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WEIGHTED APPROXIMATION BY VIDENSKII AND
LUPAS OPERATORS

Akif Barbaros DİKMEN

Ph.D. Thesis – Mathematics
April 2013

Thesis Supervisor: Prof. Dr. Alexey LUKASHOV

ABSTRACT

In this dissertation we focus on the boundedness and convergence properties
of linear positive operators.

In chapter 1 we give some basic information about Bernstein polynomials,
Weighted approximation of functions, Lototsky transform of Bernstein operators,
Quantum calculus, and Moduli of continuity.

In chapter 2 we pay attention to weighted boundedness and weigthed approx-
imation by classical polynomial operators and to construction of their weighted
modifications, because usual operators are not always suitable for approximating
functions with singularities in weighted spaces. We investigate approximation prop-
erties of Videnskii operators in the weighted norm under some restrictions.

In chapter 3 we constructed Videnskii type generalization of Baskakov opera-
tors and compare it with Swetits-Wood’s results.

In chapter 4 in the first section we state a new q-analogue of Durrmeyer op-
erators which preserves the linear function and their convergence properties. In the
second section we state a new Durrmeyer type modification of generalized Baskakov
operators An for all real valued continuous and bounded functions f on(0,∞]. For
the operators An we establish certain direct theorems in terms of the modulus of con-
tinuity of second order, and we prove the continuity of the operator in Lipschitz-type
space.

Keywords: Videnskii Operator, Weighted Approximation, Durrmeyer
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VİDENSKİİ VE LUPAS OPERATÖRLERİNİN
AĞIRLIKLI YAKINSAKLIĞI

Akif Barbaros DİKMEN

Doktora Tezi – Matematik
Nisan 2013

Tez Danışmanı: Prof. Dr. Alexey LUKASHOV

ÖZ

Bu doktora tezinde genel olarak doğrusal pozitif operatörlerinin sınırlılık ve
yakınsaklık özelliklerini inceledik.

Birinci bölümde Bernstein polinomları, fonksiyonların ağırlıklı yaklaşımı, Lo-
totsky transform, quantum analizi, ve süreklilik modülü hakkında temel bazı bilgiler
verdik.

İkinci bölümde klasik Bernstein polinomlarının modifikasyonlarını incelendi.
Bu çalışmlar bize, bu operatörlerin rasyonel benzerlerinin, ağırlıklı modifikasyon-
larını oluşturma fikrini verdi. Çünkü normal operatörler ağırlıklı uzaylarda yakınsayan
fonksiyonlar için uygun olmayabiliyor. Ağrılıklı uzaylarda ve bazı özel şartlar altında
Videnskii operatörlerinin yakınsaklık özellikleri incelendi.

Üçüncü bölümde Baskakov operatörlerinin, Videnskii tipindeki genellemesini
elde ettik. Sonuçları Swetits - Woods’ ın sonuçlarıyla kıyasladık.

Dördüncü bölümün ilk kısmında, Lineeer fonksiyonlarını aynı elde ettiğimiz
yeni bir Durrmeyer operatörlerinin q benzerini elde ettik. Bu operatörlerin yakınsaklık
özellikleri inceledik. Ayrıca (0,∞] de reel değerli ve sınırlı bir f fonksiyonun genel-
lenmiş Baskakov operatörlerinin, Durrmeyer tipinde ifade edilen yeni bir operatörü
tanımladık. Bu operatörü için direkt teoremleri ikinci dereceden süreklilik modülü
anlamında ifade ettik. Bu An operatörin sürekliliğini ve Lipschitz uzayının bir ele-
manı ve genel süreklilik modülü şeklinde ifade ettik.

Anahtar Kelimeler: Videnskii Operatörü, Ağırlıklı Yakınsaklık, Durrmeyer
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CHAPTER 1

INTRODUCTION AND BASIC NOTATION

1.1 INTRODUCTION

The main goal of this chapter is to present to the reader known results which

will be used in our study. They are taken from the books : G. M. Phillips (Phillips,

2000), R. A. Devore and G. G. Lorentz (DeVore and Lorentz, 1993), G. G. Lorentz

(Lorentz, 1986), F. Altomare and M. Campiti (Altomare and Campiti, 1994), V. Kac

and P. Cheung (Kac and Cheung, 2002), and papers by V. S. Videnskii (Videnskii,

2008), B. D. Vecchia and G. Mastroianni and J. Szabados (Vecchia et al., 2004),

J.P. King (King, 1966)

1.2 BERNSTEIN POLYNOMIALS

This part of the introduction is concerned with sequences of polynomials named

after their creater S.N. Bernstein. Given a function f on [0, 1] , we define the Bern-

stein polynomial

Bn (f, x) =
n∑
r=0

f
( r
n

) (
n
r

)
xr (1− x)n−r (1.1)

for each positive integer n. Thus there is a sequence of Bernstein polynomials corre-

sponding to each function f. As we will see later in this part , if f is continous on

[0, 1], its sequence of Bernstein polynomials converges uniformly to f on [0, 1]. One

might wonder why Bernstein created ”new” polynomials for this purpose, instead

of using polynomials that were already known to mathematics. For example Taylor

polynomials are not appropriate; for even setting aside questions of convergence,

they are applicable only to functions that are infinitely differentiable and not to all

1
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continous functions.

It is clear from (1.1) that for all n ≥ 1,

Bn (f ; 0) = f (0) and Bn (f ; 1) = f (1) , (1.2)

so that a Bernstein polynomial for f interpolates f at both endpoints of the interval

[0, 1] .

Example 1.2.1. It follows from the binomial expansion that

Bn (1, x) =
n∑
r=0

(
n
r

)
xr (1− x)n−r = (x+ (1− x))n = 1, (1.3)

so that the Bernstein polynomial for the constant function 1 is also 1. Since

r

n

(
n

r

)
=

(
n− 1

r − 1

)
for 1 ≤ r ≤ n the Bernstein polynomial for the function x is

Bn (x, x) =
n∑
r=0

r

n

(
n

r

)
xr (1− x)n−r = x

n∑
r=0

(
n−1
r−1

)
xr−1 (1− x)n−r .

Note that the term corresponding to r = 0 in the first of the above two sums

is zero. One putting s = r − 1 in the second summation, we obtain the

Bn (x, x) = x
n∑
r=0

(
n−1
s

)
xs (1− x)n−1−s = x, (1.4)

last step following from (1.3) with n replaced by n−1. Thus the Bernstein polynomial

for the function x is also x.

We call Bn the Bernstein operator; it maps a function f, defined on [0, 1] , to

Bnf where the function Bnf evaulated at x is denoted by Bn (f ;x) . The Bernstein

operator is obviously linear, since it follows from (1.1) that

Bn (λf + µg) = λBnf + µBn (g) , (1.5)

for all functions f and g defined on [0, 1] and real λ and µ. We now require the

following definition.

Definition 1.2.1. Let L denote a linear operator that maps functions f defined on

[a, b] to a function Lf defined on [c, d] . Then L is said to be a monotone operator

or, equivalently a positive operator if
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f (x) ≥ g (x) , x ∈ [a, b]⇒ (Lf) (x) ≥ (Lg) (x) , x ∈ [c, d] , (1.6)

where we have written (Lf) (x) to denote the value of the function Lf at the point

x ∈ [a, b] .

We can see from (1.1) that Bn is a monotone operator. It then follows from

the monotonicity of Bn and (1.3) that

m ≤ f (x) ≤M, x ∈ [0, 1] ⇒ m ≤ Bn (f, x) ≤M, x ∈ [0, 1] . (1.7)

In particular, if we choose m = 0 in (1.7) we obtain

f (x) ≥ 0, x ∈ [a, b] ⇒ Bn (f, x) ≥ 0, x ∈ [0, 1] (1.8)

it follows from (1.3) and (1.4) the linear property (1.5) that

Bn (ax+ b;x) = ax+ b (1.9)

for all real a and b. We therefore say that the Bernstein operator reproduces linear

polynomials. We can deduce from the following result that the Bernstein operator

does not reproduce any polynomial of degree greater than one.

Theorem 1.2.1. The Bernstein polynomial may be expressed in the form

Bn (f, x) =
n∑
r=0

(
n
r

)
∆rf (0)xr, (1.10)

where ∆ is the forward difference operator with the step size h = 1
n
.

Proof. Begining with (1.1) ,and expanding the term (1− x)n−r, we have

Bn (f, x) =
n∑
r=0

f
( r
n

) (
n
r

)
xr

n−r∑
s=0

(−1)s
(
n−r
s

)
xs.

Let us put t = r + s. We may write

n∑
r=0

n−r∑
s=0

=
n∑
t=0

t∑
r=0

, (1.11)

since both double summations in (1.11) are over all lattice points. We also have
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(
n
r

)(
n−r
s

)
=
(
n
t

)(
t
r

)
,

and so we may write the double summation as

n∑
t=0

(
n
t

)
xt

t∑
r=0

(−1)t−r
(
t
r

)
f
( r
n

)
=

n∑
t=0

(
n
t

)
∆tf (0)xt,

on using the expansion for a higher order forward difference.

This completes the proof.

The relation between forward differences and derivatives is

∆mf (x0)

hm
= f (m) (ξ) , (1.12)

where ξ ∈ (x0, xm) and xm = xm + mh. Let us put h = 1
n
, x0 = 0 and f (x) = xk

where n ≥ k. Then we have

nr∆rf (0) = 0 for r > k

and

nk∆kf (0) = f (k) (ξ) = k!. (1.13)

Thus, we see from (1.10) with f (x) = xk where n ≥ k that

Bn

(
xk;x

)
= a0x

k + a1x
k−1 + ...+ ak−1x+ ak,

where a0 = 1 for k = 0 and k = 1, and

a0 =
(
n
k

) k!

nk
=

(
1− 1

n

)(
1− 2

n

)
...

(
1− k − 1

n

)
for k ≥ 2. Since a0 6= 1 when n ≥ k ≥ 2, this justifies our above statement that the

Bernstein operators does not reproduce any polynomial of degree greater than one.

Example 1.2.2. With f (x) = x2, we have

f (0) = 0, ∆f (0) = f

(
1

n

)
− f (0) =

1

n2
,

and we see from (1.10) that n2∆2f (0) = 2! for n ≥ 2. Thus it follows from (1.10)

that

Bn

(
x2;x

)
=
(
n
1

) x
n2

+
(
n
2

)2x2

n2
=
x

n
+

(
1− 1

n

)
x2,
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which may be written in the form

Bn

(
x2;x

)
= x2 +

1

n
x (1− x) . (1.14)

Thus the Bernstein polynomials for x2 converge uniformly to x2 like 1
n
, very

slowly.

Theorem 1.2.2. Given a function f ∈ C [0, 1] and any ε > 0 there exists an integer

N such that

|f (x)−Bn (f, x)| ≤ ε, 0 ≤ x ≤ 1,

for all n ≥ N.

Proof. In the other words the above statement says that the Bernstein polynomials

for a function f that is continous on [0, 1] converge uniformly to f on [0, 1] .

We begin with the identity( r
n
− x
)2

=
( r
n

)2
− 2

( r
n

)
x+ x2,

multiply each term by
(
n
r

)
xr (1− x)n−r , and then sum up from r = 0 to n to give

n∑
r=0

( r
n
− x
)2 (

n
r

)
xr (1− x)n−r = Bn

(
x2;x

)
− 2xBn (x;x) + x2Bn (1;x) .

It then follows from (1.3) , (1.4) and (1.14) that

n∑
r=0

( r
n
− x
)2 (

n
r

)
xr (1− x)n−r =

1

n
x (1− x) . (1.15)

For any fixed x ∈ [0, 1] , let us assume the sum of the polynomials pn,r (x) over

all values of r for which r
n

is not close to x. To make this notion precise, we choose

a number δ > 0 and let Sδ denote the set of all values of r satisfying
∣∣ r
n
− x
∣∣ > δ.

We now consider the sum of the polynomials pn,r (x) over all r ∈ Sδ. Note that∣∣ r
n
− x
∣∣ > δ implies that

1

δ2

( r
n
− x
)2
≥ 1. (1.16)

Then using (1.16), we have∑
r∈Sδ

(
n
r

)
xr (1− x)n−r ≤ 1

δ2

∑
r∈Sδ

( r
n
− x
)2 (

n
r

)
xr (1− x)n−r .
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The latter sum is not greater that the sum of the same expression over all r,

and using (1.15) we have

1

δ2

∑
r=0

( r
n
− x
)2 (

n
r

)
xr (1− x)n−r =

x (1− x)

nδ2
.

Since 0 ≤ x (1− x) ≤ 1
4

on [0, 1] , we have

∑
r∈Sδ

(
n
r

)
xr (1− x)n−r ≤ 1

4nδ2
. (1.17)

Let us write
n∑
r=0

=
∑
r∈Sδ

+
∑
r/∈Sδ

,

where the latter sum is therefore over all r such that
∣∣ r
n
− x
∣∣ < δ. Having split the

summation into these two parts which depend on a choice of δ that we still have to

make, we are now ready to estimate the difference between f (x) and its Bernstein

polynomial. Using (1.3) we have

f (x)−Bn (f, x) =
n∑
r=0

(
f (x)− f

( r
n

)) (
n
r

)
xr (1− x)n−r ,

and hence

f (x)−Bn (f, x) =
∑
r∈Sδ

(
f (x)− f

( r
n

)) (
n
r

)
xr (1− x)n−r

+
∑
r/∈Sδ

(
f (x)− f

( r
n

)) (
n
r

)
xr (1− x)n−r .

We thus obtain the inequality

|f (x)−Bn (f, x)| =
∑
r∈Sδ

∣∣∣f (x)− f
( r
n

)∣∣∣ (nr)xr (1− x)n−r

+
∑
r/∈Sδ

∣∣∣f (x)− f
( r
n

)∣∣∣ (nr)xr (1− x)n−r .

Since f (x) ∈ [0, 1] , it is bounded on [0, 1] and we have |f (x)| ≤ M, for some

M > 0. We can therefore write∣∣∣f (x)− f
( r
n

)∣∣∣ ≤ 2M

for all r and all x ∈ [0, 1] and so∑
r∈Sδ

∣∣∣f (x)− f
( r
n

)∣∣∣ (nr)xr (1− x)n−r ≤ 2M
∑
r∈Sδ

(
n
r

)
xr (1− x)n−r .
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On using (1.17) we obtain

∑
r∈Sδ

∣∣∣f (x)− f
( r
n

)∣∣∣ (nr)xr (1− x)n−r ≤ M

2nδ2
. (1.18)

Since f is continous, it is also uniformly continous, on [0, 1] . Thus, corre-

sponding to any choice of ε > 0 there is a number δ > 0 depending on ε and f, such

that

|x− x′| < δ ⇒ |f (x)− f (x′)| < ε

2
,

for all x, x′ ∈ [0, 1] . Thus, for the sum over r /∈ Sδ we have

∑
r/∈Sδ

∣∣∣f (x)− f
( r
n

)∣∣∣ (nr)xr (1− x)n−r ≤ ε

2

∑
r/∈Sδ

(
n
r

)
xr (1− x)n−r

≤ ε

2

n∑
r=0

(
n
r

)
xr (1− x)n−r , (1.19)

and hence again using (1.3) we find that

∑
r/∈Sδ

∣∣∣f (x)− f
( r
n

)∣∣∣ (nr)xr (1− x)n−r <
ε

2
.

On combining (1.18) and (1.19) we obtain

|f (x)−Bn (f, x)| < M

2nδ2
+
ε

2
.

It follows from the line above that if we choose N > M
2εδ2

, then

|f (x)−Bn (f, x)| < ε

for all n ≥ N and this completes the proof.

Remark 1.2.1. The proof follows P.P. Korovkin and was used by him to obtain

essentially more general results (see for example F. Altomare, M. Campiti (Altomare

and Campiti, 1994)).

1.3 QUANTUM CALCULUS

Let q > 0. For each nonnegative integer k, the q-integer [k] and the q-factorial

[k]! are respectively defined by
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[k] =

{1−qk
1−q , q 6= 1

k, q = 1.

}

[k]! :=

{
[k] [k − 1] ... [1] , k ≥ 1

1, k = 0

}
.

For the integers n, k satisfying n ≥ k ≥ 0 the q-binomial coefficients are defined

by

[
n

k

]
:=

[n]!

[k]! [n− k]!
.

If k < 0 or k > n then
[
n
k

]
= 0. Therefore, the equalities

[k] + qk [n− k] = [n]!,

[
n− 1

k − 1

]
+ qk

[
n− 1

k

]
=

[
n

k

]
and

[k]

[n]

[
n

k

]
=

[
n− 1

k − 1

]
,

[n− k]

[n]

[
n

k

]
=

[
n− 1

k

]
hold true.

We may also define

(1 + x)nq =
n−1∏
j=0

(
1 + qjx

)
= (1 + x) (1 + qx) ...

(
1 + qj−1x

)
.

Definition 1.3.1. Consider an arbitrary function f (x) . It’s q-differential is

dqf (x) = f (qx)− f (x) .

Definition 1.3.2. The following expression

Dqf (x)
dqf (x)

dqx

are called the q-derivative.

Example 1.3.1. Compute the q-derivative of f (x) = xn, where n is positive integer.

By the definition

Dqx
n =

(qx)n − xn

(q − 1)x
=
qn − 1

q − 1
xn−1. (1.20)

Since the fraction qn−1
q−1 appears quite frequently, then (1.20) becomes Dqx

n =

nxn−1 which resembles the ordinary derivative of xn.
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Definition 1.3.3. The q-analogue of (x− a)n is the polynomial

(x− a)nq =

{
1, if n = 0

(x− a) (x− qa) ... (x− qn−1a) if n ≥ 1

}
. (1.21)

Proposition 1.3.1. For n ≥ 1

Dq (x− a)nq = [n] (x− a)n−1q .

Proof. The formula is obviously true when n = 1. Let us assume Dq (x− a)kq =

[k] (x− a)kq for some integer k. According to the definition (x− a)k+1
q = (x− a)kq(

x− qka
)
. Using the product rule

Dq (x− a)k+1
q = (x− a)kq +

(
qx− qka

)
Dq (x− a)kq

= (x− a)kq + q
(
x− qk−1a

)
[k] (x− a)k−1q

= (1 + q [k]) (x− a)kq = [k + 1] (x− a)kq .

Hence, the proposition is proved by induction on k.

Thus, DqPn = Pn−1 is an immediate result of the above proposition. Now let

us explore some other properties of the polynomial (x− a)nq . In general, (x− a)m+n
q =

(x− a)mq (x− a)nq . Instead ,

(x− a)m+n
q = (x− a) (x− qa) ...

(
x− qm−1a

)
(x− qma)

(
x− qm+1a

)
× ...

(
x− qm+n−1a

)
=
(
(x− a) (x− qa) ...

(
x− qm−1a

)
(x− qma)

(
x− qm−1a

))
× ... (x− qma) (x− q (qma)) ..

(
x− qn−1 (qma)

)
,

which gives

(x− a)m+n
q = (x− a)mq (x− qma)nq .

Substituting m by −n we can thus extend the definition in (1.21) to all integers

by defining for any positive integer n

(x− a)−nq =
1

(x− q−na)nq
.

The q-analogue of the integration in the interval [0, a] is defined by∫ a

0

f (t) dqt := (1− q)
∞∑
n=1

f (aqn) qn, 0 < q < 1.
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We set

pnk (q;x) :=

[
n

k

]
xk (1− x)n−kq , p∞k (q;x) :=

xk

(1− q)kq [k]!
(1− x)∞q .

1.4 VIDENSKII AND LUPAS OPERATORS

Videnskii constructed linear positive operators (LPO) which generalize Bern-

stein polynomials and are rational functions, namely

Un (f, x) =
n∑
k=0

f (τnk)unk (x) (1.22)

unk (x) = αnk
xk (1− x)n−k

n∏
i=1

|xni − x|
, αnk > 0, (1.23)

where{xni}ni=0 is a given arbitrary matrix of real poles which lie outside of the interval

(0, 1) . Necessary and sufficient condition for the matrix {xni} were given, for the

sake of possibility of approximation by the sequence of LPO {Un} .

Also Lupas considered rational LPO which generalize Bernstein polynomials.

He chooses poles and nodes in some dependence of geometrical progression with

quotient 0 < q < 1. Videnskii (Videnskii, 2008) observed that basic functions for

Lupas operators can be considered as a particular case of unk (x) from (1.22) .

Let the functions ank ∈ C [0, 1] , ank ≥ 0 (k = 0, ..., n) , n ∈ N.

n∑
k=0

ank (x) = 1 (1.24)

for f ∈ C [0, 1] we construct a sequence of LPO

Aξn (f, x) =
n∑
k=0

f (ξnk) ank (x) ,

where 0 = ξn0 < ξn1 < ... < ξnn = 1; points ξnk we call nodes of LPO Aξn the

matrix {ank}nk=0 n ∈ N is called a base of LPO Aξn. The sequence of LPO is callled

approximating if for only f ∈ C [0, 1]

lim
n→∞

Aξn (f, x) = f (x)



11

uniformly on [0, 1] . The set of such approximation sequences is denoted by A and

respectively
{
Aξn
}
∈ A. Denote by

Sv
(
Aξn, x

)
=

n∑
k=0

(ξnk − x)v ank (x)

S∗v
(
Aξn, x

)
=

n∑
k=0

|ξnk − x|v ank (x)

we call Sv
(
Aξn, x

)
a moment of order v LPO Aξn. Clearly, S0

(
Aξn, x

)
= 1.

Put

dAξn = max
x
S2

(
Aξn, x

)
, σAξn = max

x
S∗1
(
Aξn, x

)
.

Since (ξnk − x)2 ≤ |ξnk − x| ≤ 1 and because of (1.24) and Cauchy Schwarz

S∗1
(
Aξn, x

)
≤
√
S2

(
Aξn, x

)

dAξn ≤ σAξn ≤
√
dAξn

and hence the equations

lim
n→∞

dAξn = 0, and lim
n→∞

σAξn = 0

hold simultaneously.

Now we can give some basic facts about Videnskii’s operators.

Put

xni = 1 + ρni, ρni > 0 (1.25)

where xni lie to the right of the interval and all xni > 1.

Pn (x) =
n∏
i=1

(1 + ρni − x) =
n∏
i=1

(ρnix+ (1 + ρni) (1− x)) =
n∑
k=0

αnkx
k (1− x)n−k

(1.26)

then we can obtain basic functions unk (x) (1.23) from (1.26) .

It is clear that unk satisfy the equality

n∑
k=0

unk (x) = 1. (1.27)
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It is known that polynomial pnk from (1.1) is connected with generating func-

tion

Gn (x, y) = (xy + 1− x)n =
n∑
k=0

pnk (x) yk. (1.28)

Analoguesly, we construct a generating function for unk. Put

hni (x) =
ρnix

1 + ρni − x

and

φn (x) =
1

n

n∑
i=1

hni (x) (1.29)

then

gn (x, y) =
n∏
i=1

(hni (x) y + 1− hni (x)) =
n∑
k=0

unk (x) yk.

Differentiate in y

∂ (gn (x, y))

∂y
= gn (x, y)

n∑
i=0

hni (x)

hni (x) y + 1− hni (x)
=

n∑
k=0

kunk (x) yk−1

and putting y = 1 we obtain

φn (x) =
n∑
k=0

k

n
unk (x) (1.30)

Observing that φn (x) is strictly increasing from 0 to 1 on the int [0, 1] define

τnk in the formula (1.22) by relations

φn (τnk) =
k

n
, k = 0, 1, .., n.

Note that the functions 1, φn (x) play role of the fixed functions f0, f1 for

generalized Bernstein operators in the sense of (Aldaz and Render, 2010) for the

system of rational functions of degree n with denominator Pn (x) .

Rewrite (1.30) in the form

n∑
k=0

(φn (τnk)− φn (x))unk (x) = 0. (1.31)

Differentiation of lnunk (x) (0 < x < 1) gives

u′nk (x) =
n

x (1− x)
(φn (τnk)− φn (x))unk (x) . (1.32)

Formula (1.32) shows by the way that the point τnk (0 ≤ k < n− 1) is the

unique point of maximum of the function unk in the interval [0, 1]. That is a reason
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why the Videnskii operators can be considered as a natural analogue of the Bernstein

operators for rational functions. Similarly to the fact that the point is a point of

maximum of the function pnk. Derivative of (1.31) with taking into account (1.32)

gives
n∑
k=0

(φn (τnk)− φn (x))2 unk (x) =
x (1− x)

n
φ′n (x) . (1.33)

It is easy to see

x (1− x)h′ni = x (1− x)
ρni (1 + ρni)

(1 + ρni − x)2
= hni (x) (1− hni (x)) .

Introducing notations for generated moments

σnv (x) =
n∑
k=0

(φn (τnk)− φn (x))v unk (x) . (1.34)

Then we may rewrite (1.27) , (1.31) and (1.33) as

σn0 (x) = 1, σn1 (x) = 0, σn2 (x) =
1

n2

n∑
i=1

hni (x) (1− hni (x)) . (1.35)

The conditions for {Un} ∈ A are given in terms of ρni in other words they

depend on the rate of approximation of poles to the ends of [0, 1] as n→∞.

Denote by

Sn =
n∑
i=1

ρni
(1 + ρni)

. (1.36)

Theorem 1.4.1. ( (Videnskii, 2008)). The following inequalities hold

max

(
1

4n2
,
1

2
e−3Sn

)
≤ dUn ≤

1

Sn
. (1.37)

Hence, for {Un} ∈ A it is neccessary and sufficient that

lim
n→∞

Sn =∞.

Left hand side of the inequality (1.37) is not connected in fact with nodes τnk

and is valid for arbitrary nodes 0 = ξn0 < ξn1 < ... < ξnn = 1 for LPO

U ξ
n (f, x) =

n∑
k=0

f (ξnk)unk (x) . (1.38)

Rational LPO of Lupas (see for instance S. Ostrovska’s paper (Ostrovska,

2006))are constructed for fixed n and q with poles

1 + ρi = xi =
1

1− qi
.
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Functions unk are defined by the same scheme as in (1.23), but with computa-

tions of coefficients αnk in (1.26). For that reason a known q− generalized bynomial

formulas are used which was mentioned in section 1.3 .

The identity

Fn (z) =
n−1∏
i=0

(
1 + qiz

)
=

n∑
k=0

(
n

k

)
q

q
k(k−1)

2 zk (1.39)

is valid which is easily checked by induction with taking in to account Fn (z) =

(1 + z)Fn−1 (qz) . The roots of the formulas of type (1.39) extend to Euler.

The infinite product

F (z) =
∞∏
i=1

(
1 + qiz

)
= 1 +

∞∑
k=1

zk
∞∑

n=
k(k−1)

2

Ankq
n (1.40)

is considered.

The function F is a generating function to determine amount of expansions of

an integer number n into sum of k different integer numbers. The coefficient Ank is

the searched number. Explicit formulas for Ank are not given but a recurrent way

is indicated to determine them. Later many famous mathematicians in particular

Gauss, Cauchy, Stieljes paid an interest to Fn function.

We will use here partly the exposition of rational Lupas operator. Their de-

nominator we’ ll write in a form analogues to (1.26) and then putting

x

1− x
= z

we’ ll use q−binomial identity (1.39):

Pn−1 (x) =
n−1∏
i=1

(
1− x+ qix

)
= (1− x)n−1

n−1∏
i=1

(
1 + qiz

)
= (1− x)n−1 Fn−1 (qz) .

(1.41)

Taking into account x+ 1− x = 1 we may write (1.41) as

Pn−1 (x) =
n−1∏
i=1

(
1− x+ qix

)
= (1− x)n Fn (x) ,

hence we have

Pn−1 (x) = (1− x)n
n∑
k=0

(
n

k

)
q

q
k(k−1)

2 zk =
n∑
k=0

(
n

k

)
q

q
k(k−1)

2 xk (1− x)n−k . (1.42)
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Denote by

unk (q;x) =
1

Pn−1 (x)

(
n

k

)
q

q
k(k−1)

2 xk (1− x)n−k (1.43)

so that
n∑
k=0

unk (q;x) = 1. (1.44)

We’ll choose [k]
[n]

as nodes and LPO are defined by the formula

Un (f, x, q) =
n∑
k=0

f

(
[k]

[n]

)
unk (q;x) .

1.5 WEIGHTED APPROXIMATION OF FUNCTIONS WITH END-

POINT BY BERNSTEIN OPERATORS

Let Bn denote the n − th Bernstein operator (see Section 1.1). The problem

of wegihted approximation by Bernstein type operators of functions with endpoints

or inner singularities of algebraic type is natural question.

In this part of the chapter we give the operators of Bernstein type from B. D.

Vecchia and G. Mastroianni and J. Szabados (Vecchia et al., 2004) for the weighted

approximation of functions with singularities at the endpoints and we give conver-

gence results involving the weighted modulus of smoothness of second order.

For smoother functions we introduce the Sobolev type space W 2
w defined as

W 2
w :=

{
f ∈ Cw : f ′ ∈ AC ((0, 1)) ,

∥∥f ′′wϕ2
∥∥} , (1.45)

where ϕ (x) =
√
x (1− x) and AC (I) is the set of all absolutely continous functions

ın I.

Now for every f ∈ Cw introduce the Bernstein type operator

B∗n (f, x) := (1− x)n
[
2f

(
1

n

)
− f

(
2

n

)]
+

n−1∑
k=1

pn,k (x) f

(
k

n

)
+ xn

[
2f

(
1− 1

n

)
− f

(
1− 2

n

)]
. (1.46)

From the definintion it follows that B∗n (f, x) is a polynomial of degree at

most n and B∗n is a linear operator which reproduces linear functions. We have the
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following approximation result which proves the boundedness of the operator B∗n in

Cw, and deduce the weighted convergence of B∗n (f, x) to f respectively.

Theorem 1.5.1. For every C, α, β > 0

a)

‖wB∗n (f)‖ ≤ C ‖wf‖ , for all f ∈ Cw, (1.47)

b)

w [f −B∗n (f)] ≤ C

n

∥∥wϕ2f ′′
∥∥ , if f ∈ Cw. (1.48)

The proof of the Theorem 1.5.1 is based on some lemmas.

Lemma 1.5.2. If α, β > 0, 0 ≤ x ≤ 1, then

Dn (x) = w (x)
∑

| kn−x|≥ϕ(x)2

pnk (x)

∣∣∣∣∣
∫ x

k
n

t− k
n

ϕ2 (t)w (t)
dt

∣∣∣∣∣ ≤ C

n
.

Proof. By symmetry we may assume that 0 ≤ x ≤ 1
2
. We write

Dn (x) ≤ w (x)

 ∑
0≤k≤nx

2

+
∑

3nx
2
≤k≤n

 pnk (x)

∣∣∣∣∣
∫ x

k
n

∣∣t− k
n

∣∣
t1+α

dt

∣∣∣∣∣
:= Dn1 (x) +Dn2 (x) .

Then

Dn1 (x) ≤ Cxα
∑

0≤k≤nx
2

pnk (x)

∫ x

k
n

t−αdt ≤ Cxα+2nα+1pnkn (x) ,

since for a fixed x, pn,k (x) attains its maximum in 0 ≤ k ≤ nx
2

for kn =
[
nx
2

]
. Now

by Stirling’s formula

pn,kn ≤ C

(
n
e

)n√
nx

nx
2 (1− x)n(1−

x
2 )

(
nx
2e

)nx
2
√
nx

(
n(1−x2 )

e

)n(1−x2 )√
n

≤ C√
nx

2n
(

1− x
2− x

)n(1−x2 )

=
C√
nx

(
1− x

2− x

)n(1−x2 )

2
nx
2

and by 1− u ≤ e−u, u ≥ 0,

pn,kn (x) ≤ C√
nx
e−

nx
2 2

nx
2 . (1.49)
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Hence,

Dn1 (x) ≤ Cxα+
3
2nα+

1
2

(
2

e

)nx
2

≤ Cx−α−
3
2nα+

1
2 ≤ C

n
. (1.50)

Now we estimate Dn2 (x) . We have

Dn (x) ≤ Cxα
∑
k≥ 3nx

2

pn,k (x)

∫ k
n

x

k
n
− t
t1+α

dt

≤ C

x

n∑
k=0

pnk (x)

(
k

n
− x
)2

≤ C

n
,

since

n∑
k=0

pnk (x) |k − xn|γ ≤ Cn
γ
2ϕγ (x) , 0 ≤ x ≤ 1, γ ≥ 0. (1.51)

Let ψ (x) is defined as

ψ (x) =


10x3 − 15x4 + 6x5, if 0 ≤ x ≤ 1

0, if 0 ≤ x

1, if x ≥ 1



and P1 (f) and P2 (f) be the linear functions interpolating f at the points 1
n
, 2
n

and

1− 1
n
, 1− 2

n
respectively, i.e.

P1 (f, x) = P1 (x) = (2− nx) f
1

n
+ (nx− 1) f

(
2

n

)
,

P2 (f, x) := P2 (x) = [2− (1− x)n] f

(
1− 1

n

)
+ (n (1− x)− 1) f

(
1− 2

n

)
.



18

Now define,

Fn (f, x) := Fn (x)

= (1− ψ (nx− 1))P1 (x) + (1− ψ (nx− n+ 2))ψ (nx− 1) f (x)

+ ψ (nx− n+ 2)P2 (x)

=



P1 (x) , if x ∈
[
0, 1

n

]
(1− ψ (nx− 1))P1 (x)

+ψ (nx− 1) f (x) if x ∈
[
1
n
, 2
n

]
,

f (x) , if x ∈
[
2
n
, 1− 2

n

]
(1− ψ (nx− n+ 2)) f (x)

(ψ (nx− n+ 2))P2 (x) , if x ∈
[
1− 2

n
, 1− 1

n

]
,

P2 (x) , if x ∈
[
1− 1

n
, 1
]

Note that the linear operator Fn reproduces constant and linear functions.

Lemma 1.5.3. If f ∈ W 2
w, then for Fn = Fn (f) and for all α, β ≥ 0

‖[Fn −Bn (Fn)]w‖ ≤ C

n

∥∥F ′′nϕ2w
∥∥ .

Proof. Again by symetry it is sufficient to estimate here for 0 ≤ x ≤ 1
2
. Since Bn

preserves linear functions, we get

|Fn (x)−Bn (Fn, x)|w (x) =

∣∣∣∣∣
n∑
k=0

w (x) pn,k (x)

∫ k
n

x

(
t− k

n

)
F ′′n (t) dt

∣∣∣∣∣
≤

∑
| kn−x|≤x2

+
∑
| kn−x|≥x2

:= E1 (x) + E2 (x) .

From the definition F ′′n (t) = 0, in
[
0, 1

n

]
, whence E1 (x) = 0 for 0 ≤ x ≤ 1

n
.

Now if 1
n
≤ x ≤ 1

2
, then 1 ≤ k ≤ n− 1, and thus

E1 (x) ≤ C
‖F ′′nϕ2w‖
x (1− x)

∑
| kn−x|≤x2

pnk (x)

(
k

n
− x
)2

≤ C

n

∥∥F ′′nϕ2w
∥∥

by using (1.51) with γ = 2. On the other hand , by Lemma 1.5.2

E2 (x) ≤ C
∥∥F ′′nϕ2w

∥∥Dn (x) ≤ C

n

∥∥F ′′nϕ2w
∥∥ .

Hence, the assertion is proved.
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Lemma 1.5.4. If f ∈ W 2
w, then

‖w [f − P1 (f)]‖[0, 2n ] ≤
C

n

∥∥f ′′ϕ2w
∥∥

[0, 2n ] (1.52)

and

‖w [f − P2 (f)]‖[1− 2
n
,1] ≤

C

n

∥∥f ′′ϕ2w
∥∥

[1− 2
n
,1] . (1.53)

Proof. By symmetry it is sufficient to prove (1.52). If f ∈ W 2
w, then

f (x) = f

(
2

n

)
− f ′

(
2

n

)(
2

n
− x
)

+

∫ 2
n

x

f ′′ (t) (t− x) dt := P ∗1 (x) +Gn (f, x)

with P ∗1 a linear function. Evidently,

|f (x)− P1 (f, x)| = |Gn (f, x)− P1 (Gn (f) , x)| .

Now if x ∈
[
0, 2

n

]
then

xα |Gn (f, x)| ≤ xα
∫ 2

n

x

|f ′′ (t) (t− x)| dt ≤ C

∫ 2
n

x

∣∣(f ′′ϕ2w
)

(t)
∣∣ dt

≤ C

n

∥∥f ′′ϕ2w
∥∥

[0, 2n ] .

Moreover,

xα |P1 (Gn (f) , x)| ≤ xα (2− nx)

∫ 2
n

1
n

f ′′ (t)

(
t− 1

n

)
dt ≤ Cxα

∫ 2
n

1
n

∣∣f ′′ (t)ϕ2 (t)w (t)
∣∣ dt

≤ C

∫ 2
n

1
n

∣∣f ′′ (t)ϕ2 (t)w (t)
∣∣ dt ≤ C

n

∥∥f ′′ϕ2w
∥∥

[0, 2n ] ,

and (1.52) is proved.

Lemma 1.5.5. For every f ∈ W 2
w we have

∥∥F ′′nϕ2w
∥∥ ≤ C

∥∥f ′′ϕ2w
∥∥ .

Proof. Again, it is sufficient to estimate (F ′′nϕ
2w) (x) for 0 ≤ x ≤ 1

2
. For 0 ≤ x ≤ 1

n
,

F ′′n (x) = 0, while for 2
n
≤ x ≤ 1

2
, Fn = f. Thus, let x ∈

[
1
n
, 2
n

]
. Fn (x) = P1 (x) +

ψ (nx− 1) (f (x)− P1 (x)) and
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F ′′n (x) = n2ψ′′ (nx− 1) (f (x)− P1 (x))

+ 2nψ′ (nx− 1) (f (x)− P1 (x))′

+ ψ (nx− 1) f ′′ (x) , (1.54)

whence for these x’s∣∣(F ′′nϕ2w
)

(x)
∣∣ ≤ C

[
n ‖w (f − P1)‖[ 1

n
, 2
n ]

+w (x)
∥∥(f − P1)

′∥∥
[ 1
n
, 2
n ] +

∥∥f ′′ϕ2w
∥∥

[ 1
n ,

2
n ]

]
.

By the inequality

‖h′‖[c,d] ≤ C
[
(d− c)−1 ‖h‖[c,d] + (d− c) ‖h′′‖[c,d]

]
from (1.54) we get∣∣(F ′′nϕ2w

)
(x)
∣∣ ≤ C

[
n ‖w (f − P1)‖[ 1

n
, 2
n ] + nw (x)

∥∥[f − P1]
′∥∥

[ 1
n
, 2
n ]

+
w (x)

n
‖f ′′‖

[ 1
n ,

2
n ]

+
∥∥f ′′ϕ2w

∥∥
[ 1
n ,

2
n ]

]

≤ C

[
n ‖w [f − P1]‖[ 1

n
, 2
n ] +

∥∥f ′′ϕ2w
∥∥

[ 1
n ,

2
n ]

]
and by Lemma 1.5.4 ∥∥F ′′nϕ2w

∥∥
[ 1
n
, 2
n ] ≤ C

∥∥f ′′ϕ2w
∥∥

[0, 2n ]
.

Proof. (Theorem 1.5.1)

In proving Theorem 1.5.1 we may always estimate the left hand side norms in

the interval by symmetry.

First we prove (1.47). We estimate :

w (x)

∣∣∣∣∣
n−1∑
k=1

pn,k (x) f

(
k

n

)∣∣∣∣∣ ≤ ‖wf‖
n−1∑
k=1

pnk (x)
w (x)

w
(
k
n

) := ‖wf‖σ, (1.55)

with

σ ≤

 ∑
1≤k≤nx

2

+
∑

nx
2
≤k≤ 2n

3

+
∑

2n
3
≤k≤n−1

 pn,k (x)
w (x)

w
(
k
n

) :=
3∑
i=1

σi (x) (1.56)
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For a fixed x using the monotone increasing property of pn,k (x) as well as

(1.49) we obtain since the latter function attains its maximum for x = c
n
.

The estimate of σ2 (x) is simpler since in this case w(x)

w( kn)
≤ C which implies the

boundedness. For σ3 (x)we again use that for a fixed x the maximum of pn,k (x) in

2n
3
−1 ≤ k ≤ n is attained for k =

[
2n
3

]
. Since by Stirling’s formula pn, 2n

3
(x) ≤

(
3
4

) 2n
3 ,

we obtain

σ3 (x) ≤
(

3

4

) 2n
3

nβ+1 ≤ C.

Moreover ∣∣∣∣w (x) (1− x)n
(

2f

(
1

n

)
− f

(
2

n

))∣∣∣∣ (1.57)

≤ 3 ‖wf‖ (xn)α (1− x)n ≤ 3 ‖wf‖ (x0n)α (1− x0)n ≤ C ‖wf‖ , (1.58)

with x0 = 1
1+n

α
. Analogously,

∣∣∣∣w (x)xn
[
2f

(
1− 1

n

)
− f

(
1− 2

n

)]∣∣∣∣ ≤ C ‖wf‖ .

Hence, from the definition of the operator B∗n by (1.55) and (1.58) (1.47)

follows.

Now we prove (1.48) by the Lemma 1.5.3 and 1.5.5 we deduce

‖w [f −B∗n (f)]‖ ≤ ‖w [f − Fn (f)]‖+ ‖w [Fn (f)−Bn (Fn (f))]‖

≤ ‖w [f − Fn (f)]‖+
C

n

∥∥f ′′ϕ2w
∥∥

≤ C

n

∥∥f ′′ϕ2w
∥∥+ ‖w [f − Fn (f)]‖[0, 2n ] + ‖w [f − Fn (f)]‖

[1− 2
n ,1]

.

Since

‖w [f − Fn (f)]‖[0, 2n ] ≤ ‖w [f − P1]‖[0, 2n ]

and

‖w [f − Fn (f)]‖[1− 2
n
,1] ≤ ‖w [f − P2]‖[1− 2

n
,1]

by 1.5.4 we get (1.48) .
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1.6 LOTOTSKY TRANSFORM AND BERNSTEIN POLYNOMIALS

The Bernstein polynomials (1.1) associated with a function f defined on [0, 1]

have been the subject of much recent research and have been generalized in several

directions. The generalized Lototsky or [F, dn] matrix has also been the subject of

extensive research. The elements ank of the matrix defined by

a00 = 1, a0k = 0 (k 6= 0) ,

n∏
i=1

y + di
1 + di

=
n∑
k=0

anky
k (1.59)

where {di} is a sequence of complex numbers with di 6= −1 (i = 1, 2, ...) . It is

the purpose of this section to point out following J. Kings (King, 1966) a connection

between the Lototsky matrix and the Bernstein polynomials which gives yet another

extension of the latter.

It is convenient to make a change of notation. If we let hi = 1
1+di

equation

(1.59) has the form

n∏
i=1

(hiy + 1− hi) =
n∑
k=0

anky
k. (1.60)

Now let {hi (x)} be a sequence of functions defined on [0, 1] . Let ank = ank (x)

be the elements of the Lototsky matrix given (1.60) by corresponding to the sequence

{hi (x)}. For each f defined on [0, 1], let

Ln (f, x) =
n∑
k=0

f

(
k

n

)
ank (x) . (1.61)

It is easy to see that if hi (x) = x (i = 1, 2, ...) then Ln (f, x) = Bn (f, x) . Therefore in

this sense the functions Ln (f, x) provide an extension of the Bernstein polynomials.

The following theorem gives sufficient condition on the sequence {hi (x)} to insure

that Ln (f, x)→ f (x) .

Theorem 1.6.1. For f ∈ C [0, 1] let Ln (f, x) be defined by (1.61) and let {si (x)}

denote the (C, 1) transform of the sequence {hi (x)} . If 0 ≤ hi (x) ≤ 1 (i = 1, 2, ...)

and if {si (x)} converges uniformly to x on [0, 1] , then

lim
n→∞

Ln (f, x) = f (x)
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uniformly on [0, 1] .

Proof. According Korovkin theorem see for instance F. Altomare and M. Campiti

(Altomare and Campiti, 1994), it is sufficient to show that

Ln (1, x)→ 1, Ln (t, x)→ x, Ln
(
t2, x

)
→ x2,

uniformly on [0, 1] and that Ln is a positive linear operator. It is clear that Ln

is linear. Furthermore f ≥ 0 implies that Ln ≥ 0 since ank (x) ≥ 0 whenever

0 ≤ hi (x) ≤ 1.

We have

Ln (1, x) = 1, (n = 1, 2, ...) ,

Ln (t, x) =
n∑
k=0

k

n
ank (x) ,

Ln
(
t2, x

)
=

n∑
k=0

(
k

n

)2

ank (x) .

If we let

Pn =
n∏
i=1

(yhi (x) + 1− hi (x))

and

ri (x, y) =
hi (x)

yhi (x) + 1− hi (x)

we have

P ′n =
n∑
i=0

ri (x, y)Pn, (1.62)

and

P ′′n =


[

n∑
i=0

ri (x, y)

]2
−

n∑
i=0

r2i (x, y)

Pn, (1.63)

where the differentiation is with respect to y. Also

P ′n =
n∑
k=0

kank (x) yk−1 (1.64)

and
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P ′′n =
n∑
k=0

k (k − 1) ank (x) yk−2. (1.65)

If we set y = 1 in (1.62) and (1.64) we obtain

1

n

n∑
k=0

kank (x) = sn (x) . (1.66)

Similarly, it follows from (1.63) and (1.65) and (1.66) that:

1

n2

n∑
k=0

k2ank (x) =
1

n
{sn (x)− tn (x)}+ s2n (x) , (1.67)

where {tn (x)} is the (C, 1) transform of the sequence {h2n (x)} .

It is easy to see that 0 ≤ hi (x) ≤ 1 implies tn (x) = O (1) so that tn(x)
n
→ 0

uniformly on [0, 1] . This proves the theorem.

1.7 MODULII OF CONTINUITY

Measuring the smoothness of a function by differentiability is to crude for

many purposes in approximation. More subtle measurements are provided by the

modulii of continuity.

The modulus of continuity ω (f, t) =: ω (t) of a function f can be defined when

f is given on any metric space A. But we shall restrict it A = R, R+, or [a, b] . In

that case

ω (f, t) =: ω (t) := sup
|x−y|≤t
x,y∈A

|f (x)− f (y)| , t ≥ 0. (1.68)

Clearly, ω (t) is a constant for t > diam A if A is bounded. The function ω is

continous at t = 0, if and only if f is uniformly continous on A . We shall assume

that f ∈
∼
C (A) that f belongs to the space of uniformly continous on A then ω (f, t)

is finite for each t. For each fixed t, ω is a semi norm that is it is subadditive in f

and positive homogenous .

A modulus of continouty has the following simple properties :
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a) ω (t)→ ω (0) = 0, for t→ 0;

b) ω is non-negative and non-decreasing on R+;

c) ω is subadditive ω (t1 + t2) ≤ ω (t1) + ω (t2)

d) ω is continous on R+. (1.69)

Properties (a) and (b) are clear. For (c) if there is a point z ∈ A for which

|x− z| ≤ t1, |y − z| ≤ t2and (c) follows from

|f (x)− f (y)| ≤ |f (x)− f (z)|+ |f (z)− f (y)| ≤ ω (t1) + ω (t2) .

Moreover,

ω (t1 + t2)−+ω (t1) ≤ ω (t2) . (1.70)

Thus, (a), (b), (c) imply that ω is continous at each t ≥ 0.

A function ω defined on R+ and satisfying (1.69) is called modulus of continu-

ity. This is justified since by (1.70) any such function is its own modulus of contin

outy.

It follows from(1.69) (c) by induction that

ω (t1 + ...+ tn) ≤ ω (t1) + ...+ ω (tn) .

For t = t1 = ... = tn, we obtain

ω (nt) ≤ nω (t) . (1.71)

A similar inequality holds for a nonintegral factor λ :

ω (λt) ≤ (λ+ 1)ω (t) , λ ≥ 0. (1.72)

In fact, taking an integer n for which we see that n ≤ λ ≤ n+ 1, we see that

ω (λt) ≤ ω ((n+ 1) t) ≤ (n+ 1)ω (t) ≤ (λ+ 1)ω (t) .

A modulus of contintuity cannot be too small. If ω(f,t)
t
→ 0 for t → 0, then

f ′ (x) ≡ 0, f is constant.
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For concave function f on [a, b] , αf (x) +βf (y) ≤ f (αx+ βy) for x, y ∈ [a, b]

and α ≥ 0, β ≥ 0, α+β = 1. A concave function f on [0, 1] which satisfies f (0) = 0,

has the property that f(x)
x

decreases for x < y, then

x

y
f (y) =

y − x
y

f (0) +
x

y
f (y) ≤ f (x) .

A continous, increasing function ω on R+, which satisfies ω (0) = 0, is a mod-

ulus of continuity if it is concave (or more generally if ω(t)
t

is decreasing). It is

necessary only to show that ω satisfies (1.69) (c) This is obtained by multiplying the

inequalities
ω (t1 + t2)

t1 + t2
≤ ω (t1)

t1
and

ω (t1 + t2)

t1 + t2
≤ ω (t2)

t2

by t1an t2 respectively, and adding.



CHAPTER 2

WEIGHTED APPROXIMATION BY ANALOGUES OF

BERNSTEIN OPERATORS FOR RATIONAL

FUNCTIONS

2.1 INTRODUCTION

The Bernstein polynomials

Bn (f, x) =
n∑
k=0

f

(
k

n

)(
n
k

)
xk (1− x)n−k (2.1)

associated with a function f defined on [0, 1] have been the subject of much recent

research and have been generalized in many directions see for instance ( (Phillips,

2000), (DeVore and Lorentz, 1993), (Tachev, 2012)).

In 1966 J. P. King (King, 1966) introduced the following generalization of the

Bernstein polynomials

Ln (f, x) =
n∑
k=0

f

(
k

n

)
unk (x) (2.2)

where unk (x) are given by the generating function

gn (x, y) =
n∏
i=1

(hni (x) y + (1− hni (x))) =
n∑
k=0

unk (x) yk, (2.3)

and hni(x) = hi(x) is a sequence of continuous functions defined on [0, 1] , 0 ≤

hi (x) ≤ 1.

King’s (or Bernstein-King as they are mentioned in (Altomare and Campiti,

1994)) operators converge to the approximated function if and only if

lim
n→∞

1

n

n∑
k=0

hi (x) = x. (2.4)

Now let xni be fixed poles xni = 1 + ρni, ρni > 0 and

27
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hni (x) =
ρnix

1 + ρni − x
. (2.5)

Put

φn (x) =
1

n

n∑
k=1

hnk (x) .

Observe that φn (x) is strictly increasing from 0 to 1 on the interval [0, 1] . The nodes

τnk are well-defined by φn (τnk) = k
n
, (k = 0, 1, ..., n) .

In 1979 V. S. Videnskii (Videnskii, 1979) introduced another generalization of

Bernstein operators for approximation by rational functions with fixed poles

Un (f, x) =
n∑
k=0

f (τnk)unk (x) . (2.6)

In 1981 V. S. Videnskii (Videnskii, 1981) considered more general case of the

operators (2.6), where unk are defined for arbitrary increasing functions hni (x) .

The main difference between those families of operators is in nodes. In fact, like for

Bernstein basic functions k/n is the maximum point of pn,k on [0, 1], the maximum

point of un,k on [0, 1] is τn,k. Hence, Videnskii operators (2.6) can be considered as

the most natural generalization of Bernstein operators for approximation by rational

functions. Also the advantage of Videnskii’s operators can be easily seen from the

conditions for their convergence. Namely V. S Videnskii ( (Videnskii and Mencher,

1994). th. 3.1)) proved that sequence Vn (f, x) uniformly converges to arbitrary

f ∈ C [0, 1] if and only if

lim
n→∞

Sn =∞, (2.7)

where Sn =
n∑
i=1

ρni
1+ρni

. A simple example (ρni = ρn = 1) shows that condition (2.4)

essentialy more restrictive than (2.7) . Later V. S. Videnskii (Videnskii, 1990) con-

sidered arbitrary matrices of nodes ξnk instead of τnk and proved the convergence

results for those operators V ξ
n (f, x) . Note that for ξnk = k

n
we recover King’s opera-

tors for hni (x) = ρnix
1+ρni−x . Moreover, as it is explained in Section 1.4 Lupas operators

can be considered as a particular case of the operators V ξ (f, x) , too.
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Recently many authors pay attention to weighted approximation by classical

polynomial operators and to construction of their weighted modifications. The rea-

son is that usual operators are not always suitable for approximating functions with

singularities in weighted spaces. For instance, the sequence of classical Bernstein

operators (2.1) is not bounded in the space

Cw =
{
f ∈ C ((0, 1)) : lim

x→0
(wf) (x) = lim

x→1
(wf) (x) = 0

}
,

where

‖f‖Cw := ‖wf‖ = sup
x∈[0,1]

(wf) (x)

and α, β ≥ 0, w (x) = xα (1− x)β , 1 ≥ α, β ≥ 0, α + β > 0, 0 ≤ x ≤ 1,but it’s slight

modification B∗n (f, x) (1.46)is bounded. One can consult papers (Vecchia et al.,

2004), (Vecchia and Mastroianni, 2004)and (Guo et al., 2003) containing these and

other deep results in this direction.

We consider the Sobolev type space W 2
ω in (1.45). Observe also that modifi-

cation (1.46) is not a positive operator, so general results about weighted approxi-

mation by linear positive operators on a real interval (see, for instance, (Altomare,

2013) and references therein) are not applicable here.

The main goal of the paper is to investigate approximation properties of Vi-

denskii operators in the norm of Cw under some restrictions on the sequence of

denominators.

In the following C denotes a positive constant which may assume different

values in different formulas. Moreover, we write v ∼ u for two quantities v and u

depending on some parameters, if
∣∣ v
u

∣∣±1 5 C with C independent of the parameters.

Note that operators (2.6) as well as the Bernstein operators are not bounded

(in fact even not defined) in Cw.

Here, we consider modifications of the Videnskii operators similar to (1.46):

V ∗n (f, x) =
n−1∑
k=1

f (τnk)unk (x) + un0 (x) [2f (τn1)− f (τn2)] (2.8)

+ unn (x) [2f (τn n−1)− f (τn n−2)] .

The main result of the chapter is following theorem.
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Theorem 2.1.1. Suppose that ρni satisfy ρni > C > 0 and
n∑
i=1

1
ρni
≤ C. Then

a)

‖V ∗n (f)‖Cw ≤ C ‖f‖Cw

b)

‖[f − V ∗n (f)]‖Cw ≤
C

n

∥∥ϕ2f ′′
∥∥
Cw

if f ∈ W 2
ω .

Here we present several auxilary assertions.

Lemma 2.1.2. If n, k ∈ N , fi ∈ Ck ([a, b]) , i = 1, ..., n then the following equality

holds

dn

dyn

(
m∏
i=1

fi (y)

)
=

∑
j1+j2+...+jm=n

j1≥0,..., jm≥0

n!

j1!j2!...jm!

dj1

dyj1
(f1 (y)) ...

djm

dyjm
(fm (y)) . (2.9)

Proof. We use mathematical induction on n in the proof. For n = 1, we get

f
(n)
1 (y) =

∑
j1=n

(
n

j1

)
f
(j1)
1 (y) (2.10)

which is true. So equality (2.10) holds for m = 1. b) Assume that the equation (2.9)

holds for m = k. Then

dn

dyn

(
k∏
i=1

fi (y)

)
=

∑
j1+j2+...+jk=n

n!

j1!j2!...jk!

dj1

dyj1
(f1 (y)) ...

djk

dyjk
(fk (y))

˙

We show that eqution (2.10) holds for m = k + 1. Now

dn

dyn

(
k+1∏
i=1

fi (y)

)
=

n∑
ji=0

(
n

r

)
dn−r

dyn−r

(
k∏
i=1

fi (y)

)
d(r)fk+1

dy(r)
(y)
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=
n∑

ji=0

(
n

r

) ∑
j1+j2+...+jk=n−r

(n− r)!
j1!j2!...jk!

dj1

dyj1
(f1 (y)) ...

djk

dyjk
(fk (y))

d(r)fk+1

dy(r)
(y) (2.11)

setting r = jk+1, and cancelling(n− r)! in the product
(
n
r

)(
n−r

j1,...,jk

)
and the equality

(2.11) becomes

dn

dyn

(
k+1∏
i=1

fi (y)

)
=

∑
j1+j2+...+jk+1=n

n!

j1!j2!...jk+1!

dj1

dyj1
(f1 (y)) ...

djk

dyjk
(fk (y))

d
jk+1

dy
jk+1

(fk+1) (y)

The last expression is the right-hand side of equation (2.9) for m = k + 1. By

the induction principle, we conclude that the equation (2.9) holds for all m.

Corollary 2.1.3. If hni is defined as in (2.3) then

unk(x) =
1

k!

∑
j1+j2+...+jn=k

0≤ji≤1

k!

j1!j2!...jn!

n∏
i=1

(
1− ji − (−1)ji hni (x)

)
. (2.12)

Proof. Differentiate (2.3) and use Lemma 2.1.2.

Lemma 2.1.4. Under suppositions of Theorem 2.1.1, for any x ∈ (0, 1)

C ≤ φn (x)

x
≤ 1 (2.13)

and

1 ≤ 1− φn (x)

1− x
≤ C. (2.14)

Proof. Firstly

φn (x) =
1

n

n∑
i=1

ρnix

1 + ρni − x
≥ x

1

n

n∑
i=1

ρni
1 + ρni

≥ Cx

and

φn (x) =
1

n

n∑
i=1

ρnix

1 + ρni − x
≤ x.

Combining the inequalities we get (2.13) .

For the inequality (2.14) we have

1− φn (x) =
1

n

n∑
i=1

(
1− ρnix

1 + ρni − x

)
=

1

n

n∑
i=1

(1− x) (1 + ρni)

1 + ρni − x
≤ C

2
(1− x)

and

1− φn (x) ≥ (1− x) .

Combining these inequalities we get (2.14) .
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Corollary 2.1.5. Suppose that ρni satisfy suppositions of Theorem 2.1.1 then w (x) ∼

w (φ−1n (x)) and ϕ (x) ∼ ϕ (φ−1n (x)) .

Observe also that from definition of unk (x) it follows immediately that 0 ≤

unk (x) ≤ 1 k = 0, ..., n ; n = 1, ....

Using (2.4) and (2.12) we get

unk(x) =

∑
j1+j2+...+jn=k

0≤ji≤1

xk (1− x)n−k
n∏
i=1

(1 + ρni − ji)

n∏
i=1

(1 + ρni − x)

and we can write unk(x) as

unk(x) =
αnkx

k (1− x)n−k

n∏
i=1

(1 + ρni − x)

=
n∑

j1+j2+...+jn=k
ji∈{0,1}

n∏
i=1

(1 + ρni − ji)
1 + ρni − x

xk (1− x)n−k

and we can write as down an explicit formula for the coefficients αnk from (1.23) :

αnk =
n∑

j1+j2+...+jn=k
ji∈{0,1}

n∏
i=1

(ρni + 1− ji) . (2.15)

Lemma 2.1.6. If ρni satisfy the suppositions of Theorem 2.1.1 then

αnk(
n
k

)
Pn (x)

≤ C

and ∣∣∣∣∣w (φ−1n (x))

w (x)

w
(
k
n

)
w
(
φ−1n

(
k
n

))∣∣∣∣∣ ≤ C.

Proof. Firstly ln
n∏
i=1

(
1 + 1

ρni

) n∑
i=0

1
ρni
≤ C then

αnk(
n
k

)
Pn (x)

=
1(
n
k

) n∑
j1+j2+...+jn=k

ji∈{0,1}

n∏
i=1

ρni + 1− ji
ρni + 1− x

≤ 1(
n
k

) n∑
j1+j2+...+jn=k

ji∈{0,1}

n∏
i=1

ρni + 1− ji
ρni

≤
n∏
i=1

ρni + 1

ρni
≤ C. (2.16)
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and by Corollary 2.1.5 ∣∣∣∣∣w (φ−1n (x))

w (x)

w
(
k
n

)
w
(
φ−1n

(
k
n

))∣∣∣∣∣ ≤ C.

Analogous reasons give

|w (x) (1− x)n [2f (τn1)− f (τn2)]| ≤ |2w (x) (1− x)n f (τn1)− w (x) (1− x)n f (τn2)|

=

∣∣∣∣2w (τn1) f (τn1)wn (φ−1n (x)) (1− x)n

Pn (x)wn (τn1)
+

2w (τn2) f (τn2)wn (φ−1n (x)) (1− x)n

Pn (x)wn (τn2)

∣∣∣∣
≤ 2 ‖wf‖ (φ−1n (x))

α
(1− φ−1n (x))

β
(1− x)n

Pn (x)
(
φ−1n

(
1
n

))α (
1− φ−1n

(
1
n

))β +
2 ‖wf‖ (φ−1n (x))

α
(1− φ−1n (x))

β
(1− x)n

Pn (x)
(
φ−1n

(
2
n

))α (
1− φ−1n

(
2
n

))β
≤ C ‖wf‖ .

2.2 PROOF OF THEOREM 2.1.1

Proof. a)

We estimate

w (x)

∣∣∣∣∣
n−1∑
k=1

f (τnk)unk (x)

∣∣∣∣∣ = w (x)

∣∣∣∣∣
n−1∑
k=1

αnk
(
n
k

)
xk (1− x)n−k(
n
k

)
Pn (x)

f (τnk)

∣∣∣∣∣
= w

(
φ−1n (x)

) ∣∣∣∣∣
n−1∑
k=1

αnk.pnk (x) f (τnk)w (τnk)(
n
k

)
Pn (x)w (τnk)

∣∣∣∣∣
≤‖wf‖

n−1∑
k=1

αnk.pnk (x)w (φ−1n (x))(
n
k

)
Pn (x)w

(
φ−1n

(
k
n

)) := ‖wf‖σ,

with

σ ≤

 ∑
1≤k≤nx

2

+
∑

nx
2
≤k≤ 2n

3

∑
2n
3
≤k≤n−1

 pnk (x)
w (x)

w
(
k
n

) :=
n∑
i=1

σi (x) .

For a fixed x using the monotone increasing property of pnk (x) as well as (1.49)

we obtain :

σ1 (x) ≤ C (nx)α+
1
2

(
2

e

)nx
2
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since the latter function attains its maximum for x = C
n
.

The estimate of σ2 (x) is simpler, since in this case w(x)

w( kn)
≤ C which implies

the boundedness.

For σ3 (x)we again use that for a fixed x the maximum of pnk (x) in 2n
3
< k ≤ n

is attained for k =
[
2n
3

]
. Since by Stirling’s formula pn, 2n

3
(x) ≤

(
3
4

) 2n
3 we obtain

σ3 (x) ≤ C

(
3

4

) 2n
3

nβ+1.

Analogously other terms in V ∗n (f, x) are considered.

The Corollary 2.1.5 and Lemma 2.1.6 finish the proof.

Lemma 2.2.1. Under suppositions of Theorem 2.1.1 the inequalities φ′n (x) ∼ 1 and∥∥∥(φ−1n )
′′
∥∥∥ ≤ C hold.

Proof. We start with

φ′n (x) =
1

n

n∑
k=1

ρnk (1 + ρnk − x) + ρnkx

(1 + ρnk − x)2

=
1

n

n∑
k=1

ρnk (1 + ρnk)

(1 + ρnk − x)2
≥ 1

n

n∑
k=1

ρnk (1 + ρnk)

(1 + ρnk)
2

≥ 1

n

n∑
k=1

ρnk
(1 + ρnk)

≥ C,

on the other hand

φ′n (x) =
1

n

n∑
k=1

ρnk (1 + ρnk − x) + ρnkx

(1 + ρnk − x)2

=
1

n

n∑
k=1

ρnk (1 + ρnk)

(1 + ρnk − x)2
≤ 1

n

n∑
k=1

ρnk (1 + ρnk)

ρ2nk

≤ 1

n

n∑
k=1

1 + ρnk
ρnk

≤ C.

Put t = φn (x). Then (φ−1n )
′
(t) = 1

φ′n(x)
. Then∣∣∣(φ−1n )′′ (t)∣∣∣ =

∣∣∣∣( 1

φ′n (φ−1n (t))

)′∣∣∣∣
=

1

(φ′n (φ−1n (t)))2

∣∣∣φ′′n (φ−1n (t)
) (
φ−1n
)′

(t)
∣∣∣ .

Hence, using

φ′′n (x) =
2

n

n∑
k=1

ρnk (1 + ρnk)

(1 + ρnk − x)3
≤ 2

n

n∑
k=1

1 + ρnk
ρ2nk

≤ C

we prove the lemma.
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Lemma 2.2.2. If f ∈ W 2
w then f ◦ φ−1n ∈ W 2

w.

Proof. We start with

(
f ◦ φ−1n

)′′
(t) =

(
f
(
φ−1n (t)

))′′
=
(
f ′
(
φ−1n (t)

) (
φ−1n (t)

)′)′
= f ′′

(
φ−1n (t)

) ((
φ−1n (t)

)′)2
+ f ′

(
φ−1n (t)

) (
φ−1n (t)

)′′
.

Consider firstly 0 ≤ t ≤ 1
2
, then

f ′ (t)ϕ2 (t)w (t) =

∫ t

1
2

f ′′ (x) dxϕ (t)2w (t) + f ′
(

1

2

)
ϕ2 (t)w (t)

and ∣∣∣∣∣
∫ t

1
2

f ′′ (x) dxϕ (t)2w (t)

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

1
2

f ′′ (x)
ϕ2 (x)w (x)

ϕ2 (x)w (x)
dxϕ2 (t)w (t)

∣∣∣∣∣
≤
∥∥f ′′ϕ2w

∥∥∫ 1
2

t

dx

ϕ2 (x)w (x)
ϕ2 (t)w (t)

≤ C
∥∥f ′′ϕ2w

∥∥ [x−α] 1
2

t
ϕ2 (t)w (t) ≤ C

∥∥f ′′ϕ2w
∥∥ .

The case 1
2
≤ t ≤ 1 is analogous. Hence, by Corollary 2.1.5 and Lemma 2.2.1,

the lemma is proved.

Lemma 2.2.3. If α, β > 0, 0 ≤ x ≤ 1 then

Dn (x) = w (x)
∑

| kn−φn(x)|≥φn(x)
2

unk (x)

∣∣∣∣∣
∫ φn(x)

k
n

∣∣ξ − k
n

∣∣
ϕ2 (ξ)w (ξ)

dξ

∣∣∣∣∣ ≤ C

n
.

Proof. Firstly, let us assume that 0 ≤ x ≤ 1
2
. Then the restriction

∣∣ k
n
− φn (x)

∣∣ ≥
φn(x)

2
splits into either

k

n
− φn (x) ≤ −φn (x)

2

i.e
k

n
≤ φn (x)

2

or
k

n
− φn (x) ≥ φn (x)

2
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i.e.
k

n
≥ 3φn (x)

2
.

So

Dn (x) ≤ w (x)


∑

k
n
≤φn(x)

2

+
∑

k
n
≥ 3φn(x)

2

unk (x)

∣∣∣∣∣
∫ φn(x)

k
n

∣∣ξ − k
n

∣∣
ϕ2 (ξ)w (ξ)

dξ

∣∣∣∣∣ = Dn1 (x)+Dn2 (x)

and

Dn1 (x) = Cxα
∑

k
n
≤φn(x)

2

unk (x)

∫ φn(x)

k
n

∣∣ξ − k
n

∣∣
ϕ2 (ξ)w (ξ)

d (ξ)

≤ Cxα
∑

k
n
≤φn(x)

2

unk (x)

∫ φn(x)

k
n

ξ−αd (ξ)

≤ cxα
∑

k
n
≤φn(x)

2

pnk (x)

(
k

n

)−α
φn (x) ≤ cxα

∑
k
n
≤x

2

pnkn (x)

(
k

n

)−α
x

≤ Cxα+2nα+1pnkn (x) .

Since, for fixed x pnk (x) attains its maximum in 0 ≤ k ≤ nx
2

for kn =
[
nx
2

]
.

Now by Stirling’s formula

pnkn (x) ≤ C

(
n
e

)e√
nx

nx
2 (1− x)n(1−

x
2 )

(
nx
2e

)nx
2
√
nx

(
n(1−x2 )

e

)n(1−x2 )√
n

(2.17)

≤ C√
nx

2n
(

1− x
2− x

)n(1−x2 )

=
C√
nx

(
1− x

2− x

)n(1−x2 )
2
nx
2

and by 1− u ≤ e−u, u ≥ 0,

pnkn (x) ≤ C√
nx
e−

nx
2 2

nx
2 . (2.18)

Hence,

Dn1 (x) ≤ Cxα+
3
2nα+

1
2

(
2

e

)nx
2

≤ Cn−α−
3
2nα+

1
2 ≤ C

n
.

For estimating Dn2 (x)
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Dn2 (x) ≤ w (x)
∑

3φn(x)
2
≤ k
n

unk (x)

∫ k
n

φn(x)

k
n
− ξ

ϕ2 (ξ)w (ξ)
dξ

= w (x)


∑

3φn(x)
2
≤ k
n
≤ 2

3

+
∑
k
n
≥ 2

3

unk (x)

∫ k
n

φn(x)

k
n
− ξ

ϕ2 (ξ)w (ξ)
dξ

= D
(1)
n2 +D

(2)
n2 .

Note that one of D
(1)
n2 or D

(2)
n2 may be absent. For D

(1)
n2 we can write using

Lemma 2.2.1, (1.33) and (2.13).

D
(1)
n2 ≤ Cxα

∑
3φn(x)

2
≤ k
n
≤ 2

3

unk (x)

∫ k
n

φn(x)

k
n
− ξ
ξα+1

dξ

≤ C

φn (x)

∑
k=0

unk (x)

(
k

n
− φn (x)

)2

≤ C

n
.

For D
(2)
n2 we have

D
(2)
n2 = w (x)

∑
k
n
≥ 2

3

unk (x)

(∫ 2
3

φn(x)

k
n
− ξ

ξα+1 (1− ξ)β+1
dξ

+

∫ k
n

2
3

k
n
− ξ

ξα+1 (1− ξ)β+1
dξ

)

≤ w (x)
∑
k
n
≥ 2

3

unk (x)

(
C

xα
+

∫ k
n

0

dξ

(1− ξ)β

)

≤ Cx−1
∑
k
n
≥ 2

3

pnk (x)

∫ k
n

0

d (ξ)

(1− ξ)β
≤ Cx−1pn,[ 2n3 ] (x)n

= Cx[ 2n3 ]−1 (1− x)n−[ 2n3 ] ( n

[ 2n3 ]
)
n ≤ C

(
3
√

3

4
√

2

) 2n
3

where we use estimates (
n
2n
3

)
≤
(

3

2

√
3

) 2n
3

x[ 2n3 ]−1 (1− x)n−[ 2n3 ] ≤ x
n
3
−1x

n
3 (1− x)

n
3

≤
(

1

2

)n
3
−1(

1

4

)n
3

.

The case 1
2
≤ x ≤ 1 is considered analogously. Now assume that 1

2
≤ x ≤ 1. Put

k
n

= 1− m
n

and ζ = 1− ξ in Pn (x)
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Dn (x) = w (x)
∑

|mn −(1−φn(x))|≥φn(x)
2

unk (x)

∣∣∣∣∣
∫ φn(x)

1−m
n

∣∣ξ − (1− m
n

)∣∣
ϕ2 (ξ)w (ξ)

d (ξ)

∣∣∣∣∣
w (x)

∑
|mn −(1−φn(x))|≥φn(x)

2

un,n−m (x)

∣∣∣∣∣
∫ m

n

1−φn(x)

∣∣m
n
− ζ
∣∣

ϕ2 (ζ) ζβ (1− ζ)α
d (ζ)

∣∣∣∣∣ .
Then the restriction

∣∣m
n
− (1− φn (x))

∣∣ ≥ φn(x)
2

splits in to either

m

n
− (1− φn (x)) >

φn (x)

2

that is
m

n
> 1− φn (x)

2

or
m

n
− (1− φn (x)) ≤ −φn (x)

2

i.e.
m

n
≤ 1− 3φn (x)

2
.

Dn (x) ≤ w (x)

 ∑
m
n
≤1− 3φn(x)

2

+
∑

m
n
>1−φn(x)

2

un,n−m (x)

∣∣∣∣∣
∫ m

n

1−φn(x)

∣∣m
n
− ζ
∣∣

ϕ2 (ζ) ζβ (1− ζ)α
d (ζ)

∣∣∣∣∣
= Dn1 (x) +Dn2 (x) .

Dn (x) ≤ c (1− x)β
∑

m
n
≤1− 3φn(x)

2

un,n−m (x)

∫ 1−φn(x)

m
n

∣∣ζ − m
n

∣∣
ϕ2 (ζ) ζβ (1− ζ)α

d (ζ)

≤ c (1− x)β
∑

m
n
≤1− 3φn(x)

2

un,n−m (x)

∫ 1−φn(x)

m
n

ζ−βd (ζ) ≤ c (1− x)β

≤
∑

m
n
≤1− 3φn(x)

2

pn,n−m (x)
(m
n

)−β
(1− φn (x))

≤ c (1− x)β+1
∑

m
n
≤1− 3φn(x)

2

pn,m (1− x)
(m
n

)−β
≤ c (1− x)β+2 nβ+1pn,m (1− x) .

Now apply the reasoning from (2.17), we obtain Dn1 (x) ≤ C
n
.
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Lemma 2.2.4. If f ∈ W 2
ω then for Fn = Fn (f ◦ φ−1n ) and for all α, β ≥ 0

‖(Fn ◦ φn − V ∗n (f))w‖ ≤ C

n

∥∥F ′′nϕ2w
∥∥ .

Proof. First consider

n∑
k=0

unk (x)

∫ τnk

x

(φn (t)− φn (τnk))F
′′
n (φn (t))φ

′

n (t) d (t)

= −
n∑
k=0

Fn

(
k

n

)
unk (x) +

n∑
k=0

Fn (φn (x))unk (x)

= −
n−1∑
k=1

f ◦ φ−1n
(
k

n

)
unk (x)−

[
2f ◦ φ−1n

(
1

n

)
− f ◦ φ−1n

(
2

n

)]
un,0 (x)

−
[
2f ◦ φ−1n

(
n− 1

n

)
− f ◦ φ−1n

(
n− 2

n

)]
un,n (x) + Fn (φn (x))

= Fn (φn (x))− V ∗n (f, x) .

Hence

|Fn (φn (x))− V ∗n (f, x)|w (x) ≤ w (x)
n∑
k=0

unk (x)

∫ k
n

φn(x)

∣∣∣∣ξ − k

n

∣∣∣∣ |F ′′n (ξ)| d (ξ)

∑
| kn−φn(x)|≤φn(x)

2

+
∑

| kn−φn(x)|≥φn(x)
2

:= E1 (x) + E2 (x) .

Firstly suppose that 0 ≤ x ≤ 1
2
. For E1 (x) as in the proof of Lemma 1.5.3,

E1 (x) = 0 for 0 ≤ x ≤ 1
n
. Now if 1

n
≤ x ≤ 1

2
then 1 ≤ k ≤ n− 1 and

E1 (x) ≤
∑

| kn−φn(x)|≤φn(x)
2

w (x)unk (x)

∫ k
n

φn(x)

∣∣ξ − k
n

∣∣ |F ′′n (ξ)w (ξ)ϕ2 (ξ)|
w (ξ)ϕ2 (ξ)

d (ξ)

≤ C
‖F ′′nϕ2w‖
(1− x)x

∑
| kn−φn(x)|≤φn(x)

2

unk (x)

(
k

n
− φn (x)

)2

≤ c

n
‖φ′n (x)‖

∥∥F ′′nϕ2w
∥∥ ≤ c

n

∥∥F ′′nϕ2w
∥∥ .

On the other hand by Lemma 2.2.3

E2 (x) ≤ C
∥∥F ′′nϕ2w

∥∥Dn (x) ≤ C

n

∥∥F ′′nϕ2w
∥∥
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Lemma 2.2.5. If f ∈ W 2
ω then for P1 := P1 (f ◦ φ−1n ) and P2 := P2 (f ◦ φ−1n ) and

we have

‖w [f − P1 ◦ φn]‖[0,τ2n] ≤
C

n

∥∥f ′′ϕ2w
∥∥ ,

‖w [f − P2 ◦ φn]‖[τn−2,n,0]
≤ C

n

∥∥f ′′ϕ2w
∥∥ .

Proof. By Lemma 2.2.2 that f ◦ φ−1n ∈ W 2
ω , then the proof of Lemma 1.5.4 gives

max
t∈[0, 2n ]

∣∣w (φ−1n ) ∣∣f (φ−1n (t)
)
− P1

(
f ◦ φ−1n , t

)∣∣∣∣ ≤ C

n

∥∥∥(f ◦ φ−1n )′′ ϕ2w
∥∥∥

[0, 2n ]

and

max
t∈[1− 2

n
,1]

∣∣w (φ−1n ) ∣∣f (φ−1n (t)
)
− P2

(
f ◦ φ−1n , t

)∣∣∣∣ ≤ C

n

∥∥∥(f ◦ φ−1n )′′ ϕ2w
∥∥∥

[1− 2
n
,1]
.

Now the proof of Lemma 2.2.2 gives the desired result.

Lemma 2.2.6. Let Fn := Fn (f ◦ φ−1n ) . If f ∈ W 2
ω then we have∥∥F ′′nϕ2w

∥∥ ≤ C
∥∥f ′′ϕ2w

∥∥ .
.

Proof. Apply the proofs of Lemma 1.5.5 and of Lemma 2.2.2∥∥F ′′nϕ2w
∥∥ ≤ C

∥∥∥(f ◦ φ−1n )′′ ϕ2w
∥∥∥ .

Proof. (Theorem b) We know that for φn (x) ∈
[
2
n
, 1− 2

n

]
Fn ◦ φn (x) = Fn

(
f ◦ φ−1n , φn (x)

)
= f ◦ φ−1n (φn (x)) = f (x) .

Then by Lemma 2.2.4 we deduce

‖w [f − V ∗n (f)]‖ ≤ ‖w [f − Fn ◦ φn] + w [Fn ◦ φn − V ∗n (f)]‖

≤ C

n

∥∥F ′′nϕ2w
∥∥+ w [f − Fn ◦ φn]

=
C

n

∥∥F ′′nϕ2w
∥∥

+ max
(
‖w [f − Fn ◦ φn]‖φ−1

n [0, 2n ] , ‖w [f − Fn ◦ φn]‖φ−1
n [1− 2

n
, 2
n ]

)
.
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Now

max
x∈ φ−1

n [0, 2n ]
w (x)

∣∣f (x)− Fn
(
f ◦ φ−1n , φn (x)

)∣∣
= max

t∈[0, 2n ]
w
(
φ−1n (t)

) ∣∣f (φ−1n (t)
)
− Fn

(
f ◦ φ−1n , t

)∣∣
and Lemma 2.2.4, Lemma 2.2.5 we finish the proof.



CHAPTER 3

CONVERGENCE OF VIDENSKII-BASKAKOV

OPERATORS IN RATIONAL FUNCTIONS

3.1 INTRODUCTION

The classical Baskakov operators are defined as

Bn (x, y) =
∞∑
k=0

f

(
k

n

)
bnk (x) (3.1)

bnk (x) =
(
n+k−1

k

)
xk (1 + x)−n−k (3.2)

J. Swetits and B. Wood constructed linear positive operator (Swetits and

Wood, 1973) which generalizes polynomial of (3.1) as follows

Sn (f, x) =
∞∑
k=1

f

(
k

n

)
vnk (x) (3.3)

vnk (x) =
1

k!

∂k (gn (x, y))

∂yk
(3.4)

where gn (x, y) =

(
n∏
i=1

1 + hni (x)− hni (x) y

)−1
.

(Swetits and Wood, 1973). Suppose {hj (x)}∞j=0 is a sequence of continous,

nonnegative real valued functions defined on [0,∞). Suppose that each interval

[0, a] there is a constant M which depends only on a such that hj (x) ≤ M for

j = 0, 1, 2, ..., x ∈ [0, a] . Let f be continous on [0,∞) and satisfy |f (x)| ≤ eAx for

some constant A ≥ 0. The sequences {Sn (f)}∞n=0 defined by (3.3) converges to f

uniformly on [0, a] . if {hj (x)}∞j=0 is uniformly (C, 1) summable to x on [0, a] .

We begin with expressing the generating function of Baskakov operator (Baskakov,

1957).
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∞∑
k=0

(n+ k − 1)!

k! (n− 1)!

xk

(1 + x)n+k
= 1

and

∞∑
k=0

(n+ k − 1)!

k! (n− 1)!

(
x

1 + x

)k
= (1 + x)n =

(
1− x

1 + x

)−n
.

We can express (1 + x)n as

(1 + x)n =

(
1− x

1 + x

)−n
= 1 +

(−n)

1!

(
− x

1 + x

)
+
−n (−n− 1)

2!

(
− x

1 + x

)2

+ ...

similar manner(
1− yx

1 + x

)−n
= 1 +

(−n)

1!

(
− xy

1 + x

)
+
−n (−n− 1)

2!

(
− xy

1 + x

)2

+ ...

therefore we can conclude that

∞∑
k=0

(n+ k − 1)!

k! (n− 1)!

(xy)k

(1 + x)k
=

(
1− yx

1 + x

)−n
=

(1 + x)n

(1 + x− xy)n
.

We can define the generating function of Baskakov operator as

Bn (x, y) =
∑

ykbnk (x) =
∞∑
k=0

(
n+k−1

k

)
xk (1 + x)−n−k yk

=
∞∑
k=0

(n+ k − 1)!

k! (n− 1)!
(xy)k

1

(1 + x)n+k
=

1

(1 + x− xy)n
.

Now we describe a construction of generating function for vnk. This was done

by J. Swetits - B. Woods (Swetits and Wood, 1973) firstly and it was repeated

independently by A. E. Mencher (Mencher, 1985) and by the author. Let hni (x) be

defined as hni (x) = xρni
x+ρni

, where i = mn + 1, ..., n , hni (x) = x where i = 1, ..mn;

0 ≤ mn ≤ n and φn (x) = 1
n

n∑
i=1

hni (x) , where φn (x) is increasing 0 to ∞. The

generating function of our operators is defined as

gn (x, y) =
1

n∏
i=1

(1 + hni (x)− hni (x) y)

=
∞∑
k=0

vnk (x) yk.
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Differentiating in y

∂gn (x, y)

∂y
= gn (x, y)

n∑
i=1

hni (x)

1 + hni (x)− hni (x) y

=
∞∑
k=1

kvnk (x) yk−1,

and we have

vnk (x) =
1

k!

∂kgn (x, y)

∂yk

∣∣∣∣
y=0

.

The gn (x, y) is an analytic function as a function of y for |y| < min
1≤i≤n

1+hni(x)
hni(x)

.

For y = 1, gn (x, 1) = 1 then
∞∑
k=1

kvnk (x) =
n∑
i=1

hni (x) and φn (x) =
∞∑
k=0

k
n
vnk (x) .

Because of

h′ni (x) =
ρni (x+ ρni)− xρni

(x+ ρni)
2 =

ρ2ni
(x+ ρni)

2 > 0

the function φn (x) increases from 0 to ∞.

Let’s differentiate gn (x, y) twice

∂2g (x, y)

∂y2
=
∞∑
i=1

k (k − 1) vnk (x) yk−2

=
∂

∂y

(
gn (x, y)

n∑
i=1

hni (x)

1 + hni (x)− hni (x) y

)

=
∂gn (x, y)

∂y

n∑
i=1

hni (x)

1 + hni (x)− hni (x) y

+ gn (x, y)
n∑
i=1

h2ni (x)

(1 + hni (x)− hni (x) y)2

= gn (x, y)

(
n∑
i=1

hni (x)

1 + hni (x)− hni (x) y

)2

+ gn (x, y)
n∑
i=1

h2ni (x)

(1 + hni (x)− hni (x) y)2

and for y=1
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∂2gn (x, y)

∂y2
=
∞∑
k=2

k (k − 1) vnk (x) =

(
n∑
i=1

hni (x)

)2

+
n∑
i=1

(hni (x))2

= (nφn (x))2 + ψn (x)

where ψn (x) =
n∑
i=1

(hni (x))2 . Videnskii type generalization of Baskakov operators

defined as

Vn (f, x) =
∞∑
k=1

f (τnk) vnk (x) (3.5)

where φn (τnk) = k
n
.

A. Mencher (Mencher, 1985) defined Videnskii type generalizations of Baskakov

operators with hni (x) = x(xni−1)
xni+x

in xni =∞, i = 1, ...,mn; xni <∞, i = mn+1, ..., n;

xni > 1 we denote these operators as
∼
V n (f, x) .

He proved the following results for
∼
V n (f, x) .

Theorem 3.1.1. If lim
n→∞

Sn
m2
n

= 0 then for every f ∈ BC [0,∞) and a > 0

lim
n→∞

∥∥∥∼V n (f, ·)− f
∥∥∥
C[0,a]

= 0. (3.6)

Theorem 3.1.2. If for any f ∈ BC [0,∞) and any a > 0, lim
n→∞

∥∥∥∼V n (f, ·)− f
∥∥∥
C[0,a]

=

0 then lim Sn
n→∞

=∞. Here

Sn =
n∑

k=mn+1

(xni − 1)

xni
+mn. (3.7)

3.2 CONVERGENCE

Lemma 3.2.1. If Vn is defined as in (3.5) then

Vn (1, x) = 1,

∞∑
k=0

(φn (τnk)− φn (x)) vnk (x) = 0,

∞∑
k=0

(φn (τnk)− φn (x))2 vnk (x) =
1

n2

ψn (x) +
1

n

φn (x) .
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Proof. First two equalities are immediate. Prove the third relation. Consider

∞∑
k=0

(φn (τnk)− φn (x))2 vnk (x) =
∞∑
k=0

(
k

n

)2

vnk (x)− 2

n
φn (x)

∞∑
k=0

kvnk (x)

+ φ2
n (x)

∞∑
k=0

vnk (x)

=
∞∑
k=1

k (k − 1)

n2

vnk (x) +
1

n2

∞∑
k=1

kvnk (x)− 2φ2
n (x) + φ2

n (x)

= φ2
n (x) +

1

n2

ψn (x) +
1

n

φn (x)− φ2
n (x)

=
1

n2

ψn (x) +
1

n

φn (x) .

Theorem 3.2.2. If f ∈ C [0,∞) , ρni > c > 0 and lim
n→∞

1
n2

(
n∑

k=mn+1

ρnk +
n∑

k=mn+1

(ρnk)
2

)
=

0 then Vn (f, x)⇒ f on compacts in [0,∞) .

Proof. Fix a > 0. At first let us note that φ−1n ≥ mn
n
x+ (n−mn)cx

a+c
≥ c1x for 0 ≤ x ≤ a.

Next

−2M ≤
(
f ◦ φ−1n

)
(x)−

(
f ◦ φ−1n

)
(y) ≤ 2M (3.8)

for all x, y ∈ [0, a] where M = ‖f‖
C
[
0, a
c1

] , and for arbitrary ε > 0, there exists δ > 0,

such that for all x, y ∈ [0, a], |x− y| < δ

−ε ≤
(
f ◦ φ−1n

)
(x)−

(
f ◦ φ−1n

)
(y) ≤ ε (3.9)

(3.8) and (3.9) imply

−ε− 2M

δ2
(x− y)2 ≤

(
f ◦ φ−1n

)
(x)−

(
f ◦ φ−1n

)
(y) ≤ ε+

2M

δ2
(x− y)2

for all x, y ∈ [0, a] .

Observe also that φ (x) ≤ x for all x ∈ [0,∞) .

Now for any x ∈ [0, a− δ] we have φn (x) ∈ [0, a− δ] and

Vn (f, x)− f (x) =
∞∑
k=0

((
f ◦ φ−1n

)(k
n

)
−
(
f ◦ φ−1n

)
(φn (x))

)
vnk (x) ,

so

|Vn (f, x)− f (x)| ≤ ε+
2M

δ2

∞∑
k=0

(
k

n
− φn (x)

)2

vnk (x) ,
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or

|Vn (f, x)− f (x)| ≤ ε+
2M

δ2
1

n2

(
n∑

k=mn+1

ρnk+

n∑
k=mn+1

(ρnk)
2

)
.

Remark 3.2.1. Note that Theorem 3.1.1 does not guarantee the convergence of the

sequence
(∼
V n

)
to f even in the case of equal finite poles (i.e. mn = 0, xni = x0) ,

but our Theorem 3.2 gives the uniform convergence for the sequence (Vn) with

equal finite poles (i.e. mn = 0, ρni = ρ0) . Moreover the conditions of Theorem 3.2

are essetially less restrictive then the conditions of Theorem 3.1 of (Swetits and

Wood, 1973).



CHAPTER 4

ON THE CONVERGENCE OF Q ANALOGUE OF

DURRMEYER TYPE OPERATORS AND

BASKAKOV-DURRMEYER OPERATORS

4.1 ON THE CONVERGENCE OF Q-ANALOGUE OF DURRMEYER

TYPE OPERATORS

4.1.1 Introduction

In 1997 Philips (Phillips, 1997) proposed the following q-analogue of the well-

known Bernstein polynomials,which for each positive integer n and f ∈ C [0, 1] ,are

defined as,

Bn,q (f ;x) =
n∑
k=0

f

(
[k]

[n]

)
pnk (q;x) ;

where

pnk (q;x) =

[
n

k

]
q

q
k(k−1)

2 xk (1− x)n−k

(1− x+ qx) ... (1− x+ qn−1x)
.

After Philips several researchers have studied convergence properties of q−Bernstein

polynomials Bn,q (f ;x) .The Bernstein-type operator discussed in (Parvanov and

Popov, 1994) is

Un (f ;x) = (n− 1)
n∑
k=0

pnk (x)

∫ 1

0

f (t) pn−2,k−1 (t) dt

+ f (0)Pn,0 + f (1)Pn,n (4.1)

which is Durrmeyer-type modification of Bernstein polynomials where

[n− 1]

∫ 1

0

f (t) pn−2,k−1 (t) dt

48
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for 1 ≤ k ≤ n − 1 in the operators Un (f ;x) takes place of f
(
k
n

)
in Bn (f ;x) the

Bernstein polynomials.

Starting with the operators(4.1) J.L Durrmeyer (see (Durrmeyer, 1967)) intro-

duced in 1967 the operators Dn : L1 ([0, 1]) → C ([0, 1]) , which are integral modi-

fications of the Bernstein polynomials in order to approximate Lebesgue integrable

functions on the interval [0, 1], defined as

Dn (f ;x) = (n+ 1)
n∑
k=0

pnk (x)

∫ 1

0

f (t) pn,k (t) dt. (4.2)

Very recently Derriennic (Derriennic, 2005) introduced some q-analogue of

the Durrmeyer operators and established some approximation properties of those

q−Durrmeyer operators.

As Durrmeyer operators approximate integrable functions on the interval [0, 1],

this inspired us to introduce new q analogue of the Durrmeyer-type operators of (4.1)

which reproduce linear functions.

For f ∈ C[0, 1], we introduce the following q-Durrmeyer type operators as

Kn,q (f ;x) = [n− 1]
n∑
k=1

q1−kpnk (q;x)

∫ 1

0

f (t) pn−2,k−1 (q; qt) dqt

+ f (0) pn,0 (q, x)

=:
n∑
k=0

Ank (f) pn,k (q;x) , 0 ≤ x ≤ 1. (4.3)

It can be easily verified that in the case q = 1 the operators defined by (4.3)

reduce to the Durrmeyer-type operators recently introduced and studied by Par-

vanov and Popov. The advantage of the operators we defined is reproducing linear

functions.

In the present chapter we study some approximation properties of q-Durrmeyer-

type operators Kn,q (f ;x) defined by (4.3) for 0 < q < 1. First we estimate the

moments for the q−Durrmeyer-type operators. We also study the rate of conver-

gence for these operators Kn,q (f ;x). We establish direct results in terms of ω (f, ·).

Throughout chapter the expression gn(x) =⇒ g(x) means uniform convergence of a

sequence {gn(x)} to g(x).
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4.1.2 Moments

In this section we shall obtain Kn,q (ti, x) , i = 0, 1, 2. Note that for s =

0, 1, ...and by the definition of q-Beta function (see (Kac and Cheung, 2002)), we

have, ∫ 1

0

tspn,k (q; qt) dqt =

[
n

k

]
qk
∫ 1

0

tk+s (1− qt)n−kq dqt

=
qk [n]!

[k]! [n− k]!

[k + s]! [n− k]!

[k + s+ n− k + 1]! [n]!

=
qk [k + s]! [n]!

[n+ s+ 1]! [k]!
. (4.4)

Theorem 4.1.1. We have

Kn,q (1;x) = 1, Kn,q (t;x) = x

and

Kn,q

(
t2;x

)
= x2 +

(1 + q)x (1− x)

[n+ 1]
. (4.5)

Proof. In order to prove the theorem we shall use the following identities

n∑
k=0

pnk (q;x) = 1,
n∑
k=0

[k]

[n]
pnk (q;x) = x,

n∑
k=0

(
[k]

[n]

)2

pnk (q;x) = x2 +
x (1− x)

[n]
.

We will evaluate Kn,q (ts;x) , s = 0, 1, 2.The result can easily be verified for

s = 0.

Kn,q (1;x) =
n∑
k=1

q1−kpnk (q;x)

∫ 1

0

[n− 1]

[
n− 2

k − 1

]
(qt)k−1 (1− qt)n−k−1 dqt

=
n∑
k=1

pnk (q;x)
[n− 1] [n− 2]!

[k − 1]! [n− k − 1]!

[k − 1]! [n− k − 1]!

[k − 1 + n− k − 1 + 1]!

= 1.
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Using the definition of Kn,q (f ;x) (4.3)and (4.4) for s = 1 we have

Kn,q (t;x) =
n∑
k=1

q1−kpnk (q;x)

∫ 1

0

[n− 1]

[
n− 2

k − 1

]
t (qt)k−1 (1− qt)n−k−1 dqt

=
n∑
k=1

pnk (q;x)
[n− 1] [n− 2]!

[k − 1]! [n− k − 1]!

[k]! [n− k − 1]!

[k + n− k − 1 + 1]!

=
n∑
k=1

[k]

[n]
pnk (q;x) = x.

and for s = 2 using [t+ 1] = 1 + q [t] , and [k]2 = [k] (q [k − 1] + 1) , 0 < q < 1, we

have

Kn,q

(
t2;x

)
=

n∑
k=1

q1−kpnk (q;x)

∫ 1

0

[n− 1]

[
n− 2

k − 1

]
t2 (qt)k−1 (1− qt)n−k−1 dqt

=
n∑
k=1

pnk (q;x)
[n− 1] [n− 2]!

[k − 1]! [n− k − 1]!

[k + 1]! [n− k − 1]!

[k + 1 + n− k − 1 + 1]!

=
n∑
k=1

pnk (q;x)
[k] [k + 1]

[n] [n+ 1]

=
1

[n] [n+ 1]

n∑
k=1

[k] [k + 1] pnk (q;x)

=
1

[n] [n+ 1]

n∑
k=1

[k] (1 + q [k]) pnk (q;x)

=
1

[n] [n+ 1]

n∑
k=1

(
[k] + q [k]2

)
pnk (q;x)

=
x

[n+ 1]
+ q

[n]

[n+ 1]

n∑
k=1

[k]2

[n]2
pnk (q;x)

=
x

[n+ 1]
+ q

[n]

[n+ 1]

(
x2 +

x (1− x)

[n]

)
= q

[n]

[n+ 1]
x2 + q

x (1− x)

[n+ 1]
+

x

[n+ 1]

= x2 +
(1 + q)x (1− x)

[n+ 1]
.

Theorem 4.1.2. If q > 1 be fixed and f ∈ C [0, 1], then Kn,q (f ;x) ⇒ f (x) for all

x ∈ [0, 1] .

Proof. The theorem follows from the Korovkin theorem and the Theorem 4.1.2.
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Remark 4.1.1. It is observed that the operators Kn,q (f ;x) reproduce linear func-

tions.

Remark 4.1.2. Let x ∈ [0, 1] then for every q ∈ (0, 1) we have the following ;

Kn,q ((t− x) ;x) = 0, Kn,q

(
(t− x)2 ;x

)
=

(1 + q)x (1− x)

n+ 1
.

4.1.3 Convergence of q-Durrmeyer Type Operators

Definition 4.1.1. Let q ∈ (0, 1) be fixed. We define K∞,q (f ; 1) = f (1) for x ∈ [0, 1)

K∞,q (f ;x) =
1

1− q

n∑
k=0

q1−kp∞k (q;x)

∫ 1

0

f (t) p∞,k−1 (q; qt) dqt+ f (0) p∞,0 (q, x)

=:
n∑
k=0

A∞k (f) p∞,k (q;x) (4.6)

where

p∞,k (q;x) =
xk

(1− q)k [k]!
(1− x)∞q .

Using the fact (see (II’inskii and Ostrovska, 2002)) , we have

∞∑
k=0

p∞,k (q;x) = 1,
∞∑
k=0

(
1− qk

)
p∞,k (q;x) = x

and

∞∑
k=0

(
1− qk

)2
p∞,k (q;x) = x2 + (1− q)x (1− x) ,

so ∫ 1

0

tsp∞,k (q; qt) dqt =
qk

(1− q)k [k]!

∫ 1

0

tk+s (1− qt)∞q dqt

=
qk

(1− q)k [k]!
[k + s]! (1− q)k+s+1

= (1− q)s+1 q
k [k + s]!

[k]!
. (4.7)

By using (4.7) and (4.6), it is easy to prove that

K∞,q (1;x) = 1, K∞,q (t;x) = x, K∞,q
(
t2;x

)
= x2 +

(
1− q2

)
x (1− x) .

For f ∈ C[0, 1], t > 0, we define the modulus of continuity ω (f, t) as follows:

ω (f, t) = sup
|x−y|≤1
x,y ∈ [0,1]

|f (x)− f (y)| .
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Lemma 4.1.3. Let f ∈ C [0, 1] and f (1) = 0. Then we have

|Ank (f)| ≤ Ank (|f |) ≤ w (f, qn)
(
1 + qk−n

)
(0 ≤ k ≤ n)

and for any n, k,

|A∞k (f)| ≤ A∞k (|f |) ≤ w (f, qn)
(
1 + qk−n

)
.

Proof. By the well-known property of modulus of continuity (1.72)

w (f, λt) ≤ (1 + λ)w (f, t) , λ > 0

we get

|f (t)| = |(f (t)− f (1))| ≤ w (f, 1− t) ≤ w (f, qn)

(
1 +

1− t
qn

)
.

Thus

|Ank (f (t)− f (1))| =
∣∣∣∣[n− 1]

∫ 1

0

q1−k (f (t)− f (1)) pn−2,k−1 (q; qt) dqt

∣∣∣∣
≤ [n− 1]

∫ 1

0

q1−k (f (t)− f (1)) pn−2,k−1 (q; qt) dqt

≤ [n− 1]

∫ 1

0

q1−kw (f, qn)

(
1 +

1− t
qn

)
pn−2,k−1 (q; qt) dqt

= w (f, qn)

(
1 + q−n

(
1− [k]

[n]

))
= w (f, qn)

(
1 +

qk
(
1− qn−k

)
qn (1− qn)

)
≤ w (f, qn)

(
1 + qk−n

)
.

Similarly,

|A∞k (f (t)− f (1))| = q1−k

1− q

∣∣∣∣∫ 1

0

(f (t)− f (1)) p∞,k−1 (q; qt) dqt

∣∣∣∣
≤ w (f, qn)

q1−k

1− q

∣∣∣∣∫ 1

0

(
1 +

1− t
qn

)
p∞,k−1 (q; qt) dqt

∣∣∣∣
= w (f, qn)

(
1 +

(
1−

(
1− qk

))
qn

)
≤ w (f, qn)

(
1 + qk−n

)
.

Theorem 4.1.4. Let 0 < q < 1, then for each f ∈ C[0, 1] the sequence {Kn,q (f ;x)}

converges to K∞,q (f ;x) uniformly on [0, 1]. Furthermore

|Kn,q (f)−K∞,q (f)| ≤ Cqω (f, qn) . (4.8)
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Proof. K∞,q (f ;x) and Kn,q (f ;x) reproduce linear functions that is

K∞,q (at+ b;x) = Kn,q (at+ b;x) = ax+ b.

Hence for all x ∈ C [0, 1) by the definitions of K∞,q (f ;x) and Kn,q (f ;x) , we

know that

|Kn,q (f ;x)−K∞,q (f ;x)| =

∣∣∣∣∣
n∑
k=0

Ank (f) pn,k (q;x)−
n∑
k=0

A∞k (f) p∞,k (q;x)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

Ank (f − f (1)) pn,k (q;x)−
n∑
k=0

A∞k (f − f (1)) p∞,k (q;x)

∣∣∣∣∣
≤

n∑
k=0

|Ank (f − f (1))− A∞k (f − f (1))| pn,k (q;x)

+
n∑
k=0

|A∞k (f − f (1))| |pn,k (q;x)− p∞,k (q;x)|

+
∞∑

k=n+1

|A∞k (f − f (1))| p∞,k (q;x)

= I1 + I2 + I3.

First we have

|pn,k (q;x)− p∞,k (q;x)|

:=

∣∣∣∣∣
[
n

k

]
xk−1

n−k−1∏
s=0

(1− qsx)− xk

(1− q)k [k]!

∞∏
s=0

(1− qsx)

∣∣∣∣∣
=

∣∣∣∣∣
[
n

k

]
xk

(
n−k−1∏
s=0

(1− qsx)−
∞∏
s=0

(1− qsx)

)

+xk
∞∏
s=0

(1− qsx)

([
n

k

]
− 1

(1− q)k [k]!

)∣∣∣∣∣
≤ pn,k (q;x)

∣∣∣∣∣1−
∞∏

s=n−k+1

(1− qsx)

∣∣∣∣∣
+ p∞,k (q;x)

∣∣∣∣∣
n−2∏
s=n−k

(1− qs)− 1

∣∣∣∣∣
≤ qn−k

1− q
(pn,k (q;x) + p∞,k (q;x)) (4.9)

where in the last formula we use the inequality

1−
n∏
s=1

(1− as) ≤
n∑
s=1

as (a1, ...., an ∈ (0, 1) , n = 1, 2, ...) .
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Hence by using (4.9) we have

|Ank (f − f (1))− A∞k (f − f (1))|

≤
∫ 1

0

q1−k |f (t)− f (1)| [n− 1]

∣∣∣∣pn−2,k−1 (q; qt)− 1

1− q
p∞,k−1 (q; qt)

∣∣∣∣ dqt
≤
∫ 1

0

q1−k |f (t)− f (1)|
∣∣∣∣[n− 1]− 1

1− q

∣∣∣∣ p∞,k−1 (q; qt) dqt

+

∫ 1

0

q1−k |f (t)− f (1)| [n− 1] |pn−2,k−1 (q; qt)− p∞,k−1 (q; qt)| dqt

≤ qn−1

1− q

∫ 1

0

q1−k |f (t)− f (1)| p∞,k−1 (q; qt) dqt

+
qn−k−1

1− q

∫ 1

0

q1−k |f (t)− f (1)| [n− 1] (pn−2,k−1 (q; qt)− p∞,k−1 (q; qt)) dqt

≤ qn−1w (f, qn)
(
1 + qk−1−n

)
+ 2

qn−k−1

1− q
w (f, qn)

(
1 + qk−1−n

)
≤ 5w (f, qn)

1− q
.

Now we estimate I1 and I3. We have

I1 ≤
5w (f, qn)

1− q

n∑
k=0

pn,k (q;x) ≤ 5w (f, qn)

1− q

and

I3 ≤ w (f, qn)
n∑
k=0

(
1 + qk−n+2

)
p∞,k (q;x) ≤ 2w (f, qn)

n∑
k=0

p∞,k (q;x) ≤ 2w (f, qn) .

Finally we estimate

I2 ≤
n∑
k=0

w (f, qn)
(
1 + qk−n

) qn−k
1− q

(pn,k (q;x) + p∞,k (q;x))

≤ 2w (f, qn)

1− q

n∑
k=0

(pn,k (q;x) + p∞,k (q;x)) ≤ 4w (f, qn)

1− q
.

We conclude that for x∈ [0, 1) ,

|Kn,q (f)−K∞,q (f)| ≤ Cqω (f, qn) .

This completes the proof of the theorem.
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4.2 ON THE CONVERGENCE OF BASKAKOV-DURRMEYER OP-

ERATORS

4.2.1 Introduction and Notation

In (Mihesan, 1998) the following generalized Baskakov operators were intro-

duced with non-negative constant a ≥ 0 independent of n

Ba
n (f ;x) =

∞∑
k=0

pn,k (x, a) f

(
k

n

)
, x ≥ 0, k = 0, 1, 2, ..., n = 1, 2, ..., (4.10)

where

pn,k (x, a) = e
−ax
1+x

pk (n, a)

k!

xk

(1 + x)n+k

such that
∞∑
k=0

pn,k (x, a) = 1

and

pk (n, a) =
k∑
t=0

(
k

t

)
(n)t a

k−t

with (n)0 = 1, (n)t = n (n+ 1) ... (n+ t− 1) , for t ≥ 1, defined for f ∈ C [0,∞) .

In (Wafi and Khatoon, 2004c), for the operators Ba
n the rate of convergence

via modulus of continuity of f was evaulated by Wafi and Khatoon. In (Wafi and

Khatoon, 2004a) they studied some approximation properties of the operators Ba
n.

In (Wafi and Khatoon, 2004b); (Wafi and Khatoon, 2005) they established direct

and inverse results for the generalized Baskakov operators.

In this chapter we stated in (4.13) a new Durrmeyer type modification of

generalized Baskakov operators (Mihesan, 1998) for all real valued continous and

bounded functions f on (0,∞]. Another Durrmeyer type modification was given by

A. Erencin (Erencin, 2011).

For the operators An we establish certain direct theorems in terms of the

modulus of continuity of second order, and prove the continuity in Lipschitz-type

space.
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As a special case, when a = 0, the operators given by (4.13) turn out to be

the following Durrmeyer type Baskakov operators,

Bn (f, x) = (n− 1)
∞∑
k=0

pn,k (x)

∫ ∞
0

pn,k (t) f (t) dt, x ≥ 0,

where

pn,k (x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
, (4.11)

and

B (x, y) =

∫ ∞
0

tx−1

(1 + t)x+y
dt =

Γ (x) Γ (y)

Γ (x+ y)
, x, y > 0.

and for all n ∈ N

Γ (n+ 1) = n!.

Lemma 4.2.1. (Mihesan, 1998). For a, x ≥ 0, n = 1, 2....We have

Ba
n (1;x) = 1,

Ba
n (t;x) = x+

ax

n (1 + x)
,

Ba
n

(
t2;x

)
=
x2

n
+
x

n
+ x2 +

a2x2

n2 (1 + x)2
+

2ax2

n (1 + x)
+

ax

n2 (1 + x)
. (4.12)

The main goal of this section is to try to use a similar idea which helped in

former section to simplify formulas for the moments.

4.2.2 Construction of Operators

For every n ∈ N , the positive operators An is defined by

An (f ;x) = (n− 1)
∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k
f (t) d (t) (4.13)

for x ∈ [0,∞) and for every real valued continous and bounded function f on [0,∞)

where n ∈ N,

San,k (x) = e
−ax
1+x

pk (n, a)

k!

xk

(1 + x)n+k
,

in which pk (n, a) is defined as in (4.11) . These operators satisfy linearity property.
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Lemma 4.2.2. The following equalities hold:

An (1;x) = 1,

An (t;x) =
1

(n− 2)

(
nx+

ax

(1 + x)
+ 1

)
, n > 2, (4.14)

An
(
t2;x

)
=

1

(n− 2) (n− 3)

((
n2 + n

)
x2 + 4nx+

a2x2

(1 + x)2

+
2nax2

1 + x
+

4ax

1 + x
+ 2

)
, n > 3. (4.15)

Proof. From (4.12) , we have

An (1;x) = (n− 1)
∞∑
k=0

San,k (x)

(
n+ k − 1

k

)∫ ∞
0

tk

(1 + t)n+k
dt

= (n− 1)
∞∑
k=0

San,k (x)
(n+ k − 1)!

(n− 1)!k!
B (k + 1, n− 1)

= (n− 1)
∞∑
k=0

San,k (x)
(n+ k − 1)!

(n− 1)!k!

(n− 2)!k!

(n+ k − 1)!

= (n− 1)
∞∑
k=0

San,k (x)
1

n− 1
=
∞∑
k=0

San,k (x)

= Ba
n (1;x) = 1,

where Ba
n (f, x) is defined by (4.12). Similarly

An (t;x) = (n− 1)
∞∑
k=0

San,k (x)

(
n+ k − 1

k

)∫ ∞
0

tk+1

(1 + t)n+k
dt

= (n− 1)
∞∑
k=0

San,k (x)
(n+ k − 1)!

(n− 1)!k!
B (k + 2, n− 2)

= (n− 1)
∞∑
k=0

San,k (x)
(n+ k − 1)!

(n− 1)!k!

(n− 3)! (k + 1)!

(n+ k − 1)!

=
∞∑
k=0

San,k (x)
k + 1

n− 2

=
1

(n− 2)

(
n
∞∑
k=0

San,k (x)
k

n
+
∞∑
k=0

San,k (x)

)
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=
1

n− 2
(nBa

n (t, x) +Ba
n (1, x))

=
1

n− 2

(
nx+

ax

1 + x
+ 1

)
.

Finally

An
(
t2;x

)
= (n− 1)

∞∑
k=0

San,k (x)

(
n+ k − 1

k

)∫ ∞
0

tk+2

(1 + t)n+k
dt

= (n− 1)
∞∑
k=0

San,k (x)
(n+ k − 1)!

(n− 1)!k!
B (k + 3, n− 3)

= (n− 1)
∞∑
k=0

San,k (x)
(n+ k − 1)!

(n− 1)!k!

(n− 4)! (k + 2)!

(n+ k − 1)!

=
∞∑
k=0

San,k (x)
(k + 1) ((k + 2))

(n− 2) (n− 3)

=
1

(n− 2) (n− 3)

(
n2

∞∑
k=0

San,k (x)
k2

n2
+ 3n

∞∑
k=0

San,k (x)
k

n
+ 2

∞∑
k=0

San,k (x)

)

=
1

(n− 2) (n− 3)

(
n2Ba

n

(
t2, x

)
+ 3nBa

n (t, x) + 2Ba
n (1, x)

)
=

1

(n− 2) (n− 3)

[
n2

(
x2

n
+
x

n
+ x2 +

a2x2

n2 (1 + x)2
+

2ax2

n (1 + x)
+

ax

n2 (1 + x)

)

+3n

(
x+

ax

n (1 + x)

)
+ 2

]

=
1

(n− 2) (n− 3)

((
n2 + n

)
x2 + 4nx+

a2x2

(1 + x)2
+

2nax2

1 + x
+

4ax

1 + x
+ 2

)
so the proof is completed.

Lemma 4.2.3. For the operators An we have

An
(
(t− x)2 ;x

)
=

1

(n− 2) (n− 3)

(
(2n+ 6)x2 + (2n+ 6)x+

a2x2

(1 + x)2

+
6ax2

1 + x
+

4ax

1 + x
+ 2

)
, n > 3.
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4.2.3 Local Approximation

In this section we establish direct and local approximation theorems in connec-

tion with the operators An. Let CB [0,∞) be the space of all real valued continous

bounded functions f on endowed with the norm. Further let us consider the follow-

ing K-functional:

K2 (f ; δ) = inf
g∈W 2

{‖f − g‖+ δ ‖g′′‖} ,

where δ > 0 and W 2 = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)} .

By [ (Sahai and Prasad, 1985), p.177, Theorem 2.4] , there exists an absolute

constant C > 0 such that

K2 (f ; δ) ≤ Cω2

(
f ;
√
δ
)

(4.16)

where

ω2

(
f ;
√
δ
)

= sup
0<h≤

√
δ

sup
x∈[0,∞)

|f (x+ 2h)− f (x+ h) + f (x)|

is the second order modulus of smoothness of f ∈ CB [0,∞) . By

ω (f ; δ) = sup
0<h≤δ

sup
x∈CB [0,∞)

|f (x+ h)− f (x)|

we denote the usual modulus of continuity of f ∈ CB [0,∞) . Now, express the

auxiliary operators

v
An (f ;x) = An (f ;x)− f

(
1

n− 2

(
nx+

ax

1 + x
+ 1

))
+ f (x)

for f ∈ CB [0,∞) , ψ (x) ≥ 0 and n > 2.

Theorem 4.2.4. Let n > 3. We have

|An (f ;x)− f (x)| = Cω2

(
f ;
√
ψan (x)

)
+ ω

(
f ;

1

n− 2

(
2x+

ax

1 + x
+ 1

))
.

for every x ∈ [0,∞) and f ∈ CB [0,∞) , where C is a positive constant and where

ψan (x) =
1

(n− 2) (n− 3)

(
(2n+ 10)x2 + (2n+ 10)x
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+
2a2x2

(1 + x)2
+

10ax2

1 + x
+

6ax

1 + x
+ 3

)
.

Proof. By the definition of
v
An it is known that

v
An (t− x, x) = 0.

Let g ∈ C2
B [0,∞) . From the Taylor expansion of g

g (t)− g (x) = (t− x) g′ (x) +

∫ t

x

(t− u) g′′ (u) du

we can write

v
An (g;x)− g (x) = g′ (x)

v
An (t− x, x) +

v
An

(∫ t

x

(t− u) g′′ (u) du;x

)
=
v
An

(∫ t

x

(t− u) g′′ (u) du;x

)

= An

(∫ t

x

(t− u) g′′ (u) du;x

)
−
∫ 1

n−2(nx+ ax
1+x

+1)

x

(
1

n− 2

×
(
nx+

ax

1 + x
+ 1

)
− u
)
g′′ (u) du

and therefore ∣∣∣vAn (g;x)− g (x)
∣∣∣ ≤ An

(∣∣∣∣∫ t

x

(t− u) g′′ (u) du

∣∣∣∣ ;x)
+

∣∣∣∣∣
∫ 1

n−2(nx+ ax
1+x

+1)

x

(
1

n− 2

(
nx+

ax

1 + x
+ 1

)
− u
)
g′′ (u) du

∣∣∣∣∣ . (4.17)

Since ∣∣∣∣∫ t

x

(t− u) g′′ (u) du

∣∣∣∣ ≤ (t− x)2 ‖g′′‖

and ∣∣∣∣∣
∫ 1

n−2(nx+ ax
1+x

+1)

x

(
1

n− 2

(
nx+

ax

1 + x
+ 1

)
− u
)
g′′ (u) du

∣∣∣∣∣
≤ 1

(n− 2)2

(
2x+

ax

1 + x
+ 1

)2

‖g′′‖ ,

it follows form (4.17) that∣∣∣vAn (g;x)− g (x)
∣∣∣ ≤ {An ((t− x)2 , x

)
+

1

(n− 2)2

(
2x+

ax

1 + x
+ 1

)2
}
‖g′′‖ .
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So by means of Lemma 4.2.1, we may conclude that∣∣∣vAn (g, x)− g (x)
∣∣∣ ≤ 1

(n− 2) (n− 3)

{(
(2n+ 6)x2 + (2n+ 6)x

+
a2x2

(1 + x)2
+

6ax2

1 + x
+

4ax

1 + x
+ 2

)
+

1

(n− 2)2

(
2x+

ax

1 + x
+ 1

)2
}
‖g′′‖ .

Using the fact 1
(n−2)2 ≤

1
(n−2)(n−3) for n > 3, we can obtain

∣∣∣vAn (g;x)− g (x)
∣∣∣ ≤ { 1

(n− 2) (n− 3)
(2n+ 10)x2

+ (2n+ 10)x+
2a2x2

(1 + x)2
+

10ax2

1 + x
+

6ax

1 + x
+ 3

}
‖g′′‖

and for f ∈ CB [0,∞) and g ∈ C2
B [0,∞) by the definition of the operators

v
An, we

have

|An (f ;x)− f (x)| ≤
∣∣∣vAn (f − g;x)

∣∣∣+ |(f − g) (x)|

+
∣∣∣vAn (g, x)− g (x)

∣∣∣+

∣∣∣∣f ( 1

n− 2

(
nx+

ax

1 + x
+ 1

)
− f (x)

)∣∣∣∣ ,
and ∣∣∣vAn (f ;x)

∣∣∣ ≤ ‖f‖An (1, x) + 2 ‖f‖ = 3 ‖f‖ .

Thus, we can obtain

|An (f ;x)− f (x)| ≤ 4 ‖f − g‖+
∣∣∣vAn (g;x)− g (x)

∣∣∣
+ ω

(
f ;

1

n− 2

(
x+

ax

1 + x
+ 1

))
,

|An (f ;x)− f (x)| ≤ 4 ‖f − g‖+
1

(n− 2) (n− 3)

×
(

(2n+ 10)x2 + (2n+ 10)x+
2a2x2

(1 + x)2
+

10ax2

1 + x
+

6ax

1 + x
+ 3

)
‖g′′‖

+ω

(
f ;

1

n− 2

(
2x+

ax

1 + x
+ 1

))
,

therefore by taking

ψan (x) =
1

(n− 2) (n− 3)

(
(2n+ 10)x2

+ (2n+ 10)x+
2a2x2

(1 + x)2
+

10ax2

1 + x
+

6ax

1 + x
+ 3

)
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we get

|An (f ;x)− f (x)| ≤ 4 ‖f − g‖+ ‖g′′‖ψan (x)

+ω

(
f ;

1

n− 2

(
x+

ax

1 + x
+ 1

))
.

Thus, taking infimum over all g ∈ C2
B [0,∞) on the right hand side of the last

inequality and considering (4.16) the desired result is reached.

4.2.4 Rate of Convergence

Now consider the Lipschitz- type space

Lip∗M (r) =

{
f ∈ CB [0,∞] : |f (t)− f (x)| ≤M

|t− x|r

(t+ x)
r
2

;x, t ∈ [0,∞]

}

where M is a positive constant and r ∈ (0, 1] .

We firstly prove the following lemma which will be used in the proof of the

next theorem.

Lemma 4.2.5. For all x ≥ 0 and n > 2, we have

An (|t− x| ;x) ≤
√
δn (x),

where

δn (x) = An
(
(t− x)2 ;x

)
.

Proof. By (4.13) we get

An (|t− x| ;x) = (n− 1)
∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k
|t− x| dt.

If we apply the Cauchy-Schwarz inequality to the integral in the right hand

side of the above inequality, then we find

An (|t− x| ;x) ≤
√

(n− 1)
∞∑
k=0

San,k (x)

×


(∫ ∞

0

(
n+ k − 1

k

)
tk

(1 + t)n+k
(t− x)2 dt

)2


1
2

(4.18)
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and again applying the Cauchy-Schwarz inequality to the series in the right hand

side of (4.18) we have

An (|t− x| , x) ≤

{
(n− 1)

∞∑
k=0

San,k (x)

×
∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k
(t− x)2 dt

} 1
2

=
√
An
(
(t− x)2 ;x

)
=
√
δn (x).

Theorem 4.2.6. Let f ∈ Lip∗M (r) then for all x ≥ 0 and n > 2, we have

|An (f ;x)− f (x)| ≤M

(
δn (x)

x

) r
2

where δn (x) is defined as in lemma above.

Proof. At first consider the case r = 1

|An (f ;x)− f (x)| ≤

(
(n− 1)

∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k

× |f (t)− f (x)| dt)

≤M (n− 1)
∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k
|t− x|√
t+ x

dt.

From the fact that 1√
t+x

< 1√
x

and lemma 4, the last inequality implies that

|An (f ;x)− f (x)| ≤

(
M√
x

(n− 1)
∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)

× tk

(1 + t)n+k
|t− x| dt

)

M√
x
An (|t− x| ;x) ≤M

√
δn (x)

x
.

This is the desired result for r = 1. Now, let r ∈ (0, 1) . Then application of

the Hölder inequality two times with p = 1
r

and q = 1
1−r gives

|An (f ;x)− f (x)| ≤

(
(n− 1)

∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)
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× tk

(1 + t)n+k
|f (t)− f (x)| dt

)

≤

(n− 1)
∞∑
k=0

San,k (x)

(∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k
|f (t)− f (x)| dt

) 1
r


r

≤

{
(n− 1)

∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)
tk

(1 + t)n+k
|f (t)− f (x)|

1
r dt

}r

.

Since f ∈ Lip∗M (r) , this inequality leads to

|An (f ;x)− f (x)| ≤M

{
(n− 1)

∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)

× tk

(1 + t)n+k
|t− x|√
t+ x

dt

}r

≤ M

x
r
2

{
(n− 1)

∞∑
k=0

San,k (x)

∫ ∞
0

(
n+ k − 1

k

)

× tk

(1 + t)n+k
|t− x| dt

}r

=
M

x
r
2

(An (|t− x| ;x))r .

Therefore by lemma 4 we may conclude that

|An (f ;x)− f (x)| ≤M

(
δn (x)

x

) r
2

which completes the proof.

We consider the following class of functions:

Let Cx2 [0,∞] be the set of all functions defined on [0,∞] satisfying the con-

dition |f (x) ≤Mf (1 + x2)| , where Mf is a constant depending only on f . By

Cx2 [0,∞] ,we donote the subspace of all continous functions belonging to Hx2 [0,∞].

Also let Hx2 [0,∞] be the subspace of all functions f ∈ Cx2 [0,∞] , for which

‖f (x)‖ = lim
x→∞

f(x)
1+x2

is finite. We denote the modulus of continuity of f on closed

interval [0, a] , as a > 0 by

ωa (f, δ) = sup
t−x≤δ

sup
t,x∈[0,a]

|f (t)− f (x)| .

We observe that for the function f ∈ Cx2 [0,∞] the modulus of continuity

ωa (f, δ) tends to zero.
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Theorem 4.2.7. f ∈ Hx2 [0,∞], ωa+1 (f, δ) be its modulus of continuity on finite

interval [0, a+ 1] ⊂ [0,∞] , where a > 0. Then for every n ≥ 3

|An (f ;x)− f (x)|[0,a] ≤ 6Mf

(
1 + a2

)
δn (a) + 2ωa+1

(
f ;
√
δn (a)

)
.

Proof. For x ∈ [0, a] and t ≥ a+ 1, since t− x > 1, we have

|f (t)− f (x)| ≤Mf

(
2 + x2 + t2

)
≤Mf

(
2 + 3x2 + 2 (t− x)2

)
≤ 6Mf

(
1 + a2

)
(t− x)2 . (4.19)

For x ∈ [0, a] and t ≤ a+ 1, we have

|f (t)− f (x)| ≤ ωa+1 (f, t− x) ≤
(

1 +
t− x
δ

)
ωa+1 (f ; δ) (4.20)

with δ > 0. From (4.19) and (4.20) we can write

|f (t)− f (x)| ≤ 6Mf

(
1 + a2

)
(t− x)2 +

(
1 +

t− x
δ

)
ωa+1 (f, δ)

which yields

|An (f ;x)− f (x)| ≤ 6Mf

(
1 + a2

)
An
(
(t− x)2 ;x

)
+ωa+1 (f, δ)

(
1 +

1

δ
An (|t− x;x|)

)
for x ∈ [0, a] and t ≥ 0. Thus by using Lemma 4.2.4., we can get

|An (f ;x)− f (x)| ≤ 6Mf

(
1 + a2

)
δn (x) + ωa+1 (f, δ)

(
1 +

1

δ

√
δn (x)

)
≤ 6Mf

(
1 + a2

)
δn (a) + ωa+1 (f, δ)

(
1 +

1

δ

√
δn (a)

)
finally, by choosing δ =

√
δn (a), we achieve the result.
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A.1 FURTHER STUDIES

1. Study of convergence of weighted modifications of q analogue of Durrmeyer

type operators.

2. Study of convergence of weighted modifications of q analogue of Baskakov

operators.

3. Study of convergence of Videnskii-Baskakov operators in rational functions.
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Istanbul University, Department of Engineering Science,34825 Avcılar- Istan-
bul , Turkey
Phone: +90)2124737070-17865
Email: abdikmen@gmail.com, abdikmen@hotmail.com

EDUCATION

Ph.D., Mathematics, Fatih University, Istanbul, Turkey, December 2012
Dissertation: ”Weighted Approximation By Videnskii and Lupas Operators”

M.S., Mathematics, Kırıkkale University, Kırıkkale, Turkey, December 2009
Thesis: The Convergence of Bernstein Polynomials

B.S., Mathematics, Marmara University, Istanbul, Turkey, September 1998

PROFESSIONAL EXPERIENCE

• Educator, Private Schools and Education Centers, 1998-2011

• Instructor, Istanbul University, December 2011-

CONFERENCE PROCEEDINGS

Conference Proceedings

• Akif Barbaros Dikmen, ”On The Convergence of Baskakov- Durrmeyer
Operators”, 4 iemes Journeees Approximation International Conference

71



72

on Constructive Complex Approximation,University of Lille, Lille/ France
June 2012 .

• Akif Barbaros Dikmen, ”Approximation Properties of Baskakov- Dur-
rmeyer Operators”, International Conference on Applied Analysis and
Algebra, ICAAA 2012, Yildiz Technical University, Istanbul / Turkey,
Jul. 2012.

• Akif Barbaros Dikmen, ”The Q- Analogue of the Limit Case of Bernstein
Type Operators”, First International Conference on Analysis and Applied
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