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ABSTRACT 
 
 
 

During past 20 years, much of the research work has been in the area of computer 
vision for mobile robot navigation. Despite of being computationally more expensive 
and less accurate compared to sonar or laser range sensors due to their indirect storage 
of the world’s geometry, visionary sensors are promising since they are compact, 
noninvasive, ubiquitous, cheap, full of information and well-understood because of 
their similarity to humanoid vision systems.  

In this thesis, literature on vision-based naviagation is reviewed by emphasizing 
the robust feature extraction and visionary simultaneous localization and mapping 
(SLAM) studies. Based on the findings obtained, a similar SLAM system using single 
camera is proposed. For the implementation of the system, while a mobile robot 
navigates according to a provided trajectory, some robust features belonging to natural 
landmarks in the environment are extracted from the camera frames of the robot and 
tracked through the frames to perceive the environment. In order to extract those robust 
features, some popular algorithms are adapted. By matching the features between 
camera frames, relative coordinates of the landmarks in 3D world can be obtained 
approximately by depending on a prior calibration process. Integrating the robot 
position estimates based on odometry of robot with landmark coordinate estimates in 
extended Kalman filter (EKF), relative positions of the robot and the environment 
landmarks can be computed with some amount of uncertainty. This enables the building 
of a representative map of the environment simultaneously. Thus, a monocular SLAM 
system has been investigated, which may also be the basis for a learning mobile robot 
with stochastic actions that is capable of operating in unknown environments. 
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ÖZ 
 
 
 

Son 20 yılda gezgin robot navigasyonu amaçlı bilgisayarlı görme sahasında birçok 
araştırma yapılmıştır. Gerektirdiği hesaplama yüküne ve sonar ya da lazerli mesafe 
algılayıcılarla karştırıldığında ortamın geometrisini dolaylı bir şekilde içeriyor 
olmasının sonucunda daha fazla hataya açık olmasına rağmen, kameralar az yer 
kapladığı, ortamla etkileşmediği, sık ve ucuz bulunduğu, bilgi dolu olduğu ve insana ait 
görme sistemine benzediği için rahat anlaşılabildiğinden gelecek vaadetmektedir. 

Bu tezde, sağlam öznitelik çıkarma ve görmeye bağlı eşzamanlı konumlandırma 
ve haritalandırma (SLAM) çalışmalarına vurgu yapılarak görme tabanlı navigasyon 
üzerine yazın taranmaktadır. Elde edilen bulgulara binaen benzer bir tek kameralı 
SLAM sistemi önerilmektedir. Sistemin uygulaması için, gezgin bir robot sağlanan bir 
yörüngeye göre hareket ederken, robotun kamera çerçevelerinden ortamı algılayabilmek 
için ortamdaki işaretlere ait bazı sağlam öznitelikler çıkarılmakta ve çerçeveler boyunca 
takip edilmektedir. Bu sağlam öznitelikleri çıkarabilmek için bazı popüler algoritmalar 
uyarlanmaktadır. Öznitelikleri kamera çerçeveleri arasında eşleyerek, 3B dünyadaki 
işaretlerin izafi koordinatları evvelki bir kalibrasyon işlemi sayesinde yaklaşık olarak 
elde edilebilir. Genişletilmiş Kalman filitresinde (EKF) robotun odometresine bağlı 
robot konumu tahminleri, işaretlerin koordinat tahminleriyle bir araya getirilerek 
robotun ve ortamdaki işaretlerin konumları bir miktar belirsizlikle hesaplanabilir. Bu 
eşzamanlı olarak temsili bir ortam haritası inşasına olanak sağlamaktadır. Böylece, 
bilinmeyen ortamlarda çalışabilecek, öğrenen ve rastgele davranışlı bir gezgin robot 
için de temel olabilecek tekgözlü SLAM sistemi araştırılmaktadır. 

 
 

Anahtar Kelimeler: Gezgin robotlar, Tek kamera, Sağlam öznitelikler, Öznitelik 
izdüşümleri, SLAM. 
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CHAPTER 1 
 
 

       INTRODUCTION 
 
 
 

Any being in nature is mobile and intelligent to some extent, and most of the time 

the range of things they can achieve are based on their degree of mobility and level of 

intelligence. Many technologies have been developed by referencing such abilities of 

human being or some other animals in nature since the industrial revolution in 18th 

century. What motivated the idea of first mechanically powered submarine Plongeur 

(Diver) by French in 1863 were the lives of underwater creatures. Similarly, birds were 

the source of inspiration for planes, which lead to Wright Brothers’ invention of the 

world's first successful airplane and realization of the first controlled, powered and 

sustained human flight in 1903. And in 1959 why robots are employed by Ford 

factories was to substitute and automate the human work. As such studies have been 

built on top of each other, it revealed out the fact that the more machines are desired to 

achieve, the more mobile and intelligent they have to be.  

Today, wheels or mechanical legs are mounted to enable robots with mobility. 

These mobile robots are also equipped with various sensors enabling interaction with 

the environment. Thus they may have some pseudo-biotic capabilities to see, to touch 

or to listen. Besides, intelligence providing data integration and behavioral controls is 

achieved by electronic brains that might employ various artificial intelligence (AI) 

techniques such as fuzzy logic, neural networks, Bayes inference or reinforcement 

learning (RL).  

Having those functionalities in place, robots can be driven to deliver food in 

hospitals, to move containers at loading docks, to guide people in buildings, or to mow 
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grass in gardens. In large scale, they can be employed for autonomous highway 

navigation, military operations, deep sea or planetary explorations. 

 

1.1 THE NAVIGATION PROBLEM  

Mobile robot applications essentially involve navigation to accomplish any task. 

Navigation is considered as a high level task to achieve for them when it is not human 

guided or not simply a sequence of actions programmed but involves some autonomy, 

in other words intelligence. 

Autonomous robot navigation mostly means robot’s ability to determine its own 

position in its frame of reference and then to plan a path towards some goal location. In 

order to achieve these tasks, robots need to have a representation of the environment 

such as maps and an ability to interpret that representation. 

Fundamentally, navigation can be defined as a combination of three competences; 

self-localization, map-building and map-interpretation, and path planning. Their 

explanations and various solutions to them including vision are given through the 

following subsections. 

1.1.1 Self-Localization 

Self-localization is the ability of a robot to answer the question of “Where am I 

relative to the world?” in order to increase its accuracy on performing a task. 

Depending on specific applications, there may be various solutions to this question each 

having different pros and cons which are summarized in Table 1.1. 

GPS has long been used to localize aerial vehicles. Yet GPS signals are not 

available to rural outdoor environments. Due to line of sight issues, in addition to 

indoor environments, they are even absent in the presence of heavy vegetation or 

overhanging canopy in outdoor regions (Yang et al., 2010). Moreover, for outdoor land 

vehicles it is demonstrated that GPS systems’ signal instability may lead to a magnitude 

of more than a few meters drift in localization which is unsafe for navigation (Velat et 

al., 2007). 
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Another means to localize robots is via range measurement to environment 

obstacles. Range sensors, sonar sensors or cameras can be used to measure depths 

which can be processed as features representing the environment (Riisgaard and Blas, 

2005; Hager, 2008). Later, by performing an existing map or built map correlations 

with the obtained features, the uncertainties in robot location can be resolved.  

Laser scanners are very precise, efficient, and the output does not require much 

computation to process, but they are very expensive, and when they are looking at 

certain surfaces including glass, they can give very bad readings. Additionally, they can 

not be used underwater since the water disrupts the light, and the range is drastically 

reduced. Sonar sensors are very cheap compared to laser scanners. In contrast, their 

measurements are not very good, and they often give bad readings. Where laser 

scanners have a single straight line of measurement emitted from the scanner with a 

width of as little as 0.25 degrees a sonar can easily have beams up to 30 degrees in 

width. Though, underwater they are the best choice and resemble the way dolphins 

navigate.  

 

Table 1.1 Comparison of self-localization methods. 

METHOD ADVANTAGES DISADVANTAGES 

GPS Signals • can be used to localize 
aerial vehicles 

• not available to indoor or rural 
outdoor environments 

• more than a few meters drift in 
localization 

RA
N

GE
 M

EA
SU

RE
M

EN
T 

M
ET

H
O

D
S 

Sonar 

Sensors 
• cheap 
• best for underwater • often give bad readings 

Laser 

Scanners 
• precise 
• efficient 

• expensive 
• bad readings for certain surfaces 
• can not be used underwater 

Cameras 

• contain more information 
• compact 
• noninvasive 
• similar to humanoid vision 

systems 
• easy to access and cheap 

• computationally intensive 
• error prone due to changes in 

light 
• less accurate  due to their indirect 

storage of the world’s geometry 

Artificial 

Landmarks • easy to implement • not portable easily 
• may lack autonomy 



4 
 

 
 

Traditionally, it has been very computationally intensive and also error prone due 

to changes in light to use vision for the range measurement task. Given a room without 

light, a vision system will most certainly not work. However, in the recent years, there 

have been some interesting advances within this field. Often, the systems use a stereo or 

triclops system to measure the distance. Also, there is a lot more information in a 

picture compared to laser and sonar scans. This used to be the bottleneck, since all this 

data needed to be processed, but this is becoming less of a problem with advances in 

algorithms and computation power (Riisgaard and Blas, 2005).  

Finally, artificial landmarks that can be sensed by visionary, optic or inductive 

sensors can aid localization. The idea can be as simple as a robot’s guess about its 

location given an artificial landmark database as the representation of an environment. 

Though, such applications are usually too environment specific that they are not easily 

portable to similar problems and lack autonomy.  

Problems regarding self localization include classification, recognition and 

structure from motion (SFM). During motion of robot, features (or landmarks) are 

extracted from environment depending on sensor type, and they are classified and 

recognized continuously to construct a representation of the environment which is 

called SFM or to perform a match with a previously seen case or pre-built maps. Some 

popular localization algorithms are Monte Carlo localization (MCL) based on particle 

filters, Kalman filters, and Extended Kalman filters (EKF) which can handle nonlinear 

dynamics of the robot. 

1.1.2 Map-Building and Map-Interpretation 

For mobile robots, maps denote any one-to-one mapping of the world onto an 

internal representation. They can be in the shape of a metric map or any notation 

describing locations in the robot frame of reference and may contain different degrees 

of detail generated by CAD models, occupancy maps, virtual force fields (VFF), and 

simple graph of interconnections between the elements in the environment. Occupancy 

maps are formed by the 2D projection of volume of each object in the environment onto 

the horizontal plane. VFF is an occupancy map where each occupied cell exerts a 

repulsive force to the robot where goal exerts an attractive force, and all forces are then 

combined using vector addition and subtraction to indicate the new heading of the 



5 
 

 
 

robot. However, though occupancy grids are rich in geometrical detail, they are highly 

dependent on the accuracy of robot odometry and sensor uncertainties. Additionally, for 

large scale and complex spaces, it may not be computationally efficient for path 

planning or localization (DeSouza and Kak, 2002). 

Robots may be provided with environment map beforehand or be expected to 

build it online. In the literature, the robot mapping problem is often referred to as 

simultaneous localization and mapping (SLAM). In SLAM during navigation, robot 

must map the environment in which it is being operated using its sensors so that it 

learns what is around and thus avoids the obstacles. While constructing a map, robot 

must also know where it is. This problem gets much complicated if the environment is 

allowed to change, in other words dynamic, when the robot moves around. EKF 

combined with a landmark sensing model is the most widely used method for SLAM. 

Not only the robot pose and the distinguishable landmark locations but also their 

uncertainties are maintained (Russell and Norvig, 2003). 

1.1.3 Path Planning 

If the navigation is to accomplish a goal rather than just roaming, then the 

challenge of path planning should be dealt with. The path planning problem is to find a 

path from one coordinate to another in space. So it is effectively an extension of 

localization, in that it requires the determination of the robot's current position and a 

position of a goal location, both within the same frame of reference or coordinates. The 

primary characteristic of path planning is that it involves continuous spaces. To 

successfully prepare the plan, it is important to be informed about free space including 

all attainable coordinates and the occupied space which is the space of unattainable 

coordinates in the environment, and this information is obtained via maps.  

Considering that the robot motion is deterministic, and the localization of the 

robot is exact, different approaches such as cell decomposition and skeletonization can 

be applied in high dimensional continuous spaces. Cell decomposition methods 

decompose the free space into finite number of contiguous regions, called cells. Then, 

the path planning problem becomes a discrete graph search problem that can be solved 

by algorithms like A* or value-iteration. As in VFF, a function called potential field can 

be defined over the state space whose value grows with distance to closest obstacle. By 
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this way, clearance from the obstacles is maximized while the path length is minimized. 

Then, the resulting path may be longer but also it is safer. Skeletonization means 

reducing the robot’s free space to a one dimensional representation which is called the 

skeleton. Some examples to this approach include the Voronoi graphs and probabilistic 

roadmaps. Voronoi graph of a free space is the set of all points that are equidistant to 

two or more obstacles. Path planning is achieved by finding the closest points to initial 

and goal locations on Voronoi graph, and then by following the shortest path on the 

graph between those two points. Probabilistic roadmaps are constructed by joining any 

randomly generated large number of coordinates in free space only if it is easy to reach 

one node from the other. Later on, a discrete graph search can be performed from start 

location to target. 

Alternative path planning algorithms may handle uncertainty arising from partial 

observability of the environment or stochastic effects of the robot’s actions. If 

uncertainty is small enough to ignore, maximum likelihood estimates for most likely 

state can be computed. In order to accommodate uncertainty, problem can be modeled 

as a Markov Decision Process (MDP) in fully observable environments. Solution to 

MDP is an optimal policy telling the robot what to do in every possible state. However, 

partial observability makes the problem harder, and turns the robot control problem into 

partially observable MDP (POMDP), for which robot usually maintains an internal 

belief state. Solution to POMDP is a policy defined over robot’s belief state. Though, 

techniques solving POMDPs are not applicable to robotics since no techniques are 

known for continuous spaces, and discretization can not be coped with by the known 

ones. Consequently, to keep the pose uncertainty of robot to minimum, some heuristics 

like coastal navigation, which requires the robot to stay near known landmarks to 

decrease its pose uncertainty, may be imposed. Thus, uncertainty in the mapping of new 

landmarks nearby is decreased, and this enables the robot to explore more territory 

(Russell and Norvig, 2003). 

 

1.2 VISION-BASED NAVIGATION  

Vision brings about much humanoid approach to navigation problem. While 

moving via their sonar or range sensors in an environment, robots are similar to blind 
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people who try to understand the surrounding with a feeling of touch. However, in spite 

of being more computationally expensive and less accurate compared to sonar or range 

sensors, visionary sensors like cameras can also be used instead of other sensors 

enabling safe interaction with the environment (Riisgaard and Blas, 2005; Hager, 2008). 

Furthermore, they provide much more consciousness for robots about the 

environment so that robots can follow some objects including humans (Jia et al, 2006), 

determine far-range drivable path when driving on highways (Bradski and Kaehler, 

2008b), or classify objects before performing related tasks on them such as treating 

dishes accordingly as unloading a dishwasher (Velat et al., 2007). Despite of the 

advantages of performing such advanced tasks, computational and accuracy 

deficiencies of visionary applications have directed some researchers towards fusion 

approaches, which combine camera input with other sensors rather than employing pure 

vision-based approaches (Jia et al, 2006; Bradski and Kaehler, 2008b). 

There are three different approaches to vision based localization: absolute 

localization, incremental localization, and localization derived from landmark tracking. 

In absolute localization, the robot’s initial pose is unknown so the navigation system 

must construct a match between the observations and expectations as derived from 

database. Due to uncertainties with the observations, it is possible for the same set of 

observations to match multiple expectations. The resulting ambiguities may be solved 

by methods such as Markov localization, partially observable Markov processes, Monte 

Carlo localization, multiple hypotheses Kalman filtering based on mixture of Gaussians, 

using intervals for representing uncertainties or by deterministic triangulation. Absolute 

localization is to be contrasted with incremental localization in which it is assumed that 

location of the robot is known approximately at the beginning of the navigation session, 

and the goal of the vision system is to refine the location coordinates. Yet in landmark 

tracking localization of a map-based navigation, correlations are used to keep track of 

the landmarks in the consecutive images that are recorded as the robot moves (DeSouza 

and Kak, 2002). 

Computations involved in the vision based localization that is the first key to 

solving navigation problem can be divided into the following four steps. The third one 

is the most challenging of all since it requires a search that can usually be constrained 

by prior knowledge of the landmarks and by any bounds that can be placed on the 
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uncertainties in the position of the robot. First step is acquiring and digitizing camera 

images. Second one is detecting landmarks, which involves extracting edges, 

smoothing, filtering and segmenting regions. In third step, matches between observation 

and expectation are established by trying to identify observed landmarks in the database 

for possible matches. Finally, system needs to calculate its position as a function of the 

observed landmarks (DeSouza and Kak, 2002). 

 

1.3 CURRENT SYSTEMS 

Systems based on mobile robot navigation are applied in different domains such 

as industry, human assistance, transportation and exploration or entertainment. For any 

of those systems, vision can be used as a useful means to carry out the designated 

missions properly. 

In industry, autonomous mining robots have been found to be faster and more 

precise than people in transporting ore in underground mines. Mobile robots have also 

been used to generate high-precision maps of abondened mines and sewer systems, or 

to detect malfunctions of utility poles. 

Assisting robots are beneficial especially in hazardous environments for humans 

such as cleaning up nuclear waste, detecting mines in minefields and entering collapsed 

structures as members of human search and rescue crews. Besides, robots as vacuum 

cleaners, lawn mowers or golf caddies to perform daily tasks autonomously are already 

commercially available. In addition to these, service robots which require unpredictable 

and dynamic environment handling, and human interaction have been put to operate in 

public places like museums, shopping malls, or trade fairs as tour guides. 

Robotic transportation applications vary from unmanned aerial vehicles (UAVs) 

that deliver objects to locations that would be hard to access by other means, to 

automatic wheelchairs, or legged walking robots carrying handicapped or elderly 

people who are unable to control the system by themselves. A primary example to 

indoor applications is robots deployed in hospitals to transport food and other items, 

and car-like robotic systems navigating autonomously on highways or across terrains 
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(ULVs) are some instances of outdoor transportation applications. The NAVLAB 

project initially developed by Thorpe et al. (1987), its neural network equipped version 

ALVINN (1989) and Darpa Grand Challenge winner Stanley of Stanford University by 

Thrun et al. (Bradski and Kaehler, 2008b) are some of vision-aided autonomous car 

navigation systems that have been developed so far. Furthermore, mobile robots have 

been built up to explore places hard to access for people. Planetary exploration robots 

or undersea exploration vehicles (AUVs) are cases in point. Figure 1.1 shows some 

exploration and transportation robots that have been designed. The lower right figure 

patch is the rover of Mars Pathfinder mission of NASA first landed in July 1997 whose 

navigation was carried out in corporation with a lander unit and consisted of four 

different functions that are goal designation, path selection, rover localization, and 

hazard detection. 

 

 
Figure 1.1 Mobile robots deployed in transportation and exploration domains. 
 

Finally, human-like robot Asimo of Honda and dog-like robot toy AIBO of Sony 

are two sample applications in entertainment domain. The latter one is also used as a 

research platform in most of AI labs around the world. 
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1.4  BACKGROUND AND MOTIVATIONS 

Mobile robotics is a multi-disciplinary research area involving machine, computer 

and electronic engineerings, cognitive psychology, recognition, and neurology. The 

fields that are open to research are moving, control and directing, human-robot 

interaction, learning, and adaptation. 

From computer engineering perspective, computer science with many of its 

subfields can contribute to the various phases of mobile robot navigation problem. 

Computer vision techniques can enhance tracking and obstacle avoidance capabilities of 

the robots via employment of cameras. Many AI and machine learning algorithms can 

be adapted to decision making and path planning procedures to combine internal 

knowledge with environmental observations. Human-computer interaction can aid 

determining the ways for robots to more naturally interact with humans, and embedded 

systems can be designed for more efficient and reliable handling of actuators and 

sensors. Together with the support of other subfields such as Computer Graphics or 

Robotics, computer science is a crucial contributor to make such a robotic system up, 

and promises great deal of research opportunities in this area. 

Even though the current systems may outperform fully human-guided systems, 

most of those systems are still semi-automatic or teleoperated, which means a human 

operates them by remote control, in order for increased accuracy. Moreover, they 

require environmental modifications such as inductive loops on the floor, active 

beacons, and bar-code tags, or some prior knowledge and representations about the 

environment for their operation. Consequently, for the sake of increased flexibility the 

design of robots that can use natural cues, instead of artificial ones in order to navigate 

is an open challenge in robotics. Addressing the navigation problem based on natural 

landmark tracking in an environment with a single camera, it is believed that this study 

may contribute to the realization of more flexible visionary robotic systems in the 

future. 
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CHAPTER 2 
 
 

       LITERATURE REVIEW 
 
 
 

A great deal of research has been made on visionary navigation problem, and 

important improvements and findings have been obtained so far. Even though 

understanding the way the studies are implemented in detail is fairly hard at a time, it 

was useful to be aware of the basic ideas the studies depend on in order for providing 

this research with a reasonable direction. Consequently, first of all some general 

information about the studies is given through the following paragraphs. Section 2.1 

classifies the approaches of the studies to vision based navigation problem, and tries to 

explain them together with some examples. Being parallel to the approach of this 

research to the problem, Section 2.2 explains some of the methods to reliably extract 

robust features from video frames, and Section 2.3 mentions about the visionary SLAM 

studies depending on those extracted features. 

Bradski and Kaehler (2008b) identified robot-vision signal processing primitives 

and their associated classes of methods and presented a robot-vision example so-called 

the Stanley robot racing car. They indicated that main signal processing primitive 

classes are filtering, shape analysis, density modeling, clustering, and tracking. Filtering 

methods aim removing less important data from image to help subsequent processing 

stages such as edge detection and tracking. Some filtering methods include convolution 

in the spatial or frequency domains, smoothing using Gaussian pyramids, patch 

matching via cross correlation, and despeckling. Shape analysis methods aim at 

identifying image entities for further processing. They can be either boundary based to 

determine edges or contours of the object, or region based to determine the area covered 

by the object. Density modeling means identifying a distribution of image or sub-image
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related features such as color or pixel location. Simple histogram binning is often used 

in robot vision applications. It can be performed by collecting distribution of 

normalized color values in the image. Once histogram has been obtained the 

distribution of objects according to the measures can be computed. For clustering two 

most often used algorithms in robot vision were given as k-means and mean-shift. Also, 

widely used tracking method was mentioned to be the Lucas and Kanade (1981) 

tracking based on Harris corner detector, which can be refined by embedding the 

tracker in a Kalman or particle filter. 

Similarly, simple distribution modeling followed by clustering played an essential 

part in success of the Stanley robot racing car of Stanford University. It enabled the car 

to use cameras to see out beyond the range of laser range finder, allowing robot to 

safely drive faster than laser range finders alone allowed. The distribution of the colors 

in the drivable patch determined by laser range finder was modeled by the vision 

system using k-means algorithm. A Gaussian color model was fit to each of the k color 

centers, and then models were normalized to obtain probability of a pixel being part of a 

road object given the measures in a Bayesian decision model. The vision and laser maps 

were fused together to obtain drivability map which was passed to the planner to make 

path and speed decisions. 

Jia et al. (2006) surveyed the developments of the last 10 years in the area of 

vision based target tracking for autonomous vehicles navigation. They emphasized that 

if the search goal is to send an autonomous vehicle from one coordinate location to 

another, there is sufficient accumulated expertise in the research community today to 

design algorithms which could do that in a typical environment; but if the goal is 

adapting to dynamically changing environment during navigation such as chasing or 

following moving targets, avoiding unpredictably positioned obstacles, and stopping at 

a stop sign under varying illumination and background conditions, it is still the central 

research problem. Most algorithms developed for the navigation of autonomous land 

vehicles were categorized as visual landmarks tracking algorithms, human following 

algorithms, target tracking for localization and map building, target tracking with pan-

tilt camera platforms, and target tracking for multiple mobile robots cooperation. The 

first and the third categories, that are most related to this research, are elaborated as 
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follows, and later how the disadvantages of the existing algorithms can be eliminated is 

discussed. 

For visual landmarks tracking algorithms, visual landmarks were divided into two 

classes: natural or artificial. Generally, natural landmarks are selected in the scenes in 

consideration of their particular characteristics. Autonomous vehicles learn those 

characteristics or keep the features of the landmarks in memory, and recognize them 

using the neural network or some other matching technique as they move. On the other 

hand, an artificial landmark is often designed with a specific pattern or color to ease its 

detection. Simple artificial landmark model can be used for self localization of indoor 

mobile robots.  

Regarding target tracking for localization and map building, localization was 

defined as determining the position of an object within a reference coordinate system, 

and tracking was decribed as constructing a trajectory given a collection of spatially and 

temporally coherent locations. Localization, mapping, and moving object tracking serve 

as the basis for scene understanding which is in turn a key prerequisite for making a 

robot truly autonomous. Among land vehicle localization and map building applications 

are real-time mobile navigation systems depending on vision based SLAM, localization 

of indoor mobile robots depending on natural landmark models, or robust tracking 

algorithms employing edge detectors and Lucas-Kanade algorithm for tracking of the 

landmarks. 

To combine the advantages of the existing methods and to compensate their 

disadvantages, equipping vehicles with different sensors such as inertial motion sensors, 

cameras, laser scan, radar or GPS, a fusion of information methodology can be 

implemented for robust feature extraction and target tracking. But one difficulty of 

fusion is that because sensors data can not arrive at the same time to the fusion 

algorithm, different time-stamps may lead to delayed measurements problem. 

DeSouza and Kak (2002) surveyed the developments of the last 20 years in the 

area of vision for mobile robot navigation. They basically separated the progress made 

during those years as vision based navigation for indoor and vision based navigation for 

outdoor robots. Indoor applications were further seperated into three broad groups: 

map-based navigation, map-building-based navigation, mapless navigation. Even 
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though both indoor navigation and outdoor navigation involve obstacle avoidance, 

landmark detection, map-building or updating, and position estimation; outdoor 

navigation differs from indoor navigation in that a complete map of the environment is 

hardly ever known a priori, and the system has to cope with the objects as they appear 

in the scene without prior information about their expected position. Thus, they divided 

outdoor navigation applications into two different classes: outdoor navigation in 

structured and in unstructured environments.  

 

2.1 TYPES OF VISIONARY NAVIGATION 

Vision-based indoor navigation applications are considered under map-based, 

map-building, and mapless navigation in the following subsections. Each type of 

applications is briefly explained and exemplified mostly again with the help of DeSouza 

and Kak’s survey (2002).  

2.1.1 Map-based Navigation 

Atiya and Hager (1993) recognized some entities in camera images that stay 

invariant with respect to the position and orientation of the robot as it travels in its 

environment. Their absolute localization idea was that given a triple of point landmarks 

on a wall in the environment, if all three of these points could be identified in each 

image of a stereo pair, then the length of each side of the triangle, and the angles 

between the sides would stay invariant as the robot moves to different positions with 

respect to these three points. So the length and the angle attributes associated with a 

triple of landmark points would be sufficient to identify triples, and to set up 

correspondences between the landmark points in the environment and the pixels in 

camera images. Once such correspondences were established, finding the absolute 

position of the robot simply became an exercise in triangulation. However, that the 

coordinates of landmark points may not be known exactly in the world, that the pixel 

coordinates of the observed image points may be subject to error, and that there may be 

ambiguity in establishing correspondences between the landmark triples and the 

observed pixel triples were some of the problems to deal with in this approach. 
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Since in incremental localization for a large number of practical situations the 

initial position of the robot is known at least approximately, in such cases the 

localization algorithm must simply keep track of the uncertainties in the robot’s position 

as it executes the motion commands and must use its sensors for a new fix on its 

position when uncertainties exceed some threshold. One such system achieving 

incremental localization by using geometrical representation of space and a statistical 

model of uncertainty in the location of the robot was called FINALE by Kosaka and 

Kak (1992). Figure 2.1 presents the processing steps of the system. 

 

 
Figure 2.1 Processing steps of FINALE system (Kosaka and Kak, 1992). 

 

In FINALE system, uncertainty in robot’s position p(x,y,ø) was represented by a 

Gaussian distribution, so uncertainty in position was characterized by the mean p̅ and 

the covariance Σp. Translational and rotational motions of the robot in response to 

commands were also characterized and parameterized to account for the slippage in the 

wheels so that uncertainty in the robot’s position can be identified better. To determine 

where to look in the camera image given a landmark in the environment, the uncertainty 

in the position of the robot had to be projected into the camera image through 

calibration matrix.  
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Based on the current value of robot position p ̅, an expectation map of the world 

was prepared. For each end point of a vertical edge in expectation map, using 

covariance matrix associated with the pixel coordinates of a single point landmark in 

the scene, one unit of Mahalanobis ellipses were computed to indicate uncertainty 

regions. Projecting robot’s positional uncertainties into camera image were easily 

extended to mid-level features such as straight edges using Hough space where each 

straight line feature in the environment was represented by a single point. Finally, edges 

extracted in the vicinity of model edges in Hough space were matched with the model 

edges via a model based Kalman filter derived from a linearized version of a constraint 

equation when the equation was satisfied by the parameters of a straight line in the 

environment and the Hough space parameters of the corresponding line in the camera 

image. It was this match through which robot could localize itself updating the 

statistical parameters of its position. Some of important intermediate steps of the system 

are shown inFigure 2.2 when robot localizes itself using Kalman filter based approach. 

 

 
Figure 2.2 (a) The camera image and the superimposed expectation map (b) Output of 
the model-guided edge detector (c) Uncertainty regions associated with the ends of the 

model line features (d) Matching after Kalman filtering (Kosaka and Kak, 1992). 



17 
 

 
 

An entirely different approach to incremental localization, NEURO-NAV, by 

Meng and Kak (1993), utilized a topological representation of the environment. As 

shown in Figure 2.3, the topological representation employed was a graph data structure 

using three kinds of nodes in the form of squares, circles and diamonds to represent 

corridors, junctions and dead ends, respectively. Each node in the graph was attributed. 

For example, in the figure the main central corridor C2 has an attribute of left 

landmarks which is a list of pointers to doors d176, d175, d174, d173, and d172, and 

links of the graph are attributed to contain information regarding the physical distance 

between the landmarks.  

 

 
Figure 2.3 (a) Physical structure of a hallway segment showing the doors and alcoves 

(b) The topological representation of the hallway in (a) (Meng and Kak, 1993). 
 

NEURO-NAV consisted of the two modules: Hallway Follower and Landmark 

Detector. Each module was implemented using an ensemble of neural networks. As 

robot executed the commanded motions, Hallway Follower module kept the robot in a 

parallel path with respect to the walls while Landmark Detector performed searches to 

keep track of the landmarks contained in the attributed node. Inside Hallway Follower 

there were neural networks, one of which was called “corridor-left” which could detect 

from camera image the edge between the floor and the left side wall, and could output 

the appropriate steering angles keeping the robot approximately parallel with respect to 

the left wall. To achieve that the camera images were first down sampled from 512x480 

pixels matrix to 64x60 pixels matrix to speed up computations, and then Sobel operator 
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was used for edge detection. Later Hough transform of the edges were taken, and 

different regions of Hough space were fed into different neural networks. The image in 

Figure 2.4(a) was taken when the robot was pointed somewhat towards the left wall. So 

the image is rich in edges that correspond to the junction between the left wall and the 

floor. In the Hough map these edges occupied cells that are mostly in the left half of the 

map, and such observations were the ones determining which regions of the Hough 

space should go to what neural networks. NEURO-NAV’s all neural networks were 

simple three layered feed forward networks using back-propagation algorithm trained 

by a human operator. 

 

 
Figure 2.4 (a) An example of the hallway as seen by the camera (b) The output of the 
edge detector (c) The relevant floor edges (d) The Hough map (Meng and Kak, 1993). 

 

Since the output nodes of the neural networks were between 0 and 1, and thus 

were fuzzy in nature, Pan et al. (1995) replaced NEURO-NAV’s rule based supervisory 

controller by real-time fuzzy expert system FUZZY-NAV. It used three linguistic 

variables distance-to-junction, distance-to-travel and turn-angle. 

2.1.2 Map-building Navigation 

Model descriptions possessed by map-based navigation systems are not always 

easy to generate, especially the ones providing metrical information. So many 
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researchers proposed automated or semi-automated robots exploring their environment 

and building internal representation of it.  

The first attempt at robotic map-building was the Stanford Cart by Moravec 

(1983). The Stanford Cart used a single camera to take nine images spaced along a 50 

cm slider. Next, an interest operator was applied to extract distinctive features in the 

images. These features were then correlated to generate their 3D coordinates. The world 

was represented by the 3D coordinates of the features plotted in a grid of two square 

meter cells. The features were tracked through iterations of the program, and marked in 

the grid and in the image plane. Although this grid indirectly represented the position of 

obstacles in the world and was useful for path planning, it did not provide a meaningful 

model of the environment.  

Bouget and Perona (1995) assessed the usefulness of single camera recursive 

motion estimation techniques for vehicle navigation in the absence of a model for the 

environment. They extended a recursive motion estimator to handle scale estimation 

and examined experimentally the accuracy with which the motion and position of the 

vehicle may be computed on an 8000 frames indoors sequence.  

They decomposed the general scheme applied for full recursive rigid motion 

recovery into 4 successive stages. First stage was automatically extracting some 

distinguishable feature points from the images and tracking them from frame to frame 

which gave the image flow information. Using this flow, second stage computed the 

motion parameters which included a scale factor ambiguity from the norm of 

translation. This ambiguity was resolved by using scenery information which is also 

called 3D structure. The third stage was the actual structure reconstruction, and the 

fourth was the scale factor propagation. For image flow computation a multi-scale 

version of the Lucas and Kanade algorithm was used. 

Experiments were performed on an image sequence taken with a CCD video 

camera mounted onto a cart moving along a closed corridor to reproduce indoor. The 

cart was simply pulled by two operators while another operator was sitting on it. The 

camera was such that it was pointing approximately in the direction of the motion. The 

velocity of the motion was about 4 km/h, and the corridor was 2 meters wide. To 

measure the performance of the algorithm, they extracted from the reconstructions two 
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quantities: the computed angle of turn which was ideally 90 degrees and the final 

computed vertical deviation which was ideally 0 meter, since the motion was planar. 

For a whole round-trip experiment Figure 2.5 (a) shows a top view of the complete 

reconstructed trajectory and corridor. The dashed lines represent the real trajectory, and 

the solid lines the estimated one. The dots are the reconstructed positions of the features 

on the walls which have most of the errors at the turns. Figure 2.5 (b) displays an image 

of the sequence with its attached point features and flow, and the current motion. The 

two experimental conditions; a time baseline k=10 which means that camera frames are 

grabbed in 6 Hz and N=40 which is the number points used for motion estimation, were 

found to be optimal. The results indicated that in addition to the quality of the trajectory 

the different walls of the corridor were accurately reconstructed. 

 

 
Figure 2.5 (a) A top view of the reconstructed trajectory and corridor (b) An image 

with the features and the flow (Bouget and Perona, 1995). 

Thrun (1998) proposed an integrated approach that seeks to combine the best of 

the occupancy-grid-based and the topology-based approaches. His system first learned a 

grid-based representation using neural networks and Bayesian integration. The grid-

based representation was then transformed into a topological representation. 
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The SLAM studies to be mentioned in Subsection 2.3 can also be regarded as 

map-building applications since as the robot moves the algorithm tries to model the 

world taking the uncertainties in positions of the robot and landmarks into 

consideration. These studies are given a special focus due to their relevancy to the 

proposed system. 

2.1.3 Mapless Navigation 

In mapless navigation systems no map of the environment is formed. Thus no 

prior information regarding the environment exists. The needed robot motions are 

determined by observing and extracting relevant information about the elements in the 

environment without knowing their absolute or relative positions. Consequently, while 

in map-based systems it is easy to establish meaningful navigation goals for the robot, 

most robotic systems are limited to just roaming in mapless systems. Because, an 

internal map representation of a structured environment can be used to conveniently 

specify different destination points for the robot. On the other hand, for the mapless 

navigation, most of the time robot only has access to a few sequences of images to get 

to its destination or some predefined features of the target goals to be tracked. 

The prominent mapless navigation techniques are optical flow-based and 

appearance-based navigations. Optical flow-based systems are developed by being 

inspired of the visual behavior in insects. Due to insects’ extremely narrow binocular 

field, depth information that can be extracted from the sight is minimal, whereas their 

sensitivity to motion parallax is high making them much more aware of time-to-crash 

rather than the distance to environment obstacles. However, appearance based matching 

is memorizing the environment by storing the images or templates of the environment 

and associating those images with commands or controls that will lead the robot to its 

final destination.  

Santos-Victor et al. (1993) employed a divergent stereo approach in their robot 

called robee mimicking the centering reflex of a bee. If the robot was in the center of a 

corridor, the difference between the velocity of the images seen with the left eye and the 

right eye was approximately zero, and the robot stayed in the middle of the corridor. 

However if the velocities were different, the robot moved towards the side whose image 

changes with smaller velocity. With regard to the robotic implementation the basic idea 



22 
 

 
 

(2.1) 

(2.2) 

(2.3) 

was to measure the differences between image velocities computed over a lateral 

portion of the left and the right images, and to use this information to guide the robot. 

To compute the average optical flows on each side, the fundamental optical constraint 

(Equation 2.1) proven by Lucas and Kanade was used. In the equation, u and v are the 

horizontal and the vertical flow components. Having the knowledge that the robot 

moved on a flat ground plane so that flow along the vertical direction was regarded as 

zero, Equation 2.2 was obtained where It and Ix are the time and x-spatial derivatives of 

the image respectively.  
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For the algorithm to work, first, the images were smoothed with respect to space 

and time prior to computation of any derivatives. Then the time derivative was 

computed simply by subtracting two consecutive smoothed images. At each iteration of 

the control loop, five 256x256 stereo images were grabbed at video rate and used to 

compute the time smoothed images. Then last two images on each side were used to 

find the average optical flow vectors. This average was calculated over a sub-window 

of 32x64 pixels on each side. Finally, by observing that right and left flows had 

opposite directions, the comparison was given as in Equation 2.3 where TM is the robot 

forward motion speed, and ZR, ZL provide the horizontal projections of these motions 

into the right and left images. The difference between right and left average optical 

flows was input to a PID controller to keep the robot centered in a hallway. 
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ଵ
ೃ
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Though, equations given were oversimplified in the sense that they were applied 

when only two cameras were pointing in symmetrically divergent directions with 

respect to the direction of motion, and they could not be satisfied during rotational 

motions. The technique also ran into difficulties if there was insufficient texture on the 

walls of a corridor since the optical flow calculation depends on the existence of some 

texture. Apart from this study, Dev et al. (1997) implemented wall following 

application by extracting depth information from optical flow. 
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An appearance-based navigation study was implemented by Matsumoto et al. 

(1996) by using a sequence of images and a template matching procedure to guide robot 

navigation. Subwindows extracted from down-sampled versions of camera images were 

used to form the sequence of images that worked as a memory of all the images 

observed during navigation. Each image in this sequence was associated with the 

motions required to move from the current position to the final destination. After a 

sequence of images was stored, and the robot was required to repeat the same trajectory, 

the system compared the currently observed image with the images in sequence 

database using correlation processing on a dedicated processor. Once a match occurred, 

the displacement in pixels between the view image and the template image was 

computed in order to determine real world displacements and angles to be used in 

steering commands. 

Schepelmann et al. (2009) investigated the use of image hue and intensity to 

design a robust, real-time vision based obstacle detection system- CWRU Cutter for use 

during a competition. The competition emulated a backyard environment and had a 

variety of common obstacles like fence, flower bed lining, and a mobile obstacle inside 

the contest course. To consistently recognize an object such as a green lawn in an 

image, using simple RGB color thresholding was problematic due to recognition 

limitations in illuminated and shaded areas. However unlike RGB planes, the hue plane 

was found to be relatively insensitive to changing lighting conditions and shadows. 

Instead of indicating how much red, green and blue are present in a color; hue is an 

indication of how much of a certain color is present at a pixel. So all green containing 

pixels could be classified under similar hue values in a partially shaded area, and hue 

plane could be employed in order to identify colors with non-intersecting hue ranges. 

Image processing for obstacle detection on CWRU Cutter was accomplished 

through a number of steps. First, before mowing, a sample image of the competition 

field was taken, and the mean hue value of grass on image was calculated for reference. 

Second, the hue plane was extracted from the image, and a threshold was applied within 

± one standard deviation of the mean hue value of the grass. The threshold extracted the 

matching pixels to a binary image with 1 representing passable terrain and 0 

representing potential obstacles. Third, binary image dilation and hole filling operations 

were performed on the array to remove small false positives in the image. Finally, the 
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resulting array was converted into a range image in polar coordinates. So mowable 

terrains and obstacles around the lawnmower were detected as (r,θ) pairs by considering 

the middle element of the bottom row of the array the (0,0) location of the camera. This 

1-D range array was referred to as “pseudo-LIDAR” scan since it was generated 

through images unlike the hardware sensory unit LIDAR for obstacle detection (Figure 

2.6).  

 

 
Figure 2.6 Incoming calibrated camera image of the white competition fence (left) and 

resulting pseudo-LIDAR scan (right) (Schepelmann et al., 2009). 
 

2.2 ROBUST FEATURE EXTRACTION 

Bradski and Kaehler (2008a) pointed out that particular objects are usually 

identified in still images. In order to understand motions of those objects, two 

components: identification and modeling are needed. However, tracking things that 

have not yet been identified is a related problem. Techniques for tracking unidentified 

objects typically involve tracking visually significant key points or features, rather than 

extended objects. One method for achieving this is the Lucas-Kanade (1981) technique 

which is often referred to as sparse optical flow.  

Once the feature extraction methods to be mentioned throughout this subsection 

are applied, the result is an array of pixel locations that are hoped to be found in 

subsequent frames of video or in images. Matching those features in frames is a 

fundamental aspect of many problems in computer vision, including object or scene 

recognition, solving for 3D structure from multiple images, stereo correspondence, and 

motion tracking (Lowe, 2004). 
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In a video frame, there can be many local features to track. Obviously, if a point is 

picked on a large blank wall, then it is not easy to find that same point in the next 

frames. On the other hand, if a point or feature, that is unique and parameterizable in 

such a way that it can be compared to other points in another image, is picked, then it is 

a pretty good chance of finding that point again. In Figure 2.7, the points in circles are 

good points to track whereas those in boxes are poor choices even though they are 

sharply defined edges. 

 

 
Figure 2.7 Good and poor choices of features (Bradski and Kaehler, 2008a). 
 

To more powerfully distinguish between ordinary edges and trackable features, 

points having strong derivatives in two orthogonal directions, which are called corners, 

are searched. The most commonly used definition of a corner was provided by Harris 

and Stephens (1988). This definition relied on the matrix of the second-order 

derivatives of the image intensities (∂2x, ∂2y, ∂x∂y). Second-order derivatives of all 

points were computed through Hessian matrix (Equation 2.4), and then those 

derivatives were combined to form the Hessian image.  
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For the Harris corner, the autocorrelation matrix of the second derivative images 

over a small window around each point was defined as in Equation 2.5 where wi,j is a 

(2.4) 
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weighting term that can be uniform but is often used to generate a circular window, or 

Gaussian weighting. 
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Then the corners were places in the image where the autocorrelation matrix of the 

second derivatives had two large eigenvalues. In essence, this meant that there is texture 

(or edges) going in at least two separate directions centered around such a point, just as 

real corners have at least two edges meeting in a point. Second derivatives were useful 

because they did not respond to uniform gradients. Another advantage of this definition 

was that, when considering only the eigenvalues of the autocorrelation matrix, 

quantities that were invariant also to rotation were considered, which is important 

because objects being tracked might rotate as well as move. This approach by Harris 

was later improved by Shi and Tomasi (1994) sheding light on that good corners result 

as long as the smaller of the two eigenvalues is greater than a minimum threshold.  

2.2.1 Scale Invariant Feature Transform (SIFT) 

Lowe (2004) described image features that are invariant to image scaling and 

rotation, and partially invariant to change in illumination and 3D camera viewpoint, 

which made them suitable for matching differing images of an object or scene. They 

were well localized in both the spatial and frequency domains, reducing the probability 

of disruption by occlusion, clutter, or noise. In addition, being highly distinctive the 

features allowed a single feature to be correctly matched with high probability against a 

large database of features, providing a basis for object and scene recognition. This 

approach has been named as the Scale Invariant Feature Transform (SIFT), as it 

transforms image data into scale-invariant coordinates relative to local features. 

Figure 2.8 demonstrates an object recognition implementation through SIFT. A 

parallelogram is drawn around each recognized object showing the boundaries of the 

original training image under the affine transformation solved for during recognition. 

Smaller squares indicate the keypoints that were used for recognition. 

(2.5) 
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Figure 2.8 (a) The training images for two objects (b) Training objects in a cluttered 
image with extensive occlusion (c) The results of recognition (Lowe, 2004). 

(a) 

(b) 

(c) 
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2.2.2 Speeded-Up Robust Features (SURF) 

Bay et al. (2006) presented a scale and rotation invariant interest point detector 

and descriptor called SURF which approximated or even outperformed previously 

proposed schemes with respect to repeatability, distinctiveness and robustness yet could 

be computed and compared much faster. They focused on scale and rotation invariance 

since perspective effects and skew scaling are second order effects. They stressed that 

in some cases even rotation invariance could be left out to increase efficiency and 

discriminative power, especially in mobile robot navigation applications where the 

camera often rotates about the vertical axis. 

Their detector was based on the Hessian matrix but used a very basic 

approximation. It relied on the integral images to reduce the computation time. The 

descriptor described the distribution of Haar-wavelet responses within the interest point 

neighborhood. Only 64 dimensions were used for the descriptors reducing the time for 

feature computation. Additionally, a new indexing step based on the sign of Laplacian 

increasing the matching speed and robustness of the descriptor was presented. Figure 

2.9 proves that using similarity difference matching technique SURF descriptor 

outperformed the other descriptors with sometimes more than 10% improvement in 

recall for the same level of precision where interest points were not affine invariant.  

 

 
Figure 2.9 The recall versus (1-precision) graph for different methods using similarity 

difference matching (Bay et al., 2006). 
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At the same time, SURF was faster to compute. The accurate version SURF-128 

using a descriptor of 128 dimensions showed slightly better results than the regular 

SURF, but was slower to match. Again, for the same number of points, computations of 

the detector and the descriptor was 391 ms for SURF-128 whereas it was 1036 ms for 

SIFT. The timings were evaluated on a standard Linux PC (Pentium IV, 3GHz).  

 

2.3 VISIONARY SLAM  

2.3.1 The SLAM Process 

SLAM is more like a concept than a single algorithm and is concerned with the 

problem of building a map of an unknown environment by a mobile robot while at the 

same time navigating the environment using the map. In order to be realized, it requires 

a mobile robot and a range measurement device. The SLAM algorithm consists of a 

number of steps: Landmark extraction, data association, state estimation, state update, 

and landmark update, and there are different approaches to solve each of the smaller 

parts (Riisgaard and Blas, 2005). 

The goal of the SLAM is to use the environment to update the position of the 

robot. Since the odometer of the robot that gives the robot’s position is often erroneous 

it can not be directly relied on. The errors in odometry stems from some systematic 

errors a such as unequal wheel diameters, wheelbase uncertainty, or wheel 

misalignment and from some non-systematic errors such as traveling over uneven floors 

or wheel slippage due to slippery floor (Se et al., 2002). Then, the range measurement 

to the environment obstacles is used to correct the position of the robot. This is 

accomplished by extracting features that are commonly called landmarks from the 

environment and by re-observing them when the robot moves around. The EKF is the 

main algorithm of the SLAM process, and is responsible for localization of the robot 

based on the observed features. It keeps track of an estimate of the uncertainty in the 

robot’s position and also the uncertainty in these landmarks that the robot has seen in 

the environment. An outline of the SLAM process is shown in Figure 2.10. 

When the robot moves, the odometry changes, and the uncertainty pertaining to 

the robot's new position is updated in the EKF using odometry update. Then landmarks 
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are extracted from the environment at the new position of the robot. Later the robot 

attempts to associate these landmarks to the previous observations of landmarks. 

Reobserved landmarks are then used to update the robots position in the EKF. 

Landmarks which have not previously been seen are added to the EKF as new 

observations so that they can be re-observed later. At any point in these steps the EKF 

will have an estimate of the robots current position.  

 

 
Figure 2.10 Overview of the SLAM process (Riisgaard and Blas, 2005). 

 

2.3.2 Visionary SLAM 

Visionary SLAM applications employ cameras as the range measurement device. 

Depending on the number of cameras used they can be designed as monocular (single 

camera), binocular (two cameras) or trinocular (three cameras) systems. The robust 

feature extraction methods discussed in Section 2.2 are applied on camera frames in 

order to determine some landmarks in the environment. Then, these features are 

matched to each other to measure the landmark parameters, or coordinates, as 

accurately and efficiently as possible similar to any sonar or range sensor based system. 

Some of the systems also try to estimate the camera movements from the matches, and 

this method is known as visual odometry. Those landmark parameters together with 



31 
 

 
 

odometry data of robot are filtered in EKF system as mentioned to complete the SLAM 

cycle. 

Se et al. (2002) described a vision-based mobile robot localization and mapping 

algorithm which used SIFT image features as natural landmarks in unmodified 

environments.With their trinocular stereo vision system, these landmarks were localized 

and robot egomotion was estimated by least squares minimization of the matched 

landmarks. They took into account the feature viewpoint variation and occlusion by 

storing a view direction for each landmark. Maintaining the error in estimates for the 

landmark positions and the robot pose was accomplished by Kalman filters. 

They chose SIFT features over widely used Harris corner detector since the latter 

method is sensitive to scale of an image and therefore is not suited to be matched from a 

range of robot positions for building a map. The extracted SIFT features in each of the 

three images were stereo matched among the images. The constraints when performing 

the stereo match involved epipolar, disparity, orientation, scale and finally unique 

match constraints. 

To build a map, the knowledge of how the robot had moved between the frames 

was needed in order to put the landmarks together coherently. Since the robot odometry 

gives a rough estimate and is prone to errors such as drifting or slipping, the robot 

odometry estimation of ego-motion was improved by matching SIFT features between 

frames. To find matches in second view efficiently, the odometry information was used 

to predict the region to be searched in the image for each match. The matched SIFT 

features were then used in a least-squares procedure to compute more accurate camera 

motion. 

After SIFT features were matched between frames, a database map containing the 

SIFT features was maintained (see Figure 2.11), and this database of landmarks was 

used to match features found in subsequent views. Using the initial camera coordinate 

frame as a reference, all landmarks were taken relative to this frame. For each SIFT 

feature that had been stereo matched and localized in 3D coordinates, an entry 

containing the current 3D position of the SIFT landmark relative to the initial 

coordinate frame, the scale and orientation of the landmark, and a count indicating over 

how many consecutive frames a landmark was missed were hold in the database. 
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Experiments showed that these visual landmarks were robustly matched, robot 

pose was estimated, and a consistent three-dimensional map was built. Algorithm ran at 

around 2 Hz for 320x240 images on their mobile robot with a Pentium III 700 MHz 

processor, and majority of the processing time was spent on SIFT feature extraction. 

 

 
Figure 2.11 Bird’s-eye view of SIFT feature database (Se et al., 2002). 

 

Davison (2003) presented a Bayesian framework for repeatable single-camera 

localisation via mapping of a sparse set of natural features using motion modelling and 

an information-guided active measurement strategy. He pointed out the success of EKF 

systems in SLAM problem but also the restriction of visionary SLAM applications to 

the smoothly moving robots with known control parameters and stereo vision. He 

stressed that the difficulty in real-time localization with a single camera since the 

number of features increase as the robot moves, and tracking all those would result in 

motion drift. Additionally, he mentioned that the key difference between constructing a 

motion model for a camera and a wheeled robot moving on a plane was that in the robot 

case one is in the possession of the control inputs driving the motion whereas no such 

information is available for a camera moving at a person’s hand. Yet, for both cases, the 

motion models could be generated by using classical physics and probabilistic 

assumptions. 
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Visual feature measurements were realized by the approach of Davison and 

Murray (2002). Features were detected according to the method of Shi and Tomasi 

(1994) and matched using normalized sum-of-squared-difference correlation. For the 

features that were already registered in the SLAM map, using the estimates of the robot 

(or camera) position and feature position, the next measurements could be predicted 

using the pinhole camera model that is briefly explained in Subsection 3.3.1, and 

uncertainty in this prediction could be calculated. The knowledge of feature position 

uncertainty permitted a fully active approach to search the image for finding matches. 

Then, feature correlation occurring in the limited search regions maximized efficiency 

and minimized the chance of mismatch. 

Feature initialization step in single camera SLAM was a difficult task, because 3D 

depth of features could not be estimated from one measurement. The approach adopted 

was to initialize a 3D line into map along which the feature must lie. Along this line a 

set of discrete depth hypotheses were made analogous to 1D particle distribution with 

100 particles reflecting the indoor operation range. At subsequent time steps, these 

hypotheses were all tested by projecting them onto the image. Feature matching the 

hypotheses produced a likelihood estimate for each, and their probabilities were 

reweighted resulting in initialization of points into the map when the ratio of standard 

deviation of depth to depth estimate dropped below a threshold. A depth prior removed 

the need to search along the entire epipolar line, and improved the robustness and speed 

of initialization (see Figure 2.12). On the other hand, it is noted that most of the 

experiments carried out had involved mostly sideways camera motions, and this 

initialization approach would have performed more poorly with motions along the optic 

axis where little parallax was measured. 

 

 
Figure 2.12 Image search in successive frames during feature initialisation (Davison, 

2003). 
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Map management involved the decisions when to add features to the map or when 

to delete them. The number of reliable features visible from any camera location was 

kept close to a predetermined value which was 6-10. Features were added to map if the 

number visible in the area the camera was passing was less than this threshold. Features 

were detected by running the image interest operator to locate the best candidate within 

a box of limited size (100x50 pixels) placed within the image. Position of the search 

box was chosen randomly with the constraints that it should not have overlapped with 

any existing features, and that any features should not have disappeared from the field 

of view immediately based on the current estimates of camera linear and angular 

velocities. A feature was deleted from the map if after a predetermined number of 

detection and matching attempts 50% of the time the feature was invisible. This pruned 

bad features which were not true 3D points or were often occluded. Problems only 

arised if mismatches occured due to a similarity in appearance between clutter and 

landmarks, and this could potentially lead to catastrophic failure. Correct operation of 

the system relied on the fact that in most scenes very similar objects did not commonly 

appear close enough to lie within a single image search region. 

Results showed that tracking of such kind was observed to be very repeatable and 

adaptable within a desktop scenario so that long periods of tracking of several minutes 

did not present any problem. On a 2.2 GHz Pentium processor, typical breakdown of 

processing time required at each frame at 30 Hz was computed to be 25 ms: 10 ms for 

correlation search, 5 ms for Kalman filter, and 10 ms for feature initialization. 

Davison et al. (2007) extended the study of Davison (2003) on real-time single 

camera localization to recover the 3D trajectory of a monocular camera moving through 

a previously unknown scene, achieving real-time but drift-free performance 

inaccessible to SFM approaches. They also presented applications of their system 

named MonoSLAM to real-time 3D localization and mapping for a high-performance 

full-size humanoid robot and live augmented reality (AR) with a hand-held camera.  

Regarding system initialization of the single camera SLAM, it was stated that 

there was no direct way to measure feature depths or any odometry from visual input. 

So they started from a target of known size allowing them to assign a precise scale to 

the estimated map and motion, rather than running with scale as a completely unknown 

factor. Having some features in the map right from the start meant that normal predict-
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measure-update tracking sequence could be immediately entered in EKF without any 

special first step. Otherwise, without features to match, algorithm would get stuck to 

estimate the camera motion from frame one to frame two since features could not be 

initialized fully into the map after only one measurement using a single camera. To 

achieve that on the first tracking frame, the camera was held in a certain approximately 

known location relative to the target for tracking to start. The known features with their 

measured positions were placed into the map at system start-up with zero uncertainty 

which defined the world coordinate frame for SLAM. In the state vector the initial 

camera position was given an initial level of uncertainty corresponding to a few degrees 

and centimeters. 

For natural landmark selection, the value of invariant features such as SIFT were 

appreciated in providing a high level of performance in matching, in loop-closing, or in 

localizing a lost robot. Though, SIFT features were found to be less suited to continuous 

tracking due to the high-computational cost of extracting them. Consequently, in order 

to increase the invariance of their features to the degree of freedom available to SIFT, 

each feature was stored as an oriented planar texture. Then, when making 

measurements of a feature from new camera positions, its patch could be projected from 

3D to the image plane to produce a template for matching with the real image. This 

template was a warped version of the original square template captured when the 

feature was first detected. 

They presented the use of MonoSLAM to provide real-time SLAM for a 

humanoid robot platform, HRP-2, as it moved around a cluttered indoor workspace. In 

the humanoid SLAM application, although it had been possible to progress with their 

vision-only algorithm, the ready availability of the gyro information with the humanoid 

robot played a role in reducing the rate of growth of uncertainty around looped motions. 

The gyro was sampled at the 30 Hz rate of vision for use within the SLAM filter, and 

the standard deviation of each element of the angular velocity measurement was 

assessed as 0.01 rads-1. Then, the measurements were incorporated in the EKF directly 

as an internal measurement of the robot’s own state which constituted an additional 

Kalman update step before visual processing. 

For the experiments, the robot was programmed to walk in a circle of radius 0.75 

m which was a fully exploratory motion, involving observation of new areas before 
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closing one large loop at the end of the motion. For safety and monitoring reasons, the 

motion was broken into five parts with short stationary pauses between them: First, a 

forward diagonal motion to the right without rotation in which the robot put itself in 

position to start the circle, and then four 90 degree arcing turns to the left where the 

robot followed a circular path, always walking tangentially. The walking was at HRP-

2’s standard speed, and the total walking time was around 30 seconds but the SLAM 

system continued to track continuously at 30 Hz even while the robot paused. Figure 

2.13 shows the results of this experiment on which classic SLAM behavior can be 

demonstrated. A steady growth in the uncertainty of newly-mapped features existed 

until an early feature could be reobserved, the loop was closed, and the drift was 

corrected. A large number of features were seen to swing into better estimated positions 

simultaneously based on the correlations stored in the covariance matrix. The map of 

features was then suitable for long-term use, and it would be possible to complete any 

number of loops without drift in localization accuracy. 

 

 
Figure 2.13 (a) Early exploration and first turn (b) Mapping back all and greater 

uncertainty (c) Just before loop close, maximum uncertainty (d) End of circle with 
closed loop and drift corrected (Davison et al., 2007). 

 

Yang et al. (2012) presented a monocular vision based SLAM algorithm with a 

particular focus on navigation of a micro aerial vehicle (MAV) operating in a range of 

indoor and outdoor environments. The proposed strategy exploited the so-called planar 

ground assumption, which held for many environments. The proposed methods 
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included segmentation of the ground plane in an environment, use of epipolar geometry 

for attitude estimation, and a variation of the FastSLAM algorithm in order to estimate 

the trajectory of an MAV while building a map by using a single camera and an altitude 

sensor. Figure 2.14 illustrates how the vision data was processed in order to accomplish 

all those tasks. 

 

 
Figure 2.14 Processing of vision data collected in indoor environments (Yang et al., 

2012). 
 

Specifically, three environments were chosen for testing: An indoor corridor 

environment, an outdoor environment with footpaths, and a river-like environment. 

Experiments demonstrated that the vision algorithm could effectively map a path in an 

open environment where there were not many distinguishable objects near the MAV. In 

such an environment, laser range finder based methods would not be able to map the 

path, since there is relatively no geometric difference between the path and the grass. 

For the experiments of a river-like environment, even when the ground around the creek 

was not strictly planar, the method could produce relatively accurate navigation and 

mapping results. Also being successful in a corridor environment, algorithm was 

demonstrated to be robust for the MAV’s operation in different environments. 
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CHAPTER 3 
 
 

       DESIGN AND IMPLEMENTATION 
 
 
 

3.1 PROPOSED SYSTEM 

An intelligent agent is the one doing the right thing all the time, and an 

autonomous agent relies on its own percepts rather than the prior knowledge of its 

designer to exhibit intelligent behavior. Designing a visionary system which works 

according to artificial landmarks does not provide a system with autonomy since 

artificial landmarks themselves are purely source of the prior knowledge. Consequently, 

this system is designed to work with natural landmarks in an environment. 

In order to define the intelligent agent of the designed system, the approach of 

Russel and Norvig (2003) is employed in the following subsection, which puts an 

emphasis on the performance measure, environment, actuators, and sensors of the robot.  

3.1.1 Agent Description 

The proposed system must cope with difficulties of real world environments as 

real mobile robots do. First of all, the real world environments are partially observable 

due to inaccurate or noisy measurements of sensors and missing parts of a state from 

sensory data. Secondly, there arises the problem of stochasticity from partial 

observability and unpredictable operation of agent’s actuators. Thirdly, the real 

environments are sequential, which means that the next action of the agent depends on 

the previous percepts and actions. Fourthly, the agents need to adapt to dynamic 

environments. Fifthly, uncertain movements and steering angles of the robot in world 

reference frame brings about continuity problem to the environments, and finally, if the 

existence of other agents is taken into consideration, which is known as a multi-agent 
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environment, the problem reaches to an extremely difficult level. However, in this 

system, the environment is accepted as a semi-dynamic and single-agent environment to 

simplify the problem. The term semi-dynamic refers to the environments which do not 

change as the time elapses but in which the performance of the robot changes. 

Then, given a target path for the system, the performance measure is how 

successfully the robot can localize itself and the natural landmarks in the environment, 

and hence how reliably the map of the environment is built. The primary sensors the 

mobile robot uses are a single camera to carry out the visionary tasks and an odometer, 

and the primary actuator is the omni-directional wheels to realize the navigation. 

3.1.2 System Design 

In order to meet the requirements of the proposed system, a vision-based SLAM 

algorithm is implemented. The mobile robot is put into an environment full of natural 

landmarks and is given a goal to follow a path provided beforehand with constant or 

accelerating velocities. The aim of the algorithm is to localize the robot and to pinpoint 

the natural landmarks in the environment by tracking some robust features in the 

camera frames and simultaneously building a representative map of the environment. 

As the landmarks are re-observed, the localization and the mapping accuracies of the 

system are expected to increase. 

Experimentation of the system is performed on an educational robot called 

Robotino (see Appendix A). The system is implemented as a MATLAB\C++ 

application by integrating some existent algorithms, Robotino MATLAB API, and 

OpenCV library. MATLAB has many built-in functions for convenient visualization 

and processing of data, and C++ programs enable the application to be faster and 

integration with OpenCV library.  

Figure 3.1 shows the block diagram of system call sequence amongst the 

processing modules of the system that are briefly to be explained in the subsequent 

sections. Though, one should be aware that the figure does not indicate the dependence 

of the modules to each other but implies only which module directly calls another 

module. 



40 
 

 
 

 
Figure 3.1 Block diagram of system call sequence. 

 

3.1.2.1 Robust Feature Extractor 

This module extracts some features from single camera frames of the robot, which 

are known to be robust since they are invariant to scale and rotation, and are partially 

invariant to illumination and camera view point. Hence, these features are highly 

potential to be found repetitively among frames as the robot moves through the 

environment. Yet, robust feature extraction is a challenging process to carry out, so 

some available algorithms such as the SIFT or the SURF are adapted for this module. 

3.1.2.2 Feature Matcher 

Robust features detected in the frames are matched in this stage. Thus, the recent 

locations of the features found in the previous frames are determined in the current 

frame. In order to run the following modules reliably and efficiently, the number of 

extracted and the matched features are controlled by arranging some related thresholds. 
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3.1.2.3 Landmark Parameter Estimator 

This module is to estimate the 3D world coordinates of the landmarks in the 

environment, that are projections of 2D coordinates of the robust features matched 

among single camera frames. To achieve this, calibration of the camera is done only 

once to determine the intrinsic and distortion matrices of the camera. Later on, 

approximate 3D world parameters can be obtained for the landmarks by processing 

these matrices and the matched robust features through a number of algorithms. 

3.1.2.4 Extended Kalman Filter (EKF) 

Estimated robot and landmark positions are filtered in this stage by modeling the 

robot motion and landmark position uncertainties. Thus, the robot and the landmarks 

are approximately localized. The predicted robot position is estimated using the 

odometry of Robotino whereas the landmark positions in real world are measured as 

explained in the previous module.  

3.1.2.5 Map Builder 

Having the results of EKF stage that are the uncertain coordinates of the robot and 

the landmarks in the environment, this module simply builds a representative map of 

the environment. Via this map, the performance of the designed SLAM system can be 

demonstrated. 

3.1.2.6 Path Planner 

Unlike the path planning algorithms explained in Section 1.1.3, this unit does not 

plan a path for the robot to trace but just processes a path provided by the user through 

an interface. The path is input as a sequence of movements along the x or y axes, or 

rotation about the z-axis of Robotino. Hence, some rectangular trajectory can be 

presented to the system through which the robot can repetitively observe the landmarks 

in the environment.  
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3.1.2.7 Controller 

The controller of the system is a simple executive controller invoking proper 

modules as necessary to accomplish the localization of the robot and the mapping of the 

environment in the order of seconds. It can alternate between two sub-controllers one of 

which executing possibly the rectangular path input through the interface and the other 

generating the velocities for Robotino to follow a circular path. In order to grab frames 

and to retrieve the odometry from Robotino, and to transfer velocities designated to 

Robotino, Controller collaborates with the Robotino MATLAB API. 

The Path Planner and the Controller modules are the ones potentially open for 

research in order for a deliberate control of the system. Then, global solutions to 

complex tasks can be generated using planning that may be realized in the order of 

minutes (Russell and Norvig, 2003). However, because a deliberate control depends on 

the outcomes of the SLAM task, current modules must be implemented reliably enough 

before its design. 

3.1.2.8 Navigator 

This module is designed to enable the Robotino to move by prompting its 

actuators according to the path to be tracked. Though, since MATLAB does not allow 

threads, it could not be implemented as a stand alone module, and it is embedded into 

Controller.  

3.1.2.9 Graphical User Interface (GUI) 

For the user to test the system easily and to observe the results of the working 

algorithms, this module is devised. Users can specify the path the robot will follow, 

control the system start up or velocities, observe the tracked landmarks in the 

environment, and visualize the map built up as the representation of the environment 

through the interface. 

The algorithms, the key concepts, and some implementational details of the 

modules are analyzed by grouping these modules according to their relevance to each 

other through subsections 3.2 to 3.5. Then, some experimental results and evaluations 
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regarding the behavior of the robot and the performances of the modules are presented 

in Chapter 4. 

 

3.2 ROBUST FEATURE EXTRACTION AND MATCHING 

Robust Feature Extractor module employs SIFT or SURF algorithm depending on 

the choice of the user in order to extract features in the camera frames that are invariant 

to some transformations. Since extracting these features is only a step in this system, 

rather than trying to cope with all the details of the algorithms, the SIFT application 

developed by Vedaldi (2006) and the SURF implementation available in OpenCV are 

adapted. The representational outcomes of the algorithms are changed, and some of the 

parameters are modified in order to increase their reliability. 

However, only the code of the SIFT algorithm is analyzed thoroughly to clarify 

how a robust feature extraction algorithm can be implemented. The subsections 3.2.1 

through 3.2.4 describe the stages pertaining to the SIFT algorithm (Lowe, 2004; Sinha, 

2010) and state if some modifications are made to these stages. 

3.2.1 Scale Space Extrema Detection 

In this initial step, a scale space of the image is generated by progressively 

blurring out the image according to the Gaussian function in Equation 3.1 in order to 

ensure scale invariance. Also the original image is resized to half several times and then 

the same blurring operation is performed on those resized images. Figure 3.2 depicts 

this procedure. Horizontal images of the same size are samples of an octave whereas 

each image stands for different scale in the octave. Hence, there are 2 octaves each with 

4 scales in Figure 3.2. 

,ݔ)ܩ ,ݕ (ߪ = ଵ
ଶగఙమ

݁ି൫௫మା௬మ൯/ଶఙమ 

The number of octaves and scale depends on the size of the original image. 

However, Lowe (2004) suggests that 4 octaves and 5 blur levels are ideal for the 

algorithm. If the original image is doubled in size and anti-aliased a bit by blurring it, 

then the algorithm produces four times more keypoints, which is better. The amount of 

(3.1) 
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blurring in each image, or in other words, computation of the scale of an image is 

systematic. If the amount of blur in a particular image is denoted as σ ,and the number 

of blurred images in each octave is denoted as n; then the amount of blur in the next 

image becomes k*σ where k is (n-3) root of 2. 

 

 
Figure 3.2 Scale space of an image. 

 

For example, the SIFT algorithm uses 5 octaves and 6 scales in order to compute 

the scale space of 320x240 sized images of Robotino. Table 3.1 gives the amounts of 

blur (σ) used for each octave of the implementation where k is √2య . 

 

Table 3.1 Computed scales in an octave. 
 SCALE 

OCTAVE 1.2263 1.5450 1.9466 2.4525 3.0900 

 

The Laplacian of Gaussian (LoG) is quite useful for finding interesting points, 

namely the keypoints, in an image. LoG locates the edges and corners in a blurred 

image by calculating the second order derivatives. Since the second order derivative is 

extremely sensitive to noise, blurring smoothes the noise and stabilizes the second order 

derivative. However, LoG is computationally expensive, so the SIFT algorithm replaces 

LoG computation with the Difference of Gaussians (DoG) that is the difference 

between two consecutive scales in the scale space representation as shown in Figure 

3.3. The DoG images are approximately equivalent to the LoG, so a computationally 

intensive process is eliminated by the use of a simple subtraction.  
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Figure 3.3 Computation of DoG images (Lowe, 2004). 

 

The LoG images are not scale invariant because they depend on the amount of 

blur applied. If the term σ2 in the denominator of Gaussian expression is removed then 

true scale independence can be obtained. But the resultant images after the DoG 

operation are already multiplied by the σ2. One side effect is that they are also 

multiplied by another number, (k-1). Though, since just the locations of the maximums 

and minimums in the images are of concern to find keypoints, multiplying the image by 

some constant does not change the locations of maxima and minima. 

As Figure 3.4 shows, a check is performed to locate maxima and minima in DoG 

images by comparing a pixel marked with X to its 26 neighbors in 3x3 regions at the 

current and adjacent scales that are designated by shaded circles. So the lowermost and 

topmost scales are not searched to detect keypoints.A few initial checks are usually 

sufficient to discard a non-maxima or non-minima position.  

 

 
Figure 3.4 Maxima and minima of the DoG images (Lowe, 2004). 
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3.2.2 Keypoint Localization  

Once pixels containing extreme values are found, they are the approximate 

maxima and minima. In this stage, the interpolated locations of the maxima or minima 

are determined to provide an improvement in matching and stability. To achive that, a 

3D quadratic function is fit around each approximate extremum by use of the Taylor 

series expansion in Equation 3.23., where D and its derivatives are evaluated at the 

keypoint and x = (x, y, σ)T is the offset from this point. Then, extreme points of this 

equation can be found by differentiating and equating it to zero. The result is the 

interpolated, or in other words, the sub-pixel locations of the keypoints. 

(࢞)ܦ = ܦ + డ

డ࢞
࢞ + ଵ

ଶ
ࢀ࢞ డ

మ
డ࢞మ

 ࢞

During the process, extremums that do not have enough contrast and that are 

close to edges are removed in order to choose useful keypoints among all. For the 

former, if the magnitude of the intensity at the minima or maxima pixel in the DoG 

image is less than a certain value, then it is rejected. When refining the points, two 

gradients both perpendicular to each other at the keypoint are computed. The image 

around the keypoint can be a flat region where both gradients are small, can be an edge 

where only one gradient is small, or can be a corner where both gradients are large. The 

Hessian matrix already mentioned in Subsection 2.2 is employed in order to detect 

corners. The Harris corner detector normally computes two eigenvalues, but the ratio of 

these two eigenvalues is calculated to increase efficiency in the SIFT algorithm.  

3.2.3 Orientation Assignment 

At this step, the gradient magnitudes and directions around each keypoint are 

collected. The size of the region for orientation collection around the keypoint is equal 

to the size of the kernel used for Gaussian blurring whose scale is 1.5 times of the scale 

of the keypoint. Then, the most prominent one or more orientations in that region are 

assigned to the keypoint. This provides rotation invariance for the keypoints. 

The magnitude and orientation are calculated for all pixels around the keypoint 

according to the Equations 3.3 and 3.4, respectively. Later, a histogram for which the 

360 degrees of orientation is broken into 36 bins each storing orientations at the range 

(3.2) 
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of 10 degrees is generated (see Figure 3.5). If the gradient direction at a certain point in 

the orientation collection region is 18.759 degrees, it goes into the 10-19 degree bin. 

The amount that is added to the bin is equal to the magnitude of gradient at that point 

blurred by a Gaussian-weighted circular window with a blur amount that is 1.5 times 

that of the scale of the keypoint. 

,ݔ)݉ (ݕ = ට൫ݔ)ܮ + 1, (ݕ − ݔ)ܮ − 1, ൯(ݕ
ଶ
+ ,ݔ)ܮ) ݕ + 1) − ,ݔ)ܮ ݕ − 1))ଶ	 

tanିଵ ቆ
,ݔ)ܮ ݕ + 1) − ,ݔ)ܮ ݕ − 1)
ݔ)ܮ + 1, (ݕ − ݔ)ܮ − 1,  ቇ(ݕ

When this computation is performed for all pixels around the keypoint, the 

histogram has a peak at some point. Also, any peak above 80% of the highest peak is 

converted into a new keypoint which has the same location and scale as the original 

keypoint, but a different orientation. Then, all peaks are assigned as the orientations to 

their associated keypoint. 

 

 

Figure 3.5 Histogram of orientations to determine peaks (Sinha, 2010). 
 

3.2.4 Keypoint Descriptor 

In this final stage, local image gradients are measured at the selected scale in the 

region around each keypoint to distinguish each keypoint from others uniquely. These 

(3.3) 

(3.4) 
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are transformed into a representation that allows for significant levels of local shape 

distortion and change in illumination. 

To compute the descriptor, first, the image gradient magnitudes and orientations 

are sampled around the keypoint location using the scale of the keypoint for selecting 

the level of Gaussian blur of the image. In order to achieve orientation invariance, the 

coordinates of the descriptor and the gradient orientations are rotated relative to the 

keypoint orientation. Figure 3.6 represents the procedure on an 8x8 set of samples used 

to generate 2x2 descriptor array, whereas in real applications 16×16 window around 

each keypoint is split into sixteen 4×4 descriptors. Within each 2x2 descriptor, gradient 

magnitudes and orientations, that are shown as the length and direction of each arrow 

respectively in the right figure, are computed and these orientations are put into an 8 bin 

histogram. For example, any gradient orientation in the range 0-44 degrees adds to the 

first bin, 45-89 adds to the next bin and so on. The amount added to the bin depends on 

the magnitude of the gradient similar to 36 bin histogram computed for orientation 

designation, but it also depends on the distance from the keypoint. Gradients that are far 

away from the keypoint add smaller values to the histogram using Gaussian weighting 

function which is indicated by the circular window in the left figure as these are most 

affected by mis-registration errors.  

 

 
Figure 3.6 A 2x2 descriptor array computed from an 8x8 set of samples (Lowe, 2004). 

 

It is important to avoid all boundary effects in which the descriptor suddenly 

changes as a sample shifts smoothly from being within one histogram to another or 
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from one orientation to another. Therefore, an interpolation is used to distribute the 

value of each gradient sample into adjacent histogram bins. In other words, each entry 

into a bin is multiplied by a weight of 1−d for each dimension, where d is the distance 

of the sample from the central value of the bin as measured in units of the histogram bin 

spacing. 

For all 16 descriptors, 4x4x8 = 128 numbers are obtained by assigning each 16 

random pixel orientations into 8 predetermined bins. To remove the effects of 

illumination change normalizing the 128 numbers by root of sum of squares, a single 

keypoint can be uniquely identified by this feature vector. Additionally, the influence of 

large gradient magnitudes is removed by thresholding the values in the unit feature 

vector to be no larger than 0.2 each, and then by renormalizing the vector to unit length. 

The descriptors can be of any type, but integer descriptors are usually known to operate 

faster in matching stage. 

3.2.5 Matching Keypoints 

Keypoints computed by the SIFT or the SURF are matched to each other 

depending on their descriptors, because those descriptors are known as unique 

representations of each keypoint. A keypoint is matched to another if and only if their 

distance to each other is the least among all other comparisons. 

The matching stage is the most promising one to improve the performance of the 

robust feature extraction in camera frames. Based on some confidence bound 

assumptions, most of the image processing can be avoided as well as alleviating the 

number of false matches. It means that only the vicinity of a keypoint can be matched to 

itself. Consequently, the matches found by these algorithms are eliminated in the 

feature matcher module if their distance to each other is greater than 15.81 pixels 

approximately. Figure 3.7 (a) and (b) show the SIFT and the SURF features extracted 

for the same 2 consecutive frames and illustrate each match of the keypoints within 

these frames with a different color after elimination of farther matches process. 
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Figure 3.7 The keypoints extracted and matched in 2 consecutive frames with (a) the 
SIFT and (b) the SURF algorithms. 

 

3.3 LANDMARK PARAMETER ESTIMATION  

Three-dimensional (3D) world parameter estimation problem of landmarks can be 

solved via stereo vision using multiple cameras. However, it turns into a challenging 

problem when just a single camera exists to succeed it. Because, the translation and 

rotation between each camera pair can be exactly known in multiple camera systems, 

and the camera frames can be obtained simultaneously. In contrast, when applying 

stereo vision to a single camera frames, the exact rotation and translation between 

frames are not known beforehand, and there exists some time drift between the retrieval 

of frames. 

Despite of those challenges, there are some studies in the literature which 

demonstrated the use of single camera for landmark parameter estimation. 

Consequently, the parameters or coordinates of the landmarks in the environment, that 

(a) 

(b) 
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are the 3D projections of the 2D locations belonging to the matched robust features in 

the camera frames, were considered to be estimated by employing the calibration and 

3D projection tools of OpenCV library. In order to solve this problem, the steps 

explained in the following subsections should be executed in sequence. 

3.3.1 Camera Calibration 

Camera calibration involves determination of some intrinsic parameters of a 

camera so that distortions in the camera images can be corrected, or camera 

measurements in the unit of pixels can be related to the real measurements with 

physical units in 3D world. The intrinsic parameters are defined by the model of the 

camera’s geometry and the distortion model of the lens (Bradski and Kaehler, 2008a).  

Figure 3.8 illustrates projection of points in 3D world onto image plane by 

modifying the pinhole camera model slightly, which aids the understanding of the 

model of the camera geometry. In the figure, the focal length, f is the distance from the 

center of projection (the pinhole aperture) to the image screen, and the principal point is 

where the optical axis intersects the image plane. A point Q(X, Y, Z) in world is 

projected onto image plane at q(x, y, f) by the ray passing through the center of 

projection. Then, using the similar triangles relationship, this projection can be defined 

by Equation 3.5, where cx and cy define the possible displacement of the center of the 

coordinates of the image screen away from the optical axis, and fx and fy are the product 

of the physical focal length f of the lens in mm and the sizes sx and sy of the imager 

elements in pixels per mm, respectively. The parameters cx and cy are resulted from 

imperfect alignment of the principal point and the center of the imager, and fx and fy are 

defined because each individual pixel is a rectangle rather than a square on low-cost 

imagers. By arranging those parameters into a 3x3 matrix M, and by determining the 

image points, q, as homogeneous coordinates after appending the scaling factor w, a 

practical projection of 3D points, Q, can be obtained as in Equation 3.6. 

ݔ = ௫݂ ቀ


ቁ + ܿ௫, ݕ = ௬݂ ቀ
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Figure 3.8 Point projection onto the image plane (Bradski and Kaehler, 2008a). 

 

In addition to these, radial and tangential distortions of camera usually require the 

determination of 4 distortion parameters. Radial distortions arise as a result of shape of 

the lens when rays farther from the center of the lens are bent more than those closer. It 

can generally be characterized by the first two terms of Taylor series expansion around 

r = 0 that are called k1 and k2. Then the corrected x and y positions in the image are 

given as in Equation 3.7 and Equation 3.8. Tangential distortions arise from the 

assembly process of the camera as a whole since the lens could not be made exactly 

parallel to the imaging plane. Two additional parameters p1 and p2 can characterize the 

tangential distortions as indicated in Equation 3.9 and Equation 3.10. 

ݔ		 = 1)ݔ + ݇ଵݎଶ + ݇ଶݎସ) 

ݕ		 = 1)ݕ + ݇ଵݎଶ + ݇ଶݎସ) 

ݔ = ݔ + ݕଵ2] + ଶݎ)ଶ +  [(ଶݔ2

ݕ		 = ݕ + ଶݎ)ଵ] + (ଶݕ2 +  [ݔଶ2

OpenCV calibration routine can be used in order to determine the camera matrix 

M and the distortion parameters. To run this routine the camera is targeted on a known 

structure like a chessboard that has many identifiable points. The chessboard whose 

relative distance to camera is 35 cm is rotated and translated across the camera without 

changing the distance as much as possible. Hence, multiple views are provided as 

(3.7) 

(3.10) 

(3.8) 

(3.9) 
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shown in Figure 3.9. These views are later used to compute the relative location and 

orientation of the camera at the time of each view that are known as extrinsics of the 

camera as well as to compute the intrinsic parameters of the camera.  

 

 
Figure 3.9 Different views of calibration object. 

 

To determine the coordinates of chessboard corners at imager plane, first of all 

the chessboard images are filtered using the adaptive threshold that is set on a pixel-by-

pixel basis by computing the weighted average of the b-by-b region around each pixel 

minus a constant. According to the structure of interior corners on the chessboard, the 

corner points are determined. To calibrate the camera of Robotino, a chessboard having 

6x4 interior corners is used. Then to increase the location accuracy of the corners, their 

subpixel locations are estimated. Figure 3.10 is one view of calibration object on which 

the corner locations at subpixel accuracy are drawn. Points in each row are in different 

color, and they are connected by lines representing the identified corner order. 

Later, the 3D physical coordinates which belong to the interior corners of the 

chessboard are located in the coordinate frame attached to the object. For the sake of 

simplicity, z coordinate of those points are given 0 since the calibration object is planar, 

and their x and y coordinates are given as integers starting from (0, 0) up to (0, 5) for 

the first row, and starting from (3, 0) to (3, 5) for the last row of the chessboard. 
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However, this means that the camera world, object and camera coordinate units are in 

mm/39, because the chessboard has squares of 39 mm at each side. 

 

 
Figure 3.10 Corner locations on a chessboard view. 

 

Thus, to shift from a coordinate system centered on an object to one centered at 

camera, the object coordinate system is translated by the physical translation T and is 

rotated by the physical rotation R. For each view of the planar calibration object, a 

homography matrix H that can relate points (Q) on the source image plane to the points 

(q) on the imager is computed as in Equation 3.11. The matrix H contains both the 

transformations R and T, and the camera matrix M. Consequently, multiple 

homographies from multiple views in which the chessboard movement is 

distinguishable enough can be used to solve for the camera matrix robustly. 

ݍ = ܪ	݁ݎℎ݁ݓ,ܳܪ =  [ܶ	ܴ]ܯ

OpenCV calibration algorithm solves for 6 extrinsic parameters belonging to 

chessboard transformations relative to camera for each view together with the intrinsics 

of the camera. So, if N is the number of views, in total 6N+8 parameters are solved. 

Since trying to solve for all parameters at once may lead to inaccurate or divergent 

results, those parameters are solved by holding some of them fixed and solving for the 

others and later by holding the other parameters fixed and solving for the original a 

number of times in a sequence. For example, the camera matrix is initially solved by 

assuming that there is no distortion in the image points obtained. Later, the distortion 

(3.11) 
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parameters are solved by incorporating the distortion equations into process, and the 

camera matrix and the extrinsics are re-estimated accordingly. For the calibration 

process, the parameter estimator module does not provide any initial guess on the 

parameter space, though it is possible to ease this computation. 

In order to call the calibration routine of OpenCV from MATLAB for the camera 

frames of Robotino, first of all the camera frames retrieved from Robotino are stored as 

.mat file. Secondly, some RGB views of the calibration object that differ from each 

other distinguishably are gathered in a 4D data structure. Thirdly, a wrapper that can 

convert 4D image sequence of MATLAB to an array of IplImage that is the image 

storage object of OpenCV is written. Then, the calibration algorithm is modified so that 

it can handle this new array of images properly. Finally, the mex version of the C++ 

calibration algorithm is generated by compiling the files to a format callable by 

MATLAB after MATLAB R2011b is integrated to the compiler of Visual Studio 2010, 

and proper links are given in mexopts.bat file of MATLAB to OpenCV libraries. In 

addition to the intrinsics and the extrinsics of the camera, the output of the algorithm is 

how successfully the 3D points of chessboard can be reprojected to image points using 

the intrinsics and the extrinsics computed. 

3.3.2 Projection to 3D Coordinates 

The camera matrix allows us to transform from 3D coordinates to 2D coordinates 

of the image. However, a line in 3D world corresponds to a point in the image for the 

reverse operation. So, there is no reliable way to extract 3D information without using 

multiple images.  

One way to extract 3D information is stereo vision in which features in two or 

more images taken at the same time from separate cameras are matched with the 

corresponding features in the other images, and the pixel differences of the matched 

features are analyzed to extract depth information. Another way is SFM in which 

multiple images are taken at different times and different places by only a single 

camera, and features in those images are matched to compute a matrix called the 

fundamental matrix in order to relate two different views together and thus to 

understand the scene. 
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If the case of having two cameras that are horizontally mounted is analyzed to 

have an intuition on the problem, stereo imaging involves four steps: Undistortion, 

rectification, correspondence, and triangulation. Undistortion is mathematically 

removing the radial and tangential lens distortions in the images. Rectification means 

making two images coplanar, in other words row-aligned, according to the rotation and 

translation between the cameras. Correspondence is finding the same features in the left 

and the right images so that disparities in the x-coordinates of the features can be 

computed. Infact this step is already achieved by the SIFT or the SURF algorithms for a 

subset of pixels. Finally, triangulation enables the extraction of depth to the 

corresponding features based on the geometric arrangement between the cameras. 

Figure 3.11 depicts how depth of a point in real world coordinates can be extracted 

using the similar triangles relationship. In the figure, it is assumed that the left and the 

right images are row-aligned so that every pixel row of the left camera aligns exacty 

with the corresponding row in the right camera. If a point P in physical world can be 

found in the left and the right image planes in coordinates xl and xr, respectively, the 

depth of this point Z can be found according to the Equation 3.12. This formula proves 

that the depth Z is inversely proportional to the disparity d between the coordinates xl 

and xr. 

ܼ =
݂ܶ
݀  

For the case of having a single camera that is mounted at a mobile robot, in order 

to satisfy such a configuration using just the frames of the camera, first of all the 

environment must be static. While the robot moves from one place to another the 

coordinates of the points in real world should not change. Second, the robot should 

navigate mostly tangentially rather than perpendicularly to the environment so that 

some amount of disparity can be measured for the matched points to estimate their 

depths (Davison et al., 2007). Though, this is not a very natural way to move the robot 

in the environment. Consequently, this problem is considered as out of scope of this 

thesis. 

(3.12) 
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Figure 3.11 Triangulation process for row-aligned stereo images (Bradski and Kaehler, 
2008a). 

 

3.4 EKF AND MAP BUILDING  

When landmark parameter estimation process is accomplished, the SLAM 

process can be considered as three steps: Updating the current state estimate using the 

odometry data, updating the estimated state by re-observing landmarks, and adding new 

landmarks to the current state. Some details on EKF matrices and all of these steps 

managed by the EKF system are explained according to (Riisgaard and Blas, 2005; 

Newman, 2003) through the subsections 3.4.1 and 3.4.2. 

3.4.1 EKF Matrices 

Even though there are different notions for the same matrices of EKF in various 

papers, the notions that are most commonly used are explained in the following 

paragraphs. 

The system state matrix, X, in Figure 3.12 (a) contains the x and y positions, and 

the rotation θ of the robot. It also contains the x and y positions of each landmark. In 
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order for all equations to work properly it has to be a vertical matrix whose size is 1 

column wide and 3+2*n rows high, where n is the number of landmarks.  

The covariance matrix, P, contains the covariance on the robot position, the 

covariance on each landmark, the covariance between the robot position and the 

landmarks, and finally, the covariance between the landmarks. The covariance of two 

variables is a measure of how strongly correlated they are. Figure 3.12 (b) shows the 

content of the covariance matrix P. The covariance matrix is built up very 

systematically.The first cell, A, contains the covariance on the robot position. It is a 3x3 

matrix for x, y and θ of the robot. B and C matrices of 2x2 for x and y positions of the 

landmark are the covariance on the first landmark and covariance on the last landmark, 

respectively. The cell D contains the covariance between the first landmark and the 

robot state. On the other hand, the cell E contains the covariance between the robot state 

and the first landmark. The matrix E can be deduced by transposing the sub-matrix D. 

Similarly, F contains the covariance between the last landmark and the first landmark, 

while G contains the covariance between the first landmark and the last landmark. 

Initially, as the robot has not seen any landmarks, the covariance matrix P only includes 

the matrix A. In order to incorporate the uncertainty in the initial position, P is formed 

using proper default values for the diagonal, even though the initial robot position is 

exact. Otherwise, errors may occur in some of the calculations through the process.  

The Kalman gain, K, is computed to determine how reliable the observed 

landmarks are, and how much of the new knowledge they provide should be reflected 

onto the process. For example, if the robot should be moved 10 cm to the right 

according to the landmarks, the resulting movement computed through Kalman gain 

may only be 5 cm. Because, when the landmark measurement is more unreliable 

compared to the odometry of the robot, its Kalman gain is given low, and thus a 

compromise between the odometry and the landmark correction is found. The matrix K 

is illustrated in Figure 3.12 (c). The first row shows how much the x position of the 

robot should gain from the difference between the expected and the actual observations 

regarding the landmarks. The remaining rows similarly indicate the gains for the other 

robot parameters and each landmark positions. The first and second columns describe 

the gains in terms of the range and the bearing respectively.  
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Figure 3.12 Matrices (a) X (b) P (c) K, and (d) JH used in EKF (Riisgaard and Blas, 

2005). 
 

To compute an expected range and bearing of the measured landmark positions, 

the measurement model denoted as h in Equation 3.13 is used, where λx and λy are the x 

and y positions of the landmark, respectively.  

ℎ = ቂ
݁݃݊ܽݎ
ቃ݃݊݅ݎܾܽ݁ = ൦

ට(ߣ௫ − ଶ(ݔ + ൫ߣ௬ − ൯ݕ
ଶ
+ ݒ

tanିଵ ቀഊషഊೣషೣ
ቁ − ߠ + ఏݒ
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The Jacobian of the measurement model, JH, indicates how much the range and 

bearing to the landmarks change as x, y and θ of robot position changes. The contents 

of the usual JH for regular EKF state estimation is given by Equation 3.14. The first row 

is the change in range, whereas the second row is the change in bearing depending on 

robot parameters x, y and θ. For instance the third column in the first row is zero since 

the range does not change as the robot rotates. During SLAM, some additional values 

for the landmarks are needed in this matrix. Figure 3.12 (d) shows the matrix JH for the 

second landmark whose first 3 columns are the regular JH and each added two columns 

belong to the landmarks. The X2 column of the second landmark is set to –A and –D, 

the Y2 column is set to –B and –E and the columns for the rest of the landmarks are set 

to 0.  

(3.13) 
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The prediction model defines how to compute an expected position of the robot 

based on the old position and the control input as in Equation 3.15, where Δx, Δy, and 

Δθ are the controls obtained from the drivers of Robotino via Odometry_construct in 

MATLAB API and q is the error term. Figure 3.13 illustrates how these controls are 

generated in the reference frame of the robot. Then the Jacobian of the prediction 

model, JF, used for robot position prediction can be defined as in Equation 3.16. 

ܨ = 
ݔ + ݔ∆ cosߠ − ݕ∆ sin ߠ + ݍ
ݕ + ݔ∆ sin ߠ + ݕ∆ cosߠ + ݍ

ߠ + ߠ∆ + ݍ
൩ 

 

 
Figure 3.13 Odometry controls generated in the reference frame of robot. 

 

ிܬ = 
1 0 ݔ∆− sin ߠ − ݕ∆ cos ߠ
0 1 ݔ∆ cosߠ − ݕ∆ sin ߠ
0 0 1

൩ 

The prediction of model of landmark positions when a new feature is being added 

to the state matrix X is given by the Equation 3.17 where r and b are the measured 

range and bearing of the landmark positions. The SLAM specific Jacobians, Jxr and Jz, 

are also for integration of new features and computed based on the Equation 3.17. The 

Jacobian of Equation 3.17 with respect to the robot position (x, y, θ), Jxr, is given in 

(3.14) 

(3.15) 

(3.16) 
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Equation 3.18. The Jacobian of the Equation 3.17 with respect to the range and the 

bearing, Jz, is as in Equation 3.19. 


௫ߣ
௬ߣ
൨ = ݔ + ݎ cos(ߠ + ܾ)

ݕ + ݎ sin(ߠ + ܾ)൨ 

J୶୰ = 1 0 ݎ− sin(ߠ + ܾ)
0 1 ݎ cos(ߠ + ܾ) ൨ 

J = cos
ߠ) + ܾ) ݎ− sin(ߠ + ܾ)

sin(ߠ + ܾ) ݎ cos(ߠ + ܾ) ൨ 

The process noise, Q, is a Gaussian noise proportional to the controls, Δx, Δy, and 

Δθ. If W is a vector storing the controls, then Q matrix of 3x3 can be computed as in 

Equation 3.20 by multiplying some Gaussian sample C with W and WT. C is a 

representation of how exact the robot odometry is, which can be set according to the 

results of experiments on the robot odometry performance. However, the matrix of Q is 

not defined as being proportional to the controls in EKF module, since no direct 

relationship is observed between the controls and the odometry uncertainties (see 

Subsection 3.4.2.1). The matrix Q adopted in the EKF process of the system is defined 

as in Equation 3.21. 

Q = W. C.W 

ܳ = ൦

2(0.01)ଶ 0 0
0 2(0.01)ଶ 0

0 0 2 ቀଵ.ହగ
ଵ଼

ቁ
ଶ
൪	 

The measurement noise matrix, R, is a Gaussian noise proportional to the range 

and the bearing for the range measurement device. The exact measurement noise is 

calculated by VRVT, where V is a 2 by 2 identity matrix and R is a 2 by 2 matrix with 

the range, r, and the bearing, b, multiplied by some constants c and d, respectively, in 

the diagonal. The constants represent the accuracy of the measurement device. For 

example, if the range error has 1 cm variance, c should be a Gaussian with variance 

0.01, or if the bearing error is always 1 degree, bd should be replaced with 1. The 

bearing error should not be proportional to the size of the angle since this does not make 

sense.  

(3.18) 

(3.19) 

(3.20) 

(3.17) 

(3.21) 
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3.4.2 EKF Steps 

The first step in EKF is the addition of the robot controls to the old state estimate. 

For example, if the robot is at point (x, y) with rotation θ, and the translational and 

rotational controls are (dx, dy, dθ), then the result of the first step is the new state of the 

robot (x+dx, y+dy, θ+dθ). In the second step, using the estimate of the current robot 

position, it is possible to predict where the observed landmarks should be. Based on 

what the robot measures, the difference between the estimated robot position and the 

actual robot position is called the innovation. The uncertainty of each observed 

landmark is updated according to the innovation. At this point, if the uncertainty of the 

current landmark position is very low, re-observing a landmark from current position 

with low uncertainty increases the landmark certainty. In the third step, new landmarks 

are added to the state, in other words to the robot map of the world. This is achieved by 

incorporating the information on the current position of robot and the correlations of 

new and old landmarks. Thus, the SLAM process is realized by repeating these three 

steps consecutively. 

3.4.2.1 State Update of Odometry 

In this prediction step, the current state is updated using the odometry data as in 

Equation 3.15. Thus, the first three spaces of the matrices X and the Jacobian of 

prediction model JF are updated accordingly. Finally, the covariance for robot position 

reserved at the upper left 3x3 segment of the covariance matrix P (Prr) and the robot to 

feature cross correlations (Pri) are refreshed according to the Equation 3.22 and 

Equation 3.23. 

P୰୰ = J. P୰୰. J + Q 

P୰୧ = J . P୰୧ 

3.4.2.2 State Update of Re-observed Landmarks 

The estimate for the robot position is not completely exact due to the odometry 

errors of the robot. To compensate for these errors, the displacement of the robot can be 

calculated using the associated landmarks compared to what the predicted robot 

position is. Later, the robot position is updated accordingly. 

(3.22) 

(3.23) 
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This step is run only for each re-observed landmark but not for the new 

landmarks. Hence, the computation cost is reduced. Landmark range and bearing 

denoted as h, and the Jacobian JH for the current landmark are computed according to 

the Equation 3.13 and Equation 3.14 respectively, as mentioned above. Then, the 

computed range and bearing can be compared to the range and bearing for the landmark 

obtained from the data association, which is denoted as z. Additionally, the 

measurement noise matrix R is updated to reflect the range and bearing in the current 

measurements and the Kalman gain is computed using the following formula in 

Equation 3.24.  

K = P. Jୌ(Jୌ. P. Jୌ + V.R. V)ିଵ 

Then, the Kalman indicates how much each of the landmark positions and the 

robot position should be updated according to the re-observed landmark. The term 

(HPH + VRV) is called the innovation covariance, S, that can be also used in the data 

association step when deciding the validity of the landmarks. Finally, the new state 

vector X and the covariance matrix P are computed using the Kalman gain as in 

Equation 3.25 and Equation 3.26. In consequence of repetition of this process for each 

matched landmark, the robot position along with all the landmark positions is updated. 

X = X + K	(z − h) 

ܲ = ܲ −  ்ܭܵܭ

3.4.2.3 Adding New Landmarks 

This final step updates the state vector X and the covariance matrix P with new 

landmarks that can be matched through the process. A new landmark is added to the 

state vector X as in Equation 3.27. 

X = [X	x	y] 

In addition to this, two new rows and two new columns to the covariance matrix P 

are added for the new landmark which is represented with the shaded area in Figure 

3.14. Firstly, the covariance for the new landmark is added in the cell C according to 

Equation 3.28, where PN+1N+1 stands for the covariance of the N+1th landmark. 

(3.25) 

(3.27) 

(3.24) 

(3.26) 
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Secondly, the robot-landmark covariance for the new landmark is added according to 

the Equation 3.29, which corresponds to the upper right corner of the covariance matrix. 

The landmark–robot covariance is the transposed value of the robot–landmark 

covariance corresponding to the lower left corner of P. Finally, the landmark–landmark 

covariance is added to the remaining section of the lowest row depending on Equation 

3.30, whose transpose is similarly registered to the remaining of the rightmost column. 

Pାଵ	ାଵ = J୶୰ . P. J୶୰ + J. R. J 

P୰	ାଵ = P୰୰. J୶୰  

Pା୪ = J୶୰(P୰୧) 

 

 
Figure 3.14 Rows and columns appended to matrix P for a new landmark (Riisgaard 

and Blas, 2005). 

 

3.5 MATLAB INTERFACE 

Demostration of the system is achieved through an interface designed in 

MATLAB. A screenshot of the interface so-called VBAN is shown in Figure 3.15. 

VBAN is mainly composed of four sections: Robotino Control, Environment Map, 

Extracted Features, and Info Box.  

The section of Robotino Control is to arrange the velocities and the path to be 

used during navigation. Also, at what frequency frames are to be grabbed and which 

type of algorithm is to be applied on these frames can be determined through this 

section. Two buttons, Start and Stop, are to initiate and to terminate the navigation of 

the robot, respectively. The Extracted Features section displays the robust features 

(3.30) 

(3.29) 

(3.28) 
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detected and matched in the two recent camera frames of the Robotino. Environment 

Map represents the estimated robot location in the environment and the uncertainty in 

localization of the robot during navigation. Whenever the navigation terminates, the 

real and the estimated trajectories of the robot are drawn in this map. Finally, the 

section of Info Box informs the user about the localization of the robot, the system 

functioning, the path execution of the robot, or the error between the real and the 

estimated positions of the robot at the final localization. 

 

 
Figure 3.15 Matlab interface of the system so-called VBAN. 

 

3.6 SYSTEM CONTROL AND NAVIGATION 

The Controller module of the system is initiated immediately after the user 

presses the Start button of the interface. If a circular path is chosen for Robotino to 

follow, then controller enabling circular movement of the robot is called. Otherwise, 

controller executing the path fragments provided through the interface is employed.  

During navigation of the robot, planar and angular velocities are kept constant for 

simplicity when path fragments input are being executed. Yet, varying velocities are set 
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along the x and y axes of the robot when a circular path is being tracked. If the 

Robotino is to be navigated by some amount along an axis, the odometry of the robot is 

used to check whether the robot has moved by the desired amount and to terminate the 

movement.  

As the proper velocities for related path are generated, Controller module tries to 

grab frames at the frame frequency specified by the user. At the same time the frames 

were grabbed, the odometry of the Robotino is tried to be sampled. Because, the 

measurements obtained from the camera and the odometry data should be synchronized 

as much as possible in order to be related in the EKF system. Then, again according to 

the choice of the user the SIFT or the SURF features are extracted from the camera 

frames, and they are related to the previous features extracted. Subsequently, the EKF 

system is run depending on the odometry and the landmark parameter measurements 

that can be estimated based on the explanations in Subsection 3.3.2. During the EKF 

routine, the localization results of the robot are displayed on the interface.  

The computer code of the Controller module managing the other modules through 

function calls in order both to run the Robotino and to realize the system is given in 

Appendix C. For circular paths, the controlCircular function, and for user specified 

paths, controlRectangular function is called, respectively. 
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CHAPTER 4 
 
 

       EXPERIMENTS AND RESULTS 
 
 

 

4.1 EXPERIMENTAL PLATFORMS  

The designed system is considered to be run on a robotic platform to measure its 

performance in a real world environment. Two educational robots available to 

implement the system were E-puck by GCtronics and Robotino by Festo which are 

shown in Figure 1.1 (a) and (b). Appendix B and Apendix A give some information on 

the hardware specification of E-puck and Robotino, respectively. 

Subsection 4.1.1 explains why E-puck could not be employed for this system 

along with emphasizing some constraining details of its camera module, and Subsection 

4.1.2 clarifies how the system is adapted to Robotino and presents the results of various 

experiments performed on Robotino’s actuators and sensors. 

 

 
Figure 4.1 Educational robots (a) E-puck (b) Robotino. 
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4.1.1 E-Puck 

The version of E-puck available had a 16-bit digital signal controller (DSC) 

running at 30 Hz, 8kB of RAM, and 144 kB flash in order to store programs. 

Downloading the E-puck libraries of bluetooth, ADC, camera, codec, motor_led, 

UART, FFT, I2C from its svn and integrating them to the project properly, E-puck 

could be programmed in C language using MPLAB integrated development 

environment. MPLAB compiled those C programs and generated files with the 

extension .hex which could directly be transferred to E-puck by a robot simulator 

program Webot via bluethooth. 

Evidently, the capacity of E-puck was insufficient to realize the designed system. 

Due to similar problems, transfer of images recieved from its camera module to a 

computer was also too slow to implement the main system on the computer. 

4.1.1.1 Camera Module 

Having a 640x480 resolution for height and width of the images and 2 bytes of 

storage for each pixel in RGB mode, E-puck even can not store one single image of its 

camera. If the only task the robot performs is to grab camera frames, for instance, in 

40x40 sub-sampled RGB and gray scale modes, it can recieve 4 fps and 8 fps, 

respectively. Figure 4.2 demonstrates the quality of the images that could be retrieved 

from the camera of E-puck. It is clear that the images are distorted too much to be 

reliably used in a vision based application.  

 

 
Figure 4.2 320x240 images retrieved from E-puck camera module. 
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4.1.2 Robotino 

As a more enhanced educational platform, Robotino enabled realization of the 

system designed. The Robotino has an embedded PC working at 500 MHz. The PC runs 

Linux operating system, and it works in coordination with a microcontroller that is 

responsible of sensor readings and actuator operations. 

Though, again the Robotino itself is not sufficient to develop high-level 

applications other than the ones requiring basic control of the robot. However, via W-

LAN provided by the Robotino and through the services it provides, it is possible to 

transfer images or sensor values of the Robotino to an external computer, and to control 

the robot from this computer in an advanced manner.  

The system ran on a 3 GHz desktop computer and communicated with the 

Robotino depending on Robotino MATLAB API via a 300 Mbps W-LAN adapter. The 

experimental setup mainly involved the navigation of the Robotino along a looping path 

which may be determined according to the choice of the users to enable the robot to 

return to its initial position approximately and to re-observe the landmarks in the 

environment. The degree of freedom (DoF) available to the Robotino via its 

omnidirectional wheels is shown in Figure 4.3. For a sample rectangular path the 

Robotino may follow, the order of controls with respect to the axes defined is given in 

Table 4.1. 

 

Table 4.1 Controls generating a sample rectangular path for Robotino. 

Movement Amount 

Along x 2010 mm 

About z 90° 

Along x 1210 mm 

About z 90° 

Along x 2010 mm 

About z 90° 

Along x 1210 mm 

About z 90° 
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Figure 4.3 Degree of freedom of Robotino. 

 

4.1.2.1 Data Acquisition 

The camera frames and the odometry values are the most frequently acquired data 

from the Robotino for the system.  The frames grabbed are transferred as 320x240x3 

pixels in RGB mode and are in good quality to be processed reliably. When the robot 

does not have any other task to do, Table 4.2 gives the results of a number of 

experiments on how many frames can be grabbed per second (ps) from robot to the 

desktop computer, and Table 4.3 similarly indicates at what frequency the odometry 

information of robot can be queried. 

 

Table 4.2 Frequencies of frame retrieval. 

Experiment 1 2 3 4 5 6 7 8 9 10 

Frame ps 29 27 26 29 29 28 30 30 28 29 
 

Table 4.3 Frequencies of odometry retrieval. 

Experiment 1 2 3 4 5 6 7 8 9 10 

Odometry ps 3483 3482 3239 3274 3318 3303 3481 3479 3277 3460 
 

The results of experiments indicate that there are no consistent frequencies of 

frame and odometry retrieval. This is mostly because whenever the data request occurs, 

some underlying protocols are executed to transfer data via W-LAN from robot to PC, 
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and some conditions are needed to be satisfied depending on the requested data type to 

make the data ready for transfer. Due to unpredictable operations of the protocols and 

data preparation phase, the same type of data retrievals may last in varying durations. 

However, the results of the experiments prove that in a second 5 frames can be grabbed, 

and the odometry of robot can be queried 3000 times safely under normal conditions. 

4.1.2.2 Odometry Accuracy 

The odometry performance measure is how well the robot can estimate its own 

position from the rotation of the wheels. Determination of the odometer accuracy is 

important because proper noise values should be integrated with the matrices for the 

computation of uncertain robot positions in EKF system. To measure the odometry 

accuracy of the Robotino, a number of experiments were conducted in which robot was 

moved at constant planar or angular velocities along various distances or angles, and 

how much the odometry differed from the real pose of the robot was estimated by 

considering the initial position of the robot as (x=0, y=0, θ=0). Now that the default 

planar and angular velocities for the system are given as 15 cm/s and 10 deg/s 

respectively, those velocities were used during the experiments.  

The measurements obtained from the odometer of the robot are as in Table 4.4. 

They indicate that even though the robot is commanded to move along or rotate about 

an axis by some amount, it may end up with some different pose other than what is 

estimated. This behavior mostly stems from configuration of the wheels of the Robotino 

as well as some random factors that may affect the navigation process. Three wheels of 

the Robotino are placed on its steel frame by having 120º between each. During the 

experiments, this configuration led to a slight slippage on other axes when the robot 

was rotating, yet a great change occurred in x coordinate or θ when the robot was 

moving along y axis. 

However, those slippages were also recorded by the odometry of the robot that 

was accurate to the extent computed in Table 4.5. Differences between the real pose and 

the odometry presented no distinguishable positive correlation with respect to the 

distance covered by the robot. Consequently, two similar approaches were taken into 

consideration to find an approximate uncertainty for each axis of the robot. The first 
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approach only considered the errors in the direction of motion, and the second approach 

averaged the errors in all measurements.  

 

Table 4.4 Odometry accuracy experiments. 

Experiment Odometer 
x (mm) 

Odometer 
y (mm) 

Odometer 
θ (deg) 

Real x 
(mm) 

Real y 
(mm) 

Real θ 
(deg) 

1000 mm 
on x 1000.3 -22.13 -2.93 1010 21 -2 

-1000 mm 
on x -1004.5 5.17 -1.13 -1033 -2 1.5 

2000 mm 
on x 2004.3 101.59 5.23 1988 127 7 

-2000 mm 
on x -2004.5 -47.88 2.19 -2024 -103 0.9 

3000 mm 
on x 3003.6 74.31 3.01 3006 146 6 

-3000 mm 
on x -3001.7 338.48 -13.5 -2959 388.5 -12 

1000 mm 
on y 142.54 1004.9 -15.82 140 1010 -19.5 

-1000 mm 
on y 118.19 -1003 13.92 149.5 -1026 18.5 

2000 mm 
on y 588.59 2000.3 -32.67 573 2027.5 -31 

-2000 mm 
on y 493.32 -2003.1 28.61 543 -2018 33 

3000 mm 
on y 1556.2 3001.3 -54.45 1529 3045 -56 

-3000 mm 
on y 1321.3 -3000.3 47.80 1365 -3019 50 

45° turn 
 2.84 -0.31 45.21 0 0 45 

-45° turn 
 -3.12 0.57 -45.18 0 0 -45 

90° turn 
 3.56 -0.89 90.08 0 0 92 

-90° turn 
 -4.43 0.30 -90.13 0 -0.6 -93 

180° turn 
 1.21 4.55 180.08 1 5 184 

-180° turn 
 -6.07 2.20 -180.10 -2 2 -182,5 
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By convention, a robot should not have an error of more than 2 cm per meter of 

movement and 2º per 45º of turn (Riisgaard and Blas, 2005). Even though, the findings 

on odometry uncertainties of the Robotino were not computed according to the specific 

cases of per meter of movement and 45º of turn, the computed uncertainties were close 

to the indicated uncertainties in either approach of uncertainty estimation. 

 

Table 4.5 Odometry uncertainties. 

Axis Uncertainty (Direction of motion) Uncertainty (Batch) 

x  1.97 cm 2.62 cm 

y  2.21 cm 2.04 cm 

θ  1.92º 2.25º 

 

4.2 FEATURE EXTRACTION AND MATCHING 

4.2.1 Evaluation of the SIFT Algorithm 

The number of SIFT features extracted can be kept under control and enhanced by 

arranging some thresholds related to extreme points detection and keypoint localization 

steps. Infact, both of the thresholds are to guarantee that the value of an extreme point 

in DoG images is greater than a specified parameter so that more contrasting extreme 

points can be selected. Figure 4.4 (a) and (b) exhibit the extracted and the matched 

SIFT features before and after the threshold update, respectively. As the values of the 

thresholds increased more contrasted points were obtained, but the number of points 

extracted were decreased. 

The default values for those thresholds were 0.0053 and 0.0067 for Vedaldi’s 

SIFT. Both of the thresholds were changed to 0.01 for this implementation. Table 4.6 

through Table 4.9 indicate the performances of the SIFT algorithm and keypoint 

descriptor matching stages with respect to the number of points extracted after the 

threshold update. The tests were conducted on 6 consequent frames retrieved at about 5 

Hz and 0.5 Hz, when the robot was moving on the x axis with the default velocity of 

150 mm/s.  
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Figure 4.4 Extracted and matched SIFT features (a) before and (b) after threshold 

update. 
 

True positive (TP) and false positive (FP) matches were also computed for all 

matches in each consequent frame pairs. However, the experiments measured the 

matching accuracy of points in independent frame pairs for simplicity, rather than along 

a frame sequence which is more important to us to prove repetitiveness of the 

keypoints. Again, each matching result in the tables may give an intuition on how many 

of the keypoints detected in the current frame could be found in the next frames. 

 

Table 4.6 Performance of the SIFT algorithm on frames at 5 Hz. 

Frame # Point # SIFT Computation Time 

1 112 1.73032 

2 117 1.9116 

3 127 1.9021 

4 110 1.8755 

5 109 1.8938 

6 109 1.9009 
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Table 4.7 Performance of the SIFT descriptor matching stage on frames at 5 Hz. 

Frames Point # Matching Time TP FP 

1-2 85 0.033 84 1 

2-3 100 0.011 95 5 

3-4 91 0.008 87 4 

4-5 80 0.007 78 2 

5-6 86 0.007 85 1 
 

Table 4.8 Performance of the SIFT algorithm on frames at 0.5 Hz. 

Frame # Point # SIFT Computation Time 

1 112 1.8375 

11 92 1.8030 

21 81 1.7532 

31 75 1.7394 

41 68 1.7351 

51 85 1.7671 
 

Table 4.9 Performance of the SIFT descriptor matching stage on frames at 0.5 Hz. 

Frames Point # Matching Time TP FP 

1-11 58 0.006 57 1 

11-21 41 0.004 39 2 

21-31 55 0.003 53 2 

31-41 42 0.003 41 1 

41-51 34 0.003 32 2 
 

The results demonstrate that even when the frames were grabbed at 0.5 Hz, which 

means that just one frame is retrieved in 2 seconds; matches of keypoints were reliable 

enough. Consequently, since the robot was moving perpendicular to the environment 

during the experiments, the scale invariance of the algorithm was tested and guaranteed. 
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4.2.2 Evaluation of the SURF Algorithm 

Similarly, another experiment in which the frames were grabbed at 0.5 Hz was 

performed with the SURF algorithm to enable a comparison with the SIFT. Table 4.10 

shows the computation time of the algorithm for the given number of points and Table 

4.11 indicates the reliability and efficiency of the matching stage.  

As the values in the tables point out, the matching accuracy of the SIFT and the 

SURF algorithms was nearly the same, when the scale invariance of the algorithms 

mattered most. On the other hand, the SURF was about 40 times faster than the SIFT in 

computing the same number of keypoints. So, the SURF algorithm only enables the 

realization of the system in real-time. 

 

Table 4.10 Performance of the SURF algorithm on frames at 0.5 Hz. 

Frame # Point # SURF Computation Time 

1 120 0.0517 

11 103 0.0378 

21 91 0.0394 

31 83 0.0375 

41 88 0.0396 

51 79 0.0386 
 

Table 4.11 Performance of the SURF descriptor matching stage on frames at 0.5 Hz. 

Frames Point # Matching Time TP FP 

1-11 52 0.004 50 2 

11-21 50 0.001 48 2 

21-31 55 0.001 51 4 

31-41 49 0.001 46 3 

41-51 45 0.001 43 2 
 



77 
 

 

In addition to these, the number of TP or FP matches given in the tables are 

purely the matching results of the SIFT or the SURF algorithms. Though, when the 

matches in which the points are farther than about 15.8 pixels to each other were 

eliminated, the accuracy of the algorithms was improved further so that nearly no FP 

matches existed.  

 

4.3 CALIBRATION AND PROJECTION TO 3D 

For camera calibration, six experiments were conducted on four different frame 

sequences that had been stored as .mat file in MATLAB to measure the effects of some 

factors on the computed camera parameters. Frames were chosen from these sequences 

depending on the total number of images used for calibration by skipping as much 

frames as possible between two consecutive images. Thus, view point variation was 

maximized among the images. The factors whose effects were investigated involved the 

image count, the size of the squares on calibration object, or whether the ratio of fx/fy 

was fixed or not.  

Table 4.12 gives the average reprojection errors computed after the 3D corner 

points of the calibration object in the world were reprojected to their image coordinates 

by using the estimated camera matrix and distortion parameters in Table 4.13 and Table 

4.14, respectively. Thus, Table 4.12 indicates how successful each calibration 

experiment was. 

 

Table 4.12 Average reprojection errors of the calibration routines. 

Experiment 
Number 

Square 
Size Flags Image 

Count 
Average  

Reprojection Error 
1 1 none 20 0.1603 
2 1 none 60 0.1647 
3 1 none 80 0.1667 
4 39 mm none 100 0.1651 
5 1 none 100 0.1651 
6 1 Fix ratio of fx/fy 100 0.3161 
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Table 4.13 Camera matrix parameters computed. 

Experiment 
Number fx fy cx cy 

1 338.19 332.96 165.28 112.03 

2 339.36 334.26 165.23 111.63 
3 344.07 338.77 165.27 113.21 
4 343.93 338.61 165.89 113.09 
5 343.93 338.61 165.89 113.09 
6 312.04 312.04 164.44 82.90 

 

Table 4.14 Distortion parameters computed. 

Experiment 
Number k1 k2 p1 p2 

1 0.0664 -0.1001 -0.0045 -0.0018 

2 0.0622 -0.0671 -0.0045 -0.0017 
3 0.0611 -0.05845 -0.0043 -0.0015 

4 0.0621 -0.0651 -0.0042 -0.0013 
5 0.0621 -0.0651 -0.0042 -0.0013 
6 0.0882 -0.0777 -0.0200 -0.0017 

 

The first four experiments were to comprehend if increasing the number of 

images enhances the calibration process. However, since the same frame sequences 

were used to choose the images, the more the number of images used to calibrate the 

camera was, the more corner point locations with similar characteristics were obtained. 

Hence, in this case, increasing the image count may result in overfitting the camera 

parameters to the data. The fourth and the fifth experiments were to prove that changing 

the way points are represented in the object coordinate does not affect the parameters 

estimated. Because, just the unit of the points was changed, and the units canceled each 

other while computing the parameters. Finally, the last experiment was run based on the 

assumption that the ratio of the parameters fx and fy is 1, which means that the camera 

has square pixels. But, the average reprojection error given in Table 4.12 for the sixth 

experiment refuted the assumption. 
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All in all, the first experiment run with image count of 20 can be regarded as 

successful enough. Consequently, the camera matrix and the distortion parameters 

computed through this experiment can be used during the projection stage of the 2D 

features extracted by the SIFT or the SURF algorithms to 3D world coordinates. 

 

4.4 LOCALIZATION OF THE ROBOT AND THE LANDMARKS 

The EKF module was run only ased on the odometry of the robot since the 

landmark positions in the environment could not be estimated. Consequently, increasing 

uncertainty in the robot position is expected for such localization.The two experiments 

in which the Robotino navigated along a rectangular path and a circular path showed 

parallel results to this expectation. 

Table 4.15 and Table 4.16 contain the diagonal uncertainties of covariance matrix 

P belonging to the positions x and y, and the rotation θ of the robot for the first 10 

iterations of the EKF called by the rectangular and the circular path controllers, 

respectively. The tables also indicate the controls Δx, Δy and Δθ computed based on the 

odometry when the paths were being executed by the robot. The controls Δx and Δy 

were added to the world coordinates of the robot after they were transformed according 

to the current pose θ of the robot to find the recent coordinates. The recent pose of the 

robot was then simply θ+Δθ. The units of the numerical values in the tables are 

centimeter or degree for positions, controls, and the errors; and cm2 or degree2 for the 

covariances. 

The rectangular path involved the motion commands: 300 mm on x, 90º turn, 200 

mm on x, 90º turn, 300 mm on x, 90º turn, 200 mm on x, and 90º turn in order. The 

circular path was generated by setting sinusoidal velocities ranging from 20 cm/s to -20 

cm/s in x or y directions. The true and the estimated positions of the robot again during 

the first 10 iterations of EKF are in Table 4.17 and Table 4.18 for the rectangular and 

the circular path executions, respectively. 
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Table 4.15 Diagonal values of covariance matrix P and controls computed based on the 
odometry for the rectangular path. 

# P(1,1) P(2,2) P(3,3) Control Δx Control Δy Control Δθ 

1 1.0002 1.3185 0.0114 5.6580 0.0197 -0.0049 

2 1.0054 7.7086 0.0127 19.2751 -0.1065 -0.0073 
3 1.0722 24.1152 0.0141 20.3401 -0.3168 -0.0122 
4 1.0760 25.8409 0.0155 1.5874 0.0057 -0.0002 
5 1.0695 25.7704 0.0169 -0.0717 0.0959 0.2344 
6 1.0689 25.8754 0.0182 0.0974 -0.0170 0.1948 
7 1.0610 26.0687 0.0196 0.2228 0.0794 0.1963 
8 1.0632 25.9715 0.0210 -0.0857 0.0203 0.2040 
9 1.0610 26.0832 0.0223 0.1023 -0.0284 0.1796 

10 1.0573 26.1292 0.0237 0.0780 0.0204 0.1916 

 

Table 4.16 Diagonal values of covariance matrix P and controls computed based on the 
odometry for the circular path. 

# P(1,1) P(2,2) P(3,3) Control x Control y Control θ 
1 1.0002 1.3448 0.0114 5.8724 -0.0083 -0.0044 

2 1.0004 1.6803 0.0127 2.3350 0.0195 -0.0002 
3 1.0010 2.6759 0.0141  4.3905 0.0302 0.0010 
4 1.0010 4.4077 0.0155 4.9214 0.0002 0.0030 
5 1.0245 6.6687 0.0169 4.5128 1.5570 0.0026 
6 1.2214 8.9898 0.0182 3.7081 2.4450 -0.0012 
7 1.6978 10.9325 0.0196 2.7778 2.6499 0.0024 
8 2.9168 12.8457 0.0210 2.6083 3.8606 0.0019 
9 4.9505 14.3800 0.0223 1.9463 4.1977 -0.0014 

10 7.9300 14.9443 0.0237 0.9392 4.4484 0.0012 
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Table 4.17 The true and the estimated positions of the robot for the rectangular path. 

# xtrue ytrue θtrue xEst yEst θEst 
1 5.6580 0.0197 -0.0049 5.6422 0.0229 -0.0303 

2 24.9324 -0.1810 -0.0122 24.8995 -0.6635 -0.0716 
3 45.2671 -0.7463 -0.0244 45.1759 -2.4310 -0.0466 
4 46.8542 -0.7794 -0.0246 46.7592 -2.4899 -0.0760 
5 46.7849 -0.6818 0.2098 46.6956 -2.3774 0.1414 
6 46.8837 -0.6781 0.4046 46.7898 -2.3648 0.3156 
7 47.0573 -0.5175 0.6009 46.9627 -2.2175 0.5114 
8 46.9751 -0.5492 0.8049 46.8756 -2.2557 0.7245 
9 47.0665 -0.4952 0.9845 46.9753 -2.2094 0.9101 

10 47.0927 -0.4189 1.1762 47.0162 -2.1336 1.0933 

 

Table 4.18 The true and the estimated positions of the robot for the circular path. 

# xtrue ytrue θtrue xEst yEst θEst 
1 5.8724 -0.0083 -0.0044 5.8700 0.0068 -0.0233 

2 8.2075 0.0010 -0.0045 8.2001 -0.0319 -0.0408 
3 12.5981 0.0113 -0.0035 12.5968 -0.1833 0.0087 
4 17.5195 -0.0057 -0.0005 17.5178 -0.1217 -0.0520 
5 22.0331 1.5489 0.0021 22.1091 1.2014 0.0013 
6 25.7361 4.0016 0.0009 25.8166 3.6690 0.0496 
7 28.5115 6.6539 0.0033 28.4539 6.4412 0.0745 
8 31.1070 10.5232 0.0052 30.7595 10.4831 0.0615 
9 33.0313 14.7310 0.0038 32.4447 14.7985 0.0788 

10 33.9534 19.1830 0.0051 33.0330 19.2977 0.0578 

 

The overall trajectories the Robotino followed were drawn in a coordinate system 

defined in centimeters as Figure 4.5 and Figure 4.6 illustrates. The robot is represented 

as a triangle in color of blue whose initial position and heading are defined as (x=0, 
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y=0, θ=0) and towards the x-axis, respectively. The green lines are the trajectories 

composed of the true positions of the robot without noise, and the red lines are the 

estimated positions in EKF into which the uncertainties estimated for the odometry in 

Subsection 4.1.2.2 were incorporated. The magenta ellipses around the triangle robot 

are the uncertainties of the final robot locations. 

 

 
Figure 4.5 Trajectories drawn for the robot navigation along a rectangular path. 

 

 
Figure 4.6 Trajectories drawn for the robot navigation along a circular path. 
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After the navigations along the paths terminated, Table 4.19 shows the final 

localization results, uncertainties in the localizations, and errors between the true and 

the estimated positions of the robot for both the rectangular and the circular paths. 

 

Table 4.19 Evaluations on final robot localization for rectangular and circular paths. 

 Rectangular Path Circular Path 

xEst 14.9480 17.0772 
yEst -13.4143 -2.5110 
θEst 0.1425 0.4036 

P(1,1) 72.4307 71.0824 
P(2,2) 40.2523 25.8292 
P(3,3) 0.0731 0.1032 

xErr 0.26414 11.3068 
yErr 3.9231 2.4169 
θErr 0.1902 0.39223 
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CHAPTER 5 
 
 

       CONCLUSIONS AND FUTURE WORK 
 
 
 

5.1 CONCLUSIONS 

According to the current knowledge in the literature, design of a purely vision-

based autonomous system that can work in any environment is still a challenging 

research problem. The studies mostly fuse information obtained through other sensors 

with visionary information to increase the accuracy of the system and are limited to 

mapping the environment sparsely whereas localizing the robot rather than having 

designated goals. Similarly, the system presented in this thesis is a derivation of 

visionary SLAM applications in the literature, which fuses the information of the 

odometer and the single camera of a mobile robot navigating on a planar ground. 

A typical visionary SLAM system involves many difficulties. Because, the stage 

of frame processing takes too much time due to very high input data rate of camera and 

complexity of the robust feature extraction algorithms, tracking the features among 

frames persistently constitutes a problem, the direct depth measurement to environment 

landmarks is something hard to achieve accurately using just a single camera, and 

running the EKF system depending on sometimes unreliable outputs of the previous 

stages with increasing number of landmarks detected can not always yield reasonable 

localization results and puts an extra burden on the system performance. 

However, it could not be possible to experience all of these difficulties since the 

system designed could be realized partially. The reason was that 3D environment 

coordinates of the 2D features in the frames are not estimated, and hence the EKF could 

not be run with the landmark cooridnates as required. On the other hand, the problem of 

reliable feature matching, the effect of complex feature extraction task on the running
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system, and the increase in the uncertainty of the robot localization without the 

landmarks detected in the environment could be observed as indicated in the studies 

referenced. 

Ultimately, conducting this research is important in order to comprehend the 

requirements and difficulties in implementation of a visionary SLAM algorithm which 

is considered to be going to have an impact in some application areas including low-

cost and advanced robotics, wearable computing, augmented reality for industry and 

entertainment, or medical imaging (Davison et al., 2007). Consequently, this study is 

like an initial step to learn the environment through exploratory motions towards a more 

advanced and goal-driven vision-based systems such as a humanoid capable of cleaning 

a home or a mobile phone application aiding blind people in real-time for structure 

estimation of the environment. 

5.2 FUTURE WORK 

In the scope of the implemented system, there are a number of enhancements that 

can be done to improve its operation and performance in the future. Firstly, the 

Landmark Parameter Estimator module should be implemented properly. Also, some 

alternative algorithms may be proposed for the module to estimate the 3D coordinates 

of the landmarks in the environment more precisely. Secondly, the SIFT algorithm may 

be completely replaced by the SURF algorithm which is known to be faster than and 

nearly as accurate as SIFT. Thirdly, most of the image processing task may be 

transferred to a GPU which reduces the CPU work and can boost the system speed up to 

approximately 12 times paving way for a successful real-time operation. This can be 

achieved by integrating CUDA libraries to the application, which enables C++ 

applications to utilize GPU as an auxiliary processor. Besides, some pertinent 

algorithms can be employed in the Path Planner and the Controller modules for the 

system to carry out some goals. 

From a wider perspective, recovering detailed 3D surface maps in real-time rather 

than sets of sparse landmarks is the future goal of visionary SLAM applications. And 

designing genuinely practical systems requires coping with both indoor and outdoor 

environments, more dynamic motions, more complicated scenes with significant 

occlusions and changing lighting conditions (Davison et al., 2007). 
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APPENDIX A 
  
  
 

       ROBOTINO 

The three Robotino drive modules are integrated into a stable, laser-welded 

stainless steel frame. The frame is protected against collisions by a rubber protection 

strip with integrated switching sensor. Numerous additional components, such as 

sensors or handling units, can be mounted on a platform with prepared threaded holes. 

With its omnidirectional drive, Robotino moves quick as a flash forwards, backwards, 

and sideways, and also turns on the spot. Three sturdy DC industrial motors with optical 

shaft encoders having a resolution of 2048 increments per revolution and gear units 

with a reduction ratio of 1:16 allow speeds of up to 10 km/h. 

The frame contains nine infrared distance sensors. An analogue inductive sensor 

and two optical sensors available enable the Robotino to recognize and follow 

predefined paths that are marked in colour or with an aluminium strip. The Robotino is 

supplied with a colour web camera with jpeg compression. The compressed web 

camera image can be transmitted to an external PC via the WLAN for image evaluation 

by external PC or used as a live camera image. Power is supplied via two 12 V lead-gel 

rechargeable non-spillable electric storage batteries, permitting a running time of up to 

two hours.  

At the heart of the PC 104 controller is the real-time Linux operating system, 

provided on a 1 GB CF card. This communicates with the new EA09 control board via 

a serial interface, to evaluate the sensor data and control the Robotino's drive units. It 

can also communicate directly with a Linux program in the PC 104 or with another 

external PC application via W-LAN. Robotino APIs are available in order to program 

the robot using the languages such as C++, .Net, JAVA, or MATLAB. The EA09 

control board is fitted with an interface card, which provides four Ethernet interfaces, 

one of which has a direct external link. At the heart of EA09 control 
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board is an LPC2377 32-bit microcontroller, which directly generates the PWM signals 

for controlling four electric DC motors. Xilinx Spartan3 FPGA to read the encoder 

values for the motors. This enables the odometer data and any additional sensor-specific 

correction data to be calculated directly in the microcontroller. This results in a 

considerable improvement in accuracy. The microcontroller is externally accessible and 

can be used directly for programming custom applications. The microcontroller 

firmware can be updated via operating system of the Robotino. 

 

Table A.1 Robotino hardware specification. 

Robot 

Diameter of 370 mm 

Height including housing without web cam of 210 mm 

Total weight of about11 kg 

Three omnidirectional drive units each featuring  a 3600 rpm Dunker motor 

Maximal payload of about 5 kg 

Sensors 

Rubber protection strip with built-in collision-protection sensor 

9 analogue infrared distance sensors 

Analogue inductive sensor 

2 digital optical sensors 

Colour web camera with USB interface and jpeg compression 

Three optical shaft encoders 

Embedded Controller 

Embedded PC 104 with AMD LX800 processor (500 MHz) 

SDRAM 64 MB 

Compact Flash card 1GB 
WLAN access point with antenna to 802.11g and 802.11b, client mode and 
optional WPA2 encoding 
Interfaces: Ethernet, 2 x USB, 2x RS232 and VGA connection 

I\O Interface Card 

Outputs for controlling the three omnidirectional drive units 

8 analogue inputs (0 – 10 V, 50 Hz), 2 analogue outputs 

8 digital inputs, 8 digital outputs (24 V, short circuit proof and overload proof) 

2 relays for additional actuators  
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APPENDIX B 
  
  
 

       E-PUCK 

E-puck is the miniaturization of a complex robotic system that is sold at a low 

price. The sensors, actuators, and interfaces of the E-puck are representatives of a wide 

range of devices that can be found in several engineering subdomains. It has two types 

of processors: general purpose and DSP. Sensors are in different modalities like audio, 

visual, distances to objects, and gravity. Input devices are with different bandwidths 

from 10 Hz to 10 MHz. Actuators are with different actions on the environment such as 

displacement, audio, or display. It enables wired and wireless communication with 

other devices. Figure B.1 illustrates the electronic structure whereas Table B.1 presents 

the hardware specification of E-puck (Mondada et al., 2009). 

 

 
Figure B.1 Outline of electronic circuitry of the E-puck.
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Table B.1 E-puck hardware specification. 

Robot 

Diameter of 75 mm 

Height depends on the connected extensions 

Four injected plastic parts: the main body, the light ring, and the two wheels 

Main PCB containing most of the electronics is on top of the main body 

Main body encloses battery 

Sensors 

Eight infrared (IR) proximity sensors (10-100 Hz) 

A 3D accelerometer to measure the inclination and the acceleration (0.1-1 kHz) 

Three microphones ( 10-40 kHz ) 

A color CMOS camera with a resolution of 640_480 pixels (10k-10MHz) 

Actuators 
Two stepper motors (1000 steps per wheel revolution) 

A speaker connected to an audio codec 

Eight red light emitting diodes (LED)  

A set of green LEDs 

A red front LED placed beside the camera 

Microcontroller 
dsPIC30F6014 by Microchip  

A 16 bit processor running at 30 MHz 

A 16 entry register file  

A digital signal processor (DSP) unit 

RAM 8 kB 

Flash memory 144 kB 

Interfaces 
Two LEDs for powering status of robot and the status of the battery 

A connector to interface to an in-circuit debugger  

An infrared remote control receiver 

A classic RS232 serial interface. 

A Bluetooth radio link  

A reset button. 

A 16 positions rotary switch to specify a 4 bit number 
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APPENDIX C 
  
  
 

       MATLAB CODE OF CONTROLLER 
 

function 
controller(robotCntrl,type,algorithm,pathText,infobox,odomBox) 
    global robotino xErr;     
    %ROBOTINO CONNECTION ENABLE 
    robotino=getRobotino(); 
    robotino.planar = robotCntrl.planar; 
    robotino.angular = robotCntrl.angular; 
    robotino.frameHz = robotCntrl.frameHz; 
    Odometry_set( robotino.OdometryId, 0, 0, 0 ); 
    setInfoBox(infobox,'Now the system is running...'); 
    if strcmp(type,'Circular') 
        controlCircular(algorithm, infobox, odomBox); 
    else 
        controlRectangular(pathText, algorithm, infobox, odomBox); 
    end; 
    plotTrajectories(); 
    setInfoBox(infobox,'Path execution is complete.'); 
    setInfoBox(infobox,['The error between real and estimated  

positions of the robot:' char(10) 'x: ' num2str(xErr(1)) ' cm' 
char(10) 'y: ' num2str(xErr(2)) ' cm' char(10) 'phi: ' 
num2str(xErr(3)) ' deg' ]); 

    releaseRobotino(robotino); 
end; 
function controlCircular(algorithm, infobox, odomBox) 
    global robotino enable1 systemStop; 
    currentFrame=[]; prevFrame=[]; 
    f1=[];d1=[];s1=[]; 
    iteration=0; 
    EKFInit([1 0 0 200]); 
    setOdomBoxes(odomBox); 
    startVector= [200.0; 0.0]; 
    a = 0.0; 
    tmElapsed = 0; 
    setInfoBox(infobox,'The robot is executing a circular path.'); 
    tmStart = tic; 
    prevOdom=[0 0 0]'; 
    x=0; y=0; phi=0; i=0;  
    enable1 = 1; 
    while(~systemStop && tmElapsed <= 20)  
        dir=J2([0;0;deg2rad(a)],[])*[startVector;0]; 
        dir=sum(dir,2); 
        %rotate 360 degrees in 10s 
        a = 360.0 * tmElapsed / 10; 
        OmniDrive_setVelocity(robotino.OmniDriveId,dir(1),dir(2),0); 
        tmElapsed= toc(tmStart);           
        %Capture frames with the input Hz
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        if(enable1) 
            sleep1(robotino.frameHz); 
            enable1=0; 
            currentFrame=getRobotinoFrame(robotino); 
            %Sample odometry nearly at the same time:important 
            [ x, y, phi ] = Odometry_get( robotino.OdometryId ); 
            Odometry_set( robotino.OdometryId, 0, 0, 0 ); 
            prevOdom=[0 0 0]'; 
            i=i+1; 
            %Apply the selected algorithm to camera frames 
            [prevFrame,f1,d1,s1] = callFeatureExtractor(algorithm,  

currentFrame, prevFrame,f1,d1,s1); 
            %compute control 
           [odom,prevOdom,iteration] =  

callEKF(odomBox,[x;y;phi],prevOdom,iteration); 
        end   
        wait( 0.05 ); 
   end; 
   OmniDrive_setVelocity(robotino.OmniDriveId, 0, 0 ,0); 
   wait(0.1); 
   [ x, y, phi ] = Odometry_get( robotino.OdometryId ); 
   Odometry_set( robotino.OdometryId, 0, 0, 0 ); 
   [odom,prevOdom,iteration] =  

callEKF(odomBox,[x;y;phi],prevOdom,iteration); 
end; 
function controlRectangular(pathText, algorithm, infobox, odomBox) 
    global robotino enable1 systemStop; 
    global path; 
    currentFrame=[]; prevFrame=[]; 
    f1=[];d1=[];s1=[]; 
    path = processPath(str2path(pathText)); 
    nPieces = size(path,1); 
    iteration=0;     
    EKFInit(path); 
    setInfoBox(infobox,'Now the system is running...'); 
    setOdomBoxes(odomBox); 
    enable1 = 1; 
    for loop=1:nPieces 
        if(systemStop) 
            break; 
        end;  
        setInfoBox(infobox,['Executing the path piece: ' char(10)  

num2str(path(loop,:)) ]); 
        piece = path(loop,:); 
        x=0; y=0; phi=0; i=0;   
        prevOdom=[0 0 0]'; 
        distance = piece(4); 
        if(distance > 0) 
            velocity = robotino.planar; 
            angVelocity = robotino.angular; 
        else 
            velocity = -robotino.planar; 
            angVelocity = -robotino.angular; 
        end 
        tmStart = tic; 
        if piece(1) %movement on x axis 
            OmniDrive_setVelocity(robotino.OmniDriveId,velocity,0,0); 
            wait(0.1); 
            while (~systemStop && abs(x) < abs(distance)) 
                %Capture frames with the input Hz per second 
                if(enable1) 
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                    sleep1(robotino.frameHz); 
                    enable1=0; 
                    currentFrame=getRobotinoFrame(robotino); 
                    %Sample odometry nearly at the same time:important 
                    [ x, y, phi ]=Odometry_get(robotino.OdometryId ); 
                    i=i+1; 
                    %Apply the selected algorithm to camera frames 
                    [prevFrame,f1,d1,s1] =  

callFeatureExtractor(algorithm,currentFrame,prevFrame,f1,d1,s1); 
                    %compute control 
                    [odom,prevOdom,iteration] =  

callEKF(odomBox,[x;y;phi],prevOdom,iteration); 
                end   
                if(toc(tmStart)>=(distance/velocity))    
                 [ x, y, phi ] = Odometry_get( robotino.OdometryId ); 
                end 
            end 
        elseif piece(2) %movement on y axis 
            OmniDrive_setVelocity(robotino.OmniDriveId,0,velocity,0); 
            wait(0.1); 
            while (~systemStop && abs(y) < abs(distance))   
                %Capture frames with the input Hz per second 
                if(enable1) 
                    sleep1(robotino.frameHz); 
                    enable1=0; 
                    currentFrame = getRobotinoFrame(robotino); 
                    %Sample odometry nearly at the same time:important 
                    [ x, y, phi ] = Odometry_get(robotino.OdometryId); 
                    i=i+1; 
                    %Apply the selected algorithm to camera frames 
                    [prevFrame,f1,d1,s1] =  

callFeatureExtractor(algorithm,currentFrame,prevFrame,f1,d1,s1); 
                    %compute control 
                    [odom,prevOdom,iteration] =  

callEKF(odomBox,[x;y;phi],prevOdom,iteration); 
                end         
                if(toc(tmStart)>=(distance/velocity)) 
                 [ x, y, phi ] = Odometry_get( robotino.OdometryId ); 
                end         
            end 
        elseif piece(3) %rotation about z 

OmniDrive_setVelocity(robotino.OmniDriveId,0,0,angVelocity); 
            wait(0.1); 
            direction = (distance > 0); 
            distance = degreeWrap(distance); 
            phiRead=0; 
            while (~systemStop) 
                if abs(phiRead)>3 && ((direction && phi >= distance)||  

(~direction && phi <= distance)) 
                    break; 
                end 
                %Capture frames with the input Hz per second 
                if(enable1) 
                    sleep1(robotino.frameHz); 
                    enable1=0; 
                    currentFrame = getRobotinoFrame(robotino); 
                    %Sample odometry nearly at the same time:important 
                    [x,y,phiRead] = Odometry_get(robotino.OdometryId); 
                    phi=degreeWrap(phiRead); 
                    i=i+1; 
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                    %Apply the selected algorithm to camera frames                    
  [prevFrame,f1,d1,s1] =  

callFeatureExtractor(algorithm,currentFrame,prevFrame,f1,d1,s1); 
                    %compute control 
                    [odom,prevOdom,iteration] =  

callEKF(odomBox,[x;y;phi],prevOdom,iteration); 
                end 
                if(toc(tmStart)>=(distance/angVelocity)) 
                    [x,y,phiRead] = Odometry_get(robotino.OdometryId); 
                    phi=degreeWrap(phiRead); 
                end   
            end 
        end 
        OmniDrive_setVelocity(robotino.OmniDriveId, 0, 0 ,0); 
        wait(0.1); 
        [ x, y, phi ] = Odometry_get( robotino.OdometryId ); 
        Odometry_set( robotino.OdometryId, 0, 0, 0 ); 
        [odom,prevOdom,iteration] =  

callEKF(odomBox,[x;y;phi],prevOdom,iteration); 
        tmElapsed = toc(tmStart); 
        setInfoBox(infobox,['Path piece is executed in:'  

num2str(tmElapsed) ' seconds']); 
   end; 
end; 


