50) 4619 3,27 4,87 0,26 0,97 133,21 155,87
pmed24 (500, 100) 2961 3,68 5,81 0,91 0,98 134,27 394,75
pmed25 (500, 167) 1828 5,14 8,75 0,82 0,98 135,78 727,81
pmed26 (600, 5) 9917 0 1,03 0 0 116,48 20,79
pmed27 (600, 10) 8307 0,42 1,78 0 0,04 131,35 74,44
pmed28 (600, 60) 4498 2,78 4,82 0,78 0,98 133,67 260,62
pmed29 (600, 120) 3033 4,88 6,96 0,86 0,99 135,14 708,85
pmed30 (600, 200) 1989 5,53 7,44 0,80 0,96 137,30 1972,3
pmed31 (700, 5) 10086 0 0,77 0 0,01 124,90 53,87
pmed32 (700, 10) 9297 0,41 2,08 0 0,04 131,46 77,96
pmed33 (700, 70) 4700 3,11 5,57 0,83 0,98 134,29 451,27
pmed34 (700, 140) 3013 5,34 7,04 0,93 1,00 136,25 1303,58
pmed35 (800, 5) 10400 0 1,62 0 0 117,19 25,38
pmed36 (800, 10) 9934 0,49 2,32 0 0,31 131,80 113,79
pmed37 (800, 80) 5057 3,94 5,14 0,83 0,99 135,47 948,08
pmed38 (900, 5) 11060 0 0,84 0 0 129,83 29,19
pmed39 (900, 10) 9423 0,36 1,51 0 0 131,37 111,1
pmed40 (900, 90) 5128 3,92 5,50 0,90 0,99 136,69 1393,01

Average 1,62 3,32 0,23 0,38 122,20 255,20
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CHAPTER 5

CONCLUSION

The main objective in this work is to allocate p facilities in a way that the total 

distance between n demand points and facilities minimized. This is a well know facility-

location problem and in literature is known as a p-median problem.

It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and 

Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-bounded 

algorithms. Small size instances of p-median problem can be solved with reasonable 

computational time by exact algorithms such as branch-and-bound (Järvinen et al., 1972). 

On the other hand, heuristic algorithms generally have acceptable time and memory 

requirements, but do not guarantee optimal solution. That is, a feasible solution is obtained 

which is likely to be either optimal or near optimal.

Particle swarm optimization (PSO) is one of the latest metaheuristic methods in 

literature, which is based on the metaphor of social interaction and communication among 

different spaces in nature, such as bird flocking and fish schooling. PSO was first 

introduced to optimize various continuous nonlinear functions by (Eberhart and Kennedy, 

1995).

p-Median problem is related to the Discrete Location Problems while the Particle 

swarm optimization (PSO) is manly designed for the continuous problems. Thus it may 

have some drawbacks when applying PSO to discrete problems. Recently a few researches 
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have been related to the discrete combinatorial optimization problems. However, still it is 

considered that the applications of PSO on discrete problems are limited.

In this thesis Novel proposed Continuous Particle Swarm (NCPSO) algorithm and a 

proposed Discrete Particle Swarm Optimization algorithms (DPSO) are proposed. The 

algorithms have been tested on benchmark problem instances from OR Library and 

compared to the other algorithms in literature and shown that the proposed algorithm 

results in better computational time. To the best of our knowledge the proposed PSO 

algorithms in this thesis are the first PSO algorithms applied to the p-median problem. 
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APPENDIX A 

DATASET

Here shown 5 example problems of dataset used from OR Library (Beasley, 1990) for 

testing the proposed algorithms.

Data are shown in the following format:

Two nodes are given a and b separated by sign “–”the distance between two nodes is 

shown just after them.

pmed1: n-100 edge-200 optimal-5819
1-2 30 2-3 46 3-4 1 4-5 28 5-6 31
6-7 69 7-8 39 8-9 14 9-10 84 10-11 59
11-12 10 12-13 28 13-14 63 14-15 9 15-16 100
16-17 98 17-18 70 18-19 94 19-20 22 20-21 14
21-22 87 22-23 82 23-24 55 24-25 2 25-26 32
26-27 77 27-28 95 28-29 29 29-30 59 30-31 91
31-32 89 32-33 50 33-34 40 34-35 88 35-36 94
36-37 60 37-38 21 38-39 89 39-40 47 40-41 63
41-42 45 42-43 46 43-44 24 44-45 77 45-46 60
46-47 45 47-48 50 48-49 93 49-50 22 50-51 84
51-52 16 52-53 85 53-54 68 54-55 93 55-56 37
56-57 26 57-58 29 58-59 38 59-60 10 60-61 32
61-62 67 62-63 66 63-64 52 64-65 19 65-66 39
66-67 12 67-68 86 68-69 72 69-70 73 70-71 65
71-72 2 72-73 8 73-74 96 74-75 43 75-76 39
76-77 61 77-78 90 78-79 8 79-80 58 80-81 91
81-82 58 82-83 13 83-84 79 84-85 59 85-86 28
86-87 46 87-88 24 88-89 63 89-90 81 90-91 14
91-92 52 92-93 64 93-94 75 94-95 71 95-96 51
96-97 75 97-98 57 98-99 31 99-100 49 100-1 88
80-5 90 85-69 51 20-19 30 85-13 22 81-95 54
58-73 37 64-51 89 39-76 89 13-8 77 91-76 51
52-95 96 91-75 33 80-91 84 35-80 46 54-86 35
30-70 5 19-7 9 74-53 50 11-37 4 19-92 70
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62-94 96 60-52 34 24-59 63 42-45 68 19-60 53
60-27 86 15-50 31 38-18 27 81-30 99 1-29 6
22-52 11 54-59 75 5-7 8 41-44 80 41-76 42
44-12 56 61-65 73 20-93 35 9-99 28 45-68 19
16-79 96 13-42 3 68-4 28 58-17 60 21-81 34
35-7 7 21-14 82 26-32 26 6-63 83 31-69 53
91-78 32 45-59 33 42-57 5 8-53 66 65-94 61
94-90 63 73-33 88 39-21 59 42-85 34 30-57 37
34-94 52 62-38 56 26-29 20 48-98 53 4-33 45
31-63 82 8-52 31 37-81 14 50-27 16 27-14 48
88-33 8 56-30 76 87-91 17 33-49 77 70-30 74
25-99 19 95-30 96 14-85 90 49-8 96 96-5 87
73-4 41 99-32 35 95-1 31 99-3 49 18-75 100
58-47 68 35-60 5 38-16 70 54-40 52 95-55 47
54-17 45 9-83 75 97-66 81 9-48 92 90-95 96
4-27 27 75-22 48 62-7 55 79-3 57 15-69 46

pmed2: n-100 edge-200 optimal-4093
1-2 24 2-3 49 3-4 72 4-5 46 5-6 22
6-7 86 7-8 7 8-9 52 9-10 48 10-11 72
11-12 10 12-13 33 13-14 50 14-15 98 15-16 96
16-17 39 17-18 89 18-19 80 19-20 77 20-21 3
21-22 63 22-23 45 23-24 8 24-25 84 25-26 22
26-27 9 27-28 71 28-29 99 29-30 77 30-31 65
31-32 71 32-33 18 33-34 81 34-35 67 35-36 11
36-37 21 37-38 85 38-39 62 39-40 36 40-41 1
41-42 52 42-43 100 43-44 25 44-45 43 45-46 61
46-47 41 47-48 72 48-49 93 49-50 45 50-51 100
51-52 27 52-53 27 53-54 76 54-55 49 55-56 71
56-57 24 57-58 8 58-59 91 59-60 81 60-61 100
61-62 83 62-63 27 63-64 58 64-65 98 65-66 50
66-67 5 67-68 26 68-69 94 69-70 100 70-71 19
71-72 58 72-73 27 73-74 94 74-75 64 75-76 48
76-77 19 77-78 83 78-79 87 79-80 94 80-81 41
81-82 1 82-83 67 83-84 37 84-85 69 85-86 52
86-87 83 87-88 6 88-89 78 89-90 1 90-91 57
91-92 60 92-93 22 93-94 99 94-95 25 95-96 11
96-97 11 97-98 54 98-99 69 99-100 7 100-1 94
2-83 2 35-61 56 32-95 37 70-58 18 14-73 96
97-55 36 49-54 84 37-1 39 22-77 16 3-74 98
28-60 77 11-14 94 2-36 47 20-58 42 3-25 50
83-96 40 97-29 87 52-33 41 37-72 38 32-44 53
68-14 80 60-18 54 45-78 56 7-86 36 55-23 57
89-88 39 37-18 80 83-48 43 56-3 30 19-50 94
54-99 11 88-50 46 36-16 14 22-77 17 37-16 12
80-79 56 84-96 42 69-89 64 84-37 40 21-22 79
65-23 45 22-83 95 46-94 75 14-21 50 84-44 41



41

64-71 15 62-84 97 67-30 8 34-38 56 58-91 2
57-90 98 79-88 80 96-5 40 61-94 99 98-79 77
5-51 80 28-41 64 18-47 78 53-97 76 67-1 48
23-71 9 52-41 25 11-50 94 18-24 26 6-27 5
18-53 71 40-73 48 51-64 42 50-72 4 18-86 85
91-2 7 12-63 23 2-56 85 19-36 14 53-24 68
73-40 37 93-6 5 98-73 3 51-43 57 63-11 79
85-51 27 10-31 30 42-4 15 19-65 79 98-20 32
99-14 91 67-30 15 8-55 46 91-12 63 10-33 54
72-48 93 64-30 83 23-37 2 87-16 21 81-73 86
44-26 55 81-12 32 54-26 82 79-88 61 34-67 63

pmed3: n-100 edge-200 optimal-4250
1-2 77 2-3 62 3-4 90 4-5 22 5-6 17
6-7 19 7-8 11 8-9 4 9-10 3 10-11 16
11-12 67 12-13 35 13-14 21 14-15 14 15-16 43
16-17 11 17-18 91 18-19 55 19-20 33 20-21 80
21-22 90 22-23 81 23-24 91 24-25 23 25-26 49
26-27 62 27-28 96 28-29 25 29-30 92 30-31 77
31-32 41 32-33 40 33-34 97 34-35 1 35-36 14
36-37 18 37-38 69 38-39 72 39-40 17 40-41 56
41-42 94 42-43 78 43-44 25 44-45 99 45-46 51
46-47 24 47-48 33 48-49 47 49-50 87 50-51 71
51-52 88 52-53 60 53-54 96 54-55 10 55-56 34
56-57 56 57-58 56 58-59 99 59-60 35 60-61 86
61-62 85 62-63 18 63-64 29 64-65 48 65-66 82
66-67 43 67-68 59 68-69 8 69-70 10 70-71 58
71-72 62 72-73 49 73-74 94 74-75 84 75-76 69
76-77 5 77-78 36 78-79 17 79-80 47 80-81 88
81-82 39 82-83 84 83-84 56 84-85 82 85-86 98
86-87 93 87-88 91 88-89 73 89-90 65 90-91 26
91-92 73 92-93 19 93-94 30 94-95 76 95-96 31
96-97 37 97-98 46 98-99 9 99-100 39 100-1 66
65-66 39 61-6 96 15-81 44 95-43 37 13-57 53
78-7 7 32-26 15 14-66 49 25-44 42 80-84 33
79-58 99 25-59 38 4-37 32 1-51 49 54-20 5
39-18 87 74-8 71 69-3 64 13-30 38 1-66 62
48-72 30 33-31 57 79-94 79 35-92 54 77-69 28
41-49 88 82-44 18 36-24 6 47-41 26 4-31 53
84-56 42 2-37 75 43-3 55 58-57 3 26-42 51
80-62 32 50-70 98 55-60 87 9-77 10 45-23 73
39-83 95 1-35 71 80-26 82 81-26 57 91-37 89
83-42 53 21-84 33 45-21 14 52-23 74 88-99 95
18-90 84 99-52 43 2-45 61 74-58 11 41-33 21
47-33 31 21-33 30 80-10 11 58-99 93 49-56 79
45-25 58 40-82 76 89-73 32 44-96 46 74-5 12
96-14 89 2-73 67 54-4 80 39-68 34 52-26 82
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24-28 37 66-40 49 40-48 45 17-61 72 73-63 45
70-96 87 68-53 34 59-26 67 46-30 85 17-90 76
45-85 82 95-60 90 96-65 59 94-26 30 69-20 67
67-52 54 12-44 1 85-36 11 42-88 97 76-62 1
91-99 49 80-76 45 55-95 27 66-59 44 81-59 36
23-56 26 13-85 79 48-96 12 73-85 31 22-27 9

pmed4: n-100 edge-200 optimal-3034
1-2 45 2-3 23 3-4 96 4-5 59 5-6 24
6-7 78 7-8 24 8-9 70 9-10 5 10-11 66
11-12 93 12-13 31 13-14 67 14-15 89 15-16 93
16-17 22 17-18 83 18-19 83 19-20 89 20-21 59
21-22 11 22-23 85 23-24 24 24-25 94 25-26 79
26-27 3 27-28 53 28-29 62 29-30 36 30-31 77
31-32 14 32-33 65 33-34 13 34-35 72 35-36 44
36-37 84 37-38 17 38-39 11 39-40 98 40-41 70
41-42 80 42-43 61 43-44 35 44-45 5 45-46 51
46-47 35 47-48 4 48-49 8 49-50 43 50-51 19
51-52 63 52-53 46 53-54 97 54-55 73 55-56 23
56-57 87 57-58 37 58-59 15 59-60 28 60-61 9
61-62 78 62-63 27 63-64 92 64-65 81 65-66 82
66-67 30 67-68 67 68-69 88 69-70 54 70-71 76
71-72 16 72-73 60 73-74 95 74-75 10 75-76 86
76-77 76 77-78 9 78-79 82 79-80 94 80-81 6
81-82 72 82-83 84 83-84 41 84-85 80 85-86 31
86-87 29 87-88 24 88-89 76 89-90 84 90-91 35
91-92 71 92-93 28 93-94 57 94-95 76 95-96 50
96-97 25 97-98 92 98-99 44 99-100 46 100-1 10
96-48 8 15-22 31 44-17 76 43-7 56 90-46 49
19-98 62 24-9 68 55-90 80 12-62 70 8-98 38
48-89 58 86-81 76 94-11 93 2-31 46 64-34 54
27-32 33 69-74 68 3-14 62 74-77 27 97-39 57
8-22 56 96-2 33 16-27 24 54-22 53 39-63 57
34-46 12 76-24 48 89-20 57 92-57 80 10-9 17
91-10 86 66-26 96 13-19 60 7-70 38 54-93 98
38-89 18 78-23 64 85-9 3 44-90 31 92-17 55
73-8 9 69-87 18 87-52 33 21-43 20 44-55 31
77-21 74 89-23 77 40-55 7 95-73 96 88-68 87
9-88 59 22-81 24 62-72 70 76-77 19 95-62 70
76-98 14 32-7 67 47-69 75 12-7 91 23-14 63
63-62 42 71-57 60 23-26 62 99-55 10 11-3 71
71-77 99 67-77 84 52-38 81 63-86 45 17-57 76
26-29 36 72-88 37 66-24 48 48-47 15 83-42 99
87-78 77 55-4 57 15-89 31 99-19 24 69-2 97
48-20 63 91-64 33 26-54 61 62-1 89 83-8 67
81-31 71 26-77 36 18-22 28 88-61 73 23-43 70
81-89 91 94-74 54 26-58 22 95-88 83 52-47 35
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19-55 48 12-3 68 22-36 67 68-58 18 48-88 58

pmed5: n-100 edge-200 optimal-1355
1-2 38 2-3 71 3-4 66 4-5 73 5-6 51
6-7 66 7-8 28 8-9 90 9-10 82 10-11 48
11-12 97 12-13 75 13-14 44 14-15 90 15-16 44
16-17 70 17-18 65 18-19 24 19-20 40 20-21 79
21-22 37 22-23 70 23-24 8 24-25 54 25-26 100
26-27 50 27-28 43 28-29 23 29-30 83 30-31 5
31-32 35 32-33 16 33-34 20 34-35 79 35-36 74
36-37 87 37-38 69 38-39 21 39-40 51 40-41 15
41-42 24 42-43 80 43-44 75 44-45 38 45-46 81
46-47 87 47-48 34 48-49 39 49-50 95 50-51 39
51-52 9 52-53 67 53-54 65 54-55 30 55-56 5
56-57 35 57-58 38 58-59 63 59-60 29 60-61 43
61-62 48 62-63 59 63-64 69 64-65 11 65-66 2
66-67 95 67-68 22 68-69 96 69-70 85 70-71 95
71-72 10 72-73 45 73-74 96 74-75 63 75-76 99
76-77 95 77-78 22 78-79 65 79-80 52 80-81 81
81-82 89 82-83 37 83-84 75 84-85 70 85-86 59
86-87 84 87-88 81 88-89 4 89-90 99 90-91 93
91-92 75 92-93 29 93-94 6 94-95 73 95-96 91
96-97 15 97-98 53 98-99 85 99-100 71 100-1 17
78-97 3 16-69 19 3-99 50 44-5 3 76-28 78
49-50 9 57-52 23 88-24 5 23-86 33 59-15 84
81-64 72 27-36 32 80-49 81 78-59 45 52-66 77
43-33 62 94-3 46 87-19 14 57-10 53 54-99 67
47-73 70 72-61 51 87-46 37 8-29 86 6-68 37
98-41 68 84-91 6 36-3 68 43-10 40 27-81 6
59-8 73 79-74 84 15-96 42 47-75 7 69-66 65
69-15 11 61-41 19 63-72 36 93-26 82 38-63 40
97-22 14 36-7 81 10-51 12 34-87 93 35-75 19
14-12 50 48-81 2 97-52 56 1-60 56 62-94 6
76-74 20 67-27 47 32-45 62 79-16 72 80-49 52
66-40 8 87-83 16 79-49 7 99-93 24 77-14 2
48-14 58 75-44 67 5-96 86 1-69 84 56-69 94
36-11 59 82-36 63 52-96 10 51-90 1 15-60 93
27-29 99 69-72 11 60-27 27 23-15 53 55-10 33
46-97 3 99-48 8 32-60 19 14-44 15 74-88 3
16-97 38 68-69 1 22-92 48 34-51 48 68-25 84
36-54 5 40-57 60 15-7 24 74-78 42 58-57 77
2-94 5 17-41 10 26-36 83 16-48 94 77-83 46
35-68 32 90-59 51 42-45 80 11-19 49 52-79 59
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APPENDIX B

EXAMPLE OF RUNS

Example of 5 generations for first replication for the problem pmed1.txt where n=100 

number of edges is 200, p=5, popsize=2*n,

Replication.........=1
Generation..........=0
Globalbest..........=6300.00
Optimum.............=5819
Weight..............=0.500
Problem.............=pmed1.txt

Replication.........=1
Generation..........=1
Globalbest..........=6300.00
Optimum.............=5819
Weight..............=0.500
Problem.............= pmed1.txt

Replication.........=1
Generation..........=2
Globalbest..........=6285.00
Optimum.............=5819
Weight..............=0.500
Problem.............= pmed1.txt

Replication.........=1
Generation..........=3
Globalbest..........=6162.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt
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Replication.........=1
Generation..........=4
Globalbest..........=6056.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

Replication.........=1
Generation..........=5
Globalbest..........=6056.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

Replication.........=1
Generation..........=6
Globalbest..........=5975.00
Optimum.............=5819
Weight..............=0.499
Problem.............= pmed1.txt

Replication.........=1
Generation..........=7
Globalbest..........=5926.00
Optimum.............=5819
Weight..............=0.498
Problem.............= pmed1.txt

Replication.........=1
Generation..........=8
Globalbest..........=5926.00
Optimum.............=5819
Weight..............=0.498
Problem.............= pmed1.txt

Replication.........=1
Generation..........=9
Globalbest..........=5926.00
Optimum.............=5819
Weight..............=0.498
Problem.............= pmed1.txt
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Abstract

In this work, a discrete particle swarm optimization algorithm (DPSO) is proposed for the p-median problem. Although the algorithm has all major characteristics of the classical particle swarm optimization (PSO), the search strategy of the algorithm is different. The algorithm is applied to the p-median problem with the objective of minimizing distance between demand points and facilities. A novel proposed continuous particle swarm optimization (NCPSO) algorithm for p-median problem is introduced as well.  The results of both algorithms are compared against each other. And the performance of proposed DPSO is compared with against other algorithms in literature, Neural model, Reduced Variable Neighborhood Search and Simulated Annealing. The experiments have shown that the proposed algorithm results in better performance.
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ÖZ

Bu tezde, p-median problem için yeni bir parçacık sürü optimizasyonu (DPSO) önerilmiştir.  Önerilen algoritmada klasik Parçacık Sürüsü Optimizationunun (PSO) bütün karakteristikleri olmasına rağmen, algoritmanın arama stratejisi farklıdır. Algoritma, talep noktaları ve tesislerin arasında mesafeyi en aza indirme amacı ile p-median problemine uygulanmıştır. Bunun dışında literatürde bulunan Sürekli Parçacık Sürü optimizasyonundan farklı bir Sürekli Parçacık Sürü optimizasyonunu önerilmiştir. Önerilen iki algoritmanın sonuçları literatürde bulunan  başka algoritmaların sonuçları ile karşılaştırılmış ve daha iyi olduğu görülmüştür.
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Chapter 1 


Introducıon

1.1.  Discrete Location Problems


Discrete Optimization has set up as an important component in modern applied mathematics. Many problems from business and industry can be modeled as discrete optimization problems. Discrete location problems typically involve a finite set of sites at which supply points can be located, and a finite set of clients to be fulfilled by the supply points which demands for service or good. The most well known discrete location problems are the Uncapacitated (and Capacitated) Facility Location Problem, Multi Stage Uncapacitated Facility Location Problem. Evidently many extensions of these basic location problems have been developed depending on the objective function. We want to state that the main differentiator in the most classical location models is the objective function. A great variety of objective functions have been considered, for instance a median objective where the task is to minimize the sum of the costs of fulfilling all the demand requests from the clients. The center objective is to minimize the maximum cost of fulfilling all the demand requests from the clients, using the sites chosen. The convex combination of the above mentioned median and center objectives is considered as well and can be called as a centdian objective where the aim is to keep both the average cost behavior as well as the highest cost in balance. So the well known p-median Problem and p-center Problem are defined. Below we are going to show briefly some of the Discrete Location Problems.

1.1.1.   Uncapacitated Facility Location Problem


Simple Plant Location Problem is another title for Uncapacitated Facility Location Problem. It is assumed that in Uncapacitated Facility Location Problem given a set I ={1…N} potential facility locations by providing some uniform product. A facility can be opened in any location i

[image: image1.wmf]Î


I, opening a facility at location i has nonnegative cost as well as the transportation cost of satisfying the customer requirements from a facility. Each open facility can provide an unlimited amount of products.


Let a set J ={1…M} assign customers that require service. For each pair (i, j) is given the process or transportation costs gij
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0. The goal is to determine a subset of the set of potential facility locations
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, at which to open facilities and an assignment of all clients to these facilities so as to minimize the overall total cost. The problem can be written as the following:
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1.1

Stated problem is the generalization of the well-known set covering problem and, therefore, it is NP-hard problem (G. Cornuéjols et al, 1990). Exact algorithms, approximation algorithms with constant performance guarantee, Lagrangian heuristics, Particle Swarm Optimization (Guner and Sevkli, 2008) and randomized iteration algorithms of local search were developed for solving simplest location problem. Polynomially solvable classes of problem were found. The reader can find the review of results for this problem, for example, in (Mirchandani et al. 1990).


1.1.2.   Capacitated Facility Location Problem

Capacitated Facility Location Problem (CFLP) is generalization of the Uncapacitated Facility Location Problem. The main differentiator is the very important assumption that In contrast to Uncapacitated Facility Location Problem we now suppose each facility can provide a limited number of production. And although mathematical models of those problems do not vary too much, solving methods for CFLP are more difficult. There has been done much related to this problem. (Sridharan R, 1995)


Now we describe the mathematical model as integer programming problem. Let a set I={1,..., I} give potential facility locations by providing some uniform product. The number ci  0 is the opening cost of facility at location i
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I , Vi
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0 is the maximum value of production the facility can provide. 


A set J ={1,…,J} assign customers that require service. For each pair i,j gij
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0 is the production and transportation costs and pij
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0 is a value of product from facility i needed to client j.

Let us define the following notations: 
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1.3

Then the Capacitated Facility Location Problem may be written as:
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1.7

1.1.3.   Multi Stage Uncapacitated Facility Location Problem

In the Multi Stage Uncapacitated Facility Location Problem we are given a set of facilities and a set of customers. Each customer must be serviced by a sequence of different facilities. These sequences are defined by hierarchy of production and distribution system and can be presented as facility paths. The set of admissible facility paths is given. Each facility has fixed cost. Each customer has transportation costs for servicing by the facility paths. The problem is to select facilities in order to service the customers with minimal total cost. 


Below we present an illustrated example of hierarchical multi stage production system. A feasible solution of the problem is marked in black. 
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Figure 1.1 Hierarchical multi stage production system. (Sobolev Institute of Mathematics, 2009)

1.1.4.   p-Center Problem


The p-center problem, in other words the minimax problem, aims to find the location of p number of facilities (centers) on a network so that the maximum distance traveled from each customer (demand point) to its nearest facility minimized. (Daskin, 1995; Kariv and Hakimi, 1979a). This problem may address, for instance, the location of public facilities, schools, emergency services, where the generally accepted objective is to design a system so that no customer has to travel too far (or each customer could be reached in a reasonable amount of time).


In this work we concentrated much more on the problem which can be described as a minisum, the p-median problem. 

1.2.  The Particle Swarm Optimization


Particle swarm optimization (PSO) is based on the metaphor of social interaction and communication among different spaces in nature, such as bird flocking and fish schooling. It is different from other evolutionary methods in a way that it does not use the genetic operators (such as crossover and mutation), and the members of the entire population are maintained through out the search procedure. Thus, information is socially shared among individuals to direct the search towards the best position in the search space. In a PSO algorithm, each member is called a particle, and each particle moves around in the multi-dimensional search space with a velocity constantly updated by the particle’s experience, the experience of the particle’s neighbors, and the experience of the whole swarm. PSO was first introduced to optimize various continuous nonlinear functions by (Eberhart and Kennedy, 1995). PSO has been successfully applied to a wide range of applications such as automated drilling (Onwubolu and Clerc, 2004), neural network training (Van den Bergh and Engelbecht, 2000), scheduling problems (Tasgetiren et. al., 2006), (Tseng and Liao, 2008), (Allahverdi and Al-Anzi, 2006), (Tasgetiren et. al., 2007), and (Pan et al., 2008),  power and voltage control (Yoshida, 2000), and task assignment (Salman, 2003). The PSO algorithm was successfully applied to the similar problem as p-median problem which is Uncapacitated Facility Location Problem by (Guner and Sevkli, 2008). More information about PSO can be found in (Kennedy et al. 2001).

In PSO, each single solution, called a particle, is considered as an individual, the group becomes a swarm (population) and the search space is the area to explore. Each particle has a fitness value calculated by a fitness function, and a velocity to fly towards the optimum. All particles fly across the problem space following the particle that is nearest to the optimum. PSO starts with an initial population of solutions, which is updated iteration-by-iteration. The principles that govern PSO algorithm can be stated as follows: 


· n dimensional position (
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for ith particle starts with a random position and velocity. 


· Each particle knows its position and value of the objective function for that position. The best position of ith particle is donated as
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, and the best position of the whole swarm as, 
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respectively. The PSO algorithm is governed by the following main equations:
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1.9

where t represents the iteration number, w is the inertia weight which is a coefficient to control the impact of the previous velocities on the current velocity. c1 and c2 are called learning factors. r1 and r2 are uniformly distributed random variables in [0, 1]. 


The original PSO algorithm can optimize problems in which the elements of the solution space are continuous real numbers. The major obstacle for successfully applying PSO to combinatorial problems in the literature is due to its continuous nature. To remedy this drawback, (Tasgetiren et al. 2006, 2007) presented the smallest position value (SPV) rule. Another approach to tackle combinatorial problems with PSO is done by (Pan et al., 2008).  They generate a similar PSO equation to update the particle’s velocity and position vectors using one and two cut genetic crossover operators.


1.2.1.  Discrete particle swarm optimization


As we mentioned before Particle Swarm Optimization initially was introduced for Continuous problems. In (Kennedy and Eberhart, 1997) the modification to the algorithm was proposed by utilizing a probability value in a range of [0.0, 0.1] according to which the position vector takes discrete values, 0 or 1. The probability value was derived through the sigmoid function: 
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 The position of the vector value is set to 1 if the random number (from a uniform distribution between 0.0 and 1.0) less than the value of the sigmoid function or set to 0 otherwise or vice versa, as in Equation (1.11)
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Another Discrete Particle Swarm Optimization was proposed by (Afshinmanesh et al., 2005) where the idea is to implement artificial immune system within the PSO algorithm, i.e. the theory of negative selection was used for calculation of velocity vector and the movements of the particle in the proposed technique.

The process of generating a new position vector for a selected individual in a swarm is as follows: two different particles are generated out of the particle position vector and two “desired positions” (the global best position vector and individual’s best position vector). It is done using an XOR logical operation, as in Equations (11) and (12). Each bit in the developed vector shows whether this bit is different from the desired one or not (i.e. the Hamming distance). The “exploration ability”, diversity, has been added into the method by creating two random discrete vectors consisting 0 or 1 values that will be processed with previously generated vectors by an ‘and’ logical operation. The velocity vector, which shows which bits should be changed, is produced by performing an ‘or’ operation between the two vectors produced as a result of the ‘and’ operation in the previous step, as in Equation (13). As a result, a new position vector will be computed by applying an ‘xor’ logical operation to the velocity vector and the particle’s current position vector, shown in Equation (14). The negative selection was applied just at this stage for the reason that the number of ones and zeros are predefined. So if the number of ones exceeds predefined value the negative selection is applied to convert ones into zeros.

Application of Discrete Particle Swarm Optimization to condition-based maintenance and comparison with genetic algorithm was analyzed in (Camci, F., 2009)


Below is given the algorithm expressed in formulas and the illustration for the proposed algorithm.
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Figure 1.2 Individual generation in proposed algorithm (Afshinmanesh et al., 2005)


Chapter 2 


The P-Median Problem

2.1.  Basic Problem Definition

P-median problem is a well known facility-location problem where the task is to allocate p facilities in a way that the total distance between n demand points and p facilities minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and Hakimi, 1979b). 

Mathematical formulation of p-median problem is as follows, (ReVelle and Swain, 1970). 
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where


n = total number of nodes in the graph,


ai = demand of node i,


dij = distance from node i to node j,


p = number of facilities used as medians


ai, dij are positive real numbers,
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		if node i is assigned to facility at point j,
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2.2.  Literature review


P-median problem is a well known facility-location problem where the task is to allocate p facilities in a way that the distance between n demand points and facilities minimized. It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-bounded algorithms. Small size instances of p-median problem can be solved with reasonable computational time by exact algorithms such as branch-and-bound (Järvinen et al., 1972). Where the method works by finding ( n – p ) nodes thus leaving p-medians. However, as the problem size increases, the computation time of exact methods increases exponentially. On the other hand, heuristic algorithms generally have acceptable time and memory requirements, but do not guarantee optimal solution. That is, a feasible solution is obtained which is likely to be either optimal or near optimal. One of the first heuristics that was applied to the p-median problem is a greedy heuristic by (Kuehn and Hamburger, 1963), as well heuristic method proposed by Teitz and Bart is one of the oldest and most popular where an interchange algorithm is applied (Teitz and Bart, 1968).

The most popular Metaheuristics appeared in literature are, Genetic Algorithm where the gene of a chromosome consists of indexes of nodes that were selected for the solutions, (Alp et al., 2003). The population size in the introduced algorithm was presented as follows,
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where, 
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 is number of all possible solutions to the problem and 
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the rounded up density to the problem. According to the formula, the result of the max operator is at least two, guaranteeing that every gene appears at least twice in the initial population. This algorithm is simple, fast and generates excellent solutions. (Correa et al., 2006) proposed a genetic algorithm for capacitated p-median problem. (Lorena and Furtado, 2001) offered a genetic algorithm which differs from classical one where a dynamic population and two separate fitness functions are introduced. (Murray and Church, 1996), applied simulated annealing to location-planning models. And more recently (Levanova and Loresh, 2004) implemented the ant systems and simulated annealing algorithm to solve p-median problem. One of the most recent works is related to Variable Neighborhood Search where a new technique is proposed by (Crainic et al 2003, 2004) Cooperative Neighborhood VNS. More information about p-median problem can be found in (Mladenović Nenad et al. 2007).


Chapter 3 


Heuristic Algorithms

3.1.  Proposed Discrete Particle Swarm Optimization Algorithm


In proposed Discrete Particle Swarm Optimization algorithm (DPSO), the initial population is generated randomly. Initially, each individual with its position, and fitness value is assigned to its personal best (i.e., the best value of each individual found so far). The best individual in the whole swarm with its position and fitness value, on the other hand, is assigned to the global best (i.e., the best particle in the whole swarm). Then, the position of each particle is updated based on the personal best and the global best. These operations in proposed DPSO are similar to classical PSO algorithm. However, the search strategy of proposed DPSO is different. That is, each particle in the swarm moves based on the following equations.
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At each iteration, the position vector of each particle, its personal best and the global best are considered.  First of all, a random number of U(0,1) is generated to compare with the inertia weight to decide whether to apply Exchange function(
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) to the particle or not. 


Exchange function (
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) implies the exchange of randomly chosen facility with another randomly chosen node. For instance, for the p-median problem of p=4, suppose a sequence of {5, 11, 17, 32} is a possible solution set. In order to apply Exchange function, we also need to derive two random numbers; one is for determining the facility to be changed and the other is for the node to be accepted as a new facility. Let’s say those numbers are 11 and 20 (that is, the node number 11 will not serve as a facility anymore and the node number 20 will be accepted as a new facility {5, 11, 17, 32}). The new sequence will be {5, 20, 17, 32}. Note that the order of the facilities shown in the solution set is not important. In other words the solution set can be shown in another way too {32, 20, 17, 5}.


If the random number chosen is less than the inertia weight, the particle is manipulated with this Exchange function, and the resulting solution, say s1, is obtained. Meanwhile, the inertia weight is discounted by a constant factor at each iteration, in order to tighten the acceptability of the manipulated particle for the next generation, that is, to diminish the impact of the randomly operated solutions on the swarm evolution. 


The next step is to generate another random number of U(0,1) to be compared with c1, cognitive parameter, to make a decision whether to apply Exchange function to personal best of the particle considered. If the random number is less than c1, then the personal best of the particle undertaken is manipulated and the resulting solution is spared as s2. Likewise, a third random number of U(0,1) is generated for making a decision whether to manipulate the global best with the Exchange function. If the random number is less than c2, social parameter, then Exchange is applied to the global best to obtain a new solution of s3.  Unlike the case of inertia weight, the values of c1 and c2 factors are not increased or decreased iteratively, but are fixed at 0.5. That means the probability of applying Exchange function to the personal and global bests remains the same. The new replacement solution is selected among s1, s2 and s3, based on their fitness values. This solution may not always be better than the current solution. This is to keep the swarm diverse. The convergence is traced by checking the personal best of each new particle and the global best. As it is seen, proposed equations have all major characteristics of the classical PSO equations. The following pseudo-code describes in detail the steps of the proposed DPSO algorithm.

		Begin


Initialize particles (population) randomly


For each particle


Calculate fitness value


Set to position vector and fitness value as personal best (Pit) 


Select the best particle and its position vector as global best(Gt) 


End


Do{


Update inertia weight


For each particle


Apply insert with the probability of inertia weight (s1)


Apply insert to (Pit) with the probability of c1 (s2)


Apply insert to (Gt) with the probability of c2 (s3)


Select the best one among the s1,s2 and s3 


Update personal best (Pit)


End

Update global best (Gt)


}While (Maximum Iteration is not reached)


End








Figure 3.1 Pseudo-code for the DPSO algorithm

3.2.  Proposed Continuous Particle Swarm Optimization Algorithm


In a proposed novel Continuous Particle Swarm Optimization algorithm (NCPSO), the operations are similar to classical PSO algorithm. However, the initialization of population strategy of NCPSO is different. The position and velocity vectors of initial population are generated randomly and each individual sorted according to its position vector ascendingly. And the first p nodes are opened as facilities to serve the demanding nodes. Initially, each individual with its position, and fitness value is assigned to its personal best (i.e., the best value of each individual found so far). The best individual in the whole swarm with its position and fitness value, on the other hand, is assigned to the global best (i.e., the best particle in the whole swarm). Then, all particles fly across the problem space following the particle that is nearest to the optimum as in the classical PSO algorithm.

Table 3.1: Deriving open facility vector from position 


		ith Particle Vectors

		Particle Dimension (k)



		

		1

		2

		3

		4

		5



		Position Vector(Xi)

		1.8

		0.72

		-0.99

		3.01

		-5.45



		Open Facility Vector (Yi)

		0

		1

		1

		0

		1





Below it is shown how sequence is derived from the vector (Yi) which was derived from the Position Vector (Xi).

Table 3.2: Sequence of facilities opened derived from Open Facilities Vector (Yi)


		ith Particle Vectors

		Sequence for p=3



		

		1

		2

		3



		Sequence of opened facilities

		2

		3

		5





3.3.  Local Search


Local search methods are important part of heuristic optimization which allows us to avoid the local minima. This method starts from some initial solution and iteratively tries to replace the current solution by a better solution in an appropriately defined neighborhood of the current solution. Alternatively, it is called neighborhood search algorithm. First applications of local search have been presented in the late fifties and the early sixties (Croes, 1958), (Lin, 1965). 


The proposed local search method in DPSO is applied as, choosing a random facility in a solution set and changing with the demanding nodes which were not selected before in a solution set. However in NCPSO in spite of experimenting various local search methods it did not improve the performance of the algorithm, so we did not use any local search method in a NCPSO.


3.4.  Variable Neighborhood Search Algorithm


VNS is one of the most recent metaheuristics developed in combinatorial optimization problem solving in an easier way.  It is known as one of very well-known local search methods. VNS gets more attention day-by-day due to its ease of use and accomplishments in solving combinatorial optimization problems. 


The VNS is a simple and effective search procedure that proceeds to a systematic change of neighborhood. An ordinary VNS algorithm gets an initial solution 
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, where S is the whole set of search space, then manipulates it through a two nested loop in which the core one alters and explores via two main functions so called shake and local search. The outer loop works as a refresher reiterating the inner loop, while the inner loop carries the major search. Local search explores an improved solution within the local neighborhood, while shake diversifies the solution by switching to another local neighborhood. 
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Figure 3.2 Diversification by shake function 


The inner loop iterates as long as it keeps improving the solutions, where an integer, k, controls the length of the loop. Once an inner loop is completed, the outer loop re-iterates until the termination condition is met. Since the complementariness of neighborhood functions is the key idea behind VNS, the neighborhood structure should be chosen very rigorously in order to achieve an efficient VNS. (Uysal, H. 2006).

In order to develop an effective VNS algorithm, one needs two kinds of neighborhood functions: shake functions (
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). Each neighborhood function has a particular neighborhood structure. The neighborhood structures may be used more than one for each function (shake and local search) so as to achieve a valuable neighborhood change. For that purpose, the counters k (
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) are used for shake and local search functions respectively in order to ease switching from one to another neighborhood.

		Begin


Find an initial solution x


Do{


Shake Procedure: Generate at random a starting solution
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Local Search: Apply a local search from the starting solution x’

             using the base neighborhood structure 
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 is found.


Improve or not: If x” is better than x, do x ← x’


}While (the stopping condition is not met)


End





Figure 3.3 Steps of the VNS procedure

The stopping condition may be a maximum CPU time allowed, a maximum number of iterations, or maximum number of iterations between two improvements.

One of the most recent works on Variable Neighborhood Search related to p-median problem where a new technique is proposed, Cooperative Neighborhood VNS (Crainic et al 2003, 2004).

3.4.1.  Reduced Variable Neighborhood Search

Reduced VNS has the same analogy as the Basic VNS except that no Local Search procedure is applied. The Reduced VNS explores only randomly different neighborhoods. It can be faster than standard local search algorithms for reaching good quality solutions.


3.5.  Simulated Annealing

As its name implies, the Simulated Annealing (SA) exploits an analogy between the way in which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) and the search for a minimum in a more general system. 


The algorithm is based upon that of (Metropolis et al., 1958) which was originally proposed as a means of finding the equilibrium configuration of a collection of atoms at a given temperature. The connection between this algorithm and mathematical minimization was first noted by (Pincus, 1970) but it was (Kirkpatrick et al., 1983) who proposed that it form the basis of an optimization technique for combinatorial (and other) problems. 


SA's major advantage over other methods is an ability to avoid becoming trapped at local minima. The algorithm employs a random search which not only accepts changes that decrease objective function f, but also some changes that increase it. The latter are accepted with a probability 
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where 
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 is the increase in f and T is a control parameter, which by analogy with the original application is known as the system “temperature” irrespective of the objective function involved. (Oak Ride National Laboratory, 1996)

Chapter 4 


Implementation and Experimental Results


In this section, a comparison study is carried out on the effectiveness of the proposed DPSO and NCPSO algorithms. Proposed DPSO was exclusively tested in comparison with NCPSO algorithm and result of (Domínguez and Muñoz, 2008). The results for DPSO were compared to the simple Simulated Annealing and Reduced Variable Neighborhood Search algorithm as well which were coded according to the pseudo-code in previous chapters. A data set of 40 p-median problems with known optimal solutions in the OR Library (Beasley JE., 1990) was used in testing of performances of algorithms. All proposed DPSO and NCPSO algorithms as well as simple Simulated Annealing and Reduced Variable Neighborhood Search algorithm are coded in C and run on a PC with the configuration of 2.6 GHz CPU and 512MB memory. The size of the population considered by all algorithms is twice the number of nodes. 


For DPSO and NCPSO, the social and cognitive parameters were taken as 
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, initial inertia weight is set to 0.5 and, and the decrement factor ( is fixed at 0.9995.


Relative percentile deviation is taken as a performance measure to compare the performance of the algorithms. 
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4.1

where  f  denotes best solution found by the algorithm and fopt denotes the optimum value of the objective function.


4.1.  Comparison of DPSO to neural model


Table given below summarizes the comparison of computational results for 10 replications of DPSO and neural model by (Domínguez and Muñoz, 2008) ( NA-L+) solving 40 test problems from OR Library. The objective function values found by the algorithms are shown in column 4 and 5. The % error is shown in columns 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time as well.


For the reason that in the published work some of the results were not presented we were not able to compare the average relative percentile deviation and the average computational time more logically but considering just the once that the authors are presenting in the work (Domínguez and Muñoz, 2008).

The average percentile deviation in the work by Domínguez and Muñoz is 0,48% while in problem solution proposed by our algorithm it is 0,45%.


The same situation is with the computational time where it is 2169,31 seconds in the work by Domínguez and Muñoz while in our work it is 358,62 seconds.


Table 4.1 proposed DPSO -L+ and NA-L+ performances for OR Library test problems

		Problem 

		(n, p)

		Optimum 

		Objective function 

		% Error 

		CPU time (s)



		 

		 

		 

		DPSO-L+

		NA-L+

		DPSO-L+

		NA-L+

		DPSO-L+

		NA-L+



		pmed1

		(100, 5)

		5819

		5819

		5819

		0

		0

		0,56

		0,27



		pmed2

		(100, 10)

		4093

		4099

		4093

		0,15

		0

		21,60

		1,86



		pmed3

		(100, 10)

		4250

		4250

		4250

		0

		0

		2,02

		0,83



		pmed4

		(100, 20)

		3034

		3034

		3038

		0

		0,13

		11,84

		21,37



		pmed5

		(100, 33)

		1355

		1356,5

		1359

		0,11

		0,3

		33,79

		27,46



		pmed6

		(200, 5)

		7824

		7824

		*****

		0

		*****

		1,37

		*****



		pmed7

		(200, 10)

		5631

		5631

		5631

		0

		0

		18,72

		7,37



		pmed8

		(200, 20)

		4445

		4445

		4448

		0

		0,07

		21,06

		77,5



		pmed9

		(200, 40)

		2734

		2740,5

		2751

		0,24

		0,62

		119,44

		120,89



		pmed10

		(200, 67)

		1255

		1256,5

		1264

		0,12

		0,72

		105,80

		167,07



		pmed11

		(300, 5)

		7696

		7696

		7696

		0

		0

		2,04

		3,23



		pmed12

		(300, 10)

		6634

		6634

		*****

		0

		*****

		5,13

		*****



		pmed13

		(300, 30)

		4374

		4374

		*****

		0

		*****

		42,93

		*****



		pmed14

		(300, 60)

		2968

		2972,9

		2983

		0,17

		0,51

		144,05

		388,51



		pmed15

		(300, 100)

		1729

		1733,7

		1751

		0,27

		1,27

		150,24

		526,11



		pmed16

		(400, 5)

		8162

		8162

		*****

		0

		*****

		6,36

		*****



		pmed17

		(400, 10)

		6999

		7000,2

		6999

		0,02

		0

		57,98

		94,02



		pmed18

		(400, 40)

		4809

		4817,5

		4811

		0,18

		0,04

		150,48

		787,03



		pmed19

		(400, 80)

		2845

		2863,7

		2863

		0,66

		0,63

		158,84

		1024,5



		pmed20

		(400, 133)

		1789

		1805,4

		1815

		0,92

		1,45

		293,66

		1317



		pmed21

		(500, 5)

		9138

		9138

		*****

		0

		*****

		4,24

		*****



		pmed22

		(500, 10)

		8579

		8579

		*****

		0

		*****

		33,00

		*****



		pmed23

		(500, 50)

		4619

		4650,6

		4624

		0,68

		0,11

		155,87

		1889,5



		pmed24

		(500, 100)

		2961

		2989,6

		2986

		0,97

		0,84

		394,75

		2157,2



		pmed25

		(500, 167)

		1828

		1845,3

		1865

		0,95

		2,02

		727,81

		2634,6



		pmed26

		(600, 5)

		9917

		9917

		*****

		0

		*****

		20,79

		*****



		pmed27

		(600, 10)

		8307

		8307,9

		8307

		0,01

		0

		74,44

		171,75



		pmed28

		(600, 60)

		4498

		4539,6

		4508

		0,92

		0,22

		260,62

		3368,7



		pmed29

		(600, 120)

		3033

		3062

		3060

		0,96

		0,89

		708,85

		3827,8



		pmed30

		(600, 200)

		1989

		2007,5

		2016

		0,93

		1,36

		1972,30

		4705,3



		pmed31

		(700, 5)

		10086

		10086,1

		*****

		0

		*****

		53,87

		*****



		pmed32

		(700, 10)

		9297

		9297,4

		*****

		0

		*****

		77,96

		*****



		pmed33

		(700, 70)

		4700

		4744

		4706

		0,94

		0,13

		451,27

		5927,2



		pmed34

		(700, 140)

		3013

		3042,2

		3038

		0,97

		0,83

		1303,58

		6747,6



		pmed35

		(800, 5)

		10400

		10400

		*****

		0

		*****

		25,38

		*****



		pmed36

		(800, 10)

		9934

		9945,5

		*****

		0,12

		*****

		113,79

		*****



		pmed37

		(800, 80)

		5057

		5104,7

		5071

		0,94

		0,28

		948,08

		9243,1



		pmed38

		(900, 5)

		11060

		11060

		*****

		0

		*****

		29,19

		*****



		pmed39

		(900, 10)

		9423

		9423

		*****

		0

		*****

		111,10

		*****



		pmed40

		(900, 90)

		5128

		5177,8

		5155

		0,97

		0,53

		1393,01

		13331





***** The results were not presented in published work

4.2.  Comparison of DPSO to NCPSO


And the next presented Table summarizes the comparison of computational results for 10 replications of proposed DPSO to proposed Novel Continuous Particle Swarm Algorithm solving 40 test problems from OR Library. The objective function value found by the algorithms is shown in column 4 and 5. The % error is shown in columns 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.

From the Table given below you can see that the DPSO algorithm performs better than the proposed NCPSO algorithm in terms of the percentile error and it finds the “near optimal” solution in less computational time as well.


The average percentile deviation in the solution method by DPSO it is 0,30% while in the problem solution proposed by NCPSO algorithm is 4,08%.


The same situation is with the computational time where it is 255,20 seconds in the solution by the proposed DPSO algorithm and 1925,46 seconds in the solution method by the proposed CPSO algorithm.

Table 4.2 proposed DPSO -L+ and NCPSO performances for OR Library test problems


		Problem 

		(n, p)

		Optimum 

		Objective function 

		% Error 

		CPU time (s)



		 

		 

		 

		DPSO-L+

		NCPSO

		DPSO-L+

		NCPSO

		DPSO-L+

		NCPSO



		pmed1

		(100, 5)

		5819

		5819

		5829

		0

		0,17

		0,56

		5,69



		pmed2

		(100, 10)

		4093

		4099

		4116,3

		0,15

		0,57

		21,60

		13,30



		pmed3

		(100, 10)

		4250

		4250

		4312,3

		0

		1,47

		2,02

		13,13



		pmed4

		(100, 20)

		3034

		3034

		3114,9

		0

		2,67

		11,84

		20,63



		pmed5

		(100, 33)

		1355

		1356,5

		1402,6

		0,11

		3,51

		33,79

		24,76



		pmed6

		(200, 5)

		7824

		7824

		7839,1

		0

		0,19

		1,37

		19,43



		pmed7

		(200, 10)

		5631

		5631

		5746

		0

		2,04

		18,72

		48,00



		pmed8

		(200, 20)

		4445

		4445

		4603,6

		0

		3,57

		21,06

		89,17



		pmed9

		(200, 40)

		2734

		2740,5

		2870,4

		0,24

		4,99

		119,44

		114,44



		pmed10

		(200, 67)

		1255

		1256,5

		1326,9

		0,12

		5,73

		105,80

		153,27



		pmed11

		(300, 5)

		7696

		7696

		7732,6

		0

		0,48

		2,04

		88,64



		pmed12

		(300, 10)

		6634

		6634

		6754,4

		0

		1,81

		5,13

		129,86



		pmed13

		(300, 30)

		4374

		4374

		4598,2

		0

		5,13

		42,93

		308,74



		pmed14

		(300, 60)

		2968

		2972,9

		3139,4

		0,17

		5,77

		144,05

		441,22



		pmed15

		(300, 100)

		1729

		1733,7

		1841,7

		0,27

		6,52

		150,24

		476,61



		pmed16

		(400, 5)

		8162

		8162

		8183,7

		0

		0,27

		6,36

		215,99



		pmed17

		(400, 10)

		6999

		7000,2

		7206,8

		0,02

		2,97

		57,98

		258,98



		pmed18

		(400, 40)

		4809

		4817,5

		5043,6

		0,18

		4,88

		150,48

		782,04



		pmed19

		(400, 80)

		2845

		2863,7

		3033,5

		0,66

		6,63

		158,84

		1079,54



		pmed20

		(400, 133)

		1789

		1805,4

		1929,3

		0,92

		7,84

		293,66

		1424,29



		pmed21

		(500, 5)

		9138

		9138

		9297,8

		0

		1,75

		4,24

		344,63



		pmed22

		(500, 10)

		8579

		8579

		8798,2

		0

		2,56

		33,00

		514,93



		pmed23

		(500, 50)

		4619

		4650,6

		4871,4

		0,68

		5,46

		155,87

		1938,42



		pmed24

		(500, 100)

		2961

		2989,6

		3168,5

		0,97

		7,01

		394,75

		2055,73



		pmed25

		(500, 167)

		1828

		1845,3

		2009,4

		0,95

		9,92

		727,81

		2776,58



		pmed26

		(600, 5)

		9917

		9917

		10006,4

		0

		0,90

		20,79

		592,48



		pmed27

		(600, 10)

		8307

		8307,9

		8554

		0,01

		2,97

		74,44

		873,10



		pmed28

		(600, 60)

		4498

		4539,6

		4732,4

		0,92

		5,21

		260,62

		3842,83



		pmed29

		(600, 120)

		3033

		3062

		3282,7

		0,96

		8,23

		708,85

		4589,88



		pmed30

		(600, 200)

		1989

		2007,5

		2184

		0,93

		9,80

		1972,30

		5668,41



		pmed31

		(700, 5)

		10086

		10086,1

		10153,7

		0

		0,67

		53,87

		1005,50



		pmed32

		(700, 10)

		9297

		9297,4

		9667

		0

		3,98

		77,96

		1569,79



		pmed33

		(700, 70)

		4700

		4744

		4987,3

		0,94

		6,11

		451,27

		5869,41



		pmed34

		(700, 140)

		3013

		3042,2

		3285,5

		0,97

		9,04

		1303,58

		7609,70



		pmed35

		(800, 5)

		10400

		10400

		10543,4

		0

		1,38

		25,38

		1608,46



		pmed36

		(800, 10)

		9934

		9945,5

		10241,3

		0,12

		3,09

		113,79

		2790,84



		pmed37

		(800, 80)

		5057

		5104,7

		5383,571

		0,94

		6,46

		948,08

		9838,69



		pmed38

		(900, 5)

		11060

		11060

		11173,2

		0

		1,02

		29,19

		2170,54



		pmed39

		(900, 10)

		9423

		9423

		9790,3

		0

		3,90

		111,10

		2528,09



		pmed40

		(900, 90)

		5128

		5177,8

		5469,333

		0,97

		6,66

		1393,01

		13122,63





4.3.  Comparison of DPSO to RVNS for 1000 generations 

Table given below summarizes the comparison of computational results for 10 replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.


From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems.


The average percentile deviation in RVNS is 8,84% while in problem solution proposed by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below RVNS was run 1000 generations. The generation number was selected in a such way in order to compare the results after running the algorithms under the same conditions. In most cases it resulted in less computational time compared to DPSO. 

Table 4.3 Comparison of DPSO to RVNS for 1000 generations


		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)



		

		

		

		RVNS

		DPSO

		RVNS

		DPSO



		

		

		

		Best

		Worst

		Best

		Worst

		

		



		pmed1

		(100, 5)

		5819

		0

		0,60

		0

		0

		23,05

		0,56



		pmed2

		(100, 10)

		4093

		0,17

		2,71

		0

		0,29

		25,87

		21,6



		pmed3

		(100, 10)

		4250

		0

		3,67

		0

		0

		25,58

		2,02



		pmed4

		(100, 20)

		3034

		1,45

		6,43

		0

		0

		25,92

		11,84



		pmed5

		(100, 33)

		1355

		2,51

		8,63

		0

		0,22

		25,95

		33,79



		pmed6

		(200, 5)

		7824

		0

		0,55

		0

		0

		23,09

		1,37



		pmed7

		(200, 10)

		5631

		0,66

		3,46

		0

		0

		26,00

		18,72



		pmed8

		(200, 20)

		4445

		2,72

		5,96

		0

		0

		26,08

		21,06



		pmed9

		(200, 40)

		2734

		3,44

		7,50

		0

		0,62

		26,19

		119,44



		pmed10

		(200, 67)

		1255

		3,35

		10,12

		0

		0,40

		26,34

		105,8



		pmed11

		(300, 5)

		7696

		0

		1,53

		0

		0

		25,38

		2,04



		pmed12

		(300, 10)

		6634

		1,39

		4,16

		0

		0

		26,16

		5,13



		pmed13

		(300, 30)

		4374

		2,95

		6,93

		0

		0

		26,38

		42,93



		pmed14

		(300, 60)

		2968

		6,10

		8,66

		0

		0,47

		26,63

		144,05



		pmed15

		(300, 100)

		1729

		6,54

		11,57

		0,06

		0,52

		26,92

		150,24



		pmed16

		(400, 5)

		8162

		0,01

		2,28

		0

		0

		26,19

		6,36



		pmed17

		(400, 10)

		6999

		1,70

		5,33

		0

		0,06

		26,34

		57,98



		pmed18

		(400, 40)

		4809

		3,78

		6,49

		0,04

		0,48

		26,82

		150,48



		pmed19

		(400, 80)

		2845

		6,15

		9,00

		0,35

		0,98

		27,22

		158,84



		pmed20

		(400, 133)

		1789

		9,39

		13,47

		0,84

		0,95

		27,71

		293,66



		pmed21

		(500, 5)

		9138

		0

		3,30

		0

		0

		25,50

		4,24



		pmed22

		(500, 10)

		8579

		1,08

		4,57

		0

		0

		26,53

		33



		pmed23

		(500, 50)

		4619

		5,59

		7,64

		0,26

		0,97

		27,09

		155,87



		pmed24

		(500, 100)

		2961

		7,16

		10,37

		0,91

		0,98

		27,70

		394,75



		pmed25

		(500, 167)

		1828

		9,52

		13,02

		0,82

		0,98

		28,50

		727,81



		pmed26

		(600, 5)

		9917

		0,30

		2,86

		0

		0

		26,15

		20,79



		pmed27

		(600, 10)

		8307

		1,66

		4,78

		0

		0,04

		26,43

		74,44



		pmed28

		(600, 60)

		4498

		6,07

		8,14

		0,78

		0,98

		27,62

		260,62



		pmed29

		(600, 120)

		3033

		8,90

		11,61

		0,86

		0,99

		28,43

		708,85



		pmed30

		(600, 200)

		1989

		11,31

		14,88

		0,80

		0,96

		29,59

		1972,3



		pmed31

		(700, 5)

		10086

		0,35

		3,54

		0

		0,01

		26,52

		53,87



		pmed32

		(700, 10)

		9297

		2,07

		5,16

		0

		0,04

		26,38

		77,96



		pmed33

		(700, 70)

		4700

		5,47

		8,57

		0,83

		0,98

		26,81

		451,27



		pmed34

		(700, 140)

		3013

		10,36

		13,84

		0,93

		1,00

		27,23

		1303,58



		pmed35

		(800, 5)

		10400

		0,01

		3,90

		0

		0

		26,02

		25,38



		pmed36

		(800, 10)

		9934

		1,80

		4,02

		0

		0,31

		26,50

		113,79



		pmed37

		(800, 80)

		5057

		7,10

		9,55

		0,83

		0,99

		27,15

		948,08



		pmed38

		(900, 5)

		11060

		0,80

		2,88

		0

		0

		26,08

		29,19



		pmed39

		(900, 10)

		9423

		1,89

		4,75

		0

		0

		26,32

		111,1



		pmed40

		(900, 90)

		5128

		7,61

		10,04

		0,90

		0,99

		27,39

		1393,01



		Average

		

		3,53

		6,66

		0,23

		0,38

		26,49

		255,20





4.4.  Comparison of DPSO to RVNS for 5000 generations


Table given below summarizes the comparison of computational results for 10 replications of DPSO and Reduced Variable Neighborhood Search Algorithm solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the RVNS is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.


From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems for sure.


The average percentile deviation in RVNS is 2,1% while in problem solution proposed by our algorithm it is 0,3%.


In average computational time it seems like the RVNS performs better but we should not forget that in most of the solved problems the RVNS performance was far away compared to DPSO in terms of percentile error. And in most of the cases the percentile error for DPSO is better. The RVNS was run 5000 generations in this case. Compared to 1000 generations run the computational time is more “near” to the computational time in DPSO.

Table 4.4 Comparison of DPSO to RVNS for 5000 generations

		Problem 

		(n, p)

		Optimum

		Error%

		CPU time (s)



		

		

		

		RVNS

		DPSO

		RVNS

		DPSO



		

		

		

		Best

		Worst

		Best

		Worst

		

		



		pmed1

		(100, 5)

		5819

		0

		0,00

		0

		0

		30,79

		0,56



		pmed2

		(100, 10)

		4093

		0

		0,29

		0

		0,29

		95,22

		21,6



		pmed3

		(100, 10)

		4250

		0

		0,87

		0

		0

		94,65

		2,02



		pmed4

		(100, 20)

		3034

		0

		0,76

		0

		0

		115,09

		11,84



		pmed5

		(100, 33)

		1355

		0

		1,48

		0

		0,22

		129,11

		33,79



		pmed6

		(200, 5)

		7824

		0

		0,00

		0

		0

		40,01

		1,37



		pmed7

		(200, 10)

		5631

		0

		1,17

		0

		0

		121,48

		18,72



		pmed8

		(200, 20)

		4445

		0,20

		2,92

		0

		0

		130,10

		21,06



		pmed9

		(200, 40)

		2734

		0,51

		2,41

		0

		0,62

		130,48

		119,44



		pmed10

		(200, 67)

		1255

		1,12

		4,46

		0

		0,40

		131,14

		105,8



		pmed11

		(300, 5)

		7696

		0

		0,35

		0

		0

		74,76

		2,04



		pmed12

		(300, 10)

		6634

		0

		1,06

		0

		0

		121,16

		5,13



		pmed13

		(300, 30)

		4374

		1,07

		3,77

		0

		0

		131,21

		42,93



		pmed14

		(300, 60)

		2968

		2,32

		5,26

		0

		0,47

		132,26

		144,05



		pmed15

		(300, 100)

		1729

		1,74

		5,09

		0,06

		0,52

		133,57

		150,24



		pmed16

		(400, 5)

		8162

		0

		0,26

		0

		0

		114,06

		6,36



		pmed17

		(400, 10)

		6999

		0

		2,71

		0

		0,06

		129,87

		57,98



		pmed18

		(400, 40)

		4809

		1,35

		3,10

		0,04

		0,48

		132,84

		150,48



		pmed19

		(400, 80)

		2845

		2,81

		5,27

		0,35

		0,98

		134,92

		158,84



		pmed20

		(400, 133)

		1789

		4,42

		7,55

		0,84

		0,95

		137,12

		293,66



		pmed21

		(500, 5)

		9138

		0

		0,45

		0

		0

		89,04

		4,24



		pmed22

		(500, 10)

		8579

		0,05

		2,07

		0

		0

		132,22

		33



		pmed23

		(500, 50)

		4619

		2,66

		5,82

		0,26

		0,97

		135,53

		155,87



		pmed24

		(500, 100)

		2961

		3,48

		6,72

		0,91

		0,98

		138,45

		394,75



		pmed25

		(500, 167)

		1828

		4,21

		7,06

		0,82

		0,98

		141,85

		727,81



		pmed26

		(600, 5)

		9917

		0

		0,85

		0

		0

		94,33

		20,79



		pmed27

		(600, 10)

		8307

		0,46

		1,66

		0

		0,04

		133,05

		74,44



		pmed28

		(600, 60)

		4498

		3,07

		4,54

		0,78

		0,98

		138,72

		260,62



		pmed29

		(600, 120)

		3033

		5,31

		6,26

		0,86

		0,99

		142,38

		708,85



		pmed30

		(600, 200)

		1989

		4,52

		6,99

		0,80

		0,96

		147,67

		1972,3



		pmed31

		(700, 5)

		10086

		0

		0,74

		0

		0,01

		117,65

		53,87



		pmed32

		(700, 10)

		9297

		0,26

		1,23

		0

		0,04

		132,54

		77,96



		pmed33

		(700, 70)

		4700

		3,11

		4,96

		0,83

		0,98

		140,00

		451,27



		pmed34

		(700, 140)

		3013

		4,88

		6,77

		0,93

		1,00

		145,14

		1303,58



		pmed35

		(800, 5)

		10400

		0

		1,02

		0

		0

		118,00

		25,38



		pmed36

		(800, 10)

		9934

		0,32

		1,41

		0

		0,31

		132,99

		113,79



		pmed37

		(800, 80)

		5057

		2,79

		5,99

		0,83

		0,99

		142,65

		948,08



		pmed38

		(900, 5)

		11060

		0

		0,90

		0

		0

		130,68

		29,19



		pmed39

		(900, 10)

		9423

		0,33

		2,10

		0

		0

		133,32

		111,1



		pmed40

		(900, 90)

		5128

		3,69

		5,21

		0,90

		0,99

		145,89

		1393,01



		Average

		

		1,37

		3,04

		0,23

		0,38

		122,30

		255,20





4.5.  Comparison of DPSO to Simulated Annealing for 1000 generations


Table given below summarizes the comparison of computational results for 10 replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the SA is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.


From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems.


The average percentile deviation in SA is 6,01% while in problem solution proposed by our algorithm it is 0,30%. These values are not shown in the table.

In the computational results shown in table below SA was run 1000 generations. The generation number was selected in a such way in order to compare the results after running the algorithms under the same conditions. In most cases it resulted in less computational time compared to DPSO. 

Table 4.5 Comparison of DPSO to Simulated Annealing for 1000 generations

		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)



		

		

		

		SA

		DPSO

		SA

		DPSO



		

		

		

		Best

		Worst

		Best

		Worst

		

		



		pmed1

		(100, 5)

		5819

		0

		1,12

		0

		0

		21,79

		0,56



		pmed2

		(100, 10)

		4093

		0,29

		2,96

		0

		0,29

		26,05

		21,6



		pmed3

		(100, 10)

		4250

		0

		3,67

		0

		0

		24,71

		2,02



		pmed4

		(100, 20)

		3034

		0,96

		6,36

		0

		0

		25,89

		11,84



		pmed5

		(100, 33)

		1355

		3,03

		8,56

		0

		0,22

		25,86

		33,79



		pmed6

		(200, 5)

		7824

		0,12

		1,94

		0

		0

		25,86

		1,37



		pmed7

		(200, 10)

		5631

		0,64

		4,49

		0

		0

		25,93

		18,72



		pmed8

		(200, 20)

		4445

		3,24

		6,57

		0

		0

		25,98

		21,06



		pmed9

		(200, 40)

		2734

		3,69

		7,72

		0

		0,62

		26,03

		119,44



		pmed10

		(200, 67)

		1255

		5,82

		15,14

		0

		0,40

		26,08

		105,8



		pmed11

		(300, 5)

		7696

		0,35

		2,29

		0

		0

		25,96

		2,04



		pmed12

		(300, 10)

		6634

		1,45

		6,21

		0

		0

		26,05

		5,13



		pmed13

		(300, 30)

		4374

		3,06

		7,84

		0

		0

		26,18

		42,93



		pmed14

		(300, 60)

		2968

		6,77

		8,96

		0

		0,47

		26,29

		144,05



		pmed15

		(300, 100)

		1729

		7,98

		14,23

		0,06

		0,52

		26,41

		150,24



		pmed16

		(400, 5)

		8162

		0,29

		2,96

		0

		0

		26,10

		6,36



		pmed17

		(400, 10)

		6999

		1,19

		4,91

		0

		0,06

		26,21

		57,98



		pmed18

		(400, 40)

		4809

		4,53

		7,49

		0,04

		0,48

		26,42

		150,48



		pmed19

		(400, 80)

		2845

		7,21

		11,63

		0,35

		0,98

		26,57

		158,84



		pmed20

		(400, 133)

		1789

		10,96

		22,30

		0,84

		0,95

		26,78

		293,66



		pmed21

		(500, 5)

		9138

		1,26

		5,37

		0

		0

		26,31

		4,24



		pmed22

		(500, 10)

		8579

		2,30

		5,47

		0

		0

		26,24

		33



		pmed23

		(500, 50)

		4619

		5,72

		9,37

		0,26

		0,97

		26,44

		155,87



		pmed24

		(500, 100)

		2961

		8,48

		13,41

		0,91

		0,98

		26,63

		394,75



		pmed25

		(500, 167)

		1828

		13,02

		19,58

		0,82

		0,98

		26,95

		727,81



		pmed26

		(600, 5)

		9917

		1,01

		4,13

		0

		0

		26,03

		20,79



		pmed27

		(600, 10)

		8307

		2,19

		5,51

		0

		0,04

		26,21

		74,44



		pmed28

		(600, 60)

		4498

		5,96

		9,52

		0,78

		0,98

		26,68

		260,62



		pmed29

		(600, 120)

		3033

		9,89

		16,16

		0,86

		0,99

		27,00

		708,85



		pmed30

		(600, 200)

		1989

		13,88

		21,72

		0,80

		0,96

		27,43

		1972,3



		pmed31

		(700, 5)

		10086

		0,20

		3,39

		0

		0,01

		26,52

		53,87



		pmed32

		(700, 10)

		9297

		2,59

		4,88

		0

		0,04

		26,38

		77,96



		pmed33

		(700, 70)

		4700

		8,11

		13,06

		0,83

		0,98

		26,81

		451,27



		pmed34

		(700, 140)

		3013

		12,58

		18,39

		0,93

		1,00

		27,23

		1303,58



		pmed35

		(800, 5)

		10400

		0,53

		4,06

		0

		0

		26,02

		25,38



		pmed36

		(800, 10)

		9934

		2,18

		4,59

		0

		0,31

		26,50

		113,79



		pmed37

		(800, 80)

		5057

		7,53

		11,94

		0,83

		0,99

		27,15

		948,08



		pmed38

		(900, 5)

		11060

		0,37

		2,73

		0

		0

		26,08

		29,19



		pmed39

		(900, 10)

		9423

		3,41

		6,02

		0

		0

		26,32

		111,1



		pmed40

		(900, 90)

		5128

		8,39

		11,91

		0,90

		0,99

		27,39

		1393,01



		Average

		

		4,28

		8,46

		0,23

		0,38

		26,24

		255,20





4.6.  Comparison of DPSO to Simulated Annealing for 5000 generations 

Table given below summarizes the comparison of computational results for 10 replications of DPSO and Simulated Annealing (SA) solving 40 test problems from OR Library. The smallest and the biggest percentile error made for the SA is shown in column 4 and 5. The smallest and the biggest percentile error made for the DPSO is shown in column 6 and 7 and the computational time in seconds is shown in the column 8 and 9 respectively.


From the Table given below you can see that the proposed DPSO algorithm performs better not only in terms of the percentile error but it finds the “near optimal” solution in less computational time for some of the problems.


The average percentile deviation in SA is 2,36% while in problem solution proposed by our algorithm it is 0,3%. These values are not shown in the given table.

In average computational time it seems like the SA performs better but we should not forget that in most of the solved problems the SA performance was far away compared to DPSO in terms of percentile error. And in most of the cases the percentile error for DPSO is better. The SA was run 5000 generations in this case. Compared to 1000 generations run the computational time is more “near” to the computational time in DPSO.

Table 4.6 Comparison of DPSO to Simulated Annealing for 5000 generations


		Problem

		(n, p)

		Optimum

		Error%

		CPU time (s)



		

		

		

		SA

		DPSO

		SA

		DPSO



		

		

		

		Best

		Worst

		Best

		Worst

		

		



		pmed1

		(100, 5)

		5819

		0

		0

		0

		0

		29,07

		0,56



		pmed2

		(100, 10)

		4093

		0

		0,29

		0

		0,29

		97,96

		21,6



		pmed3

		(100, 10)

		4250

		0

		0,47

		0

		0

		92,20

		2,02



		pmed4

		(100, 20)

		3034

		0

		1,52

		0

		0

		128,31

		11,84



		pmed5

		(100, 33)

		1355

		0

		2,44

		0

		0,22

		126,85

		33,79



		pmed6

		(200, 5)

		7824

		0

		0

		0

		0

		56,29

		1,37



		pmed7

		(200, 10)

		5631

		0

		0,55

		0

		0

		113,30

		18,72



		pmed8

		(200, 20)

		4445

		0,13

		2,34

		0

		0

		129,53

		21,06



		pmed9

		(200, 40)

		2734

		0,80

		4,24

		0

		0,62

		129,77

		119,44



		pmed10

		(200, 67)

		1255

		2,07

		5,98

		0

		0,40

		130,04

		105,8



		pmed11

		(300, 5)

		7696

		0

		0,44

		0

		0

		75,53

		2,04



		pmed12

		(300, 10)

		6634

		0

		0,69

		0

		0

		120,85

		5,13



		pmed13

		(300, 30)

		4374

		1,07

		3,54

		0

		0

		130,30

		42,93



		pmed14

		(300, 60)

		2968

		2,80

		5,76

		0

		0,47

		130,67

		144,05



		pmed15

		(300, 100)

		1729

		3,53

		6,07

		0,06

		0,52

		131,25

		150,24



		pmed16

		(400, 5)

		8162

		0

		0,34

		0

		0

		125,23

		6,36



		pmed17

		(400, 10)

		6999

		0,06

		1,74

		0

		0,06

		130,23

		57,98



		pmed18

		(400, 40)

		4809

		1,89

		4,70

		0,04

		0,48

		131,12

		150,48



		pmed19

		(400, 80)

		2845

		3,90

		6,50

		0,35

		0,98

		131,87

		158,84



		pmed20

		(400, 133)

		1789

		4,92

		8,27

		0,84

		0,95

		132,89

		293,66



		pmed21

		(500, 5)

		9138

		0

		1,01

		0

		0

		116,59

		4,24



		pmed22

		(500, 10)

		8579

		0,15

		2,02

		0

		0

		131,72

		33



		pmed23

		(500, 50)

		4619

		3,27

		4,87

		0,26

		0,97

		133,21

		155,87



		pmed24

		(500, 100)

		2961

		3,68

		5,81

		0,91

		0,98

		134,27

		394,75



		pmed25

		(500, 167)

		1828

		5,14

		8,75

		0,82

		0,98

		135,78

		727,81



		pmed26

		(600, 5)

		9917

		0

		1,03

		0

		0

		116,48

		20,79



		pmed27

		(600, 10)

		8307

		0,42

		1,78

		0

		0,04

		131,35

		74,44



		pmed28

		(600, 60)

		4498

		2,78

		4,82

		0,78

		0,98

		133,67

		260,62



		pmed29

		(600, 120)

		3033

		4,88

		6,96

		0,86

		0,99

		135,14

		708,85



		pmed30

		(600, 200)

		1989

		5,53

		7,44

		0,80

		0,96

		137,30

		1972,3



		pmed31

		(700, 5)

		10086

		0

		0,77

		0

		0,01

		124,90

		53,87



		pmed32

		(700, 10)

		9297

		0,41

		2,08

		0

		0,04

		131,46

		77,96



		pmed33

		(700, 70)

		4700

		3,11

		5,57

		0,83

		0,98

		134,29

		451,27



		pmed34

		(700, 140)

		3013

		5,34

		7,04

		0,93

		1,00

		136,25

		1303,58



		pmed35

		(800, 5)

		10400

		0

		1,62

		0

		0

		117,19

		25,38



		pmed36

		(800, 10)

		9934

		0,49

		2,32

		0

		0,31

		131,80

		113,79



		pmed37

		(800, 80)

		5057

		3,94

		5,14

		0,83

		0,99

		135,47

		948,08



		pmed38

		(900, 5)

		11060

		0

		0,84

		0

		0

		129,83

		29,19



		pmed39

		(900, 10)

		9423

		0,36

		1,51

		0

		0

		131,37

		111,1



		pmed40

		(900, 90)

		5128

		3,92

		5,50

		0,90

		0,99

		136,69

		1393,01



		Average

		

		1,62

		3,32

		0,23

		0,38

		122,20

		255,20





Chapter 5 


Conclusion


The main objective in this work is to allocate p facilities in a way that the total distance between n demand points and facilities minimized. This is a well know facility-location problem and in literature is known as a p-median problem.

It is shown by Kariv and Hakimi that the p-median problem is NP-hard (Kariv and Hakimi, 1979b). It is unlikely to obtain optimal schedule through polynomial time-bounded algorithms. Small size instances of p-median problem can be solved with reasonable computational time by exact algorithms such as branch-and-bound (Järvinen et al., 1972). 


On the other hand, heuristic algorithms generally have acceptable time and memory requirements, but do not guarantee optimal solution. That is, a feasible solution is obtained which is likely to be either optimal or near optimal.


Particle swarm optimization (PSO) is one of the latest metaheuristic methods in literature, which is based on the metaphor of social interaction and communication among different spaces in nature, such as bird flocking and fish schooling. PSO was first introduced to optimize various continuous nonlinear functions by (Eberhart and Kennedy, 1995).

p-Median problem is related to the Discrete Location Problems while the Particle swarm optimization (PSO) is manly designed for the continuous problems. Thus it may have some drawbacks when applying PSO to discrete problems. Recently a few researches have been related to the discrete combinatorial optimization problems. However, still it is considered that the applications of PSO on discrete problems are limited. 


In this thesis Novel proposed Continuous Particle Swarm (NCPSO) algorithm and a proposed Discrete Particle Swarm Optimization algorithms (DPSO) are proposed. The algorithms have been tested on benchmark problem instances from OR Library and compared to the other algorithms in literature and shown that the proposed algorithm results in better computational time. To the best of our knowledge the proposed PSO algorithms in this thesis are the first PSO algorithms applied to the p-median problem. 
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Appendix A 


Dataset


Here shown 5 example problems of dataset used from OR Library (Beasley, 1990) for testing the proposed algorithms.


Data are shown in the following format:


Two nodes are given a and b separated by sign “–”the distance between two nodes is shown just after them.

pmed1:
n-100 

edge-200 
optimal-5819


1-2
30
2-3
46
3-4
1
4-5
28
5-6
31



6-7
69
7-8
39
8-9
14
9-10
84
10-11
59



11-12
10
12-13
28
13-14
63
14-15
9
15-16
100



16-17
98
17-18
70
18-19
94
19-20
22
20-21
14



21-22
87
22-23
82
23-24
55
24-25
2
25-26
32



26-27
77
27-28
95
28-29
29
29-30
59
30-31
91



31-32
89
32-33
50
33-34
40
34-35
88
35-36
94



36-37
60
37-38
21
38-39
89
39-40
47
40-41
63



41-42
45
42-43
46
43-44
24
44-45
77
45-46
60



46-47
45
47-48
50
48-49
93
49-50
22
50-51
84



51-52
16
52-53
85
53-54
68
54-55
93
55-56
37



56-57
26
57-58
29
58-59
38
59-60
10
60-61
32



61-62
67
62-63
66
63-64
52
64-65
19
65-66
39



66-67
12
67-68
86
68-69
72
69-70
73
70-71
65



71-72
2
72-73
8
73-74
96
74-75
43
75-76
39



76-77
61
77-78
90
78-79
8
79-80
58
80-81
91



81-82
58
82-83
13
83-84
79
84-85
59
85-86
28



86-87
46
87-88
24
88-89
63
89-90
81
90-91
14



91-92
52
92-93
64
93-94
75
94-95
71
95-96
51



96-97
75
97-98
57
98-99
31
99-100
49
100-1
88



80-5
90
85-69
51
20-19
30
85-13
22
81-95
54



58-73
37
64-51
89
39-76
89
13-8
77
91-76
51



52-95
96
91-75
33
80-91
84
35-80
46
54-86
35



30-70
5
19-7
9
74-53
50
11-37
4
19-92
70



62-94
96
60-52
34
24-59
63
42-45
68
19-60
53



60-27
86
15-50
31
38-18
27
81-30
99
1-29
6



22-52
11
54-59
75
5-7
8
41-44
80
41-76
42



44-12
56
61-65
73
20-93
35
9-99
28
45-68
19



16-79
96
13-42
3
68-4
28
58-17
60
21-81
34



35-7
7
21-14
82
26-32
26
6-63
83
31-69
53



91-78
32
45-59
33
42-57
5
8-53
66
65-94
61



94-90
63
73-33
88
39-21
59
42-85
34
30-57
37



34-94
52
62-38
56
26-29
20
48-98
53
4-33
45



31-63
82
8-52
31
37-81
14
50-27
16
27-14
48



88-33
8
56-30
76
87-91
17
33-49
77
70-30
74



25-99
19
95-30
96
14-85
90
49-8
96
96-5
87



73-4
41
99-32
35
95-1
31
99-3
49
18-75
100



58-47
68
35-60
5
38-16
70
54-40
52
95-55
47



54-17
45
9-83
75
97-66
81
9-48
92
90-95
96



4-27
27
75-22
48
62-7
55
79-3
57
15-69
46



pmed2:
n-100 

edge-200 
optimal-4093


1-2
24
2-3
49
3-4
72
4-5
46
5-6
22



6-7
86
7-8
7
8-9
52
9-10
48
10-11
72



11-12
10
12-13
33
13-14
50
14-15
98
15-16
96



16-17
39
17-18
89
18-19
80
19-20
77
20-21
3



21-22
63
22-23
45
23-24
8
24-25
84
25-26
22



26-27
9
27-28
71
28-29
99
29-30
77
30-31
65



31-32
71
32-33
18
33-34
81
34-35
67
35-36
11



36-37
21
37-38
85
38-39
62
39-40
36
40-41
1



41-42
52
42-43
100
43-44
25
44-45
43
45-46
61



46-47
41
47-48
72
48-49
93
49-50
45
50-51
100



51-52
27
52-53
27
53-54
76
54-55
49
55-56
71



56-57
24
57-58
8
58-59
91
59-60
81
60-61
100



61-62
83
62-63
27
63-64
58
64-65
98
65-66
50



66-67
5
67-68
26
68-69
94
69-70
100
70-71
19



71-72
58
72-73
27
73-74
94
74-75
64
75-76
48



76-77
19
77-78
83
78-79
87
79-80
94
80-81
41



81-82
1
82-83
67
83-84
37
84-85
69
85-86
52



86-87
83
87-88
6
88-89
78
89-90
1
90-91
57



91-92
60
92-93
22
93-94
99
94-95
25
95-96
11



96-97
11
97-98
54
98-99
69
99-100
7
100-1
94



2-83
2
35-61
56
32-95
37
70-58
18
14-73
96



97-55
36
49-54
84
37-1
39
22-77
16
3-74
98



28-60
77
11-14
94
2-36
47
20-58
42
3-25
50



83-96
40
97-29
87
52-33
41
37-72
38
32-44
53



68-14
80
60-18
54
45-78
56
7-86
36
55-23
57



89-88
39
37-18
80
83-48
43
56-3
30
19-50
94



54-99
11
88-50
46
36-16
14
22-77
17
37-16
12



80-79
56
84-96
42
69-89
64
84-37
40
21-22
79



65-23
45
22-83
95
46-94
75
14-21
50
84-44
41



64-71
15
62-84
97
67-30
8
34-38
56
58-91
2



57-90
98
79-88
80
96-5
40
61-94
99
98-79
77



5-51
80
28-41
64
18-47
78
53-97
76
67-1
48



23-71
9
52-41
25
11-50
94
18-24
26
6-27
5



18-53
71
40-73
48
51-64
42
50-72
4
18-86
85



91-2
7
12-63
23
2-56
85
19-36
14
53-24
68



73-40
37
93-6
5
98-73
3
51-43
57
63-11
79



85-51
27
10-31
30
42-4
15
19-65
79
98-20
32



99-14
91
67-30
15
8-55
46
91-12
63
10-33
54



72-48
93
64-30
83
23-37
2
87-16
21
81-73
86



44-26
55
81-12
32
54-26
82
79-88
61
34-67
63



pmed3:
n-100 

edge-200 
optimal-4250


1-2
77
2-3
62
3-4
90
4-5
22
5-6
17



6-7
19
7-8
11
8-9
4
9-10
3
10-11
16



11-12
67
12-13
35
13-14
21
14-15
14
15-16
43



16-17
11
17-18
91
18-19
55
19-20
33
20-21
80



21-22
90
22-23
81
23-24
91
24-25
23
25-26
49



26-27
62
27-28
96
28-29
25
29-30
92
30-31
77



31-32
41
32-33
40
33-34
97
34-35
1
35-36
14



36-37
18
37-38
69
38-39
72
39-40
17
40-41
56



41-42
94
42-43
78
43-44
25
44-45
99
45-46
51



46-47
24
47-48
33
48-49
47
49-50
87
50-51
71



51-52
88
52-53
60
53-54
96
54-55
10
55-56
34



56-57
56
57-58
56
58-59
99
59-60
35
60-61
86



61-62
85
62-63
18
63-64
29
64-65
48
65-66
82



66-67
43
67-68
59
68-69
8
69-70
10
70-71
58



71-72
62
72-73
49
73-74
94
74-75
84
75-76
69



76-77
5
77-78
36
78-79
17
79-80
47
80-81
88



81-82
39
82-83
84
83-84
56
84-85
82
85-86
98



86-87
93
87-88
91
88-89
73
89-90
65
90-91
26



91-92
73
92-93
19
93-94
30
94-95
76
95-96
31



96-97
37
97-98
46
98-99
9
99-100
39
100-1
66



65-66
39
61-6
96
15-81
44
95-43
37
13-57
53



78-7
7
32-26
15
14-66
49
25-44
42
80-84
33



79-58
99
25-59
38
4-37
32
1-51
49
54-20
5



39-18
87
74-8
71
69-3
64
13-30
38
1-66
62



48-72
30
33-31
57
79-94
79
35-92
54
77-69
28



41-49
88
82-44
18
36-24
6
47-41
26
4-31
53



84-56
42
2-37
75
43-3
55
58-57
3
26-42
51



80-62
32
50-70
98
55-60
87
9-77
10
45-23
73



39-83
95
1-35
71
80-26
82
81-26
57
91-37
89



83-42
53
21-84
33
45-21
14
52-23
74
88-99
95



18-90
84
99-52
43
2-45
61
74-58
11
41-33
21



47-33
31
21-33
30
80-10
11
58-99
93
49-56
79



45-25
58
40-82
76
89-73
32
44-96
46
74-5
12



96-14
89
2-73
67
54-4
80
39-68
34
52-26
82



24-28
37
66-40
49
40-48
45
17-61
72
73-63
45



70-96
87
68-53
34
59-26
67
46-30
85
17-90
76



45-85
82
95-60
90
96-65
59
94-26
30
69-20
67



67-52
54
12-44
1
85-36
11
42-88
97
76-62
1



91-99
49
80-76
45
55-95
27
66-59
44
81-59
36



23-56
26
13-85
79
48-96
12
73-85
31
22-27
9



pmed4:
n-100 

edge-200 
optimal-3034


1-2
45
2-3
23
3-4
96
4-5
59
5-6
24



6-7
78
7-8
24
8-9
70
9-10
5
10-11
66



11-12
93
12-13
31
13-14
67
14-15
89
15-16
93



16-17
22
17-18
83
18-19
83
19-20
89
20-21
59



21-22
11
22-23
85
23-24
24
24-25
94
25-26
79



26-27
3
27-28
53
28-29
62
29-30
36
30-31
77



31-32
14
32-33
65
33-34
13
34-35
72
35-36
44



36-37
84
37-38
17
38-39
11
39-40
98
40-41
70



41-42
80
42-43
61
43-44
35
44-45
5
45-46
51



46-47
35
47-48
4
48-49
8
49-50
43
50-51
19



51-52
63
52-53
46
53-54
97
54-55
73
55-56
23



56-57
87
57-58
37
58-59
15
59-60
28
60-61
9



61-62
78
62-63
27
63-64
92
64-65
81
65-66
82



66-67
30
67-68
67
68-69
88
69-70
54
70-71
76



71-72
16
72-73
60
73-74
95
74-75
10
75-76
86



76-77
76
77-78
9
78-79
82
79-80
94
80-81
6



81-82
72
82-83
84
83-84
41
84-85
80
85-86
31



86-87
29
87-88
24
88-89
76
89-90
84
90-91
35



91-92
71
92-93
28
93-94
57
94-95
76
95-96
50



96-97
25
97-98
92
98-99
44
99-100
46
100-1
10



96-48
8
15-22
31
44-17
76
43-7
56
90-46
49



19-98
62
24-9
68
55-90
80
12-62
70
8-98
38



48-89
58
86-81
76
94-11
93
2-31
46
64-34
54



27-32
33
69-74
68
3-14
62
74-77
27
97-39
57



8-22
56
96-2
33
16-27
24
54-22
53
39-63
57



34-46
12
76-24
48
89-20
57
92-57
80
10-9
17



91-10
86
66-26
96
13-19
60
7-70
38
54-93
98



38-89
18
78-23
64
85-9
3
44-90
31
92-17
55



73-8
9
69-87
18
87-52
33
21-43
20
44-55
31



77-21
74
89-23
77
40-55
7
95-73
96
88-68
87



9-88
59
22-81
24
62-72
70
76-77
19
95-62
70



76-98
14
32-7
67
47-69
75
12-7
91
23-14
63



63-62
42
71-57
60
23-26
62
99-55
10
11-3
71



71-77
99
67-77
84
52-38
81
63-86
45
17-57
76



26-29
36
72-88
37
66-24
48
48-47
15
83-42
99



87-78
77
55-4
57
15-89
31
99-19
24
69-2
97



48-20
63
91-64
33
26-54
61
62-1
89
83-8
67



81-31
71
26-77
36
18-22
28
88-61
73
23-43
70



81-89
91
94-74
54
26-58
22
95-88
83
52-47
35



19-55
48
12-3
68
22-36
67
68-58
18
48-88
58



pmed5:
n-100 

edge-200 
optimal-1355


1-2
38
2-3
71
3-4
66
4-5
73
5-6
51



6-7
66
7-8
28
8-9
90
9-10
82
10-11
48



11-12
97
12-13
75
13-14
44
14-15
90
15-16
44



16-17
70
17-18
65
18-19
24
19-20
40
20-21
79



21-22
37
22-23
70
23-24
8
24-25
54
25-26
100



26-27
50
27-28
43
28-29
23
29-30
83
30-31
5



31-32
35
32-33
16
33-34
20
34-35
79
35-36
74



36-37
87
37-38
69
38-39
21
39-40
51
40-41
15



41-42
24
42-43
80
43-44
75
44-45
38
45-46
81



46-47
87
47-48
34
48-49
39
49-50
95
50-51
39



51-52
9
52-53
67
53-54
65
54-55
30
55-56
5



56-57
35
57-58
38
58-59
63
59-60
29
60-61
43



61-62
48
62-63
59
63-64
69
64-65
11
65-66
2



66-67
95
67-68
22
68-69
96
69-70
85
70-71
95



71-72
10
72-73
45
73-74
96
74-75
63
75-76
99



76-77
95
77-78
22
78-79
65
79-80
52
80-81
81



81-82
89
82-83
37
83-84
75
84-85
70
85-86
59



86-87
84
87-88
81
88-89
4
89-90
99
90-91
93



91-92
75
92-93
29
93-94
6
94-95
73
95-96
91



96-97
15
97-98
53
98-99
85
99-100
71
100-1
17



78-97
3
16-69
19
3-99
50
44-5
3
76-28
78



49-50
9
57-52
23
88-24
5
23-86
33
59-15
84



81-64
72
27-36
32
80-49
81
78-59
45
52-66
77



43-33
62
94-3
46
87-19
14
57-10
53
54-99
67



47-73
70
72-61
51
87-46
37
8-29
86
6-68
37



98-41
68
84-91
6
36-3
68
43-10
40
27-81
6



59-8
73
79-74
84
15-96
42
47-75
7
69-66
65



69-15
11
61-41
19
63-72
36
93-26
82
38-63
40



97-22
14
36-7
81
10-51
12
34-87
93
35-75
19



14-12
50
48-81
2
97-52
56
1-60
56
62-94
6



76-74
20
67-27
47
32-45
62
79-16
72
80-49
52



66-40
8
87-83
16
79-49
7
99-93
24
77-14
2



48-14
58
75-44
67
5-96
86
1-69
84
56-69
94



36-11
59
82-36
63
52-96
10
51-90
1
15-60
93



27-29
99
69-72
11
60-27
27
23-15
53
55-10
33



46-97
3
99-48
8
32-60
19
14-44
15
74-88
3



16-97
38
68-69
1
22-92
48
34-51
48
68-25
84



36-54
5
40-57
60
15-7
24
74-78
42
58-57
77



2-94
5
17-41
10
26-36
83
16-48
94
77-83
46



35-68
32
90-59
51
42-45
80
11-19
49
52-79
59



Appendix B 


Example of runs


Example of 5 generations for first replication for the problem pmed1.txt where n=100 number of edges is 200, p=5, popsize=2*n,

Replication.........=1


Generation..........=0


Globalbest..........=6300.00


Optimum.............=5819


Weight..............=0.500


Problem.............=pmed1.txt

Replication.........=1


Generation..........=1


Globalbest..........=6300.00


Optimum.............=5819


Weight..............=0.500


Problem.............= pmed1.txt

Replication.........=1


Generation..........=2


Globalbest..........=6285.00


Optimum.............=5819


Weight..............=0.500


Problem.............= pmed1.txt

Replication.........=1


Generation..........=3


Globalbest..........=6162.00


Optimum.............=5819


Weight..............=0.499


Problem.............= pmed1.txt

Replication.........=1


Generation..........=4


Globalbest..........=6056.00


Optimum.............=5819


Weight..............=0.499


Problem.............= pmed1.txt

Replication.........=1


Generation..........=5


Globalbest..........=6056.00


Optimum.............=5819


Weight..............=0.499


Problem.............= pmed1.txt

Replication.........=1


Generation..........=6


Globalbest..........=5975.00


Optimum.............=5819


Weight..............=0.499


Problem.............= pmed1.txt

Replication.........=1


Generation..........=7


Globalbest..........=5926.00


Optimum.............=5819


Weight..............=0.498


Problem.............= pmed1.txt

Replication.........=1


Generation..........=8


Globalbest..........=5926.00


Optimum.............=5819


Weight..............=0.498


Problem.............= pmed1.txt

Replication.........=1


Generation..........=9


Globalbest..........=5926.00


Optimum.............=5819


Weight..............=0.498


Problem.............= pmed1.txt

_1308908433.unknown



_1310292520.unknown



_1310292524.unknown



_1310293830.unknown



_1310294199.unknown



_1310376189.unknown



_1310376296.unknown



_1310294283.unknown



_1310293984.unknown



_1310292526.unknown



_1310292527.unknown



_1310292525.unknown



_1310292522.unknown



_1310292523.unknown



_1310292521.unknown



_1310206380.unknown



_1310206858.unknown



_1310206859.unknown



_1310206857.unknown



_1310195605.unknown



_1310196654.unknown



_1310195580.unknown



_1309684150.unknown



_1308731640.unknown



_1308731913.unknown



_1308746581.unknown



_1308904942.unknown



_1308744254.unknown



_1308731758.unknown



_1308648927.unknown



_1308731162.unknown



_1308731521.unknown



_1308651616.unknown



_1308649016.unknown



_1276691001.unknown



_1276692453.unknown



_1308409143.unknown



_1308648089.unknown



_1303926426.unknown



_1276691827.unknown



_1276692440.unknown



_1276691841.unknown



_1276691816.unknown



_1276691652.unknown



_1276681552.unknown



_1276690998.unknown



_1261219414.unknown



_1261219549.unknown



_1266391211.unknown



_1261219295.unknown



