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ABSTRACT 

 
 
 
Since high performance computers became widely available, using computers to 

simulate optical phenomena emerged as an important topic of research. Programs like 

GLAD and ZEMAX are being used and commercially available for use by engineering 

in the optics industry as of today. Codes to simulate optical phenomena to students of 

higher education are also a subject of ongoing research. The most famous and widely 

available physical optics code currently is the Project WebTOP supported by the U.S. 

National Science Foundation (NFS). The project has been supported since 1984 and still 

being supported at this date. Yet, in this Project, there are still missing important 

elements for the simulations of diffraction and interference of light from two 

dimensional structures. We construct the diffraction and interference theory on a scalar 

diffraction theory based on Huygens-Fresnel-Kirchoff diffraction integrals. We write 

Mathematica codes to simulate diffraction and interference of regular objects like 

rectangles and circles, individually or forming arrays and meshes. We extend the theory 

to facilitate the education of diffraction and interference patterns from regular or 

irregular lattices of arbitrary shaped but identical apertures. In this context, the 

programs are written in an interactive fashion for facilitating education of topics in 
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optics like diffraction and interference in physical optics teaching in every level of the 

education system. 
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ÖZ 

 
 
 

Yüksek performanslı bilgisayarların çok geniş kitlelerce ulaşılabilir hale 

gelmesi, optik fenomenlerinin bilgisayar yardımıyla simülasyonun yapılmasını önemli 

bir araştırma konusu haline getirmiştir. GLAD ve ZEMAX gibi ticari olarak satışta olan 

lisanslı programlar optik endüstrisinde çalışan mühendisler tarafından kullanılmaktadır. 

Bunun yanı sıra örgün yükseköğretimdeki sisteminde öğrenciler için optik fenomenlerin 

simülasyonlarını yapan bilgisayar programlarını geliştirmek halen devam eden bazı 

araştırmaların başlıca konusudur. En ünlü ve en geniş olarak bulunabilen fiziksel optik 

programı A.B.D. Ulusal Bilim Vakfı (NSF) tarafından desteklenen WebTOP projesidir. 

Bu proje 1984’ten bu yana desteklene gelmiştir ve halen desteklenmektedir. Ne var ki 

WebTOP projesinde ışığın iki boyutlu yapılardan kırınımı ve girişimi için bugün 

itibariyle eksik olan önemli bileşenler vardır. Kuramımızı Huygens-Fresnel-Kirchoff 

kırınım integralleri ile bina edilmiş bir skaler kırınım teorisi üzerine kurduk. 

Dikdörtgenler ve daireler gibi düzenli yapıların tek başlarına ya da oluşturduğu diziler 

ve eleklerden ışığın kırınımının ve girişiminin simülasyonlarını yapmak için 

Mathematica programları yazdık. Kuramı özdeş, ama rastgele şekillerden oluşan, 

düzenli ya da düzensiz iki boyutlu ağ yapılarından ışığın kırınım ve girişim desenlerinin 
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hesaplanması için genişlettik. Bu şekilde programların kırımın ve girişim konusunun 

örgün eğitim sisteminin her aşamasında eğitimi destekleyebilecek şekilde etkileşimli 

olmasını sağladık. 

Anahtar Kelimeler: Lazerler, Fraunhofer Kırınım, Girişim, Bilgisayar Simülasyonları. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

In recent years computer simulations of more advanced topics in physical optics 

like the project WebTOP has been developed with the support of U.S. National Science 

Foundation (NSF). 

In this study we will discuss what else can be done to improve the teaching of 

Physical Optics taking essentially the case study of diffraction and interference from 

two dimensional structures. We will discuss what kind of parameters can be animated or 

interactively simulated for teaching interference and diffraction phenomena from array 

and mesh structures. We will discuss what else can be done for the improvement of 

teaching about Lasers and Optoelectronics. 

In physics and engineering education, two main subjects are common and 

essential to most disciplines, optics and fluid mechanics. A field which is emerging 

these days is Optoelectronics, an interdisciplinary field which is at the intersection 

region of Electrical and Electronics Engineering, Physics, Biology and Chemistry. As 

being the essential tool for research and development, Engineering and Science students 

are expected to master these fields mostly in their undergraduate education. There is yet 

another common point to these two fields. Most of the problems which students find 

difficult to understand are likely to be demonstrated via visual tools. Among these 

subjects are laminar, intermittent and chaotic flows, the concept of viscosity and its 

relevance to motion of a particle in a liquid, interference and diffraction effects and their 

applications to optical engineering, chromatic and spherical aberrations are visual 

subjects yet students often find such topics incomprehensible, or far too abstract, or just 

objects of construct that exist only on paper with no physical correspondence. 
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The effect of growing computational power and new software tools on education 

can be utilized at this point. We noticed that there is a growing demand in Turkish 

higher education system as well as abroad, for well-equipped education systems in 

engineering in which the student can also participate and pursue his/her interests in 

research. For that matter we reckon that development of user friendly software tools in 

Engineering education is essential for future Higher education system.  

In this study our aim is to develop interactive software programs for 

demonstration of basic concepts and building up of concepts in Engineering through 

interactive programs. For this reason we think it is most adequate to use 

Mathematica/MatLab/Visual Studio interactive programming environment for our 

purposes since the programs developed with these tools are the most user friendly 

programs for the students to cope with since they are higher level programming 

languages.  Our aims can be summarized as follows: 

 To give detailed information about current literature and methods. 

 Emphasis of advantages of using interactive tools in engineering education 

rather than demos. 

 Application of interactive visual tools to fluid dynamics and gas flow. Possible 

extension to oil and gas engineering (Optional as an extension to this thesis at a 

Ph.D. level study). 

 Description of more complex diffraction patterns through computer simulations. 

Possible usage in Metallurgical Engineering. 

  Applications to communications, sensor and energy transport problems. 

 Making the most fundamental concepts in the physics and engineering of optics 

and fluid mechanics (optional) accessible to a wider group of learners. 

 Making the subject matter enjoyable to follow by means of edutainment 

techniques. 

Computer simulations in science have been utilized starting as early as the first 

modern computers. For the solution of diffusion problems and handling of radioactive 
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materials during the 2nd W.W., first computers have done quite some work. In the 

Apollo project also trajectory calculations as well as all kinds of calculations were 

carried out by a mainframe. Those simulations were performed on computers as 

powerful as a personal laptop of our present day. So the problem with modern scientific 

simulation is that, though it has been used in many cutting edge technology research and 

development case, there is still need for a projection onto higher education in 

Engineering and Science.  

          This need has been recognized recently by some people and some projects have 

been developed. It would be only logical to expect such attempts to come first from the 

visual fields to elucidate more complex concepts to the student via computer 

simulations.  A recent study by a group of scientist under the supervision of Prof. John 

T. Foley at the Department of Physics and Astronomy at Mississippi State University 

supported by a series of National Science Foundation projects is called WebTop [1] 

(NSF award numbers 9950569 and 0231217). 

The research team has developed Java tools for this interactive 3D program to 

demonstrate and make the subject of optics more comprehensible for a wider society. 

They have written scripts to visualize concepts like polarization, Fraunhofer and Fresnel 

Diffractions; interference, single and multiple slit diffractions, Michelson 

interferometer, Fabry-Perot interferometer and similar phenomena. The project has 

received a series of awards and in the course of the development of the project a sequel 

of scientific papers have been published in a time span of more than a decade [2-16]. 

There has been considerable computational progress also in the field of flow 

visualization within the discipline of computer science [17-26]. Among them is Ronald 

Fedkiw et.al. paper, which may be considered to be a pioneering work for flow 

visualization of smoke [27].   Nick Foster of DreamWorks and Ron Fedkiw also made 

essential work in animation of liquids, like water splashes, and simulation of 

hydrodynamics of fluids being poured into a contained surrounding with complex 

surfaces [28].  These programs utilize advanced computational techniques and mostly 

fit in the category of realistic graphic animation of fluids in the movies and the 

simulations are in the professional level for computer graphics in the discipline of 

computer science. Yet also art and physics students have been working on the computer 
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simulations of natural phenomena in the courses offered by Hertzberg and Sweetman 

[29] on a different context.  

A less involved yet more flexible form of fluid mechanics simulations have been 

published by Morrison [30], in which he uses an Excel spreadsheet to analyze the efflux 

time from a vessel. As simple as it stands at a first glance, such work can be applied to a 

variety of engineering problems in real life.  

Since both fields of fluid flow and optics call for visual simulations, there has 

also been some work performed in the interaction region of the two by Khotiaintsev 

[31].  They used a Visual Basic code to simulate a fiber optic refractometric sensor.  

With this many background work already performed, one would expect to have a 

lot of applets and interactive tools to be available for all fields of optoelectronics and 

fluid mechanics, yet; for the purposes of education, this field still needs more work to be 

completed.  Kawabata [32] gives an outline of future directions for teaching optics by 

aids from multimedia techniques and Evans [33] makes an investigation of available 

Visual Basic programs in basic science. We think that our work will fill an existing gap 

for a much needed area in engineering education and will increase the quality of higher 

education in our university and in our country as well. 
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CHAPTER 2 
 

 

2. PREVIOUS WORK ON PHYSICAL OPTICS SIMULATIONS 

 

In this Chapter, we will give an outline and make a review of what has already 

been done in the simulation and teaching of physical optics. Regarding this matter, there 

are various applets on the internet [34], to demonstrate distinct subjects like blackbody 

radiation [34, 36], the solar spectrum [37] (see Figure 2.1 (a) and (b)), spatial coherence 

[38] (theory), [39] (Java applet) and the working principles of lasers [40]. However 

most of these applets are event based, and they simulate only an individual optical 

phenomenon. What is even more critical is that, most of these demonstrations are not 

open source, or even sometimes not even interactive. In and amongst the physical optics 

demonstrations the WebTOP Project is different and superior due to several reasons. 

WebTOP [41] is a 3D interactive computer graphics system supported by 

various grants under several NSF projects for over a decade, that simulates and 

visualizes optical phenomena. Instructors can use it to facilitate visualizing optics of 

waves phenomena, and students can use it to help them learn about different important 

subtopics of optics and waves.  

Each WebTOP module is designed to be scriptable by the Project team, i.e. the 

user can record a session and replay it at a later time. There are two versions of 

WebTOP. WebTOP 5.0 is the older VRML version (Virtual Reality Modeling 

Language). WebTOP 6.0 can be run either over the web, or be downloaded and run 

locally, and so it is more advantageous to use WebTOP 6.0. However, version 5.0 

requires the use of Microsoft's Internet Explorer (IE) web browser, the installation of 

the Blaxxun Contact plug-in to IE, and the use of the Microsoft Virtual Machine. Since 

the Microsoft Virtual Machine is no longer necessarily supported by Windows 

operating systems, these days, users use WebTOP 6.0 instead of version 5.0.  
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WebTOP 6.0 is the new, X3D version of WebTOP. It currently has sixteen 

modules, and other modules are under development. The available modules as of 2011 

are as follows  

1) Wave fronts,  

2) Waves - Two Media,  

3) Waves: Three Media,  

4) Michelson Interferometer,  

5) Fabry-Perot Etalon,  

6) Fraunhofer Diffraction: N-slit,   

7) Fraunhofer Diffraction:  Rectangular Aperture,  

8) Fraunhofer Diffraction: Rayleigh Resolution,  

9) Transmission Diffraction Grating 

10) Fresnel Diffraction: Circular Aperture/Obstacle,   

11) Fresnel Diffraction: Single Slit,  

12) Lasers,  

13) Photoelectric Effect.   

The modules under construction are   

14) Waves,  

15) Photons: Two Slits. 

16) Polarization, 

WebTOP is a platform-independent, Java application that the user can download 

and run locally on his own computer. The only restriction for running WebTOP 6.0 is 

that the user's computer has a recent version of Java installed on it. WebTOP 6.0 is an 
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open source project.  The source code is available from Source Forge under the project 

name WebTOP-optics. Users may make their own changes to the modules and/or create 

new modules using the programme named ApacheAnt. The programming and 

development of applets using ApacheAnt and Java SE Development Kit (JDK) and an 

integrated development environment (IDE), such as Eclipse, in order to modify or 

create WebTOP 6.0 modules are beyond our interest. Instead we will use a multipurpose 

program like Mathematica in this thesis, to carry out the simulations and animations to 

extend the use of Computer simulations in Physical Optics. Our approach not only 

familiarizes the student with physical optics concepts, but will encourage the student to 

use Mathematica as a tool in every aspect of Science. The effort of the WebTOP team to 

make the subject matter as compact, as comprehensible and as simple as possible is 

appreciable. The development team consists of the following six people from various 

disciplines of Science, Dr. David C. Banks, Department of Electrical Engineering and 

Computer Science University of Tennessee at Knoxville,  J. Lamar Barnett Department 

of Computer Science Mississippi State University, Jeremy E. Davis Department of 

Computer Science Mississippi State University, Dr. John T. Foley Department of 

Physics and Astronomy Mississippi State University, Shane P. Fry Department of 

Computer Science Mississippi State University, Dr. Taha Mzoughi Department of 

Biology and Physics Kennesaw State University. WebTOP appears to be one of the 

most compact sources of Physical Optics demonstrations developed so far. The team 

has won multiple awards among them we can note the following ones:   

In the year 1997 Professors John T. Foley and David C. Banks won a Phil 

Hardin Foundation Technology Award, an award given to provide public recognition to 

faculty and staff who are using information technologies in outstanding or exemplary 

ways from the Mississippi Institutes for Higher Learning. In the year 2000 Kiril 

Vidimce were given the Outstanding Undergraduate Research award from Mississippi 

State University, primarily for his work on The Optics Project on the Web (WebTOP). 

In the year 2001 Sara Smolensky received the Outstanding Woman Undergraduate 

award from Mississippi State University. She also received an Honorable Mention 

award in the national Computing Research Association's Outstanding Undergraduate 

Award. In the year 2002 Davis Herring lead Mississippi State's programming team to a 

first place finish at the Southeastern regional ACM Programming Contest. The team 

participated in the International ACM Programming Contest in Los Angeles and 
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finished in third place in the Java Challenge portion of the competition. Ben Wyser 

received the Outstanding Mathematics Student award from the Department of 

Mathematics of Mississippi State University in 2002. He also received an Honorable 

Mention award in the national Computing Research Association's Outstanding 

Undergraduate Award. In the year 2003 Professor John T. Foley received the 2003 

George B. Peagram Medal from the Southeastern Section of the American Physical 

Society "For his outstanding undergraduate and graduate teaching and his creativity, 

leadership, and dissemination of The Optics Project." 2004 S. Davis Herring won a 

prestigious Fannie and John Hertz Foundation Fellowship to support his graduate school 

studies. The competition for these fellowships is nationwide and all science students are 

eligible; only nineteen were awarded in 2004. Frances D. Carter won, in a nationwide 

competition, a National Science Fellowship to support her graduate school studies. 

WebTOP was selected as a finalist in the Information and Communication Technologies 

category in the IX edition of the Pirelli INTERNETional Award [42]. In the year 2009 

Sara Ford published a book, "Microsoft Visual Studio Tips," [43]. Miscellaneous: 

WebTOP programmers have won Mississippi State University's ACM Programming 

Contest five times. The Project is supported by the U.S. National Science Foundation 

under Grant numbers Due 9950569 and Due 0231217.  It is stil an open source Project 

for which interested people can make their own contributions. The alumni work in the 

field of computation currently, Yong Tze Chi is with Sparco.com, Kiril Vidimce is with 

Pixar Animations, Sara Smolensky is with Microsoft Corporation, Ben Wyser is with 

Data-tronics Corporation as of today. 
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2.1 BLACKBODY SPECTRUM 

 

 

 

(a) 

 

 
(b) 

Figure 2.1 Solar spectrum applet showing the strong temperature dependence of the blackbody 

spectrum (a) T=5880K, (b) T=4500K [44] 
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Figure 2.2 Mathematica code about Blackbody Spectrum written for Wolfram Demonstrations 

Project by Jeff Bryant [45]. 

       

          Blackbody spectrum is among the simplest possible demonstrations in Physical 

Optics. For a comparison of the Sun spectrum [44] and Temperature dependent 

spectrum of a Blackbody is also simulated [45], where we can use both to introduce 

students these concepts in an interactive way.         

 

 



 

 

11 

2.2 CURRENTLY OPERATIONAL WEBTOP MODULES 

 

The WebTOP modules that are currently operational are very useful for 

demonstration of optical phenomena. In this section we will give a brief outline of what 

has been done in the WebTOP Project being run at the Mississippi State University with 

National Science Foundation Support, what else is being planned by the WebTop 

development team, and we will discuss what else may be added to the demonstrations 

Project practically using other programming platforms like mathematica. We believe 

that the use of a compact programming environment like MatLab or Mathematica may 

also encourage the students to participate in further development of other 

demonstrations and research tools for physical optics.  

           

 
Figure 2.3 The WebTOP environment provides more than a dozen interactive demonstrations. 
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2.3 DIFFRACTION-RAYLEIGH RESOLUTION CRITERION: THEORY  

2.3.1 Introduction  

In this module monochromatic light of wavelength l from two distant point 

sources separated by an angle q is incident on a thin lens of focal length f and diameter 

D. The resulting intensity pattern is viewed on an observation screen located in the focal 

plane of the lens (see Figure 2.4 below). The white line above the observation screen is 

a plot of the intensity of the light at observation points across the middle of the screen.  

 

Figure 2.4 The Fraunhofer Diffraction-Rayleigh Resolution module. 

2.3.2 Intensity on the Observation Screen 

The sources are positioned about the principal axis of the lens (see Figure 2.4). 

Let us define the center of the lens to be the origin of our coordinate system and the 

plane that contains the lens as the plane z = 0. The focal plane of the lens is the plane z 

= f. Since each point source is far from the lens, the intensity incident upon the lens due 

to each point source will be constant across the face of the lens; let us call this constant 

value I0. Let q/2 be the angle that each source makes with the principal axis of the lens. 

The intensity at the point P=(x,y,f) on the observation screen is then given by the 

formula  

                                        
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Ic is the intensity at the center of the intensity pattern due to one source. In Eq. 

(2.4), J1(u) is the Bessel function of the first kind of order 1. WebTOP uses Eq. (2.1) to 

calculate the intensity on the observation screen.  

2.3.3 Rayleigh Resolution Criterion  

When looking at the intensity pattern of a single on-axis point source, the 

angular position, call it qmin, of the first intensity minimum is given by the formula  

                                                     
D




22,1
min                                                             (2.6)  

According to the Rayleigh resolution criterion, two sources are said to be 

resolved by the lens if their angular separation q is greater than qmin, barely resolved if q 

is equal to qmin, and not resolved if q is less than qmin. 

2.3.3.1 Image of an On-Axis Point Source  

Consider a monochromatic point source that is far to the left of a thin lens and 

lies on the optical axis of the lens. Let the wavelength of the light be denoted by l, the 

diameter of the lens by D, and its focal length by f. According to the laws of geometrical 
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optics, the lens produces an image that is also a point, and the location of the image is a 

distance f to the right of the lens (see Figure 2.5 below).  

 

Figure 2.5 Geometrical optics description of the image of a distant on-axis point source. 

However, the laws of geometrical optics are approximations, because they 

neglect diffraction. Diffraction is the bending of light due to passage through an 

opening. Since the light that makes it through the lens passes through a circular opening 

of diameter D, the image is not a perfect point; instead, it is a small disk (called the Airy 

disk) with faint rings around it, as is shown in Figure 2.6 below. This intensity pattern is 

called an Airy pattern.  

 

Figure 2.6 The intensity pattern in the focal plane of a thin lens when light from a distant on-

axis point source is incident upon the lens. The transverse size of the intensity pattern has been 

exaggerated for emphasis and the intensity of the rings which surround the central disk have 

been enhanced.  

Let us consider the first dark ring. Its radius, calls it R1, depends upon l, D, and f 

and is given by the formula  

                                                     111 tan fqqfR                                                (2.7) 
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where 

                                                            
D

I
q




22,1
1                                                       (2.8) 

is the angular position, in radians, of the first dark ring (see Figure 2.7). In Eq. (2.23) we 

have assumed that 1 is small enough for the paraxial approximation [sin(1)1 and 

tan(1)1] to be valid. [We will assume throughout this discussion that the angles in 

question are small enough for the paraxial approximation to be appropriate.]  

 

Figure 2.7 The angular position of the first dark ring. 

The simulations of WebTop for Rayleigh resolution are quite instructive. For 

optical imaging instruments the resolution of the image on the screen is very important 

for instance for accurate observation of double stars which are not really rare and 

especially when the object couple is very far the angle between the objects may be 

extremely small in which case the limit of resolution may be reached. This module is a 

very effective one to show what happens when the two objects cannot be resolved. For 

that matter we propose the student to use the Rayleigh resolution module with the given 

parameters for two different colors in Figure 2.8 and Figure 2.8. One can easily 

recognize that the two different objects cannot be resolved on the screen with such 

small angles for either color. In Figures 2.10, 2.11 and 2.12 it is obvious that even 

increasing the angle by a factor of almost three does not help much in the resolution 

especially for longer wavelengths like Red, (the resolution for blue is better in Figure 

2.11 but still the different objects cannot be seen apparently on the functional form too) 

So from now on in this module it is sufficient for us to use wavelengths for Blue and 

Red only to see the wavelength dependence. 
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The parameters for Figure 2.13 and 2.14 are all the same except for the 

wavelength in which case the fact that there are two different objects can be perceived 

for blue color but cannot be distinguished for red wavelengths. This case clearly 

demonstrates why frequency dependence is crucial to the observation. 

Figure 2.15 and Figure 2.16 show clearly that even when the objects can be 

distinguished the resolution is obviously much better for shorter wavelengths. 

The same is true for the parameters in Figure 2.17 and Figure 2.18. 

Keeping and all the parameters the same except for the diameter of the aperture 

a comparison of Figure 2.19 and 2.20 with that of Figure 2.17 and 2.18 obviously 

reveals why bigger and larger telescopes are preferred for very good resolutions of 

faraway objects. 

Figures 2.21 and 2.22 is placed to make the student see that with increasing the 

aperture of the observing instruments better resolutions for 

 

Figure 2.8 Rayleigh resolution for two sources of Wavelength: 550 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 3,022.10-6 rad 
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Figure 2.9 Rayleigh resolution for two sources of Wavelength: 400 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 3,022.10-6 rad 

                             

Figure 2.10 Rayleigh resolution for two sources of Wavelength: 550 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 8,522.10-6 rad 
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Figure 2.11 Rayleigh resolution for two sources of Wavelength: 400 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 8,522.10-6 rad 

                             

Figure 2.12 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 8,522.10-6 rad 
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Figure 2.13 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 1,2522.10-6 rad 

                             

Figure 2.14 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 1,2522.10-5 rad 
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Figure 2.15 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 2,022.10-5 rad 

                             

Figure 2.16 Rayleigh resolution for two sources of Wavelength: 400 nm, Diameter: 3,8958 cm, 

f: 30,5 mm, Angle: 2,022.10-5 rad 
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Figure 2.17 Rayleigh resolution for two sources of Wavelength: 400 nm, Diameter: 3,8958 cm, 

f: 100 mm, Angle: 2,022.10-5 rad 

                             

Figure 2.18 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 3,8958 cm, 

f: 100 mm, Angle: 2,022.10-5 rad 
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Figure 2.19 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 7,0712 cm, 

f: 100 mm, Angle: 2,022.10-5 rad 

                             

Figure 2.20 Rayleigh resolution for two sources of Wavelength: 400 nm, Diameter: 7,0712 cm, 

f: 100 mm, Angle: 2,022.10-5 rad 
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Figure 2.21 Rayleigh resolution for two sources of Wavelength: 400 nm, Diameter: 7,0712 cm, 

f: 100 mm, Angle: 1,0.10-5 rad 

                             

Figure 2.22 Rayleigh resolution for two sources of Wavelength: 700 nm, Diameter: 7,0712 cm, 

f: 100 mm, Angle: 1,0.10-5 rad 
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The Rayleigh resolution module id a very good and versatile simulation tool for 

observations of far away objects, satellite imaging or observations of astronomical 

objects. Here we gave a brief record of what can be done to make the physical optics 

student see how important the resolving power of optical instruments can be. As a side 

note, we believe that this simulation can still be improved for the simulations of real 

physical objects.            

2.4 TWO SLIT PHOTON 

Light consists of corpuscles or particles known as photons but yet it is also an 

electromagnetic wave, or rather, it is neither a wave nor a particle, better we might name 

it a waveicle, an object of its own character. WebTop theme went thought the 

demonstration of single photon behavior under the case of interference and diffraction. 

Under the assumption that light consists of particles, the intensity on the screen is 

expected to form independent and non-interfering intensity distribution patterns. Yet 

even as we can see the individual photons fall on the screen, the overall statistical 

distribution of the photons falling on the screen call for a wave nature driven entity. In 

Figures 2.23-2.25 we propose the parameters to run the simulation so that the photon 

statistics can be seen to be governed by diffraction and interference (wave) natures as 

well as the expected wavelength dependence of the electromagnetic waves are satisfied.   

 

Figure 2.23 Wavelength: 400 nm, Width: 0,06 mm, Distance: 0,1 mm, Photons/sec: 40, 

Exposure time: 50 sec, Photons: 1772, Elapsed time: 50 sec 
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Figure 2.24 Wavelength: 700 nm, Width: 0,06 mm, Distance: 0,1 mm, Photons/sec: 40, 

Exposure time: 50 sec, Photons: 2004, Elapsed time: 50 sec 

 

Figure 2.25 Wavelength: 700 nm, Width: 0,06 mm, Distance: 0,4 mm, Photons/sec: 40, 

Exposure time: 50 sec, Photons: 2004, Elapsed time: 50 sec 
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Figure 2.26 Wavelength: 400 nm, Width: 0,06 mm, Distance: 0,4 mm, Photons/sec: 40, 

Exposure time: 50 sec, Photons: 2004, Elapsed time: 50 sec 

2.5 FRAUNHOFER N-SLIT 

For Fraunhofer N-slit case one can start with investigating the effect of using 

different wavelengths for the simplest case of two slit interference and diffraction of 

light as in Figures 2.27, 2.28 and 2.29, where all the parameters are fixed except for the 

wavelength of light. We expect the student to recognize that a shorter wavelength 

makes the diffraction and interference pattern on the screen tighter and a longer 

wavelength makes the pattern broader. 

In Figures 2.30 and 2.31 we expect the student to run the simulation with a 

smaller slit width while keeping all the other parameters as well as the slit separation 

constant, and notice that although the inner details of the pattern is the same, the 

envelope of the pattern becomes broader as the slit width is decreased. One may also 

notice that a shorter wavelength leads to a squeezed diffraction and interference pattern 

on the screen. 

Comparison with Figures 2.32 and 2.33 easily leads one to notice that the slit 

separation controls the inner details stemming from the interference of more than one 

aperture. As the slit width is decreased, the spacing between inner details increases yet 
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the envelope remains the same as an easy comparison with the former two figures, i.e., 

2.30 and 2.31 reveals.  

Figures 2.34-2.39 demonstrates the effect of the number of apertures and that the 

image becomes sharper as the aperture number is increased. It is also evident that the 

number of side-lobes also goes as the number of apertures too. 

In conjunction with Figures 2.40-2.46, the effect of increasing the distance of the 

screen, it can easily be seen that a larger spectrometer leads a better resolution, and from 

Figures 2.34-2.39 one can see why a diffraction grating is used with smaller rulings, 

many grooves and smaller slit separations. 

So this module can be used with the instrumentation part of an optics class. We 

want to extend the same idea to two dimensional structures in the Results and 

Discussion part of this thesis which is missing in WebTop Project as of today.   

 

Figure 2.27 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,1 mm, Slit 

Distance: 0,5 mm, Wavelength: 500 nm, Z Distance: 1000 mm 
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Figure 2.28 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,1 mm, Slit 

Distance: 0,5 mm, Wavelength: 400 nm, Z Distance: 1000 mm 

                                

Figure 2.29 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,1 mm, Slit 

Distance: 0,5 mm, Wavelength: 700 nm, Z Distance: 1000 mm 
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Figure 2.30 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,0328 mm, Slit 

Distance: 0,5 mm, Wavelength: 700 nm, Z Distance: 1000 mm 

                                

Figure 2.31 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,0328 mm, Slit 

Distance: 0,5 mm, Wavelength: 400 nm, Z Distance: 1000 mm 
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Figure 2.32 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 400 nm, Z Distance: 1000 mm 

                                

Figure 2.33 WebTOP simulation for Multiple slits, Slit number: 2, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 700 nm, Z Distance: 1000 mm  
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Figure 2.34 WebTOP simulation for Multiple slits, Slit number: 3, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 700 nm, Z Distance: 1000 mm 

                                

Figure 2.35 WebTOP simulation for Multiple slits, Slit number: 3, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 400 nm, Z Distance: 1000 mm 
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Figure 2.36 WebTOP simulation for Multiple slits, Slit number: 5, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 400 nm, Z Distance: 1000 mm 

                                

Figure 2.37 WebTOP simulation for Multiple slits, Slit number: 5, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 700 nm, Z Distance: 1000 mm 
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Figure 2.38 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 700 nm, Z Distance: 1000 mm 

                                

Figure 2.39 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 400 nm, Z Distance: 1000 mm 
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Figure 2.40 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 400 nm, Z Distance: 2000 mm 

                                

Figure 2.41 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0328 mm, Slit 

Distance: 0,17 mm, Wavelength: 700 nm, Z Distance: 2000 mm 



 

 

35 

                                

Figure 2.42 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0328 mm, Slit 

Distance: 0,114 mm, Wavelength: 700 nm, Z Distance: 2000 mm 

                                

Figure 2.43 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0328 mm, Slit 

Distance: 0,114 mm, Wavelength: 400 nm, Z Distance: 2000 mm 
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Figure 2.44 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0294 mm, Slit 

Distance: 0,114 mm, Wavelength: 400 nm, Z Distance: 2000 mm 

                                

Figure 2.45 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0294 mm, Slit 

Distance: 0,114 mm, Wavelength: 700 nm, Z Distance: 2000 mm 
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Figure 2.46 WebTOP simulation for Multiple slits, Slit number: 10, Slit Width: 0,0294 mm, Slit 

Distance: 0,0822 mm, Wavelength: 700 nm, Z Distance: 2000 mm 

2.6 WEBTOP SIMULATION FOR A RECTANGULAR APERTURE 

The WebTOP project started in 1984 and still continues as of today. As we gave 

the thesis proposal we included the rectangular aperture part as a complementary part to 

WebTOP project. There are other missing two dimensional components too. Recently 

the WebTOP team completed a single rectangular aperture. Here we give a brief record 

of how this module can be used for education purposes. 

In Figures 2.47 and 2.48 the wavelength dependence of the pattern is 

demonstrated. In Figures 2.49 and 2.50 the student can recognize that changing certain 

dimensions affects only corresponding variable on the screen. One can see that a larger 

aperture will lead to a smaller diffraction pattern in Figures 2.51 and 2.52. The aperture-

screen distance dependence of the pattern can be observed by comparing Figures 2.53 

and 2.54 with Figures 2.51 and 2.52. As the aperture gets smaller in the y-direction the 

corresponding dimension of the diffraction pattern will change on the screen. In Figures 

2.55 and 2.56 we notice that the pattern in the x-direction does not change. Figures 2.57 

and 2.58 reveal that a smaller aperture causes a larger diffraction pattern. As we can 
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enlarge the aperture in the x-direction indefinitely the diffraction pattern looks more like 

that of a one-dimensional diffraction pattern. This fact is illustrated Figures 2.59 and 

2.60. 

In conclusion of Chapter2, we can easily say that WebTOP can be adopted for 

higher education in Optics and Optoelectronics as well as Laser classes. But still there 

are missing elements in WebTOP. We will discuss a theory of diffraction and 

interference in Chapter 3 and apply our results to improve what is missing in WebTOP 

project in Chapter 4.   

 

Figure 2.47 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 0,2 mm, Y Width: 0,2 mm, Z Distance: 1000 mm 
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Figure 2.48 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 0,2 mm, Y Width: 0,2 mm, Z Distance: 1000 mm 

 

Figure 2.49 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 0,4 mm, Y Width: 0,2mm , Z Distance: 1000 mm 
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Figure 2.50 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 0,4 mm, Y Width: 0,2 mm, Z Distance: 1000 mm 

 

Figure 2.51 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 0,4 mm, Y Width: 0,4 mm, Z Distance: 1000 mm 
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Figure 2.52 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 0,4 mm, Y Width: 0,4 mm, Z Distance: 1000 mm 

 

Figure 2.53 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 0,4 mm, Y Width: 0,4 mm, Z Distance: 2000 mm 
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Figure 2.54 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 0,4 mm, Y Width: 0,4 mm, Z Distance: 2000 mm 

 

Figure 2.55 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 0,4 mm, Y Width: 0,2 mm, Z Distance: 2000 mm 
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Figure 2.56 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 0,4 mm, Y Width: 0,2 mm, Z Distance: 2000 mm 

 

Figure 2.57 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 0,2 mm, Y Width: 0,2 mm, Z Distance: 2000 mm 
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Figure 2.58 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 0,2 mm, Y Width: 0,2 mm, Z Distance: 2000 mm 

 

Figure 2.59 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 400 

nm, X Width: 1 mm, Y Width: 0,2 mm, Z Distance: 2000 mm 
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Figure 2.60 WebTOP demo for diffraction from a rectangular aperture with Wavelength: 700 

nm, X Width: 1 mm, Y Width: 0,2 mm, Z Distance: 2000 mm 
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CHAPTER 3 

 

3. FRESNEL-HUYGENS DIFFRACTION INTEGRALS IN 

ACTION FOR 2D APERTURES 

 

3.1 INTRODUCTION 

In this section, we will apply Huygens Principle in conjunction with what is 

known as Fresnel-Huygens-Kirchoff Scalar Diffraction Theory, or otherwise known as 

Fresnel-Huygens Diffraction integrals to obtain the diffraction patterns of essentially 

two dimensional apertures. This section is basically to provide a discussion ground for 

Chapter 4, in which we will use the results to write Mathematica codes, to simulate the 

diffraction patterns and intensity distribution in three dimensions. Current optics 

demonstrations projects like WebTop does not include many interesting aspects of 2D 

diffraction phenomena as of today. 

Fresnel-Huygens-Kirchoff Scalar Diffraction theory suggests the electric field or 

the optical component of the electromagnetic field at a point P on the screen due to an 

aperture of area aperture , at a certain distance from the aperture is given as 

                                 




 

aperture

dSe
r

E krtiA
P

                                                   (3.1) 

Where A  is the field strength across the aperture (Electric Field per area), r is 

the distance between a point on the aperture and the point of observation P, dS is the 

incremental area element on the aperture surface. In this picture a coherent light source 

like a laser is assume to be incident on the aperture, with a central wavelength of   and 
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a wavenumber of  /2k  and an angular frequency of 



c
 22  or kc  

stands for the dispersion relation of electromagnetic waves. 

For simplicity of calculations we made the following assumptions: 

1) The laser bandwidth   is so small that we many assume only one . 

2) The apertures are so small that we may assume the electric field strength A  

to be position independent, i.e., uniform throughout the aperture surface. 

3) We made assumption of Fraunhofer Diffraction limit in which the screen is 

assumed to be far from the aperture. 

Our review includes the details of calculations for a rectangular aperture, a series 

of points, a series of slits, an array of rectangular apertures, a mesh of rectangular 

apertures, a circular aperture. We will discuss the results and simulations in the next 

chapter.  
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3.2 THEORY OF DIFFRATION FROM A RECTANGULAR APERTURE 

 

Figure 3.1 2D Diffraction geometry for a rectangular aperture of side a and b and a screen- 

aperture distance of z.  

We want to calculate the resultant electric field on the screen at point P, due to 

the individual Huygens emitters on the aperture surface. We assume that the source 

points are coherent, and on the aperture surface they are in phase. Basically, a coherent 

laser light is incident on the aperture, vertically from the bottom of the aperture. 

In this context, dS is the incremental surface area of the Huygens emitter, A  is 

the electric field strength of the emitter on the surface Electric field (per unit area), r is 

the individual emitter observation point P distance. We will denote coordinate on the 

aperture with (x, y, 0) and on the observation screen with (X, Y, z). R is the distance of 

the observation point P, from the center of the aperture. We may name the aperture-

screen distance as L, or just leave it as z. 

Considering that the electric field strength will change inversely proportional to 

the distance r we can write the contribution due to incremental area dS at point P as 
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                                                dEp=
r

A )( krtie  dS                                                       (3.2) 

the distance of the observation point and the individual Huygens emitter in terms of the 

emitter coordinates x, y and the observation coordinates X, Y and the distance z 

between the screen and the aperture can be written as  

                                              222 xXyYzr                                           (3.3)                                                         

                                 2
1

22222 22 xXxxyYyYzr                                    (3.4) 

                                  2
1

22222 2 xyXxYyXYzr                                  (3.5) 

Note that the distance R from the aperture center to the observation point P(X,Y) 

is                                                         

                                                    2222 XYzR                                                    (3.6) 

Under the condition that the aperture size is very small in compared to the 

observation point coordinates                                                              

                                                  YX , >> yx,  22 xy                                             (3.7) 

22 xy  will be neglected in the r expression 

                                                 2
1

2

21 






 


R

XxYy
Rr                                                  (3.8) 

Using Taylor’s expansion and the assumption that 1  

                                                      
2
111 2

1
                                                     (3.9) 

                                               







 
 22

2
11

R

XxYy
Rr                                             (3.10) 
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                                                 






 
 21

R

XxYy
Rr                                                    (3.11) 

The total electrical field at the observation point P will be given by the integral over the 

aperture area of the individual Huygens emitters, where dS=dxdy. 

                                                    
area

PP dSdEE .                                                      (3.12) 

We just plug in the r expression we have just obtained. 

  

                                      















 









 



area

R

XxYy
kRti

A
P dxdye

R

XxYy
R

E
21

21

                       (3.13) 

 

The denominator can be approximated as R only. We cannot do the same 

approximation in the exponential term because it is very sensitive. 
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Taking the integral of the exponential terms as 

                                                                





x
x e
dxe                                                (3.15) 

With the substitution 

                                                                 
R

ikX
                                                  (3.16) 

The first integral reads  
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
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                                                







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R

kXa
iee R

ikXa

R

ikXa

2
sin222                                        (3.18) 
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R
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                                      (3.19) 

The total electric field at point P is given in terms of “sinc” functions of X and 

Y, and also is a function of, the aperture area ba   

                                   



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


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
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
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R
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R

kX
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R

e
E

kRti

A
P 22

. )(                    (3.20) 

And the light intensity is proportional to the square of the electric field 

amplitude  

                                                            2
PE                                                           (3.21) 
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e
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P 22

)(                     (3.22) 

                                                         )(ERe                                                      (3.23) 

The light intensity on the screen as a function of the position coordinates X, Y 

will be  

                                    



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






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
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0

*                    (3.24) 

                                                22
0
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SincSincEE pp                            (3.25) 
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  is the intensity (the peak) at the center of the diffraction pattern. 
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3.3 DIFFRACTION PATTERN FROM N POINT SOURCES 

In this section we drive the interference expression due to N identical and 

coherent point sources. We assume that these sources are infinitely small so we name 

them point sources. The reason why we do the derivation is twofold. First, this is how 

the diffraction pattern from transmission diffraction grating are calculated, and 

secondly, we will come across similar results in other structures, after which we may 

note our observations. 

 

 
Figure 3.2 Diffraction pattern geometry from N coherent point source which are in phase on an 

array a distance of a in between. 
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Suppose we are concerned with a point P for observation very far from these 

point sources. The sum of the Electric fields at point P will be  

                              tkditkditkditkdi

P
NerEerEerEerEE

 
 0000

321      (3.30) 

Where PE is the resultant Electric field due to these N coherent point sources. 

 rE0  is the amplitude at the source point 

                                             113121 10
ddikddikddikikdti

p
NeeeeerEE
                   (3.31) 

The phase lags are given by  

                                                       12sin ddkkd                                    (3.33) 

for the st1  and 

                                                                 132 ddk                                          (3.34) 

for the 2nd term  

whereupon we have 

                                            12
0 1. 1   Nikdti

P AAAeerEE                     (3.35) 

Where  ieA  

And the brackets, is using the identity 
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
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                               (3.36) 

                        
   






















sincos1
.sin.cos1

1
11 .

..
1

i

NiN

e

e
ee

i

Ni
Nii            (3.37) 

Since  
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
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Upon substitution 
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(3.42) 

The resultant optical field at point P 
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Since the intensity term is given in terms of the electrical (optical) component of 

the electromagnetic wave as  

                                                                  
2
.

0




EE

c                                            (3.44) 

The imaginary terms with the exponentials cancel out upon multiplication with 

its complex conjugate  
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Where  

                                                                  
 

2

2

0
rEc

I oo                                          (3.46)  

Upon derivation we observe a similar factor as this also the following optical 

phenomena, 2D Diffraction in an array or a mesh of rectangular apertures and mode-

locking in laser physics. The properties of the function will be discussed with 

simulation in the results and discussion part of the thesis. 

 

3.4 THEORY OF DIFFRACTION FROM A CIRCULAR APERTURE 

 

               

Figure 3.3 2D Diffraction Geometry from a circular aperture of radius a 

In this section we derive the 2D Diffraction pattern from a circular aperture 

using Fresnel-Huygens integrals. The result serves the purpose of explaining the Airy 

patterns which are very important in telescopes and photographic camera design, as well 

as Rayleigh resolution in Astronomy; the resolving power of a telescope for binary 

stars. We use the results also to calculate the Poisson Spot in the Fraunhofer limit. We 

give Mathematica demonstrations and discuss the results in the next chapter of the 

thesis. 
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Due to circular symmetry of the problem we use cylindrical polar coordinates to 

take the diffraction integrals on the surface. The Cartesian coordinates on the aperture 

surface is given as x, y and on the screen surface is given as X, Y. The polar coordinates 

of a source point on the aperture surface is given with  and , and on the screen 

surface the position of a point is given with polar coordinates with q and . 

                                    cosx              siny                                   (3.47) 

                                   cosqX             sinqY                                   (3.48) 

as with the same argument as in the case of a rectangular aperture, the field at point P is 

given by the Fresnel-Huygens integrals as 
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                                    sinsincoscos  qqyYxX         (3.50) 

                                        cossinsincoscos qq          (3.51) 

The area element in Cartesian coordinates  

                                                                  dxdydA                                                  (3.52) 

Turns out to be   dddA   in cylindrical coordinates for the aperture surface 
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We can choose such a coordinate system so as to make Φ=0 for taking the integral to be 

a simpler task 
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Consider the   integral and remember the identity 
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0J is an even function so the minus sign of the argument of 0J  is irrelevant. 
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Now we remember the identity of Bessel functions of order one and zero 
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Then 

                                         
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Since EEI *  , the intensity reads 
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We can change the variables to L (screen-aperture distance), and polar position 

of the observation point P on the screen q. (due to circular symmetry the angle Φ does 

not appear in the equations) 
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A radius of the aperture,  , wavelength of the Laser Light used. Let us give an 

example of a He-Ne Laser, say,  A6328   

mmm  6328.0106328.010328.6 67   . 

Let the aperture size be of comparable magnitudes to the wavelength  of the 

laser such that  
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                (3.71) 

And this will give us the intensity distribution for these parameters on the 

screen. We will demonstrate the results in the next chapter. 

 

3.5 ALTERNATIVE DERIVATION FOR DIFFRACTION FROM A CIRCULAR 

APERTURE 

       

       Diffraction by a circular aperture [46] 

        dSeyxAcyxA ikr,,                                     (3.72) 
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Figure 3.4 Geometry of Huygens-Fresnel-Kirchoff theory through a circular aperture. 

 

 
Figure 3.5 Geometry for an alternative derivation of diffraction from a circular aperture. 

 

Area element is a strip of width dx and length 222 xR   parallel to the y-axis. 

The Huygens integral, 
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Set 
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So the sin integral vanishes because the argument is an add function. 
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Note; 
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0  is the point on the screen right next to the aperture 
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3.6 DIFFRACTION PATTERN DUE TO N EXTENDED SOURCES IN 1D 

 

         
Figure 3.6 The geometry of N identical extended coherent sources of separation a and width w 

each. 
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Figure 3.7 The extended identical source, the geometry in the case of far field diffraction 

 

dx  source strength of point x   x  assume it to be uniform all throughout the 

surface   

    x  (constant). 

The incremental electric field at point P due to an incremental length dx on the surface 

will be 
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Cosine theorem  
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The total electric field is 
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In the far field  
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Note DeMoivre’s Formula 
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For simplicity let as assume N is odd. 
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By the same token  
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The light intensity at point P is given as               
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This can be considered as the “sinc2” term stemming from the diffraction due to 

finite extent of a single aperture, times the interference effects of otherwise N coherent 

point sources.  
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3.7 THEORY OF DIFFRACTION AND INTERFERENCE PATTERN DUE TO 

AN EQUALLY SPACED ARRAY OF IDENTICAL RECTANGULAR 

APERTURES 

                   

Figure 3.8 Geometrical set up for the calculation of Diffraction and Interference pattern due to 

an array of rectangular apertures.  

Assuming the oscillator strength per unit area on the aperture surface is 

 uniform, constant and the number of identical apertures N, (which is assumed to be 

an add number for simplicity), the field due to an incremental area dxdy  incident at x,y 

the point P(X,Y) of observation is 

                                            
 dxdye

r
dE tkri                                            (3.119)        

                                    
Note that   

                                                      2222 zyYxXr                                    (3.120) 

where z  is the aperture screen distance 

                                         22222 22 yxYyXxzYXr                            (3.121)                

22 yx   is negligible small in compared to all other term so is neglected 
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The total field due to all apertures on the surface is an integral of the incremental 

field all throughout the surface 
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Where PE  denotes the field at the observation point P 

Note: 
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This expression is like the multiplication of a diffraction term from a single 

aperture of size a and b and the interference term due to N point sources. A natural 

question to ask is, “Is that a general behavior for 2D diffraction patterns when we have 

identical apertures placed on an array or a mesh structure?”. Next we will investigate 
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mesh like diffraction pattern of size a and b and separation f and d with N*M mesh 

structure. 

3.8    THEORY OF DIFFRACTION AND INTERFERENCE PATTERN DUE TO 

A PERIODIC MESH OF IDENTICAL RECTANGULAR APERTURES 

 
Figure 3.9 A rectangular mesh of size a and b and separation c and d to form a 2D Diffraction 

and Interference Pattern. 

 
 

Figure 3.10 Geometrical set up for the calculation of Diffraction and Interference from a mesh 

of rectangular apertures. 
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Correspond to the same integral with dummy parameters using the same 

techniques as on the case of array
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Where f
R
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  

Likewise 
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Where d
R

kY
  

What is the measurable is the intensity PPoP EcEI *

2
1

    


























































Y
R

d

Y
R

dM

X
R

f

X
R

fN

Y
R

b
SincX

R

a
Sinc

R
bafI oP
























 

2

2

2

2

22
2

2
22

sin

sin

sin

sin

2
1

       

(3.152) 

In this expression Sinc2 terms are due to diffraction from finite aperture size of a 

and b, whereas, term including N and M act as interference of an NxM mesh of point 

sources of separation c and d. 
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CHAPTER 4 

 

4. RESULT AND DISCUSSIONS 

 

4.1 MATHEMATICA SIMULATION FOR DIFFRACTION FROM A 

RECTANGULAR APERTURE 

In this section of my thesis, I want to discuss the applications of the results 

obtained from the former chapter. We write Mathematica 7.0 codes for interactive 

simulations of intensity distributions. We notice that, students usually seem to miss the 

meanings of the mathematical formulae, especially those regarding the intensity 

distribution patterns. On the other hand, there are interesting behaviors of the intensity 

patterns regarding the effects of individual parameters. We want to using our interactive 

computer codes, we want to make the students notice the relationships between physical 

and optical variables.  

We start our discussion with demonstrations of a single rectangular aperture. 

The rectangular aperture we use has dimensions of size a and b, as shown in Figure 4.1 

(a). The three dimensional plot of the intensity distribution on the screen for a=20 μm 
and b=20 μm with a laser of λ=6630 Ǻ is shown in Figure 4.1 (b). The size of the 

aperture to wavelength ratio for this particular case is about 30, in other words a≈ 30λ. 

This implies that the aperture size is comparable to the wavelength, and the diffraction 

effects will be visible. We know from our experience that physics students usually can 

not immediately form the connection between 3D plots and Density plots of the 

intensity distributions. For this reason we also wrote a computer code to simulate 

Density plot of the intensity distribution on the screen using Equation (3.29) in Figure 

4.2 (b). The plot in Figure 4.2 (a) is obtained using the Density plot functionality of 

Mathematica 7.0 in conjunction with Manipulate command using Equation (3.29) and 

we gave a red color to the plot since we use a red laser with λ=6630 Ǻ. We compare our 
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Density plot with another one obtained by Andrei Stroe in reference [48] and we reveal 

that our plots are consistent. 

 

          

                                        (a)                                                  (b) 

Figure 4.1 (a) Geometry for rectangular aperture of size a and b, (b) The corresponding 3D Plot 

of the intensity distribution on the screen, a=20 μm, b=20 μm, L=1 m, λ=6630 Ǻ   

 

                          

                                      (a)                                                       (b) 

Figure 4.2 (a) The Density plot simulation for a=20 μm, b=20 μm, L=1 m by Andrei Stroe 

[48], (b) Density plot of Equation (3.29) for a=20 μm, b=20 μm, L=1 m, λ=6630 Ǻ  

 

We also want to make the physical optics class student understand the effect of 

wavelength on the diffraction pattern on the screen and on the intensity distribution 

function. To simulate the wavelength dependence we use the realistic case of a Helium-

Neon laser with λ=6328Ǻ for Red [49], as the longest wavelength, a frequency doubled 

Nd:YAG laser with λ=5320Ǻ for green [50] as a shorter wavelength, and a GaN laser 

with λ=4050Ǻ for violet [51] as the shortest wavelength. See Figure 4.3. 



 

 

76 

              
                            (a)                                                                 (b) 

            
                            (c)                                                                 (d) 

               
                           (e)                                                                   (f)                                              

Figure 4.3 a=10μm, b=10μm, L=1m, (a) (Plot3D λ=6328Ǻ), (b) (DensityPlot λ=6328Ǻ),  

(c) (Plot3D λ=5320Ǻ), (d) (DensityPlot λ=5320Ǻ), (e) (Plot3D λ=4050Ǻ), (f) (DensityPlot 

λ=4050Ǻ) 

The simulations reveal to the student that the pattern becomes broader as the 

wavelength is increased or, the diffraction pattern is squeezed as the wavelength is 

decreased. 
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In Mathematica 7.0 the Manipulate command helps us to make the code 

interactive by giving the user the ability to change the physical parameters in a given 

range manually without going into the details of the computer code. For diffraction 

from a rectangular aperture the relevant physical parameters are the wavelength λ, the 

observed domain on the screen (the observed x-region on the screen is from (-)ive  

“domain” to (+)ive “domain” as well as the y-range of observation ), the aperture screen 

distance L, the width of the aperture a and the length of the aperture b as shown in 

Figure 4.4. The wavelength range in the computer code includes all the visible range 

from 4000 to 7000 Ǻ and also the near infrared from 7000 to 8000 Ǻ as well as soft 

ultraviolet region from 3000 Ǻ to 4000 Ǻ. The aperture width and the aperture length a 

and b are given in units of microns (μm) since usually the physical aperture sizes are 

about this range. In Figure 4.4 we present Plot3D and DensityPlot for a rectangular 

aperture simulation with Manipulate command. We reckon that physical optics student 

can learn the functions of physical parameters using these demonstrations and form the 

link between mathematics and physics. 

 

      
                                  (a)                                                                       (b)       

 

Figure 4.4 Rectangular aperture, a=10 μm, b=10 μm, L=1 m, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot 
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We can also show that changing the width of the aperture a, affects the 

corresponding parameter only of the pattern on the screen. See Figure 4.5. The same is 

true for the parameter b (the aperture length), as shown Figure 4.6. 

      
                                 (a)                                                                 (b)       

Figure 4.5 Rectangular aperture a=20 μm, b=10 μm, L=1 m, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot     

 

       
                             (a)                                                                   (b)       

Figure 4.6 Rectangular aperture a=10 μm, b=20 μm, L=1 m, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot     
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4.2 MATHEMATICA SIMULATION FOR DIFFRACTION AND 

INTERFERENCE FROM AN ARRAY OF RECTANGULAR APERTURES  

We derived the diffraction and interference intensity distribution equation 

(Equation (3.144)) for an array of rectangular apertures. In the computer code we use 

another parameter ψ as shown Figure 4.7 instead of f, because we want to make sure 

that f ≥ a. In this sense f = a+ψ is the center to center inter-aperture distance. 

 

Figure 4.7 A pair of apertures of size a, b, separation f, edge to edge distance of ψ. 

One needs to discuss the effect of wavelength to begin with, on the diffraction 

and interference pattern for an array of rectangular apertures. In Figure 4.8 we employ 

He-Ne laser, frequency Nd:YAG laser and GaN laser for red, green, violet colors with 

wavelength λ=6328 Å , λ=5320 Å, λ=4050 Å respectively.  

One can easily recognize that the diffraction and interference pattern on the 

screen becomes broader as the wavelength is increased for the array structure too (see 

Figure 4.8) just like the case for diffraction from single aperture as in Figure 4.3. 

Actually one can see this from the mathematical formula Equation (3.144) but a good 

ratio student fail to see it at a first glance. After using this interactive simulation the 

students can get a feeling on the equations. 

To compare with Figure 4.8 for the effect of changing the width of the apertures 

only, we also plot Figure 4.9 to see that the envelope of the function corresponding to 

the width of the aperture changes.  

The student can plot for the case where both of the width a and the length b of 

the apertures being doubled as in Figure 4.10. We expect the student to notice that the 

inner details of the diffraction pattern remain constant while the envelope of the 
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intensity distribution function is squeezed. The student can fix ψ and change a only or b 

only to see the effect of aperture size. 

By making the student to plot equation (3.144) for N=1 and N=2 in Figure 4.11, 

we want to make him/her notice that the envelope of the pattern does not change.  

 
                                           (a)                                                           (b) 

 
                                            (c)                                                            (d) 

 
                                        (e)                                                            (f)                                              

Figure 4.8 Diffraction and interference from an array of rectangular apertures a=10 μm, b=10 

μm, L=1 m, ψ=30 μm, Observed Domain=0.35 m, N=2, (a) (Plot3D λ=6328 Ǻ), (b) 

(DensityPlot λ=6328 Ǻ), (c) (Plot3D λ=5320 Ǻ), (d) (DensityPlot λ=4050 Ǻ) 
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                                  (a)                                                                     (b)       

Figure 4.9 Diffraction and interference from an array of rectangular apertures a=20 μm, b=10 

μm, L=1 m, ψ=30 μm, Observed Domain=0.35 m, N=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot 

 

        

                                  (a)                                                                      (b)       

Figure 4.10 Diffraction and interference from an array of rectangular apertures a=20 μm, b=20 

μm, L=1 m, ψ=30 μm, Observed Domain=0.35 m, N=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot 
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                                  (a)                                                                     (b)       

 

        

                                  (c)                                                                      (d)      

  

Figure 4.11 Diffraction and interference from an array of rectangular apertures a=20 μm, b=20 

μm, L=1 m, ψ=30 μm, Observed Domain=0.1 m, λ=6328Ǻ (a) and (b) N=1, (c) and (d) N=2  
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                               (a)                                                                (b)       

Figure 4.12 Diffraction and interference from an array of rectangular apertures a=20 μm, b=20 

μm, L=1 m, ψ=50 μm, Observed Domain=0.1 m, N=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot 

 

         

                                  (a)                                                                       (b)       

Figure 4.13 Diffraction and interference from an array of rectangular apertures a=20 μm, b=20 

μm, L=1 m, ψ=50 μm, Observed Domain=0.1 m, N=4, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) 

DensityPlot 

 



 

 

84 

In Figure 4.12 the effect of the distance between apertures, and in Figure 4.13 

the effect of N on the pattern can be investigated by the student interactively. 

 

4.3 MATHEMATICA SIMULATION FOR DIFFRACTION AND 

INTERFERENCE FROM A MESH OF RECTANGULAR APERTURES 

 

In Figure 4.14 we show the mesh structure. For N*M rectangular apertures of 

size a and b separation f and d, in the x and y directions respectively. In Equation 

(3.152) we have already calculated the intensity distribution function for the diffraction 

and interference pattern on the screen. 

 

                                

Figure 4.14 Far Field Pattern of N*M apertures of size a and b separation f and d 

 

By means of interactive Mathematica code the student can investigate the effect 

of wavelength on the pattern as in Figure 4.15. 

He/she can search for the effect of increasing the width or the length as in Figure 

4.16 and Figure 4.17 respectively. The effect of the number of apertures along the x and 

y-axes can also be investigated as exemplified Figure 4.18 and Figure 4.19. 
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                          (a)                                                                      (b) 

             

                           (c)                                                                      (d) 

 

 

          

                           (e)                                                                      (f)                                              

Figure 4.15 Diffraction and interference from a mesh of rectangular apertures a=10 μm, b=10 

μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed Domain=0.2 m, N=2, M=2, (a) (Plot3D λ=6328 Ǻ), 

(b) (DensityPlot λ=6328 Ǻ), (c) (Plot3D λ=5320 Ǻ), (d) (DensityPlot λ=4050 Ǻ) 
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                           (a)                                                                        (b)       

Figure 4.16 Diffraction and interference from a mesh of rectangular apertures a=20 μm, b=10 

μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed Domain=0.2 m, N=2, M=2, λ=6328 Ǻ, (a) Plot3D, 

(b) DensityPlot 

 

 

         

                             (a)                                                                     (b)       

Figure 4.17 Diffraction and interference from a mesh of rectangular apertures a=10 μm, b=20 

μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed Domain=0.2 m, N=2, M=2, λ=6328 Ǻ (HeNe), (a) 

Plot3D, (b) DensityPlot 
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                                  (a)                                                                          (b)       

Figure 4.18 Diffraction and interference from a mesh of rectangular apertures a=10 μm, b=20 

μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed Domain=0.2 m, N=4, M=2, λ=6328 Ǻ (HeNe), (a) 

Plot3D, (b) DensityPlot 

 

         
                                  (a)                                                                         (b)       

Figure 4.19 Diffraction and interference from a mesh of rectangular apertures a=10 μm, b=20 

μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed Domain=0.2 m, N=4, M=4, λ=6328 Ǻ (HeNe), (a) 

Plot3D, (b) DensityPlot 
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                                  (a)                                                                         (b)       

Figure 4.20 Diffraction and interference from a mesh of rectangular apertures a=10 μm, b=20 

μm, L=1 m, ψ=10 μm, Ω=30 μm, Observed Domain=0.2 m, N=4, M=4, λ=6328 Ǻ (HeNe), (a) 

Plot3D, (b) DensityPlot 

 

                            

                              (a)                                                                    (b)       

Figure 4.21 Diffraction and interference from a mesh of rectangular apertures a=10 μm, b=20 

μm, L=1 m, ψ=10 μm, Ω=10 μm, Observed Domain=0.2 m, N=4, M=4, λ=6328 Ǻ (HeNe), (a) 

Plot3D, (b) DensityPlot 
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The effect of changing the inter-aperture distances can also investigated as in 

Figure 4.20 and Figure 4.21. 

4.4 THEOREM ON DIFFRACTION AND INTERFERENCE FROM A MESH 

OF ARBITRARY SHAPED NON-OVERLAPPING IDENTICAL APERTURES 

We noticed that the Kirchoff-Huygens Fresnel Diffraction of identical 

rectangular apertures in a mesh structure can be written as a multiplication of diffraction 

from a single rectangular aperture and interference of the point sources located at their 

positions. 

The question is what makes a rectangle special? In fact we feel there is nothing 

that makes a rectangular special and we pose the following hypothesis. 

Hypothesis: Kirchoff-Huygens-Fresnel Diffraction integrals from identical non-

overlapping apertures of any shape lead to a pattern which is a the multiplication of 

diffraction from a single aperture and interference from point sources located at the 

position of the identical apertures. 

For simplicity we consider on N*M identical non-overlapping apertures forming 

a mesh of sides d and f on the x- and y-axes respectively. 

As in section 3.8 we assume a mesh structure, but this time not of identical 

rectangles but of arbitrary shaped non-overlapping apertures. 

Equation 3.145 and 3.147 applies equally here. 

So 
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Where the double integral is taken on all apertures. We can write this integral as 

a double summation and the double integral is taken over a single aperture as a result. 
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The double integral is the diffraction from a single aperture and the double 

summation denotes the interference of N*M identical point sources as shown in the 

Figures 4.22, 4.23, 4.24. 

 

Figure 4.22 Geometry for diffraction and interference from a mesh of identical non-overlapping 

arbitrary shaped apertures. 
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Figure 4.23 Geometry for diffraction from an arbitrary shaped aperture. 

 

Figure 4.24 Geometry for interference from a mesh of point sources. 

Application to a mesh of identical non-overlapping circular apertures. We can 

apply our theorem to the case of identical non-overlapping circular apertures located on 

an N*M mesh structure separated by a distance d on the x-axis and by a distance f on 

the y-axis. 
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At this point we have to remember equation 3.152 for the interference of an 

N*M mesh structure (the last two terms on the tight hand side are from interference of a 

mesh), and the diffraction term from a single circular aperture, Equation 3.70. The 

intensity term, using the theorem is 
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See Figure 4.25 for geometry of the problem. 

 

Figure 4.25 Geometry for a mesh of identical non-overlapping circular apertures. 
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(a)                                                               (b) 

Figure 4.26 A circular aperture a=10 μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed Domain=0.1 

m, N=1, M=1 (single circular aperture), λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 

       

(a)                                                                 (b) 

Figure 4.27 Array of circular apertures a=10 μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed 

Domain=0.1 m, N=2, M=1, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 
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(a)                                                             (b) 

Figure 4.28 Array of circular apertures a=10 μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed 

Domain=0.1 m, N=3, M=1, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 

    

(a)                                                             (b) 

Figure 4.29 Mesh of circular apertures a=10 μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed 

Domain=0.1 m, N=2, M=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 
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(a)                                                                 (b) 

Figure 4.30 Mesh of circular apertures a=10 μm, L=1 m, ψ=30 μm, Ω=30 μm, Observed 

Domain=0.1 m, N=3, M=3, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 

The interactive codes once again reveal the fact that for identical non-

overlapping apertures on a mesh structure or on an array structure the interference and 

diffraction patterns are controlled independently by their corresponding physical 

variables. For instance the pattern for the single circular aperture of Figure 4.26 forms 

the envelope and if there are more than one apertures like on an array as in the case of 

Figures 4.27 and 4.28, the inner details are once again controlled by the number of the 

apertures and/or the distances between the apertures. 

Figures 4.29 and 4.30 demonstrates the same principle for the case of a mesh of 

circular apertures. One can clearly see that, as the number of elements increase in a 

certain direction, the corresponding inner structure gets sharper and the envelope of the 

pattern does not change (Figure 4.26-4.30). This simulation demonstrates how 

diffraction and interference arguments being separate for identical apertures may be 

utilized  in teaching the effect of each physical variable. 
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4.5 ROTATION OF A SİNGLE RECTANGULAR APERTURE (TILTED 

APERTURE) 

     

(a)                                                          (b) 

Figure 4.31 (a) Original aperture, (b) Tilted aperture 

Intensity of a single tilted rectangle in the rotated coordinate system. 
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Rotation must be an orthogonal transformation. 
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Intensity of  a tilted single aperture 
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4.6. A MESH OF TILTED APERTURES AS AN APPLICATION OF OUR 

THEOREM ABOUT NON-OVERLAPPING IDENTICAL APERTURES 

Now that we know the diffraction pattern from a single tilted rectangular 

aperture, we can apply our theorem to a mesh of identical non-overlapping mesh of 

apertures (see Figure 4.32) to find the resulting pattern on the screen. Our theorem 

implies that the resulting pattern on the screen will be a multiplication of terms from the 

diffraction of a single aperture and the interference pattern of mesh of point sources 

yielding the result in Equation 4.11. We think that it is a good idea to make the pattern 

visible for the student using a Mathematica code. Figures 4.34-4.38 show the results for 

different tilt angles and different number of elements in a mesh. 

 

Figure 4.32 Mesh of tilted rectangular apertures. 
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                   (a)                                                            (b) 

Figure 4.33 (a) Diffraction from a single tilted aperture. (b) Interference from a mesh of point 

sources. 
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                              (a)                                                                  (b) 

Figure 4.34 Single Tilted Aperture α=30⁰, a=20 μm, b=10 μm, L=1 m, f=50 μm, d=50 μm, 

Observed Domain=0.1 m, N=1, M=1, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 
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                                (a)                                                                  (b) 

Figure 4.35 2 by 2 Tilted Apertures α=30⁰, a=20 μm, b=10 μm, L=1 m, f=50 μm, d=50 μm, 

Observed Domain=0.1 m, N=2, M=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 

                 

                                (a)                                                                  (b) 

Figure 4.36 2 by 2 Tilted Apertures α=45⁰, a=20 μm, b=10 μm, L=1 m, f=50 μm, d=50 μm, 

Observed Domain=0.1 m, N=2, M=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 
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                                (a)                                                                  (b) 

Figure 4.37 2 by 2 Tilted Apertures α=60⁰, a=20 μm, b=10 μm, L=1 m, f=50 μm, d=50 μm, 

Observed Domain=0.1 m, N=2, M=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 

                 

                                (a)                                                                  (b) 

Figure 4.38 2 by 2 Tilted Apertures α=90⁰, a=20 μm, b=10 μm, L=1 m, f=50 μm, d=50 μm, 

Observed Domain=0.1 m, N=2, M=2, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 
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4.7 A TILTED IDENTICAL SQUARE APERTURES FORMING A TILE 

Our final application is to investigate the results for a tile of apertures. The angle 

is fixed and we want to see the effect of other variables. Figure 4.39 shows the aperture 

structure whereas Figures 4.40-4.46 show the pattern on the screen as well as the 

diffraction and interference patterns. 

 

Figure 3.39 N*M squares α=45⁰ tilt 
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                                   (a)                                                              (b) 

Figure 4.40 Single Square Tilt Angle α=45⁰, a=20 μm, L=1 m, Observed Domain=0.1 m, N=1, 

M=1, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 

                 

                                  (a)                                                                (b) 

Figure 4.41 Two Tilted Squares on the Horizontal α=45⁰, a=20 μm, L=1 m, Observed 

Domain=0.1 m, N=2, M=1, λ=6328 Ǻ (HeNe), (a) Plot3D, (b) DensityPlot 
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                                 (a)                                                                 (b) 

Figure 4.42 2*2 Tile α=45⁰, a=20 μm, L=1 m, Observed Domain=0.1 m, N=2, M=2, λ=6328 Ǻ 

(HeNe), (a) Plot3D, (b) DensityPlot 

                 

                                  (a)                                                               (b) 

Figure 4.43 3*2 Tile α=45⁰, a=20 μm, L=1 m, Observed Domain=0.1 m, N=3, M=2, λ=6328 Ǻ 

(HeNe), (a) Plot3D, (b) DensityPlot 
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                                 (a)                                                                 (b) 

Figure 4.44 3*3 Tile α=45⁰, a=20 μm, L=1 m, Observed Domain=0.1 m, N=3, M=3, λ=6328 Ǻ 

(HeNe), (a) Plot3D, (b) DensityPlot 

                

                                 (a)                                                                 (b) 

Figure 4.45 4*3 Tile α=45⁰, a=20 μm, L=1 m, Observed Domain=0.1 m, N=4, M=3, λ=6328 Ǻ 

(HeNe), (a) Plot3D, (b) DensityPlot 
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                                 (a)                                                                 (b) 

Figure 4.46 4*4 Tile α=45⁰, a=20 μm, L=1 m, Observed Domain=0.1 m, N=4, M=4, λ=6328 Ǻ 

(HeNe), (a) Plot3D, (b) DensityPlot 
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CHAPTER 5 

 

5.CONCLUSION 

 

Our aim in this thesis was to prepare a guide of diffraction and interference 

patterns of essentially two dimensional structures which has been widely ignored in the 

curriculum of physical optics teaching. The former work in simulations of optical 

phenomena ranges from the demonstration of blackbody radiation, spatial coherence, 

Rayleigh resolution, laser cavity optics, reflection and refraction of waves at the 

boundaries of materials to diffraction due to one dimensional structure.  

The most advanced interactive simulations of physical optics on the web 

currently appear to be written by the WebTop team at Mississippi. There were some two 

dimensional structures they failed to prepare for their diffraction an interference patterns 

during the course of the NFS supported WebTop project. In this thesis we wrote 

Mathematica codes for what has been missing in the WebTop project for two 

dimensional structures. These two dimensional structures include rectangular apertures, 

arrays and meshes of rectangular apertures and circular apertures. During the course of 

writing of the codes we notice that circular apertures arrays and meshes of circular 

apertures can also be simulated. As we proceed we notice that structures formed by 

identical apertures seem to be forming diffraction pattern from individual apertures 

multiplied by interference pattern of the center point of these apertures. We proved this 

hypothesis for general cases. We wrote all these codes in Mathematica. We reckon that 

the student can learn optics and Mathematica programming simultaneously in the course 

of a physical optics class facilitated by over codes. 
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This Mathematica codes are very user friendly and can be used by any student of 

physics and the codes can be utilized and developed further for more advanced purposes 

in the future for higher level research. 
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