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ABSTRACT 

 

 

 

Padé approximants and their generalizations play very important role in many 

applications. There are different ways to generalize the definition of the Padé 

approximants to the case of general rational interpolation. Namely, multipoint Padé 

approximations and Newton-Padé approximations solve the same interpolation problem 

but they are written in different terms.   

In this study, one of the  main purposes is to investigate another way of writing 

the solution of the rational interpolation problem. As an advantage of that way, it is 

supposed to get new conditions for the convergence of multipoint Padé approximations. 

 

Keywords: rational interpolation, Newton-Padé approximation, multipoint Padé 

approximation 

 

 

 

 



iv 

 

 

 

 

 

ÇOK NOKTALI PADÉ YAKLAŞTIRIMLARI VE YAKINSAMALARI 

 
 

Cevdet Akal 

 

 

Yüksek Lisans Tezi - Matematik 

June 2010 

 

 

Tez yöneticisi: Prof. Dr. Alexey Lukashov 

 

 

ÖZ 
 

 

 

 Padé yaklaştırımları ve bunların genellemeleri birçok uygulamada önemli rol 

oynar. Genel rasyonel interpolasyon durumlarında Padé yaklaştırımlarının 

genellemesinde birbirinden farklı yollar vardır. Yani, çok noktalı Padé yaklaştırımları 

ve Newton-Padé yaklaştırımları aynı interpolasyon problemlerini çözmelerine karşın 

farklı formlarda yazılırlar. 

Bu çalışmada, temel amaçlardan biri rasyonel interpolasyon problemlerinin 

çözümünün farklı formlarda yazılmasını incelemektir. Bu metodun avantajı, çok noktalı 

Padé yaklaştırımlarının yakınsamalarına yeni koşullar getirmesinin beklenilmesidir. 

 

Anahtar Kelimeler: rasyonel interpolasyon, Newton-Padé yaklaştırımları, çok noktalı 

Padé yaklaştırımları 
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CHAPTER 1

INTRODUCTION

The history of continued fractions, and associated with it, the problem of Padé

approximation is one of the oldest in the history of mathematics. There are very

early predecessors, but the study was really started in the 18th century and came to

maturity in the 19th century. The serious work started with Cauchy in his famous

Cours d’analyse and Jacobi and was continued by Frobenius and Padé. A current

standard work is the book by G. Baker Jr. and P. Graves-Morris ([Baker Jr. G. ,

Graves-Morris P., 1981b]).

The problem of rational interpolation has very long story and is not solved

completely up to now even for the case of a single variable. One of widely used

approaches has its origins in Padé approximants.

Recall that (Padé-Frobenius definition, ([Baker Jr. G. , Graves-Morris P.,

1981a])) a unique rational function rM,N (z) = PM (z) /QN (z) , with PM ∈ H̃M , QN ∈

H̃N , H̃k being the set of polynomials of degree ≤ k with complex coefficients, sat-

isfying a formal identity

QN (z) f (z)− PM (z) = AM+N+1z
M+N+1 + . . . (1.1)

where

f (z) =
∞∑

k=0

akz
k (a0 6= 0) , (1.2)

is called the [M, N ] Padé approximant of the formal power series f (z) . Padé ap-

1
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proximants may be considered as a particular case of rational interpolation subject

to conditions r
(k)
M,N (0) = f (k) (0) , k = 0, 1, . . . ,M + N, if the series (1.2) converges

in a neighbourhood of 0 and QN (0) 6= 0.

Multipoint Padé approximants and Newton-Padé approximants are their nat-

ural generalizations for the Hermite interpolation. There are different ways to define

them. For a survey one may consult Meinguet, Stahl ([Stahl H., 1996]). The first

one is as follows:

Let an infinite triangular matrix of interpolation points aij ∈ C̄ (called inter-

polation scheme) be given:

A :=


a00

· · · · · ·

a0n · · · ann

· · · · · · · · · · · ·

 (1.3)

Each row

An := {a0n, . . . , ann} (1.4)

of the matrix A defines an interpolation set with n + 1 interpolation points.

The rational function

rM,N = rM,N (f, AM+N ; .) = rM,N (f, A; .) =
PM,N

QM,N

(1.5)

with PM,N ∈ H̃M , QM,N ∈ H̃N , and QM,N 6= 0, is called multipoint Padé approx-

imant or linearized rational interpolant of degree M, N to the function f at the

M + N + 1 points of the interpolation set AM+N if the quotient

QM,Nf − PM,N

ωM+N

is bounded at each point x ∈ AM+N . (1.6)
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Now let us define Newton-Padé approximants. Firstly, following M. A. Gallucci and

W. B. Jones ([Gallucci M. A., Jones W. B., 1976]) a formal Newton series (FNS)

is an ordered triple [{αn}∞0 , {βn}∞0 , {fn}∞0 ] , where α0, α1, α2, . . . and β1, β2, β3, . . .

are complex numbers (not necessarily distinct) and for each n = 0, 1, 2, . . . , fn is the

polynomial

fn (z) =
n∑

k=0

αkωk (z) , (1.7)

where

ω0 (z) = 1; ωk (z) =
k∏

j=1

(z − βj) , k = 1, 2, 3, . . . , (1.8)

and where z is a complex variable. The αn, βn, and fn are called, respectively, the nth

Newton coefficient, interpolation point, and partial sum of [{αn} , {βn} , {fn}] and a

FNS is said to converge at z if the sequence of partial sums {fn (z)} is convergent.

The Newton-Padé approximant

rM,N (z) =
PM,N (z)

QM,N (z)
(1.9)

with PM,N ∈ H̃M , QM,N ∈ H̃N is the function of the form (1.9) such that

Q (z) · f (z)− P (z) = dM+N+1ωM+N+1 (z) + . . . . (1.10)

Convergence theory of classical Padé approximants has a long and distin-

guished history dating back to Hermite’s work. Essential part of the theory studies

convergence of sequences of Padé approximants for special classes of functions which

are defined by properties of their Maclaurin series coefficients. For the multipoint

Padé approximants general convergence theory for meromorphic, Markov and more

general classes of functions was developed but, to the best of our knowledge, there

are no results about convergence of multipoint Padé approximants from special
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properties of their Newton series coefficients.

A rational function which fits given function at various points, not necessarily

distinct, is called a multipoint Padé approximant. The associated problem of inter-

polation by rational functions is called the Cauchy-Jacobi problem. Multipoint Padé

approximants are also called rational interpolants, N-point Padé approximants, or

Newton-Padé approximants ([Gallucci M. A., Jones W. B., 1976]), depending on the

context. Interpolation at confluent points is sometimes called osculatory interpola-

tion. Multipoint Padé approximations for a sufficiently general class of functions

were first studied in ([Stahl H., 1996]), while, in ([Claessens G., 1976]) and ([Baker

Jr. G. , Graves-Morris P., 1981a]), such approximations were used to obtain signif-

icant results concerning best rational approximations of analytic functions.

Balk ([Balk M.B.,1960]) obtained conditions of convergence of Padé approxi-

mations which used properties of Taylor series coefficients only and applied them to

study the convergence of Padé approximations of some elementary functions. The

convergence of the multipoint Padé approximations for concrete functions is not

studied sufficiently, it is possible to mention here recent Kandayan’s paper ([Kan-

dayan A.A., 2009]).

One of the main purposes of this study is to give an analogue of Balk’s test

of Padé approximants convergence for Newton-Padé approximants. To do so, we

will need to use Newton form not only for numerator PM , as in ([Baker Jr. G. ,

Graves-Morris P., 1981a]). Note that determinantal representations of Newton-Padé

approximations given in ([Gallucci M. A., Jones W. B., 1976]) only for denominators

QN in power form QN (z) =
N∑

i=0

λiz
i. For QN in Newton form QN (z) =

N∑
k=0

bkωk (z) ,

D.D. Warner ([Warner D.D., 1974]) gave representations in terms of other definition

of the FNS (as the infinite triangular matrix of divided differences), and G. Claessens

([Claessens G., 1976]) established recurrence formulas using definition of FNS as

above.

Here we will give determinantal representations of Newton-Padé approximants
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for denominators QN in Newton form.



CHAPTER 2

FOUNDATIONS OF THE PADE APPROXIMATIONS

THEORY

2.1. Definition and Conditions for the Convergence of Padé Approxima-

tions

Suppose that we are given a power series
∞∑
i=0

ciz
i, representing a function f(z),

so that

f (z) =
∞∑
i=0

ciz
i. (2.1)

This expansion is the fundamental starting point of any analysis using Padé approx-

imants. Throughout this work, we reserve the notation ci, i = 0, 1, 2, . . . , for the

given set of coefficients, and f (z) is the associated function. A Padé approximant

is a rational fraction

[L/M ] =
a0 + a1z + . . . + aLzL

b0 + b1z + . . . + bMzM
(2.2)

which has a Maclaurin expansion which agrees with (2.1) as far as possible.

Definition 2.1. [Baker, Graves-Morris; 1981] . If polynomials A[L/M ] (z) , B[L/M ] (z) ,

of degrees L, M respectively, can be found such that

A[L/M ] (z)

B[L/M ] (z)
= f (z) + O

(
zL+M+1

)
(2.3)

6
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with

B[L/M ] (0) = 1 (2.4)

then we define [L/M ] = A[L/M ](z)

B[L/M ](z)
.

The notation emphasizes that numerator and denominator depend on both L

and M. An entirely equivalent specification of the definition is to replace (2.3) by

A[L/M ](z)− f (z) B[L/M ] (z) = O
(
zL+M+1

)
provided that (2.4) is retained. The notation of (2.3) and (2.4) is exclusively re-

served for this purpose throughout the work, and without further explanation. So

there are L+1 independent numerator coefficients and M independent denominator

coefficients, making L + M + 1 unknown coefficients in all. This number suggests

that normally the [L/M ] ought to fit the power series (2.1) through the orders

1, z, z2, . . . , z[L+M ]. In the notation of formal power series,

∞∑
i=0

ciz
i =

a0 + a1z + . . . + aLzL

b0 + b1z + . . . + bMzM
+ O

(
zL+M+1

)
. (2.5)

By cross-multiplying, we find that

(
b0 + b1z + . . . + bMzM

)
(c0 + c1z + . . .)

= a0 + a1z + . . . + aLzL + O
(
zL+M+1

)
(2.6)

Equating the coefficients of zL+1, zL+2, . . . , zL+M , we find

bMcL−M+1 + bM−1cL−M+2 + . . . + b0cL+1 = 0,

bMcL−M+2 + bM−1cL−M+3 + . . . + b0cL+2 = 0,

...
...

...
... =

... (2.7)

bMcL + bM−1cL+1 + . . . + b0cL+M = 0.
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If j < 0, we define cj = 0 for consistency. Since b0 = 1, equations (2.7) become a

set of M linear equations for the M unknown denominator coefficients:



cL−M+1 cL−M+2 . . . cL

cL−M+2 cL−M+3 . . . cL+1

cL−M+3 cL−M+4 . . . cL+2

...
...

...
...

cL cL+1 . . . cL+M−1





bM

bM−1

bM−2

...

b1


= −



cL+1

cL+2

cL+3

...

cL+M


, (2.8)

from which the bi may be found. The numerator coefficients, a0, a1, . . . , aL, follow

immediately from (2.6) by equating the coefficients of 1, z , z2, . . . , zL :

a0 = c0,

a1 = c1 + b1c0,

a2 = c2 + b1c1 + b2c0, (2.9)

... =
...

...
...

aL = cL +

min(L,M)∑
i=1

bicL−i. (2.10)

Thus (2.8) and (2.9) normally determine the Padé numerator and denominator and

are called the Padé equations; we have constructed an [L/M ] Padé approximant

which agrees
∞∑
i=0

ciz
i through order zL+M .

If Cramer’s rule is used, we may calculate b0 : b1 : . . . : bM from (2.8) and

hence the denominator of (2.2). Aside from a common factor, the result is

Q[L/M ] (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 . . . cL cL+1

cL−M+2 cL−M+3 . . . cL+1 cL+2

...
...

...
...

...

cL−1 cL . . . cL+M−2 cL+M−1

cL cL+1 . . . cL+M−1 cL+M

zM zM−1 . . . z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.11)
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We take (2.11) to define Q[L/M ] (z) and use this convention throughout.

Again, recall that cj = 0 if j < 0. Now consider

Q[L/M ] (z)
∞∑
i=0

ciz
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 . . . cL+1

cL−M+2 cL−M+3 . . . cL+2

...
...

...
...

cL−1 cL . . . cL+M−1

cL cL+1 . . . cL+M
∞∑
i=0

ciz
M+i

∞∑
i=0

ciz
M+i−1 . . .

∞∑
i=0

ciz
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By subtracting zL+1 times the first row from the last, zL+2 times the second row

from the last, etc., up to zL+M times the penultimate row from the last, we reduce

the series in the last row. They become lacunary series, with a gap of M terms

missing. Using the initial terms of these series, we define

P [L/M ] (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 . . . cL+1

cL−M+2 cL−M+3 . . . cL+2

...
...

...
...

cL−1 cL . . . cL+M−1

cL cL+1 . . . cL+M

L−M∑
i=0

ciz
M+i

L−M+1∑
i=0

ciz
M+i−1 . . .

L∑
i=0

ciz
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.12)

Again, (2.12) is our notational convention.

Theorem 2.1.1. With the definitions (2.11) and (2.12),

Q[L/M ] (z)
∞∑
i=0

ciz
i − P [L/M ] (z) = O

(
zL+M+1

)
. (2.13)

Proof We note that deg
{
P [L/M ]

}
≤ L, deg

{
Q[L/M ]

}
≤ M and that remain-
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der is

Q[L/M ] (z)
∞∑
i=0

ciz
i − P [L/M ] (z)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 . . . cL+1

cL−M+2 cL−M+3 . . . cL+2

...
...

...
...

cL−1 cL . . . cL+M−1

cL cL+1 . . . cL+M
∞∑

i=L+1

ciz
M+i

∞∑
i=L+2

ciz
M+i−1 . . .

∞∑
i=L+M+1

ciz
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.14)

=
∞∑
i=1

zL+M+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 . . . cL+1

cL−M+2 cL−M+3 . . . cL+2

...
...

...
...

cL−1 cL . . . cL+M−1

cL cL+1 . . . cL+M

cL+i cL+i+1 . . . cL+M+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.15)

Equation (2.15) is occasionally a useful form for the error using Padé approximation.

Equation (2.13) goes a long way towards satisfying (2.5). To this end, consider

C (L/M) = Q[L/M ] (0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 . . . cL

cL−M+2 cL−M+3 . . . cL+1

...
...

...
...

cL−1 cL . . . cL+M−2

cL cL+1 . . . cL+M−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This is called a Hankel determinant, because of the systematic way in which its rows

are formed from the given coefficients ci. Notice that if Q[L/M ] (0) 6= 0, then the linear

equations (2.8) are nonsingular and the solution given by (2.11) is unambiguous.

Furthermore, we may divide (2.13) by Q[L/M ] (z) , yielding

∞∑
i=0

ciz
i − P [L/M ] (z)

Q[L/M ] (z)
= O

(
zL+M+1

)
.
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This result has proved the following theorem:

Theorem 2.1.2. [Jacobi, 1846] With the definitions (2.11) and (2.12), the [L/M ]

Padé approximant of
∞∑
i=0

ciz
i is given by

[L/M ] =
P [L/M ] (z)

Q[L/M ] (z)
(2.16)

provided Q[L/M ] (0) 6= 0.

Now we may give the classical definition, also called the Frobenius and Padé

Frobenius definition.

Definition 2.2. If PL (z) , QM (z) are polynomials of orders L, M respectively,

and if

QM (z) f (z)− PL (z) = O
(
zL+M+1

)
, (2.17)

then PL (z) /QM (z) is a Padé approximant of f (z) .

Note that if QM (0) = 0, then in this case

f (z) 6= PL (z)

QM (z)
+ O

(
zL+M+1

)
.

If, with equation (2.11), Q[L/M ] (0) 6= 0, then the rescaling

A[L/M ] (z) =
P [L/M ] (z)

Q[L/M ] (0)

and

B[L/M ] (z) =
Q[L/M ] (z)

Q[L/M ] (0)
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implies that the two definitions correspond up to an unimportant numerical factor.

We extend the notation [L/M ] of (2.16) as [L/M ]f to emphasize approximation

of f (z) , and as [L/M ] (z) to emphasize the z−dependence. We will thus have the

various forms

[L/M ] = [L/M ]f = [L/M ] (z) = [L/M ]f (z)

available for convenience. It is common practice to display the approximants in a

table, called the Padé table.

Table1. The Padé Table

M \ L 0 1 2 . . .

0 [0/0] [1/0] [2/0] . . .

1 [0/1] [1/1] [2/1] . . .

2 [0/2] [1/2] [2/2] . . .
...

...
...

...
. . .

The sequence of the form
{

[L/M ]f

}
, L = 0, 1, 2, . . . (where M ∈ Z+ is fixed),

are referred to as row sequences ( or rows) in the Padé table, and the sequence{
[L/L]f

}
, L = 0, 1, 2, . . . , is called the diagonal sequence (or the main diagonal).

Convergence of Padé approximants is a huge area of research and includes too

many interesting results to be included in this thesis.

As is known, Padé approximants are locally the best rational approximants to

a given power series. These approximants are constructed directly in terms of its

coefficients and enable us to realize an efficient analytic continuation of the series

beyond its circle of convergence, and in a sense the poles of the approximants localize

the singular points (including the poles and their multiplicities) of the extended

function in the corresponding domain of convergence and on its boundary. The

last property of the Padé approximants is based on the fact that all their poles
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are ‘free’ and are determined only by the condition that the tangency to the given

power series be maximal. For this reason, the Padé approximants differ substantially

from rational approximants whose poles are fixed (completely or partially), and in

particular from polynomial approximations, in which case all poles are fixed at the

single point at infinity.

It is this property of Padé approximants, efficiently solving the problem of

analytic continuation of power series, that underlines their numerous successful ap-

plications in analysis and in the study of applied problems. At present, the method

of Padé approximants is one of the most promising non-linear methods of summa-

tion of a power series and localization of its singular points. Among such methods

the theory of Padé approximants has thus become a completely independent branch

of approximation theory, and Padé approximants themselves have found diverse

applications both directly in the theory of rational approximation and in number

theory, the theory of non-self-adjoint operators, the study of differential equations

depending on a small parameter, and perturbation theory.

The problem of meromorphic recovery of a function f from a power series

(2.1) in the so-called maximal circle DM (f) of M−meromorphy of f (in which f is

meromorphic and has ≤ M poles) is solved by the classical theorem of Montessus

de Ballore under the assumption that f has exactly M poles in DM (f) (as usual,

the poles of a function are counted according to their multiplicities).

Theorem 2.1.3. (Montessus de Ballore). Let a function f have exactly M poles in

the circle DM (f) given by |z| < R. Then the following assertions hold.

1. For any sufficiently large L, the Padé approximants [L/M ]f of the series f

have exactly M finite poles tend as M → ∞ to those of the function f in DM (f) ,

and the number of poles of [L/M ]f ‘attracted’ by each pole of f is equal to the

multiplicity of this pole.

2. The sequence [L/M ]f , L = 0, 1, 2, . . . , converges to the function f uniformly

on compact subsets of the domain D´
M obtained from DM by removing the poles of
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f.

Moreover, under the assumptions of the theorem the rate of convergence of the

sequence [L/M ]f to the function f in D´
M is characterized by the inequality

−
lim

L→∞

∣∣∣f (z)− [L/M ]f (z)
∣∣∣1/L

≤ |z|
R

< 1.

In the proof of his result, Montessus de Ballore heavily used the Hadamard

formulae (for the radii R = RM (f) of the circles DM (f)) obtained earlier directly

in terms of the coefficients of the series (2.1). Namely, let

HL,M =

∣∣∣∣∣∣∣∣∣
cL−M+1 cL−M+2 . . . cL

...
...

...
...

cL cL+1 . . . cL+M−1

∣∣∣∣∣∣∣∣∣ (we set ck = 0 for k < 0)

The following assertion holds.

Theorem 2.1.4. (Hadamard). For any M ∈ Z+

RM =
lM

lM+1

, where lj =
−

lim
L→∞

|HL,j|1/L

(l0 = 1; if l1, . . . , lM 6= 0 and lM+1 = 0, then RM = ∞) .

It readily follows from Montessus de Ballore’s theorem that the finite poles of

the rational functions [L/M ]f tend to the corresponding poles of f at the rate of a

geometric progression.

In fact, the above property of the poles of the functions [L/M ]f is char-

acteristic. This follows immediately from Gonchar’s complete description of the

M−meromorphic continuation of the power series of f with the help of the Mth
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row of the Padé table for an arbitrary M ∈ N.

In Gonchar obtained formulae ([Gonchar A.A., Rakhmanov E.A., 1987]), in

terms related to the asymptotic behaviour of the finite poles of the M−th row of

the Padé table, for the radius of the Mth circle of and for the divisor of poles of

the extended function f inside this circle, and he also proved a general theorem on

the convergence of the Mth row of the Padé table with respect to the (logarithmic)

capacity on compact subsets of DM (f) ; the Montessus result follows from this

theorem as a special case.

The following more general problem arises naturally: what conclusions can be

made about f in the large if it is known that the finite poles of the Mth row of

the Padé table tend to some points of the complex plane without any assumption

about the rate of this convergence? Let us consider the first row, that is, the case

M = 1. If cL · cL+1 6= 0, then the only finite pole ζn of the rational function [L/1]f is

ζL = cL·cL+1. Thus, the relation ζL → a ∈ C∗ = C\ {0} is equivalent to the condition

that cL/cL+1 → a as L → ∞, and we arrive the assumptions of the classical Fabry

ratio theorem.

Theorem 2.1.5. (Fabry). If the coefficients of the power series (2.1) satisfy the

relation

lim
L→∞

cL

cL+1

= a,

then z = a is a singular point of the sum of this series, and it belongs to the boundary

of the circle of convergence |z| < R0 of the series, R0 = |a| .

Thus, for M = 1 the Fabry theorem establishes in fact a relationship between

the asymptotic behaviour of the finite poles of the first row of the Padé table and the

singular points of f on the boundary of the circle of holomorphy D0 (f) . Treatment

of the analogous problem for an arbitrary M ∈ N is one of the main objectives of

the present survey.
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It is quite another matter when treating diagonal sequences of Padé approx-

imants. One of the first results of general nature on convergence of these rational

approximants of analytic functions is the classical Markov theorem obtained in terms

of Chebyshev continued fractions for functions of the form

µ̂ (z) :=

∫
S

dµ (ζ)

z − ζ
, (2.18)

where µ is a positive Borel measure with support S = Sµ b R.

Theorem 2.1.6. (Markov). For a function µ̂ of the form (2.18) with support

Sµ b R consisting of infinitely many points, the diagonal Padé approximants [L/L]µ̂

constructed from the coefficients of the expansion of µ̂ in a Laurent series at the

point z = ∞ converge to µ̂ uniformly on compact subsets of the domain C̄\ [a, b] ,

where [a, b] is the minimal closed interval of the real axis such that [a, b] ⊃ Sµ.

Thus, any Markov function (a function of the form (2.18) with Sµ b R) can be

recovered, outside the convex hull Ŝµ = [a, b] of the support of the measure, from the

coefficients of its Laurent expansion at the point z = ∞ (that is, from the moments

of the measure µ).

The heart of the matter is that Markov’s theorem considers the uniform con-

vergence of the Padé main diagonal only outside the convex hull Ŝµ of the support

of the measure rather than in the domain C̄\Sµ of holomorphy of the function µ̂,

because in the most typical situation the set of limit points of those poles of the

rational functions [L/L]µ̂ coincides with Ŝµ. In the general case in which the support

of the measure µ in (2.18) does not belong to any line, the limit points of the poles

of the diagonal Padé approximants can form analytic arcs in the domain D = C̄\Sµ

and can even be dense in C̄. (More precisely, a subsequence of poles of the Padé ap-

proximants can converge to any given point of the corresponding analytic arc or to

any given point of C̄, respectively.) In this situation, we face the principal question

of whether or not a pole of the Padé approximants can have a limit (rather than

simply a limit point) over the entire sequence L ∈ N that is distinct from any pole of

f. This question is directly related to the problem of recovering the divisor of poles
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of a function meromorphic in C̄\Sµ of the form

f = µ̂ + r, (2.19)

from the Padé diagonal, where r ∈ C (z) is a rational function holomorphic on [a, b]

(f is a ‘rational perturbation’ of the Markov function µ̂). The construction of the

Padé approximants is essentially non-linear, and therefore the investigation of the

convergence of these approximants for functions of the form (2.19) is a complicated

task. A positive solution of the problem of recovering the divisor follows immedi-

ately from the existence of a subsequence (of the main diagonal) that is uniformly

convergent on compact subsets of C̄\Sµ to the meromorphic functions f with re-

spect to the spherical metric (in which the distance is measured by the length of a

shortest arc between the corresponding points on the Riemann sphere).

The Markov theorem is directly related to the results of Gonchar and Rakhmanov

on the convergence of the Padé approximants for meromorphic functions f of the

form

f = µ̂ + r, (2.20)

where µ̂ is a Markov function and r is a rational function holomorphic on [a, b] = Ŝµ

(r ∈ C (z) ∩ H [a, b] , so that f is a rational perturbation of µ̂). The construction

of the Padé approximants is essentially non-linear, and therefore the investigation

of convergence of such rational approximations for functions of the form (2.20) is

a nontrivial problem. In Gonchar’s theorem, it is claimed that the diagonal Padé

approximants [L/L]f are uniformly convergent to the function f on compact subsets

of the domain C̄\ [a, b] with respect to the spherical metric under the assumption

that Sµ = [a, b] and µ´(x) = dµ/dx > 0 almost everywhere on [a, b] and the function

r ∈ C (z) is holomorphic on [a, b] . In Rakhmanov’s paper, a similar result on uniform

convergence of [L/L]f with respect to the spherical metric outside [a, b] is established

under the assumption that µ̂ is an arbitrary Markov function and the function

r ∈ R (z) is holomorphic on [a, b] .
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A central place in the convergence theory is taken by the Baker-Gammel-Wills

Conjecture [BGW ] .

Conjecture 1. If P (z) is a power series representing a function which is

regular for |z| ≤ 1, except for m poles within this circle and except for z = +1,

at which point the function is assumed continuous when only points |z| ≤ 1 are

considered, then at least a subsequence of the [L/L] Padé approximants converge

uniformly to the function (as L tends to infinity) in the domain formed by removing

the interiors of small circles with centers at these poles.

Over time, many different versions of this conjecture were proposed and stud-

ied.

Conjecture 2. If P (z) is a power series which is meromorphic in |z| ≤ 1 and

continuous on the sphere in |z| ≤ 1, then at least a subsequence of the [M/M ] Padé

approximants is equicontinuous on the sphere in |z| ≤ 1.

This conjecture implies that at least a subsequence of the [M/M ] Padé ap-

proximants converge uniformly on the sphere to f (z) .

A weaker version of this conjecture was proposed by Stahl.

Conjecture 3. Let the function f be algebraic and meromorphic in the unit

disc D. Then there exists an infinite subsequence L ∈ N such that

[L/L] (z) → f (z) as n →∞, n ∈ N (2.21)

holds true locally uniformly for z ∈ D\ {poles of f} .

From the point of view of workers who are trying to evaluate function values

by means of Padé approximants, the sum and substance of these conjectures has

been to interpret them to mean, “just disregard the approximants with defects and
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use the rest of them and you will be OK.”

After 40 years of study by a number of workers, Lubinsky produced a counter-

example to Conjecture 2. Shortly thereafter, and apparently motivated by the work

of Lubinsky, Buslaev produced an algebraic counter-example to Conjectures 2 and

3.

2.2. Padé Approximations for Exponential Function

The coefficients ci of the Maclaurin expansion of the exponential function are

sufficiently simple that explicit forms of the exponential function are sufficiently sim-

ple that explicit forms of the numerator and denominator of the Padé approximants

can be found. In this section, we will calculate the denominator Q[L/M ] (z) . The

numerator follows by an extremely simple and elegant trick, based on the identity

exp (−z) =
1

exp (z)
. Padé in his thesis, elaborated the properties of his approximants

with special emphasis on the example of the exponential function: it is a beautiful

example of how the approximants work in an ideal situation. Further properties of

Padé approximants of exp (z) are to be found .

Our task is to calculate

Q[L/M ] (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(L−M+1)!

1
(L−M+2)!

. . . 1
L!

1
(L+1)!

1
(L−M+2)!

1
(L−M+3)!

. . . 1
(L+1)!

1
(L+2)!

...
...

...
...

1
(L)!

1
(L+1)!

. . . 1
(L+M−1!

1
(L+M)!

zM zM−1 . . . z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.22)

It is easier to begin with the constant term in (2.22), and so we define C (L/M) ≡
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Q[L/M ] (0) , which is the coefficient of the “1” in the lower right-hand corner of (2.22),

C (L/M) =

∣∣∣∣∣∣∣∣∣∣∣∣

1
(L−M+1)!

1
(L−M+2)!

. . . 1
L!

1
(L−M+2)!

1
(L−M+3)!

. . . 1
(L+1)!

...
...

...

1
L!

1
(L+1)!

. . . 1
(L+M−1)!

∣∣∣∣∣∣∣∣∣∣∣∣
(2.23)

We assume that L ≥ M − 1. If this condition does not hold, the factorial functions

must be suitably reinterpreted as gamma functions for the analysis to be valid. We

remove the denominators from each row, by defining

p =
M∏
i=1

1

(L + i− 1)!
,

and then

C (L/M) = p

∣∣∣∣∣∣∣∣∣∣∣∣

L!
(L−M+1)!

L!
(L−M+2)!

. . . L 1

(L+1)!
(L−M+2)!

(L+1)!
(L−M+3)!

. . . L + 1 1
...

...
...

...

(L+M−1)!
L!

(L+M−1)!
(L+1)!

. . . L + M − 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
(2.24)

In (2.24), the determinant has M rows. Subtract the (M − 1)th row from the Mth,

then the (M − 2)th row from the (M − 1)th, etc. The identity

r!

s!
=

(r − 1)!

(s− 1)!
= (r − s)

(r − 1)!

s!
(2.25)

is used repeatedly. In column 1 of (2.24), r−s = M−1; in column 2, r−s = M−2;
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etc., and so one finds that

C (L/M) = p (M − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

L!
(L−M+1)!

L!
(L−M+2)!

. . . L 1

L!
(L−M+2)!

L!
(L−M+3)!

. . . 1 0
...

...
...

...

(L+M−2)!
L!

(L+M−2)!
(L+1)!

. . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

= p (−1)M−1 (M − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

L!
(L−M+2)!

L!
(L−M+3)!

. . . 1

(L+1)!
(L−M+3)!

(L+1)!
(L−M+4)!

. . . 1
...

...
...

(L+M−2)!
L!

(L+M−2)!
(L+1)!

. . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
(2.26)

This is a (M − 1) × (M − 1) determinant with a form identical to (2.24) but

with M replaced by M − 1. Consequently, an obvious inductive argument shows

that

C (L/M) = p
M∏
i=1

(−1)i−1 (i− 1)!

= (−1)M(M−1)/2
M∏
i=1

(i− 1)!

(L + i− 1)!
(2.27)

Thus, for the case M = 1,

C (L/1) =
1

L!
,

and for the case M = 2,

C (L/2) =

∣∣∣∣∣∣
1

(L−1)!
1
L!

1
L!

1
(L+1)!

∣∣∣∣∣∣ =
−1

L! (L + 1)!

The sign pattern of (2.27) distinguishes Polyá frequency series. The row operations

we have performed to deduce (2.27) from (2.23) are still permissible with the form

(1), except that the situation is more complicated. We consider the coefficient of
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(−z)j in Q[L/M ] (z) , which is

(−1)j q
[L/M ]
j =

∣∣∣∣∣∣∣∣∣∣∣∣

1
(L−M+1)!

1
(L−M+2)!

. . . 1
(L−j+1)!

. . . 1
(L+1)!

1
(L−M+2)!

1
(L−M+3)!

. . . 1
(L−j+2)!

. . . 1
(L+2)!

...
...

...
...

1
L!

1
(L+1)!

. . . 1
(L+M−j)!

. . . 1
(L+M)!

∣∣∣∣∣∣∣∣∣∣∣∣
(2.28)

where the column


1

(L−j+1)!

1
(L−j+2)!

...

1
(L+M−j)!

 is deleted. We perform a similar analysis: define

ṕ =
M∏
i=1

1

(L + i)!
,

and then

(−1)j q
[L/M ]
j = ṕ

∣∣∣∣∣∣∣∣∣∣∣∣

(L+1)!
(L−M+1)!

. . . (L+1)!
(L−j+1)!

. . . 1

(L+2)!
(L−M+2)!

. . . (L+2)!
(L−j+2)!

. . . 1
...

...
...

(L+M)!
L!

. . . (L+M)!
(L+M−j)!

. . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
(2.29)

Subtracting rows, and using the identity (2.25),

(−1)j q
[L/M ]
j = (−1)M ṕ

M !

j

×

∣∣∣∣∣∣∣∣∣∣∣∣

(L+1)!
(L−M+2)!

. . . (L+1)!
(L−j+2)!

. . . 1

(L+2)!
(L−M+3)!

. . . (L+2)!
(L−j+3)!

. . . 1
...

...
...

(L+M−1)!
L!

. . . (L+M−1)!
(L+M−j)!

. . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
which again is an (M − 1)× (M − 1) determinant with a form similar to (2.29). We
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make j similar reductions from (2.29) to obtain

(−1)j q
[L/M ]
j = ± ṕ

j!

j∏
i=1

(M − i + 1)!

×

∣∣∣∣∣∣∣∣∣∣∣∣

(L+1)!
(L−M+j+1)!

. . . (L+1)!
L!

1

(L+2)!
(L−M+j+2)!

. . . (L+2)!
(L+1)!

1
...

...
...

(L+M−j)!
L!

. . . (L+M−j)!
(L+M−j−1)!

1

∣∣∣∣∣∣∣∣∣∣∣∣
Removing a common factor factor from each row,

(−1)j q
[L/M ]
j = ± ṕ

j!

(L + M − j)!

L!

j∏
i=1

(M − i + 1)!

×

∣∣∣∣∣∣∣∣∣∣∣∣

L!
(L−M+j+1)!

. . . 1

(L+1)!
(L−M+j+2)!

. . . 1
...

(L+M−j−1)!
L!

. . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
The analysis now follows the familiar pattern using identity (2.25), and we deduce

that

(−1)j q
[L/M ]
j = ±

{
M∏
i=1

1

(L + i)!

}
(L + M − j)!

L!j!

×

{
j∏

i=1

(M − i + 1)!

}
M−j−1∏

i=1

i!

= ±(L + M − j)!

L!j! (M − j)!

M∏
i=1

i!

(L + i)!
(2.30)

The sign of the right-hand side of (2.30) is easily determined to be the same

as that of (2.27), because determinants (2.23) and (2.28) have the same dimension,
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and are expanded by the same top right-hand elements recursively. Hence

(−1)j q
[L/M ]
j = (−1)M(M−1)/2 (L + M − j)!

L!j! (M − j)!

M∏
i=1

i!

(L + i)!
(2.31)

Notice that (2.27) emerges as the special case with j = 0. Consequently, we have

q
[L/M ]
j = (−1)j C (L/M)

(L + M − j)!

(L + M)!

M !

(M − j)!

1

j!

and

Q[L/M ] (z) = C (L/M)
M∑

j=0

(L + M − j)!

(L + M)!

M !

(M − j)!

(−z)j

j!

= C (L/M)

{
1 +

M

L + M

(−z)

1!
+

M (M − 1)

(L + M) (L + M − 1)

(−z)2

2!
+ . . .

}

= C (L/M)

{
1 +

−M

−L−M

(−z)

1!
+

−M (−M + 1)

(−L−M) (−L−M + 1)

(−z)2

2!
+ . . .

}
= C (L/M)1 F1 (−M ; − L−M ; − z) . (2.32)

We may deduce from (2.32) that

P [L/M ] (z) = C (L/M)1 F1 (−L; − L−M ; z) ,

and hence the [L/M ] Padé approximant for exp (z) is

[L/M ] =
1F1 (−L; − L−M ; z)

1F1 (−M ; − L−M ; − z)
. (2.33)

2.3. Balk’s Results on Padé Approximations

Balk’s paper contains several results on the convergence of Padé approximants.

He starts with ‘general propositions about convergence of double sequences’

Let a set of points in a metric space be considered as an infinite table with
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two entries, hence to any entry (µ, ν) (µ−number of row, ν−number of column

µ, ν = 0, 1, 2, ...) it corresponds exactly one point αµ,ν of the set; to different entries

of the table it corresponds possibly equal points. This table will be denoted as:

”table {αµ,ν}∞µ,ν=0” of ”table T”.

The table {αµ,ν}∞µ,ν=0 is called convergent if all sequences of points with dif-

ferent entries of the table converge and have the same limit. In other words, in

the space under consideration there exists such element S, that for any sequence of

different entries (µk, νk) (k = 0, 1, 2, . . .)

lim
k→∞

ρ (S, αµk,νk
) = 0.

If all rows of the table converge and confinal then it does not imply the convergence

of the table. Even the convergence and confinality of all rows, columns and diagonals

of the table. (i.e. of sequences {αm,n} , {αn,m} , {αn,n+m} , where m is fixed and n

varies, n = 0, 1, 2, . . .) are not sufficient for the convergence of the table. A counter

example may be taken as the table where αn,2n = 1 (n = 0, 1, 2, . . .) and all other

elements equal to zero.

Nevertheless; to clerify the convergence of the table T, it is not necessary to

consider all sequences of its elements. It is clear from the following theorem.

Theorem 2.3.1. If all sequences {αµk,νk
}∞k=0 of the table T, such that

1)µk ≤ µk+1,

2)νk ≤ νk+1,

3) (µk+1 − µk) + (νk+1 − νk) = 1,

converge and confinal then the table T converges.

Proof During the proof we shall use that from any infinite sequence of non-
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negative integers it is possible to take an infinite nondecreasing subsequence.

Denote by S the limit of all sequences of points from the table satisfying

conditions 1) -3). By contradiction, let there exist a sequence

{αµk,νk
}∞k=0 (2.34)

which does not converge to S.

It means that there exist a number ε > 0 such that the inequality

ρ (S, αµk,νk
) > ε

holds for an infinite set of numbers of the sequence. Put those numbers in the

ascending order. We get the infinite sequence

{
αµkp ,νkp

}∞
p=0

which will be denoted by

{
αµ′p,ν′p

}∞
p=0

.

The inequality

ρ
(
S, αµ′p,ν′p

)
> ε (2.35)

holds for all p.

From the sequence of nonnegative integers
{
ν ′p
}∞

p=0
we choose a nondecreasing

subsequence
{
ν ′pr

}∞
r=0

which will be denoted by {ν ′′r }
∞
r=0 .

Together with it, we shall consider infinite sequence infinite sequence {µ′′r}
∞
r=0 ,
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where µ′′r = µ′pr
. From the last sequence, as a next step we should take an infinite

nondecreasing subsequence
{
µ′′rs

}
. The sequence of entries

{(
µ′′rs

, ν ′′rs

)}∞
s=0

is denoted

by {µ′′′s , ν ′′′s }
∞
s=0 . It satisfies conditions 1) -2) because of construction.

Evidently, it is always possible to include it into a sequence of entries satisfying

all three conditions of the theorem. For instance:

{(µ′′′0 , i0)}
ν′′′1

i0=ν′′′0
, {(j′′′0 , ν ′′′1 )}µ′′′1

j0=µ′′′0
, (2.36)

{(µ′′′1 , i1)}
ν′′′2

i1=ν′′′1
, {(j′′′1 , ν ′′′2 )}µ′′′2

j1=µ′′′1
, . . .

By the condition of the theorem the sequence of points with entries (2.36) converges

to S, which contradicts the relation (2.35). Theorem is proved.

In some cases the set of elements of the table T which are placed in the right

handside of its main diagonal more exactly the set of all elements αµ,ν such that

ν ≥ µ is of special interest. That set we shall call semi-table of the table T and

denote by {αµ,ν}∞µ,ν=0 (ν ≥ µ) , or shorter by ”semi-table T”.

If all sequences of points with different entries of the semi-table T
′
, converge

and confinal, then it is called convergent.

The investigation of the semi-table {αµ,ν}∞µ,ν=0 (ν ≥ µ) may be reduced to the

investigation table {βµ,λ}∞µ,λ=0 if βµ,λ = αµ,λ+µ (λ, µ = 0, 1, 2, . . .)

For semi-tables the following is true.

Theorem 2.3.2. If all sequences of the semi-table T
′
satisfying conditions 1) -3) of

the theorem 1, converge and confinal then the semi-table T’ converges.

Proof The proof of Theorem 2 is analogous to the proof of Theorem 1.

We shall prove a stronger assertion.
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Theorem 2.3.3. Let all sequences {αµk,νk
}∞k=0 of the semi-table {αµ,ν}∞µ,ν=0 (ν ≥ µ)

a) µk ≤ µk+1,

b)νk ≤ νk+1,

c) (µk+1 − µk) + (νk+1 − νk) = 1,

d) limk→∞
µk

νk
exists

be convergent and confinal. Then the semi-table converges.

Proof By contradiction let there exists a sequence in T in the right hand side

of main diagonal a sequence {αµk,νk
}∞k=0 , which does not converge to S, where S is

the limit of all sequences satisfying conditions a) -d).

By similar considerations as in the proof of Theorem 1 we deduce that there

exist a positive number ε and a sequence

{
αµ′r,ν′r

}∞
r=0

(2.37)

such that for all its members

ρ
(
S, αµ′r,ν′r

)
> ε, µ′r ≤ µ′r+1, ν ′r ≤ ν ′r+1. (2.38)

since the set of numbers
{

µ′r
ν′r

}∞
r=0

by condition of the theorem is bounded 0 ≤ µ′r
ν′r
≤ 1,

then it is possible to choose its convergent subsequence
{

µ′rn

ν′rn

}∞
n=0

, which is denoted

by
{

µ′′n
ν′′n

}∞
n=0

.

The sequence of entries satisfies conditions a, b and d of theorem. It is easy to

see that it is always possible to include it into a sequence of entries satisfying also

the condition c).
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It follows from the following remarks and the validity is almost evident.

Remark1. If (x, y) is an arbitrary point of the interval with ends An (µ′′n, ν
′′
n)

and An+1

(
µ′′n+1, ν

′′
n+1

)
, then the fraction x

y
is between µ′′n/ν

′′
n and µ′′n+1/ν

′′
n+1 .

Remark2. Let
(
µ′′n+1 − µ′′n

)
+
(
ν ′′n+1 − ν ′′n

)
= mn; then there exist mn + 1

points β
(n)
i

(
γ

(n)
i , δ

(n)
i

)
(i = 0, 1, . . . ,mn) , such that

1) B
(n)
0 ≡ An, B

(n)
m ≡ An+1;

2)γ
(n)
i ≤ γ

(n)
i+1, δ

(n)
i ≤ δ

(n)
i+1,

(
γ

(n)
i+1 − γ

(n)
i

)
+
(
δ
(n)
i+1 − δ

(n)
i

)
= 1;

3) Every point β
(n)
i is distant from the interval AnAn+1 less than 1.

From those remarks it follows that for any point β
(n)
i

(
γ

(n)
i , δ

(n)
i

)
it is possible

to find the pair of numbers (x, y) (point of interval AnAn+1) such that the following

relations hold:

1)γ
(n)
i = x + θ

(n)
i1

, δ
(n)
i = y+ θ

(n)
i2

(
θ

(n)
i1

and θ
(n)
i2

are some numbers which are less than or equal to 1 in absolute value
)

.

2)x
y

is between µ′′n/ν
′′
n and µ′′n+1/ν

′′
n+1 .

Then the fraction
(
γ

(n)
i − θ

(n)
i1

)
/
(
δ
(n)
i − θ

(n)
i2

)
is also between µ′′n/ν

′′
n and µ′′n+1/ν

′′
n+1

.

By the condition,

lim
n→∞

(µ′′n/ν
′′
n) exists, denoted by l.

(
Clearly lim

n→∞
γ

(n)
i /δ

(n)
i = l

)
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Furthermore, it is not difficult to check that the sequence of entries

{(
γ

(0)
i , δ

(0)
i

)}m0

i=0
,

{(
γ

(1)
i , δ

(1)
i

)}m1

i=0
, . . . ,

{(
γ

(n)
i , δ

(n)
i

)}mn

i=0
, . . .

satisfies all four conditions of theorem. But then, by the condition of the theorem the

sequence of points with those entries has to converge S, which contradicts relation

(2.38).

Sometimes only these sequences of elements of the table T, or of the semi-table

T’, such that

lim
n→∞

µn = lim
n→∞

νn = ∞

are of special interest.

Concerning the collection of such sequences it is possible to prove theorems

which are analogues of Theorems 1-3. For that reason it is necessary only to slightly

modify the proofs of Theorems 1-3.

In particular, the following proposition which we shall use in this work holds.

Theorem 2.3.4. If all sequences of the kind {αµn,νn}
∞
n=0 , lim

n→∞
µn = ∞, satisfying

either conditions 1-3 of the Theorem 1, or conditions a-d of Theorem 3, converge and

confinal then all sequences of the kind {αµn,νn}
∞
n=0 , lim

n→∞
µn = ∞ in the semitable

converge and confinal.

In investigations of the convergence of double sequences sometimes it is useful

the notion of equiuniform convergence of its rows or columns, diagonals, etc.

We shall say that rows of the table {αµ,ν}∞µ,ν=0 converge equiuniformly to the

point S if for any ε > 0 there exists N s.t. for all ν ≥ N and for any µ the inequality

ρ (S, αµ,ν) < ε. (2.39)
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Theorem 2.3.5. Any sequence {αµn,νn}
∞
n=0 of points with different entries of the

table {αµ,ν}∞µ,ν=0 converges to the point S under condition lim νn = ∞ if and only if

rows of the table equiuniformly converges to S.

Proof Necessity: Let rows of the table T be not equiuniformly convergent

to S. It means that there exists ε > 0, such that for infinite sequence of entries

(µ1,ν1) , (µ2, ν2) , . . . , (µn, νn) , lim
n→∞

νn = ∞ the inequality

ρ (S, αµn,νn) > ε. (2.40)

holds.

But it means that the sequence {αµn,νn} does not converge to S.

Sufficiency: Let all rows of the table T be equiuniformly convergent to S. Let

{αµn,νn}
∞
n=0 be a sequence of points on the table such that lim

n→∞
νn = ∞. Let us prove

that the sequence {αµn,νn}
∞
n=0 converges to S.

Because of equiuniformly convergence of the rows there exists N such that for

all νn > N

ρ (S, αµn,νn) < ε.

But since lim
n→∞

νn = ∞, there exists n0 such that νn > N for n > n0. So for any

ε > 0 there exists n0, such that for all n > n0

ρ (S, αµn,νn) < ε. (2.41)

And it means that lim
n→∞

αµn,νn = S.

Theorem 2.3.6. The table T converges to the point S if and only if rows of table

and columns of table equiuniformly converge to S,simultaneously.
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Proof Necessity: Evidently follows from the former theorem.

Sufficiency: Let rows and columns of the table T equiuniformly converge to S.

Then, obviously for any ε > 0 there exists N, such that for all µ > N, ν > N the

inequality

ρ (S, αµ,ν) < ε

holds.

In other words, condition (2.41) is valid for any entry (µ, ν) outside of the

square 0 ≤ µ ≤ N, 0 ≤ ν ≤ N.

Let us prove now that any sequence {αµn,νn}
∞
n=0 of points with different entries

of the table converges to S.

Take arbitrary ε > 0. Then as we saw the inequality

ρ (S, αµn,νn) < ε. (2.42)

holds for all points αµn,νn with possible exclusion of points that are inside certain

square 0 ≤ µn ≤ N, 0 ≤ νn ≤ N. But since points have different entries, then

inside that square there may be only finite number of the points in this sequence

{αµn,νn}
∞
n=0 .

So, inequality (2.42) holds for almost all members of the sequence and it means

that it converges to S. Sufficiency is proved.



CHAPTER 3

MULTIPOINT PADE APPROXIMATIONS AND

NEWTON-PADE APPROXIMATIONS

3.1. Foundations of the Multipoint Padé Approximations Theory

First, we need the basic framework of Newtonian polynomial interpolation.

Divided Differences For a function f (z) is satisfying such continuity prop-

erties as are necessary, we define

f [z0] = f (z0) , (3.1)

f [z0, z1] =
f (z0)− f (z1)

z0 − z1

, (3.2)

and other divided differences are defined recursively by

f [z0, z1, . . . , zr+1] =
f [z0, z1, . . . , zr−1, zr]− f [z0, z1, . . . , zr−1, zr+1]

zr − zr+1

, (3.3)

r = 1, 2, . . . .

Theorem 3.1.1. (Hermite’s Formula) If f (z) is analytic inside and continuous

on a contour Γ enclosing z0, z1, . . . , zk, then

f [z0, z1, . . . , zr] =
1

2πi

∫
Γ

f (ζ)
r∏

k=0

(ζ − zk)
dζ (3.4)

33
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Proof. The proof is by induction using (3.1), (3.2) and (3.3).

For confluent points z0 = z1 = . . . = zr, it is natural to define

f [z0, z0, . . . , z0] =
f (r) (z0)

r!
. (3.5)

Hermite’s formula easily extends to cases of partial confluence.

Corollary. f [z0, z1, . . . , zr] is a totally symmetric function of all its arguments

z0, z1, . . . , zr.

Newton’s Formulas.

f (z) =
n∑

i=0

f [z0, z1, . . . , zj]
i−1∏
k=0

(z − zk)

+ f [z0, z1, . . . , zn, z]
n∏

k=0

(z − zk) . (3.6)

For n > 0, (3.6) is an identity expressing f (z) as a Newton polynomial and a

remainder term. One may “deduce” the formal identity

f (z) = f [z0] + (z − z0) f [z0, z1] + (z − z0) (z − z1) f [z0, z1, z2] + . . . . (3.7)

Whenever the remainder in (3.6) tends to zero, (3.7) becomes an identity. The proof

of (3.6) by induction is straightforward. It is the interpretation of (3.6) and (3.7)

that is most significant. If z0 = z1 = . . . = zi = . . . , (3.6) and (3.7) become

f (z) = f (z0) + (z − z0) f
′
(z0) +

(z − z0)
2

2!
f
′′
(z0) + . . . (3.8)

=
n∑

i=0

(z − z0)
i

i!
f (i) (z0) +

(z − z0)
n+1

2πi

∫
Γ

f (ζ) dζ

(ζ − z0)
n (ζ − z)

. (3.9)
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Equation (3.9) holds provided Γ is a contour enclosing z, z0 and f (z) is analytic

within Γ and continuous on Γ. In fact, (3.9) gives the Taylor series for f (z) and its

remainder. For conciseness, we make a further definition:

Definition 3.1. (Warner, D.D. ;1974) For a function f (z) is satisfying such conti-

nuity properties as are necessary, then F , the Formal Newton Series (FNS), is

the infinite triangular matrix of divided differences defined by

F ≡



f00 f01 f02 f03 . . .

0 f11 f12 f13 . . .

0 0 f22 f23 . . .

0 0 0 f33 . . .
...

...
...

...


where

fi,j = f [zi, zi+1, . . . , zj] , for j ≥ i. (3.10)

Then Newton’s formula (3.7) becomes the formal identity

f (z) = f (z0) + f0,1 (z − z0) + f0,2 (z − z0) (z − z1) + . . .

However, the multiplication of two FNS in that form is possible only using all

data fi,j with using the following lemma:

Lemma([Milne-Thomson L.M., 1960]) If h (z) = f (z) g (z), then for i ≤ j

hij =

j∑
k=i

fikgkj =

j∑
k=i

gikfkj. (3.11)
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Proof The lemma is trivially true for n = 0. We proceed inductively,

hij =
hi,j−1 − hi+1,j

zi − zj

=
1

zi − zj

[
j−1∑
k=i

fikgk,j−1 −
j∑

k=i+1

fi+1,kgkj

]

=
1

zi − zj

[
j−1∑
k=i

fik (gk,j−1 − gk+1,j)−
j∑

k=i+1

(fi,k−1 − fi+1,k) gkj

]

= fiigij +
1

zi − zj

[
j−1∑

k=i+1

fikgkj (zk − zj)−
j−1∑

k=i+1

fikgkj (zi − zk)

]
+ fijgjj

=

j∑
k=i

fikgkj. (3.12)

Finally, we observe that the proceeding argument is symmetric in f and g.

We now proceed to consider interpolation of a given function f (z) using ratio-

nal fractions which are sometimes called interpolants. The basic problem is to find

a rational fraction

r[L/M ] (z) = u[L/M ] (z) /v[L/M ] (z) (3.13)

where u[L/M ] (z) has maximum order L, v[L/M ] (z) has maximum order M and

r[L/M ] (zi) = f (zi) , i = 0, 1, 2, . . . , L + M. (3.14)

If a solution to this basic problem exists, it is obtained by defining

u[L/M ] (z) =
L∑

j=0

ujz
j, v[L/M ] (z) =

M∑
k=0

vkz
k (3.15)

for specific values of L, M. Let us assume that v0 = 1 is a permissible normalization

for the moment. Substitution of (3.13) and (3.15) into (3.14) yields L+M +1 linear

equations for L+M +1 unknown coefficients u0, u1, . . . , uL, v1, v2, . . . , vM . Normally,
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there is a unique solution leading to a rational interpolant which is uniquely defined

up to a constant common factor in the numerator and denominator of (3.13). Oth-

erwise, the equations are said to be degenerate. If the equations are degenerate

but consistent, and v[L/M ] (z) 6= 0, then u[L/M ] (z) and v[L/M ] (z) have a common

factor. Using (3.22) with f (z) = r[L/M ] (z) , it follows that the factors (z − zi) ,

i = 0, 1, . . . , L + M are the only possible elementary common factors of u[L/M ] (z)

and v[L/M ] (z) . For each such factor (z − zk) , (3.14) must be tested with i = k for

the proposed solution. If the linear equations are inconsistent, no rational fraction

of type [L/M ] fits the data. As an example, we next show that no rational function

of type [1/1] fits the data

f (−1) = 1, f (0) = 1, f (1) = 3 (3.16)

at the indicated points. The equations (3.13), (3.14) and (3.15) become

u0 − u1 = v0 − v1, (3.17)

u0 = v0, (3.18)

u0 + u1 = 3 (v0 + v1) . (3.19)

Equations (3.17) and (3.18) imply that u0 = v0, u1 = v1, and so (3.19) implies that

u0 = u1 = v0 = v1 = 0. Equations (3.17), (3.18) and (3.19) are degenerate. In fact,

only the new value f (1) = 1 would render equations consistent and allow rational

interpolation to be effected by a (degenerate) interpolant of type [1/1] .

Since Padé approximation is rational approximation with complete confluence

of the interpolation points, it is interesting to note the similarity between the previ-

ous analysis and that of the existence or nonexistence of Padé approximants. Having

briefly considered some of the hazards of using rational interpolation, the next the-

orem gives the standard solution in the nondegenerate case.

Theorem 3.1.2. The N-point Padé approximant of type [L/M ] defined by interpo-
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lation at the points z0, z1, . . . , zL+M , allowing confluence, is normally given by

r[L/M ] (z) = u[L/M ] (z) /v[L/M ] (z) ,

fwhere u[L/M ] (z) and v[L/M ] (z) are defined by

u[L/M ] (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fM,L+1 fM,L+2 . . . fM,L+M

L∑
j=M

fM,j

j−1∏
k=0

(z − zk)

fM−1,L+1 fM−1,L+2 . . . fM−1,L+M

L∑
j=M−1

fM−1,j

j−1∏
k=0

(z − zk)

...
...

...
...

f0,L+1 f0,L+2 . . . f0,L+M

L∑
j=0

f0,j

j−1∏
k=0

(z − zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(3.20)

v[L/M ] (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fM,L+1 fM,L+2 . . . fM,L+M

M−1∏
k=0

(z − zk)

fM−1,L+1 fM−1,L+2 . . . fM−1,L+M

M−2∏
k=0

(z − zk)

...
...

...
...

f0,L+1 f0,L+2 . . . f0,L+M 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.21)

and the definition (3.10) has been used.

The remainder is given by

v[L/M ] (z) f (z)− u[L/M ] (z) =
L+M∏
k=0

(z − zk)

×

∣∣∣∣∣∣∣∣∣∣∣∣

fM,L+1 fM,L+2 . . . fM,L+M f [zM , . . . , zL+M , z]

fM−1,L+1 fM−1,L+2 . . . fM−1,L+M f [zM−1, . . . , zL+M , z]
...

...
...

...

f0,L+1 f0,L+2 . . . f0,L+M f [z0, . . . , zL+M , z]

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.22)

If “impossible” entries in (3.20)-(3.22) occur, the following interpretation is intended:
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If j < i, then

fi,j = 0,

j∑
k=i

(term)k = 0, and

j∏
k=i

(factor)k = 1.

A sufficient condition for the result that u[L/M ] (zi) /v[L/M ] (zi) = f (zi) is that

v[L/M ] (zi) 6= 0, i = 0, 1, . . . , L + M.

Proof The formulas (3.20) and (3.21) are polynomials of the appropriate

orders. Using Newton’s formula (3.20), it follows that

v[L/M ] (z) f (z)− u[L/M ] (z) =
L∏

k=0

(z − zk)

×

∣∣∣∣∣∣∣∣∣∣∣∣

fM,L+1 fM,L+2 . . . fM,L+M f [zM , . . . , zL, z]

fM−1,L+1 fM−1,L+2 . . . fM−1,L+M f [zM−1, . . . , zL, z]
...

...
...

...

f0,L+1 f0,L+2 . . . f0,L+M f [z0, . . . , zL, z]

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.23)

Recalling definitions (3.3) and (3.10), repeated subtraction of the jth column of

(3.23) from the last for j = 1, 2, . . . ,M yields (3.22). This is manifestly zero at

z0, . . . , zL+M . Provided v[L/M ] (zi) 6= 0, i = 0, 1, . . . , L + M, the result follows.

3.2. Newton-Padé Approximations in Gallucci-Jones Form

Definition 3.2. A formal Newton series (FNS) is an ordered triple [{αn}∞0 , {βn}∞0 , {fn}∞0 ] ,

where α0, α1, α2, . . . and β1, β2, β3, . . . are complex numbers (not necessarily distinct)

and for each n = 0, 1, 2, . . . , fn is the polynomial

fn (z) =
n∑

k=0

akωk (z) , (3.24)
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where

ω0 (z) = 1; ωk (z) =
n∏

j=1

(z − βj) , k = 1, 2, 3, . . . ,

and where z is a complex variable. The αn, βn and fn are called, respectively, the

nth Newton coefficient, interpolation point, and partial sum of [{αn} , {βn} , {fn}]

and a FNS is said to converge at z if the sequence of partial sums {fn (z)} is con-

vergent. When convergent, the limit lim fn (z) is called the value of the FNS at z.

For convenience (when there is no danger of confusion) we may use the symbols f

and

f (z) =
∞∑

n=0

αnωn (z) (3.25)

to represent the FNS [{αn} , {βn} , {fn}] . As in many other similar situations in

analysis, the symbols (3.25) are used to denote both the infinite process and the

value of its limit, when it exists.

Some arithmetic operations for formal Newton series are given by the following:

Definition 3.3. Let f (z) =
∞∑

k=0

αkωk (z) and g (z) =
∞∑

k=0

ckωk (z) be FNS with

interpolation points {βi} and let c be a complex number. We define:

(a) (f + g) (z) =
∞∑

k=0

(αk + ck) ωk (z) ,

(b) (c.f) (z) =
∞∑

k=0

(c.αk) ωk (z) ,

(c) (z.f) (z) = α0β1ω0 (z) +
∞∑

k=1

(αk−1 + αkβk+1) ωk (z) ,

(d) If c 6= βi, i = 1, 2, 3, . . . , then f (z) / (c− z) =
∞∑

k=0

bkωk (z) ,
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where

b0 = a0/ (β1 − c) ; bk = (αk − bk−1) / (βk+1 − c) , k = 1, 2, 3, . . . (3.26)

Every FNS (3.25) determines a function f defined at the points of convergence of

the partial sums (3.24). Clearly, (3.25) always converges (at least) at the points

β1, β2, β3, . . . . Conversely, under certain conditions a function f will determine a

FNS expansion with a given sequence of interpolation points {βi} .

If αk = 0 for k ≥ n + 1, then (3.26) is a finite (or terminating) FNS and

defines a polynomial in z of degree not greater than n. Conversely, as an immedi-

ate consequence of Definition 2, every polynomial of degree n determines a unique

(finite) FNS with the given sequence of interpolation points {βi} . From Definition

2 it is also clear that the product (multiplication) of a FNS by a polynomial is

a well-defined FNS (with the same sequence of interpolation points); the quotient

(division) of a FNS by a polynomial is a well-defined FNS (with the same sequence

of interpolation points) provided the (divisor) polynomial does not vanish at any of

the interpolation points. The following theorem provides further useful information

concerning multiplication of a FNS by polynomials.

Theorem 3.2.1. Let f (z) =
∞∑

k=0

αkωk (z) be a FNS with interpolation points {βn} .

If m, ν and µ are positive integers, let K
(m)
ν,µ denote the sum of all products consisting

of m factors of the βi’s with

ν − µ + 1 ≤ i ≤ ν (K(m)
ν,µ = 0, if m < 0 or if µ < 1; K(0)

ν,µ = 1 if µ ≥ 1).

Then

(A) For p = 1, 2, 3, . . . ,

zpf (z) =
∞∑

k=0

Ak,pωk (z) , (3.27)
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where (setting ai = 0 for i < 0)

Ak,ν =

p∑
j=0

αk−jK
(p−j)
k+1,j+1. (3.28)

(B) If ν (z) = d0 + d1z + . . . + dmzm, m ≥ 0, then

ν (z) f (z) =
∞∑

k=0

bkωk (z) , (3.29)

where

bk =
m∑

j=0

djAk,j. (3.30)

(C) In particular, with the notation of (B),

ν (z) f (z) =
∞∑

k=n+m+1

bkωk (z) ,

if αi = 0 for i = 0, 1, . . . , n + m.

(D) If c 6= βi for i = 1, 2, 3, . . . , and ak = 0 for k = 0, 1, . . . , n + m, then

f (z) / (z − c) =
∞∑

k=n+m+1

bkωk (z) ,

where the coefficients bk are defined by (3.26).

Proof It can be verified directly from the definition of the K
(m)
ν,µ , that

K
(p−j)
k,j + βk+1K

(p−1−j)
k+1,j+1 = K

(p−j)
k+1,j+1, j = 0, 1, . . . , p; p = 1, 2, 3, . . . (3.31)

The proof of (A) is by an induction on p. The case p = 1 follows immediately from
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Definition 2c. Now assume that (3.27) and (3.28) is true for 1 ≤ p ≤ n. Then

znf (z) = z
(
zn−1f (z)

)
= z

∞∑
k=0

Ak,n−1ωk (z) , (by induction hypothesis)

= A0,n−1β1ω0 (z) +
∞∑

k=0

(Ak−1,n−1 + βk+1Ak,n−1) ωk (z) , (by Definition 2c)

=
∞∑

k=0

Ak,nωk (z) ,

where the Ak,n satisfy (3.28), since

A0,n = A0,n−1β1 =
(
α0K

(n−1)
1,1

)
β1 = α0K

(n)
1,1

and, for k = 1, 2, 3, . . . ,

Ak,n = Ak−1,n−1 + Ak,n−1βk+1

=
n−1∑
j=0

αk−1−jK
(n−1−j)
k,j+1 + βk+1

n−1∑
j=0

αk−jK
(n−1−j)
k+1,j+1 (by induction hypothesis)

=
n∑

j=0

αk−j

(
K

(n−j)
k+j,1 + βk+1K

(n−1−j)
k+1,j+1

)
=

n∑
j=0

αk−jK
(n−j)
k+1,j+1 (by (3.31)).

Part (B) is an immediate consequence of (3.27) and (3.28). Part (C) follows from

(3.30) and the fact that Ak,j = 0 provided ai = 0 for all i = k, k− 1, . . . , k− j. Part

(D) follows immediately from (3.26) and this completes the proof.

Definition 3.4. If u (z) and v (z) are polynomials in z, v (z) not identically zero,

then (u, v) is called a rational expression. Two rational expressions (u, v) and (u∗, v∗)

are said to be equivalent, denoted by (u, v) ∼ (u∗, v∗) , if and only if

u (z) v∗ (z) ≡ u∗ (z) v (z) ; (3.32)

they are called equal, denoted by (u, v) = (u∗, v∗) , if and only if there exists a
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nonzero complex number α such that

α · u (z) ≡ u∗ (z) , α · v (z) ≡ v∗ (z) . (3.33)

A rational expression (u, v) is said to be of type [m, n] if and only if the degree of u

is at most n and the degree of v is at most m.

Theorem 3.2.2. Let f(z) =
∑

akωk(z) be a FNS with interpolation points {γi}

and let m and n be (fixed) nonnegative integers. Then:

(A) If u (z) = c0ω0(z)+c1ω1(z)+. . .+cnωn(z) and v (z) = d0+d1z+. . .+dmzm,

then a necessary and sufficient condition that the FNS vf − u be the form

v (z) f (z)− u (z) = bn+m+1ωn+m+1(z) + bn+m+2ωn+m+2(z) + . . . (3.34)

is that the coefficients cj and dj satisfy the system of equations

d0A0,0 + d1A0,1 + . . . + dmA0,m = c0

d0A1,0 + d1A1,1 + . . . + dmA1,m = c1

... (3.35)

d0An,0 + d1An,1 + . . . + dmAn,m = cn

d0An+1,0 + d1An+1,1 + . . . + dmAn+1,m = 0

... (3.36)

d0An+m,0 + d1An+m,1 + . . . + dmAn+m,m = 0

where Ak,ν are defined by (3.28).
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(B) There exists a unique (up to equivalence ∼) rational expression (u, v) of

type [m, n] , such that the FNS v (z) f (z)− u (z) has the form (3.34).

Proof (A) By Theorem 1, letting ck = 0 for k ≥ n, we obtain

v (z) f (z)− u (z) =
∞∑

k=0

(
m∑

j=0

djAk,j − ck

)
ωk (z) , (3.37)

of which (A) is an immediate consequence. To prove (B), we note that (3.36) is a

homogeneous linear system of m equations in (m + 1) unknowns. Hence, there exist

d0, d1, . . . , dm, not all zero, satisfying (3.36). Having chosen such di, we choose the

ci to satisfy (3.35) and the resulting rational expression (u, v) is of type [m, n] such

that

v∗ (z) f (z)− u∗ (z) = b∗n+m+1ωn+m+1 (z) + b∗n+m+2ωn+m+2 (z) + . . . . (3.38)

By Theorem 1(C), v (v∗f − u∗) and v∗ (vf − u) are both FNS whose first n +

m + 1 coefficients are zero. Hence,

v∗ (z) u (z)− v (z) u∗ (z)

= v (z) [v∗ (z) f (z)− u∗ (z)]− v∗ (z) [v (z) f (z)− u (z)]

is also a FNS whose first n+m+1 coefficients vanish. But v∗u−vu∗ is a polynomial of

degree at most n+m and therefore must be identically zero. Thus (u∗, v∗) ∼ (u, v) ,

which completes the proof.

Definition 3.5. Let f (z) =
∞∑

k=0

αkωk (z) be a FNS with interpolation points {βi} .

Corresponding to each ordered pair of nonnegative integers (m, n) , Theorem 1 as-

serts the existence of a unique rational function

Rm,n (f, z) = Pm,n (f, z) /Qm,n (f, z) , (3.39)
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such that (Pm,n, Qm,n) is a rational expression equivalent to a rational expression

(u, v) of type [m, n] satisfying (3.34). Rm,n (f, z) is called the [m, n] Newton-Padé

approximant of f (z) . The doubly infinite array

R0,0 (f, z) R0,1 (f, z) R0,2 (f, z) . . .

R1,0 (f, z) R1,1 (f, z) R1,2 (f, z) . . .

R2,0 (f, z) R2,1 (f, z) R2,2 (f, z) . . .

. . . . . . . . . . . .

(3.40)

is called the Newton-Padé table of f (z) .

3.3. Algorithms for Computation of Newton-Padé Approximations

Now, let us give some algorithms for calculating multipoint Padé or Newton-

Padé approximations. They are based on Claessens’s identities. For multipoint Padé

approximation, the following theorem holds.

Theorem 3.3.1. [Claessens, 1978] .

[{
r[L+1/M ] (z)− r[L/M ] (z)

}−1 −
{
r[L/M+1] (z)− r[L/M ] (z)

}−1
]
(z − zL+M)

=
[{

r[L/M−1] (z)− r[L/M ] (z)
}−1 −

{
r[L−1/M ] (z)− r[L/M ] (z)

}−1
]
(z − zL+M+1)

(3.41)

whenever the indicated quantities exist and are nondegenerate. Claessens’s identity

reduces to Wynn’s identity in the confluent limit.

Outline proof of (3.41). We define

F
[L/M ]
1,L+M =

∣∣∣∣∣∣∣∣∣∣∣∣

fM,L+1 fM,L+2 fM,L+M

fM−1,L+1 fM−1,L+2 fM−1,L+M

f1,L+1 f1,L+2 f1,L+M

∣∣∣∣∣∣∣∣∣∣∣∣
(3.42)
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and note that F
[L/M ]
1,L+M = C (L/M) in the confluent limit. The subscripts of

F
[L/M ]
1,L+M denote the indices 1, 2, . . . , L + M of the interpolation points used in its

construction. Using the methods in Wynn’s identity, we find that

r[L+1/M ] (z)− r[L/M ] (z)

=
(z − z0) . . . (z − zL+M+1) F

[L+1/M+1]
0,L+M+1 F

[L+1/M ]
0,L+M

v[L+1/M ] (z) v[L/M ] (z)
, (3.43)

and we generalize directly to

r[L+1/M ] (z)− r[L/M ] (z)

=
(z − z0) . . . (z − zL+M+1) F

[L/M+1]
0,L+M F

[L+1/M+1]
0,L+M+1

v[L/M+1] (z) v[L/M ] (z)
(3.44)

By reordering the points of (3.21), we find that

v[L/M+1] (z)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fM,L fM−1,L . . . f0,L

L+M+1∏
k=L+1

(z − zk)

fM,L+1 fM−1,L+1 . . . f0,L+1

L+M+1∏
k=L+2

(z − zk)

...
...

...
...

fM,L+M+1 fM−1,L+M+1 . . . f0,L+M+1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By applying Sylvester’s identity to this, we find that

v[L/M+1] (z) F
[L+1/M ]
0,L+M

= v[L+1/M ] (z) F
[L/M+1]
0,L+M − (z − zL+M+1) F

[L+1/M+1]
0,L+M+1 v[L/M ] (z) . (3.45)

Hence, we deduce from (3.43), (3.44) and (3.45) that

{
r[L+1/M ] (z)− r[L/M ] (z)

}−1 −
{
r[L/M+1] (z)− r[L/M ] (z)

}−1

=

{
v[L/M ] (z)

}2
(z − z0)

−1 . . . (z − zL+M)−1

F
[L+1/M ]
0,L+M F

[L/M+1]
0,L+M

.
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Equation (3.41) follows from a similar treatment of the right-hand side.

The generalized ε−algorithm is the formal identity

(z − zk+j+1)
[
ε
(j)
k+1 − ε

(j+1)
k−1

] [
ε
(j+1)
k − ε

(j)
k

]
= 1 (3.46)

for indices k, j in the range k = 0, 1, 2, . . . and j ≥ − [k/2] . The artificial

initialization conditions are

ε
(j)
−1 = 0, j = 0, 1, 2, . . . ,

and

ε
(−k−1)
2k = 0, k = 0, 1, 2, . . . . (3.47)

The usual initialization condition, using values derived from an interpolating poly-

nomial is

ε
(j)
0 = r[j/0] (z) . (3.48)

Elements of the ε−table are identified with values of rational interpolants by the

formula

ε
(j)
2k = r[k+j/k] (z) , k = 0, 1, 2, . . . , j ≥ −k. (3.49)

In the sequel G. Claessens denotes the coefficients of ω0i (z) in pmn (resp. qmn)

by α
(i)
mn (resp. b

(i)
mn).

First he proves two theorems, which relate certain triples of elements in the

rational Hermite interpolation table. A first theorem concerns the elements rm,n =
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P1/Q1, rm,n−1 = P2/Q2 and rm+1,n−1 = P3/Q3.

Theorem 3.3.2.

P1

Q1

=
α

(m)
m,n−1P3 − α

(m+1)
m+1,n−1 (z − zm+n) P2

α
(m)
m,n−1Q3 − α

(m+1)
m+1,n−1 (z − zm+n) Q2

. (3.50)

Proof Since α
(m+1)
m+1,n−1 6= 0, it is clear that the denominator of the right side

of (3.50) has exactly degree n.

On the other hand, since

α
(m)
m,n−1α

(m+1)
m+1,n−1 − α

(m+1)
m+1,n−1α

(m)
m,n−1 = 0

the numerator has at most degree m.

Now let

U (z) =
[
α

(m)
m,n−1Q3 (z)− α

(m+1)
m+1,n−1 (z − zm+n) Q2 (z)

]
f (z)

−
[
α

(m)
m,n−1P3 (z)− α

(m+1)
m+1,n−1 (z − zm+n) P2 (z)

]
,

or

U (z) = α
(m)
m,n−1 [Q3 (z) f (z)− P3 (z)]

− α
(m+1)
m+1,n−1 (z − zm+n) [Q2 (z) f (z)− P2 (z)] .

We will show that

U (z) = 0 (ω0,m+n+1 (z)) . (3.51)

Suppose in the set {zi} , i = 0, 1, . . . ,m + n there are l distinct points zαi, i =
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1, 2, . . . , l with resp. multiplicity mi. Then

l∑
i=1

mi = m + n + 1.

Consider also the formal ith derivative of U (z) ,

U (i) (z) = α
(m)
m,n−1 [Q3 (z) f (z)− P3 (z)](i)

− α
(m+1)
m+1,n−1 (z − zm+n) [Q2 (z) f (z)− P2 (z)](i)

− iα
(m+1)
m+1,n−1 [Q2 (z) f (z)− P2 (z)](i−1) ,

with i ≥ 1.

Then, it is easy to conclude, using the definition of P2/Q2 and P3/Q3, that

U (j) (zαi) = 0

for j = 0, 1, . . . ,mi − 1 and i = 1, 2, . . . , l, which implies (3.51).

Because of the supposed normality of the rational Hermite interpolation table

and because of the unicity of the rational Hermite interpolant, the function associ-

ated with the right side of (3.50) must be equal to the rational Hermite interpolant

of order [m,n] (and hence the numerator has exactly degree m).

This concludes the proof.

Considering the elements rm−1,n = (P1/Q1) , rm,n = (P2/Q2) and rm,n−1 =

(P3/Q3) , we can prove in the same way the following result.

Theorem 3.3.3.

P1

Q1

=
α

(m)
m,n−1P2 − α

(m)
m,nP3

α
(m)
m,n−1Q2 − α

(m)
m,nQ3

. (3.52)
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Note that in (3.50) because of the appearance of the factor z − zm+n, the represen-

tation as a Newton series for the numerator and the denominator of the rational

Hermite interpolant of order [m, n] has been lost.

The relations (3.50) and (3.52) can be used for calculating the rational Hermite

interpolants. Indeed, note that relation (3.50) enables us to go to the right in the

rational Hermite interpolation table, while relation (3.52) allows us to move upwards.

A First Method: Consider the elements in the rational Hermite interpolation

table lying on an ascending staircase,

Tk = {rk,0, rk−1,0, rk−1,1, . . . , r0,k} , (3.53)

with k ≥ 1.

Theorem 3.3.4. To compute the coefficients of the numerator and denominator

in the sequence Tk, the following recurrence formulas exist:

α
(i)
k−j,j =

α
(k−j)
k−j,j−1α

(i)
k−j+1,j−1 − α

(k−j+1)
k−j+1,j−1

[
α

(i−1)
k−j,j−1 − (zk − zi) α

(i)
k−j,j−1

]
α

(k−j)
k−j,j−1 + (zk − z0) α

(k−j+1)
k−j+1,j−1

,

i = 0, 1, . . . , k − j (3.54)

b
(i)
k−j,j =

α
(k−j)
k−j,j−1b

(i)
k−j+1,j−1 − α

(k−j+1)
k−j+1,j−1

[
b
(i−1)
k−j,j−1 − (zk − zi) b

(i)
k−j,j−1

]
α

(k−j)
k−j,j−1 + (zk − z0) α

(k−j+1)
k−j+1,j−1

,

i = 0, 1, . . . , j
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for j = 1, 2, . . . , k and

α
(i)
k−j−1,j =

α
(k−j)
k−j,j−1α

(i)
k−j,j − α

(k−j)
k−j,j α

(i)
k−j,j−1

α
(k−j)
k−j,j−1 − α

(k−j)
k−j,j

,

i = 0, 1, . . . , k − j − 1 (3.55)

b
(i)
k−j−1,j =

α
(k−j)
k−j,j−1b

(i)
k−j,j − α

(k−j)
k−j,j b

(i)
k−j,j−1

α
(k−j)
k−j,j−1 − α

(k−j)
k−j,j

,

i = 0, 1, . . . , j

for j = 1, 2, . . . , k − 1.

Proof First, we rewrite (3.50) and (3.52) in the respective forms

pk−j,j

qk−j,j

=
α

(k−j)
k−j,j−1pk−j+1,j−1 − α

(k−j+1)
k−j+1,j−1 (z − zk) pk−j,j−1

α
(k−j)
k−j,j−1qk−j+1,j−1 − α

(k−j+1)
k−j+1,j−1 (z − zk) qk−j,j−1

(3.56)

and

pk−j−1,j

qk−j−1,j

=
α

(k−j)
k−j,j−1pk−j,j − α

(k−j)
k−j,j pk−j,j−1

α
(k−j)
k−j,j−1qk−j,j − α

(k−j)
k−j,j qk−j,j−1

(3.57)

To determine the Newton coefficients of the numerator and denominator of rk−j,j,

we proceed as follows.

The numerator N of the right side of (3.56) can be written as

N = α
(k−j)
k−j,j−1

k−j+1∑
i=0

α
(i)
k−j+1,j−1ω0i (z)− α

(k−j+1)
k−j+1,j−1

k−j∑
i=0

α
(i)
k−j,j−1ω0i (z)

× [(z0 − zk) ω00 (z) + ω01 (z)] .
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The second term on the right side becomes

N = α
(k−j)
k−j,j−1

k−j+1∑
i=0

α
(i)
k−j+1,j−1ω0i (z)− α

(k−j+1)
k−j+1,j−1

×
k−j+1∑

i=0

[
α

(i)
k−j,j−1 + (zi − zk) α

(i)
k−j,j−1

]
ω0i (z)

with the convention that α
(i)
k−j,j−1 = 0, if i < 0 or i > k − j or,

N =

k−j+1∑
i=0

(
α

(k−j)
k−j,j−1α

(i)
k−j+1,j−1 − α

(k−j+1)
k−j+1,j−1α

(i−1)
k−j,j−1

+ (zk − zi) z
(k−j+1)
k−j+1,j−1α

(i)
k−j,j−1

)
ω0i (z) .

Analogously, the denominator D of (3.56) can be expressed as

D =

j∑
i=0

(
α

(k−j)
k−j,j−1b

(i)
k−j+1,j−1 − α

(k−j+1)
k−j+1,j−1b

(i−1)
k−j,j−1

+ (zk − zi) α
(k−j+1)
k−j+1,j−1b

(i)
k−j,j−1

)
ω0i (z) ,

with b
(i)
k−j,j−1 = 0 if i < 0 or i > j − 1.

Normalizing so that the denominator takes on the value 1 for z = z0 we finally

get the first set of recurrence formula (3.54). Note that the denominator in (3.54)

can not vanish, since otherwise the numerator and denominator in (3.55) would have

a common factor z − z0, which contradicts the supposed normality of the rational

Hermite interpolants. From (3.57) we immediately derive (3.55) by taking into

account the normalizing condition. Again the denominator in (3.55) can not vanish

for an analogous reason.

Making alternately use of (3.54) and (3.55) it is possible to construct the

Newton coefficients of the elements of (3.53), since we know the first two elements

as partial sums of the given Newton series.

Theorem 3.3.5. For the coefficients of the denominators of the rational Hermite
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interpolants we have the recurrence relation

b
(i)
k−j+1,j−1 = b

(i)
k−j,j [1 + (zk − z0) Bk−j+1,j−1] (3.58)

+Bk−j+1,j−1

[
b
(i−1)
k−j,j−1 − (zk − zi) b

(i)
k−j,j−1

]
,

for i = 0, 1, . . . , j − 1, where

Bk−j+1,j−1 = −
b
(j)
k−j,j

b
(j)
k−j,j (zk − z0) + b

(j−1)
k−j,j−1

.

Proof The second relation of (3.54) is our starting point. Taking into account

that for i = j

b
(i)
k−j,j = −

α
(k−j+1)
k−j+1,j−1b

(j−1)
k−j,j−1

α
(k−j)
k−j,j−1 + (zk − z0) α

(k−j+1)
k−j+1,j−1

,

we find that

α
(k−j+1)
k−j+1,j−1

α
(k−j)
k−j,j−1

= −
b
(j)
k−j,j

b
(j)
k−j,j (zk − z0) + b

(j−1)
k−j,j−1

= Bk−j+1,j−1.

Consequently, the second relation of (3.54) becomes, after a suitable reordering,

b
(i)
k−j+1,j−1 = b

(i)
k−j,j [1 + (zk − z0) Bk−j+1,j−1]

+Bk−j+1,j−1

[
b
(i−1)
k−j,j−1 − (zk − zi) b

(i)
k−j,j−1

]

for i = 0, 1, . . . , j − 1.

A second method: Suppose we are interested in the element of order [m, n]

in (3.40), then we could proceed as follows.

Calculate pmn by forming the next table column by column, using the first
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relation of (3.54).

Table 2.

pm,0 pm,1
... pm+1,n−1 pm,n

pm+1,0 pm+1,1
...

...
...

...

pm+n−1,0 pm+n−1,1

pm+n,0

Construct the next table row by row, using relation (3.58), to get qmn.

Table 3.

q0,n q0,n+1 . . . q0,n+m−1 q0,n+m

q1,n q1,n+1 . . . q1,n+m−1

. . . . . . . . .

qm−1,n qm−1,n+1

qm,n

This amounts to the following theorem.

Theorem 3.3.6. For the computation of an arbitrary element rm,n of (3.40), use

can be made of the following recurrence relations

α
(i)
m+n−j,j =

α
(m+n−j)
m+n−j,j−1α

(i)
m+n−j+1,j−1

α
(m+n−j)
m+n−j,j−1 + (zm+n − z0) α

(m+n−j+1)
m+n−j+1,j−1

(3.59)

−
α

(m+n−j+1)
m+n−j+1,j−1

[
α

(i−1)
m+n−j,j−1 − (zm+n − zi) α

(i)
m+n−j,j−1

]
α

(m+n−j)
m+n−j,j−1 + (zm+n − z0) α

(m+n−j+1)
m+n−j+1,j−1

for i = 0, 1, . . . ,m + n− j, and

b
(i)
m+n−j+1,j−1 = b

(i)
m+n−j,j [1 + (zm+n − z0) Bm+n−j+1,j−1]

+Bm+n−j+1,j−1

[
b
(i−1)
m+n−j,j−1 − (zm+n − zi) b

(i)
m+n−j,j−1

]
, (3.60)
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for i = 0, 1, . . . , j − 1, where

Bm+n−j+1,j−1 = −
b
(j)
m+n−j,j

b
(j)
m+n−j,j (zm+n − z0) + b

(j−1)
m+n−j,j−1

.

Looking at the triangular structure, it is clear that this method can be of interest, if

we have to know the following triangular array of rational Hermite interpolants:



r0,0 r0,1 . . . r0,n−1 r0,n

r1,0 r1,1 . . . r1,n−1

. . . . . . . . .

rn−1,0 rn−1,1

rn,0



3.4. Multipoint Padé Approximations of the Beta Function

This section is based on A. A. Kandayan’s paper ”Multipoint Padé Approxi-

mations of the Beta Function”

Multipoint Padé approximations for a sufficiently general class of functions

were first studied in [A. A. Gonchar, G. Lopez-Lagomasino, 1978] , while, in

[A. A. Gonchar, E. A. Rakhmanov, 1987] and [A. I. Aptekarev, 2002], such

approximations were used to obtain significant results concerning best rational ap-

proximations of analytic functions.

Kandayan studied multipoint approximations of the Euler integral of the first

kind (or the beta function)

fα (z) = B (α, z) =
Γ (α) Γ (z)

Γ (α + z)
.

Here, α is an arbitrary fixed complex parameter which is not an integer. At the
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points α = 0,−1,−2, . . . , the gamma function Γ (α) has a pole. At the points

α = 1, 2, 3, . . . , the function fα (z) becomes rational and the Padé problem for the

function fα (z) with the nodes (3.61) degenerates. The function fα (z) is holomorphic

in the domain

D = C\ {0,−1,−2, . . .} .

At the points z = −n, n ∈ Z+, it has simple poles. The sequence of polynomials

ωn (z) =
2n∏

k=0

(z − β − k) (3.61)

defines the table of interpolation nodes, i.e., we consider the Newtonian interpolation

ωn+1 (z) = ωn (z) (z − β − 2n− 1) (z − β − 2n− 2) .

Here, β is an arbitrary fixed complex parameter. In what follows we assume without

loss of generality that Re α > 0 and Re β > 0.

Theorem 3.4.1. The Padé problem for beta function fα has a unique ( up to nor-

malization ) solution. The degree of the denominator Qn is necessarily equal to

n.

Proof Let us use a method that was applied earlier to Padé approximations of

the exponential [E. M. Nikishin, V. N. Sorokin; 1988], but, instead of the differential

operator we use the difference operator

(∆f) (z) = f (z + 1)− f (z) .

Choose an arbitrary solution of the problem. Consider the function

R̃n (z) =
(
∆n+1Rn

)
(z) .
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Since deg Pn ≤ n, it follows that

R̃n (z) =
(
∆n+1Qnfα

)
(z) .

By interpolation conditions Rn (z) = 0, z = z0, . . . , z2n+1 and (3.61), we have

R̃n (z) = 0, z = β + k, k = 0, . . . , n− 1. (3.62)

We use the Leibniz formula

(∆ (Qf)) (z) = f (z + 1) · (∆Q) (z) + Q (z) · (∆f) (z) .

Further,

(∆fα) (z) = −fα+1 (z) .

Therefore,

(∆ (Qnfα)) (z) =
(
D̆αQn

)
(z) · fα+1 (z) ,

where

(
D̆αQn

)
(z) =

z

α
(∆Qn) (z)−Qn (z) .

Thus, by induction, we obtain

R̃n (z) = Q̃n (z) · fα+n+1 (z) ,

where

Q̃n = D̆α+n . . . D̆α+1D̆αQn.
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Moreover, by D̆α we denote the following linear operator:

D̆a =
z

a
∆− I

acting in the (n + 1)-dimensional linear space Cn [z] of polynomials of degree at

most n. Here, the parameter α assumes the values α, α + 1, . . . , α + n and I is the

identity operator. It follows from (3.62) that

Q̃n (z) =
n−1∏
k=0

(z − β − k)

(up to normalization).

If we show that each of the operators D̆α+k is invertible, then the theorem will

be proved. In the linear space Cn [z] , we introduce the basis of factorial polynomials

vj (z) =
1

j!

j−1∏
k=0

(z − β − k) , j = 0, . . . , n.

Let us write the matrix of the operator D̆α in the basis. We have

D̆avj =
β + j − 1

a
vj−1 +

j − a

a
vj,

where formally we set v−1 ≡ 0. Thus,

D̆a =
1

a



0− a β 0 . . . 0 0

0 1− a β + 1 . . . 0 0

0 0 2− a . . . 0 0
...

...
...

...
...

0 0 0 . . . n− 1− a β + n− 1

0 0 0 . . . 0 n− a


. (3.63)

By assumption of the problem, a is not an integer, because α is not integer as well.
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Therefore, the determinant

det D̆a =
1

an+1

n∏
k=0

(k − a)

is nonzero.

The theorem is proved.



CHAPTER 4

NEW DETERMINANTAL REPRESENTATIONS OF

NEWTON-PADE APPROXIMATIONS

4.1. Main Definitions and Facts

Lemma 4.1. Let {zk} n
k=0 and

{
z´k
}

n
k=0 be explicit formulas for Newton-Padé approx-

imations two finite sequences of (not necessarily distinct) complex numbers.

If

ωk (z) =
k∏

j=1

(z − zj) , k = 1, 2, . . . , n; ω0 (z) = 1

and

Pn (z) =
(
z − z´1

) (
z − z´2

)
. . .
(
z − z´n

)
,

then

Pn (z) =
n∑

k=0

cknωk (z) ,

61
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where

ckn =
k+1∑
i1=1

k+1∑
i2=i1

. . .
k+1∑

in−k=in−k−1

n−k∏
j=1

(
zij − z´ij+j−1

)
,

k = 0, 1, . . . , n− 1, cn,n = 1.

Proof. By induction, write

Pm (z) = Pm−1 (z)
(
z − z´m

)
=

m−1∑
k=0

ck,m−1ωk (z)
(
z − z´m

)
=

m−1∑
k=0

ck,m−1ωk (z)
[
(z − zk+1) +

(
zk+1 − z´m

)]
.

Hence,

ck,m = ck−1,m−1 + ck,m−1

(
zk+1 − z´m

)
, k = 1, 2, . . . ,m− 1. (4.1)

So, for k = 0 we have

c0,m = c0,m−1(z1 − z´m) =
(
z1 − z´1

)
. . .
(
z1 − z´m−1

) (
z1 − z´m

)
.

Now, by (4.1) and by the induction hypothesis,

ck,m =
k∑

i1=1

k∑
i2=i1

. . .
k∑

im−k=im−k−1

m−k∏
j=1

(
zij − z´ij+j−1

)
+

+
k+1∑
i1=1

k+1∑
i2=i1

. . .

k+1∑
im−k−1=im−k−2

m−k−1∏
j=1

(
zij − z´ij+j−1

)
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Combining all sums, we obtain

ck,m =
k∑

i1=1

k∑
i2=i1

. . .
k∑

im−k−1=im−k−2

k+1∑
im−k=im−k−1

m−k∏
j=1

(
zij − z´ij+j−1

)

+ . . . +
k∑

i1=1

(zi1 − z´i1)
m∏

j=k+2

(zk+1 − z´j) + . . . +
m∏

j=k+2

(zk+1 − z´j)

=
k+1∑
i1=1

k+1∑
i2=i1

. . .
k+1∑

im−k=im−k−1

m−k∏
j=1

(
zij − z´ij+j−1

)
,

k = 1, 2, . . . ,m− 1; m = 1, 2, . . . , n.

So lemma is proved.

Corollary 4.1.1. Let l and m be two integers. Then, identity

ωl (z) .ωm (z) =
l+m∑

k=max(l,m)

Ω
(k)
l,mωk (z) ,

where

Ω
(k)
l,m =

k+1∑
j1=max(l,m)

k+1∑
j2=j1

. . .
k+1∑

jl+m−i=jl+m−k−1

(
zj1 − zj1−max(l.m)

)
. . .

×
(
zjk+m−k

− zjl+m−k+l+m−k−1

)
,

holds.

Proof. This is an immediate application of Lemma 1.

Lemma 4.2. If

f (z) =
∞∑
l=0

alωl (z) (4.2)

is a finite Newton series and

QN (z) =
N∑

k=0

bkωk (z) , (4.3)
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then

f (z) QN (z) =
∞∑
i=0

ei,Nωi (z) ,

where

ei,N =

N−(N−i)+∑
k=0

βi,kbk, βi,k =
i∑

l=i−k

alΩ
(i)
k,l. (4.4)

Proof. By applying Corollary 2, we get

f (z) QN (z) =
∞∑
l=0

al

N∑
k=0

bkωl(z)ωk(z) =
∞∑
l=0

al

N∑
k=0

bk

l+k∑
i=max(l.k)

Ω
(i)
k,lωi(z).

Let us split the summation in three parts as follows,

f (z) QN (z) =
N∑

l=0

al

l∑
k=0

bk

l+k∑
i=l

Ω
(i)
k,lωi(z) +

N∑
l=0

al

N∑
k=l+1

bk

l+k∑
i=k

Ω
(i)
k,lωi(z)+ (4.5)

+
∞∑

l=N+1

al

N∑
k=0

bk

l+k∑
i=l

Ω
(i)
k,lωi(z).

Then by changing the order of summations in each term of (4.5), we obtain

N∑
l=0

al

l∑
k=0

bk

l+k∑
i=l

Ω
(i)
k,lωi(z) =

N∑
i=0

(i−1)/2∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) (4.6)

+
N∑

i=0

i∑
k=(i+1)/2

i∑
l=k

albkΩ
(i)
k,lωi(z) +

2N∑
i=N+1

(i−1)/2∑
k=i−N

N∑
l=i−k

albkΩ
(i)
k,lωi(z)

+
2N∑

i=N+1

N∑
k=(i+1)/2

N∑
l=k

albkΩ
(i)
k,lωi(z)



65

N∑
l=0

al

N∑
k=l+1

bk

l+k∑
i=k

Ω
(i)
k,lωi(z) =

N∑
i=0

i∑
k=(i+1)/2

k−1∑
l=i−k

albkΩ
(i)
k,lωi(z) (4.7)

+
2N∑

i=N+1

N∑
k=(i+1)/2

k−1∑
l=i−k

albkΩ
(i)
k,lωi(z),

∞∑
l=N+1

al

N∑
k=0

bk

l+k∑
i=l

Ω
(i)
k,lωi(z) =

2N∑
i=N+1

i−N−1∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) (4.8)

+
2N∑

i=N+1

N∑
k=i−N

i∑
l=N+1

albkΩ
(i)
k,lωi(z) +

∞∑
i=2N+1

N∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z).

First assume i is odd. By combining (4.7) and the second and fourth term of (4.6),

we get, taking into account (4.5) and (4.8) the equality

f (z) QN (z) =
N∑

i=0

i∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) +

2N∑
i=N+1

N∑
k=(i+1)/2

N∑
l=i−k

albkΩ
(i)
k,lωi(z) (4.9)

+
2N∑

i=N+1

i−N−1∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) +

2N∑
i=N+1

N∑
k=i−N

i∑
l=N+1

albkΩ
(i)
k,lωi(z)

+
∞∑

i=2N+1

N∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) +

2N∑
i=N+1

(i−1)/2∑
k=i−N

N∑
l=i−k

albkΩ
(i)
k,lωi(z)

Combining second, third, fourth and sixth term of (4.9), we obtain;

f (z) .QN (z) =
N∑

i=0

i∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) +

2N∑
i=N+1

N∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z)+ (4.10)

+
∞∑

i=N+1

N∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z).

and combining second and third terms of (4.10), we finally get

f (z) QN (z) =
∞∑
i=0

N−(N−i)+∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z) ,
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where x+ =

 x, x > 0

0, x ≤ 0
. Similarly if i is even we will get the same result.

Now, we may add the following to definition 3.3

f (z) .QN (z) =
∞∑
i=0

N−(N−i)+∑
k=0

i∑
l=i−k

albkΩ
(i)
k,lωi(z).

Definition 4.1. The Henkel-Newton determinant is defined by

H
(i)
M,N =

∣∣∣∣∣∣∣∣∣
βM+1,i βM+1,i+1 . . . βM+1,N

...
...

...

βM+N,i βM+N,i+1 . . . βM+N,N

∣∣∣∣∣∣∣∣∣ .

Theorem 4.1.2. Let f(z) =
∞∑
l=0

alωl(z) be a formal Newton series with interpolation

points {zi} and let M and N be (fixed) nonnegative integers. Then,

(A) If

PM(z) = c0ω0(z) + c1ω1(z) + . . . + cMωM(z)

and

QN(z) = b0ω0(z) + b1ω1(z) + . . . + bNωN(z),

then a necessary and sufficient condition that the formal Newton series f (z) .QN (z)−

PM(z) be of the form

f (z) QN (z)− PM(z) = dN+M+1ωN+M+1 + dN+M+2ωN+M+2 + . . . (4.11)
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is that the coefficients cj and bj satisfy the system of equations

b0β0,0 + b1β0,1 + . . . + bMβ0,M = c0 (4.12)

b0β1,0 + b1β1,1 + . . . + bMβ1,M = c1 (4.13)

...
...

...
...

...

b0βN,0 + b1βN,1 + . . . + bMβN,M = cN

b0βN+1,0 + b1βN+1,1 + . . . + bMβN+1,M = 0

...
...

...
...

... (4.14)

b0βN+M,0 + b1βN+M,1 + . . . + bMβN+M,M = 0

where the βi,j are defined by (4.4).

(B) There exists a unique (up to equivalence ˜) rational expression (P, Q) of

type [m, n] , such that the formal Newton series

f (z) QN (z)− PM(z)

has the form (4.11).

(C) A nontrivial solution, c0, . . . , cN , b0, . . . , bM , to the system of equations

(4.12) is determined uniquely (up to a nonzero multiplicative constant) if and only
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if the Henkel-Newton determinant H
(1)
M,N 6= 0 where

H
(1)
M,N =

∣∣∣∣∣∣∣∣∣
βM+1,1 βM+1,2 . . . βM+1,N

...
...

...

βM+N,1 βM+N,2 . . . βM+N,N

∣∣∣∣∣∣∣∣∣

Proof. By previous theorem, letting ck = 0 for k ≥ N, we obtain

f (z) QN (z)− PM(z) =
∞∑

k=0

(
M∑

j=0

bjβk,j − ck

)
ωk(z),

of which (A) is an immediate consequence. To prove (B), we note that (4.14) is

a homogeneous linear system of m equations in (m + 1) unknowns. Hence, there

exist b0, . . . , bM , not all zero, satisfying (4.14). Having chosen such bi , we choose

the ci to satisfy (4.12) and the resulting rational expression (P, Q) is of type [M, N ]

and satisfies (4.11). To prove the uniqueness of (P, Q) , we let (P ∗, Q∗) denote an

arbitrary rational expression of type [M, N ] such that

f (z) Q∗
N (z)− P ∗

M(z) = d∗N+M+1ωN+M+1 + d∗N+M+2ωN+M+2 + . . . (4.15)

By Theorem 1(C) in Gallucci and Jones paper ([Gallucci M. A., Jones W. B., 1976]),

Q(f.Q∗−P ∗) and Q∗ (fQ− P ) are both formal Newton series whose first N +M +1

coefficients are zero. Hence,

Q∗(z)P (z)−Q(z)P ∗(z)

= Q(z) [f (z) Q∗ (z)− P ∗(z)]−Q∗(z) [f (z) Q (z)− P (z)]

ia also a formal Newton series whose first N + M + 1 coefficients vanish. But

Q∗P−QP ∗ is a polynomial of degree at most N+M and therefore must be identically

zero. Thus, (P ∗, Q∗)˜(P, Q) which completes the proof of (B). In proof of part (C),
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first let us write the equality (4.11) as

f(z)(b0ω0(z) + . . . + bnωn(z))− (c0ω0(z) + . . . + cmωm) (4.16)

=
∞∑

i=N+M+1

diωi(z) (4.17)

Now, if we set b0 = 0 then substitution z = z1 gives c0 = 0. Thus, equation (4.16)

becomes

f(z)(b1ω1(z) + . . . + bnωn(z))− (c1ω1(z) + . . . + cmωm) (4.18)

=
∞∑

i=N+M+1

diωi(z) (4.19)

Dividing (4.18) by ω1(z) we get the system of equations

β1,1b1 = c1

β2,1 + β2,2b2 = c2

...
...

...

βM,1 + . . . + βM,NbN = cM

βM+1,1 + . . . + βM+1,NbN = 0

...
...

...
...

βM+N,1 + . . . + βM+N,NbN = 0
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M + N equations with M + N unknowns as previous. So, we may write the new

equation as

f(z)(b1 + b2ω̃2(z) . . . + bnω̃n(z))− (c1 + c2ω̃2(z) . . . + cmω̃m)

=
∞∑

i=N+M+1

diω̃i(z)

where ω̃k−1 =
k∏

i=2

(z − zi). Then, the system has no nontrivial solution. So, let us

set b0 6= 0. Set b0 = 1, we get the following system of equations with respect to bk

and ck :

−c0 = −β0,0

β1,1b1 − c1 = −β1.0

...
...

...
...

...

βM,1b1 + βM,2b2 + . . . + βM,NbN − cM = −βM.0

βM+1,1b1 + βM+1,2b2 + . . . + βM+1,NbN = −βM+1.0

...
...

...
...

...

βM+N,1b1 + βM+N,2b2 + . . . + βM+N,NbN = −βM+N.0
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So, that system is solvable if and only if the determinant

DM,N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 −1 0 . . . 0

β1,1 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

...

βM,1 βM,2 . . . βM,N 0 0 . . . −1

βM+1,1 βM+1,2 . . . βM+1,N 0 0 . . . 0
...

...
...

...
...

...

βM+N,1 βM+N,2 . . . βM+N,N 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
does not vanish.

DM,N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 −1 0 . . . 0

β1,1 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

...

βM,1 βM,2 . . . βM,N 0 0 . . . −1

βM+1,1 βM+1,2 . . . βM+1,N 0 0 . . . 0
...

...
...

...
...

...

βM+N,1 βM+N,2 . . . βM+N,N 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is equal to

(−1).(−1)2M+N+2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 −1 0 . . . 0

β1,1 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

...

βM−1,1 βM−1,2 . . . βM−1,N 0 0 . . . −1

βM+1,1 βM+1,2 . . . βM+1,N 0 0 . . . 0
...

...
...

...
...

...

βM+N,1 βM+N,2 . . . βM+N,N 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)2M+N+2.(−1)2M+N .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 −1 0 . . . 0

β1,1 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

...

βM−2,1 βM−2,2 . . . βM−2,N 0 0 . . . −1

βM+1,1 βM+1,2 . . . βM+1,N 0 0 . . . 0
...

...
...

...
...

...

βM+N,1 βM+N,2 . . . βM+N,N 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
by same manner if we continue it will be equal to

(−1)M+N .

∣∣∣∣∣∣∣∣∣
βM+1,1 βM+1,2 . . . βM+1,N

...
...

...

βM+N,1 βM+N,2 . . . βM+N,N

∣∣∣∣∣∣∣∣∣

= (−1)M+NH
(1)
M,N

By Cramer’s rule, if HM,N 6= 0 then bk may be represented in the form

bk =

(−1)M+N .

∣∣∣∣∣∣∣∣∣∣∣∣

βM+1,1 . . . βM+1,k−1 −βM+1,0 βM+1,k+1 . . . βM+1,N

βM+2,1 . . . βM+2,k−1 −βM+2,0 βM+2,k+1 . . . βM+2,N

...
...

...
...

...

βM+N,1 . . . βM+N,k−1 −βM+N,0 βM+N,k+1 . . . βM+N,N

∣∣∣∣∣∣∣∣∣∣∣∣
(−1)M+N .H

(1)
M,N

=

∣∣∣∣∣∣∣∣∣∣∣∣

βM+1,1 . . . βM+1,k−1 −βM+1,0 βM+1,k+1 . . . βM+1,N

βM+2,1 . . . βM+2,k−1 −βM+2,0 βM+2,k+1 . . . βM+2,N

...
...

...
...

...

βM+N,1 . . . βM+N,k−1 −βM+N,0 βM+N,k+1 . . . βM+N,N

∣∣∣∣∣∣∣∣∣∣∣∣
H

(1)
M,N

.



73

Hence,

QN(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

ω0(z) ω1(z) . . . ωN(z)

βM+1,0 βM+1,1 . . . βM+1,N

...
...

...

βM+N,0 βM+N,1 . . . βM+N,N

∣∣∣∣∣∣∣∣∣∣∣∣
H

(1)
M,N

.

From the representation for QN (z) in (4.3) we get an analytic formula for PM (z)

such that PM (z) = −
M∑

k=0

ek,Nωk (z) .

So, we have proved that the interpolation Newton-Padé problem is uniquely

solvable if and only if the Henkel-Newton determinant does not vanish.

4.2. Conditions for the Convergence

Theorem 4.2.1. Let us suppose that {µn} , {νn} are arbitrary increasing sequences

such that


µn ≤ µn+1 ≤ µn + 1,

νn ≤ νn+1 ≤ νn + 1,

(µn+1 − µn) + (νn+1 − νn) ≥ 1.

(4.20)

If there exists a natural number N such that the series

∞∑
h=N

(−1)µn
H

(0)
µn+1,νn+1

H
(1)
µn,νn

ωµn+νn+1 (z)
1

Qνn (z) Qνn+1 (z)
(4.21)

converges uniformly in a domain G which contains points z1,z2, . . . , then the se-

quence {Rµn,νn (z)}∞n=1 converges in G and uniformly to f (z) .
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Proof. Consider the expression

Pµn+1 (z) Qνn (z)− Pµn (z) Qνn+1 (z) = [f (z) Qνn (z)− Pµn (z)] Qνn+1 (z) (4.22)

−
[
f (z) Qνn+1 (z)− Pµn+1 (z)

]
Qνn (z)

Left hand side is a polynomial of ωk (z) for k ≤ µn + νn + 1. Second term in right

hand side by definition of Newton-Padé approximants starts from the term ωk (z)

with k ≥ µn+1 +νn+1 +1 (> µn +νn +1), and first term starts with term ωk (z) with

k ≥ µn + νn + 1. Then taking z1,z2, . . . , for z values (if a point zj is a repetation of

zi then instead of values of expressions taking k−th derivatives at the point zi), we

get that in both sides of (4.22) there is only one term with ωµn+νn+1 (z) .

The coefficient of ωµn+νn+1 (z) in Pµn+1 (z) Qνn (z) − Pµn (z) Qνn+1 (z) is equal

to the coefficient of ωµn+νn+1 (z) in the expression of f (z) Qνn (z) , and that last

coefficient is equal to

eµn+νn+1,νn =
νn∑

k=0

βµn+νn+1,kbk.

Computing this term from the right hand side of (4.22), we get

Pµn+1 (z) Qνn (z)− Pµn (z) Qνn+1 (z) = (−1)νn
H

(0)
µn+1,νn+1

H
(1)
µn,νn

ωµn+νn+1 (z) (4.23a)

Now comparing that expression with the expression for Qνn (z) it is easy to see the

validity of formula (4.23a). Hence,

Rµn+1,νn+1 (z)−Rµn,νn (z) = (−1)νn
H

(0)
µn+1,νn+1

H
(1)
µn,νn

ωµn+νn+1 (z)
1

Qνn (z) Qνn+1 (z)

From here it is clear if series (4.21) converges at a point z, then at that point the

sequence {Rµn,νn (z)} converges too. Denote the limit function by F (z) . From the

condition of theorem it follows that Qνn (z) 6= 0 in G, starting from some number

N. Hence, all functions Rµn,νn (z) are analytic in G for n ≥ N. Since the sequence
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{Rµn,νn} converges uniformly on compacts in G, function F (z) is also analytic in

G. Moreover, for any point z ∈ G

lim
n→∞

dkRµn,νn (z)

dzk
=

dkF (z)

dzk

for any natural number k. Taking z1,z2, . . . , for z values, we get that F (zj) = f (zj) ,

j = 1, 2, . . . .

Using that theorem it is possible to prove the following criteria of convergence

of Newton-Padé approximants.

Theorem 4.2.2. Let D be the convergence domain for the series

∞∑
n=1

∣∣∣H(0)
µn+1,νn+1

∣∣∣∣∣∣H(1)
µn,νn

∣∣∣ |ωµn+νn+1 (z)| , ωn (z) =
n∏

k=0

(z − zk) .

Let in some domain G ⊂ D, D containing points z1,z2, . . . , denominators Qνn (z) ,

n = 1, 2, . . . of the sequence of Newton-Padé fractions {Rµn,νn (z)}∞n=1 are uni-

formly bounded by modulus from below by a positive constant. Then, the sequence

{Rµn,νn (z)}∞n=1 converges in G to the function f (z) generating the table and uni-

formly in arbitrary bounded closed domain F ⊂ G.

Proof. Since

∣∣Rµn+1,νn+1 (z)−Rµn,νn (z)
∣∣ =

∣∣∣∣∣(−1)µn
H

(0)
µn+1,νn+1

H
(1)
µn,νn

ωµn+νn+1 (z)
1

Qνn (z) Qνn+1 (z)

∣∣∣∣∣
≤ 1

m2

∣∣∣H(0)
µn+1,νn+1

∣∣∣∣∣∣H(1)
µn,νn

∣∣∣ |ωµn+νn+1 (z)| ,

then from the condition of theorem it follows that the series converges absolutely in

G and uniformly in arbitrary compact domain F.

Hence, the result follows.



CHAPTER 5

CONCLUSION

This thesis is devoted to multipoint Padé approximants, Newton-Padé approx-

imants and their convergence. The followings were studied.

• Padé approximations for exponential functions (review)

• Convergence of Padé tables (review)

• Multipoint Padé approximations and Newton-Padé approximations (review)

• Algorithms for computation of Newton-Padé approximations (review)

• Determinantal representations of Newton-Padé approximations and their ap-

plications (original)
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series (Newton- Padé approximants), Journal of Approximation Theory 17 (1976)

366-392.

M.B.Balk, Interpoliatzionnyi protzess Padeh dlia nekotorykh analiticheskikh



78

funktzii, Issledovaniya po sovremennym problemam teorii funktzii kompleksnogo

peremennogo. Markushevich, A.I. (Ed.): Moscow, Fizmatlit, 1960, 234-257.


