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ABSTRACT 

 

 

 

In this study, applicability of various most used feature extraction methods of the 

literature has been examined over lung sounds by Neural Networks and other Machine 

Learning Algorithms for the diagnosis of pulmonary diseases with the focus on Asthma. 

The sound dataset used in the study was collected by the medical experts of Gaziantep 

University Medical Faculty.  

 

Mainly the study is consisted of four sub-processes such as; filtering, feature 

extraction, feature selection and classification. In the filtering step, the input sound 

dataset either used without any filtering process or various filters (digital BandPass or 

non-linear Teager and Median filters) were applied to the input dataset for attenuating 

the possible noise effects in the sound samples and eliminating the useless frequency 

regions, thus enhancing the classification performance of the target classification 

algorithms. Then in the feature extraction step, Mel frequency Cepstral coefficients 

(MFCC), linear predictive coefficients (LPC), time domain features and phonetic 

features were used to transform the input dataset into feature vectors. Feature extraction 

algorithms that were used for the thesis study mostly divided the sound samples into 

multiple “window chunks” and then produced their outputs as a series of feature sets 

belonging to these windows. So the unification of these multiple feature sets into a 

single feature vector and the determination of the feature vector length was done with 

the use of statistical methods such as; Mean, Standard Deviation, Skewness and 

Kurtosis. Then the Chi-Square feature selection algorithm was applied to feature vectors 

for dimensionality reduction. Lastly, the classification process was performed through a 

computer simulation environment and the results were plotted.  

 

 

Keywords: Biomedical Applications, Pulmonary Disease Classification, Neural 

Networks, Lung Sounds Processing, Sound Feature Extraction, Asthma, MFCC, LPC. 
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ÖZ 
 

 

 

Bu çalışmada, literature bulunan birçok özellik çıkarım metodunun göğüs 

hastalarına ait ses-verileri üzerindeki uygulanabilirliği; yapay sinir ağları ve diğer 

makine öğrenme algoritmaları kullanılarak astım hastalığının teşhisi amacıyla 

incelenmiştir. Çalışmada kullanılan ses verileri Gaziantep Üniversitesi Tıp Fakültesi 

uzmanlarınca kaydedilmiştir. 

 

Çalışma temel olarak; seslerin filtrelenmesi, özellik çıkarımı, özellik eleme ve 

sınıflandırma şeklinde dört alt işlem grubundan oluşmaktadır. Filtreleme kısmında, giriş 

sesleri hiçbir filtreleme işlemine tabi tutulmadan veya ses örneklerindeki muhtemel 

gürültü etkilerini azaltmak, lüzumsuz frekans bölgelerini çıkarmak ve böylece öğrenme 

algoritmalarının sınıflandırma performansını arttırmak amacıyla, çeşitli filtrelere (dijital 

BandPass veya lineer olmayan Teager ve Median filtreleri) tabi tutularak kullanılmıştır. 

Özellik çıkarımı kısmında, giriş seslerini özellik vektörlerine dönüştürmek için; MFCC, 

LPC, zaman domeni ve fonetik özellik çıkarım metotları kullanılmıştır. Çalışmada 

kullanılan özellik çıkarım metotları genel olarak giriş seslerini birçok küçük zaman 

parçacıklarına bölüp, daha sonra çıkışlarını tüm bu parçacıklara ait özellik vektörlerinin 

toplamından oluşan bir set olarak üretmektedirler. Bu sebeple, sözü edilen çoklu özellik 

vektörlerinin teke indirgenmesi ve ayrıca özellik vektörünün uzunluğunun tespiti için; 

Ortalama, Standart Sapma, Skewness ve Kurtosis gibi istatistiksel metotlardan 

faydalanılmıştır. Özellik eleme kısmında, elde edilen özellik vektörlerine Chi-Square 

istatistiksel eleme algoritmasının uygulanmasının etkileri incelenmiştir. Son olarak 

yapılan incelemeler bir benzetim ortamında gösterilip sonuçlar tablolanmıştır. 

 

 

Anahtar Kelimeler: Biyomedikal Uygulamalar, Göğüs Hastalıklarının 

Sınıflandırılması, Yapay Sinir Ağları, Akciğer Ses İşleme, Ses Özellik Çıkarımı, Astım, 

MFCC, LPC. 
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CHAPTER 1 

INTRODUCTION 

Humanity experienced many new disorders during the last century. Modern 

medical science has been developing newer methods and treatment procedures each day 

to overcome the existing and possible future diseases (the Editors of Publications 

International Ltd., 2012).  The pulmonary diseases are one of the major health problems 

of our decade. It not only affects most of the world population but it also strongly 

lowers the patience’s life quality by blocking the inhalation mechanism. To emphasize 

the importance of the fact, the latest reports of the WHO (World Health Organization, 

2011) can be referenced to better sense the worldwide fatal effect of pulmonary diseases 

over world health. 

Throughout this study, by regarding all stated facts, we have worked on a solution 

for the diagnosis of pulmonary diseases, mainly Asthma, from the lung sounds. The 

sound data used in this work has been recorded by the medical experts of Gaziantep 

University Medical Faculty from the subject’s chest region by Sony electrode 

condensed microphones. The digital acquisition process has been done through a two 

channel data acquisition (DAQ) card which was developed by Prof. Onur TOKER at 

Fatih University. 

 

1.1 HISTORY OF AUSCULTATION 

Centuries ago, Hippocrates was the first one to notice that breath sounds other 

than normal are heard over the chest of patients with pulmonary dysfunction and made a 

first attempt to describe them (Taplidou & Hadjileontiadis, 2010). That approach 

opened a huge door to future studies on the respiratory auscultation. 
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The study of the anatomy, physiology and pathology of the human respiratory 

system is known as pulmonology or respiratory medicine. One of the most important 

advances in the history of respiratory medicine was the development of the stethoscope 

in 1816 by French physician Rene-Theophile-Hyacinthe Laennec in Paris. This 

instrument enabled physicians to more precisely diagnose diseases of the chest and 

heart (Rogers K. , 2010). The first version of the stethoscope device by Laennec was 

made of a long wooden tube and it was monaural (Laennec, 1819). In 1841, Golding 

described a flexible tube stethoscope (Golding, 1840) that he used as an assistive tool 

where the device had one earpiece.  

The invention of the binaural stethoscope is by Irish physician Arthur Leared in 

1851 and the perfection of the design as a commercial product is by George P. 

Cammann of New York in 1852. Cammann also described the way how this new 

binaural product could be used for auscultation diagnosis. The refined device had one 

earpiece and that model has been used for more than 100 years without a major 

modification. In 1960, Dr. David Littmann, a Harvard Medical School professor, 

patented a new stethoscope that was lighter than previous models and had vastly 

improved acoustics (Littmann Inc. 3M, 2012).  

Today mainly two kinds of pulmonary instruments are used by the physicians, 

namely, the acoustic and the electronic stethoscopes. The mechanism of acoustic 

stethoscopes is simple. A plastic covered diagram collects the sounds from its surface 

and transmits the sound pressure to earring nodes by the use of air filled tubes. In this 

method collected sound can easily be inferred by environment effects and the sound 

amplitude may lower due to the subject’s respiratory characteristics. The electronic 

stethoscopes, as being the second type of pulmonary instruments, mostly rely on the 

idea of transmitting the sound waves into the electrical signals and then amplifying the 

analog signals and processing them for optimal listening. In most devices mid 

frequencies are amplified where low and high frequencies are attenuated.  

Due the process of listening to the pulmonary chest region with a simple 

stethoscope device is cheap and easy in the applicability point of a physician, there are 

many obstacles in both devices that limit the auscultation diagnosis. First of all, the lung 

sounds have non-stationary characteristics which make them subjective from person to 

person. Moreover the procedure itself is subjective as it depends on the physician’s own 

http://en.wikipedia.org/wiki/David_Littmann
http://en.wikipedia.org/wiki/Harvard_Medical_School
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hearing, experience and ability to distinguish between different sound patterns. For the 

acoustic stethoscopes the lower frequency band transmitted to human ear is about 120 

Hz (Sovijarvi, Vanderschoot, & Earis, 2000). So even if the physician is careful and 

talented enough, still there can be inaudible regions in the target signal causing the 

physician to miss many important sound patterns.  

To overcome the problems in the diagnosis process of pulmonary inhalation 

sounds, many physicians strongly rely on some other tests (Rogers K. , 2010) which  

can be listed as; pulmonary function test (PFT) (which is also known as spirogram test), 

chest X–ray, arterial gas analyses, lung ventilation/perfusion scan, bronchoscopy, 

mediastinoscopy and mediastinotomy, thoracentesis, thoracotomy, thoracoscopy and 

video-assisted thoracoscopic surgery, challenge test, pleural biopsy,  transthoracic 

needle biopsy, tube thoracostomy and allergy testing (National Asthma Council 

Australia, 2011), (American Thoracic Society, 2012), (The Lung Association of 

Canada, 2012), (The Merck Manual, 2012). 

The evolution of the pulmonary acquisition instruments is not complete. From 

wooden tubes to modern electronic designs the final purpose of deriving higher quality 

sound for catching the difficult patterns of lung sound biometrics will always be on the 

target of modern pulmonary studies. 

 

1.2 PURPOSE OF STUDY 

The main purpose of this study is establishing an efficient algorithm for the early 

intelligence and diagnosis of the pulmonary diseases, mainly asthma, from the lung 

sounds. For the desired algorithm to work efficiently in real life conditions, the input 

sound data set including environment noise has been freely used without regarding any 

noise removal concerns. Since the lung sound acquisition procedure through a 

microphone cannot be performed in a professional studio environment with the 

expectation of exact silence, the best methodology should also be able to isolate the true 

disorder patterns from the environment noise without the need of any special needs as 

the medical expert’s ear does. 

 

http://www.merckmanuals.com/professional/pulmonary_disorders/diagnostic_pulmonary_procedures/pleural_biopsy.html
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As the second main purpose of this study, examining the efficiency and the 

applicability of the most used feature extraction algorithms over medical data is aimed. 

If the sound data is regarded as a vector of thousands of numeric values in computer 

environment, the mapping of this numeric vector into a fixed size, smaller form by a 

simple extraction algorithm would be a time saving and efficient progress. After 

transforming the sound data into desired smaller form, deriving the highest 

classification accuracy for the neural networks, linear classifiers and other machine 

learning algorithms has lastly been aimed. 

 

1.3 STUDY AREA 

The thesis study is in touch with many multidisciplinary expertise fields such as 

internal medicine, sound processing, machine learning, artificial intelligence, pattern 

recognition, neuro-cognitive sciences, biomedical engineering and statistics. Because 

the border of the study area is that wide, strong background knowledge is needed for 

such a study to produce applicable results. For simplifying the overall process against 

the huge theoretical needs, an analytic progress through computer based simulation 

environment and an experimental reasoning methodology has been used in each step of 

the study. 

As a general summary, the target is improving human life quality with the use of 

computers and machine learning tools as expert systems. But from an upper point of 

view the target is to resolve the problems by first analyzing the answers of the medical 

experts, for the purpose of catching the hidden patterns, and then using these patterns 

for producing a solution to future harder problems where experts may fail or struggle. 

 

1.4 ORGANIZATION OF THE THESIS 

The thesis is consisted of eight individual chapters. The organization structure of 

the thesis can be broken down as follows; Chapter-1 gives brief information about the 

study and describes the main purpose of the work. Chapter-2 provides a detailed review 

of the existing techniques and studies in the literature. Chapter-3 gives the theoretical 
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information for the machine learning algorithms used in the study. Chapter-4 explains 

the fundamentals of signal processing techniques. Chapter-5 overviews both time 

domain and frequency domain sound feature extraction methods that were used through 

experiments. Chapter-6 underlines the basic statistical methods which were used in the 

thesis study. Chapter-7 provides the details of the building blocks of the experiment 

environment, describes the data set preprocessing steps, gives the numerical and visual 

results of the system along with implementation details and also presents a comparison 

between the optimized and raw input vector usage. Finally, Chapter-8 provides the 

conclusion and makes suggestions for the future work. 
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CHAPTER 2 

LITERATURE REVIEW 

Diagnosis of pulmonary dysfunctions has a long history in the literature. Many 

researchers worked on the subject with different methodologies. Since any kind of 

analog transducer outputs can be represented in the computer environment as binary 

streams, the work on the sound streams mostly depended on the previous linear and 

nonlinear classification, sound processing and pattern recognition algorithms. In this 

chapter detailed information of literature on the most recent methods will be presented. 

In 1984, Cohen et al. (Cohen & Landsberg, 1984) proposed their study on the 

analysis and automatic classification of breath sounds. According to the study, the main 

goals are twofold: to characterize the various breath sounds quantitatively and to 

provide an automatic classification technique for the various types of sounds with the 

goal of providing the physician a strong diagnostic support device. In the study, the 

linear prediction (LPC) and the peak factor coefficients (PFC) were used as feature 

extraction algorithms. For the classification phase, a twofold classification schema is 

used due to weak classification results of single classification experiments. Lastly the 

design of a future embedded device is also argued with the actual study on the subject. 

In 1992, Shabtai-Musih et al. (Shabtai-Musih, Grotberg, & Gavriely, 1992) 

proposed a recognition algorithm for the detection of the “wheeze patterns” in the 

respiratory sounds. In a general view this algorithm aims to detect the presence of 

wheeze patterns in the sound, rather than pointing to any pulmonary disease. The first 

step of the algorithm is taking 128 samples short-time Fourier transform (ST-FFT) of 

the signal with an overlapping ratio of 108 points (which is about 85%). Then the mean 

is subtracted from all points in the spectrum and thus the spectrum is normalized to its 

standard deviation. Next the presence of peaks in the spectrum is analyzed so that the 
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peaks which are greater than “3.5 standard deviations (SD)” are evaluated according to 

the criterion that is designed to distinguish instantaneous (narrow) peaks from wide 

peaks, steps, ramps and multiple close peaks. The score is incremented if the evaluated 

peak meets the criterion. A “score threshold” is taken as 3 (of maximum7), and the 

scores greater than 3 are accepted as wheezes. Lastly the frequencies of accepted 

wheezes are recorded in their corresponding temporal position. For a better progress, 

the “Improved Shabtai-Musih Algorithm” scans the signal using time segments of 256 

samples with an overlap ratio of 50%. To eliminate the spectral leakages, Hanning 

windowing technique is used. The mean value of each 250 Hz frequency band is 

obtained and subtracted from this frequency segment in order to compensate for spectral 

irregularities of respiratory tracheal sound transmission. Normalization using the 

standard deviation is also performed. 

In 2006, Meng-Lun et al. (Meng-Lun, Jen-Chien, & Feng-Chia , 2006) worked on 

a respiratory data set of 16 subjects. They divided the data set into two groups. The first 

group consisted of 12 nonsmoking asthmatic patients who all had various kinds of 

wheeze episodes. The second group was composed of 4 subjects without any reported 

respiratory pathology. The sounds were acquitted from the thorax region of the subjects 

in sitting position with a period of 7 to 10 respiratory cycle’s per-person. Their 

acquisition hardware consisted of an Omni directional electrical condenser microphone 

coupled with a low power pre-amplifier. The system then followed by a band-pass anti-

aliasing filter consisting of a high-pass Bessel (roll of > 18 dB) and a low-pass 

Butterworth filter (roll of > 24 dB). Lastly the digitalization was done by a commercial 

sound card with a standardized sampling rate of 44.1 kHz. In the digital signal 

processing part, rather than rule based wheeze detection algorithms, they considered the 

spectrogram as an image file and filtered out the [100-1600 Hz] frequencies in the 

spectrogram as the out of interest regions. Then set a limiter to mean spectral energies 

and applied an image processing technique (a bilateral filter to smooth the image data 

point) to object wheeze directly. Their work proposed a “Yes or No like Decision 

Support System” to the doctors for simplifying the detection of wheeze patterns in the 

sound. The algorithm was tested on more samples in the NTU hospital with a recorded 

sensitivity and specificity above 89%. 
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Next in 2006, Martinez-Hernandez et al. (Martinez-Hernandez, Aljama-Corrales, 

Gonzalez-Camarena, Charleston-Villalobos, & Chi-Lem, 2006) proposed their study for 

multichannel acquisition of lung sounds by a microphone array. In their work they have 

attached a 5x5 sensor group, which was vertically and horizontally separated by 5 to 7 

cm, to the back of the subjects.  They have acquitted the sounds by a digital card with a 

sampling frequency of 10 KHz for 15 sec.’s while the subjects were seated. A digital 

filter applied to the [75-2000 Hz] frequency bands for reducing the interference of heart 

and muscle sounds. Then each inspiratory phase were extracted from the sound and 

divided into 30 equal windows with an overlap ratio of 25% between them. The lung 

sounds feature extraction process was done by a multivariate auto regressive (MAR) 

model and dimensionality reduction of the feature vectors (FV) was also done by SVD 

and principal component analyses (PCA). Lastly a supervised neural network (SNN) 

was used for the classification of the derived feature vectors. The algorithm aimed to 

classify diffuse interstitial pneumonia (DIP) disease, which can be diagnosed by the 

existence of crackles from the normal breath respiratory sound. As a result the proposed 

algorithm achieved an accuracy value of 82% for the diagnosis of DIP disease from the 

pulmonary sounds. 

Later in their 2007 work, Feng and Satttar have presented a new method to 

identify wheezing and normal breathing from tracheal sounds (Feng & Satttar, 2007). In 

the work instead of standard frequency-domain features, authors introduced a “more 

straightforward time-domain features set” generated by their adaptive scheme. Their 

method first performed a time-frequency analysis over the data set and used 

“recursively measured averaged normalized instantaneous kurtosis” for identification of 

the wheeze and normal breath sounds. Also in their proposed scheme the sample 

entropy, which measures the predictability of the current amplitude values of a 

physiological signal based on its previous amplitude values, was made use of as a 

statistical parameter. The sharp drops during the normal breath sounds and the 

superimposed shape of histogram for wheeze signals provided the authors a clearer 

view about the superimposed nature of wheeze on normal breath. This statistical 

characteristic was kept for their further researches to separate adventitious sounds from 

normal breath.  
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In 2009, Sergul at al. (Aydore, Sen, Kahya, & Mihcak, 2009) proposed a new 

method in their study. The aim of this study is the classification of wheeze and non-

wheeze epochs within the respiratory sound signals that are acquired from patients with 

asthma and COPD. The features proposed in this study are kurtosis, Renyi entropy and 

mean-crossing irregularity calculated in the time domain and f50/ f90 ratio calculated in 

the frequency domain. Fisher discriminant analysis and Neyman Pearson hypothesis 

testing were applied for classification and detection. After the error rates have been 

calculated for the training set, the test error has been calculated for the same data set 

using leave-one-out method. The sound data used in the work was collected from 4 

male and 3 female subjects with an age range from 33 to 67. By visually inspecting the 

time expanded sound signals, an expert labeled the wheeze portions and non-wheeze 

portions that are at 15 sec lengths. A total of 246 wheeze and non-wheeze portions were 

thereby labeled and used in the study. Then for each 246 portions, 4 features were 

extracted. After the extraction of four features for each window from both classes, the 

Fisher discriminant analysis was applied in order to separate the two classes in one-

dimension. The algorithm achieved a correctness of 93.5% as a test result. And as an 

extension to present linear classifiers, the future use of non-linear classifiers, the use of 

a larger data repository and the addition of more feature sets to the experiment has also 

been discussed. 

In 2010, Sen at al. (Sen, Saraclar, & Kahya, 2010) proposed a study to devise a 

methodology to estimate and depict the source locations of “respiratory adventitious 

sound components” (particularly crackles) in the lungs, because of their association 

with certain pulmonary diseases. The sound data used in the work belonged to a subject 

who was diagnosed with cystic bronchiectasis in the lower left lung. The data was 

recorded using a 14-channel respiratory sound acquisition (DAQ) device. The system 

composed of 14 electrode microphones attached on the posterior chest wall (seven 

microphones per side), plus an analog amplifier-filter unit to process microphone output 

signals (an instrumentation amplifier with a gain of 100 and an 80−4000 Hz band pass 

filter), a DAQ card (NI-6024E) to transfer the processed signals to the computer after 

digitization, and a notebook computer executing an interface developed in LabVIEW 

environment. The sampling rate was chosen 9600 Hz with duration of 15 seconds per 

single DAQ session. After the acquisition completed, the multi-channel data segmented 

into pieces of 1000 samples. Then for all channel segments, a prior test was applied to 
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decide automatically whether there exists at least one channel that is characterized by 

the existence of crackles. Only segments with some evidence of the existence were 

inputted to the source separation algorithm (namely, basic independent component 

analysis (basic ICA)). Outputs of ICA were in turn tested to decide which one of them is 

the true crackle source signal by an evaluation of the mixing coefficients in a center of 

weights approach. Lastly by the use of a Bayesian classifier, the algorithm performed an 

accuracy value of 85%.  

In 2011, Shuiping at al. (Shuiping, Zhenming, & Shiqiang, 2011) proposed their 

algorithm for the design and implementation of an audio classification system with 

support vector machines (SVM). The main aim of this study is seperating the music 

based audio clips from the data based voice clips with the use of both time and 

frequency features within a given data base. In the experiment, the original audio 

repository included 2500 clips, where the 1200 clips are voice data and the resting 1300 

clips are music clips. 800 voice clips and 800 music clips were chosen for the training 

set. The rest 300 voice clips and 400 music clips were used as the test set. First the 

audio clips were segmented into smaller window chunks in the data pre-processing step. 

Then the authors used Short-Time Average Zero-Crossing Rate (STAZCR) and Short-

Time Energy (STE) algorithms for deriving the time domain features. Next, the centroid 

of audio frequency spectrum (CAFS), Sub-Band Energy (SBE) and “ both the mean and 

variance” of mel frequency cepstral coefficents (MFCC) were used as frequency 

domain characteristic parameters. By forming the extracted features together, a SVM 

based audio classification system has been designed. Results of the study shows that a 

classification accuracy of 92% has been achieved with the choosen feature sets. This 

work has an importance of combining both the time domain and frequency domain 

features into the same fature vector, and the experiment shows that the results are quite 

promising. 

In 2012, Ai et al. (Ai, Hariharan, Yaacob, & Chee, 2012)  proposed a study for the 

classification of speech dysfluencies with the use of MFCC and LPCC features. For 

constructing the repository 39 speech samples were taken from the University College 

London Archive of Stuttered Speech (UCLASS). Content of the speech samples are 

‘‘One more week to Easter’’ and ‘‘Arthur the rat’’ (90% of these are mono-syllable 

words). The two types of dysfluencies in stuttered speech such as repetitions and 
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prolongations were identified and segmented manually by listening to the recorded 

speech signal. The segmented speech samples were down sampled from 44.1 kHz to 16 

kHz for speech pre-processing purpose because most of the salient speech features are 

within 8 kHz bandwidth. The sampled speech signals were pre-emphasized with a 

simple first order high pass filter for the purpose of evening the spectral energy 

envelope by amplifying the importance of high-frequency components and removing 

the DC component in the signal. The pre-emphasized signal was divided into short 

frame segment using Hamming window. Later two speech parameterization techniques 

were applied to each window, namely, MFCC and LPCC to derive the frequency 

domain feature vectors. In the study, 25 MFCCs and 21 LPCCs were extracted to 

discriminate the two types of dysfluencies. For further analysis, three parameters were 

varied such as; frame length changed from 10 to 50 msec. with adjusting overlapping 

window between no overlap (0.0%), 33.33%, 50% and 75% and a value of the first-

order pre-emphasize is varied from 0.91 to 0.99. For the classification purpose two 

classifiers were used, namely, k-Nearest Neighbor (kNN) and Linear Discriminant 

Analysis (LDA). Conventional validation was performed with 70% of data and 30% of 

data used for testing. Data in both testing and training sets were normalized in the range 

[0, 1] and shuffled randomly. As main result, derivation of the feature vector by LPCC 

slightly outperformed MFCC in all situations. The best configuration of 21 LPCC 

features has shown the best accuracy of 94.51% where the optimal configuration of 25 

MFCC features has presented the best accuracy of 92.55%. This work has such an 

importance that, the replacement of feature extraction algorithm MFCC by LPCC 

improves the output accuracy of the classification process both for the kNN and LDA 

classifiers. 

From the richness point of used algorithms, a more comprehensive study was 

proposed by Prof. Dr. Mohammed Bahoura (Bahoura, 2009) for the respiratory sounds 

classification into normal and wheeze classes. In this study, the feature extraction 

methods and the modeling techniques which have been proposed in last two decades to 

classify respiratory sounds were presented and various combinations of these methods 

were compared using receiver operating characteristic (ROC) curves. The feature 

extraction methods based on, Fourier transform (FT), linear predictive coding (LPC) -  

which is also called auto-regressive (AR) modeling, wavelet transform (WT) and mel 

frequency Cepstral coefficients (MFCC) in combination with the classification methods 
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based on, vector quantization (VQ), Gaussian mixture model (GMM) and artificial 

neural network (ANN) were evaluated. Also the use of an optimized threshold to 

discriminate the wheezing class from the normal one was proposed. Finally, a post-

processing filter was suggested to considerably improve the classification accuracy. The 

sound database was constructed from real respiratory sounds obtained from various 

sources such as; sounds that recorded on healthy and asthmatic patients, the R.A.L.E 

database CD, the ASTRA database CD, and various internet sites of laboratories 

working in the field. To ensure a digitizing standard all sounds were down sampled to 

6000 Hz and normalized in amplitude. The normal class was obtained from sounds 

recorded on 12 healthy subjects, while the wheezing class was obtained from sounds 

recorded on 12 asthmatic subjects. The wheezing sounds were manually pre-processed 

in order to eliminate eventual non-wheezing segments with Adobe Audition software by 

listening and visualizing their spectrograms. Then the sounds were uniformly divided 

into 50% overlapping segments consisting of 1024 samples each and Hamming window 

was applied to all segments respectively. The training and testing phases were 

performed on these respiratory sound segments. As a main point of the study, the 

presence or absence of wheezes in the tested segment was queried, not their number nor 

their frequencies. In the training phase, sounds recorded on 11 subjects of each class 

were used while the sound recorded on the remaining one was used in the recognition 

phase. This process was repeated for each sound with leave-one out method. The 

obtained result has shown that, the proposed approach B-MFCC with GMM 

outperformed all other commonly used methods with a correctness of 91.9%. A 

significant performance improvement was obtained by smoothing the score function by 

reducing false detections. Also the author stated that the proposed system could be used 

to quantify the severity of airway obstruction by computing the proportion of the 

respiratory cycle occupied by wheezing. 
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CHAPTER 3 

MACHINE LEARNING ALGORITHMS 

The field of machine learning concerns the computer programs as well the design 

and realization of concrete algorithms that can imitate the learning behavior of human. 

The main aim for the scientists is to make the computers think like human beings. For a 

more formal definition, machine learning is a branch of artificial intelligence which 

includes many related disciplines such as pattern recognition, data mining and neural 

networks. As witnessed in recent years, chess playing computers, target tracking 

missiles, walking robots, self-flying planes and automatic answering machines can be 

listed as some products of the studies in the field.  

The most fundamental concept of machine learning is the process of learning. The 

studies on the human and animal learning structure are the main guidelines for the 

machine learning algorithms. With a closer view, learning (Alpaydin, 2009, pp. 4-43) is 

an interaction between the learning agent and the environment with or without the help 

of a teacher. Basically the learning process can be categorized as; supervised learning 

(teacher assisted), unsupervised learning (non-assisted learning), reinforcement learning 

(feedback from rewards) and transduction.  

For a better sense, some examples can be given for each learning paradigm. In 

supervised learning, the agent is first trained by a training set where this process is 

called as the training phase. And in the test phase the agent is expected to answer the 

questions that were never seen before. Classification algorithms are the specific types of 

supervised learning paradigm. In unsupervised learning the agent is not trained with a 

training set but expected to answer the questions by its own findings. Clustering 

algorithms can be given as the examples of this type of learning where some similarity 

measures are used by the agent to distinguish between the query points. 
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In reinforcement learning the agent first acts and then receives a feedback from 

the environment and then by the help of this interaction it discovers the answer. This 

paradigm can be regarded as learning from the experiments by positive rewards. Lastly 

in the transduction, the agent is first trained by a training set and then expected to 

answer “just some questions” in the test set. At that point making a generalization is not 

the desired aim where the induction, the reverse of transduction, oppositely aims 

making generalizations from a set of observations. 

 

 

Figure 3.1 Basic elements of a supervised learning process. 

 

There are also models of learning which consider more complex interactions 

between a learner and the environment. The simplest case is when the learner is allowed 

to query the environment about the output associated with a particular input. The study 

of how this affects the learner's ability of learning different tasks is known as the query 

learning. In learning models another type of variation is the way in which the training 

data are generated and how they are presented to the learner. For example, there is a 

distinction made between the batch learning (in which all the data are given to the 

learner at the start of learning), and the on-line learning (in which the learner receives 

one example at a time and gives its estimate of the output before receiving the correct 

value). In on-line learning the agent updates its current hypothesis in response to each 

new example and the quality of learning is assessed by the total number of mistakes 

made during learning (Cristianini & Taylor, 2000).  
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3.1 LINEAR CLASSIFIERS 

A learning machine using a hypothesis that forms the linear combinations of the 

input variables is known as the linear learning machine. A linear learning machine 

produces an output model by simply evaluating the linear combinations of the input 

variables. This process can be regarded as drawing a straight and non-flexible line 

within the observed data. Basically an algorithm that maps all its input points to a 

linearly separated dimension is called a linear function. 
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A linear function f(x,) is frequently used for binary classification such that: if the 

sum (3.1) is greater than zero, then assign the multidimensional vector x to the positive 

(+) class, else assign it to the negative (-) class (3.2). The basic geometric interpretation 

of the linear classification is as follows: 

 

 

Figure 3.2 Linear classification - geometric interpretation 

 

+ 
+ 

+ 

+ 
- 

- 

𝑏

 𝑤 
 

 

𝑤 

𝑥𝑖 



16 

 

3.1.1 Perceptron 

The problem for the linear learning machines is that, the agent needs a linear 

function to discriminate between the output classes to perform the reasoning. To fit a 

linear function then the problem turns into finding some new coefficients, namely, 

weight vector (w) and the adjusting bias (b). To solve the problem of manual adjustment 

of the parameters, a self-adjusting solution should be found. In the machine learning 

literature, one of the older approaches to the problem is called the perceptron algorithm 

which was proposed by Frank Rosenblatt, an American psychologist, in 1956.  

Mainly the perceptron was first proposed (Rosenblatt, 1962) as a model to the 

nerve cells in retina. In the original Rosenblatt model the computing units are threshold 

elements and the connectivity is determined stochastically. Learning takes place by 

adapting the weights of the network with a numerical algorithm. Rosenblatt’s model 

was refined and perfected in the 1960’s and its computational properties were further 

analyzed in details by Minsky and Papert (Minsky & Papert, 1969).  
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The single layer network, namely perceptron, represents a linear discriminant 

function. Given by the equation (3.3), the separation between two target classes is a 

straight line. The weights determine the slope of the line and the bias determines how 

far the line is from the origin (3.4). As a disadvantage, the perceptron doesn’t care the 

optimal separability while drawing the separation line between the target classes, 

leading the separation line to be closer to one of the class samples rather than keeping 

the border equal to each side.  
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3.1.1.1 Perceptron Learning Algorithm 

As being learning machines, perceptron’s can learn as well. As a fundamental part 

of the structure, the Data is kept within the weights of the perceptron. For each given 

new input vector;  ⃗   {          } the inner weights;  ⃗⃗⃗   {          } are 

updated upon a learning algorithm. In that manner the learning occurs with the 

correction of the weights with the use of a given training set. This learning type is 

clearly supervised learning.  

 

           (3.5) 

           (3.6) 

 

Learning algorithm for the perceptron is called the 'perceptron learning rule’ 

which is an iterative procedure that adjusts the weights. First a learning sample is 

presented to the network and then depending on the produced error the new weight 

value is computed for each weight by adding a correction amount to the old value (3.5). 

The threshold is updated (3.6) in a same way (Kröse & Smagt, 1996) as follows: 

 

 

Figure 3.3 Perceptron learning algorithm. 
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3.1.2 Adaline  

An important extension to the Rosenblatt’s classical perceptron is “Adaptive 

Linear Element” ADALINE (Widrow & Hoff, 1960) which was proposed by Prof. 

Widrow and his graduate student Ted Hoff at Stanford University in 1960. It is 

inherently based on the McCulloch–Pitts logical threshold unit and the perceptron. The 

Adaline is consisted of a weight, a bias and a summation function. The main difference 

between Adaline and the Rosenblatt’s classical perceptron is that, in the learning phase 

the weights are adjusted according to the continuous raw outputs. In the classical 

perceptron, the output is first passed to the activation function (signum) and the 

function's output is used for adjusting the weights. Thus it can clearly be said that the 

Perceptron has binary output, where the Adaline algorithm has continuous valued 

output during the training process. The visual representation of the Adaline (Widrow & 

Hoff, 1960, p. 102)  is as follows: 

 

 

Figure 3.4 The Adaline - circuit representation. 

 

The purpose of the Adaline device is to map a given value y to a desired class, 

consisting of +1 or -1, at its output when a set of vector values are applied to its inputs. 

The problem is the determination of weights in such a way that the input-output 

response is correct for a large number of arbitrarily chosen signal sets. If an exact 

mapping is not possible, at least the closest result should be derived which minimizes 

the average error.  
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3.1.2.1 Delta Rule (LMS) 

For the Adaline, Widrow introduced the delta rule which is a self-adaptive 

learning process used for adjusting the weights during the training phase. 

 

   ∑  .   

 

   

 Actual output for pattern p (3.7) 

         Error (3.8) 

           Stop criteria (3.9) 

            Weight update rule (3.10) 

     .  .    Weight correction value (3.11) 

 

According to the least mean squares (LMS) algorithm, with another saying delta 

rule, first some random weights are assigned to the system. Then for a given input 

vector ( ⃗), the actual output is computed according to (3.7). Next, the error which is the 

difference between the desired output and actual output is computed (3.8).  If the stop 

criterion is not met then the weight vector ( ⃗⃗⃗) is updated according to (3.10) with 

respect to the weight correction values stated in (3.11).  

Training continues until the stop criterion (3.9) is met for each pattern. In practical 

use the error may not be absolute zero. For that reason stop criterion is checked by the 

comparisons of the squared error with a given closeness measurement. LMS rule 

assumes the squared error to be as small as possible.  

While computing the weight correction value as a second important point, a 

percentage of the error is taken into consider for each training step. This ratio is simply 

named as Eta ( ), which is also known as the “step size” in control theory and the 

“learning rate constant” in machine learning community. Since the eta is between 0 and 

1, the adjustment of eta is an optimization problem that directly affects the number of 

training cycles and the convergence of the learner. 
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3.2 NEURAL NETWORKS 

Neural networks are supervised classifiers that are mostly used for nonlinear 

classification. They inherit the working dynamics of biological nerve cells which are 

called neurons. In electrical and computer engineering for emphasizing the distinction 

between the biological nerve cells and the computational neurons, these networks are 

called artificial neural networks (Haykin, 1998). Since the mechanism of the brain is not 

fully understood, ANN’s are just some abstractions to biological studies. 

 

 

Figure 3.5 A neural network with a single hidden layer. 

 

Since the structure is called a network, the neurons are organized within a specific 

wired architecture. The system accepts a feature vector at its input as input layer and the 

classification results are produced at the nodes of the output layer. Up to the design, 

there can be hidden layers between the input layer and the output layer for enhancing 

and optimizing the classification results. Starting from the input layer, within a directed 

graph, each node is connected to succeeding layer’s individual nodes with a single line 

which represents the weights, where in the biological nerve model the location of the 

information is in the strength of the connection between the dendrites and axons, 

namely synapses. There are no connections within a layer. This one-to-all connection 

paradigm continues until the last hidden layer. From each last hidden layer node to each 

output layer node, the connection is done in a same “one-to-all” wiring paradigm. 
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For ANN’s, the number of hidden layers and the number of nodes for each hidden 

layer is totally abstract. Actually any artificial neural network is valid as long as it has 

an input layer and at least one node in the output layer. There is no golden rule stating 

any concrete design criteria for the architecture. Choosing optimal number of hidden 

nodes per hidden layer is one of the most difficult problems when using NN’s. Upon the 

practitioner’s observations on the classification accuracies of the training set, the 

number of hidden layers and corresponding internal node amount is determined 

experimentally. Using too few hidden nodes may result to under fitting, pointing to the 

fact that the learning process of the target function couldn’t be achieved. Or the best 

result is achieved without using too many hidden nodes. Sometimes as a result of using 

too many nodes the over fitting may occur, meaning that the network has just 

memorized the training set rather than learning the patterns in it. What is clear for the 

network is the number of output nodes. Since the output nodes determine the 

classification result, exactly one output node is needed for each class label.  

 

 

Figure 3.6 Geometric representation of linear separability problem. 

 

Any question for the need of a hidden layer is answered by Minsky and Papert in 

their 1969 book Perceptrons (Minsky & Papert, 1969). As a simple sum up, the 

problem with the classical perceptron is the linear separability problem (Kröse & 

Smagt, 1996, p. 29), which is also known as XOR problem. A single perceptron can 

classify the outputs of primitive Boolean functions since they are linearly separable. For 

the XOR problem at least two perceptrons are needed since the separation of the input 

space needs two distinct lines. That can be achieved by using a hidden layer consisting 

of two nodes in between the input and output layers (Mitchel, 1997).  
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3.2.1 Activation Functions 

The main aim of an activation function is scaling the output into a proper range. 

Each neural network node uses an activation function to produce their scaled output 

from the computed raw outputs with the use of a nonlinear function. As a part of the 

architecture the selection criterion of the activation function is abstract. Many different 

types of non-linear continuous functions can be used for the architecture (Duch & 

Jankowski, 1999). In basic terms, differentiability is the main requirement for an 

activation function to satisfy. The sigmoid (3.12) and hyperbolic tangent (3.13) 

functions can be given as examples to continuously differentiable and nonlinear 

activation functions which are mostly used in multilayer perceptrons. 
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For the sigmoid function the constant parameter   can be selected arbitrarily and 

its reverse,     is called the temperature value in stochastic neural networks. The value 

of   determines the shape, so called the sharpness of the sigmoid function. Higher 

values of   brings the shape of the sigmoid closer to step function. In theory   can take 

values between the ranges    to   . For the limit     the sigmoid converges to a 

pure step function at the origin and for the limit       the sigmoid converges to a 

straight line which can be denoted by   
 

 
. To simplify the overall computations 

taking     is possible for the sigmoid activation functions. 

One important point for the sigmoid functions is that they only return positive 

outputs. If the neural network is desired to return negative values then sigmoid function 

would be unsuitable. For that reason it can be replaced by hyperbolic tangent functions. 

Simply hyperbolic tangent function is the replacement of the sigmoid function into a 

region of the graph where it can return values less than zero. 
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3.2.2 Back Propagation Algorithm 

Back propagation algorithm is the learning process of the artificial neural 

networks. Simply the main idea behind the process is first comparing the output of the 

system with a given target to derive the error and then distributing the output layer’s 

error gradually back to the hindmost hidden layer. Since the network collectively 

produces the error which is experienced at the output, the algorithm considers each 

node’s contribution on this unwanted result. From the point of application, the back 

propagation algorithm can be regarded as a generalized version of the delta rule (the 

LMS algorithm) and it can be used with any feedforward network having a 

differentiable activation function. 

While training the neural network there are two basic steps which can be 

expressed according to the direction of the data flow. The data flow in a neural network 

is bidirectional. The first direction is from input layer to output layer which is in 

feedforward manner. We can name this process as the forward-pass. The second 

direction is from output nodes to the first hidden layer which is in a feedback manner. 

Similarly we can name this process as the backward-pass. Each forward-pass is 

followed by a backward-pass during the training procedure.  

In the forward-pass, to train the neural network, first the weights in the network 

are assigned some small random values and then the network is fed with samples from 

the training set. In a cross distribution manner each feature of the input vector is 

represented to all nodes of the subsequent layer. The subsequent layer nodes receiving 

the stimulus first multiply their weights with the given feature values and then sum 

them together to form the raw output. Then this raw sum is passed to the inner 

activation function to produce the scaled final output. The procedure is repeated until 

the output layer where the classification occurs. For each output node’s stimulus, there 

is a numeric target denoting the target class value. At that point the error can simply be 

defined as the difference between the desired value and the actual output.  

As a standard, the back propagation algorithm uses mean squared error (3.14) to 

evaluate its output. With the determination of the network’s error, the first pass is 

completed if the found error meets the criterion of a predefined range. Assuming that 
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the activated output from        is    but should be     then the mean squared error 

(MSE) can be defined as: 

 

(   )   
 

2
(     )

  (3.14) 

 

The back propagation algorithm aims to keep the output error as small as possible.  

To ensure this aim, in the backward-pass, the error is propagated back from the 

foremost layer nodes to hindmost hidden layer nodes. Each node receiving its individual 

error, updates its weights with the basic weight update rule (3.15) defined by the back 

propagation algorithm. 

 

       
  

    
 (3.15) 

 

Considering a simple neural network, where the node i is an output node, node j is 

a hidden layer node and the node k is an input node;      is the weight between 

                   and      is the weight between                  . Similarly the 

node outputs are             . The activation functions are              and the 

desired outputs are also             . 

 

 

Figure 3.7 A simple neural network branch. 

  node k node j node i 

𝜔𝑘𝑗 𝑦𝑖 𝜔𝑗𝑖 

𝑦𝑘 𝑦𝑗 
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To adjust the weights back propagation algorithm assumes two cases for 

determining the weight update equations. Upon this assumption a node can be an output 

or a hidden layer node. In the first case, for an output node i, the weight update rule can 

be expressed with (3.20), if the (3.17), (3.18) and (3.19) are put in the equation (3.16). 
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  (3.20) 

 

In the second case, for a hidden layer node j, the weight update rule can be 

expressed as (3.26), if the (3.22), (3.23), (3.24) and (3.25) are put in the equation (3.21). 
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3.3 SUPPORT VECTOR MACHINE 

Support Vector Machines (SVM’s) are the learning systems that aim to find the 

largest separation margin within an observed data set. Their learning algorithm is based 

on optimization theory that implements a learning bias derived from statistical learning 

theory. Support vector machine classifiers are first introduced by Vapnik (Cortes & 

Vapnik, 1995) and it is a principle and a powerful method with its usage over many 

classification tasks.  

For binary classification implementing a SVM means finding the variables   and 

  so that the training data can be described by: 

 

            for,        (3.27) 

            for,        (3.28) 

  (      )          
 (3.29) 

 

The points that are closest to the separating hyper-plane are considered as support 

vectors   . If two planes    and    are the outer borders of the hyper plane where the 

support vectors lie on, then these planes can also be described by the below equations. 

 

            for,    (3.30) 

            for,    (3.31) 

 

If     and    are defined as the distances from   and    to the hyper plane 

respectively, this two distances must be equal. So       distance gives us the SVM’s 

margin. In order to keep the hyper planes as far as from the Support Vectors possible, 

this margin should be maximized. The margin is equal to 
 

   
 and maximizing it is equal 

to finding: 

 

       s.t.   (      )          
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Minimizing     is equivalent to minimizing 
 

 
     and the use of this term 

makes it possible to perform quadratic programming (QP) optimization. We therefor 

need to find: 

 

   
 

2
     such that,   (      )          (3.32) 

 

To handle the constraints in the minimization, we need to allocate them positive 

Langrange multipliers, denoted by  . 
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 (3.35) 

 

As the next step, the coefficients  ,    and   should be found which minimizes 

the equation (3.35). This can be achieved by taking the differential equation of    with 

respect to   and  . 
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Putting (3.36) and (3.37) into the equation (3.35) gives a new formula (3.38) that 

should be maximized which is dependent on   rather that   and  . 
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    (3.40) 

 

In this new formulation schema    is referred to as the Dual form of the 

Primary   . Dual form requires only the dot product calculation of each input vector    . 

For maximizing    instead of minimizing    we need to find: 
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    ] for,           and ∑    

 

   

    (3.41) 

 

This is called a convex quadratic optimization problem. This problem can be 

solved with a QP solver to derive the  . Then by putting the   in the equation (3.36) we 

can get the  . The next step is the calculation of the second coefficient  .  

Any data point satisfying (3.37) will simply have the form   (      )   . 

Taking   from (3.36) and putting it in equation    (      )    gives: 

 

  ( ∑            
 ∈ 

 )    

 



29 

 

In the equation S denotes to the set of indices of the Support Vectors. S is 

determined by finding the indices   where     . Multiplying through by    and then 

using   
    from (3.27) and (3.28) we can get the  : 

 

  
 ( ∑            

 ∈ 

 )     

     ∑          

 ∈ 

 

 

Instead of using an arbitrary Support Vector   , an average over all of the Support 

Vectors in S can be taken as: 

 

   
 

  
 ∑(   ∑          

 ∈ 

)

 ∈ 

 (3.42) 

 

So with the above equation the variables   and   define the optimum separating 

hyper plane (Fletcher, 2009) and each new point    can be classified by evaluating the 

equation       (      ). 

 

3.4 NAIVE BAYES CLASSIFIERS 

To understand the underlying dynamics of Bayesian learning machines, first the 

Bayes theorem should be understood. Basically given a set of data   {    .    } the 

learning task is to uncover properties of the distribution from which the observed set is 

constructed. Bayes rule is a technique to estimate the likelihood of a property given the 

set of data as evidence, supposing    is an observable event, ℎ  and ℎ  are hypothesizes 

that may occur where ℎ     ℎ  cannot occur together. Then Bayes rule states: 

 

 (ℎ    )  
 (   ℎ ) (ℎ )

 (   ℎ ) (ℎ )   (   ℎ ) (ℎ )
 (3.43) 
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Here  (ℎ    ) is called posterior probability, while  (ℎ ) is the prior probability 

associated with hypothesis ℎ .  (  ) is the probability of the occurrence of data value    

and  (   ℎ ) is the conditional probability that, given a hypothesis, the observation 

satisfies it. When there are    different hypotheses then we have (3.44) and in the most 

common form it is equal to the (3.45). 

 

 (  )  ∑ (  |ℎ ) (ℎ )

 

 

 (3.44) 

 (ℎ    )  
 (   ℎ ) (ℎ )

 (  )
 (3.45) 

 

A naive Bayes classifier is a linear classifier which is based on applying the Bayes 

Rule of conditional probability among the features of an observed sample. In this 

assumption, the presence or absence of a feature doesn’t affect or is not affected by the 

presence or absence of other features and the contribution of each feature to the 

classification result is equal. Because of its naive assumptive nature, these classifiers 

need only the mean and variance of the variables to estimate the parameters needed for 

the classification. For that reason, since the learning schema is supervised, in the 

training phase a small amount of data is mostly enough for the classifier.  

When classifying a tuple, the conditional and prior probabilities generated from 

training set are used to make the classification (Dunham, 2002, pp. 92-97). Supposing 

that tuple    has    independent feature values {         .     }, since we 

know  (   |  ), for each class     and feature    , then we can estimate   (  |  ) by: 

 

 (  |  )  ∏ (   |  )

 

   

 (3.46) 

 

The naive Bayes approach has its own advantages. First it is easy to use. Second 

only one scan of the training data is required where sometimes there are cases that 

attributes are not independent meaning to unsatisfactory results for Bayes classifiers.  
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3.5 ENSEMBLE ALGORITHM 

The ensemble learning is a machine learning algorithm that aims to combine 

“multiple base-learners” to learn the environment from their collective reasoning. The 

ensemble algorithm is not a standalone title in the machine learning family as it inherits 

the fundamental concepts of supervised learning. Since the algorithm is a type of 

supervised learning the prediction mechanism, which is the agent, should first be trained 

with a training set and then it can be used to make reasoning for a given new case. At 

that point, the main difference with the classical supervised mechanism is that, the 

trained agent is not a singular entity; rather it is a collection of the same or different 

base-classifiers.  In such an environment a strong learner can be constructed from many 

relatively weak learners. There can be many methods (Alpaydin, 2009, pp. 419-442) or 

different ideas for combining multiple learners. Most fundamental methods can be listed 

as; random subspace method, bagging (aka Bootstrapping), boosting and cascading. 

 

3.5.1 Random Subspace Method 

If the input set has one multiple feature vector per sample, then by choosing 

random subsets of the vector features we can train multiple learners with different 

feature sets. Thus each “same base-learner” can look at the same problem from different 

points where this method is called as the random subspace or Ho’s method. 

 

3.5.2 Bagging (Bootstrapping) 

For a given input set if we subgroup the input vectors rather than constructing 

features subgroups, then this method is called as the bagging or bootstrapping.  

 

3.5.3 Boosting 

In boosting algorithm, the collection of base-learners is built upon the 

misclassification results of former collections where in bagging this is done by chance. 



32 

 

3.6 DECISION TREE BASED CLASSIFIERS 

Decision tree (DT) based learning approach is mostly used in classification tasks. 

Within this technique the main aim is the construction of a tree structure to model the 

classification process. As a simple notation, decision trees are the hypotheses that 

iteratively apply a divide and conquer technique to split the problem search space into 

smaller subsets. The root node of the tree is at the top where the sub nodes are 

connected to it by the arcs. The root and each internal node in the tree are labeled with a 

question and the arcs represent the answers to that question. The connections continue 

until the leaf nodes where the final prediction to the problem is represented. A decision 

tree building algorithm (Dunham, 2002, pp. 86-89) can be given as: 

 

Input :                   

Output :                   

 

DT-Build algorithm : 

       

                                  

                                 ℎ                       

                               ℎ                             

 

       ℎ           : 

                                   

    (                    ℎ        ℎ        ) 

                                   ℎ                     

      

            ( )   

                   

end for. 

 

Exit algorithm. 

 

If the size of the training data is  , and the number of attributes is ℎ   then the time 

complexity of DT algorithm to build the tree can be regarded as   ( ℎ       ).  



33 

 

3.6.1 Random Forest  

The Random Forest (RF) algorithm was first developed by Leo Breiman and 

Adele Cutler as a supervised ensemble classification algorithm. The word ‘forest’ is 

used in the name of the algorithm to state that rather than using a single decision tree, 

the random forest algorithm uses a group of binary decision tree’s that can be called as a 

forest. The word ‘random’ indicates that this forest is constructed from the random 

subsets of the main training set with replacement, more formally, with bootstrapping. In 

a practical application upon the training set size, a random forest can be built from ten 

to thousands of discrete decision trees. Most of the nonlinear classification tasks can be 

achieved by the random forest classifiers. The random forest algorithm is most suitable 

for the cases where the training set is too large or the number of the variables for each 

vector is too many.  

A random forest algorithm is consisted of two distinct phases. In the first phase 

the forest structure is constructed from the random subsets of the labeled main set. This 

phase can be named as the training phase. For a classification task let’s assume that we 

have a population of N vectors in hand and aim to construct a random forest with ‘n’ 

number of decision trees. To construct the forest structure first we randomly choose ‘n’ 

number of subsets of the main dataset. While the subsets are being chosen, the 

replacement is applied for each new step. That simply means that the subsets are free to 

be similar. Thus each decision tree in the forest is grown based on the randomly chosen 

n subsets.  As a second parameter, the number of variables can be restricted to a 

constant number. Thus the variables between the subsets can be different while keeping 

them same within each subset. For both cases the best splitting criteria of the district 

trees is determined by the randomly chosen subset vectors. While growing the trees, no 

pruning is done to the decision trees to ensure each tree can fully grow. 

In the second phase, the constructed forest structure is used to predict an 

unlabeled vector’s class. This unlabeled vector is such a one that the forest has never 

seen before. This phase can be simply named as the testing phase. The unlabeled vector 

is classified with each decision tree in the forest. The classification result of each district 

tree is called as the vote. Thus rather than a single decision tree, the final classification 

is done upon the majority of the votes by the forest. 
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3.7 DISTANCE BASED ALGORITHMS 

The main idea behind the distance based classification algorithms is that, a 

pattern within a class is more alike to those which are in the same class rather than to 

else in other classes. So if a distance metric is defined between two points then a 

dissimilarity measure can be found for each given query points. 

Mostly two distance metrics are used for determining the distance between the 

two multidimensional points, namely, Euclidean distance (3.47) and the Manhattan 

distance (3.48). For given two vectors      〈      .     〉 and       〈      .     〉 

Euclidean and Manhattan distances can be given as: 

 

             (       )  √∑(       )
 

 

   

 (3.47) 

       ℎ     (       )   ∑|       |

 

   

 (3.48) 

 

With the given proximity metrics, the basic classification task for a distance based 

algorithm is first finding the distances from a given point to all possible destinations and 

then assigning the given point to the closest group. 

 

3.7.1 k-NN Algorithm 

The k-Nearest Neighbor (kNN) algorithm is a nonlinear classification algorithm 

which mainly aims to classify a given point by regarding the distances from that point to 

all other neighbors. The main criterion for the classification is the majority of the 

neighbor labels where the letter “k” is a user defined constant denoting to the number of 

the neighbors that will be taken into account while making the classification. From the 

point of applicability, the k-Nearest Neighbor algorithm is considered as the simplest 

among all other machine learning algorithms. 
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The algorithm is mainly consisted of two phases which are the training and the 

test phases. The training examples are multidimensional vectors and they also contain 

the class labels. In the training phase all given training set is mapped into the memory 

and no any other process is done on this mapped data structure. Thus it is clear that the 

training phase doesn’t need any weight update or other mathematical procedures where 

most of the work is done in the test phase. Since the mapping of the training set into the 

memory doesn’t need any special effort, this algorithm is mostly called as lazy learning 

in machine learning community. 

After the mapping process of the training examples is complete, the test phase 

starts for the classification of the target vectors. As the first step of the test phase, a 

distance table is constructed where the table contains; the indices of all mapped vectors, 

distance values from given vector to each vector and the vector labels (each in separate 

columns).  As the second step the table is sorted up to the distance values column in an 

ascending order. Thus the topmost distance is the minimum distance which indicates the 

closest member of the mapped set to the tested vector. As the last step of the test phase a 

user defined constant value “k” is used to pick the k amount of closest neighbors for the 

classification. The constant k can take any values between one and the number of the 

vectors in the memory. The result of the classification is determined by the majority of 

the k nearest neighbor labels. If the k is one, then the classification result is the label of 

the topmost vector in the table. In most applications the classification result is directly 

affected by the constant k and choosing a high value for the k means more 

generalization. 
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CHAPTER 4 

DIGITAL SIGNAL PROCESSING METHODS 

Digital signal processing (DSP) is mainly used for time-frequency 

transformations. In time domain a periodic sinusoidal signal has a repeating “shape 

pattern”. So within a period the signal is represented with multiple output values 

according to time axis input values. In the “frequency domain” the same signal can 

simply be represented with a constant frequency value regardless of the signal duration. 

The constant frequency value shows the number of cycles the periodic signal achieved 

during its active state. Thus there can be a way to represent multiple overlapping time-

domain signals separately in the frequency domain with the use of time-frequency 

transformations as long as the overlapping signal frequencies are different. 

As being one of the most used DSP algorithms, this chapter basically aims to 

review the theory and the inner dynamics of the Fourier analysis process with the 

technical details of the unique computable Fast Fourier Transform (FFT) algorithm. 

Besides the FFT algorithm the theory of all other non-computable Fourier family 

members are also reviewed within the corresponding titles. 

 

4.1 FOURIER ANALYSIS OF SIGNALS 

The Fourier analysis is one of the most used digital signal processing (DSP) 

techniques for analyzing the signals in both time and frequency domains and it is named 

after Jean Baptiste Joseph Fourier (1768-1830), a French mathematician and physicist. 

The method is first proposed for the use of sinusoids to represent temperature 

distributions in heat propagation where today the theory is applied onto many different 

branches of engineering and science. The main aim of the Fourier analysis is defining 
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the periodic waveforms in terms of trigonometric functions (sine and cosine) and 

transforming them in-between the time and frequency domains.  

In the Fourier analysis a signal is considered as a type of four forms (Smith , 

1997, pp. 141-146). From the point of sampling, a signal can be continuous or discrete 

where this signal can be periodic or aperiodic in terms of the repeated shape. Each of 

the four possibilities is under the interest of Fourier analysis and represented with 

different titles in the Fourier family. This organization can be viewed as follows: 

 

 

Figure 4.1 The basic Fourier family tree. 

 

4.1.1 Continuous and Discrete Time Signals 

To better understand the Fourier analysis, first the signals that are subject to the 

Fourier process should be understood. Signal processing deals with two kinds of time 

varying signals which are named as analogue and digital. Thus the signal processing is 

divided into two categories, namely, “analogue signal processing” and “digital signal 

processing”. In a continuous (analogue) signal, the signal is a function of infinite time 
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variants. The waveform is continuous in time and can take on a continuous range of 

amplitude values. The discrete-time signals are a special form of the continuous signals 

where the independent time variable is quantized so that the value of the signal at 

discrete instants in time is known. As a result of the quantization the discrete time 

signals are not represented by continuous waveforms where the representation is by 

discrete sequenced values.  

 

4.1.2 Fourier Series 

The Fourier series is used for expanding a continuous periodic signal into a linear 

combination of sine and cosine waves. The calculation or the study of Fourier series is 

also known as the harmonic analysis. A similar idea in mathematics is the Taylor series 

where a function is expanded into infinite series of powers. If a function f(x), with 

period 2π, is absolutely integrable on [−π, π] and continuous, then the Fourier series of 

the function f(x) is as follows: 

 

 ( )  
 

2
   ∑      (  )

 

   

 ∑      (  )

 

   

 (4.1) 

 

 ℎ        
 

 
∫ ( )  

 

  

 (4.2) 

    
 

 
∫  ( )    (  )   

 

  

 (4.3) 

    
 

 
∫  ( )    (  )   

 

  

 (4.4) 

 



39 

 

4.1.3 Fourier Transform (CTFT) 

Fourier transform is the process of converting a signal from time domain into the 

frequency domain where the inverse Fourier transform expresses a frequency domain 

function in the time domain. Since the transform is applied onto the continuous signals, 

this method is also called as the continuous time Fourier-transform (CTFT). The method 

can be regarded as the decomposition of non-periodic functions into Fourier 

components and it is a generalized form of complex Fourier series.  

 

 ( )  ∫  ( )

 

  

          (4.5) 

 ( )  ∫  ( )

 

  

         (4.6) 

 

In the above equations, the forward Fourier transform (4.5) is denoted by  ( ), 

where the inverse Fourier-transform (4.6) is denoted by  ( ). Fourier transform is 

mostly used in solving differential equations since it is closely related to Laplace 

transformation. 

 

4.1.4 Discrete Time Fourier Transform (DTFT) 

In Fourier analysis, the discrete time Fourier transform (DTFT) is a specific type 

of transformation that is used for transforming a ‘discrete and aperiodic’ time domain 

signal in a continuous frequency form. Since the computers cannot handle continuous 

frequency data, DTFT is practically not computable but it provides a theoretical basis 

for the Z transform. If   ( ) is absolutely summable, then the DTFT is: 
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4.1.5 Discrete Fourier Transform (DFT) 

The discrete Fourier transform (DFT) is used to transform the “periodic and 

discrete time signals” into the frequency domain. Since the DFT requires its inputs to be 

discrete and finite, it is the unique “computable algorithm” where the other members of 

the Fourier analysis are non-computable due to their infinite input needs. Literally, 

given the time domain signal, the process of calculating the frequency domain is called 

decomposition, analysis, forward DFT or simply DFT, where the calculation of the time 

domain from a given frequency domain is called synthesis or inverse-DFT. 

 

Time Domain 

  

Frequency 

Domain 

 

 

 

Figure 4.2 The schema of the forward and inverse DFT. 

 

There are two types of DFT from the view of representation, namely, real-DFT 

and complex-DFT. The real-DFT changes an N point input signal into two different 

(N/2+1) point output signals where the complex-DFT changes a set of N complex points 

into another set of N complex points. For the real-DFT the input signal x[] is consisted 

of the discrete values of a time signal chunk being decomposed, while the two output 

signals contain the amplitudes of the sine and cosine waves. This two output signals are 

called as the real and imaginary parts of input x[].  If the input to a DFT is N point time 

signal, then it is clear that the output is N+2 points in total. The 2 extra points in the 

output are the values of Im_X[0] and Im_X[N/2] which contains no information and are 

always zero. 

 Forward DFT Inverse DFT 

X[  ] 

( N samples ) 

0 N-1 

 

Re_X[  ]    (N/2+1 samples) 

 

Im_X[  ]    (N/2+1 samples) 
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4.1.5.1 Rectangular Notation 

For a given time signal, the DFT can be computed by finding the amplitudes of 

the sine and cosine waves which individually represent the imaginary and the real parts 

of the frequency domain. Let’s assume x[i] as the time domain signal to be analyzed, 

where the index ‘i’ takes values from 0 to N-1 (N points). If the frequency domain 

components being calculated are ReX[k] and ImX[k], where the index ‘k’ takes values 

from 0 to N/2 (N/2+1 points), then the analysis equation for DFT can be given as: 
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In both equations (4.9) and (4.10), the sine and cosine terms are called the DFT 

basis functions where both equations are in the rectangular form. The analysis equations 

can be interpreted as calculating the frequency domain by multiplying the time domain 

signal with the basis-functions and collectively adding the resulting points, where this 

process is simply called the correlation. As a property of the DFT, if any two basis 

functions are multiplied, the sum of the multiplication should always result to zero. This 

property is called as orthogonality and the basis functions that meet this property are 

called as orthogonal. The inverse-DFT process can be formulated as follows: 
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4.1.5.2 Polar Notation 

As an alternative to the rectangular notation, where the frequency domain is a 

group of amplitudes of cosine and sine waves, the DFT equations can be described in 

polar notation. The process of rectangular to polar transformation simply aims to 

represent the frequency domain components by a vector (MagX) with an angle (theta), 

instead of two discrete vectors (ReX) and (ImX). 

 

 

Figure 4.3 Polar notation geometric representation. 

 

In this new notation, the real and the imaginary components of the DFT equations 

can be replaced with the magnitude and phase components. The polar form 

transformation equations are as follows: 
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The both rectangular and the polar representations contain exactly the same 

information.  From the view of computability, the rectangular notation is more practical 

and efficient when computing a DFT algorithm where the polar notation is used to 

visualize the DFT results just because a frequency domain signal cannot be easily 

understood by just looking at the real and imaginary parts.  
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4.1.5.3 Complex Notation 

Although the DFT equations are fine in rectangular notation it is possible to 

simplify the equations in the complex notation with the Euler’s identity, such as: 

 

                (4.16) 

 

Complex numbers represent points in a two dimensional plane where the 

referencing to the point is done with the use of two distinct axes. The horizontal axis is 

the real-axis and the vertical axis is called as imaginary axis. For the given Euler’s 

equation (4.16), the geometric representation of the complex notation is as follows:  

 

Figure 4.4 Complex notation geometric representation. 

 

Regarding the Euler’s identity (4.16), the forward-DFT (4.17) and the reverse-

DFT (4.18) equations can be represented in complex notation as follows: 
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4.2 FAST FOURIER TRANSFORM (FFT)  

In the Fourier family the unique computable algorithm is the discrete Fourier 

transform (DFT). If the code structure of a DFT implementation is analyzed it is visible 

that for calculating the frequency domain components of an N point complex time 

domain signal, a block of a nested “for-loop” is needed where the inner and outer for-

loops would both run through an index of size N. As the time complexity the total 

computation is equal to  (  ). Hence for processing a time signal with 1024 points, a 

total of    2                   calculations are needed. Since the amount of the 

calculations increase exponentially depending on the input size, the real time 

applications need more resources. To solve this problem, some improved algorithms 

were proposed by the researchers.  

One of the most fundamental algorithms to speed up the DFT computation was 

proposed in 1965 by Cooley et al., the Cooley-Tukey Algorithm (Cooley & Tukey, 

1965), with its famous name fast Fourier transform (FFT). The FFT is simply a divide 

and conquer algorithm where the N point input signal is recursively divided into N/2 

size sub-units (even-odd parts) in an interlaced manner. Thus the complexity of the DFT 

process is lessened from  (  ) to   (      ). The FFT algorithm is a two-step 

algorithm. In the first step, the N point time domain input is repeatedly divided into two 

groups as being odd and even parts. At the end of the  (     )    step, the N point 

input signal is decomposed into N signals where each signal consists of a single point. 

The process of 8 point signal decomposition is as follows: 

 

Table 4.1 Input decomposition of an 8 point signal. 

Decomposition of The Signal Steps 

    2 3                      

  2       3              

    2       3   2        

    2       3   3        
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4.2.1 Bit Reversal Sorting Algorithm 

The decomposition process is simply the reordering of the points in an N point 

signal at the end of a  (     ) steps iterative division. This process can be simplified 

with the bit reversal sorting algorithm. 

 

Table 4.2 Bit reversal sorting of an 8 point signal. 

Decimal Input Binary Reversed Binary Decimal Output 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 

 

In the bit reversal sorting algorithm, index of the each point is converted from the 

decimal form to the binary form. Then each binary number is simply reversed where for 

each signal the reversed numbers point to the new indexes in the decimal form. If both 

bit reversal sorting and recursive dividing methods are compared, the final sorted 

outputs are completely identical. 

 

4.2.2 Frequency Synthesis Process 

After the decomposition, or bit reversal sorting process, each 1 point signal is now 

a frequency spectrum. The common bug at that point is assuming these 1 point signals 

still to be a time domain signal. As the last step of the FFT algorithm, the N point 

frequency spectra should be combined. This synthesis process is a step by step process 

in such a way that in the first step the 8 x (1 point) spectra is synthesized into a 4 x (2 

points) spectra. In the second step the 4 x (2 points) spectra is synthesized into a 2 x (4 

points) spectra. Lastly in the third step the 2 x (4 points) spectra is synthesized into a 1 x 

(8 points) frequency spectrum.  This is simply the reverse operation of decomposition. 
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In the FFT synthesis, the composition process can be represented in a structure 

which is called as the butterfly structure. The composition of an 8 x (1 point) spectra 

with the butterfly structure is as follows: 

 

 

Figure 4.5 The 8 point signal synthesis. 

 

In the synthesis process the input vector is “N x (1 point) spectra” which is in the 

sorted order, such that (0, 4, 2, 6, 1, 5, 3, 7), where the output vector is sorted as (0, 1, 2, 

3, 4, 5, 6, 7). The inner diagram of the structure (Danielson-Lanczos Algorithm, 2012) 

is as follows: 

 

 

Figure 4.6 The 8 point synthesis inner diagram. 
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4.2.3 Single 2-Point DFT butterfly 

As being the smallest butterfly unit and also the base for more complicated 

butterfly structures, the inner schema of a 2-point butterfly should be well understood. 

This unit accepts two inputs and produces two outputs. Each output is the correlation of 

the inputs with the inner twiddle factors. The basic structure of a 2-point DFT butterfly 

can be represented as follows: 

 

 

Figure 4.7 Single 2-point butterfly. 

 

The twiddle factor is a multiplier in the butterfly structure and it is used for 

simplifying the DFT basis functions in the complex notation. The equation for the 

twiddle factor is as follows: 

 

  
       

 
  (4.19) 

  
       

 
        (4.20) 

  
   

      
 
                      (4.21) 

 

The 2-point DFT butterflies cannot be partitioned into smaller forms but by 

modifying the mathematical equation and the inner connections they can be represented 

in many ways (Lyons, 2011, pp. 141-154). The FFT algorithm used here is called 

decimation in time and if the input size is chosen as being the power of two, then the 

algorithm for the butterfly structure is called as the Radix-2 butterfly. 
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4.3 WINDOWING ALGORITHMS FOR FFT 

Fourier analysis helps us a lot to understand a signal. The output of the analysis 

reports us the two major specifications of an unknown signal which is of our interest, 

namely, the amplitude and the frequency. So if we trust the FFT and re-plot the signal 

with the given amplitude and frequency measures, most of the time we can get the 

signal back in its original form. But in some cases FFT gives us some strange answers 

where the amplitude-frequency graph is full of unrelated components such as, a-true 

amplitude and frequency pair with some sidelobe containing huge amounts of unrelated 

amplitude-frequency pairs.  This problem is called as the frequency leakage. The main 

reason of the frequency leakage is applying the FFT to a portion of a periodic signal 

where the starting and ending points of the signal are not same causing this problem to 

arise. And if the observed signal is a sum of multiple signals, the spectral leakage from 

a larger signal component may also swallow the other smaller signals making them too 

hard to identify. Windowing algorithms mainly aim to minimize the frequency leakage 

effects by lowering the amplitudes of the starting and ending points of a time domain 

signal chunk. Any discontinuities that are contained by the signal are also targeted. In 

this section some of the most used windowing algorithms and their mathematical 

representations will be presented. 

 

4.3.1 Rectangular Window 

While transforming a time domain signal into the frequency domain, there is no 

choice for not using a window over the target signal. So the rectangular window is the 

default window while taking a FFT. It is used implicitly. Rectangular window’s 

magnitude is always 1 over the sample interval but zero for the points that are out of the 

window. The mathematical equation for the rectangular window is as follows: 

 

 ( )  {
         
            

 (4.22) 
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4.3.2 Hann Window  

This function is called after the Julius Ferdinand von Hann, who was an Austrian 

meteorologist. The Hann window is sometimes called as the Hanning window. As an 

important property of the function, the start and end points are always zero. So the 

signals that were multiplied with this window also start and end with zero. The 

mathematical equation for the Hann window is as follows: 

 

 ( )  
 

2
 

 

2
   (

2  

 
)  ℎ             (4.23) 

 

The graphical representation for the Hann window is as follows: 

 

 

Figure 4.8 The Hann window. 
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4.3.3 Hamming Window 

The Hamming window is in the same family with the Hann window. As a 

different property this function doesn’t start and end with zero as default. So the data at 

the edge regions are not lost where they are just attenuated. For this reason the 

Hamming window is mostly preferred over Hann window. The basic mathematical 

equation for the Hamming window is as follows: 

 

 ( )   .    .     (
2  

 
)  ℎ             (4.24) 

 

The graphical representation for the Hamming window can be given as follows: 

 

 

Figure 4.9 The Hamming window. 
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4.3.4 Blackman–Harris Window 

The Blackman-Harris window is in the same family with the Hann and the 

Hamming windows. It has two types, namely, symmetric and periodic. In both cases the 

function has four constant coefficients where the odd coefficients are negative and the 

even coefficients are positive. As a common point with the Hann window, this function 

also start and end with zero. The mathematical equation of a 4-term and symmetric 

Blackman-Harris window is as follows:  

 

 ( )          (
2  

   
)       (

   

   
)       (

   

   
) (4.25) 
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The graphical representation for this window can be given as follows: 

 

 

Figure 4.10 The Blackman-Harris window. 
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4.4 SHORT TIME FOURIER TRANSFORM (SFT)  

To compute the frequency spectrum of a signal, the whole signal is represented to 

the FFT algorithm. But if the signal is too long or the district parts of the signal have 

different characteristics, then the signal can be partitioned into multiple smaller chunks. 

The idea of short time Fourier-transform is very parallel with the FFT algorithm where 

the computations are done for smaller units. After partitioning the signal, each chunk 

can be represented to the Fourier transform. This process is simply called as the short 

time Fourier transform (SFT). For computing the SFT, first a window type and then a 

window size should be determined. Then each constant length window is applied to the 

adjacent regions of the main signal and thus each window covers a different signal 

portion. The signal portion that is covered by a window occupies a time slice of the 

signal period. We compute the FFT for each time slices of a signal and so the SFT 

algorithm helps us to see the frequency components of each time slot where each user 

defined window length determines the time resolution. 

 

4.4.1 Window Overlapping Technique 

While computing the SFT, each window starts just after the former window 

finishes. This kind of windowing divides the signal into smaller and equal-size portions 

leading to no overlapping between the windows. But regarding the window type being 

applied, the information at the start and end points of each window may get lost or 

attenuated. The simple graphical representation of an overlapping enabled windowing 

process can be given as follows: 

 

 

Figure 4.11 Window overlapping technique. 
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The problem of zeroed regions can be denied by overlapping the adjacent window 

borders. Each window edge that was mutated by the windowing function can normally 

be included in the next window with the use of the overlapping technique. Since the 

window overlapping technique seems to be lifesaving, it has a cost of overlap ratio 

adjustment. If the overlap ratio is chosen high then the total window amount increases 

and that directly causes to an increase in total number of the calculations. 

 

4.5 SPECTROGRAMS 

Simply a spectrogram is the magnitude squared form of a short time Fourier-

transform output. Spectrograms are used to visualize the frequency components and the 

spectral density of time varying signals in a 3 dimensional environment. They are also 

called as the voice finger prints, sonograms or voicegrams. The basic equation for the 

spectrograms is as follows; 

 

          (   )      (   )   (4.26) 

 

While constructing the spectrograms, first the time domain signal is partitioned 

into smaller time chunks. Then a predefined windowing algorithm is applied to each 

time chunk. Thus the starting and the end points of each chunk are attenuated and the 

possible future frequency leakages are avoided. Then the FFT algorithm is applied to 

each window. The output of the FFT algorithm is a two dimensional graphics consisting 

of a horizontal “frequency” and a vertical “amplitude” axis. So far the process is 

nothing but the sort time Fourier transform. As the second step, each window’s FFT 

vertical “amplitude” axes are squared. Thus the differences between the low and high 

amplitude values are emphasized. And in the third step, all two dimensional squared 

FFT graphics are put next to each other to construct the third dimension what is called 

the time axis. So while computing the SFT, the number of used chunks determine the 

time resolution of the spectrograms. 
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CHAPTER 5 

FEATURE EXTRACTION METHODOLOGY 

In a digital environment the audio files are kept as a collection of discrete 

numerical values without regarding the overheads. Each chunk of an audio file 

represents the amplitude value of an audio signal at a given time point. The amount of 

the discrete points in a signal is proportional to the sampling rate of the digitization 

process. As an example if the sampling rate is 5000 samples per-second, which can also 

be denoted by 5 KHz, an audio clip with a 1 minute duration is equal to an array of 

300,000 numerical discrete values where this amount is equal to a minimum memory 

space requirement of 2,4 MB’s, assuming each value is kept in a 64bit-double primitive. 

At this point, an audio file can be regarded as a big mass when represented to a 

classifier for a classification task.  

Basically the process of representing an audio file with minimum possible 

features (or dimensions) is called as the “audio feature extraction” process. The 

minimum length and maximum descriptive dimensions can be derived with two basic 

methods. In the first case the output vector of the extraction algorithm is a subset of the 

input vector values where this process can be regarded as a non-correlated attribute 

removal, feature selection or dimensionality reduction process. In the second case the 

input vector is simplified into a non-input type space where this process can be regarded 

as a mapping or signature extraction process. The feature extraction process not only 

simplifies or summarizes the sound vector, but also transforms it into a fixed size 

notation regardless of variable input length. If the audio files with different durations 

are summarized into a fixed size notation, then the comparison between them is also 

simpler for the machine learning algorithms.  
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5.1 MFCC 

Mel frequency Cepstral coefficient (MFCC) algorithm is one of the most used 

feature extraction algorithms that summarizes an audio signal into a user defined, fixed-

length coefficient vector which is called as Mel Frequency Cepstrum (MFC). In the first 

step of the MFCC algorithm, the audio signal is partitioned into multiple smaller chunks 

with an overlapping window where each window is weighted by a corresponding 

windowing function (Hann, Hamming etc.). This process is simply called as the 

windowing step. The need for the windowing step is the non-stationary characteristics 

of the speech signals. The windowing is used to have a small enough region of the 

signal where the spectral information of that region is a useful cue. After windowing 

step, the discrete Fourier transform (mostly FFT) is applied to each window. Until this 

point, the windowing step followed by FFT process is nothing but the short time 

Fourier-transform (SFT). At the end of the SFT process, the window content is 

represented in the raw frequency form. In this raw form each point is represented with 

two axes, namely, the vertical-Amplitude and the horizontal-Frequency axis. The 

frequency axis maximal value is the half value of the sampling rate. Both amplitude and 

the frequency axis values are linearly spaced in this raw form. 

 

 

Figure 5.1 MFCC block diagram. 
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The human perception of frequency is non-linear as a result of the fact the human 

hearing is not equally sensitive to all frequency bands. Simply the sensitivity threshold 

for a human ear is accepted as 1000 Hz. The frequency values that are greater than the 

threshold are less sensitively percepted. By the given fact, the raw frequency axis (of 

the FFT process) is mapped onto the mel-scale, such that: 

 

   ( )  2         (  
 

   
) (5.1) 

 

The mel-scale is approximately linear below 1000 Hz and logarithmic above the 

1000 Hz. After mel-scaling the raw spectrum, a Mel-filter Bank is applied to the mel-

scaled spectrum.  

 

 

Figure 5.2 Mel-filter Bank application process. 
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The Mel-filter Bank is a triangular overlapping window structure. In the bank, 

filters are centered according to Mel-frequencies. The coverage of triangular filter is 

according to the mel-scale. Each filter output is the sum of its filtered spectral 

components. In a typical application the number of the filter-bank is a user defined 

integer value varying between (20 and 40) up to the design. After applying the mel-filter 

bank to the FFT outputs, simply a logarithm is applied to the magnitude squares of the 

filter bank outputs. This is just because the human response to the signal level is 

logarithmic. While talking to microphone the speaker may come closer to the recording 

device where that may cause to slight differences in the time domain input. Log 

computation makes frequency estimates less sensitive to slight variations in input. As 

the last step of the MFCC algorithm, the Discrete Cosine Transform (DCT) is computed 

from the outputs of the logarithm process. Since the logarithm of power spectrum is real 

and symmetric, the inverse-DFT and the DCT are identical to each other and can be 

used interchangeably. As the result, the product of the DCT process is the Cepstrum, 

with other words “the spectrum of the log of the spectrum”.  

 

5.2 LPC 

Liner prediction based speech analysis is mainly used for mapping a target sound 

sample to a finite length feature space. In linear prediction, the representation of the 

speech waveform is by the parameters of an all-pole model. These all-pole model 

parameters are simply called the linear predictive coefficients (LPC). For a given speech 

sample, LPC analyses basically tends to find an optimal fit to the speech spectrum 

where the process is done in time space rather than frequency domain. Each function 

can be estimated by LPC coefficients, meaning the value of a signal at a given time “t” 

is estimated with the linear combination of signal values in previous times. The LPC 

features are computed by autocorrelation or covariance methods. Given that, the LPC 

technique is equivalent to auto regressive (AR) speech signal modeling.  

The first step in the LPC analyses is the Pre-emphasis step. In this step the signal 

is passed to a first order low-pass filter where the filter simply flattens the signal and 

makes it more stable to precision effects. Then the pre-emphasized signal is first framed 

and subjected to windowing process. The windowing process parses the signal into 



58 

 

multiple chunks with a user defined overlap. To avoid the discontinuities at the window 

borders, mostly the Hamming window is preferred. In the next step, each window is 

(nth-order) auto correlated where the autocorrelation is the correlation of a signal with 

itself. And lastly in the LPC analyses step, each frame of the autocorrelations is 

converted into an LPC parameter set with the use of recursive techniques such as 

Levinson/Durbin algorithm. 

 

5.3 TIME DOMAIN FEATURES 

The time domain features deals with the numeric values of a signal in the time 

domain rather than their properties in the frequency domain. With the use of time 

domain features, a signal or a numeric sequence can be defined with finite features 

regardless of its length. Most of the time domain features use the fundamental statistical 

methods such as; sum, average, mean etc., as their base methodology. The names and 

the short explanations of 10 Time Domain features that were used for the thesis study 

are as follows; 

 

Table 5.1 Time domain feature names and definitions. 

No Feature Name Short Definition 

1 Spectral Centroid The center of mass of the power spectrum. 

2 Spectral Roll off Point 
The fraction of bins in the power spectrum at which 85% of the power is 

at lower frequencies. This is a measure of the right-skewedness of the 

power spectrum. 

3 Spectral Flux 
A measure of the amount of spectral change in a signal. Found by 

calculating the change in the magnitude spectrum from frame to frame. 

4 Compactness 
A measure of the noisiness of a signal. Found by comparing the 

components of a window's magnitude spectrum with the magnitude 
spectrum of its neighboring windows. 

5 Spectral Variability 
The standard deviation of the magnitude spectrum. This is a measure of 
the variance of a signal's magnitude spectrum. 

6 Root Mean Square A measure of the power of a signal. 

7 Fraction Of Low En. Win. 
The fraction of the last 100 windows that has an RMS less than the mean 

RMS in the last 100 windows. This can indicate how much of a signal is 

quiet relative to the rest of the signal. 

8 Zero Crossings 
The number of times the waveform changed sign. An indication of 

frequency as well as noisiness. 

9 Strongest Beat 
The strongest beat in a signal, in beats per minute, found by finding the 

strongest bin in the beat histogram. 

10 Beat Sum 
The sum of all entries in the beat histogram. This is a good measure of 

the importance of regular beats in a signal. 

http://en.wikipedia.org/wiki/Cross-correlation
http://en.wikipedia.org/wiki/Signal_(information_theory)
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5.4 PHONETIC FEATURES 

For deriving the phonetic features of repository sounds, the PRAAT program 

(Praat, 2012) has been used. The program was developed at the University of 

Amsterdam and mainly used for analyzing the human speech properties. For analyzing 

the pulmonary sounds, all predefined program parameters has been re-studied. The 17 

PRAAT features (Boersma & Weenink, 2001) used for the thesis are as follows; 

 

Table 5.2 PRAAT phonetic feature names and definitions. 

No Feature Name Short Definition 

1 Mean pitch 
The mean pitch value of the points within a specified time 
window. 

2 Standard deviation 
The standard deviation of the points within a specified time 
window. 

3 Maximum pitch 
The maximum pitch value of the points within a specified time 
window. 

4 Minimum pitch 
The minimum pitch value of the points within a specified time 
window. 

5 Jitter (local) 
The average absolute difference between consecutive periods, 
divided by the average. 

6 Jitter (local, absolute) 
The average absolute difference between consecutive periods, in 
seconds. 

7 Jitter (rap) 
The relative average perturbation, the average absolute difference 
between a period and the average of it and its two neighbors, 

divided by the average period.  

8 Jitter (ppq5) 
The five-point Period Perturbation Quotient, the average absolute 

difference between a period and the average of it and its four 

closest neighbors, divided by the average period. 

9 Jitter (ddp) 
The average absolute difference between consecutive differences 

between consecutive periods, divided by the average period. 

10 Shimmer (local) 
The average absolute difference between the amplitudes of 

consecutive periods, divided by the average amplitude. 

11 Shimmer (local, dB) 
The average absolute base-10 logarithm of the difference 

between the amplitudes of consecutive periods, multiplied by 20. 

12 Shimmer (apq3) 

 The three-point Amplitude Perturbation Quotient, the average 

absolute difference between the amplitude of a period and the 

average of the amplitudes of its neighbors, divided by the average 
amplitude. 

13 Shimmer (apq5) 

The five-point Amplitude Perturbation Quotient, the average 
absolute difference between the amplitude of a period and the 

average of the amplitudes of it and its four closest neighbors, 

divided by the average amplitude. 

14 Shimmer (apq11) 

The 11-point Amplitude Perturbation Quotient, the average 

absolute difference between the amplitude of a period and the 

average of the amplitudes of it and its ten closest neighbors, 
divided by the average amplitude. 

15 Shimmer (dda) 
Average absolute difference between consecutive differences 
between the amplitudes of consecutive periods. 

16 Mean NHR 
Mean Noise-to-Harmonics Ratio value of the points within a 
specified time window. 

17 Mean HNR 
Mean Harmonics-to-Noise Ratio value of the points within a 
specified time window. 
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CHAPTER 6 

STATISTICAL PROCESSING 

For a series consisting of numerical values, with a more formal saying for a 

distribution, there are some statistical properties that can be used for better defining and 

analyzing the given sequence. Some of these statistical properties can be listed as; 

average, variance, standard deviation, skewness and kurtosis. With the use of given 

properties, the target distribution can be defined with less parameters rather than telling 

all numbers in that distribution.  This chapter basically aims to review the fundamental 

statistical methods used in the thesis study. 

 

6.1 MEAN 

In probability theory and statistics, the mean is the sum of the values divided by 

the amount of the variables. It basically shows the equal share of each member from the 

sum of this distribution. The basic equation for the mean is as follows; 

 

 ̅   
∑   

 
   

 
 (6.1) 

 

6.2 VARIANCE 

In statistics the variance is the measure that is used for describing how far the 

numbers lie from the mean (the average). With another view it is a measure denoting 
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how far the numbers spread out in a given distribution. The basic equation for the 

“sample variance” is as follows; 

 

    
∑ (    ̅)  

   

(   )
 (6.2) 

 

6.3 STANDARD DEVIATION  

In statistics, standard deviation is a measure of the dispersion of a distribution 

from the average of this set. It is calculated from the variance equation, where the 

standard deviation is the square root of the variance. For a given distribution if the 

standard deviation is low, then it is the sign that the numbers in this set are close to the 

mean. The equation for the “sample standard deviation” is as follows; 

 

  √   (6.3) 

 

6.4 SKEWNESS  

The skewness is the asymmetry measure of a given distribution for the horizontal 

axis. It can be negative, positive or zero. A negative skewness show that the distribution 

is right aligned where the positive skewness shows that the distribution is left aligned on 

the horizontal axis. The zero skewness states that the distribution is symmetric. The 

mathematical equation for the “sample skewness” can be given as follows; 
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6.5 KURTOSIS  

The kurtosis is the vertical asymmetry measure of a given distribution, more 

clearly a kind of descriptor for the vertical shape of a probability distribution. A 

distribution is symmetric if the both sides look like the same according to the center 

point of that distribution. The kurtosis tells whether the data is peaked or flat relative to 

a normal distribution. A data set with high kurtosis shows that the given distribution has 

a distinct, vertical peak near the mean. Data sets with low kurtosis tend to have a flat top 

near the mean rather than a sharp peak. The mathematical equation for the “sample 

kurtosis” can be given as follows; 
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The kurtosis value for a standard normal distribution is 3. For that reason rather 

than using the normal kurtosis formula, more practically, the “excess kurtosis” formula 

is used by subtracting 3 from the kurtosis result as in follows; 
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(   ).   
 3 (6.6) 

 

With the use of excess kurtosis formula, a distribution is symmetric if the formula 

produces zero.  A value greater than zero shows the distribution is peaked and similarly 

a negative value simply shows the distribution is flat compared to a normal distribution. 
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6.6 CHI-SQUARE STATISTICS  

The Chi-Square statistics is one of the most used members of the nonparametric 

family of statistical tests which is mainly used for hypotheses testing. The parametric 

statistics test the hypothesis assuming the samples come from a normally distributed 

population where the nonparametric statistics test the hypotheses that do not require 

normal distribution as a main distinction. 

The Chi-square statistics use nominal data. So instead of using means and 

variances, this test uses frequencies. Basically the Chi-Square statistics is used for two 

distinct circumstances such as; how an observed distribution differs from an expected 

distribution (mostly referred as goodness-of-fit test) or estimating the independency 

(difference) of two variables. The chi-square test always tests the null hypothesis, which 

states that there is no significant difference between the expected and observed results. 

Given the definitions, the basic computational equation for the Chi-square statistics can 

be stated as follows: 
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http://cnx.org/GroupWorkspaces/wg412/module.2006-03-03.2535677588/module_view
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CHAPTER 7 

METHODOLOGY PROCESS AND EXPERIMENTS 

This chapter aims to clarify the methodology of the pulmonary sound collection 

process, the technical details of the sound preprocessing work and the experiment steps 

that were used for diagnosing the asthma illness through predefined machine learning 

algorithms. Some of the techniques that were developed in the programming 

environment and the statistical methods that were used during each algorithm 

development phase are also explained within the corresponding titles.  

 

7.1 THE SOUND REPOSITORY  

The sound samples used in the study were recorded by the medical experts of 

Gaziantep University medical faculty under the supervision of Prof. Halil Rıdvan ÖZ, 

the head of the Genetics and Bioengineering Department of Fatih University. For the 

recording purposes a 2 channel DAQ card and two analog Sony condensed microphones 

were used to collect the pulmonary sounds from the chest region of the subjects. The 

two microphones were used to record the left and the right parts of the pulmonary 

region. Each record was sampled at 8Khz. as a single channel uncompressed (PCM) 

wave sound in 16bit depth. In the original experiment set, a population of 114 people 

was examined during a 2 years long study. Since all patients had different phenomena’s, 

only 40 people were chosen from the input population with the medical proof that the 

chosen subjects had either Asthma illness or labeled as being in Healthy status. Thus 20 

healthy and 20 asthma patient sounds were chosen from a population of over 600 

sounds according to medical expert records. 



65 

 

7.2 PROCESS BLOCK DIAGRAM  

During the study over the sound repository, for each experiment, four main 

process blocks have been applied to the whole repository sound samples to obtain the 

classification results. These four blocks can basically be named as; 1.filtering, 2.feature 

extraction, 3.feature selection and 4.experiments in RapidMiner environment. The main 

flow of the experiment process can be visualized as follows: 

 

 

Figure 7.1 Experiment process block diagram. 

 

As a note, in each process step, only one type of subcomponent is active at a time 

rather than a parallel processing. The output of the flow is an average accuracy table of 

nine classification algorithms. 
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7.3 STEP 1 – FILTERING  

For the purpose of eliminating undesired time and frequency regions in the target 

signal and enhancing the classification accuracies, a “sound filtering” step was applied 

to the sound repository. This step mainly includes 3 types of filters with their sub types 

for each filter. The filter names used in this step can broke down as follows;  

 

 

Figure 7.2 Data preprocessing block. 

 

7.3.1 Teager Filter 

The Teager filter is a homogenous, nonlinear, quadratic Volterra filter. This filter 

and its variations are mostly used in image enchantment applications such as contrast 

enhancing with good quality behavior. The basic mathematical equation for the Teager 

filter can be given as follows; 
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7.3.2 Median Filter  

The Median filter is used to remove noise in an image. This filter is mainly used 

over one and two Dimensional arrays. Since the sound files are one dimensional, only 

1D algorithm was used within the thesis study. Median filters need a window length to 

operate. Since the length is user defined, the result is highly dependent to the user 

choice of the length, which is odd as a standard.  

As the methodology, algorithm first parses the input signal into “predefined 

window length” small chunks. For each signal chunk, there is an overlap region 

consisting of neighbors from both sides. First the median of the chunk is determined. 

This median value is the target of the algorithm. Next the numbers within the chunk are 

sorted and the new median of the chunk is determined. As the last step, the old median 

is replaced with the new median value. Algorithm starts from the first member of the 

signal and continues until the last member. Thus all members of the signal are mapped 

from original domain into same size filter domain.  

 

 

Figure 7.3 Median replacement process. 

 

As a note, while the algorithm is running, there is a need for interpolation for the 

signal edges. This is mostly done by mirroring the border values to the negative 

directions. For the thesis study rather than implementing the Median filter algorithm, 

the “medfilt“ function of the Matlab Signal processing toolbox has been used. 

(1-median detection) (2-sorting and new median determination) 

(3-median replacement) 
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7.4 STEP 2 – FEATURE EXTRACTION 

As the most important step of the experiment methodology, the sound files were 

transformed into more descriptive vector forms with the use of feature extraction 

methods. For deriving the “MFCC”, “LPC” and “Time domain” features, the jAudio 

program (jAudio, 2012) has been used. The jAudio program is an open source sound 

processing library implemented in Java language at McGill University. For the thesis 

study the windowing parameters of the jAudio program was chosen as 1024 samples for 

each window and 50% overlapping between the windows. As a standard, the output that 

is obtained from the jAudio program is an XML file consisting of multiple small 

window chunks. For each sound, there is a need for transforming these multiple vectors 

into a single feature vector. For achieving this goal first the MFCC output windows 

were aligned vertically under each other. Thus all same indexed members were ordered 

in same column. Then for each column; mean, plus standard deviation, plus skewness, 

plus kurtosis values were calculated as follows;  

 

 

Figure 7.4 Feature extraction methodology. 

 

Mean:  Mean-1,  Mean-2  

STD:  STD-1,  STD-2  

Skewness:  

Kurtosis:  

Skewness-1,  Skewness-2  

Kurtosis-1,  Kurtosis-2  

[Column-1]  [Column-2]  

window-1  
  

window -2  
 

window -3  
  

window -n  
  



69 

 

While using the jAudio program, the XML output of the program was processed 

by a self-implemented program in Java environment (Java 7.u5 - Oracle, 2012) with 

NetBeans IDE (NetBeans 7.1, 2012). The program was designed object oriented and 

implemented in 7 packages and 24 classes. For all classes the code amount is more than 

1000 lines in total. The general package and class layout of the program is as follows: 

 

 

Figure 7.5 General layout of the parsing program in Java. 

 

The Java program first parses the XML file with standard DOM API of w3c. Thus 

the file is read into the memory. Then the data inside the DOM nodes are mapped into 

the target objects. The output of the program is a text file consisting of one feature 

vector per sound. For the PRAAT program there is no need for future processing the 

input file since it includes only one feature vector for each sound sample.  
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7.5 STEP 3 – FEATURE SELECTION 

After the feature extraction phase, each sound is now represented with a user 

defined length feature vector. For enhancing the classification results, a Chi-Square 

feature selection block has been used in RapidMiner environment between the feature 

extraction and the classification phases. The main idea behind using a selection block is 

removing possible uncorrelated features of a given vector.  

For the thesis study, the sound repository was first introduced to the selection 

block and for all sound samples the same indexed features were then weighted by the 

Chi-Square selection block with a numeric value between zero and one. Upon the 

experiment, the top rated features were selected and fed to the classification block. The 

general layout of the Chi-Square block in RapidMiner environment is as follows: 

 

 

Figure 7.6 General layout of the selection block. 

 

As a note, the feature selection block was used an optimization process after 

deriving the classification results without a selection block. For that reason the process 

block diagram also has a “no-selection” sub component in the corresponding block. 
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7.6 STEP 4 - CLASSIFICATION 

The experiments were done in RapidMiner environment (RapidMiner 5.0, 2012). 

RapidMiner is an open source data analyses platform implemented in Java. It has a GUI 

interface for many most used machine learning algorithms and simulates an experiment 

environment easily. The general layout of the experiment environment in RapidMiner 

program is as follows;  

 

 

Figure 7.7 General layout of the experiment environment in RapidMiner. 

 

As the first step in RapidMiner, nine cross validation blocks were constructed for 

the nine target machine learning algorithms. Rather than evaluating the each classifier’s 

individual accuracy results, the average classification accuracy of the nine classification 

algorithms was evaluated for the thesis study. The classifier names that were used for 

the experiments are as follows: 
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Table 7.1 Nine classifiers used for the experiments. 

No Algorithm Name RapidMiner Short Name 

1 Artificial Neural Network ANN 

2 Naive Bayes Bayes 

3 Random Forest RF 

4 K Nearest Neighbors kNN 

5 Linear SVM LinSVM 

6 Support Vector Machine LibSVM 

7 Linear Regression LinReg 

8 Decision Tree DT 

9 Linear Discriminant Analyses LDA 

 

In the RapidMiner environment, each classifier validation block was first fed with 

the target repository sounds through a data multiplier block. These validation blocks 

were set to “Leave-One-Out” validation mode for the testing phase. Thus all classifiers 

were trained with the whole repository except one sample reserved for the testing. After 

the construction of the model from the training phase, the validation was done for the 

reserved sample and the process repeated for all members in the repository. 

As an important note, each nine classifier produce a separate validation accuracy 

result. These nine individual results are evaluated as a single vote and the average of all 

votes is the final classification result.  

 

7.7 EXPERIMENTS  

The thesis study consists of 11 experiments for diagnosing the Asthma illness 

from the pulmonary sounds. In this title all experiments will be explained and the 

experiment results will be given. In each result graphics, the individual blocks give the 

average classification accuracy of nine classification algorithms.  
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7.7.1 Experiment 1 – MFCC Length Detection  

Since the MFCC output length is the first parameter that should be found the aim 

of this experiment is the detection of the optimal MFCC coefficient length. For this 

reason five different MFCC vectors were derived from the unfiltered repository sounds 

and validated through leave-one-out and split (60% to 40%) validation blocks. The 

average accuracy result of the nine target classifiers is as follows; 

 

 

Figure 7.8 MFCC coefficient leave-one-out accuracy result. 

 

According to the obtained results MFCC coefficients performs the best when the 

length is determined as 3. But since the leave-one out algorithm may not be the optimal 

case; the results were also queried with a (60% to 40%) split test as follows;  

 

 

Figure 7.9 MFCC coefficient split validation accuracy result. 
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When the split validation is performed, the results broke for the favor of MFCC 

with length 13 and the average accuracy is lowered for the MFCC with 3 coefficients. 

By considering both cases, the final MFCC length was decided as 13 for the rest of the 

thesis study. 

 

7.7.2 Experiment 2 – MFCC Features  

The aim of this experiment is determining the optimal length MFCC feature 

vector for the target algorithms to produce the highest classification result. First, each 

unfiltered sound sample was presented to jAudio program to produce multiple MFCC or 

(MFCC with delta-MFCC) window chunks each having 13 columns. Then for each 

sound sample these window chunks were put under each other. Then for each window 

column; (only mean values) or (mean and standard deviation values) or (mean, standard 

deviation and skewness values) or (mean, standard deviation, skewness and kurtosis 

values) were calculated. Thus 8 different datasets were constructed. Lastly each vector 

was realigned and process repeated for the whole repository. For the nine classification 

algorithms, the average accuracy results are as follows;  

 

 

Figure 7.10 Optimal MFCC feature vector detection. 
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When the results are evaluated, the combination of MFCC and delta-MFCC 

features with 13 “column means” give the best average accuracy result of (71.39%) for 

the nine classification algorithms. 

 

7.7.3 Experiment 3 – [60-2000] Hz. BandPass Filter Effect  

The aim of this experiment is determining the best feature vector for the 60-2000 

Hz. BandPass filtered sounds when the MFCC coefficients are 13. First the 40 

repository sounds were filtered in the frequency domain with a [60-2000] Hz. digital 

filter. Then 8 different new datasets were constructed with the use of jAudio program. 

Each new dataset differs from each other with its vector type depending on the usage of 

column mean, standard deviation, skewness and kurtosis values. For the nine 

classification algorithms, the average accuracy results that were obtained from the 

RapidMiner environment are as follows;  

 

 

Figure 7.11 [60-2000] Hz. BandPass filter effect. 
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When the results are evaluated, for the nine classification algorithms, the 

combination of MFCC and delta-MFCC features with full column statistics (104 length 

feature vector) gives the best average accuracy result of (69.44%). 

 

7.7.4 Experiment 4 – [100-400] Hz. BandPass Filter Effect  

The aim of this experiment is determining the best feature vector for the 100-400 

Hz. BandPass filtered sounds when the MFCC coefficients are 13. First the 40 

repository sounds were filtered in the frequency domain with a [100-400] Hz. digital 

filter. Then 8 different new datasets were constructed with the use of jAudio program. 

Each new dataset differs from each other with its vector type depending on the usage of 

column mean, standard deviation, skewness and kurtosis values. For the nine 

classification algorithms, the average accuracy results that were obtained from the 

RapidMiner environment are as follows;  

 

 

Figure 7.12 [100-400] Hz. BandPass filter effect. 
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When the results are evaluated, the combination of MFCC and delta-MFCC 

features with full column statistics (104 length feature vector) gives the best average 

accuracy result of (66.94%). 

 

7.7.5 Experiment 5 – [0-100] Hz. BandPass Filter Effect  

The aim of this experiment is determining the best feature vector for the 0-100 

Hz. BandPass filtered sounds when the MFCC coefficients are 13. First the 40 

repository sounds were filtered in the frequency domain with a [0-100] Hz. digital filter. 

Then 8 different new datasets were constructed with the use of jAudio program. Each 

new dataset differs from each other with its vector type depending on the usage of 

column mean, standard deviation, skewness and kurtosis values. For the nine 

classification algorithms, the average accuracy results that were obtained from the 

RapidMiner environment are as follows;  

 

 

Figure 7.13 [0-100] Hz. BandPass filter effect. 
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When the results are evaluated, the MFCC features with 13 column means with 13 

column standard deviation values (26 length feature vector) gives the best average 

accuracy result of (70.83%). 

 

7.7.6 Experiment 6 – PRAAT Features 

The aim of this experiment is to observe the average accuracy values when (17) 

PRAAT features are extracted from the “unfiltered” sounds. For this reason first the 

PRAAT features were extracted for each sound sample in the repository, and then 

feature vectors were transmitted into the RapidMiner environment. Lastly, with the use 

of standard experiment methodology, the feature set was introduced to the nine 

classification algorithms for the classification process. The average accuracy result that 

is obtained from the RapidMiner environment is as follows; 

 

 

Figure 7.14 Average accuracy results for 17 - Praat features. 

 

When the results are evaluated, the use of 17 LPC features gives an average 

accuracy result of (65.83%) for the nine classification algorithms. 
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7.7.7 Experiment 7 – LPC Features 

The aim of this experiment is determining the best feature vector for the unfiltered 

sounds when the LPC coefficients are chosen as 13. For this reason LPC windows were 

step by step processed by statistical methods. The first derivative of the LPC windows 

(delta- LPC) was also taken into consideration while building the feature vector for each 

sound sample. In this case 8 different datasets were constructed. For the nine 

classification algorithms, the average accuracy results that were obtained from the 

RapidMiner environment are as follows;  

 

 

Figure 7.15 Average accuracy results for LPC features. 

 

When the results are evaluated, the use of 17-LPC features with 13 column means 

and 13 column standard deviation values give the best average accuracy result of 

(66.67%) for the nine classification algorithms. 
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7.7.8 Experiment 8 – Time Domain Features 

The aim of this experiment is observing the average accuracy values when 10 

Time Domain features are extracted from the unfiltered sounds. For this reason after the 

extraction of the features with jAudio program, the feature vectors were transmitted into 

the RapidMiner environment. Then with the use of standard experiment methodology, 

the feature dataset was introduced to the classification process. 

For the nine classification algorithms, the average accuracy results that were 

obtained from the RapidMiner environment are as follows; 

 

 

Figure 7.16 Average accuracy results for Time Domain features. 

 

When the results are evaluated, the use of “10 time domain features” gives an 

average accuracy result of (67.22%) for the nine classification algorithms. 
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7.7.9 Experiment 9 – Nonlinear Filter Effect 

The aim of this experiment is determining the best accuracy results for the 

nonlinear filter applied sounds when the feature extraction was done with 13 MFCC 

coefficients. For this reason first the repository sounds were filtered in Matlab 

environment with Teager and Median filters separately. Then the classifications were 

done for these new repository sounds individually.   

The main idea behind this experiment is obtaining better classification accuracies 

by the use of   nonlinear filtering techniques.  For the nine classification algorithms, the 

average accuracy results that were obtained from the RapidMiner environment are as 

follows; 

 

 

Figure 7.17 Average accuracy results for Teager and Median filtered sounds. 
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7.7.10 Experiment 10 – Feature Selection with Chi Square Statistics 

The aim of this experiment is eliminating the possible useless features from the 

target feature vector dataset for obtaining the best feature subgroup leading to a better 

average classification accuracy result. For this reason first the repository sounds were 

processed by the jAudio program and then the output of the program was parsed into 

104 length feature vector dataset. Then in RapidMiner environment the Chi Square 

Statistic Feature Selection Block was used to rank the features with a grade from 0 to 1. 

According to the rankings, all 104 features were gradually experimented in such a way 

that; first the best single feature for all sounds was taken into account and the 

experiment done. Then in the next experiment one next feature was added to the feature 

vector. So step by step all feature combinations were tested and the results were kept. 

The average accuracy results that were obtained from the RapidMiner environment are 

as follows;  

 

 

Figure 7.18 Average accuracy results for feature selection process. 
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7.7.11 Experiment 11 – Feature Selection for All Methods 

From the former experiment it was obtained that the use of Chi Square Statistics 

method had increased the average classification accuracy for the unfiltered sounds and 

also reduced the feature vector length from 104 into 6. So the best average accuracy was 

obtained as (85.0%) for the nine machine learning algorithms.  

In this experiment, the effect of feature selection process over digitally filtered 

sounds and over the non-MFCC feature extraction methods was queried with the same 

idea. So this experiment is two folds such that; in the first step BandPass filtered sounds 

were subjected to the MFCC algorithm and then the resulting feature vectors were 

simplified with Chi Square selection block for their best 6 features. And in the second 

phase, Time Domain features, PRAAT features, LPC features,  Teager filtered sounds 

and Median filter applied sounds were also represented to the feature selection 

algorithm for their 6 best features.  

In the first phase the average accuracy results that were obtained from the 

RapidMiner environment are as follows;  

 

 

Figure 7.19 BandPass filter and feature selection results. 
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In the second phase, for 9 target classifiers, the average accuracy results that were 

obtained from the RapidMiner environment are as follows;  

 

 

Figure 7.20 Non MFCC methods and feature selection results. 
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CHAPTER 8 

RESULTS AND CONCLUSION 

8.1 RESULTS AND DISCUSSION 

During the thesis study 11 main experiments were done over the target lung 

sounds with thousands of sub observations. As stated before, the original sound 

repository had a large amount of noise which occurred during the sound capture 

process. In such a case the best classification accuracy was tested by using nine machine 

learning algorithms.   

As a pre-process to the work, a noise removal process could be fine but that could 

also lead to some unwanted gaps in the original sounds. For that reason the best 

machine learning and feature extraction method should have the ability to handle these 

unwanted environment effects, such as noises and hysteresis, by eliminating the needs 

for future noise filtering techniques. The experiments consisting of multiple sub-

observations, without any noise filtering process, have proven that the MFCC feature 

extraction algorithm achieved an acceptable average result. The proposed solution with 

13 MFCC feature length with no filtering process seem to work efficiently for all 

possible learning methods. The jAudio program’s behavior for evaluating the MFCC 

algorithm output window is summarizing the MFCC and delta-MFCC window columns 

with only column means and standard deviation values. In the study it was figured out 

that, adding column skewness and kurtosis values and thus expanding the feature vector 

to a more descriptive form helps the classifiers better evaluate the cases. From this well 

descriptive form it is also found out that, feature selection with Chi Square statistics 

method increased the average classification accuracies more than 10 percent. 
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8.2 CONCLUSION  

In this study various machine learning algorithms were used for the diagnosis of 

Asthma disease from the lung sounds. The sound dataset was filtered with both digital 

and nonlinear filters for the purpose of eliminating the out of interest frequency regions 

and the effects of used filters were compared.  For the feature extraction phase, four 

different extraction algorithms were evaluated and their performances on the 

classification algorithms were observed. While unifying the extraction algorithm 

outputs, various statistical methods were used. As an optimization phase Chi-Square 

statistical feature selection method was also applied onto feature vectors to receive 

higher accuracy values. The foundations of this thesis study experimentally prove that 

the proposed solution with the use of MFCC feature extraction algorithm with Chi-

Square feature selection method promises an average accuracy value of 85% over all 

most used machine learning algorithms where the proposed solution can easily be 

implemented not only in computer environment but also in a future on chip device. 

 

8.3 FUTURE WORK AND SUGGESTIONS 

As the future study, the work can be expanded as to include more sounds in the 

repository. Having only 40 sounds may not include all possible Asthma patterns and 

this may also lead to a weak reasoning for the classification algorithms since the 

training was done in supervised learning paradigm. As a second point, the sound 

capturing process can be improved in such a way that the sound noise level is kept as 

low as possible. If the noise level could be lowered during the recording phase, the 

machine learning algorithms can better evaluate the asthma patterns rather than dealing 

with the comparison of high pitched noise levels.  What is more, some sound matching 

algorithms aiming to keep the sounds perceptually balanced is planned to use for the 

same work to obtain better classification results. 
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