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ABSTRACT 
 

 

 

In this study, we examine the wave equation, which is a second-order linear 

differential equation of the hyperbolic type, specifically in Functionally Graded 

Materials (FGMs) using Adomian Decomposition Method (ADM) that has been used to 

solve linear and nonlinear functional equations. The Adomian decomposition method is 

explained extensively and its applications on different types of application problems are 

given in examples. The main purpose of this study to apply ADM for the homogeneous 

wave equation with variable coefficients in the nonhomogeneous material known as 

FGMs. Since boundary conditions are nonhomogeneous, problem is separated into two 

problems and solved by superposition method: Homogeneous (eigenvalue problem) and 

nonhomogeneous wave problem with homogenous BCs. It is used the generalized 

Fourier series expansion to solve the nonhomogeneous problem using eigenfunction 

expansion method. At the end of the problem, solution method and the numerical 

coding are checked for homogeneous type materials by the close form solution. Then, 

for different types of nonhomogeneity parameter, results are represented graphically.  

 

 

Keywords: Adomian polynomials, Adomian Decomposition Method, Functionally     

Graded Materials, Eigenfunction Expansion Method, Wave Equation.  
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ÖZ 
 

 

 

Bu çalıĢmada fonksiyonel derecelendirilmiĢ malzemelerde hiperbolik ikinci 

derece lineer diferansiyel dalga denklemini lineer ve lineer olmayan fonksiyonel 

denklemleri çözmek için kullanılan Adomian dekompozisyon metodu kullanarak 

inceliyoruz. Adomian dekompozisyon metodu geniĢ olarak açıklanır ve uygulamaları 

farklı uygulama problemleri üzerinden örneklerle verilir. Bu çalıĢmanın asıl amacı 

fonksiyonel derecelendirilmiĢ malzemeler olarak bilinen homojen olmayan bir 

malzemede değiĢken katsayılı homojen dalga denklemine Adomian dekompozisyon 

metodunu uygulamaktır. Sınır Ģartları homojen olmadığı için, problem iki probleme 

ayrılır ve süperpozisyon metodu ile çözülür: Homojen sınır Ģartları ile homojen(özdeğer 

problemi) ve homojen olmayan dalga denklemi. Homojen olmayan problemi çözmek 

için genelleĢtirilmiĢ Fourier seri açılımı kullanılır. Problemin sonunda, homojen 

malzemeler için çözüm metodu ve sayısal kodlama kapalı form çözümü ile kontrol 

edilir. Sonra, farklı homojen olmayan parametreler için sonuçlar grafikle gösterilir. 
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INTRODUCTION 

 

 

 

 In 1972, the general idea of structural gradients first was advanced for composites 

and polymeric materials. Bever and Duwez examined various types of gradients 

composites and their properties. They proposed that composites materials may have had 

gradients, which took place in local properties of the composite, in their structural of 

characteristics. Therefore, in engineering applications, it was very interested in gradient 

composites (Bever and Duwez, 1972). Various models were suggested for gradients in 

composition, in filament concentration, and in polymerization along with possible 

applications for the resulting graded structures. However, there was no actual 

investigation about how to design, fabricate, and evaluate graded structures until the 

1980s. 

 
 In 1985, the use of continuous texture control was proposed in order to increase 

the adhesion strength and minimize the thermal stresses in the ceramic coatings and 

joints being developed for the reusable rocket engine. The developers realized that this 

continuous control of a property could be extended to the more general concept that 

could be applied to impart new properties and functions to any material by gradually 

changing its texture or composition. At this time, the concept of the material ingredient 

was introduced for designing such materials. 

 

In 1986, these types of materials were termed functionally gradient materials, 

which soon became abbreviated to the now familiar, FGM. In 1995, as a consequence of 

a discussion at the third international symposium on FGMs held in Lausanne in 1994, it 

was decided to change the full name to functionally graded materials. 

 

 Functionally Graded Material (FGM) is a new type of material concept, which is 

developed and widely used to reduce the thermal stresses in space craft and the next
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generation fission reactors applications. Because of its greatest advantage by having 

graded functions of toughness and other material properties though metal/ceramic 

composition of the body, FGM became a key technology in material science. 

 

 In Functionally Graded Materials (FGMs) both the composition and the structure 

gradually change over the volume, resulting in corresponding changes in the properties 

of the material. It is a conceptual unit for constructing the FGM that includes various 

aspect of its chemical composition physical state and geometrical configuration. 

Material ingredients, which probably express the overall concept best, can resemble 

biological units such as cells and tissues. For example; bamboo, shell, tooth and bone all 

have graded structures consisting of biological material ingredients (Hirai, 1996), 

(Mortensen and Suresh, 1995), (Mortensen and Suresh, 1998). Also these graded 

structures are investigated by many researchers and given some studies. Nogata and 

Takahashi have studied about the ingenious construction of bamboo which is a self-

optimizing graded structure constructed with a cell based sensing system for external 

mechanical stimuli and to help in the understanding of the principles and design in 

biological materials which are functionally graded composites. Also, it was seen that a 

bamboo can generate electrical signals (Nagata and Takahashi, 1995). Woo and Meguid 

(2001) provide an analytic solution for shallow shells made of FGMs under transverse 

mechanical loads and a temperature field. The basic equations are obtained for shallow 

shells made of FGM using the von Karman theory and solved using the Fourier series 

(Woo and Meguid, 2001). Zhao and Liew (2009) studied the nonlinear functionally 

graded ceramic-metal shell panels under mechanical and thermal loading. They 

examined the characteristic of the displacement and the axial stress in panels under 

mechanical and thermal loading, also material properties for the nonlinear response of 

shell panels. 

 

 Many studies are made about stress, deformation, stability and vibration problems 

of FGM beams, plates and shells. The problem of thermal stress distributions in a FGM 

beam are solved by Sankar and Tzang using a simple Bernoulli-Euler beam theory 

developed (Sankar and Tzeng, 2002). Jin studied about the problem of transient heat 

transfer in a FGM strip. The asymptotic solution of the problem was obtained in closed 

form by subdividing the strip into a number of homogeneous layers (Jin, 2002). 

Transient heat transfer problems are considered by Ootao and Tanigawa. They analyzed 
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the transient one-dimensional temperature distribution using the method of Laplace 

transformation (Ootao and Tanigawa, 2004). Chen and Zou solved same problem using 

Galerkin boundary element method (Chen et al., 2002). Chen and Tong analyzed the 

sensitivity of the steady-state and transient heat conduction of FGMs using the finite 

element method (Chen and Tong, 2004). 

 

 The other studies are about the solution of the problem of wave propagation in 

FGM. One of them is acoustic wave propagation in FGM plates which were studied by 

Lefebvre et al. and the problem of wave was solved by using Legendre polynomials 

(Lefebvre et al., 2001).  Also, another numerical integral technique based on confluent 

hypergeometric functions (CHFs) is proposed by Liu et al. for the problem of wave 

propagation in FGM structure. Using this technique, a part of integrand in the integral is 

estimated by piecewise polynomials (Liu et al., 2001).  Analysis of two-dimensional 

stress wave propagation problems in FGMs which have two distinct models, which are 

considered as layered metal-ceramic and randomly distributed ceramic particles, was 

presented by Berezovski et al. They compared the models and showed the differences 

between characteristics of wave fields in the distinct models applying composite wave-

propagation algorithm (Berezovski et al., 2003). In a cylinder made of FGM, problems 

of transient waves are analyzed presenting a method known as a hybrid numerical 

method. This method is applied to examine FGM cylinders, and its efficiency is proved 

(Han et al., 2000). 

     

The most familiar FGM is compositionally graded from a refractory ceramic to a 

metal. It can incorporate incompatible functions such as the heat, wear, and oxidation 

resistance of ceramic with the high toughness, high strength, machinability, and 

bonding capability of metals without severe internal thermal stress. 

 

Pores are also important material ingredients of FGMs. A gradual increase in the 

pore distribution from the interior to the surface can impart many properties such as 

mechanical shock resistance, thermal insulation, catalytic efficiency, and the relaxation 

of thermal stress. 

 

There are many applications of FGMs concept in various research and industrial 

fields. In the engineering applications to cutting tools, machine parts, and engine 

components, incompatible functions such as heat, wear, and corrosion resistance plus 
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toughness, and machinability are incorporated into a single part. For example, 

throwaway chips for cutting tools made of graded tungsten carbide/cobalt and titanium 

carbonitride have been developed and commercialized that incorporate the desirable 

properties of high machining speed, high feed rates, and long life. Various combinations 

of these ordinarily incompatible functions can be applied to create new materials for 

aerospace, chemical plants, and nuclear energy reactors. 

 

The FGM concept is also applicable to functional materials. The application of 

FGMs to biomaterials is growing in importance. Over 2500 surgical operations to 

incorporate graded hip prostheses have been successfully performed in Japan over the 

past twelve years (Miyamoto, 1999). 

 

As a consequence; USA and mostly Japan in which development and research of 

FGMs as functional graded materials are carried on (Koizumi, 1997) have given interest 

to studies of FGMs. Many researchers and developments projects which made since 

1980’s proved the majority of FGM compared to ordinary materials. 
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CHAPTER 2 

 

 

WAVE EQUATION IN MATERIALS 

 

 

 

2.1.   WAVE EQUATIONS 

 

 In this part of the study, it will be examined the wave equation which is a second-

order linear partial differential equation of the hyperbolic type. The wave equation 

describes the shape and the movement of waves which are given a set of boundary 

conditions such as the initial shape of the wave, or the evolution of a force affecting the 

wave. The solution of the wave equation can be obtained exactly by D’Alembert’s 

method, or using a Fourier transform method, or via separation of variables. In the 

following sections, it will be derived one-dimensional and two-dimensional wave 

equations and, using separation of variables method, the solution of some physical 

applications will be shown. 

 

2.2.   DERIVATION OF THE ONE-DIMENSIONAL WAVE EQUATION 

 

 Let  ,u u x t   be the solution of the wave equation. Then, the equation 

                                                   

2 2
2

2 2

u u
c

t x

 


 
                                                            (2.1)
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represents displacement along the x axis with respect to time. To obtain the partial 

differential equation (2.1), we consider a small piece of the vibrating string. Let 1T  and 

2T  be the tensions at the points P  and Q  of the string. The horizontal components of 

the tension must be constant because there is no motion in horizontal direction. Thus, 

we determine by using the notation shown in Fig.1. 

 

Figure 1: Deflected at fixed time t  

 

 0
x

F               2 1cos cos 0T T           2 1cos cosT T T    constant. 

In vertical direction we have three forces, one of them is gravity force and the others are 

vertical components of the tension. By Newton’s second law, it can be written that 

                                                    
u

F ma  

where m is the mass and a  is the acceleration. Let w  denote the linear mass  kg m , 

x  the change in position  m  and g  the gravity force  2m s . We get the following  

 2 1sin sinT T wg x ma         

2

2 1 2
sin sin ( ) ( )

u
T T wg x w x

t
 


    


,  

                                            

2

2
(tan tan ) ( ) ( )

u
T wg x w x

t
 


    


   (2.2) 

since   

                 
2 2

2

2

sin sin
tan sin tan

cos

T T
T T

T T

 
  


    , 
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1 1

1

1

sin sin
tan sin tan

cos

T T
T T

T T

 
  


    . 

Here tan and tan   are the slopes of the curve of the string x  and x x , that is   

                                tan
x

u

x


 
  

 
     and      tan

x x

u

x




 
  

 
.

    

 

Dividing Equation (2.2) by x , we obtain   

                                 
2

2

1

x x x

u u u
wg w

x x x t

      
      

       

 .                                     (2.3) 

If we let x  approach zero,   

                                    
2

20

1
lim
x

x x x

u u u

x x x x 


      
     

       

                                        (2.4) 

we get   

                                          

2 2

2 2

u u
T wg w

x t

 
 

 
                                                           (2.5) 

and dividing both sides by w   

                                            

2 2

2 2

T u u
g

w x t

 
 

 
 .                                                            (2.6) 

Since  
T

g
w

, 0g  , then 

                                                 

2 2

2 2

T u u

w x t

 


 
.                                                              (2.7) 

 Therefore, we can rewrite Equation (2.7) as   

                                                

2 2
2

2 2

u u
c

t x

 


 
                                                               (2.8) 

where     2T
c

w
 . The notation 2c  for the physical constant 

T

w
 has been chosen to 

indicate that this constant is positive.  
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2.3.   DERIVATION OF TWO-DIMENSIONAL WAVE EQUATION  

 

 Let us consider the motion of a stretched membrane to derive two-dimensional 

wave equation. Our derivation will be similar as the case of the vibrating string. We 

consider the forces acting on a small part of the membrane as shown in Fig. 2. The 

tension T  is the force per unit length. We first calculate the horizontal components of 

the forces. These components are obtained as    

                         cos , cos , cos , cosT x T x T y T y         . 

Here the angles are very small, so their cosines are close to 1. Hence the horizontal 

components at opposite sides are approximately equal. Therefore, we can neglect the 

motion in horizontal direction since the values of them are very small. The vertical 

components of the forces are determined which are parallel to the yu plane are 

determined as    

                                    sinT y           and        sinT y   . 

 

Figure 2:  Vibrating membrane 
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We can replace the sine of the vertical components by their tangents because of the 

angles which are so small. Hence the result becomes like  

                                         sin sin tan tanT y T y        , 

                                                                    

1 2( , ) ( , )x x y x y

u u
T y

x x

     
      

      

          (2.9) 

where subscripts x  denote partial derivatives and values of 1y  and 2y  are between y  

and y y . Similarly, we can calculate the other vertical components which are 

parallel to the xu  plane. The result is shown as   

                                             

1 2( , ) ( , )x y y x y

u u
T x

y y
 

     
     
      

                                  (2.10) 

where 1x  and 2x  are between x  and x x . 

By Newton’s second law the sum of the forces are equal to the mass w A   A x y     

times the acceleration 
2

2
u

t



: 

1 2 1 2

2

2
( , ) ( , ) ( , ) ( , )

( )
x x y x y x y y x y

u u u u u
w x y T y T x

x x y yt   

             
                

                

   

dividing by w x y      

               
1 2 1 2

2
( , ) ( , ) ( , ) ( , )

2

x x y x y x y y x y

u uu u

y yx xu T

w x yt

  

                             
 

  
 
  

.           (2.11) 

If we let x  and y  approach zero, we obtain the two-dimensional wave equation as    

                                             
2 2 2

2

2 2 2

u u u
c

t x y

   
  

   
                                                  (2.12) 
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 where  2 Tc
w

  .   

 

2.4.   SOLUTIONS OF WAVE EQUATIONS 

 

Example 1: Consider the homogeneous wave equation with Dirichlet BCs 

                                          2
tt xxu c u             0 x L  ,     0t  , 

                                BCs:    0, 0, , 0u t u L t  , 

                                 ICs:        ,0 , ,0tu x g x u x f x  . 

This problem can be solved by using separation of variables method since partial 

differential equation (PDE) and BCs are homogeneous. Starting with the definition of 

separation of variable method 

                                               ,u x t X x T t    

and substituting it into PDE such as   

                                              2T t X x c X x T t  ,  

                                              
 

 

 

 2

X x T t

X x c T t


 
     

where   is a constant ratio. The BVP on spatial coordinate can be solved in terms of 

the value of  .  

 

CASE 1: For 0  , then say 2  and the solution of the second order ordinary 

differential equation   

                               2 0X x X x   ,        0 0X X L     

can be solved as follows:    
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                            2 2 0m m         

           x xX x Ae Be      0 0X A B A B       ,   

                                                0L LX L Ae Be     ,  

                                             0L LBe Be     , 

                                              0L LB e e       here     0 0L LB e e     . 

But  L Le e    is never zero because of exponential. So 0B   and 0A  . We can say 

it is a trivial solution. 

 

CASE 2: For  0  , 

                            0X x X x Cx D     ,               0 0X X L  , 
    

 

                           0 0, 0X D X L CL       0L     

So, we obtain trivial solution. 

 

CASE 3: For 0  , let us say  2         

                                   2 0X x X x   ,               0 0X X L  .                 

The solution can be obtained as follows:   

                                    cos sinX x A x B x      

after using the BCs, we can obtain eigenvalues and eigenfunctions, respectively, as 

  

2

n

n

L




 
  
 

,     sinn

n
X x x

L

 
  

 
 ,   1,2,3,n     

Then the solution for     2 2 0T t c T t    can be written as 
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                                 cos sinn n n

n n
T t C ct D ct

L L

    
    

   
.     

The solution for each n  is given by   

                     , sin cos sinn n n n

n n n
u x t B x C ct D ct

L L L

        
       

      
   

using superposition, the general solution can be obtained as   

                    
1

, sin cos sinn n

n

n n n
u x t x c ct d ct

L L L

  



      
       

      
   

where   ,n n n n n nc B C d B D  . 

We use the initial conditions for determining the coefficients nc  and nd     

   
1

,0 sinn

n

n
u x f x c x

L





 
   

 
      

                                                     
0

2
sin

L

n

n
c f x x dx

L L

 
   

 
 , 

   
1

,0 sint n

n

cn n
u x g x d x

L L

 



 
   

 
    

                                                  
0

2
sin

L

n

cn n
d g x x dx

L L L

  
   

 
 , 

                                                  
0

2
sin

L

n

n
d g x x dx

cn L





 
   

 
  .  

The solution is 

        

     

 

0
1

0

2
, , sin sin cos

2
sin sin

L

n

L

n n n
u x t u x t x f x x dx ct

L L L L

n n
g x x dx ct

cn L L

  

 







      
        

      

    
     

     

 



   

Example 2: Consider the homogeneous wave equation with Neumann type BCs   
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                                             2
tt xxu c u             0 x L  ,     0t  ,  

                                   BCs:    0, 0, , 0x xu t u L t  , 

                                    ICs:        ,0 , ,0tu x g x u x f x  . 

Using separation of variables method  

                                                 ,u x t X x T t , 

and substituting it into PDE like  

                                          2T t X x c X x T t  , 

                                         
 

 

 

 2

X x T t

X x c T t


 
    

where   is a constant ratio.  

 

CASE 1: For 0  , then there is a trivial solution. 

 

CASE 2: For 0  ,      

                                00 , 0 0X x X x Ax B X X L        , 

                                               0X x B   ,arbitrary constant, that can be chosen as 1. 

The solution is  0 1X x  . 

 

CASE 3: For 0  , let us say 2    and the solution will be obtained as follows:  

                            2 0X x X x   ,             0 0x xX X L  ,   

                                           cos sinX x a x b x      
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after using the boundary conditions we can obtain eigenvalues and eigenfunctions, 

respectively, as 

  

2

n

n

L




 
  
 

,     cosn

n
X x x

L

 
  

 
 ,   1,2,3,n     

Then the solution for     2 2 0T t c T t    can be written as  

       cos sinn n n

n n
T t C ct D ct

L L

    
    

   
.   

The solution for each n  is 

         0 0, 1 cos cos sinn n n n

n n n
u x t C t D a x C ct D ct

L L L

        
         

      
.  

Using superposition method, the solution is    

         0 0

1

, cos cos sinn n

n

n n n
u x t C t D x c ct d ct

L L L

  



      
         

      
    

where n n nc a C  and n n nd a D .  

To determine the coefficients 0 0, , nC D c  and nd , let us use the initial conditions   

        0

1

,0 cosn

n

n
u x f x D c x

L





 
    

 
     

        0
0

2 L
D f x dx

L
   ,  

        
0

2
cos

L

n

n
c f x x dx

L L

 
   

 
 , 

        0

1

,0 cost n

n

cn n
u x g x C d x

L L

 



 
    

 
     

        0
0

2 L
C g x dx

L
   ,  
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        
0

2
cos

L

n

L n
d g x x dx

cn L L





   
     

   
 . 

The general solution of the Neumann problem is given as  

       0 0

2
,

L L
u x t t g x dx f x dx

L
     

    

 

 

0
1

0

2
cos cos cos

2
cos sin

L

n

L

n n n
x f x x dx ct

L L L L

n n
g x x dx ct

cn L L

  

 







      
       

      

    
     

     

 



  

 

Example 3: Consider a wave equation on a plane 

                     2
tt xx yyu c u u        0 x a  ,    0 y b  ,    0t  . 

          BCs:    0, , 0, , , 0u y t u a y t    for 0 y b  ,  0t  ,  

                      ,0, 0, , , 0u x t u x b t    for 0 x a  ,  0t  . 

           ICs:    , ,0 ,u x y f x y ,        , ,0 ,tu x y g x y . 

Defining the separation of variables method 

                                                  , ,u x y t X x Y y T t    

and substituting it into PDE like  

                                            2XYT c X YT XY T    , 

it will be obtained as 

                                            
2

T X Y

X Yc T


  
   . 

The both sides must be equal to a constant. We consider negative separation constants 

only  
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     2X

X



  ,  2Y

Y



    where   2 2     .  

We solve two Sturm-Liouville problems and obtain their eigenvalues and 

eigenfunctions, respectively, as follows:    

     2 0X X  ,            0 0X X a    

with eigenvalues and eigenfunctions, respectively, as 

   

2

2 n

a




 
  
 

,     sinn

n
X x x

a

 
  

 
,   1,2,3,n    

and  

     2 0Y Y  ,     0 0Y Y b    

with eigenvalues and eigenfunctions, respectively, as  

   

2

2 m

b




 
  
 

,     sinm

m
Y y y

b

 
  

 
,  1,2,3,m  .  

The solution of each Sturm-Liouville problem can be expressed as 

     sinn

n
X x A x

a

 
  

 
      and        sinm

m
Y y B y

b

 
  

 
.  

Finally, the solution can be shown as  

      
1 1

, , sin sinn m

m n

n m
u x y t A B x y T t

a b

  

 

   
    

   
   

or  

      
1 1

, , sin sinmn

m n

n m
u x y t A x y T t

a b

  

 

   
    

   
   

where mn m nA B A .      

The solution for  T t  is obtained from the equation  

      2 2 2 0T c T       
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as 

       2 2 2 2 2 2cos sinmn mnT t C c t D c t            
   

.  

Assume  2 2 2 2
mnk c     then  

        cos sinmn mn mn mnT t C k t D k t  . 

The general solution can be written as  

        
1 1

, , cos sin sin sinmn mn mn mn

m n

n m
u x y t a k t b k t x y

a b

  

 

   
     

   
   

where mn mn mnA C a  and mn mn mnA D b .   

To find the coefficients, we use the initial conditions  

      
1 1

, ,0 , sin sinmn

m n

n m
u x y f x y a x y

a b

  

 

   
     

   
 ,  

      
1 1

, ,0 , sin sint mn mn

m n

n m
u x y g x y k b x y

a b

  

 

   
     

   
     

 

and we obtain the values of coefficients as  

    
0 0

4
, sin sin

b a

mn

n m
a f x y x y dxdy

ab a b

    
    

   
  ,  

    
0 0

4
, sin sin

b a

mn mn

n m
k b g x y x y dxdy

ab a b

    
    

   
  ,  

    
0 0

4
, sin sin

b a

mn

mn

n m
b g x y x y dxdy

k ab a b

    
    

   
    

where  

   
2 2

2 2mn

n m
k c

a b
  .  
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                                      CHAPTER 3 

 

 

ADOMIAN DECOMPOSITION METHOD 

 

 

 

3.1.   DEFINITION OF DECOMPOSITION 

 

 In the 1980s, a new powerful method was introduced by George Adomian (March 

21, 1922-1996), who was the Armenian-American mathematician and also an aerospace 

engineer, for solving linear and nonlinear functional equations such as algebraic, 

ordinary and partial differential, integral etc. This method has been known as the 

Adomian Decomposition Method (ADM) which has been proved to be effective and 

reliable for handling linear and nonlinear equations. 

 

 The advantage of this method is that it solves the problems directly without the 

need of linearization, perturbation or any other transformation. And also, it reduces the 

massive computation works required by most other methods. 

 

 Convergence of the Adomian method is discussed by many researchers. For 

instance, Kalla proposed that the Adomian method can be applied to nonlinear Volterra 

integral equation due to convergence of the method. It can be understood that 

convergence analysis can approximate the maximum absolute error of the Adomian 

series solution (El-Kalla, 2008). Abbaoui and Cherruault proved the convergence of 

ADM for the solution of differential equation and the findings of roots of nonlinear 

functional equations. According to Adomian’s method, he developed a technique which 

easily finds the exact solution by a series given and proved the convergence of the 

method by using the fixed-point theorem. But this proof is not enough to apply to real 

problems, especially partial differential equations. So, Cherruault presents a hypothes to 
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the Adomian’s method. For this, some examples are given and solved such as the 

nonlinear problems, the semi-linear problems and the linear problems by using the 

Adomian’s method. At the end of the problems, the hypotheses verified that the 

Adomian method is rapidly convergent if the boundary conditions are well chosen 

(Abbaoui and Cherruault, 1994a,b). Cherruault and Adomian present a new proof about 

convergence of Adomian’s method. They reach some results about the speed of 

Adomian method and thus, we can solve the nonlinear functional equations (Cherrualt 

and Adomian, 1993).   

  

 Many modifications related to the ADM have been proposed by many researchers 

and applied to the problems. One method developed by Wazwaz was called the 

modified Adomian decomposition method. The aim of this method is to use two 

iterations only without the need of Adomian polynomials in order to provide the exact 

solution (Wazwaz, 1999a). The other method is known as Improved Adomian 

Decomposition Method (IADM) by Abassy. Using IADM changes the formulation of 

Adomian polynomials and provides improvement over the standard Adomian method. 

Also, Abassy compares the ADM and the IADM by using some problems according to 

the convergence. And as a result, he expressed that the results of IADM are more 

accurate than the results of ADM and more convergent in several steps. It can be said 

that the IADM solves the drawbacks in the standard Adomian decomposition method. 

This method is applied for the analytic treatment of nonlinear initial value problems 

(Abassy, 2010). Luo proposed an efficient modification to the ADM, a two step 

Adomian decomposition method (TSADM) which facilitated the calculations. Namely, 

this method reduces the volume of computational work and obtains sometimes the exact 

solution after only one iteration. Moreover, the TSADM may not need the Adomian 

polynomials to obtain the exact solution. The method gives efficient solutions for 

systems of nonhomogeneous differential and integral equations, hyperbolic partial 

differential equations and singular initial value problems. Also, it shows us that this 

method has more advantage than the standard Adomian method (Luo, 2005). Gejji and 

Jafari presented the new iterative method to solve linear or nonlinear partial differential 

equations of integer and fractional order. The results of the examples given are 

compared by other iterative methods such as the Adomian method, homotopy 

perturbation method and variational iteration method. It can be understood that this 
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method is more close the exact solution than the others (Gejji and Jafari, 2006). As 

regards the ADM, it is used to solve a wide range of physical problems in various 

engineering fields such as vibration and wave equation (Allan and Al-Khaled, 2006), 

heat and mass transfer (Chiu and Chen, 2002), fluid flow (Allan and Syam, 2005). 

 

  In recent years, some applications of the perturbation techniques have been 

studied by scientists and engineers. And these techniques are compared by the ADM. 

The one is homotopy perturbation method (HPM). Jian-Lin Li presents the comparison 

between the ADM and the HPM methods (Li, 2009). The other comparison is presented 

between the ADM and the Runga-Kutta methods for approximate solutions of predator 

prey model equations (Edwards et al., 1997). Also, Wazwaz compared the ADM and 

the Taylor series method by using some particular examples, and showed that the 

decomposition produced reliable results with less iteration, whereas the Taylor series 

method suffered from computational difficulties (Wazwaz, 1998b).  

  

 Thus, we see that the Adomian decomposition method has been used for solving 

linear and nonlinear functional equations up to now. In this study, we will see formula 

of ADM and examples of the Adomian’s method how to use in the application. 

 

 To introduce this form of method, we start with Fu g , where F  and g  are a 

nonlinear ordinary differential operator and a given function, respectively. We represent 

form of F  with linear and nonlinear terms. We write the linear term as  Lu Ru   where 

L  is easily invertible and R is the remainder of the linear operator. The nonlinear term 

is represented by Nu . Thus, the equation is written as  

     Lu Ru Nu g   , 

     Lu g Ru Nu   ,         (3.1) 

      1 1 1 1L Lu L g L Ru L Nu             (3.2)       

We define 
1L  as the n-fold definite integration operator from 0 to t :  

                                              1

0 0
.

t t nL dt                                                  (3.3) 

Solving u  from (3.2) and we can have  
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                                        1 1u h L Ru L Nu                                                     (3.4) 

where the function h  is determined by integrating the source term g  and using the 

given initial conditions. The unknown function u  is expressed by an infinite series of 

the form  

                                          
0

( , ) ,n

n

u x t u x t




                          (3.5)                                                                                        

and the nonlinear  term Nu  can be decomposed by infinite series of polynomials as  

                                        
0

( ) n

n

f u Nu A




 
 

        (3.6) 

where nA  0,1,n    are the Adomian polynomials of 0 1, , , ju u u  given by   

                              
0 0

1

!

n
k

n kn
k

d
A N u

n d







 

  
   

   
    ,     0,1,2,3,n  .    (3.7) 

and formulated following  

  0 0A f u ,             (3.8)  

  1 1 0A u f u ,             (3.9)  

    2
2 2 0 1 0

1

2!
A u f u u f u   ,                 (3.10)  

      3
3 3 0 1 2 0 1 0

1

3!
A u f u u u f u u f u     ,                                                              (3.11)  

          42 2 4
4 4 0 2 1 3 0 1 2 0 1 0

1 1 1

2! 2! 4!
A u f u u u u f u u u f u u f u

 
       

 
,                 (3.12) 

        2 2
5 5 0 2 3 1 4 0 1 2 1 3 0

1 1

2! 2!
A u f u u u u u f u u u u u f u

 
       

 
  

                                                          4 53 5
1 2 0 1 0

1 1

3! 5!
u u f u u f u  ,                    (3.13) 



22 
 

 
 

      2 3 2
6 6 0 3 2 4 1 5 0 2 1 2 3 1 4 0

1 1 1

2! 3! 2!
A u f u u u u u u f u u u u u u u f u

   
           

   
     

        
           4 5 62 2 3 4 6

1 2 1 3 0 1 2 0 1 0

1 1 1 1 1

2! 2! 3! 4! 6!
u u u u f u u u f u u f u

 
   
 

,           (3.14) 

From (3.4), we define 

0u h , 

1 1
1 0 0u L Ru L Nu    , 

1 1
2 1 1u L Ru L Nu    , 

 

1 1
1k k ku L Ru L Nu 
     ,      0k                                                                            (3.15)   

and we can calculate     
0

, ,n

n

u x t u x t




 , if the series is convergent.   

 

 

3.2. EXAMPLES OF ADOMIAN POLYNOMIALS  

 

Example 1: Calculate  0 1 2 3, , ,A A A A  and 4A  for 5Nu u .          

           5
0 0A u , 

  4
1 1 05A u u , 

  4 3 2
2 0 2 0 15 10A u u u u   , 

  4 3 2 3
3 0 3 0 1 2 0 15 20 10A u u u u u u u   ,  

                 4 4 3 2 3 2 2
4 0 4 1 0 0 2 0 1 3 0 1 25 5 10 20 30A u u u u u u u u u u u u     . 
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Example 2: Determine 0 1 2 3, , ,A A A A  and 4A  for Nu u  where   is a decimal. 

  0 0A u , 

   1
1 0 1A u u  , 

                  1 2 2
2 0 2 0 1

1
1

2
A u u u u       , 

      1 2 3 3
3 0 3 0 1 2 0 1

1
1 1 2

6
A u u u u u u u               , 

      1 2 2 3 2
4 0 4 0 2 1 3 0 1 2

1 1
1 1 2

2 2
A u u u u u u u u u          

       
 

   

                                                                               4 4
0 1

1
1 2 3

24
u u        .   

 

Example 3: Obtain 0 1 2, ,A A A  and 3A  for   3 2N u u u  .   

  3 2
0 0 0A u u  , 

  2
1 0 1 0 13 2A u u u u  , 

  2 2 2
2 0 1 0 2 1 0 23 3 2A u u u u u u u    ,  

                 3 2
3 1 0 1 2 0 3 0 3 1 26 3 2 2A u u u u u u u u u u     .

  
 

     
  
 

Example 4: Solve 0 1 2, ,A A A  and 3A  for   xN u uu .  

  0 0 0x
A u u , 

  1 1 0 0 1x x
A u u u u  , 

  2 2 0 1 1 0 2x x x
A u u u u u u   , 
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  3 3 0 2 1 1 2 0 3x x x x
A u u u u u u u u    .     

 

 

3.3.   APPLICATIONS OF ADOMIAN DECOMPOSITION METHOD 

 

Example 5: Consider the linear equation 

                       2
t xxu x tu ,                (3.16)      

                                   BCs:  0, 0u t  ,       1, tu t e , 

                                    IC:   2,0u x x .  

The equation (3.16) is written in an operator form as  

                           2
t xxL u x tu                                                              (3.17)                                                                                                

where tL
t





 and the inverse operator is 1
tL  where  1

0
.

t

tL dt   . 1
tL  is applied to the 

both sides of (3.17) and by using the initial condition. It can be written that 

                              1 2, ,0 t xxu x t u x L x tu    (3.18)                                                                                                                   

then   

                                 
2

0u x , 

                                  

2
2 2 20

1 20

t u
u x t dt x t

x

 
  

 
 , 

                                  

2
2 2 41

2 20

1

2

t u
u x t dt x t

x

 
  

 
 ,  

                                  

2
2 2 62

3 20

1

6

t u
u x t dt x t

x

 
  

 
 ,  

                                   

2
2 2 83

4 20

1

24

t u
u x t dt x t

x

 
  

 
 .                                      
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As a result, the solution  ,u x t  is obtained in a series form as    

                    2 2 2 2 4 2 6 2 8

0

1 1 1
, ,

2 6 24
n

n

u x t u x t x x t x t x t x t




           
                                                                                                                             

and the series converge to 

                                                2, tu x t x e .  

                                                                                                                                 

Example 6 : Consider the nonlinear differential equation   

                                  21 1
t xxu u u

x x
        on       0, 0,1l  ,             (3.19) 

                                  BCs:  0, 0u t   ,    
1

,
1

xu l t
t




,  

                                  IC:  ,0u x x .   

The equation (3.19) is determined in an operator form as 

                                            21 1
t xxL u u u

x x
                   (3.20) 

where tL
t





 and inverse operator of tL is 1
tL  where  1

0
.

t

tL dt   . Inverse operator is 

applied to the both sides of  (3.20) and by using the initial condition. It can be written as 

                                       1 21 1
,0 t xxu u x L u u

x x

  
   

 
  

and the nonlinear  term  N u  which is defined as 2u is expressed in the form of 

Adomian’s polynomials as follows: 

      0u x , 

      2
0A x       

2
0

1 020 0

1 1t tu
u dt A dt xt

x xx


  


  , 
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      2
1 2A x t       

2
21

2 120 0

1 1t tu
u dt A dt xt

x xx


  


  , 

     2 2
2 3A x t       

2
32

3 220 0

1 1t tu
u dt A dt xt

x xx


  


  , 

                           2 3
3 4A x t                         

2
43

4 320 0

1 1t tu
u dt A dt xt

x xx


  


      

                                                                              
   

 

 then, the solution is given by  

      2

0

, 1 ... n

n

u x t x t t x t




      ,        0,1t ,  

and we have   

                            
1

, .
1

u x t x
t

 
  

 
 

                                            

Example 7: Consider the ordinary differential equation  

                              cos sin sinu x u x x x x x x     ,     0 0u  . 

1L  is applied to both sides of the ordinary differential equation. Then, it is found that   

                              1sin cos sinu x x x x x x L u x       

 Then, we have iterations of   u x  as follows:    

   0 sin cos sinu x x x x x   , 

   1 0
0

cos sin sin 2cos 2
x

u u dt x x x x x x       , 

    2 1
0

sin 2cos cos 3sin 2 2
x

u u t dt x x x x x x x        . 
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As a result, by eliminating the like terms it is obtained the exact solution which is given 

by    

                                                    sinu x x x . 

 

Example 8: Consider the homogeneous hyperbolic equation  

         0tt xxu u u              

with the initial and boundary conditions  

                                0, 0u x x  ,          0, sin(2 )tu x x x   , 

                                ,1 ,0 0u t u t  ,        
1

0
, 0u t x dx    

where  

                               ,1 ,0 0u t u t         and       21 4   .  

Shortly, we can rewrite the equation as   

     0tt xxu u u   , 

     0, 0u x  ,     0, sin(2 )tu x x ,  

     ,1 ,0 0u t u t  ,       ,1 ,0 0x xu t u t             

where   

        ,1 ( ,0) 2 sinx xu t u t t  . 

By using the ADM   

     0 sin 2u t x ,  

     
3

1 sin 2
3!

t
u x  ,   

     
5

2 sin 2
5!

t
u x ,   
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   
 

 
2 1

1 sin 2
2 1 !

n
n

n

t
u x

n




 


    

then  ,u x t
 
is written as  

        
3 5

0

, , sin 2 .....
3! 5!

n

n

t t
u x t u x t x t





 
     

 
 ,  

        sin 2 sinx t .   

 

Example 9: Solve the nonhomogeneous Fredholm integral equation 

            
11

0
cosu x x x xu t dt    .                                      (3.21) 

ADM can also be applied to integral equations. Without loss of generality, we consider 

the Fredholm integral equation. Then, substituting the series decomposition 

                                             
0

, ,n

n

u x t u x t




                                                

into both sides of equation (3.21), we obtain   

                                     1
0 cosu x x  , 

                                      
1

1 0
0 2

x
u x u t dt  , 

                                             
1

2 1
0 4

x
u x u t dt  , 

                                      
1

3 2
0 8

x
u x u t dt    

                                                

Then, we obtain the solution in a series form which is given by  

      1 1 1 1
cos 1 ....

2 2 4 8

x
u x x x  

       
 

, 
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and so, the solution in a closed form is obtained by evaluating the geometric series 

               1cosu x x .  

 

Example 10: Consider the nonlinear Klein-Gordon  

      2 2 2 6 66tt xxu u u xt x t x t       

with the initial conditions  

      ,0 0u x  ,     ,0 0tu x  .  

In this problem, we will solve by using the Modified Decomposition Method. Without 

loss of generality, we use operator of ADM and get 

      2 2 6 6 26 xxLu xt x t x t u u                           (3.22)

where L
 
is a second order differential operator with respect to t  and inverse operator 

1L is given by  1

0 0
.

t t
L dtdt     applying  inverse operator 

1L  to the both sides of  

(3.22), it is obtained  

                                        1 2, xxu x t f x L u u        

where the function  f x  is defined as    

                                     3 3 5 6 83 1

10 56
f x x t xt x t   .  

The modified decomposition method suggests that the function  f x  be decomposed 

into two parts, that is to say  0f x  and  1f x  such that 

                                           0 1f x f x f x         

then we define the solution  u x  by the series  

                                            
0

n

n

u x u x




   

where the components 0 1 2,, ,u u u  . 

The zeroth component  0u x  is defined only by  0f x . The remaining part  1f x  of 

 f x  is added to the component  1u x . Then  
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                               3 3
0 ,u x t x t ,   

                               5 6 8 1 2
1 0 0

3 1
,

10 56 xx
u x t xt x t L u u     ,                                                              

                                        5 6 8 1 3 6 63 1
6

10 56
xt x t L xt x t     , 

                                       0 ,    

and as a result, 0ku  , 2k  .               

Finally, the solution is stated in a closed form as  

        3 3,u x t x t . 

 

Example 11: Consider the nonlinear partial differential equation  

     
2

x y zu u u u                                                             

with the nonhomogeneous initial condition   

      , ,0u x y x y  .                                                   

We solve the problem by using the ADM and write the equation in the operator form as 

     
2

x y zL L L u                 

                                 2
z x yL L L u                                         (3.23)                                

where      

                                     , ,x y zL L L
x y z

  
  
  

                        

then 1
zL

 
is applied to the both sides of (3.23) 

where   

            1

0
.

z

zL dz   , 

  
         1 1 1 2, , , ,0 z x z y zu x y z u x y L L L L L u      ,                         
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       1 1 1 2, , z x z y zu x y z x y L L L L L u       ,                                   

  

     1 1 1

0 0

, , z x z y z n

n n

u x y z x y L L L L L A
 

  

 

 
      

 
                            (3.24)        

where    

       2

0

, , n

n

u x y z A




 .               

Using the initial condition along with (3.24) it can be obtained 

      1 0
0

, , , ,
z

n x n y n nu x y z u x y z L u L u A dz         for   0n  .                

Thus  

0u x y  ,  

2 2
0 2A x xy y   ,  

  2 2
1 0 0 0

0
2 2

z

x yu L u L u A dz z zx xyz zy        , 

3 2 2 3
1 4 4 2 6 6 2A zx zy zx zyx zxy zy       , 

  3 2 2 3 2 2 2 2 2 3
2 1 1 1

0
4 4 3 3

z

x yu L u L u A dz z x z y z x z x y z xy z y          , 

2 2 2 2 2 2 4 2 3 2 2 2 2 3 2 4 4
2 12 24 12 3 12 18 12 3 4A x z z xy z y z x z x y z x y z xy z y z          ,  

  3 3 2 3 3 2 3 4 3 3
3 2 2 2

0
4 6 12 6 4

z

x yu L u L u A dz z z x z xy z y z x z x y            

                                      3 2 2 3 3 3 46 4z x y z xy z y   , 

   

at the end, we have the approximate solution as   

    
 

0 1 2

2
, , ...

1 2

x y z
u x y z u u u

z x y z

 
    

    
 .   
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CHAPTER 4 

 

 

NONHOMOGENEOUS WAVE PROPAGATION 

 

 

 

4.1.   INTRODUCTION  

 

 In this study, the homogeneous wave equation with variable coefficients in the 

nonhomogeneous material, which is named as Functionally Graded Materials (FGMs), 

is assumed. Our aim is to solve this equation by using Adomian Decomposition Method 

(ADM). At the end, the same problem is also solved by eigenfunction expansion 

method to compare the results. As a conclusion, it is seen that both method agreed with 

same results and shown graphically.   

 

 

4.2.   SOLUTION OF WAVE EQUATION IN FGMs 

 

 Let us consider the wave equation 

    
2

2

2

u
c x x

t

u
E

x x


  
 

  

 

 

,       0
xx e    ,        0

xE x E e     (4.1) 

with the boundary conditions  

       2, 0, , , 0u a t u b t t t         (4.2) 

where   is constant and the initial conditions 

      ,0 0, ,0 0,tu x u x a x b    .     (4.3)
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In Equation (4.1),  x  represents material density and  E x  represents the material 

mechanical properties given in x  direction. The parameter   is a constant which is 

named as an inhomogeneity parameter of the FGM. The parameters 0  and 0E  are 

constants and 2c is the propagation speed of the wave that is also assumed to be 

constant.  

To solve the problem, let us write  ,u x t  in (4.1) as a summation of two functions   
   

 

         , , ,u x t v x t w x t         (4.4)  

where  ,v x t  and  ,w x t  are the solutions of the nonhomogeneous and homogeneous 

wave equations, respectively. These two terms will be calculated one by one. First, we 

will solve homogeneous wave equation problem with the nonhomogeneous boundary 

conditions. The solution of the problem,  ,w x t , satisfies the equation which is given 

by 

     0xe
d dw

dx dx
 

 
 

       (4.5) 

along with the boundary conditions 

       2, 0, , , 0w a t w b t t t   .     (4.6) 

The solution of (4.5) can be obtained as follows: 

 

2 2

2 2
0 0 sayx xdw d w d w dw dw

e e
dx dx dxdx dx

          ,   (4.7) 

 0 x xd dw
Ce Ce

dx dx

 
         .     (4.8) 

Finally, the general solution of (4.5) can be given as 

      , xC
w x t K e 



         (4.9) 

and after using the boundary conditions the particular solution can be obtained as 

        2,w x t t X x               (4.10) 

where the function  X x  is defined as  
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      
a x

a b

e e
X x

e e

 

 

 

 





.              (4.11) 

Now, the solution (4.10) along with (4.4) can be substituted into (4.1) to obtain the new 

differential equation to be solved  

    2
0 0

x x
tt tt x xc e v w E e v w

x

   
   
 

,  

      2
0 0 0

x x x
tt tt x x xx xxc e v w E e v w E e v w         ,  

   2 2 2 2 22
x x

x
tt x xxa b a b

e e
v X x e v t v t

e e e e

 


   
     

 

   

    
        

      

 

where 
2 2

0 0E c  . If we continue to simplify the expression above it will be 

obtained as 

  
2 2

2 2 2 2 2 2 2 2 2 22
x x x x

x x
tt x xxa b a b

e e e e
v X x e v t e v t

e e e e

   
 

   
         

 

   
     

 
,  

 
2 2 2 22

a x
x x

tt x xxa b

e e
v e v e v

e e

 
 

 
   

 

 

 
    

 
,  

  2 22
a x

x
tt xx xa b

e e
v e v v

e e

 


 
  

 

 

 
    

 
               (4.12) 

with homogeneous boundary and initial conditions, respectively, 

                              , 0v a t  ,             , 0v b t   ,              0t  ,            (4.13) 

                              ,0 0v x  ,            ,0 0tv x  ,             a x b  .                   (4.14) 

Now, the Adomian decomposition method will be used to solve (4.12). We express the 

equation with some operators such as;  

                                             t xL v L v G x                  (4.15) 

where   

     

2

2tL
t





,     1

0 0
.

t t

tL dt dt    ,                      (4.16) 
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    2 x x
xL e e

x x

 
  

  
  

,    2
a x

a b

e e
G x

e e

 

 


 

 





.           (4.17) 

If we apply the ADM directly to (4.12), we can calculate only one term that  1 , 0v x t  . 

So, we will express the function  G x
 
as generalized Fourier series to obtain other 

terms of the iteration. For this, we will solve Sturm-Liouville boundary value problem 

such as  

                                        
 

 
2

0x

x

d xd
e x

dx dx e





 
   

 
                                       (4.18) 

with homogeneous boundary conditions      0.a b    Let us start to solve the 

boundary value problem by differentiating (4.18) as  

    
     2

2

2
0x x

x

d x d x x
e e

dxdx e

 


 

  
   ,  

    
   

 
2

2 2 2

2
0x xd x d x

e e x
dxdx

  
 

                (4.19) 

which is the second-order ordinary differential equation with variable coefficients. 

Then, we write z  instead of xe   and determine the derivatives of z  as follows: 

xe z           xd d dz
z e z z

dx dz dx

  
       ,   

   
2

2

d d d dz
z z z z

dx dz dxdz
 


           ,   

        z z z z         , 

                                      2 2 2z z z z           

by substituting all terms into (4.19), we obtain ODE with constant coefficients 

          2 2 2 2 2 2 0z z z z z z z z z                    , 

             2 2 1 2 1 2 0z z z z z z              , 

                    2 2 0z z     .         (4.20) 

 After solving characteristic equation, two complex roots are obtained as 



36 

 

 
 

  
2 2 2 0m              

2
2

2
m




            m i




    

and the solution of the (4.20) with respect to z  is given by  

       1 2cos sinz a z a z
 

 

   
     

   
. 

Finally, the corresponding general solution is  

                                   1 2cos sinx xx a e a e  

 

    
     

   
 .                              (4.21) 

By using boundary conditions, one can find the unknown coefficients 1a  and 2a  as 

follows:   

                                 1 2cos sin 0a aa a e a e  

 

    
      

   
, 

                                 1 2cos sin 0b bb a e a e  

 

    
      

   
,            

                                            1 2 tan aa a e 



 
   

 
, 

                                         2 sin 0b aa e e 



  
  

 
. 

if 2 0a   then 1 0a   so it is trivial solution. If 2 0a   then  

                                          sin 0b ae e 



  
  

 
,  

                                            sin sinb ae e n 




  
  

 
,   n ,    

                                                  b ae e n 




   , 

                                                    
b a

n

e e 




 



 

thus, we have eigenvalues 

     

 

2 2 2
2

2
b a

n

e e 

 


 



.               (4.22) 

To obtain eigenfunctions we follow the process 
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   2 2tan cos sina x xx a e e a e    

  

       
        

     
,  

   2 2

sin

cos sin

cos

a

x x

a

e

x a e a e

e



 





 

  





 



 
 

          
     
 
 

,  

  
2 2sin cos sin cos

cos

a x x a

a

a e e a e e

x

e

   



   

   





   



       
        

        
 
 
 

,  

      
 

 
2

sin

cos

x a

a

e e

x a

e

 











 



 
 

  
 
 
 

              (4.23)  

 and the eigenfunctions are  

      
 sin

cos

x a

n
a

e e

x

e

 











 



 
 

  
 
 
 

,   1,2,3,n          (4.24) 

Finally, the function  G x  given in (4.17) is written according to  n x  that is a 

generalized Fourier series representation of  G x  as; 

                            
 

1 1

sin

cos

x a

n n n
a

n n

e e

a x a

e

G x

 











 
 


 

 
 

   
 
 
 

                        (4.25)

where 
na  is called as coefficients of generalized Fourier series of  G x . To calculate 

coefficients, it can be used orthogonality properties and the result is   

                                        
   

 2

b x
n

a
n b x

n
a

G x x e dx
a

x e dx

















.                      (4.26) 

Now, let us evaluate integrals in numerator and denominator in (4.26), respectively:  
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    
 sin

2

cos

x a
a x

b bx x
n a ba a

a

e e
e e

G x x e dx e dx
e e

e

 
 

 

 











 
 

 

 


 
    

 
 
 

  , 

   

 
   

2
sin

cos

b a x x a x

a
a b a

e e e e e dx

e e e

    

  

 

 




    

  

 
   

     
 

  

by using the integration by parts, the numerator will be resulted as 

  

   
   

 
2

cos sin
2 2

cos cos

b a b a

b x
n

a
a a b a

e e e e

G x x e dx

e e e e

   



   

 

  

  

 

   



   

   
    

     
   

   
   

 .  

Similarly, let us evaluate the denominator as follows: 

      

 
 2

2

2

sin

cos

x a

b bx x
n

a a
a

e e

x e dx e dx

e

 

 











 

 



 
 

  
 
 
 

      

                              
 

2

2
1 cos

2cos

x a

b x

a
a

e e

e dx

e

 













 





 
  

 
 
 
 

    

using change of variable x ae e      then  

   
 

2

0
2

2
1 cos

2 cos

b ab e ex
n

a
a

x e dx d

e

 
















 



 
  

   
 
 
 

  ,   

     
2

0

2
sin

2

2 cos

b a

a

e e

e

 



 
 

 






 



 
  

 
 

 
 
 

 , 
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   

2

2
sin

2

2 cos

b a b a

a

e e e e

e

   



 

 






   



  
    

   
  
  
  

    

Finally, the coefficients na  can be obtained as  

  

   

 

   

2

cos sin

2 cos

1 1 2
sin

2 4

b a b a

a

a b

n
b a b a

e e e e

e
e e

a

e e e e

   



 

   

 


  


  



  

   



 

   

    
            

   
  

 
    

 

.     (4.27)  

Finally, it’s simple form is  

    

 
1

4 1 cos
b

n

b a

n

n e

e e
a

n



 






  
  

  .              (4.28) 

Now, by expressing the function  ,v x t   as an infinite series and defining an inverse 

operator of  tL  respectively,   

      
0

, ,n

n

v x t v x t





 ,   1

0 0

.
t t

tL dt dt               (4.29) 

we can apply ADM to (4.12) like 

                                             1 1 1
t t t x tL L v L v L G xL                                         (4.30)  

and 

                                1 1, ,0 ,0t t t xv x t v x v x t L G x L vL     .                        (4.31)  

We obtain the zeroth component as 

                       

        
2

1
0

1

,0 ,0
2

t t n n

n

t
v v x v x t L G x a x







                        (4.32)

and the other components can be found by using the following recursive formula like  

    1
1( , ) , 0,1,2,j t x jv x t L v jL
   .             (4.33) 
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The other term of  ,v x t  can be found recursively as follows:  

       
2

1 2
1 0

0 0
1

,
2!

t t
x x

t x n n

n

t
v x t L v e e a x dtdt

x x
L  







   
     
      

  ,  

        
4

2 2

14!

x
n n n

n

t
a e x x 





       ,  

     
 4

2 2

1

sin

4!
cos

x a

n
an

e e
t

a

e

 






 





 




 
 

 
 
 
 

 ,             (4.34)  

       
4

1 2 2 2
2 1

0 0
1

,
4!

t t
x x

t x n n

n

t
v x t L v e e a x dtdt

x x
L    







   
    
      

  ,  

        
6

4 2 2

16!

x
n n n

n

t
a e x x  





      ,  

     
 6

4 4

1

sin

6!
cos

x a

n
a

n

e e
t

a

e

 






 





 





 
 

  
 
 
 

 ,            (4.35)  

   
 8

6 6
3

1

sin

,
8!

cos

x a

n
a

n

e e
t

v x t a

e

 






 





 





 
 

 
 
 
 

 ,              (4.36)  

and so on. Finally, the j th component is written as,  

      
 

 
 2 2

1 21
1

1

sin

, 1
2 2 !

cos

x a
j

j j

j t x j n
a

n

e e
t

v x t L v a
j

e

L

 












 








 
 

   
  

 
 

 .       (4.37)  

Let us try to simplify (4.37) as follows:  

 
 

 

22 4 6 2 4 6
2 2 4 4 2 2 4 4

2
... ...

2! 4! 6! 2! 4! 6!

t t t t t t
       



 
         

 

,   
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 

     
2 4 6

2

1
...

2! 4! 6!

t t t  



 
     
  

,  

       
 

     
2 4 6

2

1
1 1 ...

2! 4! 6!

t t t  



 
      
  

,  

    
 

 
2

cos 1t




 .    

Using the simplification above and substituting the value of na  into (4.37), it can be 

written that  

   
   

 
   2

2
1

1 4 cos 1
, sin

n

x a

n

t
u x t e e t X x

n

   


 


 



    
         

 .      (4.38)

      

 

4.3    SOLUTION OF WAVE EQUATION WITH EIGENFUNCTION 

EXPANSION METHOD 

 

  In this part of the study, we will solve the problem defined in (4.1)-(4.3) by using 

eigenfunction expansion method. Let us consider again 

          

   
2

2

2
,

u u
c x E x

x xt


   
  
   

            0 ,xx e               0
xE x E e          (4.39) 

with boundary and initial conditions 

     , 0u a t  ,    2,u b t t , a x b  ,  

     ,0 0u x  ,  ,0 0tu x  ,   0t  .                     

To solve the problem of (4.39), we propose a solution such as 

                                               , , ,u x t V x t W x t                 (4.40) 

which is written as a summation of two functions where the function  ,W x t  satisfies 

the homogeneous equation given by  

                                               0xe
d dW

dx dx
 

 
 

                 (4.41) 
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along with the nonhomogeneous boundary conditions 

                                 , 0W a t  ,          2,W b t t ,         0t     

The solution of (4.41) is obtained as  

                                              2,W x t t X x                  (4.42) 

where the function  X x  is defined as  

 

                                            
a x

a b

e e
X x

e e

 

 

 

 





.       

 

Substituting (4.42) along with (4.40) into (4.39), we obtain the new nonhomogeneous 

differential equation with the homogeneous initial and boundary conditions  

                     
2 2

2 2

2 2
2

a x
x

a b

V e e V V
e

xt e e x

 


 
  

 

 

      
      

     
                              (4.43) 

      , 0V a t  ,      , 0V b t  ,      0t  ,  

      ,0 0V x  ,     ,0 0tV x  ,     a x b  .  

The solution of the homogeneous differential equation  

        
 

 
2

0x

x

d xd
e x

dx dx e





 
   

 
             (4.44)  

along with the homogeneous boundary conditions 

                                                         0a b   .
         

 

gives eigenvalues and eigenfunctions of (4.44), respectively, as 

 

2 2 2
2

2
b a

n

e e 

 


 




 ,      
 sin

cos

x a

n
a

e e

x

e

 











 



 
 

  
 
 
 

 ,     1, 2, 3, ...n            (4.45) 

Let us define  

          
 

1 1

sin

,

cos

x a

n n n
an n

e e

V x t a t x a t

e

 











 
 

 

 
 

   
 
 
 

              (4.46)  
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and substitute (4.46) into (4.43) and then simplify as follows: 

 
   

 
 

 
 

2 2
2 2

2 2
1 1 1

n n nx
n n n

n n n

d a t d x d x
x e a t a t G x

dxdt dx

 
  

  

  
    

 
 

   ,      (4.47)  

   

 

2

2
1

sin

cos

n

n

d a t n

ndt









  

                            
 

 
 

 

 
 

2
2 2

2
1 1

sin sin

cos cos

x
n n

n n

n nd d
e a t a t G x

n dx ndx

  
 

 

 

 

    
          

    
  , 

 
   

   
 

 

 

2 2 2

2
1 1

sin cos

cos cos

x
n

nb a
n n

d a t n ne
na t

n ndt e e



 

   

 

 

 
 




    

           

 
 

 

 
 

 

 
 

2 2 2 2 2
2

2
1 1

sin cos

cos cos

x

n nb a
b a

n n

n ne
n a t na t G x

n ne ee e



 
 

      

 

 

 
 

 

   


  ,  

 

 
   

   
 

 

 
 

2 2 2 2
2

2 2
1 1

sin sin

cos cos

n
n

b a
n n

d a t n n
n a t G x

n ndt e e 

   

 

 

 
 

  


  . 

Finally, it is obtained a differential equation in terms of an unknown function  na t  

such that 

    
 

 
 

 
 

2 2 2 2 2

2 2
1

sin

cos
n n

b a
n

nd n
a t a t G x

ndt e e 

  





 


 
 

  
 
 
 

             (4.48) 

where 

      
 x a

b a

e e

e e

 

 




 

 





,              (4.49) 

      
a

b a

e

e e



 






 



,               (4.50) 

       
2

2
a x

a b

e e
G x

e e

 

 






 

 


 


.            (4.51) 

Using orthogonality properties of eigenfunction,  sin n , over the interval  0, , the 

summation can be reduced to a single differential equation in terms of  na t  as follows: 
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 

 
   

 

 
 

2 2 2 2 2

2 2 0 0
1

sin 2
sin sin

cos

n
n

b a
n

d a t nn
a t m d m d

ndt e e

 

 

   
   

 



 


 
 

  
 
 
 

   ,  

 
 

 
 

 
 

2 2 2 2 2

2 2

2
1

2cos

nn
n

b a

d a t n
a t

n ndt e e 

    

 

 
 

  
 
 
 

,  

   
 

 
 

 
 

2 2 2 2 2

2 2

4 cos
1

nn
n

b a

d a t nn
a t

ndt e e 

   

 
  



.             (4.52) 

The solution of the constant coefficient differential equation given in (4.52) is obtained 

like  

   
 

 1 2 2 2

4 cos
sin cos 1

n

n b a b a

nn n
a t C t C t

e e e e n   

  

    

   
      

    
.       (4.53) 

After using initial conditions, the coefficients 1C  and 2C  can be determined as 

     1 0C        and       
 

 2 2 2

4 cos
1

nn
C

n

 

 
     

and the final result of the function  na t  can be obtained as 

     
 

 2 2

4 cos
1 cos 1

n

n b a

n n
a t t

n e e 

  

   

  
     

  
.            (4.54) 

Finally, when the value of  na t  is substituted into (4.46) then the solution of the partial 

differential equation given in (4.43) can be obtained like 

    
 

2 2
1

4 cos sin

, 1 cos 1

cos

a x a

n

b a
an

e e e
n

V x t t
n e e

e

  

 


 


 

 



  



 


    
               

     
     

 .  

   
 

 2 2
1

1 4
, 1 cos sin

n

x a

b a
n

n
V x t t e e

n e e

 

 

  

  


 

 


      
       

      
 .           (4.55) 

The general solution of the problem given in beginning of the study is obtained by 

substituting the value of  ,V x t  into (4.40), along with  ,W x t  given in (4.42). The 

solution can be given as follows:  
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   
    

 
  2

2
1

cos 11 4
, sin

n a x
x a

a b
n

t e e
u x t e e t

n e e

 
 

 

 


 

 
 

 


   
         

 ,  

   
    

 
   2

2
1

cos 11 4
, sin

n

x a

n

t
u x t e e t X x

n

 
 


 


 



   
         

 .     (4.56)  
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CONCLUSIONS 

 

 

 

 In this study, the general formula of Adomian polynomials and Adomian 

decomposition method are examined in all aspects. The analysis of the method is 

explained and different application examples are used to explain the ADM. 

  

 The main purpose of this subject is to prove that ADM can be applied to second 

order wave equation with variable coefficient in nonhomogeneous material known as 

functionally graded materials (FGMs). Also, same problem is solved by using 

eigenfunction expansion method. When we compare the results, both methods give 

same solution. And, the solution of the problem is showed by tables and graphics on 

different nonhomogeneity parameters. Then, at the end of the problem solution method 

and numerical results are controlled for homogeneous materials by solution of close 

form. As a result, it is clear that the method is applicable and efficient for our problem. 

 

 In the future, this problem can be examined for different type homogeneous or 

nonhomogeneous equations. For instance, the exponential form can be changed and put 

another form instead of our main problem or homogeneous type of problem can become 

nonhomogeneous type.   
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Table 1: Comparison of approximate solution with close-form solution for 
510   

 

 

    , ,
C

u x t u x t   

x  1t   5t   10t   

0  0  0  0  

0.1 6
0.99 10


  

4
0.11 10


  

4
0.44 10


  

0.2  5
0.19 10


  

4
0.22 10


  

4
0.79 10


  

0.3  5
0.27 10


  

4
0.27 10


  

3
0.10 10


  

0.4  5
0.33 10


  

4
0.32 10


  

3
0.11 10


  

0.5  5
0.37 10


  

4
0.33 10


  

3
0.12 10


  

0.6  5
0.38 10


  

4
0.32 10


  

3
0.11 10


  

0.7  5
0.35 10


  

4
0.28 10


  

3
0.10 10


  

0.8  5
0.28 10


  

4
0.22 10


  

4
0.79 10


  

0.9  5
0.17 10


  

4
0.12 10


  

4
0.44 10


  

   1.0  0  0  0  

 

 

 

  Table 2: Values of  ,u x t  for different time values for 0.5   

 

  ,u x t  

x  1t   5t   10t   

0  0  0  0  
0.1 0.0831 3.0891 12.3565  
0.2  0.1620  6.0276  24.1105  
0.3  0.2416  8.8228  35.2935  
0.4  0.3313  11.4816  45.9442  
0.5  0.4295  14.0108  56.0883  
0.6  0.5350  16.4168  65.7498  
0.7  0.6458  18.7118  74.9505  
0.8  0.7611 20.9048  83.7124  
0.9  0.8794  22.9994  92.0556  
1.0  1.0000  25.0000  100.0000  
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  Table 3: Values of  ,u x t  for different time values for 1.0   

 

  ,u x t  

x  1t   5t   10t   

0  0  0  0  
0.1 0.1400  3.7630  15.0525  
0.2  0.2667  7.1681 28.6726  
0.3  0.3813  10.2492  40.9966  
0.4  0.4850  13.0368  52.1478  
0.5  0.5797  15.5595  62.2378  
0.6  0.6707  17.8418  71.3677  
0.7  0.7592  19.9073  79.6286  
0.8  0.8436  21.7757  87.1046  
0.9  0.9241 23.4672  93.8727  
1.0  1.0000  25.0000  100.0000  

           

 

 

                           

                       

 Table 4: Values of  ,u x t  for different time values for 1.5   

 

  ,u x t  

x  1t          5t   10t   

0  0  0  0  
0.1 0.1790  4.4767  17.9069  
0.2  0.3331 8.3298  33.3197  
0.3  0.4658  11.6463  46.5919  
0.4  0.5800  14.5008  58.0231 
0.5  0.6782  16.9578  67.8675  
0.6  0.7629  19.0755  76.3449  
0.7  0.8357  20.9014  83.6446  
0.8  0.8982  22.4750  89.9297  
0.9  0.9526  23.8314  95.3412  
1.0  1.0000  25.0000  100.0000  

                                           

 

 

 



49 
 

 
 

 

 Table 5: Values of  ,u x t  for different time values for 2.0   

 

  ,u x t  

x  1t   5t   10t   

0  0  0  0  
0.1 0.2058  5.2336  20.9356  
0.2  0.3743  9.5185  38.0859  
0.3  0.5122  13.0266  52.1355  
0.4  0.6251 15.8999  63.6440  
0.5  0.7180  18.2557  73.0699  
0.6  0.7961 20.1870  80.7897  
0.7  0.8616  21.7697  87.1118  
0.8  0.9165  23.0668  92.2890  
0.9  0.9622  24.1295  96.5285  
1.0  1.0000  25.0000  100.0000  

 

 

 

                                 
                              

Table 6: Values of  ,u x t  for different time values for 2.5   

 

  ,u x t  

x  1t   5t   10t   

0  0  0  0  
0.1 0.2239  6.0197  24.0790  
0.2  0.4015  10.7079  42.8368  
0.3  0.5462  14.3590  57.4519  
0.4  0.6629  17.2033  68.8382  
0.5  0.7562  19.4206  77.7083  
0.6  0.8303  21.1489  84.6177  
0.7  0.8889  22.4957  89.9997  
0.8  0.9352  23.5453  94.1918  
0.9  0.9715  24.3630  97.4570  
1.0  1.0000  25.0000  100.0000  
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 Table 7: Values of  ,u x t  for different time values for 3.0   

 

  ,u x t  

x     1t            5t   10t   

0  0  0  0  
0.1 0.2546    6.8177  27.2711  
0.2  0.4511 11.8685  47.4741  
0.3  0.6019  15.6102  62.4411 
0.4  0.7165  18.3821 73.5311 
0.5  0.8030  20.4357  81.7484  

   0.6  0.8680  21.9576  87.8368  
0.7  0.9166  23.0857  92.3477  
0.8  0.9529  23.9216  95.6897  
0.9  0.9799  24.5410  98.1657  
1.0  1.0000  25.0000  100.0000  
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Figure 1: Function of  ,u x t for exponential form when 0   

 

 

 

                                    

   

 Figure 2: Function of  ,u x t for exponential form when 
510    
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  Figure 3: Function of  ,u x t for exponential form when 0.5   

 

 

 

                                             

 

  Figure 4: Function of  ,u x t for exponential form when 1.0    
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  Figure 5: Function of  ,u x t for exponential form when 1.5   

 

 

 

 

                                       

                    

   Figure 6: Function of  ,u x t for exponential form when 2.0    
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 Figure 7: Function of  ,u x t for exponential form when 2.5   

 

 

 

                                     

                                  

 Figure 8: Function of  ,u x t for exponential form when 3.0   
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APPENDIX A 

 

SOLUTION OF WAVE EQUATION FOR  0   

 

  In this part of the study, it is examined a wave equation for homogeneous 

material, 0  , by using eigenfunction expansion method  

     

2 2
2

2 2

u u

t x


 


 
,   2 2

0 0E c  ,     (A.1)  

Subject to the following boundary and initial conditions  

     , 0u a t  ,    2,u b t t , a x b  ,  

     ,0 0u x   ,   ,0 0tu x  , 0t  .                    

For the solution of the problem given in (A.1), it is proposed a solution  

         , , ,u x t V x t W x t          (A.2) 

to obtain homogeneous type BCs. The function  ,W x t  that satisfies the homogeneous 

equation given by  

              

2

2
0

Wd

dx
          (A.3)                       

along with the nonhomogeneous boundary conditions 

     , 0W a t  ,    2,W b t t ,      0t    

has a solution  

       2,
x a

W x t t
b a







.        (A.4) 
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Substituting (A.4) along with (A.2) into (A.1), it is obtained the new nonhomogeneous 

differential equation  

    

2 2
2

2 2
2

V x a V

b at x
 

    
     

    
,       (A.5) 

Subject to homogeneous boundary and initial conditions, respectively,  

     , 0V a t  ,       , 0V b t  ,      0t  ,  

     ,0 0V x  ,       ,0 0tV x  ,     a x b  .  

From this point on, the method of eigenfunction expansion can be applied for the 

solution of (A.5). First, solving the equation  

      
 

 
2

2

2
0

d x
x

dx



          (A.6) 

subject to the homogeneous boundary conditions 

                     0a b      

gives eigenvalues and eigenfunctions of (A.6), respectively, as  

      
 

2 2
2

2

n

b a


 


,   

 

 

sin

cos
n

x a
x

a

 




  ,  1,2,3,...n 

                   (A.7)  

Let us apply the method of eigenfunction expansion by defining  na t  as an unknown 

function such as  

          
 

 1 1

sin
,

cos
n n n

n n

x a
V x t a t x a t

a

 



 

 


         (A.8)  

and substituting (A.8) into (A.5) gives that  

   
 

     
2

2 2

2
1 1

2
n

n n n

n n

d a t x a
x a t x

b adt
  

 

 


    


  .   (A.9)  
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Then, it is obtained a differential equation in terms of an unknown function  na t  such 

that  

      
 

 
2 2

1

sin
2

cos
n n

n

x a x a
a t a t

a b a

 
  







     
  

 ,  

      
 

 
2 2

1

sin
2

cos
n n

n

n x a
a t a t

a b a


  







    
  

   

where  

      
 n x a

n
b a








. 

Using orthogonality properties of eigenfunctions,  sin n , over the interval  0, , the 

summation can be reduced to a single differential equation in terms of  na t  as follows:  

       
 

 
 2 2

0 0
1

sin 2
sin sin

cos
n n

n

n
a t a t m d m d

a

  
     

 





    
    ,  

        
 

 2 2 2 1

2cos

n

n na t a t
a n


 



   
 

.           (A.10)  

The solution of the constant coefficient differential equation given in (A.10) is obtained 

like  

          
 

1 2 2 2

4 cos
sin cos 1

n

n

a
a t C t C t

n

 
 

 
    .           (A.11)  

After using initial conditions, the coefficients 1C  and 2C  can be determined as  

    1 0C        and       
 

 2 2 2

4 cos
1

na
C

n

 

 
     

and, finally, the function  na t  can be obtained as 

      
 

    2 2

4 cos
1 1 cos

n

n

a
a t t

n

 


 
   .           (A.12)  
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When the value of  na t  is substituted into (A.8) then the solution of the partial 

differential equation given in (A.5) can be obtained like  

     
 

    2 2
1

4 1
, 1 cos sin

n

n

V x t t x a
n


  

 





 
   

  
 .          (A.13)  

The general solution of the problem is obtained by substituting the value of  ,V x t  into 

(A.2), along with  ,W x t  given in (A.4). The solution can be given as follows:  

    
 

 
     2

2
1

1 4
, 1 cos sin

n

n

x a
u x t t x a t

b an


   

 





 
   


 .          (A.14)  
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