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ABSTRACT

The two-point boundary value problem for third order partial differential equa-
tions in a Hilbert space is investigated. The main theorem on stability of the problem
is established. To validate the main result, some stability estimates for solutions of
the boundary value problems for third order equations are obtained.
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oY/

Hilbert uzayinda ii¢iincii mertebeden kismi diferensiyel denklemler icin iki nok-
tada sinir deger problemlemi incelenmigtir. Problemin kararlilik kestirimi tizerinde
ana teorem kurulmustur. Ana sonucu dogrulamak icin, liclincii mertebeden sinir
deger problemlerinin ¢oziimlerinin bazi kararlilik kestirimleri elde edilmigtir.
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CHAPTER 1

INTRODUCTION

Boundary value problems have been a major research area in many branches
of science and engineering particularly in applied mathematics when it is impossible
to determine the boundary values of the unknown function. In the last century,
interest towards to the subject of boundary value problem for a partial differential
equations with time and space variables has been substantial and growing tendency
because of science and industry. Furthermore, various problems arising in thermal
conductivity, microscale heat transfer and so on can be reduced to the nonlocal

problems. For these reasons, we have worked on these issues in this thesis.

Local and nonlocal boundary value problems for third order ordinary differen-
tial equations and system of ordinary differential equations have been considered in
the field of science and engineering such as modern physics, mathematical biology,
chemical diffusions and fluid mechanics. Additionally, this type of boundary value
problems has been studied widely in the literature (for instance, see (Guezane-
Lakoud et al., 2012); (Sun and Ren, 2010); (Suryanarayana, 2011); (Noor et al.,
2012)).

The authors (Grossinho et al., 2005) studied existence and location result for
the boundary value problem for third-order nonlinear ordinary differential equation.
In the papers (Guo et al., 2007); (Guezane-Lakoud and Khaldi, 2010); (Guezane-
Lakoud and Frioui, 2012); (Wang et al., 2009), nonlocal boundary value problem

for third-order nonlinear ordinary differential equations was considered. Existence



of the problems were established by using the Leggett-Williams fixed point theo-
rem (Guo et al., 2007) and Leray Schauder nonlinear alternative (Guezane-Lakoud
and Khaldi, 2010); (Guezane-Lakoud and Frioui, 2012). Additionally, some sufficient
conditions for the existence of the problem in Banach spaces were obtained by using
fixed point index theory (Wang et al., 2009). Moreover, the authors (Palamides and
Veloni, 2007); (Palamides and Palamides, 2008); (Liu et al., 2009); (Smirnov, 2011);
(Smirnov, 2012) investigated local boundary value problem for third-order nonlin-
ear ordinary differential equations. FExistence of the problems was established by
using the Krasnoselskii’s fixed-point theorem of cone (Palamides and Veloni, 2007);
(Palamides and Palamides, 2008); (Liu et al., 2009) and Leggett-Williams (Liu et al.,
2009) also established existence of the problem. Similarly, the authors (Smirnov,
2011); (Smirnov, 2012) also established existence of the problem. Finally, local
boundary value problem for system of third-order nonlinear ordinary differential
equation was studied in the paper (Qu, 2010). The multiplicity and existence of
the problem was also established by using the Krasnoselskii’s fixed-point theorem

of cone (Qu, 2010).

Local and nonlocal boundary value problems for third order partial differential
equations have been studied widely in the literature (for instance, see (Latrous
and Memou, 2005); (Dzhuraev and Apakov, 2010); (Apakov, 2011); (Denche and
Marhoune, 2001); (Denche and Marhoune, 2003); (Ashyralyev et al., 2012)).

The authors (Denche and Memou, 2003) investigated local boundary value

problem

‘92%” + Z(a(z,t) ) = flz,1), 0<t<T,0<z <1,

u(z,0) =0, 2 (2,0) = 0, 24(x,T) = 0, z € (0,1),

w(0,8) =0, ¢ €[0,T],
fol u(z,t)de =0,t € [0,T]

for third-order partial differential equations with integral conditions. This paper
was proved the existence and uniqueness of a strong solution for a linear equation.
The authors were also used energy inequalities and the density of the range of the

generated operator.



In the paper (Apakov and Rutkauskas, 2011), the local boundary value problem

Bu(x 2u
aax(?»)_aa—ygw:f(%y), O<z<p 0<y <,
uy(z,0) = p1(x), uy(z,1) = @a(x), p>0,1 >0,

u(0,y) = 1(y), ulp,y) = Pa(y), uz(p,y) = ¥3(y)

for third-order partial differential equations in a rectangular domain was studied.
The investigation of authors of this paper is based on the fundamental solutions of

corresponding nonhomogeneous equation the green function of analyzed problem.

There are several types of methods for solving partial differential equations.
For instance, the method of separation of variables can be used only in the case
when it has constant coefficients. In particular, a boundary value problem for third-
order partial differential equation can be solved by Fourier series method, by Laplace
transform method and by Fourier transform method. Now, let us illustrate these

three different analytical methods by examples.

Example 1.1. Obtain the Fourier series solution of a third-order partial differential

equation
(
83g§§’x) + angg’I) —u(t,r) = =3e'sinz, 0<t<1, 0<z<m,
w(0,2) =sinx, u (0,x) = —sinz, uy(l,z) =e 'sinz, 0 <z <m, (1.1)

u(t,0)=u(t,m)=0, 0<t<1.

\

Solution. In order to solve the problem, first we need to define

u(t,x) =v(t,x)+w(tx),

where )
3 2
Poltr) 4 Pta) _ g (g2) =0, 0<t<1, 0<z<m,

v (O,ZE) = 07 Ut (Oal‘) = 07 Utt(]-ax) = 07 0 S T S T, (12)

| v(t0)=v(t,m) =0, 0<t<1,



and
. ,
dglgg“) 022’23” —w(t,z) = -3¢ lsinz, 0<t <1, 0<z<m,
w(0,2) =sinx, w; (0,2) = —sinx, wy(l,r) =e tsinz, 0 <z <, (1.3)

w(t,0) =w(t,m) =0, 0<t <1,

\

Now, let us obtain the solution of (1.2) by the method of separation of variables.

To do this a solution of the form
v(t,x) =T(t)X(x) #0

is suggested. Taking the partial derivatives and substituting the result in (1.2), we

obtain
7" t)—T(t) X" (z)

=0,0<t<1,0 . 1.4
T X(2) , 0< ,O0<z<m (1.4)

It is easy to see that problem (1.4) leads to

T"(t) — T(t)
T(t)

Xl/ (.T)

=4 X ()

=\ 0<t<l,0<z<m

equivalently
T"(t) = (A +1)T(t), X" (x) =X (x),
X0)=X'(m)=0,0<t<1l, 0<z<m.
We have that

Ty (1) = Age= V0 L [Bkcos<733(l—n2)t)
+C} sin <\/7§ (1 — nz)tﬂ ,
Xk (z) =sin (kx) ,k=1,2,--- , 0<t<1, 0<z <.

By using superposition principle, we get

v(t,x) —Z

3 (1771,2)15

Ape V=t 4 o= = [Bn cos (%ﬁ v (1— n2)t>

+C, sm( 1—n2t>”sin(nx),0<t<1,0<x<7r,

3 — 2 % 1-n2)t
An /(T = n2)e V0=t _ ane‘/%)

v(t,x) = Z

n=1




X [— cos( \/71&) V/3sin (? /(1 —n2)t>]

+C, {)/(1 — n2) o= 3\/(12—n2)t [\/gcos (? 3 (1 — n2)t>

2

—sin (%ﬁ v/ (1 — n2)t>” sin (nz) ,

Ve (t, x) _ Z |:An 3 (1 . n2)2e 3/ (1=n2)t

n=1

and

+B, 5 e 2 [— cos (? v (11— n2)t) +V/3sin <\/7§ v (11— n2)t)]

w

(- Y [
2

\/_cos<\/_\/7t>

_sm< ﬁtm snrne)

Using given boundary conditions, we have

WK

v (0,2) = (A, + B,)sin (nz) =0,

1

3
Il

A/ (1 =n2) — Bn%\?’/ (1—n?)+ Cn§ v (11— n2)] sin(nz) = 0,

'Utt Z:;{ \/ 2 \ (e
+B, (1;n) e_5 (12 =) [—COS (?W) +v/3sin (?3 (1—”2)>]

/(1 —n2)?* /G2
+C, ( 5 ) e 2 [—\/gcos (?3 (1—n2)>

)



So, we get the system of equations

;

An+Bn:07
Bn V3 _
An_7+0n73*07

\3/1—712
A, V1= L B e~ [— cos (‘@\3/1 — n2> + /3 sin (‘/75\3/1 — n2>}
3=
+Che [—\/gcos (‘/73\3/1 — n2> — sin <‘/7§\3/1 — nQ)] =

Solving the system of equations, we obtain

That gives us

Second, for the solution of (1.3), assume that
Z A, (t)sin(nx), 0 <z <.

Putting it into the equation and using given boundary conditions, we obtain

w(t, ) Z [ " 2+ 1A, (t)] sin (nx) = —3e 'sinz,

and
ZA )sin(nz) =sinz, A;(0) =1; A,(0)=0, n=2,3,...
ZA )sin(nz) = —sinz, A;(0)=—1; A (0)=0, n=2,3,...
Wy ( ZA )sin(nz) = e tsinz, A[(1)=e A (1) =0, n=2,3,...

Equating the coefficients of sin (nx) , we get

AT () —2A1(t) = =3¢, 0 <t < 1,

"

Ay (0) =1, AII(O) = -1, Al(l) = 671,

and

A, (t) =0, n# 1.



Here,

Ai(t) = Ac(t) + Ay(2).

The homogeneous part of the problem is

V3 . (V3
C5 cos <3—\/§t> + Cssin (3—\/§t>] .

For the particular solution of the problem, we assume that

3
A (t) = C’le%t + 6_@

Ay(t) = Be™.
Putting into the equation, we get
—Be™' —2Be = -3¢,
then B=1. We have

3
Ai(t) = CreV? 4 o7

C5 cos ﬁt) + C5sin (ét)
: s a2 | V3 .
A(t) = C1V/2e V" + 0276 2 _— cos <%t> —V/3sin (—t)]
V3 cos (3_\/4_1t> — sin <%t>] —e
TN v 3. V2t e B ﬁ . ﬁ
Al (t) = C1V4eV 4+ O, 7 [ Cos (\?/th) +V/3sin ({J/é_lt>]

- V3 . (V3
+C'3 7 [—\/gcos <%t> — sin (3_\/Zt>

Using given boundary conditions, the following system of equations are obtained

3
+Cg?€_§§t

+et

(

Ci+Cy =0,

Cl_CQ—i_CS\/Tg:O?

2

%2
Clﬂe%%—CQe?/; [ cos( )+\/§sm<
3

_N2
‘I—C;;% [—\/gcos ({%) — sin (&)] = 0.

Solving the system of equations, we get

5

ol

C, =0y =C5=0.



Hence, we obtain

w(t,z) = e 'sin(z).
The solution of the problem is
u(t,z) =v(t,r) +wt,z) = e *sin(z).

Example 1.2. Solve the mized problem

Bu(t,x) 0%u(t,x)

a3 922 —u(t,r)=—e ) 0<t <1, 0<x< o0,

S w(0,2) =" u (0,2) = —e®, uy(l,x) =e MHsing, 0 <2 < oo,

| u(t,0) =e ' u, (t,0)=—et 0<t <1

by using Laplace transform method.

Solution. Let us denote L {u (¢,2)} = U (¢, s) . Taking the Laplace transform of both
sides of the differential equation we can write that
L {uw (t,2)} + L{ug, (t,2)} = L{u(t,2)} = —L{e "}, 0 <z < oco.

It is equivalent to

Um(t,s)—(l—s2)U(t,s):<s—1— ! )e_t.

So, our problem becomes

U

ttt

(t,s)—(1—sHU(t,s) = (s —1—7=) e,

1+s

U0,5) = 5, Ui0,8) = =135, Un(l,8) = 55

1+s? T l4s? e(l+s) "

The homogeneous part of the problem is

\3/ —s
U.(t,s) = Cle VI=s?t | o= . [6'2 cos (‘/T?j V1 — 3225) + (5 sin (%g V1 — thﬂ )

Second, we assume a particular solution of the form
U, (t,s)=A(s)e "
Putting into the equation, we get

—A(s)e” = (1-5") A(s)e™" = (s ! ) e’




then

1
A =
(S> 1+s
We obtain
\3/1—32 3
Ul(t,s) = CreVI=t 4 =5t | 0 cos <§\3/1 - 32t>
—t
+(3 sin £\3/1 —s%t ||+ ¢ ,
2 1+ s
/ \3/ 1 - 2 \3/ 75215
U, (t,5) = C1V1 — s2e Vi-s%t + Ch 5 i e
X | — cos (?\3/1 — 52t> — V/3sin <§\3/1 — 3215)]
\3/ 1 —_— 2 \3/1—5275 3
+C5 5 i e 2 [\/§ coS (gx?’/l — 52t>
—t
—sin é\?’/l—sgt _ ,
2 1+ s
and

Utt (t7 S) _ Ol 3 (1 i 82)26 3/1—32t

+02ﬂ6_@ [— cos (? V1 — 32t> +v/3sin <? Vv1-— 3275)]

2
3 2
(1-5%)" _yio 3
—i—CgTe’ 5 —V/3cos \/7—\3/ 1— s2%t
—t
— sin <§\3/1 — 5275) + ¢ )
2 1+s

Using given boundary conditions, we obtain the system of equations

(

Cl+02:O,
Ci— %+ 0L =0,

32 ) )
Cie Vies? | Cse™ e [— coS <\/7§\5/1 — 82> +v/3sin (%g V1 — 32”
V521
+C3e” = [—\/gcos (‘/73\3/1 — 32> — sin (%gxg’/l — 52 } = 0.

\
Therefore,

C, =0y, =C5=0.
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Then, the general solution of the problem is

eft

Ul(t,s) = s

Taking the inverse of Laplace transform, we have
u(t,z) = e 4o,

Example 1.3. Obtain the Fourier transform solution

FBu(t,x) 9?u(t,x)

e o —u(t,x):(4x2—4)67(t7’”2), 0<t<l, —oo<uz<o0,

w(0,2) = e, u (0,2) = —e%, uy(1,2) = e (1),

Solution. Let denote F {u (t,z)} = U (¢, s). By taking the Fourier transform of both

sides, we obtain
F {uw (t,2)} + F {uz (t,2)} = F{u(t,z)} =F {(4x2 —4) 6—(t—x2)} ‘

Then we have

Ut (t,s) — (s> + 1)U (t,s) = —e* (32+2)F{e’$2}, — 00 < I < 00,

U@,s)=F {e*mz} , U(0,s) = —F {e*xz} , Uy(l,s) =F {e*(IQH)} )

We obtain the solution U,(t, s) of corresponding homogeneous problem

U, (t,s) = Clemt +e” ?/Szﬁt [C’g cOS (?Wt) + (5 sin (%gf/mt)} )
By undetermined coefficients method, we have
Uy (t,s)=A(s)e".
Putting into the equation, we get
—A(s)et—A(s) (s +1) et =—e"(*+2)F {6_:62} ,
then

We have

U (t, 8) =(C\e VeIt +e o

C5 cos (? V2 + 1t>



11

+(C'3sin (? Vs + 1t)

F {e”’“g} et

: T Vst +1 ¥
Uy (t,s) = C1V 82+1€382+1t—|—02 82+ e

X

— COS (?\3/ 52 4 1t> — V/3sin <§\3/ 52+ 1t>

3/ .2 1 3/ 31, 3
+C5 82+ e [\/5 COS (%_ V2 + 1t)
—F {e_xz} et
3 2
(82 + 1) /211t
Uy (t,8) = Ciy/ (52 + 1)26 VeIt | 02— o
\/g 3 2 . 3 2
— CoS 7\/3 + 1t —l—\/gsm \/ + 1t
3 2
A/ (82 + 1) 3/2 1 1e
+03T€_ = —v/3cos \/32 1t

—51n<\/_\/52—t> Flc}e

Thus, we get the following system of equations by using given boundary conditions

—sin (? Vs + 1t>

and

X

.

Ci+Cy =0,

Cl—%‘i‘Cg\/Tg:O,

3921

CreVsH 4 Cpe7 [—cos (@W) —i—ﬁsm( )}
+Cse” %/522? [—\/gcos (%ge/m) — sin ( \/7)}

The system of equations gives us

\

Cy =0y =0C5 =0.

Hence,
U(t,s)=F {e_(tHQ)} :

Taking the inverse of Fourier transform, we get

u(t,r) = e~ (%),
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The objective of this work is to show that our problem is stable. Let us briefly
describe the contents of the various sections. It consists of five chapters and a

appendix.
First chapter is the introduction.

Second chapter investigates boundary value problem for third-order partial

differential equations

T Au(t) = f(1), 0<t <1, o

U(O) - QO,Ut(O) = ’lvbautt(l) = 5
in a Hilbert space H with a self-adjoint positive definite operator A. Moreover, the
main theorem is on the stability estimates for the solution of the abstract boundary
value problem (1.6). Lastly, this chapter proves that following theorem is on stability
analysis of problem (1.6).

Theorem 1.1. Suppose that ¢ € D(A), & € D(A*3), o € D(AY3) and f(t) is
a continuously differentiable on [0,1]. Then, there is a unique solution of problem
(1.6) and the following stability inequalities

e [ut) | < M {usoHH AT+ AT + g !!A”?’f@HH} ,

0<t<1 0<t<1

max

max + max [|Au(t)]

0<t<1

d3u(t) H
a ||,

< 3 { gl + 14l 4 4P +

0<t<1

@], + 1500

are valid, where M does not depend on f(t), t € [0,1], ¢, & and 1.

Third chapter includes two applications of the boundary value problem for

a third order partial differential equation.

First, boundary value problem for third order partial differential equation

(
wy — (a(z)uy)e +ou = f(t,x), 0<t <1, 0<z<1,

§ u(0,z) = p(z), u(0,z)=1v(x), uy(l,z) =¢&(x), 0 <z <1, (1.7)

uw(t,0) = u(t, 1), u(t,0) =u,(t,1), 0<t <1
\
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is considered. Problem (1.7) has a unique smooth solution u(t, z), smooth functions
a(z) = a >0, (a(l)=a(0), z € (0,1)), ¢(x), £(x), P(x) (z € [0,1]) and f(,z)
(t,x € [0,1]), o positive constant and under some conditions. This allows us to
reduce problem (1.7) to boundary value problem (1.6) in a Hilbert space H = L5|0, 1]
with a self-adjoint positive definite operator A* defined by equation (1.7)

Theorem 1.2. For the solution of problem (1.7), we have the following stability

inequalities

s (el < O g LAl + 1l

1 oy + 1€ o]

e |t (2, ')“L2[0,1] + qoax e (2, -)HLQ[O,H <M [OIE?<X1 1 fe(t, ')“Lg[O,l]

1O ) oo, + N2l ooy + 1¥eall 100 + HgﬂC”Lg[O,l]} ;

where M is independent of p(z), £(x), ¥(x) and f(t,x).

Second, let €2 be the unit open cube in m-dimensional Euclidean space R™ :
{r=(z1," " 2p):0<x; <1,1 <j<m} with boundary S, Q =QUS. In [0,1] x

Q, let us consider boundary value problem for multidimensional third order equation
( A3u(t,r) 4l

P = 3 @), )s, + ou(z) = S(t,2),
r=(r1,...,0m) €Q, 0<t<], (1.8)

u(0,2) = @(x), w(0,2) =(x), uu(l,x)=~Ex), v € Q,
u(t,z) =0, x€S.

Here, a,(z), (v € Q), ¢(x), &(x), ¥(z) (v € Q) and f(t,x) (t € (0,1),z € Q) are

given smooth functions and a,.(z) > a > 0. Let us introduce Hilbert space Ls(£2) of

all square integrable functions defined on €, equipped with the norm

1

2
= [ [ Vo ds,
zeQ
Theorem 1.3. For the solution of problem (1.8), the following stability inequalities
hold:

s (e ey < | 10,

+ lell,@ + 1Yl @ + €]

Ly@ ]’
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m
Orlsl%){l Zl ||u$r$r (t7 '>||L2(§) + OIIS].?S}% ||uttt<t7 )||L2(§)
r=

< M [max 1t M + 10, e

0<t<1

m

+ 3 Mm@ + Y|
r=1

r=1

wzrzr

@ T 2 @)
r=1

where M does not depend on p(x), (), ¥(x) and f(t,z) (t € (0,1),z € Q).

Fourth chapter is the numerical analysis.
Fifth chapter is the conclusion.

Appendix-A is the algorithm and programming for the given applications.



CHAPTER 2

THE MAIN THEOREM ON STABILITY

We consider boundary value problem for third-order partial differential equa-

tions

G = Au(t) = (1), 0< 1< 1, o)

u(0) = @, u(0) = ¥, uu(l) = ¢
in a Hilbert space H with a self-adjoint positive definite operator A. We are interested
in studying the stability of solutions of problem (2.1). A function u(t) is a solution

of problem (2.1) if the following conditions are satisfied:

i) u(t) is thrice continuously differentiable on the interval (0,1) and continu-
ously differentiable on the segment [0,1]. The derivatives at the endpoints of the

segment are understood as the appropriate unilateral derivatives.

ii) The element u(t) belongs to D(A) for all ¢ € [0,1], and function Au(t) is

continuous on the segment [0, 1].
iii) u(t) satisfies the equation and boundary conditions (2.1).

Let H be a Hilbert space, A be a self-adjoint positive definite operator with
A > 61, where § > g > 0.

Throughout this work, {é(t),t > 0} is a strongly continuous cosine operator-

function defined by formula

&) = . (2.2)

15
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Then, from the definition of sine operator-function 3 ()

t

su= [ ety dy

0

it follows that
eitA1/3 o efitAl/?’
5(t) = A7Y3 5 : (2.3)

For the theory of cosine operator-function, we refer to (Fattorini, 1985) and (Piskarev

and Shaw, 1997). Now, let us give a lemma that will be needed below.

Lemma 2.1. The following estimates hold

le@llgen < 1. [|A50],, <1 (2:4)

The proof of Lemma 2.1 is based on the estimate

<1

i A1/3
Hezl:ztA
H—H

Applying the spectral representation of unit self-adjoint positive definite operator

A (Ashyralyev and Sobolevskii, 2004), we get

+tAL/3

1/3
H oA .

=1.

u(t) = —3A73 | T+ 2¢” 3A21/Sc < )] _ (2.5)
X 2/1 e (5-1-3)4"; ((s -1) f(s)ds —2 /t e~ (GHe-t)Al; (?) f(s)ds

[+2e 24 (?)]/Oe—(i V3AY35 ((g—t)?)
e o () (2]
" [/016<s+;)wf(8)d5+2 /<> << - 1) ) ]

[ — e 3A [6 (?t) + V3433 (?t)” [e A=A e | p2/3,-(5-t) AT

< sup
H—H I<A<o0

It is clear that problem (2.1) has a unique solution

MI%

%

S)Al/S

OJ

+3
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(Bucasdon( S|

A1/3§ E]
fe$A [E (?) o+ %(M—”% + 90)] ’

where the function f(¢) is not only continuous but also continuously differentiable

on [0,1], ¢ € D(A), ¢ € D(A?3) and o € D(AY3).

Theorem 2.1. Suppose that ¢ € D(A), & € D(A%3), o € D(AY3) and f(t) is
a continuously differentiable on [0,1]. Then, there is a unique solution of problem

(2.1) and the following stability inequalities

max ()l < M [l + (|47 (2.6)

0<t<1

0<t<1

A+ g 450

+ max [[Au(t)]; (2.7)

0<t<1

d3u(t)
dt3

max
0<t<1

<3 {aply + 4], + 47, + s

0<t<1

£, + 170l

are valid, where M does not depend on f(t), t € [0,1], ¢, & and 1.

Proof. Firstly, we can rewrite formula (2.5)

24,(t) —2¢ <§) Aa(t) — As(t) + Aa(?)

— [5 (?t) +V/3AY35 <§t>

A3 4 et (6 <§> (A% + )

L3 V3 -1/3
()]

Al/33 V3
te3 A [é <£> o+ & (24713 + go)] ,

u(t) = —

[As(t) + 246(t)]

+[A7(2) + As(1)]

2 V3

—1
42054 (?)]

where

A(t) = 1/3
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X /01 e~ (3-t=5)a; ((5 - 1)?) A3 f(s)ds

[+2e734° (\/;)] /Ot e~ (5 Hs=t)AM? 4=2/3¢(5) g
As(t) = 1/3/; -tgrare fA1/3~< . ?) ( 23)
[+2e 34 ( )] / (=D AY? 4=2/3 £(5)ds,

[+2e 374"z (?)] /0 o)A g £(s)ds, (2.8)
I +2e 24" (?)] R (2.9)
X /0 1 e (H5=2)A ((3 - 1)\/;) A3 f(s)ds

-1
3
A7 (t) = |1+ 2e —3A% (%)] 6_(1_t)A1/37

[ 4234 ﬁ)]_ e~ (1+5) A" [E <£> +V/3AY35 (?)

2 2

Ay(t) = 1/3

AT f(s)ds,

Ay(t) =1/3

As(t) = 1/3

Ag(t) =1/3

Ag(t) = —

Let us obtain estimates for ||Ax(t)||,, k = 1,2,3,...,6. We start with A;(¢). Using

estimates (2.4) and triangle inequality, we get

-1
1A ()] < |[1/3 |1+ 2724 (?)] (2.10)
H—H
[ e 0 a0
psNTL Y 34
<1/3<1—26_§U ) /Oe (3--8)7"" || A2 (5|, ds

So, we have that

A (8)]| < My max ||A™>2f(8)]|

0<t<1 H

for all t, t € [0,1]. By using the triangle inequality and estimates (2.4), we obtain

I+ 2e 24" (?)]_ (2.11)

H—H

A2l < (|1/3
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1472 £ (s)]] 7 s

< et
0 H
_ t
gm@_%%ﬂléeww 14725 (s)]), ds

Thus, we get estimate for Ay(t)

[Aa(t)]| 5 < M max |[AZ*2f ()],

0<t<1

for all t, ¢t € [0,1]. In a similar manner one establishes the estimate for As(t)

. H\/§Al/3§ ((s - t)?) (2.12)

(t=s) :
B Al/3

sy <173 | |

—c ((s — t)\/7§>
< 1/3/t

< M3 max HA 2/?’f

0<t<1

4755

(]| s

H—H

HA 2/3f

()] ds

Ol

for all t, ¢t € [0,1] and,

I+2e7 34 <\/—§>]_ (2.13)

[As(O) ] < |]1/3 5
H—H
1
X/t Hef(sft)A /3 HHA—2/3f(S)HHdS
5 173y —1 1
<1/3(1-2") /e— A s )|, ds
t
< My |40

for all t, ¢ € [0, 1]. By using formula (2.8), estimates in (2.4) and triangle inequality,

we obtain estimate

lAs @l < ||1/3

[ et

0 H
1 -1 rl t

<1/3 (1 —2¢ 27 /3> /0 67(875 ||A 3 f(s) ||H

< M5 max HA 213 £ (t)

0<t<1

2

I+2e7 24 (éﬂ_ (2.14)

H—H

14721 (s)]] s

Ol 4



20

for all t, ¢ € [0, 1]. Using estimates (2.4) and triangle inequality for the formula (2.9),

we get

V3

lAs(®)lly < 1/3 || |1+ 20734 —)] (2.15)

x/l . (s—l%)
§1/3(1—2e—%“1/3) / (45

< Mg max HA 2/3f

0<t<1 HH

2

H—H

(g A 1A= £ (s

H—H

€ HH

A ds

for all t, t € [0,1]. Now, we will estimate ||A,,(¢)||;_ 5, m = 7,8. Using the triangle

inequality and estimates (2.4), we obtain

-1
ot (ﬁ)] e )

A7 (O] i <

2 H

H—H

3

—1
< (1 _ 26*501/3) -0 < pp

@]
e<2>+w< )..

< (1—26—% 1/3> o= (1+4)a"”

for all t, ¢ € [0,1]. Combining the estimates (2.10)-(2.17) and estimates (2.4), we
[ A2l + [[As@l 5 + [[ A2

(V3
’ 7 H—H
WAl + 21 As ()]l ]

é (?t) +V3AY35 (?t)

H AT g+ 1Al 1]

_Al/a(\/é)
R WY

for all t, t € [0,1], and

[ As (Ol 7 <

1+4)A/3

1S

H

> 8

obtain the estimate

[l < 21 AL(D)] 7 +2

+

1A=  + ATl + llell ]

H—H
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Al
e g (V3
V3 2

IA™2¢ = Nl ]

H—H

(9

2

ol

el +

H—H

- [l el + SDH)] -

&

It follows that

0<t<1

s 0y < 0 [+ A0+ 475, + g 4770, |

Thus, the estimate (2.6) holds. Secondly, applying the operator A to the formula
(2.5) and using the Abel’s formula, we obtain

T (?)]_ (2.18)
oo 2)-(2)
. e (ﬁ) f(t) — o (3-1)a3 <\/_§> f(0)
5 2
_ /t o (B4s—t)A1/3 (£> f’(S)dSI . (I +20724e (£>>
0 2 i
s (2 o o ()

Au(t) = —1/3

. [(M e liows

< (1= 0= [ o)+

+3

<(s0-s0 - t s ) e 00 1) + )

+ /1 e*(sft)Al/gf’(s)ds — [6 (?t) +V/3AY35 (?t)]

x {—e(1+;)A1/3 F) +e 54 £ (0) + / L (g)a f(s)ds

0

e 2)<(2)]
o (f<1) — £(0) - /01 f’(s)ds)u +1/3 :I+2e—§A1/35 (\/75”—1

4| e (g)as o = (351)a?




X [(I — ez A [é <£> + /3435 <\/—§) )
2 2
x [e(lt)Al/?’Al/?’f + e (3m)A” (5 (?) (A%3p + Agp)
1 1/3~ \/g 2/3
+ﬁA/s<7> (A/w—Ago)> ]

A3
fem3A? [5 (?) Ap + \/g ) (24739 + A%f))]

By (t) 4 2¢ (?) By (t) + [T +2e724¢ (?)]
X [Bs(t) + By(t)] + Bs(t) — | ¢ (?t)
+V/3AY35 (?t) [Bs(t) + Br(t)]

¢ (\/;) +V3AY35 (?)

% A1/3€+6_A12/3 (5 (?) [A2/3@/)—I—Ag0}

(2]

1
\/_
t 1/3 A1/3 >
e~3AY ( ) Ap + (2423 + Ay] |,

_|_

Bg(t) —

By(t)

where

(- o).
[+ 2734 (?)]

By(t) =1/3

[t s - 0 g0y - [0 ]

22



23

By(t)=1/3 1+%fyw%<%§>]

y [3 B [@5 (@) A (@)”
. (f(t) ~10- [ t f’(s)ds) |

-1
I +2e 24 (?)]

% {_e—(l—t)Al/Sf(l) + f(t) + /1 6—(s—t)A1/3f/(8>dS:| 7

I+ 2e 24" <£>] (2.19)

Bs(t)=1/3

Bs(t) = 1/3 >

« {_e—(1+§)A”3f(1) +e 54 £(0) +/1 e‘<5+3)A1/3f’(8)d8} :
0

I+ 2 324"%¢ (?)] _ (2.20)

<(r0-s0 - [ o),

Ba(t) =1/3

’ [e-<l+z>w Lo

By(t) = |1+ 2¢724""¢ (?)] 6_(1_t)A1/37
V3 —1
%@=1+%%W%(;H (1) a7

Let us obtain estimates for ||By(t)| 5, k = 1,2,3,..., 7. We start with B;(t). Using

estimates in (2.4) and the triangle inequality, we obtain

—1
T 42034 (?)]

1Br()ll g < |[1/3 (2.21)

H—H
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3—t)al/s

+ H6_<
H

H

(e

s= (V3 (V3
e (2)-3
(WO + 17O + [ 17l s )

< 1/3 (e(lt)gl/:s n @_(g_t)01/3>

H%H)

3

< (15l + 170+ [ 176y as) (1-2e7)

Therefore, we get

1Bl < N (Hf(())HH +IF Wl + max Hf’(t)HH>

0<t<1

for all t, t € [0,1]. By using estimates (2.4) and triangle inequality, we have

IBos()l < |[1/3 |1+ 2724 <£>]_ (2.22)

2

H—H

3 41/3

TGN et
! 7(%+57t)A1/3
[ e
3 1/3 3_4\g/?
glmeo|u@mﬁw%r> 1£O)]],0

t / 1 —1
+/e@H0’Wf@mM4@_%%HU |
0

Thus, we get estimate for By(t)

O

e

[1B2(®)]l; < N (max LF @Ol + 1O + max ||f’(t)HH>

0<t<1 0<t<1

for all t, ¢ € [0,1]. In a similar manner one establishes the estimate for Bs(t)

I+ 2347 (?)] _ (2.23)

& (?t) +V3AY35 (?t)

1Bs(O)ll r < ||1/3

7%141/3

x e

H
H—H

x@ﬂmm+wmmm+AWf@MMQ

1/3
tgt/

»

< 138 (Ol + 17O+ [ 17O ds) (1-202)
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< 8 gy LA+ 15O + g 1701

0<t<1 0<t<1

for all t, t € [0,1]. Applying the estimates (2.4) and triangle inequality, we obtain

IBs()|l < |[1/3 |1+ 2724 (?)] _ (2.24)
3+ ? He*%f‘”3 ’H V3é (?t) — A3 (?t) ) H]

x (Hf(t)HH +IF O + /Ot Hf’(S)HHdS)

3+ geégl/g’] (Hf(t)HH 17Ol + /Ot Hf/(S)HHdS) (1- 26301/3)_1 |

So, we have

<1/3

150l < N s 1700+ 1Oy + g 170 )

for all t, t € [0, 1]. Using the triangle inequality and estimates (2.4), we can write

I+2e7 34 (ﬁﬂ _ (2.25)

1Bs ()]l < ||1/3 5

H—H

—(s—t)Al/3

(1Al
X [He (1-n4 e

Ol + 170+ [ )]

1/3 1 173 L 1/sn —1
<1/3 [” @+ 17Ol + [ e ff<3>||,,ds] (1-2 3"

We get estimate for Bs(t)

1Bs ()|l < N (max LF @ g A [ (D] 7 + max IIf’(t)IIH)

0<t<1 0<t<1
for all t, ¢ € [0,1]. Let us estimate (2.19). Using estimates (2.4) and triangle

inequality, we have

-1

IBs(t)ll < ||1/3 | T + 267346 (?)] (2.26)
H—H
o |le DA N+ e 1O

(g

Ol

1
+/ e
0

<13 [e‘(””"m )l + e 5 17O
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1 £\ 1/3 3 1/3\ —1
+/ e~(+8)o Hf’(s)HHds} (1-2¢73")
0

< Ng <||f(0)||H H ISl + max ||f/(t)”H>

0<t<1

for all t, t € [0,1]. In a similar manner one can establish the estimate for (2.20)

[ +2e 24" (ﬁﬂ _ (2.27)

1Bz ()l < ||1/3 5

H—H

1/3 ~ \/g ~ \/g
\/gA/s<7> —c<7>
X@ﬂﬂ%+WNMM+AHf@MMQ

<1/3 [g(“é)"m i e—(gﬁt)”m]

()
ot

H

" [He‘(1+é)Al/3

3

< (1 + 17O+ [ 176 ds) (122"

Thus, we obtain estimate for By (t)

1B7(®)]l < N7 (Hf(O)HH H Sl + max ||f’(t)HH>

0<t<1

for all t, ¢t € [0,1]. Finally, we will estimate ||B,,(t)| 5y, m = 8,9. Using the

triangle inequality and estimates (2.4), we get

—1
IBs()l gy < ||| 1 + 26724 (?)] He‘“‘”Al/g (2.28)
H
H—H
< e’(l’t)"l/3 <1 - 26301/3)_1 < Ny
for all t, ¢ € [0, 1], and
3 —1
1Bo ()| gy < || |1 + 26724 <7>] He—(%)A”‘”’ (2.29)
H

H—H

+ 1/ / -1
< o (1H2)e (1 e ) < N,

for all t, ¢ € [0, 1]. Combining estimates (2.21)-(2.29) and using estimates (2.4), we

6

obtain

[Au(@)l g < [IB1@)] g + 2 1Ba(0)l|

H—H
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+ B3 (@)l + [[Ba(@)l ] + I Bs (D)l

: H (@) VLY (?t) 186Dl + 150

¢ <£> + V3433 (?)

2

[+2e7 3% (ﬁ)

2

+ (IIBs(t)IIH%H + IIBg(t)IIHﬁH>

H—H

Al/3 ~ \/§
el e QF(?) (1450, + 141,)
H—H H—H
s ﬁ 2/3 —5AlS
+\/§ A 8( 5 ) H%H> (HA 1/1||H+||A90||H) ] te -
(V3
(s 145 () s 1)
x [0(7;- el 7l el |
It follows that
d3u(t
Orgtegcl —dtg ) HH + glgl%ﬁ | Au(t)]

<01 {1l + 45 147l + oo [ O, + 1500 |-

0<t<1

As a result, the estimate (2.7) holds. This is the end of proof of Theorem 2.1. [



CHAPTER 3

APPLICATION

Now, we consider the applications of Theorem 2.1. First, boundary value
problem for third order partial differential equation

(
uy — (a(z)uy)s +ou = f(t,x), 0<t <1, 0<z <1,

u(0,2) = @(x), w(0,2) =p(x), up(l,z) =&(x), 0< <1, (3.1)

u(t,0) = u(t, 1), ug(t,0) =u,(t,1), 0<t <1

\

is considered. Problem (3.1) has a unique smooth solution u(t, ), smooth functions
a@) > a > 0, (a(1)=a(0), = € (0,1)), p(x), £z), ¥(x) (z € [0,1]) and f(t,2)
(t,z € [0,1]), o positive constant and under some conditions. This allows us to
reduce problem (3.1) to boundary value problem (2.1) in a Hilbert space H = L5[0, 1]
with a self-adjoint positive definite operator A* defined by equation (3.1).

Theorem 3.1. For the solution of problem (3.1), we have the following stability

inequalities

32?5{1 [u(?, ')”LQ[O,I] <M [012%}(1 (¢, ')”Lg[o,l} + ||SOHL2[0,1]

10l g0y + 1€l ago]

R |tz (2, ‘)||L2[0,1] + ] et (2, -)||L2[0,1} <M {OHSI%)% | fi(t, ‘)||L2[0,1]

15O Mooy + el agony + el oy + 1€ 100]

where M is independent of p(x), £(x), ¥(x) and f(t,x).

28



29

The proof of Theorem 3.1 is based on the abstract Theorem 2.1 and the sym-
metry properties of the space operator generated by problem (2.1).

Second, let €2 be the unit open cube in m-dimensional Euclidean space R™ :
{z=(z1," " 2p):0<x; <1,1 <j<m} with boundary S, Q = QU S. In
[0, 1] x €, let us consider boundary value problem for multidimensional third order

equation

Pu2) SN (0, (2)ug, )y + o) = f(E 1),

r=1

r=(x1,...,2m) €Q, 0<t<1, (3.2)

u(0,2) = @(x), w(0,2) =(x), uu(l,x)=~Ex), v € Q,
u(t,x) =0, xe€bs.

\

Here, a,.(x), (z € Q), o(z), &(z), ¥(z) (z € Q) and f(t,2) (t € (0,1),z € Q) are

given smooth functions and a,(x) > a > 0.

Let us introduce Hilbert space Ly(Q) of all square integrable functions defined

on Q, equipped with the norm

s =4 [+ [ )P, do

z€Q
Theorem 3.2. For the solution of problem (3.2), the following stability inequalities
hold:

max [a(t, )] o SM[&%IU( Mea@ + 19y + 160 + €N,

Orggclz ||uzrx7 ||L2 Q) + max ||Uttt( )||L2(Q)

< 01 s A0l + 150,

0<t<1
+ Z HSOxTITHLQ(Q) + Z | Ly (Q Z ygxrxr“LQ )] )
(t,2) (t € (0,1),z € Q).

where M does not depend on cp(x), &(x), ¥(z) and f

TyrTy

The proof of Theorem 3.2 is based on the abstract Theorem 2.1 and the symme-
try properties of the space operator generated by problem (2.1). Note that Theorem
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3.2 in case m=1 and ¢ = 0,& = 0,1 = 0 was proved in article (Denche and Memou,
2003).

Theorem 3.3. (Sobolevskii, 1975) For the solution of the elliptic differential prob-

lem

A*u(z) = w(x),z € Q,
u(z) =0,z € S,

the following coercivity inequality holds:

r=1

where M is independent of w.



CHAPTER 4

NUMERICAL EXPERIMENTS

When the analytical methods do not work properly, the numerical methods for
obtaining approximate solutions of partial differential equations play an important
role in applied mathematics. We can say that there are many considerable works
in the literature (for instance, see (Ashyralyev and Aggez, 2004); (Ashyralyev and
Aggez, 2011); (Ashyralyev and Yildirim, 2012); (Ashyralyev and Yilmaz, 2012);
(Ashyralyev and Ozdemir, 2010)).

In the present chapter for the approximate solutions of a problem, we will use
the first and high orders of accuracy difference schemes. The high order of accuracy
for the approximate solution of the problem will be constructed in order to get more
accurate result. We will apply a procedure of modified Gauss elimination method
to solve the problem. Finally, the error analysis of first and high orders of accuracy

difference schemes will be given.

31
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4.1 THE FIRST ORDER OF ACCURACY DIFFERENCE SCHEME

We consider the boundary value problem for a third order partial differential

equation for numerical analysis

3u x u2 x
Tul) — 2ol — f(t, ),

f(t,x) =e " (3cost — 2sint)sinz,
O0<t<l, O0<zx<m,

(4.1)
u(0,x) =sinz, w(0,2) = —sinz,

uw(1l,2) =2e tsinlsing, 0 <z <,

u(t,0) =u(t,m) =0, 0 <t <1

The exact solution of problem (4.1) is

u(t,r) = e "sinxcost.

For the approximate solutions of boundary value problem (4.1), applying the

formulas

u(tpyo)—3utpr1)+3u(ty) —ulte—1) um<tk) _ O(T)

T3

MO0 —(0) = O(r),

T

w(@ng 1) —2u(@n)Fu(@n—1) u'(x,) = O(h?)

\ h?
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and using the first order of accuracy difference scheme we get the system

— k k k
b2 okt 30k ok ul —2ul

3 - = 12 - f(tku xn)u

f(tr, zn) = e (3costy — 2sinty)sinx,, 1<k<N-2,1<n<M-1,
Nr=1 x,=nh, 1<n<M-1, Mh=m,
ud =sinz,, vl —2uN "t +ulN7? =722 tsinlsing,, 1 <n< M -1,

n - n

o(x,) = et (3costy, — 2sinty)sinx,, 1<k<N-2,1<n<M-—1,

This system can be written in the matrix form

Aupi1+ Bu, +Cu,1 =Dp,, 1<n<M-—1,
_ _ (4.2)
uo =0, uy = 0.

Here,

-OOO' OOO-
0 a0 000
0 0 a 0 00
A=C= ,
000 - a00
000 - 0 00
_0 00 --- 00 0-(N+1)><(N+1)
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1 00 0 O 0O 0 0 0
b ¢ 3b -b 0 0 O 0 O
0O b ¢ 3b —b 0 O 0 O
0 0 b ¢ 3b 0 0 0 0
B= ,
0O 0 0 0 O 3b —=b 0 0
0O 0 0 0 O c 3b —-b 0
0O 0 0 0 O b ¢ 3b —b
-1 1 0 0 O 0 O 0 O
o oo o o --- 0 1 =21
L J (N+1)x(N+1)
where
1,132
TR T T T E e
(
T ©F = f(ty,w,) = e (3costy, — 2sinty,) sinx,,
“n
1 2<k<N-3 1<n<M-—1,
“n
Pn = SO?L ) 0 .
O = sinx,,
v eN=l = —7rsinz,,
“n
- - (N+1)x1 \ ©N = 722¢7sin 1sinz,,,

and D = [y is the identity matrix,

, s=n—1,n, n+1.

L 1 (vt1)x1

This type of system was used by Samarskii and Nikolaev (Samarskii and Nikolaev,
1989) for difference equations. For the solution of the matrix equation (4.2), we
will use the modified Gauss elimination method. We seek a solution of the matrix

equation by the following form:

un:an+1un+1+ﬁn+l7 nIM_l?"'72717
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R
where upy = 0,5 (j=1,---,M —1) are (N + 1) x (N + 1) square matrices, 3,

(j=1,-- M —1) are (N +1) x 1 column matrices, oy, §; are zero matrices, and

Apy1 = — (Bn + Cnan)_l Ana

Bn-i-l = (Bn + Cnan)il (Dnspn - Cnﬁn) y = 172737 o M -1

4.1.1 Error Analysis

The errors are computed by

N k
By, = max ‘u te, Tn) — U |
M NI a<n<M -1 (te, 7n) "

k

of the numerical solutions, where u(tx,x,) represents the exact solution and w,

represents the numerical solution at (tx, x,) and the results are given in the following

table

Table 4.1 Error analysis for the first order of accuracy difference scheme

Difference schemes N=M =20 N=M=40 N=M=80 N =M =160

15t order of A.D.S. 0.0208 0.0117 0.0062 0.0032

As it is seen in Table 4.1, we get some numerical results. If N and M are
doubled, the value of errors decrease by a factor of approximately 1/2 for first order

difference scheme.
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4.2 THE HIGH ORDER OF ACCURACY DIFFERENCE SCHEME

For the approximate solutions of boundary value problem (4.1), applying the

formulas

u(tk+2)*3u(tk+17)3+3u(tk)*’u(tk71) _ % (u///(tk> 4 U”/(thrl)) _ 0(7_3)’

—oUu ul\ty)—u T2 7'2
3 (0)+42T(t )—ul(t2) u/(O) + Eu///(o) + Zu///(tl) _ O(T4),

u(l)—Qu(tN;21)+u(tN—2) — (1) + gTu”/(l) + %Tu/”(tN_l)

— LU (ty_s) = O(1%),

\

and using the high order of accuracy difference scheme we get the system

.
2 1 -1 k by ok k1 _o k1, k+1
up 2 —Bup T 4 3uk —uf Tt up g 2undun  u T —2unt tu Ty — JCrrn)+f(ter1,mn))

T3 2h?2 2h2 2 )

f(tg,xy) = e (3costy, — 2sinty)sine,, 1<k<N-2,1<n<M-1,

Nrt=1, 2,=nh, 1<n<M-1, Mh=m,

0 0 0 1 1 1
0 _ & 3,,0 73 un+1_2un+un71 1 73 un+1_2un+un71
uy) = sin x, _§“n+E<T + 2u,, + o ( At
u? 3 1 1 .
) -2 =T (_E 0,z,) — Zf(tl,xn)) — 7sinx,,
N N, N N-1 N—1, N-—1
N 37’3 un+1_2un +un71 N—-1 27’3 un+1 _2’“’" +un71 N-2
Uy, + 5 (7 ) —2u, e + Uy,

. N-2 o N-2, N-2
_% (“n+1 “;:2 FUn_1 > =73 (—% (tN,JJn) - %f(thlaxn)
f

+ o f(En—2,2,)) + 277 sin 1sinz,,

o(x,) = e ™ (3costy, — 2sinty)sinx,, 1<k<N-2,1<n<M-1,

ko k
\ ug = uy, = 0,

This system can be written in the matrix form

Aupy + Bu, +Cupy =Dy, 1<n<M-—1,
N 5 (4.3)
ug =0, upy = 0.



Here,

0 00

0 a a

0 0 a
A=C=10 0 0
0 00

0 00

t f 0

| 000

(10 0 0 0
b ¢ d —=b 0
0O b ¢ d —b
0O 0 b ¢ d

B =
0O 0 0 0 O
0O 0 0 0 O
0O 0 0 0 0
aa bb —% 0 0
00 0 0 0
where

o=t - 1
2h?’ 73’

73 273

3
zr =1+

Pn =

Toan2 VT B3R T sp

0 0 0 0
0 0 0 0
a 0 0 0
0 a 0 0 )
0 a a 0
0 0 a a
0 0 0 0
0 T Yy z
J (v x(v+1)
O 0 0 O
O 0 0 O
0O 0 0 O
O 0 0 O
d =b 0 0
c d —=-b 0
b ¢ d —b
O 0 0 O
0 zx yy =zz
J (v x(v+1)
3 1 3 1
Entw T TEtE
373 B 73 fo 73
C12R27 T 4R2
473 373
—3? — 2, R = 1 — W,
o
o
02 )
N
L ¥n d (N+1)x1
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F = 2 (f(tr, zn) + f(trs1, 20)) = 2 (7™ (3costy, — 2sinty)
+e 1 (3 oSty — 28intgy1)) sina,,

9<k<N-3 1<n<M—1,

W0 = sinw,,

Nl = T (14 e (3cosT — 2sin 7)) sina, — 7sinz,,

N =73 (=3¢ (3cos1 —2sinl) — e~ (177

x (3cos(1 —7) — 2sin(1 — 7)) + 2_146—(1—27)

x (3cos(1 — 27) — 2sin(1 — 27))) sinx,, + 27%e ! sin 1 sin z,,,

and D = [y is the identity matrix,

, s=n—1,n, n+1

L 4 (N+1)x1

This type of system was used by Samarskii and Nikolaev (Samarskii and Nikolaev,
1989) for difference equations. For the solution of the matrix equation (4.3), we
will use the modified Gauss elimination method. We seek a solution of the matrix

equation by the following form:
un:@n+1un+1+ﬁn+17 n:M_17"'72717

.
where upy = 0,5 (j=1,---, M —1) are (N +1) x (N + 1) square matrices, J3;

(j=1,-- M —1)are (N+1)x1 coloumn matrices, oy, [3; are zero matrices, and
Apt1 = — (Bn + Cnan)_l An7
Bus1 = (B + Cray) ™ (Dpipn — CofB) ,n =1,2,3,- - M — 1.

4.2.1 Error Analysis

The errors are computed by

EY = max |u(ty, z,) — ul|
1<k<N-1,1<n<M-1
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k

of the numerical solutions, where wu(tx,z,) represents the exact solution and wu,

represents the numerical solution at (tx, x,) and the results are given in the following

table

Table 4.2 Error analysis for the high order of accuracy difference scheme

Difference schemes N=4 M =100 N =8, M =400

High order of A.D.S.  0.3757 x 1074 0.2345 x 107°

When N is doubled and M is increased by four times, the value of errors

decrease by a factor of approximately 1/16 for high order difference scheme, see

(Table 4.2).



CHAPTER 5

CONCLUSION

This thesis is devoted to the stability of the boundary value problem for a

third order partial differential equation. The following original results are obtained:

e The main theorem on the stability estimates for the solution of boundary value
problems for third order partial differential equations in a Hilbert space with

self adjoint operator is established.

e Two applications of the main theorem to a third order partial differential
equations are given. Theorems on stability estimates for the solutions of these

partial differential equations are obtained.

e The first and high order of accuracy difference scheme are constructed for the

approximate solution of the boundary value problem.

e The Matlab implementation of the first and high orders difference schemes are

presented.

40



REFERENCES

Apakov, Y.P., “On a problem for a third-order equation with multiple characteristics
in the infinite domain”, Romai J., Vol. 7, pp. 1-12, 2011.

Apakov, Y.P. and Rutkauskas, S., “On a boundary value problem to third order
PDE with multiple characteristics”, Nonlinear Anal. Model. Control, Vol. 16, pp.
255-269, 2011.

Ashyralyev, A. and Aggez, N., “A note on the difference schemes of the nonlocal
boundary value problems for hyperbolic equations”, Numer. Funct. Anal. Optim.,
Vol. 25, pp. 439-462, 2004.

Ashyralyev, A. and Aggez, N., “Finite difference method for hyperbolic equations
with the nonlocal integral condition”, Discrete Dyn. Nat. Soc., Vol. 190, p. 15
pages, 2011.

Ashyralyev, A., Aggez, N., and Hezenci, F., “Boundary Value Problem for a Third
Order Partial Differential Equation”, in First International Conference on Analy-
sis and Applied Mathematics (ICAAM 2012), Gumushane, Turkey, 18 October-21
October 2012, Vol. 1470, pp. 130-133, AIP Conference Proceedings, New York,
2012.

Ashyralyev, A. and Ozdemir, Y., “A Note on Difference Schemes of Nonlocal Bound-
ary Value Problems for Hyperbolic-Parabolic Equations”, in C. Ozel and A. Kil-
icman (editors), International Conference on Mathematical Sciences, Abant lzzet
Baysal Univ, Bolu, 23 November-27 November 2010, Vol. 1309, pp. 725-737, AIP
Conference Proceedings, New York, 2010.

Ashyralyev, A. and Sobolevskii, P., New Difference Schemes for Partial Differential
Equations, Operator Theory: Advances and Applications, Birkhauser Verlag,
Basel, Switzerland, 2004.

Ashyralyev, A. and Yildirim, O., “A note on the second order of accuracy stable
difference schemes for the nonlocal boundary value hyperbolic problem”, Abstr.
Appl. Anal., Vol. 2012, p. 29 pages, 2012.

Ashyralyev, A. and Yilmaz, S., “Modified Crank-Nicholson difference schemes for
ultra-parabolic equations”, Comput. Math. Appl., Vol. 64, pp. 2756-2764, 2012.

Denche, M. and Marhoune, A.L.; “Mixed problem with nonlocal boundary condi-
tions for a third-order partial differential equation of mixed type”, Int. J. Math.
Math. Sci., Vol. 7, pp. 417-426, 2001.

41



42

Denche, M. and Marhoune, A.L., “Mixed problem with integral boundary condi-
tion for a high order mixed type partial differential equation”, J. Appl. Math.
Stochastic Anal., Vol. 16, pp. 69-79, 2003.

Denche, M. and Memou, A., “Boundary value problem with integral conditions for
a linear third-order equation”, J. Appl. Math., Vol. 2003, pp. 553-567, 2003.

Dzhuraev, T. and Apakov, Y.P., “On the theory of the third-order equation with
multiple characterisrics containing the second time derivative”, Ukr. Mat. Zh.,
Vol. 62, pp. 40-51, 2010.

Fattorini, H.O., Second Order Linear Differential Equations in Banach Spaces, No-
tas de Mathematica, New York, 1985.

Grossinho, M., Minhs, F., and Santos, A., “A third-order boundary value problem
with one-sided Nagumo condition”, Nonlinear Anal. Theory Methods Appl., Vol.
63, pp. 247-256, 2005.

Guezane-Lakoud, A. and Frioui, A., “Nonlinear three point boundary value prob-
lem”, Sarajevo J. Math., Vol. 8, pp. 101-106, 2012.

Guezane-Lakoud, A., Hamidane, N., and Khaldi, R., “On a third-order three-point
boundary value problem”, Int. J. Math. Math., Vol. 2012, p. 7 pages, 2012.

Guezane-Lakoud, A. and Khaldi, R., “Study of a third-order three-point boundary
value problem”, in C. Ozel and A. Kilicman (editors), International Conference
on Mathematical Science, American Institute of Physics, 11 November 2010, Vol.
1309, pp. 329-335, AIP Conference Proceedings, B.P. 12 23000, Annaba. Algeria.,
2010.

Guo, L.J., Sun, J.P., and Zhao, Y.H., “Multiple positive solutions for nonlinear
third-order three-point boundary-value problems”, FElectron. J. Differ. Equ., Vol.
2007, pp. 1-7, 2007.

Latrous, C. and Memou, A., “A three-point boundary value problem with an integral
condition for a third-order partial differential equation”, Abstr. Appl. Anal., Vol.
2005, pp. 33-43, 2005.

Liu, Z., Kang, S.M., and Ume, J.S., “Triple positive solutions of nonlinear third order
boundary value problems”, Taiwanese J. Math., Vol. 13, pp. 955-971, 2009.

Noor, M.A., Said, E.A., and Noor, K.I., “Finite difference method for solving a
system of third-order boundary value problems”, J. Appl. Math., Vol. 2012, p. 10
pages, 2012.

Palamides, A.P. and Veloni, A.N., “A singular third-order 3-point boundary-value
problem with nonpositve Green’s function”, FElectron. J. Differ. Equ., Vol. 2007,
pp. 1-13, 2007.

Palamides, P.K. and Palamides, A.P.; “A third-order 3-point BVP. applying Kras-
nosel’skii’s theorem on the plane without a Green’s function”, FElectron. J. Qual.
Theory Differ. Equ., Vol. 14, pp. 1-15, 2008.



43

Piskarev, S. and Shaw, Y., “On certain operator families related to cosine operator
function”, Taiwanese J. Math., Vol. 1, pp. 527-546, 1997.

Qu, H., “Positive solutions of boundary value problems of nonlinear third-order
differential equations”, Int. Journal of Math. Analysis, Vol. 4, pp. 855-860, 2010.

Samarskii, A.A. and Nikolaev, E.S., Numerical Methods for Grid Equations, Itera-
tive Methods, Birkhuser, Basel, Switzerland, 1989.

Smirnov, S., “On the third order boundary value problems with asymmetric nonlin-
earity”, Nonlinear Anal. Model. Control, Vol. 16, pp. 231-241, 2011.

Smirnov, S., “On some spectral properties of third order nonlinear boundary value
problems”, Math. Model. Anal., Vol. 17, pp. 7889, 2012.

Sobolevskii, P., Difference Methods for the Approzimate Solution of Differential
Equations, 1zdat. Voronezh. Gosud. Univ., Russian, 1975.

Sun, J.P. and Ren, Q.Y., “Existence of solution for third-order m-point boundary
value problem”, Appl. Math. E-Notes, Vol. 10, pp. 268-274, 2010.

Suryanarayana, R., “A third order boundary value problem with nonlinear terms-
existence and uniqueness”, Global Journal of Mathematical Sciences-Theory and
Practical, Vol. 3, pp. 181-187, 2011.

Wang, F., Lu, H., and Zhang, F., “Multiple positive solutions for nonlinear third-
order boundary value problems in Banach spaces”, Turk J Math, Vol. 33, pp.
55-63, 20009.



APPENDIX A

MATLAB PROGRAMMING

A.1MATLAB IMPLEMENTATION OF THE FIRST ORDER OF AC-

CURACY DIFFERENCE SCHEME

function firstord2(N,M)
close; close;

%N=80 ; M=80;
tau=1/N;

h=pi/M;

a=-1/(h"2);

b =-1/(tau"3);

¢ = -2%a-3*Db;
A=zeros(N+1,N+1);
for i=2:N-1; A(i,i)=a;

end;

C=A;

for i=2:N-1 ;
B(i,i-1)= b;
B(i,i)=c;
B(i,i+1)=3*b;
B(i,i+2)=-b ;
end;

B(1,1)=1;B(N,1)=-1;B(N,2)=1;
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B(N+1,N-1)=1;B(N+1,N)=-2;B(N+1,N+1)=1;
B;
for i=1:N+1; D(i,i)=1; end ;

D;

for j=1:M-+1;

for k=2:N-1;

fii(k,j:j) =exp((-k)*tau)*(3*cos((k)*tau)- 2*sin((k)*tau))*...
sin((j)*h);

end;

fi(1j:f) —sin(j*h);

fii(N,j:;j) =-tau™sin(j*h);

fii(N+1,j:j) =2*tau"2%*exp(-1)*sin(1)*sin(j*h);

end;

fii;

alpha(N+1,N+1,1:1)= 0 ;

betha(N+1,1:1) = 0 ;

for j=1:M,

alpha( :, :, j+1:j+1 ) = -inv(B+C*alpha(:, :, j;j))*(A) ;
betha( :, j+1:j+1 ) = inv(B4+C*alpha(:, :, j;j ) )*(D*fi(:, j;j )...
- C * betha(:, jij ) );

end;

betha;

U(N+1,1, M:M ) = 0

for z = M-1:-1:1 ;

U(:,:;, z2z ) = alpha(:,;,z4+1:z4+1)* U(:,:, 241241 ).
+betha(:,z+1:24+1);

end;U;

forz = 1:M ;

p(:,z+1:2+1)=U(:,:,2:2);

end;p;

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M+1 ;



for k=1:N+1 ;

es(k.j:j) = exp((-k+1)*tau)*cos((k-1)*tau)*sin((j-1)*h);
end;

end;es;

figure ;
m(1,1)=min(min(p))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(es) ; rotate3d ;axis tight;
titleCEXACT SOLUTION’);
figure ;
m(1,1)=min(min(p))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(p) ; rotate3d ;axis tight;
title("FIRST ORDER’);

% .ERROR ANALYSIS,;
maxes=max(max(es)) ;
maxapp=max(max(p)) ;
maxerror=max(max(abs(es-p)));
relativeerror=max(max((abs(es-p))))/max(max(abs(p)) );
cevap = [maxerror,relativeerror]

Y%mm=exp(1)
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Figure A.1 Approximate solution generated by first order of accuracy difference
scheme for N=M=20
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0.8
0.6 —
77 7 ".:‘ \\
04 B SN\
0.2 N \\\\\\

20

Figure A.2 Exact solution of problem (4.1) for N=M=20



A2MATLAB IMPLEMENTATION OF THE
CURACY DIFFERENCE SCHEME

function firstord2(N,M)

close; close;

tau=1/N;

h=pi/M;

2 = -1/(2*(02));

b =-1/(tau"3);

¢ = -2%a-3*b;

d=3*b-2%*a;
t=(tau"3)/(12*h"2);

f=(tau"3)/(4*h"2);

aa=-3/2-(tau"3)/(6*h"2);

bb=2-(tau"3)/(2*h"2);

x=-(tau"3)/(24*h"2);

y=2*(tau"3)/(3*h"2);

z=3%(tau"3)/(8*h"2);

xx=1+(tau"3)/(12*h"2);

yy=-2-4*(tau"3)/(3*h"2);

zz=1-3%(tau"3)/(4*h"2);

A=zeros(N+1,N+1);

for i=2:N-1;

A(ii)=a;

A(ii+1)=a;

)
)

end;

A(N1)=t;A(N,2)=f;
A(N+1,N-1)=x;A(N+1,N)=y;A(N+1,N+1)=
A;
C=A;

for i=2:N-1;

B(i,i-1)= b;
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HIGH ORDER OF AC-



B(1,1)=1;B(N,1)=aa;B(N,2)=bb;B(N,3)=-1/2;
B(N+1,N-1)=xx;B(N+1,N)=yy;B(N+1,N+1)=zz;
B;

for i=1:N+1; D(i,i)=1; end ;

D;
for j=1:M+1;

for k=2:N-1;

fii(k.j:j) =(exp((-k)*tau)*(3*cos((k)*tau)-2*sin((k)*tau))*sin((j)*h)...
+exp((-k+1)*tau)*(3*cos((k-1)*tau)- 2*sin((k-1)*tau))*...
sin((1)*h)) /2:

end;

fi(1,7:) =sin((j)*h);

fii(N,j:j) =(tau"3)*(-(1/4)*sin((j)*h)-(1/4)*exp(-tau)*(3*cos(tau)...
-2*sin(tau))*sin((j)*h))-tau*sin((j)*h);

fii(N+1,j:j) =(tau"3)*((-3/8)*exp(-1)*(3*cos(1)-2*sin(1))-(2/3)*exp(tau-1)...

*(3*cos(1-tau)-2*sin(1-tau))+(1/24)*exp(2*tau-1)*(3*cos(1-2*tau)...
-2%sin(1-2%tau)))*sin((j)*h)+2*(tau"2)*exp(-1)*sin(1)*sin((j)*h);
end;fii;

alpha(N+1,N+1,1:1)= 0 ;

betha(N+1,1:1) = 0 ;

for j=1:M,;

alpha( :, :, j+1:j+1 ) = -inv(B+C*alpha(:, :, j;j))*(A) ;

betha( :, j4+1:j+1 ) = inv(B+C*alpha(:, :, j:;j ) )*(D*fi(:, j:j )...

- C* betha(:, i ) );

end;betha;

U(N+1,1, M:M ) = 0

for z = M-1:-1:1 ;

U(:,:, z:z ) = alpha(:,:,z+1:241)* U(:,:,z+1:24+1 )+betha(:,z+1:2+1);
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end;U;

for z = 1:M ;

p(:,z+1:241)=U(:,:,2:2);

end;p;

"EXACT SOLUTION OF THIS PROBLEM’;
for j=1:M~+1 ;

for k=1:N+1 ;

es(k,j:j) = exp((-k+1)*tau)*cos((k-1)*tau)*sin((j-1)*h);
end;

end;es;

figure ;

m(1,1)=min(min(p))-0.01;

m(2,2)=nan;

surf(m);

hold;

surf(es) ; rotate3d ;axis tight;

titleCEXACT SOLUTION’);

figure ;

m(1,1)=min(min(p))-0.01;

m(2,2)=nan;

surf(m);

hold;

surf(p) ; rotate3d ;axis tight;

title("HIGH ORDER’);

% .ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxapp=max(max(p)) ;
maxerror=max(max(abs(es-p)));
relativeerror=max(max((abs(es-p))))/max(max(abs(p)) );
cevap = [maxerror,relativeerror]

Y%omm=exp(1)
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Figure A.3 Approximate solution generated by high order of accuracy difference
scheme for N=4 and M=100

EXACT SOLUTION

100

Figure A.4 Exact solution of problem (4.1) for N=4 and M=100



