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ABSTRACT

Padé approximants and their generalizations play very important role in many
applications. There are different ways to generalize the definition of the Padé
approximants to the case of general rational interpolation. Namely, multipoint Padé
approximations and Newton-Padé approximations solve the same interpolation problem
but they are written in different terms.

In this study, one of the main purposes is to investigate another way of writing
the solution of the rational interpolation problem. As an advantage of that way, it is

supposed to get new conditions for the convergence of multipoint Padé approximations.

Keywords: rational interpolation, Newton-Padé approximation, multipoint Padé
approximation
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Padé yaklagtirnmlar1 ve bunlarin genellemeleri bir¢ok uygulamada énemli rol
oynar. Genel rasyonel interpolasyon durumlarinda Padé yaklastirimlarinin
genellemesinde birbirinden farkli yollar vardir. Yani, ¢cok noktali Padé yaklastirimlar
ve Newton-Padé yaklastirimlar: ayni interpolasyon problemlerini ¢6zmelerine karsin
farkli formlarda yazilirlar.

Bu c¢alismada, temel amaclardan biri rasyonel interpolasyon problemlerinin
¢ozlimiiniin farkli formlarda yazilmasini incelemektir. Bu metodun avantaji, ¢ok noktali
Pad¢ yaklastirimlarinin yakinsamalarina yeni kosullar getirmesinin beklenilmesidir.

Anahtar Kelimeler: rasyonel interpolasyon, Newton-Padé yaklastirimlari, ¢ok noktali
Padé¢ yaklastirimlari
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CHAPTER 1

INTRODUCTION

The history of continued fractions, and associated with it, the problem of Padé
approximation is one of the oldest in the history of mathematics. There are very
early predecessors, but the study was really started in the 18th century and came to
maturity in the 19th century. The serious work started with Cauchy in his famous
Cours d’analyse and Jacobi and was continued by Frobenius and Padé. A current
standard work is the book by G. Baker Jr. and P. Graves-Morris ([Baker Jr. G. |
Graves-Morris P., 1981b]).

The problem of rational interpolation has very long story and is not solved
completely up to now even for the case of a single variable. One of widely used

approaches has its origins in Padé approximants.

Recall that (Padé-Frobenius definition, ([Baker Jr. G. , Graves-Morris P.,
1981a])) a unique rational function ry; v (2) = Pay (2) /Qn (2), with Py € Hyy, Qn €
H N, }NIk being the set of polynomials of degree < k with complex coefficients, sat-

isfying a formal identity

Qn (2) [ (2) = Par (2) = Apryn a2V 4 (1.1)
where
F(2) =) ad® (ag#0), (1.2)

is called the [M, N] Padé approximant of the formal power series f(z). Padé ap-



proximants may be considered as a particular case of rational interpolation subject
to conditions TE\Z?N (0) = f®(0), k=0,1,...,M + N, if the series (1.2) converges
in a neighbourhood of 0 and Qy (0) # 0.

Multipoint Padé approximants and Newton-Padé approximants are their nat-
ural generalizations for the Hermite interpolation. There are different ways to define
them. For a survey one may consult Meinguet, Stahl ([Stahl H., 1996]). The first

one is as follows:

Let an infinite triangular matrix of interpolation points a;; € C (called inter-

polation scheme) be given:

Qoo
A= (1.3)
Aopn,  * " Ann
Each row
A, ={aon, -, G} (1.4)

of the matrix A defines an interpolation set with n + 1 interpolation points.

The rational function

_ Pun

= —QM,N (1.5)

ruN =Tun (f, Avyns) =rmun (f, 4;.)
with Py € PNIM, QunN € ]:IN, and Qu .y # 0, is called multipoint Padé approz-
imant or linearized rational interpolant of degree M, N to the function f at the

M + N + 1 points of the interpolation set A,/ if the quotient

QM,Nf - PM,N
WM+N

is bounded at each point z € Apyn. (1.6)



Now let us define Newton-Padé approximants. Firstly, following M. A. Gallucci and
W. B. Jones ([Gallucci M. A., Jones W. B., 1976]) a formal Newton series (FNS)
is an ordered triple [{an}o , {Bnte s {fn}o ), Where ag, a1, s, ... and B3y, B, Os, .. .
are complex numbers (not necessarily distinct) and for each n = 0,1,2,..., f, is the

polynomial

fo2) =3 ann (2). (L.7)

where

wo(2) =1 we(z)=][(z=8), k=123,..., (1.8)

Jj=1

and where z is a complex variable. The o, 3,, and f,, are called, respectively, the nth
Newton coefficient, interpolation point, and partial sum of [{an},{Bn},{fn}] and a

FNS is said to converge at z if the sequence of partial sums {f, (z)} is convergent.

The Newton-Padé approximant

B PM7N (Z)
v (2) = —QM,N ) (1.9)

with Py v € ﬁIM, QuN € EIN is the function of the form (1.9) such that

Q(2) f(2) = P(2) = durnvwminia (2) + - (1.10)

Convergence theory of classical Padé approximants has a long and distin-
guished history dating back to Hermite’s work. Essential part of the theory studies
convergence of sequences of Padé approximants for special classes of functions which
are defined by properties of their Maclaurin series coefficients. For the multipoint
Padé approximants general convergence theory for meromorphic, Markov and more
general classes of functions was developed but, to the best of our knowledge, there

are no results about convergence of multipoint Padé approximants from special



properties of their Newton series coefficients.

A rational function which fits given function at various points, not necessarily
distinct, is called a multipoint Padé approximant. The associated problem of inter-
polation by rational functions is called the Cauchy-Jacobi problem. Multipoint Padé
approximants are also called rational interpolants, N-point Padé approximants, or
Newton-Padé approzimants ([Gallucci M. A., Jones W. B., 1976]), depending on the
context. Interpolation at confluent points is sometimes called osculatory interpola-
tion. Multipoint Padé approximations for a sufficiently general class of functions
were first studied in ([Stahl H., 1996]), while, in ([Claessens G., 1976]) and ([Baker
Jr. G. , Graves-Morris P., 1981a]), such approximations were used to obtain signif-

icant results concerning best rational approximations of analytic functions.

Balk ([Balk M.B.,1960]) obtained conditions of convergence of Padé approxi-
mations which used properties of Taylor series coefficients only and applied them to
study the convergence of Padé approximations of some elementary functions. The
convergence of the multipoint Padé approximations for concrete functions is not

studied sufficiently, it is possible to mention here recent Kandayan’s paper ([Kan-

dayan A.A., 2009]).

One of the main purposes of this study is to give an analogue of Balk’s test
of Padé approximants convergence for Newton-Padé approximants. To do so, we
will need to use Newton form not only for numerator Py, as in ([Baker Jr. G.
Graves-Morris P., 1981a]). Note that determinantal representations of Newton-Padé
approximations given in ([Gallucci M. A., Jones W. B., 1976]) only for denominators
Qnx in power form Qy (z) = g) A\iz". For Qx in Newton form Qy (z) = év: bewr (2),
D.D. Warner ([Warner D.D.,ZTSM]) gave representations in terms of othlgodeﬁnition
of the FNS (as the infinite triangular matrix of divided differences), and G. Claessens
([Claessens G., 1976]) established recurrence formulas using definition of FNS as

above.

Here we will give determinantal representations of Newton-Padé approximants



for denominators ) in Newton form.



CHAPTER 2

FOUNDATIONS OF THE PADE APPROXIMATIONS
THEORY

2.1. Definition and Conditions for the Convergence of Padé Approxima-

tions
oo
Suppose that we are given a power series Zcizi, representing a function f(z),
i=0
so that

f(z)= chz’ (2.1)

This expansion is the fundamental starting point of any analysis using Padé approx-
imants. Throughout this work, we reserve the notation ¢;, i« = 0,1,2,..., for the
given set of coefficients, and [ (z) is the associated function. A Padé approximant

is a rational fraction

ap+ a1z + ... +apz"

bo+b12+...+bMZM

(/M) = (2.2)

which has a Maclaurin expansion which agrees with (2.1) as far as possible.

Definition 2.1. [Baker, Graves-Morris; 1981] . If polynomials AE/M (2) | BIE/MI (2) |

of degrees L, M respectively, can be found such that

ALL/M] (2)

B[L/T](z) =f(2)+0 (ZL+M+1) (2.3)



with
BEMI(0) =1 (2.4)

then we define [L/M] = %.

The notation emphasizes that numerator and denominator depend on both L

and M. An entirely equivalent specification of the definition is to replace (2.3) by
A[L/M](Z) —f(2) BIL/M] (z)=0 (ZL+M+1)

provided that (2.4) is retained. The notation of (2.3) and (2.4) is exclusively re-
served for this purpose throughout the work, and without further explanation. So
there are L+ 1 independent numerator coefficients and M independent denominator
coefficients, making L + M + 1 unknown coefficients in all. This number suggests
that normally the [L/M] ought to fit the power series (2.1) through the orders

2 M)

1,2z, 2%, . . In the notation of formal power series,

=\, ataz+...+apt Y
2t = O (ZEM+1) 2.5
;CZ bo+b12+...+bMZM+ <Z ) ( )

By cross-multiplying, we find that

(bo+ b1z + ...+ byz") (co+c1z+...)

=ap+ a1z +...+agz" + 0 ("M (2.6)

L+1 _L+42 L+M
)

Equating the coefficients of z A , we find

bycr—m+1 +by—ic—pyo + ...+ bocry =0,
byer—arv2 +by—1cL-my3+ ..+ bocpie =0,
= (2.7)

bMCL + bM—ch-H + ...+ bOCL+M = 0.
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If 7 <0, we define ¢; = 0 for consistency. Since by = 1, equations (2.7) become a

set of M linear equations for the M unknown denominator coefficients:

CL-M+1 CL—M+2 cr by CL+1
CL—M+2 CL—M+3 CrL41 b1 CLi2
CL—M+3 CL—M+4 Cr+2 by | =—| cras |> (2.8)
cr Cri1 CL+M-1 by CL+M
from which the b; may be found. The numerator coefficients, ag, ay, ..., ar, follow
immediately from (2.6) by equating the coefficients of 1, z, 22, ..., zl:
ap = Cop,
ap =c + b1CO7
as = ¢ + bicp + baco, (2.9)
min(L,M)
ap =cr + Z biCL—i- (210)

i=1

Thus (2.8) and (2.9) normally determine the Padé numerator and denominator and

are called the Padé equations; we have constructed an [L/M] Padé approximant

which agrees Zcizi through order z/+M .

1=0

If Cramer’s rule is used, we may calculate by : by :

...t by from (2.8) and

hence the denominator of (2.2). Aside from a common factor, the result is

QUM (2) =

Cr—-M+1 CL—-M+2 .- cr Cr+1
Cr—mM+2 CL—M+3 --- CL+1 Cr+2
(2.11)
Cr—1 Cr Cr+M—-2 CL4M-1
CL, CrL+1 CrL+m—1  CL4M
M M- 2z 1




We take (2.11) to define Q“/M] (z) and use this convention throughout.

Again, recall that ¢; = 0 if j < 0. Now consider

CL—M+1 CL—M+2 cee Cr+1
CL—M+2 CL—m+3 e CrL+2
o
(/M ezt = .
(4
— CrL—1 CL e CoyM—1
1=
Cr, Cr+1 Ce CrL+Mm
oo [e.e] o
E c; M E c;MA=L E ;2
=0 =0 i=0

L+1 L+2

By subtracting z times the first row from the last, z times the second row
from the last, etc., up to z“*M times the penultimate row from the last, we reduce
the series in the last row. They become lacunary series, with a gap of M terms

missing. Using the initial terms of these series, we define

CL—M+1 CL—M+2 cee Cr4+1
CL—M+2 CL—M+3 e CrL+2
[L/M] —
P (2) o Cr—1 Cr, v CLoM-—1 (212>
CL Cr+1 e CL+M
L-M L—M+1 L
Z c; Mt Z cieMri=l c; 2
=0 i=0 i=0
Again, (2.12) is our notational convention.
Theorem 2.1.1. With the definitions (2.11) and (2.12),
QUM (2) Zcizi — PEMI(2) = O (22HMH) (2.13)
i=0

Proof We note that deg { P1“/M} < L, deg {Q"/M} < M and that remain-
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der is

QUM (2) Zcizi — PI/M ()
=0

CL—M+1 CL—M+2 B Cr4+1
CL—M+2 CL—M+3 ce Cr+2
= 2.14
Cr—1 CL ce CL+M-1 ( )
Cy, Cr+1 e CrL+Mm
0] o0 (o]
E c; Mt E cieMAi=l E c; 2
i=L+1 i=L+2 i=L+M+1
Cr—M+1 Co—M+2 - Cr+1
CL—M+2 CL—-M+43 --- Cr+2
) : : : :
_ E ZL-i-M-H . (215)
i=1 Cr—1 cr ceo CLyM—1
CL CL+1 cer CLpMm
Cr+i CL+i+1  --- CL4M+i

Equation (2.15) is occasionally a useful form for the error using Padé approximation.

Equation (2.13) goes a long way towards satisfying (2.5). To this end, consider

Cr—M+1 CL—M+2 .- Cr
Cr—Mm+2 CL—-M+4+3 .- Cr+1
C (L/M) = Q"M (0) =
Cr—1 Cr, oo CLyM-—2
Ccr Cr+1 coo CLyM-1

This is called a Hankel determinant, because of the systematic way in which its rows
are formed from the given coefficients ¢;. Notice that if QI*/M! (0) # 0, then the linear
equations (2.8) are nonsingular and the solution given by (2.11) is unambiguous.

Furthermore, we may divide (2.13) by Q/M (2), yielding

X M)
i —— SLAMATY
; QLM (2) ( )
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This result has proved the following theorem:

Theorem 2.1.2. [Jacobi, 1846] With the definitions (2.11) and (2.12), the [L/M]

Padé approximant of Zcizi s given by
i=0

P/ ()

[L/M] - Q[L/M] (z)

(2.16)
provided QM1 (0) # 0.

Now we may give the classical definition, also called the Frobenius and Padé

Frobenius definition.

Definition 2.2. If P; (z), Qu (z) are polynomials of orders L, M respectively,
and if

Qu (2) f(2) = Pr(2) = O (2" (2.17)

then Pp (2) /Qun (2) is a Padé approximant of f (z).

Note that if Qs (0) = 0, then in this case

O (2FHM)

If, with equation (2.11), Q¥/1(0) # 0, then the rescaling

L/M
ALLM) () = PERT ()
QEATI (0)
and
BlL/M] _ QM (2)

7T QIR (0)
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implies that the two definitions correspond up to an unimportant numerical factor.
We extend the notation [L/M] of (2.16) as [L/M], to emphasize approximation

of f(z), and as [L/M](z) to emphasize the z—dependence. We will thus have the

various forms

[L/M] = [L/M]; = [L/M](2) = [L/M]; (2)

available for convenience. It is common practice to display the approximants in a

table, called the Padé table.

Tablel. The Padé Table

M\ L|O 1 2

0 [0/0]  [1/0] [2/0]
1 0] [a] 2]

2 0/2] [1/2] [2/2]

The sequence of the form {[L/M]f}, L=0,1, 2 ... (where M € Z, is fixed),
are referred to as row sequences (or rows) in the Padé table, and the sequence

{[L/L]f} , L=0,1,2, ..., is called the diagonal sequence (or the main diagonal).

Convergence of Padé approximants is a huge area of research and includes too

many interesting results to be included in this thesis.

As is known, Padé approximants are locally the best rational approximants to
a given power series. These approximants are constructed directly in terms of its
coefficients and enable us to realize an efficient analytic continuation of the series
beyond its circle of convergence, and in a sense the poles of the approximants localize
the singular points (including the poles and their multiplicities) of the extended
function in the corresponding domain of convergence and on its boundary. The

last property of the Padé approximants is based on the fact that all their poles
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are ‘free’ and are determined only by the condition that the tangency to the given
power series be maximal. For this reason, the Padé approximants differ substantially
from rational approximants whose poles are fixed (completely or partially), and in
particular from polynomial approximations, in which case all poles are fixed at the

single point at infinity.

It is this property of Padé approximants, efficiently solving the problem of
analytic continuation of power series, that underlines their numerous successful ap-
plications in analysis and in the study of applied problems. At present, the method
of Padé approximants is one of the most promising non-linear methods of summa-
tion of a power series and localization of its singular points. Among such methods
the theory of Padé approximants has thus become a completely independent branch
of approximation theory, and Padé approximants themselves have found diverse
applications both directly in the theory of rational approximation and in number
theory, the theory of non-self-adjoint operators, the study of differential equations

depending on a small parameter, and perturbation theory.

The problem of meromorphic recovery of a function f from a power series
(2.1) in the so-called mazimal circle Dy (f) of M —meromorphy of f (in which f is
meromorphic and has < M poles) is solved by the classical theorem of Montessus
de Ballore under the assumption that f has exactly M poles in Dy, (f) (as usual,

the poles of a function are counted according to their multiplicities).

Theorem 2.1.3. (Montessus de Ballore). Let a function f have exactly M poles in
the circle Dy (f) given by |z| < R. Then the following assertions hold.

1. For any sufficiently large L, the Padé approximants [L/M]f of the series f
have exactly M finite poles tend as M — oo to those of the function f in Dy (f),
and the number of poles of [L/M]; ‘attracted’ by each pole of f is equal to the

multiplicity of this pole.

2. The sequence [L/M];, L =0,1,2,..., converges to the function f uniformly

on compact subsets of the domain D), obtained from Dy by removing the poles of
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Moreover, under the assumptions of the theorem the rate of convergence of the
sequence [L/M]| s to the function f in D, is characterized by the inequality

- 1/L |Z|

lim |f (2) — [L/M]; (2) < &< 1.

L—oo

In the proof of his result, Montessus de Ballore heavily used the Hadamard
formulae (for the radii R = Ry (f) of the circles Dy (f)) obtained earlier directly

in terms of the coefficients of the series (2.1). Namely, let

CL-M+1 CL—-M+2 --- CL

Hpy = : : : : (we set ¢ = 0 for k < 0)

Cr Cr+1 ceo CLyM—1

The following assertion holds.

Theorem 2.1.4. (Hadamard). For any M € 7,

lM 1/L

Ry

= , where l; = lim |Hp |
Syas) L—oo

(l():l; Zfll,,lM#O andlMH :O, then RM:OO)

It readily follows from Montessus de Ballore’s theorem that the finite poles of
the rational functions [L/M] s tend to the corresponding poles of f at the rate of a

geometric progression.

In fact, the above property of the poles of the functions [L/M], is char-
acteristic. This follows immediately from Gonchar’s complete description of the

M —meromorphic continuation of the power series of f with the help of the Mth
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row of the Padé table for an arbitrary M € N.

In Gonchar obtained formulae ([Gonchar A.A., Rakhmanov E.A., 1987]), in
terms related to the asymptotic behaviour of the finite poles of the M —th row of
the Padé table, for the radius of the Mth circle of and for the divisor of poles of
the extended function f inside this circle, and he also proved a general theorem on
the convergence of the Mth row of the Padé table with respect to the (logarithmic)
capacity on compact subsets of Dy, (f); the Montessus result follows from this

theorem as a special case.

The following more general problem arises naturally: what conclusions can be
made about f in the large if it is known that the finite poles of the Mth row of
the Padé table tend to some points of the complex plane without any assumption
about the rate of this convergence? Let us consider the first row, that is, the case
M =1.1f ¢y -cr41 # 0, then the only finite pole ,, of the rational function [L/1], is
(1 = cg-cpy1- Thus, the relation ¢, — a € C* = C\ {0} is equivalent to the condition
that ¢;/cp11 — a as L — oo, and we arrive the assumptions of the classical Fabry

ratio theorem.

Theorem 2.1.5. (Fabry). If the coefficients of the power series (2.1) satisfy the

relation

cr

lim

—_= a/7
L—oo Cp41

then z = a is a singular point of the sum of this series, and it belongs to the boundary

of the circle of convergence |z| < Ry of the series, Ry = |a].

Thus, for M = 1 the Fabry theorem establishes in fact a relationship between
the asymptotic behaviour of the finite poles of the first row of the Padé table and the
singular points of f on the boundary of the circle of holomorphy Dy (f). Treatment
of the analogous problem for an arbitrary M € N is one of the main objectives of

the present survey.
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It is quite another matter when treating diagonal sequences of Padé approx-
imants. One of the first results of general nature on convergence of these rational
approximants of analytic functions is the classical Markov theorem obtained in terms

of Chebyshev continued fractions for functions of the form

fi(z) = /S ‘i“_(i), (2.18)

where p is a positive Borel measure with support S =5, € R.

Theorem 2.1.6. (Markov). For a function [i of the form (2.18) with support
Sy € R consisting of infinitely many points, the diagonal Padé approzimants [L/L],
constructed from the coefficients of the expansion of ji in a Laurent series at the
point z = 0o converge to ji uniformly on compact subsets of the domain C\ [a,b],

where [a,b] is the minimal closed interval of the real azis such that [a,b] D S,,.

Thus, any Markov function (a function of the form (2.18) with S, € R) can be
recovered, outside the convex hull $ . = |a, b] of the support of the measure, from the
coefficients of its Laurent expansion at the point z = oo (that is, from the moments

of the measure p).

The heart of the matter is that Markov’s theorem considers the uniform con-
vergence of the Padé main diagonal only outside the convex hull Su of the support
of the measure rather than in the domain C\SN of holomorphy of the function f,
because in the most typical situation the set of limit points of those poles of the
rational functions [L/L], coincides with S,,. In the general case in which the support
of the measure p in (2.18) does not belong to any line, the limit points of the poles
of the diagonal Padé approximants can form analytic arcs in the domain D = C\ S,
and can even be dense in C. (More precisely, a subsequence of poles of the Padé ap-
proximants can converge to any given point of the corresponding analytic arc or to
any given point of C, respectively.) In this situation, we face the principal question
of whether or not a pole of the Padé approximants can have a limit (rather than
simply a limit point) over the entire sequence L € N that is distinct from any pole of

f- This question is directly related to the problem of recovering the divisor of poles
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of a function meromorphic in C\S,, of the form

f=h+r (2.19)

from the Padé diagonal, where r € C(z) is a rational function holomorphic on [a, b]
(f is a ‘rational perturbation’ of the Markov function ). The construction of the
Padé approximants is essentially non-linear, and therefore the investigation of the
convergence of these approximants for functions of the form (2.19) is a complicated
task. A positive solution of the problem of recovering the divisor follows immedi-
ately from the existence of a subsequence (of the main diagonal) that is uniformly
convergent on compact subsets of @\Su to the meromorphic functions f with re-
spect to the spherical metric (in which the distance is measured by the length of a

shortest arc between the corresponding points on the Riemann sphere).

The Markov theorem is directly related to the results of Gonchar and Rakhmanov
on the convergence of the Padé approximants for meromorphic functions f of the

form

f=p+r, (2.20)

where i is a Markov function and r is a rational function holomorphic on [a, b] = S "
(r € C(z) N Hla,b], so that f is a rational perturbation of fi). The construction
of the Padé approximants is essentially non-linear, and therefore the investigation
of convergence of such rational approximations for functions of the form (2.20) is
a nontrivial problem. In Gonchar’s theorem, it is claimed that the diagonal Padé
approximants [L/L], are uniformly convergent to the function f on compact subsets
of the domain C\ [a,b] with respect to the spherical metric under the assumption
that S, = [a,b] and p (x) = du/dz > 0 almost everywhere on [a,b] and the function
r € C(z) is holomorphic on [a, b] . In Rakhmanov’s paper, a similar result on uniform
convergence of [L/L]; with respect to the spherical metric outside [a, b] is established
under the assumption that ji is an arbitrary Markov function and the function

r € R(z) is holomorphic on [a, b] .



18

A central place in the convergence theory is taken by the Baker-Gammel-Wills

Conjecture [BGW] .

Conjecture 1. If P(z) is a power series representing a function which is
regular for |z| < 1, except for m poles within this circle and except for z = +1,
at which point the function is assumed continuous when only points |z| < 1 are
considered, then at least a subsequence of the [L/L] Padé approximants converge
uniformly to the function (as L tends to infinity) in the domain formed by removing

the interiors of small circles with centers at these poles.

Over time, many different versions of this conjecture were proposed and stud-

ied.
Conjecture 2. If P (z) is a power series which is meromorphic in |z| < 1 and
continuous on the sphere in |z| < 1, then at least a subsequence of the [M/M] Padé

approximants is equicontinuous on the sphere in |z| < 1.

This conjecture implies that at least a subsequence of the [M/M] Padé ap-

proximants converge uniformly on the sphere to f (2).

A weaker version of this conjecture was proposed by Stahl.

Conjecture 3. Let the function f be algebraic and meromorphic in the unit

disc D. Then there exists an infinite subsequence L € N such that

[L/L](2) — f(2) asn —o00, n €N (2.21)

holds true locally uniformly for z € D\ {poles of f}.

From the point of view of workers who are trying to evaluate function values

by means of Padé approximants, the sum and substance of these conjectures has

been to interpret them to mean, “just disregard the approximants with defects and
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use the rest of them and you will be OK.”

After 40 years of study by a number of workers, Lubinsky produced a counter-
example to Conjecture 2. Shortly thereafter, and apparently motivated by the work
of Lubinsky, Buslaev produced an algebraic counter-example to Conjectures 2 and

3.

2.2. Padé Approximations for Exponential Function

The coefficients ¢; of the Maclaurin expansion of the exponential function are
sufficiently simple that explicit forms of the exponential function are sufficiently sim-
ple that explicit forms of the numerator and denominator of the Padé approximants
can be found. In this section, we will calculate the denominator QI*/! (z). The
numerator follows by an extremely simple and elegant trick, based on the identity

exp (—z) = . Padé in his thesis, elaborated the properties of his approximants

exp (2)
with special emphasis on the example of the exponential function: it is a beautiful
example of how the approximants work in an ideal situation. Further properties of

Padé approximants of exp (z) are to be found .

Our task is to calculate

1 1 1 1

(L—M+1)!  (L—M+2)] " ! (L+1)!
1 1 1 1

(L—M+2)! (@T—M+3)! " (L+1) (L+2)!

QUM () =| : : : (2.22)

1 1 1

(@)! (L+1)! o (LAM-1 (L+M)!
M M1 . z 1

It is easier to begin with the constant term in (2.22), and so we define C' (L/M) =
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QM1 (0) , which is the coefficient of the “1” in the lower right-hand corner of (2.22),

1 1 1
T—M+1)! (T—M+2) Il
1 1 1
C (L/M) _ | (L—M+2)! (L—]\‘4+3)! (L+1)! (223>
1 1 1
L! (L+1)! (L+M-1)!

We assume that L > M — 1. If this condition does not hold, the factorial functions
must be suitably reinterpreted as gamma functions for the analysis to be valid. We

remove the denominators from each row, by defining

M
p= HL—H—I

z:l

and then
L! L!
L—M+1)! (T—M+2)! L 1
(L+1)! (L+1)!
C(L/M) = p |2 M43y L+1 1 (2.24)
(L+1£4!71)! (L(sz\flf)!l)! LeM—1 1

In (2.24), the determinant has M rows. Subtract the (M — 1)th row from the Mth,
then the (M — 2)th row from the (M — 1)th, etc. The identity

(2.25)

is used repeatedly. In column 1 of (2.24), r —s = M —1; in column 2, r —s = M —2;
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L! L I
(L-M+1)!  (L-M+2)!
L L
C(L/M) =p(M — 1) | E-MF20 (L=MA3)!
(L+M—=2)!  (L+M—2)! 1
L! (L+1)!
L L!
(L-M+2)!  (L-M+3)!
(L+1)! (L+1)!
= p(~D)M (M — 1) | I M) 220
(L+M=-2)!  (L+M—2)!
L (L+1)!

This is a (M — 1) x (M — 1) determinant with a form identical to (2.24) but

with M replaced by M — 1. Consequently, an obvious inductive argument shows

that

M

C (/M) = p[ [ (1) (i - 1)t

i=1
M )
_ - 1!
_ (L) M(M-1)/2 (i 297
o [T 22
Thus, for the case M =1,
1
C(L/)= 7,
and for the case M = 2,
11 1
C L/92) = (L-1)! L! —
(L/2) 1 1 L' (L+1)!
j7] (Z+1)!

The sign pattern of (2.27) distinguishes Polya frequency series. The row operations
we have performed to deduce (2.27) from (2.23) are still permissible with the form

(1), except that the situation is more complicated. We consider the coefficient of
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(2.28)

(2.29)

1 1 1 1
(L—M+1)!  (L—M+2)! - (@T—j+1)! (L)
1 1 1 1
(_1)]- qLL/M] _ |(L—M+2)!  (L-M+3)! (L—j+2)!  ~°°  (L+2)
J . . . .
1 1 1 1
! (L+1)! (LM —j)! (L+M)!
S
(L—j+1)!
L
where the column (Lﬂ.w)! is deleted. We perform a similar analysis: define
1
L (L+M—j)! ]
M
1
b= YR
il—Il (L +1)!
and then
(L+1)! (L+1)! 1
L—M+D)! -~ (L=t
(L+M)! (L+M)! 1
! o @AM—)
Subtracting rows, and using the identity (2.25),
; M
(—1) qj[‘L/M] = (—1)MP7
(L+1)! (L+1)! 1
L—M+2)! -~ (L—j+2)! -
(L+2)! (L+2)! 1
5 | E=M+3)! (L—jt3)! -
(L+M—1)! (L+M—1)! 1
T o .. m ..

which again is an (M — 1) x (M — 1) determinant with a form similar to (2.29).
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make j similar reductions from (2.29) to obtain

[L/M] _
(—1) g; j|H —i+1)!
(L+1)! (L+1)! 1
(L—M+j+1)! o L!
(L+2)! (L+2)! 1
o |T=M++20 (L+1)!
(L+M—3)! (L+M—3)! 1
LI ot (LM —j—1)!

Removing a common factor factor from each row,

o P (L 4+ M=) .
(—1) ¢t ]:iﬁ—L' [T —i+ 1)

L! 1
(L—M+j+1)!

(L+1)! 1
L—Miji2)! "

=1

i)
w 1

The analysis now follows the familiar pattern using identity (2.25), and we deduce

that

i [L/M] M
(1) g i{H(L+2)' T
X {ﬁ(M—i—l—l)'} ﬁ_ i
L+M— )4 @_l
B ;'j! (M—j;|H<L+7;)| (2.30)

The sign of the right-hand side of (2.30) is easily determined to be the same

as that of (2.27), because determinants (2.23) and (2.28) have the same dimension,
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and are expanded by the same top right-hand elements recursively. Hence

(L/M] m@r-1)/2 ( L+M —J)
(=1 ¢; ™ = (=1) Il ,H L+z (2.31)

Notice that (2.27) emerges as the special case with j = 0. Consequently, we have

=y e
and
¢ (L/M) {H L+ M 1;2) i (L+%)<?;[1]1\;—1) (_27)2 +}
C { e e
C(L/M), Fy (~M; —L—M; —2). (2.32)

We may deduce from (2.32) that

pEMY () = C(L/M), Fy (=L; — L—M; 2),

and hence the [L/M] Padé approximant for exp (z) is

1Fi(=L; —L—M; z)

(L/M] = (2.33)

2.3. Balk’s Results on Padé Approximations

Balk’s paper contains several results on the convergence of Padé approximants.

He starts with ‘general propositions about convergence of double sequences’

Let a set of points in a metric space be considered as an infinite table with
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two entries, hence to any entry (u,r) (u—number of row, v—number of column
p,v=0,1,2,...) it corresponds exactly one point ¢, , of the set; to different entries
of the table it corresponds possibly equal points. This table will be denoted as:
"table {a,},,_o" of "table T".

,v=0

The table {oz“’,,}zoy is called convergent if all sequences of points with dif-

=0
ferent entries of the table converge and have the same limit. In other words, in
the space under consideration there exists such element S, that for any sequence of

different entries (pu, ) (k=0,1,2,...)

lim p (S, opy0,) = 0.

k—oo

If all rows of the table converge and confinal then it does not imply the convergence
of the table. Even the convergence and confinality of all rows, columns and diagonals
of the table. (i.e. of sequences {amn},{@m},{®ntm}, where m is fixed and n
varies, n = 0,1,2,...) are not sufficient for the convergence of the table. A counter
example may be taken as the table where oy, 0, =1 (n=0,1,2,...) and all other

elements equal to zero.

Nevertheless; to clerify the convergence of the table T, it is not necessary to

consider all sequences of its elements. It is clear from the following theorem.

Theorem 2.3.1. If all sequences {ay, ., } ooy of the table T, such that

1)/’Lk < HE+1,

2)”]9 S Vk—‘rl)

3) (M1 — ) + (Vo1 — k) = 1,

converge and confinal then the table T converges.

Proof During the proof we shall use that from any infinite sequence of non-
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negative integers it is possible to take an infinite nondecreasing subsequence.

Denote by S the limit of all sequences of points from the table satisfying

conditions 1) -3). By contradiction, let there exist a sequence
{p i oo (2.34)
which does not converge to S.
It means that there exist a number € > 0 such that the inequality
p(S,au ) >¢€

holds for an infinite set of numbers of the sequence. Put those numbers in the

ascending order. We get the infinite sequence

[e.e]
{allkpv’/kp }p_o

which will be denoted by
TS
The inequality
p (S, 0%7%) > e (2.35)

holds for all p.

. . oo .
From the sequence of nonnegative integers {V;}pio we choose a nondecreasing

subsequence {Vz/»}jio which will be denoted by {v/} 2.

Together with it, we shall consider infinite sequence infinite sequence {p'}2
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"

where /]

= i, . From the last sequence, as a next step we should take an infinite
nondecreasing subsequence {,u;’s} . The sequence of entries { (,u;fs, V,’é) }zio is denoted
by {p, v}, . It satisfies conditions 1) -2) because of construction.

Evidently, it is always possible to include it into a sequence of entries satisfying

all three conditions of the theorem. For instance:

111

"
{<:ug/7 Z'O)};/Ul:]/(l)” ) {<j(/]”7 Vi”) 501:%” ) (236>
mo- A\ Vs gy
{(Ml 721)}1‘1:%” ) {<]1 ) ) Gi=pyto

By the condition of the theorem the sequence of points with entries (2.36) converges

to S, which contradicts the relation (2.35). Theorem is proved.

In some cases the set of elements of the table T which are placed in the right
handside of its main diagonal more exactly the set of all elements «,, such that

v > i is of special interest. That set we shall call semi-table of the table T and

[ee]

=0 (v > ), or shorter by ”semi-table T”.

denote by {a,,}

If all sequences of points with different entries of the semi-table 7", converge

and confinal, then it is called convergent.

The investigation of the semi-table {c,,}7,_, (v > p) may be reduced to the

investigation table {5u,>\}zo,\:o if Bur=oursy A pu=0,1,2,...)

For semi-tables the following is true.

Theorem 2.3.2. If all sequences of the semi-table T' satisfying conditions 1) -3) of

the theorem 1, converge and confinal then the semi-table T’ converges.

Proof The proof of Theorem 2 is analogous to the proof of Theorem 1.

We shall prove a stronger assertion.



28

Theorem 2.3.3. Let all sequences {ay,, v}, of the semi-table {oy., },, o (v > )

a) pr < g

b)ve < Vg,

¢) (1 — p) + W1 — vi) = 1,
d) limy_, ’;—: erists

be convergent and confinal. Then the semi-table converges.

Proof By contradiction let there exists a sequence in T in the right hand side
of main diagonal a sequence {o, 1, }re,, Which does not converge to S, where S is

the limit of all sequences satisfying conditions a) -d).

By similar considerations as in the proof of Theorem 1 we deduce that there

exist a positive number € and a sequence
{owat,y (2.37)
such that for all its members
p (Sv O‘,u’T,V,C) > g, :u; < p’/r—f—l, Vrl’ < V;—H' (238)

;) °© ’
since the set of numbers {%} by condition of the theorem is bounded 0 < £- < 1,
r=0 T

T

Vi oo
then it is possible to choose its convergent subsequence {’;7" } , which is denoted
™ ) n=0
7Y o
by {4}
Y Yn ) n=0

The sequence of entries satisfies conditions a, b and d of theorem. It is easy to
see that it is always possible to include it into a sequence of entries satisfying also

the condition c).
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It follows from the following remarks and the validity is almost evident.

Remarkl. If (z,y) is an arbitrary point of the interval with ends A, (u,v))

and A, (u;fbﬂ, 1/7/1,_,’_1) , then the fraction 5 is between ;) /v and /v .

/!

Remark2. Let (/ULZJrl — u’,{) + (l/nJrl — V;L/) = my,; then there exist m, + 1
points ﬂi(n) (71-(’"”), 61(")) (i=0,1,...,m,), such that

1) B = Ay, B = Awps;
20 <afl 67 <ol (o) + (6 - 0) =1

+1 7

3) Every point ﬁl-(") is distant from the interval A, A, less than 1.

From those remarks it follows that for any point ﬁi(n) (%(n), (5i(n)> it is possible
to find the pair of numbers (x,y) (point of interval A, A, 1) such that the following

relations hold:
D" =0, 6" =yt 60

<9§1n) and (91(2") are some numbers which are less than or equal to 1 in absolute value) .

T " 2 " !
2)5 is between /vy and pl /vl

i

Then the fraction (’yi(") - 91(?)) / ((51-(”) — 95:)) is also between 1!/ /v and pl /vl

By the condition,

lim (u /") exists, denoted by . (Clearly lim yi(")/ 5§") = l)

n—oo
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Furthermore, it is not difficult to check that the sequence of entries

) R (D R TH R
=0 i=0 i=0

satisfies all four conditions of theorem. But then, by the condition of the theorem the

sequence of points with those entries has to converge S, which contradicts relation

(2.38).

Sometimes only these sequences of elements of the table T, or of the semi-table

T, such that

lim p, = lim v, = o0

n—oo n—oo

are of special interest.

Concerning the collection of such sequences it is possible to prove theorems
which are analogues of Theorems 1-3. For that reason it is necessary only to slightly

modify the proofs of Theorems 1-3.

In particular, the following proposition which we shall use in this work holds.

Theorem 2.3.4. If all sequences of the kind {c, ., } lim p,, = oo, satisfying

n=0"
either conditions 1-3 of the Theorem 1, or conditions a-d of Theorem 3, converge and

o)

confinal then all sequences of the kind {oy, v}, —_o,

lim p,, = oo in the semitable

converge and confinal.

In investigations of the convergence of double sequences sometimes it is useful

the notion of equiuniform convergence of its rows or columns, diagonals, etc.

We shall say that rows of the table {04#,,,}30”:0 converge equiuniformly to the

point S if for any € > 0 there exists N s.t. for all v > N and for any p the inequality

p (S, a,,) <e. (2.39)
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[e.9]

Theorem 2.3.5. Any sequence {ay, ., },— of points with different entries of the

table {O‘u,u}zoy:o converges to the point S under condition lim v,, = oo if and only if

rows of the table equiuniformly converges to S.

Proof Necessity: Let rows of the table T be not equiuniformly convergent

to S. It means that there exists € > 0, such that for infinite sequence of entries

(:U’l,Vl) ’ (/~L27 V2) ) (:U’na Vn) ) lim Vp = &0 the inequahty
p (S, au,.,) > ¢ (2.40)
holds.

But it means that the sequence {c,, ., } does not converge to S.

Sufficiency: Let all rows of the table T be equiuniformly convergent to S. Let
{au,vn }ory be a sequence of points on the table such that lim v, = co. Let us prove

that the sequence {a,,, ., }.—, converges to S.

Because of equiuniformly convergence of the rows there exists N such that for

all v, > N

p (S’ Oé#nal’n) <Eé&.

But since lim v, = oo, there exists ng such that v, > N for n > ng. So for any
n—oo

€ > 0 there exists ng, such that for all n > ng

p (S, au, ., <Ee. (2.41)

And it means that lim «,,, ,, =S.

n—oo

Theorem 2.3.6. The table T converges to the point S if and only if rows of table

and columns of table equiuniformly converge to S,simultaneously.
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Proof Necessity: Evidently follows from the former theorem.

Sufficiency: Let rows and columns of the table T equiuniformly converge to S.
Then, obviously for any € > 0 there exists N, such that for all 4 > N, v > N the

inequality

p(S,a,,) <e

holds.

In other words, condition (2.41) is valid for any entry (u,v) outside of the

square 0 < u < N, 0<v < N.

Let us prove now that any sequence {oy,, ., },-, of points with different entries

of the table converges to S.

Take arbitrary € > 0. Then as we saw the inequality

p (S, au, ., <Ee. (2.42)

holds for all points «,, ., with possible exclusion of points that are inside certain
square 0 < p, < N, 0 < 1, < N. But since points have different entries, then

inside that square there may be only finite number of the points in this sequence

{aﬂn Vn }ZO:O .

So, inequality (2.42) holds for almost all members of the sequence and it means

that it converges to S. Sufficiency is proved.



CHAPTER 3

MULTIPOINT PADE APPROXIMATIONS AND
NEWTON-PADE APPROXIMATIONS

3.1. Foundations of the Multipoint Padé Approximations Theory

First, we need the basic framework of Newtonian polynomial interpolation.

Divided Differences For a function f (z) is satisfying such continuity prop-

erties as are necessary, we define

flz0] = f(20), (3.1)

floo o] = L) =) (3.2)

20 — 21
and other divided differences are defined recursively by

f [ZOa 2, ... >Z7‘+1] _ f [207 Rly vy Rr—1, ZT] - f [207 Zly ey Rr—1, Zr—&—l]7 (33)
Zr T Zr4l

r=12,....

Theorem 3.1.1. (Hermite’s Formula) If f(z) is analytic inside and continuous

on a contour I' enclosing 2y, 21, . .., 2k, then
1
f[ZO;Zh"'aZT] — Q_/Ldg (34)
i
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Proof. The proof is by induction using (3.1), (3.2) and (3.3).

For confluent points 2y = z; = ... = z,, it is natural to define

f[Z(),ZO,...,Zo] = . (35)

Hermite’s formula easily extends to cases of partial confluence.

Corollary. f[zg,z1,..., 2] is a totally symmetric function of all its arguments

20y Rly e oy g

Newton’s Formulas.

) =3 Fleon iz [L G - =)
+f[zo,z1,...,zn,z]H(z—zk). (3.6)

For n > 0, (3.6) is an identity expressing f (z) as a Newton polynomial and a

remainder term. One may “deduce” the formal identity

f(2) = flzo] + (2 = 20) f [20, 21] + (2 — 20) (2 — 21) [ [20, 21, 22] + ... (3.7)

Whenever the remainder in (3.6) tends to zero, (3.7) becomes an identity. The proof
of (3.6) by induction is straightforward. It is the interpretation of (3.6) and (3.7)
that is most significant. If zp =2 = ... =2, = ..., (3.6) and (3.7) become

PG =1+ G0 £ )+ E (58)

=) ey, o™ f(Q)d¢
2 F/<<—zo>”<<—z>‘ >
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Equation (3.9) holds provided T" is a contour enclosing z,z, and f(z) is analytic
within I and continuous on I'. In fact, (3.9) gives the Taylor series for f (z) and its

remainder. For conciseness, we make a further definition:

Definition 3.1. (Warner, D.D. ;1974) For a function f (z) is satisfying such conti-
nuity properties as are necessary, then F', the Formal Newton Series (FNS), is

the infinite triangular matrix of divided differences defined by

fOO fOl f02 f03
0 fll f12 f13

F=10 0 fo fxs
0 0 0 |fs3
where
fiaj = f[zi72i+17 R 7Zj]7 fOI'j > i (310)

Then Newton’s formula (3.7) becomes the formal identity

f(2) = f(20)+ fo1(z—20) + foa (z —20) (2 — 21) + . ..

However, the multiplication of two FNS in that form is possible only using all

data f; ; with using the following lemma:

Lemma([Milne-Thomson L.M., 1960]) If h(2) = f (2) g (2), then for i < j

J

hij = Z ikJkj = Zgzkfk] (3.11)
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Proof The lemma is trivially true for n = 0. We proceed inductively,

hii =
" Zi Zj
1 [i—1 J
= fikgk,j—l_ E fz’-i—l,kgkj
Zi—-Zj

L k=i k=i+1
1 [ J
= fit (Grj—1 = Grv15) — Z (fir—1 = firrp) gkj]

v I k=i k=i+1

1 7j—1 J—1
= figij + . [ Z figrg (2e — 2) — Z fingns (zi — 2) | + fij 95

v 7 Lk=i+1 k=i+1

J
= firgrs- (3.12)
b=

Finally, we observe that the proceeding argument is symmetric in f and g.

We now proceed to consider interpolation of a given function f (z) using ratio-
nal fractions which are sometimes called interpolants. The basic problem is to find

a rational fraction
rlEML () = M () JlE/MT () (3.13)
where ul“/M] (2) has maximum order L, v!*/™](z) has maximum order M and
rllM () = f(z),  i=0,1,2,...,L+ M. (3.14)

If a solution to this basic problem exists, it is obtained by defining

I M
WM () = Zujzj’ olBM (7)) = kazk (3.15)
j=0 k=0

for specific values of L, M. Let us assume that vy = 1 is a permissible normalization
for the moment. Substitution of (3.13) and (3.15) into (3.14) yields L+ M +1 linear

equations for L+ M +1 unknown coefficients ug, uy, ..., ur, vy, Ve, ..., vy . Normally,
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there is a unique solution leading to a rational interpolant which is uniquely defined
up to a constant common factor in the numerator and denominator of (3.13). Oth-
erwise, the equations are said to be degenerate. If the equations are degenerate
but consistent, and vl“/M (2) # 0, then ul//*](2) and v!*/M (z) have a common
factor. Using (3.22) with f(z) = rl&/Ml(2), it follows that the factors (z — z),
i=0,1,...,L + M are the only possible elementary common factors of ul*/M! (%)
and v“/M] (2) . For each such factor (z — z;), (3.14) must be tested with i = k for
the proposed solution. If the linear equations are inconsistent, no rational fraction
of type [L/M] fits the data. As an example, we next show that no rational function
of type [1/1] fits the data

=) =1, fO)=1, f(1)=3 (3.16)

at the indicated points. The equations (3.13), (3.14) and (3.15) become

Uy — U = Yy — Vq, (317)
Uy = v, (3.18)
Uy + UL = 3(1)0+U1). (319)

Equations (3.17) and (3.18) imply that ug = vg, u; = v1, and so (3.19) implies that
uy = uy = vy = v; = 0. Equations (3.17), (3.18) and (3.19) are degenerate. In fact,
only the new value f (1) = 1 would render equations consistent and allow rational

interpolation to be effected by a (degenerate) interpolant of type [1/1].

Since Padé approximation is rational approximation with complete confluence
of the interpolation points, it is interesting to note the similarity between the previ-
ous analysis and that of the existence or nonexistence of Padé approximants. Having
briefly considered some of the hazards of using rational interpolation, the next the-

orem gives the standard solution in the nondegenerate case.

Theorem 3.1.2. The N-point Padé approximant of type [L/M] defined by interpo-



lation at the points 2y, 21,

rlL/M] (z) = /Ml (2) Jolb/M] (2),

fwhere ul/M1 (2) and vIFM) (2) are defined by
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.oy 2o, allowing confluence, is normally given by

j—1
fM,L+1 fM,L+2 fM,L+M Z fM,j H (2 - Zk)
j=M k=0
j—1
fM—l,L 1 fM—l,L 2 fM—l,L M Z fM—1,' H (Z—Zk)
/M) () = * " T Pl ,
L j—1
Jo.t+1 Jo.r42 Jo.L+m > foi 1T (2= 2)
j=0 k=0
(3.20)

M—1

farr+a farn+2 farnr (2 — 2)
i

ylL/M] (z) _ fM—1,L+1 fM—l,L+2 fM—1,L+M H (2 - Zk) 7 (3'21)
fo,r+1 fo,r42 fo,L+n 1
and the definition (3.10) has been used.
The remainder is given by
L+M
o0 (2) £ (2) =l () = T (2 = =)
k=0
v faee Japenr flenms s 2em, 2]
y fv—1o+1 fv-1,042 Ivu—vioem flem—1, oo 20em, 2] (3.22)
fo,L+1 Jo,L42 foL+m flzo, - z04m, 2]

If “impossible” entries in (3.20)-(3.22) occur, the following interpretation is intended:
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If j <, then

J J
fi; =0, (term), =0, and H (factor), = 1.

k=1 k=1

A sufficient condition for the result that wll/M (z) /vll/Ml(z) = f(z) is that
olEMI(2) #£0,i=0,1,...,L+ M.

Proof The formulas (3.20) and (3.21) are polynomials of the appropriate
orders. Using Newton’s formula (3.20), it follows that

L
U[L/M] (Z) f (Z) _ U[L/M] (2) — H(z — Zk)
k=0
furvr furee oo furen o flaa ez 2
y fM—‘l,L—‘rl fM—.l,L+2 fM—l‘,L—i-M flzm-1, 20, 2 . (3.23)
fO,L+1 fO,L+2 f07L+M f[ZO,...,ZL,Z]

Recalling definitions (3.3) and (3.10), repeated subtraction of the jth column of
(3.23) from the last for j = 1,2,..., M yields (3.22). This is manifestly zero at
20, ..., 24 Provided vl2/M (2) £ 0,7 =0,1,..., L + M, the result follows.

3.2. Newton-Padé Approximations in Gallucci-Jones Form

Definition 3.2. A formal Newton series (FNS) is an ordered triple [{a, }o”, {Bn}o s {fn}o |
where g, a1, ag, ... and fy, B2, 03, . . . are complex numbers (not necessarily distinct)

and for each n =0,1,2,..., f, is the polynomial

fa(2) =) arwy (), (3.24)
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where

wo (2) = 1; wk(z):ﬁ(z—ﬁj), k=1,2,3,...,

J=1

and where z is a complex variable. The «,, 3, and f, are called, respectively, the
nth Newton coefficient, interpolation point, and partial sum of [{a,},{6.},{fn}]
and a FNS is said to converge at z if the sequence of partial sums {f, (z)} is con-
vergent. When convergent, the limit lim f, (z) is called the value of the FNS at z.
For convenience (when there is no danger of confusion) we may use the symbols f

and
F(2) =) anwn (2) (3.25)

to represent the FNS [{a,},{8.},{f.}]. As in many other similar situations in
analysis, the symbols (3.25) are used to denote both the infinite process and the

value of its limit, when it exists.

Some arithmetic operations for formal Newton series are given by the following:

Definition 3.3. Let f(z) = > axwi(2) and g(2) = > cpwi (2) be FNS with
k=0 k=0

interpolation points {f;} and let ¢ be a complex number. We define:

[e.o]

(a) (f+9)(2)= go (ap +cp)wi (2),
(b) (c.f) (2) = i (c.on) wi (),

(©) () () = aofhwn (2) + i’f (s + anBost) wi (=)

(d) Ifc# 0, i=1,2,3,..., then f(2)/(c—2) = ibkwk(z),
k=0
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where

bg = CLQ/ (ﬁl - C); bk = (Oék — bk:—l) / (ﬁ]ﬁ.l — C) s k= 1,2,3, c. (326)

Every FNS (3.25) determines a function f defined at the points of convergence of
the partial sums (3.24). Clearly, (3.25) always converges (at least) at the points
051, P2, B3, . ... Conversely, under certain conditions a function f will determine a

FNS expansion with a given sequence of interpolation points {3;} .

If . = 0 for & > n + 1, then (3.26) is a finite (or terminating) FNS and
defines a polynomial in z of degree not greater than n. Conversely, as an immedi-
ate consequence of Definition 2, every polynomial of degree n determines a unique
(finite) FNS with the given sequence of interpolation points {f;} . From Definition
2 it is also clear that the product (multiplication) of a FNS by a polynomial is
a well-defined FNS (with the same sequence of interpolation points); the quotient
(division) of a FNS by a polynomial is a well-defined FNS (with the same sequence
of interpolation points) provided the (divisor) polynomial does not vanish at any of
the interpolation points. The following theorem provides further useful information

concerning multiplication of a FNS by polynomials.

Theorem 3.2.1. Let f (z) = > agwy (2) be a FNS with interpolation points {3, } .
k=0

If m,v and p are positive integers, let Kl(,fz) denote the sum of all products consisting

of m factors of the [3;’s with
v—p+1<i<v (KI(ZZ):O, if m <0 orifu<l, Kz(/%:l if p>1).
Then

(A) Forp=1,2,3,...,

Pf(2) =) Appwr (2), (3.27)
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where (setting a; =0 fori <0)
Zak D (3.28)

(B) If v(z) =dy+diz+ ... +dpnz™, m >0, then

v(z) f(2) =) b (2), (3.29)
where
by, = 2’”: d; Ay . (3.30)

(C) In particular, with the notation of (B),

ifa; =0 fori=0,1,...,n+m.

(D) If c# 3; fori=1,2,3,..., and ap =0 for k=0,1,...,n+m, then

oo

FR /== Y buwl2),

k=n+m+1

where the coefficients by, are defined by (5.26).

Proof It can be verified directly from the definition of the K, ,%), that
K9 4 B K5 = K5 j=0,1,....p; p=1,23,... (3.31)

The proof of (A) is by an induction on p. The case p = 1 follows immediately from
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Definition 2c. Now assume that (3.27) and (3.28) is true for 1 < p < n. Then
2'f(2) =2 (2" f(2) =2 Z Ag 1wy (2),  (by induction hypothesis)
= A n_181wo (2) + Z (Ak—1n-1 + Br+1Akn—1) wi (2), (by Definition 2c)

k=0
0
E Ak nwk
k=0

where the Ay, satisfy (3.28), since
Ao,n = Ao,n—lﬂl = (OéoK1 1 > B = OéoK ™
and, for k=1,2,3,...,

Agn = Ak-1n-1+ Ak n—18k+1
= Z Op—1—j ,;;;1 2 Brs1 Z Qg k111]+]1) (by induction hypothesis)
_ —J) (n—1-3)
= Z Ok—j ( k—i—]]l + Oe1 Ky j+Jl>

—Zam K0 (by (3.31)).

Part (B) is an immediate consequence of (3.27) and (3.28). Part (C) follows from
(3.30) and the fact that Ay ; = 0 provided a; =0 foralli =k, k—1,...,k—j. Part
(D) follows immediately from (3.26) and this completes the proof.

Definition 3.4. If u(z) and v (z) are polynomials in z, v (z) not identically zero,
then (u,v) is called a rational expression. Two rational expressions (u,v) and (u*, v*)
are said to be equivalent, denoted by (u,v) ~ (u*,v*), if and only if

u(z)v* (z) =u" (2)v(2); (3.32)

they are called equal, denoted by (u,v) = (u*,v*), if and only if there exists a
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nonzero complex number « such that

a-u(z)=u*(z2), a-v(z)=v"(2). (3.33)

A rational expression (u,v) is said to be of type [m,n] if and only if the degree of u

is at most n and the degree of v is at most m.

Theorem 3.2.2. Let f(z) = > arwi(z) be a FNS with interpolation points {v;}

and let m and n be (fized) nonnegative integers. Then:

(A) Ifu(z) = cowo(2)+crwi(2)+. . .4 cpwn(z) and v (2) = do+diz+. . .+dp2™,
then a necessary and sufficient condition that the FNS vf — u be the form

v (2) f(2) = u(2) = bpgms1Wnsms1(2) + bngmroWnimsa(2) + ... (3.34)

is that the coefficients c; and d; satisfy the system of equations

doAoo + di Aoy + ... + dmAom = Co

d()AL() + dlAl,l + ...+ dmALm = C1

(3.35)

dOAn,O + dlAn,l + ...+ dmAn,m = Cp

doAni10+ d1Apsig+ .+ dpAnpi;m =0
(3.36)

dOAn+m,0 + dlAner,l +.o dmAner,m =0

where Ay, are defined by (3.28).
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(B) There exists a unique (up to equivalence ~) rational expression (u,v) of

type [m,n], such that the FNS v (2) f (2) — u (2) has the form (3.34).

Proof (A) By Theorem 1, letting ¢, = 0 for £ > n, we obtain

v(z) f(2)—u(z) =) <Z d; Ay, — ck) wi (2) (3.37)

k=0 \j=0

of which (A) is an immediate consequence. To prove (B), we note that (3.36) is a
homogeneous linear system of m equations in (m + 1) unknowns. Hence, there exist
do,dy, ..., dy, not all zero, satisfying (3.36). Having chosen such d;, we choose the
¢; to satisfy (3.35) and the resulting rational expression (u,v) is of type [m,n] such

that

0 (2) £ (2) = (2) = Byeprntmet (2) + Bpmgnonima (2) 4 oo (3:38)

By Theorem 1(C), v (v*f — u*) and v* (vf — u) are both FNS whose first n +

m + 1 coefficients are zero. Hence,

v () u(z) —v(2)u” (2)
=v(2) [v"(2) f(2) —u" ()] =" (2) [v (2) [ (2) = u(2)]

is also a FNS whose first n+m-1 coefficients vanish. But v*u—ovu* is a polynomial of
degree at most n+m and therefore must be identically zero. Thus (u*, v*) ~ (u,v),

which completes the proof.

Definition 3.5. Let f(z) = > agwy (2) be a FNS with interpolation points {3;} .
k=0
Corresponding to each ordered pair of nonnegative integers (m,n), Theorem 1 as-

serts the existence of a unique rational function

Ry (f,2) = Pon (f,2) /Qm,n (f,2), (3.39)
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such that (P, Qm.n) is a rational expression equivalent to a rational expression
(u,v) of type [m,n] satisfying (3.34). R, (f,z) is called the [m,n] Newton-Padé

approximant of f (z). The doubly infinite array

(3.40)

is called the Newton-Padé table of f(2).

3.3. Algorithms for Computation of Newton-Padé Approximations

Now, let us give some algorithms for calculating multipoint Padé or Newton-
Padé approximations. They are based on Claessens’s identities. For multipoint Padé

approximation, the following theorem holds.

Theorem 3.3.1. [Claessens, 1978].

{0 (z) = ) ()} (N ) — A ()} (2 = 2)
= [{T[L/M—l} (Z) — pl&/M] (z)}_l . {T[L—I/M] (z) _ plL/M] (2)}—1] (z B ZL+M+1)

(3.41)

whenever the indicated quantities exist and are nondegenerate. Claessens’s identity

reduces to Wynn’s identity in the confluent limat.

Outline proof of (3.41). We define

It fanee Janem

L/M fol,L+1 fol,L+2 fol,LJrM
= (3.42)

S+ fi,042 Jioem
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and note that F1[LL/4]:/[1\]4 = C(L/M) in the confluent limit. The subscripts of

FI[LL/%\]J denote the indices 1,2,...,L + M of the interpolation points used in its

construction. Using the methods in Wynn’s identity, we find that

plL+1/M] (z) — rlL/M] (2)

L+1/M+1 L+1/M
(= 20) - (2 = ) B i R

plL+1/M] (2) plL/M] (Z) ’ <343>

and we generalize directly to

pIEA/MI () — pIE/MT ()

L/M+1 L+1/M+1
_ () (2= zen) Fy o R

VLA () gL/ () (3:44)

By reordering the points of (3.21), we find that

U[L/M+1} (Z)
L+M+1
fM,L fol,L e fo,L H (Z - Zk)
k=L+1
L+M+1
_ fM,L+1 fM—l,LJrl e fo,L+1 H (Z - Zk)
- k=L+2
Imrsner fu-rpemer oo Jorsman 1

By applying Sylvester’s identity to this, we find that

oM () Byl

— plL+1/M] (2) Féi/ﬁ}rl] — (2= zpinis1) A /M+] [L/M] (2).

0.0+ M+1 (3.45)

Hence, we deduce from (3.43), (3.44) and (3.45) that

{T‘[L+1/M] (2) — FIL/M) (z)}fl B {T[L/M—&-l] (2) — plL/M] (Z)}*l

- {U[L/M} (z)}2 (z B Zo>71 . (z _ ZL+M)71.

o L+1/M) -[L/M+1
R
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Equation (3.41) follows from a similar treatment of the right-hand side.

The generalized e—algorithm is the formal identity

(2 = zk4jt1) [519421 - 512&11)} [51(<:j+1) - 51(gj)] =1 (3.46)

for indices k,j in the range k = 0,1,2,... and j > —[k/2]. The artificial

initialization conditions are

and
el F V=0, k=0,1,2.... (3.47)

The usual initialization condition, using values derived from an interpolating poly-

nomial is
) = rli/ (z). (3.48)

Elements of the e—table are identified with values of rational interpolants by the

formula

e =gkt )k =0,1,2,..., j>—k (3.49)

In the sequel G. Claessens denotes the coefficients of wo; () in Py (resp. Gmn)

by o, (resp. b,(fl)n)

First he proves two theorems, which relate certain triples of elements in the

rational Hermite interpolation table. A first theorem concerns the elements 7, , =



Pl/Qh T"mn—1 = P2/Q2 and m+1n-1 = P3/Q3-
Theorem 3.3.2.

i a%r)wlp?) - O‘mﬁgfl (2 = Zmn) Po
@ O‘S:r)tfl 37~ 0452?124 (2 = Zman) Q2

Proof Since o™V
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(3.50)

mi1n—1 7 0, 1t is clear that the denominator of the right side

of (3.50) has exactly degree n.
On the other hand, since

(m) (m~+1) (m+1) (m)  _
am,nflaerl,nfl - am+1,n71am,n71 =0

the numerator has at most degree m.

Now let

U (2) = |afm1Qs (2) = a2 = 2nen) Q2 (2)]| £ (2)

— o Py (2) = Al (2 = 2ra) P2 (2)]

or

U(2)

a1 [Qs(2) f(2) — Py (2)]
(m+1)

= Q11 (2 = Zmin) [Q2 (2) £ (2) = Po (2)]

We will show that

U (2) = 0 (womint1 (2)) -

Suppose in the set {z}, i = 0,1,

...,m + n there are [ distinct points z,,,

(3.51)

7 =
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1,2,...,1 with resp. multiplicity m;. Then

1
Zmi:m—l—n+1.

=1

Consider also the formal ith derivative of U (z),

UD (2) = a1 [Qs(2) f(2) — Py (2)]”
— ol (2 = ) [Q2(2) £ (2) = Po(2)]Y)

—ial i 1 (@ (2) £ (2) = P (2))7Y,
with ¢ > 1.
Then, it is easy to conclude, using the definition of P»/Qs and P3/Qs, that
) (20i) =0
for j=0,1,...,m; —land ¢ = 1,2,...,l, which implies (3.51).

Because of the supposed normality of the rational Hermite interpolation table
and because of the unicity of the rational Hermite interpolant, the function associ-
ated with the right side of (3.50) must be equal to the rational Hermite interpolant

of order [m,n] (and hence the numerator has exactly degree m).
This concludes the proof.

Considering the elements r,,_1, = (P1/Q1), Tmn, = (P/Q2) and 1y, 1 =

(P3/Q3) , we can prove in the same way the following result.

Theorem 3.3.3.

P mn P - Oém nP
2L = sl ? - > (3.52)
Ql am,nleQ — Omnl3
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Note that in (3.50) because of the appearance of the factor z — zp,1n, the represen-

tation as a Newton series for the numerator and the denominator of the rational

Hermite interpolant of order [m,n] has been lost.

The relations (3.50) and (3.52) can be used for calculating the rational Hermite
interpolants. Indeed, note that relation (3.50) enables us to go to the right in the

rational Hermite interpolation table, while relation (3.52) allows us to move upwards.

A First Method: Consider the elements in the rational Hermite interpolation

table lying on an ascending staircase,

T = {T%0, Th=1,0, Th—1,1 - - - TOk } 5 (3.53)

with k£ > 1.

Theorem 3.3.4. To compute the coefficients of the numerator and denominator

in the sequence Ty, the following recurrence formulas exist:

(k—j) (4) (k—j+1) (i—1) (@)
@) ak—j{j—lak—j-&-l,j—l - k;—jj-&-l,j—l [%—j,j—1 — (2 — 21) ak—j,j—l]
Y k—j k11 ’
al(qugq + (2k — 20) al(c—jﬂ:rl,y)'q
i=0,1,... k—j (3.54)
k—j i k—j+1 i1 i
() al(c—j{j?—lbl(czj—i-l,j—l - Oél(s—jj—i-l,])'—l [bl(c—j,;'—l — (2 — 2) bgczj,j—lj|
D%y = (k—) (k—j+1) ’

i1+ (2 — 20) i G
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for j=1,2,...,k and

(k=j) (@) (k—=j) (@)

a® _ Mg 1Y%—jg T Qg Ye—jg—1
k=j=1j = (k=3) _ (k—j) ’
Op—jj—1 ~ Yh—jy
1=0,1,....,k—j5—1 (3.55)
(k—j)  1(3) (k—3)3,(%)
b(i) _ ak —JiJ— 1bk g~ k- Jjbk —j,j—1
k—j=13 — o= _ k=) ’
k—j,j—1 k—j,j
1=0,1,...,J

for j=1,2,....k— 1.

Proof First, we rewrite (3.50) and (3.52) in the respective forms

(k 7) (k—j+1)
Dk—jj  Yk—jj—1Pk—j+15-1 = Qp_jyq 51 (Z_Zk)pk_j7j_1 (3 56)
Goii o) o o F=i+D) (2 — 21) Qi '
Jrd h—j i1 Tk—j+15-1 — Qp_itq i Qk—j.j—1

and

(k—3) (k=j)
Pk—j—1j  Qk—jj—1Pk—jj = Qp—j jPk—jj—1

() i) (3.57)

o (k
Ak—j—1,j Qp_ji1qk—jj — Oék—j,j Qk—j,5—1

To determine the Newton coefficients of the numerator and denominator of r;_; ;,

we proceed as follows.

The numerator N of the right side of (3.56) can be written as

k—j+1

—j
(k=3) (k=j+1) ()
= Qi1 E , O‘k —jt1,5— woi (2) — oy J+1,5— 15 :O[kfj,jflw()i (2)

X [(20 — 2x) woo (2) + wor (2)] -
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The second term on the right side becomes

k—j+1
_ (k—j+1)
O‘k g,g 1 § O‘k j+1,j—1%0i (2) — j+15-1

k—j+1

x> [O‘l(ﬁj,j—fr(zi_zk) 04551 | woi (2)
1=0

with the convention that Of;(ij,jq =0,ifi<0or¢>k—jor,

k—j+1

(k=g) (@) (k—j+1) _ (i=1)
N = Z <ak —ji=1%—j+1,5-1 7 Yh—j+1,j-1%—j,j-1

k—j+1 i
+ (2 — i) Z/E; j]+13) 1041(@13',]‘—1) woi (2) -

Analogously, the denominator D of (3.56) can be expressed as

J
(k=) 3@ (k=j+1) 7(i—1)
D=3 <O‘k ~jd-10k=j15-1 — Omgirgo1Oi—g i

=0

k—j+1 i
+ (2 — 2)041(@ ]]Jrlj) 1bl(c)],g 1)‘*’0@( )

with b

i1 =0ife<0ori>j—1

Normalizing so that the denominator takes on the value 1 for z = z5 we finally
get the first set of recurrence formula (3.54). Note that the denominator in (3.54)
can not vanish, since otherwise the numerator and denominator in (3.55) would have
a common factor z — 2y, which contradicts the supposed normality of the rational
Hermite interpolants. From (3.57) we immediately derive (3.55) by taking into
account the normalizing condition. Again the denominator in (3.55) can not vanish

for an analogous reason.

Making alternately use of (3.54) and (3.55) it is possible to construct the
Newton coefficients of the elements of (3.53), since we know the first two elements

as partial sums of the given Newton series.

Theorem 3.3.5. For the coefficients of the denominators of the rational Hermite
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interpolants we have the recurrence relation

b st = b L+ (2 — 20) Byt (3.58)

i—1 ¢
+Bk—jt1,5-1 bi(cfj,;fl — (5= =) b,ﬁlm,l] ’

fori=0,1,...,5 — 1, where

b

b5 (2 = 20) + b0

Bijy1-1 =

Proof The second relation of (3.54) is our starting point. Taking into account

that for ¢ = j
(k—j+1)  7(G-1)
@ k—j+1,j—1%—j -1
k=g (k=j) (k—jt1)
o‘k—j{j—l + (2x — 20) O‘k:—jj-',-l,j—l
we find that
(k—j+1) (4)
Yp—jt1-1 b — By i1
k—j o j —1 - —J J— 1L
)y by (2 = 20) + 050

Consequently, the second relation of (3.54) becomes, after a suitable reordering,

b/@jﬂ,jA = bSlj,j [1+ (2x — 20) Br—jt1,-1]

i—1 i
+Br—jt1.5-1 b,(g,jj-,l — (a — ) b’(fzjvﬂ'*l]

fori=0,1,...,7— 1.

A second method: Suppose we are interested in the element of order [m, n]

in (3.40), then we could proceed as follows.

Calculate p,,, by forming the next table column by column, using the first
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relation of (3.54).

Table 2.
Pm,o Pm Pm+1in—1 Pmn
Pm+1,0 Pm+11

Pm+n—-1,0 Pmi4n—-1,1

Pm+n,0

Construct the next table row by row, using relation (3.58), to get G-

Table 3.
qo,n qo,n+1 - qon+m—1  4on+m
din q1,n+1 coo q1n4m—1

mel,n mel,nJrl

dm,n

This amounts to the following theorem.

Theorem 3.3.6. For the computation of an arbitrary element 1, of (5.40), use

can be made of the following recurrence relations

(mtn—j) ()
(1) . m+n—j,j—1"m+n—j+1,j—1 (3 59)
m+n—j.j — ~ (mtn—j) (m+n—j+1) '
m—+n—7j,j—1 + (Zm+n - ZO) Ymn—j+1,5-1
(m+n—j+1) (i—1) (%)
min—i 411 | Qminjj1 — (Fmin = 2) Qi i
(m+n—j) (m+n—j+1)
man—jj—1 1 (Zm4n — 20) Xpn—j+1,5—1

(07

fori=0,1,...,m+n—j, and

bffz)+n—j+1,j—1 = 67(77;)+n7j,j [1+ (Zmgn — 20) Bm+n—j+17j—1]

- .
+Binn—jt1,-1 b7(72+n)—jaj—1 B (Zm+n - Zi) b7(7zz)+n—j7j—1 ’ <3'6O>
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fori=0,1,...,5 — 1, where

b(j)

Bm+n j j - -
REARSY A ) G-1)
bm+n—j,j (Zm4n = 20) + bm+n—j7j—1

Looking at the triangular structure, it is clear that this method can be of interest, if

we have to know the following triangular array of rational Hermite interpolants:

70,0 To,1 .o Ton-1 Ton

1,0 11 cee Tin—1

Tn—-1,0 Tn—1,1

Tn,0

3.4. Multipoint Padé Approximations of the Beta Function

This section is based on A. A. Kandayan’s paper "Multipoint Padé Approxi-

mations of the Beta Function”

Multipoint Padé approximations for a sufficiently general class of functions

were first studied in [A. A. Gonchar, G. Lopez-Lagomasino, 1978], while, in

[A. A. Gonchar, E. A. Rakhmanov, 1987] and [A. I. Aptekarev, 2002], such
approximations were used to obtain significant results concerning best rational ap-

proximations of analytic functions.

Kandayan studied multipoint approximations of the Euler integral of the first

kind (or the beta function)

()T (2)

fa(2) =B(a,z2) = Tlats)

Here, « is an arbitrary fixed complex parameter which is not an integer. At the
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points @ = 0,—1,—2,..., the gamma function I' (a) has a pole. At the points
a=1,2,3, ..., the function f, (z) becomes rational and the Padé problem for the
function f, (z) with the nodes (3.61) degenerates. The function f,, (z) is holomorphic

in the domain

D=C\{0,-1,-2,...}.

At the points z = —n, n € Z,, it has simple poles. The sequence of polynomials
2n
wa(2) =[] (z=B—k) (3.61)
k=0

defines the table of interpolation nodes, i.e., we consider the Newtonian interpolation

Wnt1 (2)=wn (2)(z=PB—=2n—-1)(z—0F—2n—2).

Here, 3 is an arbitrary fixed complex parameter. In what follows we assume without

loss of generality that Rea > 0 and Re > 0.

Theorem 3.4.1. The Padé problem for beta function f, has a unique ( up to nor-
malization ) solution. The degree of the denominator @Q, is necessarily equal to

n.

Proof Let us use a method that was applied earlier to Padé approximations of
the exponential [E. M. Nikishin, V. N. Sorokin; 1988], but, instead of the differential

operator we use the difference operator

(AN ) =fz+1) - f(2).

Choose an arbitrary solution of the problem. Consider the function

R, (2) = (A™'R,) (2).
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Since deg P,, < n, it follows that
Ro (2) = (A" Qufa) (2).
By interpolation conditions R, (z) =0, z = 2g,..., 22,11 and (3.61), we have
R,(2)=0, z=0+k, k=0,...,n—1 (3.62)
We use the Leibniz formula

(AQN) (2) =Fz+1)-(AQ) (2) + @ (2) - (Af) (2)

Further,
(Afa) (2) = —far1 (2).
Therefore,
(A(Qufa)) (2) = (DaQn) () - farr (2).
where

(Da@a) (2) = 2 (2Q0) (=) = Qu (2).

Thus, by induction, we obtain

R, (Z) = Qn (Z’) : foz+n+1 (Z) )

where

Qn - ﬁa—l—n ce ba—l—lDaQn-



99

Moreover, by D, we denote the following linear operator:

acting in the (n + 1)-dimensional linear space C,, [z] of polynomials of degree at
most n. Here, the parameter o assumes the values o, + 1,...,a+ n and [ is the

identity operator. It follows from (3.62) that

n—1

Qu(z)=[(z-B-k)

k=0

(up to normalization).

If we show that each of the operators Da+k is invertible, then the theorem will

be proved. In the linear space C,, [z], we introduce the basis of factorial polynomials
19
v; (2) :ﬁn(z—ﬂ—k), j=0,...,n.
" k=0

Let us write the matrix of the operator D, in the basis. We have
2 pH+s-1 Jj—a

Dan Ujfl + ij,

where formally we set v_; = 0. Thus,

0O—a [ 0 0 0
0 1—a Bg+1 0 0
o 1 0 0 2—a 0 0
D,=- (3.63)
a
0 0 0 .. m—1—a [B+n-—1
0 0 0 0 n—a

By assumption of the problem, a is not an integer, because « is not integer as well.



Therefore, the determinant

y 1 =
detDa:WH(k—a)

k=0

1S nonzero.

The theorem is proved.

60



CHAPTER 4

NEW DETERMINANTAL REPRESENTATIONS OF
NEWTON-PADE APPROXIMATIONS

4.1. Main Definitions and Facts

Lemma 4.1. Let {z;} 7_, and {z, } 7_, be explicit formulas for Newton-Padé approx-

imations two finite sequences of (not necessarily distinct) complex numbers.

If
wk(z):H(z—zj), k=1,2,....,n; wo(z)=1
and
Pn(z):(z—z'l) (z—z2)(z—zn),
then



where

k+1 k+1 k+1 n—=k
11=1142=11 In—k=ln—k—1 j=1

k=0,1,...,n—1, Cnm = 1.

Proof. By induction, write

Hence,

Ckm = Ck—1,m—1 -+ Ck,m—1 (ZkJrl — Zm) , k= 1, 2, oo, — 1.

So, for k = 0 we have

Co,m = Com—1(21 — zm) = (z1 — 21) . (z1 — z;n_l) (21 - zm) )

Now, by (4.1) and by the induction hypothesis,

k k k m—k
Ck,m = E E e E (ZZ']- - Zl'j‘f’j*l) +
i1=1i2=13 Ik =tm—k—1 J=1

k+1 k+1 k+1 m—k—1

D ID DD 11 (Zij - Z;mfl)

i1=1142=1i1 n—k—1=tm—k—2 J=1

62

(4.1)
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Combining all sums, we obtain

k k+1

=ZZ 3 3" H(%_Zﬂ )

1= Im—k—1=tm—k—2 tm—k=tm—k—1 J=1

m m
+.ooF E (21, — 2,) H (Zhp1—2) +... + H (Zh11 — 2;)
i1=1 j=k+2 j=k+2
k+1 k+1 k+1
=20 > H (25 = 201
i1=11i2=11 Im—k=tm—k—1 J=1

k=1,2,....m—1; m=12,....n

So lemma is proved.

Corollary 4.1.1. Let | and m be two integers. Then, identity

k=max(l,m)

where
k+1 k+1 k+1
(k) _
Ql’m = E E E (% - Zjl—max(l.m)) e
ji=max(l,m) j2=7j1 Ji4m—i=Ji4+m—k—1
X (ij+m—k - Zjl+m—k+l+m_k_1) )
holds.

Proof. This is an immediate application of Lemma 1.

Lemma 4.2. If

= Z aywy (2) (4.2)

is a finite Newton series and

Qn (2) = Z brwi (2), (4.3)
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then

[e.o]
z) = Z einw; (2),
i=0

where

N—(N—i
€i,N = Z @kbk Big = Z Z)l (4.4)
l=i—k
Proof. By applying Corollary 2, we get
I+k
[(:)Q Zaszsz 2Ju(2 Zazzbk > el
=0 k=0 =0 = i=max(l.k)
Let us split the summation in three parts as follows,
I+k I+k
EOYDID S CFERD 375 33 i NI
i= = k=l+1 =k
I+k
IO ID Y AE
I=N+1 = =

Then by changing the order of summations in each term of (4.5), we obtain

I+k N (i=1)/2 4

ZalekZQ lwz ):Z Z Zalka,(j’)lwi(z) (4.6)
+Z Z Zazbk wi(2) + D Z D by iz

1=0 k=(i+1)/21=k i=N+1k=i—Nl=i—k

+ Z Z Zalbk klu)2

i=N+1k=(i+1)/2 1=k
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N N I+k i
Zal Z kaQk lwz Z Z Z albk klwl ) (47)
=0 k=41 i=k 1=0 k=(i+1)/2l=i—k

N
+Z Z Zalbk lwz

i=N+1k=(i+1)/2l=i—k

N I+k 2N i—N-1 i
Z alekZlewz Z Z Z alka,(c lwz ) (48)
I=N+1 k=0 =l i=N+1 k=0 l=i—k
2N N i ‘ 00 N i ‘
+ Z Z Z alka,(;)lwi(z) + Z Z Z alka,(;)lwi(z)
i=N+1k=i—NI=N+1 1=2N+1k=0l=i—k

First assume i is odd. By combining (4.7) and the second and fourth term of (4.6),
we get, taking into account (4.5) and (4.8) the equality

N i
z) = ZZ Z alkaX)lf,uZ Z Z Z alka( lwz (4.9)

1=0 k=0l=i—k i=N+1k=(i+1) /21 i—k
2N i—N-1 ¢

+ Z Z Zazbkﬂﬁ),wi(zwr Z Z Z albkﬁg)lwi(z)

i=N+1 k=0 l=i—k i=N+1k=i—NI=N+1
00 N i (i-1)/2 N
(@)
+ D DD abwi(2) Z D D abiwi(z
i=2N+1k=0l=i—k i=N+1k=i—Nl=i—k

Combining second, third, fourth and sixth term of (4.9), we obtain;

N i AN N i
f(2).Qn(2) = ZZ Z alka,(;)lw, Z Z Z b, ng (4.10)
=0 k=0l=i—k i=N+1k=01=i—k

00 N 7
+ Z Z Z alka,g)lwi(z)

i=N+1k=0l=i—k
and combining second and third terms of (4.10), we finally get
N—(N—’i)+ 7

f(2)Qn (2) = Z Z alka](i)lWi(z) ;

1=0 k=0 I=i—k
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xz, x>0
where z, = . Similarly if ¢ is even we will get the same result.

0, z<0

Now, we may add the following to definition 3.3

oo N=(N—i)y 4 '
[(2).Qn(2) = Z Z Z alka,(;)lwi(z).
=0 k=0 l=i—k

Definition 4.1. The Henkel-Newton determinant is defined by
Buv+1i Bu+iivr o Buan
H](\Z),N =

Brani Bysnitr - BusnnN

Theorem 4.1.2. Let f(2) = > ajwi(z) be a formal Newton series with interpolation
=0

=
points {z;} and let M and N be (fized) nonnegative integers. Then,

(A) If
Pr(2) = cowo(z) + crwi(2) + ... + epywn(2)
and

Qn(2) = bowo(z) + biwi(2) + ... + bywn(2),

then a necessary and sufficient condition that the formal Newton series f (z) .Qn (2)—

Py (z) be of the form

F(2)Qn (2) — Pu(2) = dnsms1wn+m+1 + AN Mt2WN 42 + - - (4.11)
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is that the coefficients c; and b; satisfy the system of equations

boBo,0 + b1Bo1 + ...+ barBom = o (4.12)

boBro+ 01611+ ... +bubryw =1 (4.13)

boBno + 01BN+ ...+ By = N

boBn+1,0 + 01BN+ + o F O BNy =0

(4.14)

boBntamo + b1BNima + -+ b Bniar =0

where the f3; ; are defined by (4.4).

(B) There exists a unique (up to equivalence ) rational expression (P, Q) of

type [m,n], such that the formal Newton series

f(2)Qn (2) — Pu(2)

has the form (4.11).

(C) A nontrivial solution, c,...,cn, bo,...,bu, to the system of equations

(4.12) is determined uniquely (up to a nonzero multiplicative constant) if and only
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if the Henkel-Newton determinant H](\}[?N # 0 where

Brsin Bumtiz - Busn
1 _
HM,N—

Buiny Buvinz oo+ Buany

Proof. By previous theorem, letting ¢, = 0 for £ > N, we obtain

o [ M
[(2)@n () — Pu(z) = Z <Z bjBr; — Ck) wi(2),
k=0 \j=0
of which (A) is an immediate consequence. To prove (B), we note that (4.14) is
a homogeneous linear system of m equations in (m + 1) unknowns. Hence, there
exist by, ..., by, not all zero, satisfying (4.14). Having chosen such b; , we choose
the ¢; to satisfy (4.12) and the resulting rational expression (P, Q) is of type [M, N]
and satisfies (4.11). To prove the uniqueness of (P,Q), we let (P*, Q*) denote an

arbitrary rational expression of type [M, N] such that

/ (Z) QN (Z) - PJT/](Z) = d7V+M+1WN+M+1 + d7v+M+2WN+M+2 +... (4'15>

By Theorem 1(C) in Gallucci and Jones paper ([Gallucci M. A., Jones W. B., 1976]),
Q(f.Q*—P*) and Q* (fQ — P) are both formal Newton series whose first N+ M +1

coefficients are zero. Hence,

Q*(2)P(z) — Q(2)P*(z)
=Q()[f(2)Q (2) = P ()] = Q" () [f (2) Q () — P(2)]

ia also a formal Newton series whose first N + M + 1 coefficients vanish. But
Q* P—(Q) P~ is a polynomial of degree at most N+ M and therefore must be identically
zero. Thus, (P*,Q*)" (P, Q) which completes the proof of (B). In proof of part (C),
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first let us write the equality (4.11) as

f(2)(bowo(z) + ... + bpwn(z)) — (cowo(2) + ... + Cmwm) (4.16)
= 3 dwi(2) (4.17)

Now, if we set by = 0 then substitution z = 2; gives ¢y = 0. Thus, equation (4.16)

becomes

f(2)(bwr(z) + ...+ bpwn(2)) — (awi(2) + ... + Cmwim) (4.18)
= > dwi(2) (4.19)
1=N+M+1

Dividing (4.18) by w;(z) we get the system of equations

51,11)1 =0

B2 + P20 = 2

By + ...+ Bunby = cu

Byvt11 + -+ Byui,nby =0

Brang + .o+ Busnnby =0
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M + N equations with M + N unknowns as previous. So, we may write the new

equation as

F(2)(by 4+ bawa(2) ... + bpwn(2)) — (c1 + c2@a(2) . .. + Cnm)

where @1 = [[(2 — 2z;). Then, the system has no nontrivial solution. So, let us
i=2
set bg # 0. Set by = 1, we get the following system of equations with respect to by

and ¢ :

—Cy = —ﬁo,o

ﬁl,lbl —c1 = —Po

Baribr + Barzba + ... + By, nbn — e = —Baro

Brr41101 + Barg1,2b2 + ..o+ By, nOv = —Barg10

Brranibi + Brrynobs + . oo+ BrrnnvOn = —Brrino



So, that system is solvable if and only if the determinant

Dyn =

does not vanish.

Dy n =

0 0
B 0
6M,1 ﬁM,Q

Bryin Buiig
Bring  Buving

0 0
Bia 0
B B2
Bu+ig Butie

is equal to

(_1)‘(_1)2M+N+2‘

Bruna Brgnz

0 0

Bia 0
Brv-11 Bu-12
Brsin But12
Buna  Buysnz

0 -1 0
0 0 -1
Bu,n 0 0

Byusin 0 0

Busnny 0 0

0 -1 0
0 0 -1
BN 0 O
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0 0 0

Bia 0 .. 0
- (_1)2M+N+2-(_1)2M+N' ﬁM—2,1 ﬁM—Q,Q e 5M—2,N
5M+1,1 ﬁM+1,2 cee ﬁM+1,N
5M+N,1 5M+N,2 cee 6M+N,N

by same manner if we continue it will be equal to

ﬁM-i—l,l ﬁM-i—l,Z s ﬁM-ﬁ-l,N
(_1)M+N

Bumin1 Buminz - BuiNy

= (1) H

)

By Cramer’s rule, if Hy v # 0  then by may be represented

-1 0 0
0 -1 0
0 0 -1
0 0 0
0 O 0

in the form

Brusig - Busik—1 —Bum+i0 Bytip+r - Butin
(— 1M But2n - Busok—1  —But20 Bumtzi+1 - Bumten
; Bysng - Buink—1 —By+no Bv+nNg+1 - Bunn
k:
(~1)MENH )y
Byt - Busip—1  —Bum+10  Butik+1 Br+1,N
Byvt21 o Buyok—1  —Bm+20  Bu+2k+1 BrioN
Byvng - Buang—1 —Bm+nNo BM+Np+1 BrN,N

1
Hly

72
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Hence,

wo(z)  wi(z) ... wn(2)
Byv+10 Bumtia - Busn
Brino Busng - Buiny
@n(z) = M
Hy/ 'y

From the representation for Qy (2) in (4.3) we get an analytic formula for Py, (2)

M
such that Py (2) = — > epnwi (2).
k=0
So, we have proved that the interpolation Newton-Padé problem is uniquely
solvable if and only if the Henkel-Newton determinant does not vanish.

4.2. Conditions for the Convergence

Theorem 4.2.1. Let us suppose that {u,},{v,} are arbitrary increasing sequences

such that

,un S /LnJrl S ,U/n + 1;
Un S Vn+1 S Vp + ]-7 (420)

(Hnt1 = pn) + (Vg1 — 1) 2 1

If there exists a natural number N such that the series

S i (0)+1 +1 1
(_1>Mn Hn ,l/n_w nrn—+1 (z) (421)
i;\f Hl(ti),l/n 8 QVn (Z) QVn+1 (Z)
converges uniformly in a domain G which contains points z 2, ..., then the se-

quence {R,,, ., (2)} >~ converges in G and uniformly to f (z).
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Proof. Consider the expression

B, (2) Qu, (2) — B, (2) Qupia (2) = [f (2) Qu, (2) — By, (2)] Quiy (2) (4.22)
— [£(2) Quoiy (2) = Py (2)] Qu,, (2)

Left hand side is a polynomial of wy (2) for & < u, + v, + 1. Second term in right
hand side by definition of Newton-Padé approximants starts from the term wy (2)
with & > ptpe1+ Vps1 +1 (> pn+ v, + 1), and first term starts with term wy, (z) with
k > i, + v, + 1. Then taking z; 2, ..., for z values (if a point z; is a repetation of
z; then instead of values of expressions taking k—th derivatives at the point z;), we

get that in both sides of (4.22) there is only one term with wy,, 1., +1 (2).

The coefficient of wy, 41,41 (2) in P, ., (2) Qu, (2) — Py, (2) Qu,., (2) is equal
to the coefficient of wy, 4,,+1 (2) in the expression of f(2)@,, (), and that last

coefficient is equal to

Un
Clinton+ly, = E /B}Ln—‘rl/n—l-l,kbk'
k=0

Computing this term from the right hand side of (4.22), we get

H(O)Jrl vn+1
Py (2) Quy (2) = Puy (2) Quisy (2) = (= 1) =25t (2) - (4:23)

o,
Now comparing that expression with the expression for @), (2) it is easy to see the

validity of formula (4.23a). Hence,

(0) 1

Ryooivi (2) = Ry (2) = (—1)n Zntlimtl 1 (2
Hn+1, +1() Hons () ( ) H,(;L)yyn Pn+vn+ ( )Qun (Z>Qvn+1 (Z)

From here it is clear if series (4.21) converges at a point z, then at that point the
sequence {R,,, ., (2)} converges too. Denote the limit function by F (z). From the
condition of theorem it follows that @Q,, (z) # 0 in G, starting from some number

N. Hence, all functions R, ,, (z) are analytic in G for n > N. Since the sequence
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{R,,. .} converges uniformly on compacts in G, function F'(z) is also analytic in

G. Moreover, for any point z € GG

d*R (z) d*F(2)
1- HnVUn —
b dzk dzk

for any natural number k. Taking z; 25 ..., for z values, we get that F' (z;) = f (z;),

j=12....
Using that theorem it is possible to prove the following criteria of convergence
of Newton-Padé approximants.

Theorem 4.2.2. Let D be the convergence domain for the series

© |HY) +1‘ n
Hn sUn
Yo Wt (B wn () =2

n=1 ’ H,l(li,),l/n

Let in some domain G C D, D containing points z1 zo, ..., denominators Q,, (2),
n = 1,2,... of the sequence of Newton-Padé fractions {R,, ., (2)}.—, are uni-
formly bounded by modulus from below by a positive constant. Then, the sequence
{Ry, .. (2)}7, converges in G to the function f(z) generating the table and uni-

formly in arbitrary bounded closed domain F C G.

Proof. Since

(0)
1
R n Un (z) - R n,,Vn (z) = (-1)“" Mw nTVn 1 (Z)
Fiss . | Y, 0, (2) Quy ()

(0)
1 ‘ Hﬂn‘f'lal’n‘f‘l

— w V4
- 2 1 Hn+vn+1 ( )l )
m ‘Hl(tn),l/n

then from the condition of theorem it follows that the series converges absolutely in

G and uniformly in arbitrary compact domain F.

Hence, the result follows.



CHAPTER 5

CONCLUSION

This thesis is devoted to multipoint Padé approximants, Newton-Padé approx-

imants and their convergence. The followings were studied.

Padé approximations for exponential functions (review)

Convergence of Padé tables (review)

Multipoint Padé approximations and Newton-Padé approximations (review)

Algorithms for computation of Newton-Padé approximations (review)

Determinantal representations of Newton-Padé approximations and their ap-

plications (original)
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