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ABSTRACT

In this dissertation the spectrum and the fine spectrum of the generalized dif-
ference operator B(7,s) defined by a double sequential band matrix, the generalized
difference operator A(7,s) defined by an upper double sequential band matrix and
the operator generated by the triple band matrix A(r,s,t) acting on the sequence
spaces {, Co, ¢, €, with respect to the Goldberg’s classification are determined,
where 1 < p < 0.

In chapter 1, the required definitions and basic properties of metric space,
normed space and linear operator introduced by spectral theory are discussed. In
this chapter, some basic concepts related to the subject of spectrum are given by
taking that subject into consideration. Also, the definition of some sequence spaces
is introduced and definitions and theorems related to matrix transformations are
given in the first chapter.

In chapter 2, we determine the spectra of the operator B(7,s) defined by a
double sequential band matrix acting on the sequence space ¢, with respect to the
Goldberg’s classification. Additionally, we give the approximate point spectrum,
defect spectrum and compression spectrum of the matrix operator B(7,s) over the
space ¢, where 1 < p < oo0.

In chapter 3, we study the fine spectrum of the generalized difference operator
A(7,’S) defined by an upper double sequential band matrix acting on the sequence
spaces ¢y, ¢ and £, with respect to Goldberg’s classification. Additionally, we give
the approximate point spectrum, defect spectrum and compression spectrum of the
matrix operator A(7,s) over the spaces ¢y, ¢ and ¢, together with a Mercerian
Theorem, where 0 < p < oc.

In chapter 4, we determine the fine spectra of upper triangular triple-band



v

matrix over the sequence spaces u. The operator A(r, s, t) on the sequence space p
is defined A(r,s,t)r = (rag + stip1 + tTpio)i, Where x = (zx) € p € {€p, ¢, co}
with 0 < p < oo. In this chapter, we obtain the results on the spectrum and
point spectrum for the operator A(r,s,t) on the sequence space u. Further, the
results on continuous spectrum, residual spectrum and fine spectrum of the operator
A(r, s,t) on the sequence space p also derive. Further, we give the approximate
point spectrum, defect spectrum and compression spectrum of the matrix operator
A(r, s, t) over the space p and give some applications.

Keywords: Spectrum of an operator, double sequential band matrix, spectral

mapping theorem, the sequence spaces £, ¢y, ¢, Goldberg’s classification.



IKIiLI DIZISEL BAND MATRISIYLE TANIMLANAN

GENELLESTIRILMIS FARK OPERATORUNUN BAZI

DiZI UZAYLARI UZERINDEKI INCE SPEKTRUMU
UZERINE

Ali KARAISA

Doktora Tezi — Matematik
Aralik 2013

Tez Damigmani: Prof. Dr. Feyzi BASAR

oY/

Bu caligmada; alt ve st iiggen matrisleriyle temsil edilen operatorlerin bazi
dizi uzaylar tizerindeki spektrumlari, Goldberg siniflandirmasina gore incelenmistir.
Birinci boliimde; metrik uzaylar, normlu uzaylar ve lineer doniisiimlerin tanimi ver-
ilerek Ozelliklerinden bahsedilmigtir. Ayrica, boliimiin ikinci kisminda spektrum
konusu ele alinarak, konuyla ilgili baz1 temel tanim ve kavramlar verilmigtir. Tkinci
boliimde; ¢, dizi uzay: tizerinde B(7,s) ikili dizi band matrisi ile tanimlanan ope-
ratoriin ince spektrumu incelenmistir. Ayrica bu operatoriin £, dizi uzay1 tizerindeki
spektrumu Goldberg simflandirmasima gore verilmistir. Uciincii boliimde; asli kosege-
ninde 7 = (r) ve ona paralel ikinci kégegeninde s = (s;) dizilerinin terimlerini ihtiva
eden A(7,s) tst tiggen matrisin co, ¢, lo ve £, dizi uzaylar iizerindeki ince spek-
trumu incelenmistir. Dordiincii boliimde; A(r, s, t) iist tiggen tiglii-band matrisinin
l,, cy ve c dizi uzaylar tlzerindeki spektrumu Goldberg smifladirmasina gore in-
celenmigtir. Ayrica, Teopliz matrisleriyle ilgili bazi uygulamalara yer verilmistir.
Bu caligmalara ilave olarak artik spektrum, nokta spektrum, siirekli spektrumdan
farkli olan ve ayrik olmak zorunda olmayan diger alt spektrum siniflarinin tanimlar:
verilerek, spektrumu verilen matrislerin alt spektrum siniflar1 incelenmigtir.

Anahtar Kelimeler: /,, ¢y, c dizi uzaylari, Goldberg smmflandirmasi, spektral

teori, band matrisleri.
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CHAPTER 1

INTRODUCTION

Spectral theory is one of the main branches of modern functional analysis and
its applications. Roughly speaking it is concerned with certain inverse operator,
their general properties and their relation the original operator. Such inverse oper-
ator arise naturally in connection with the problem of solving equation (system of
linear algebraic equations, differential equations, integral equation) for instance, the
investigation of boundary value problem by Sturm and Liouville, and Fredholm’s

famous theory of integral equations were important to development of the field.

1.1 BACKGROUND

In this section, following (Bagar, 2011) we give some required definitions related

with the spectrum.

Definition 1.1.1. (Metric space) Let X be a non-empty set and d be a distance
function from X x X to the set RT of non-negative real numbers. Then the pair
(X, d) is called a metric space and d is a metric for X, if the following metric axioms

are satisfied for all elements z,y, z € X:
(M.1) d(z,y) =0 if and only if z = y.
(M.2) d(z,y) = d(y, z), (the symmetry property).
(M.3) d(z,2) <d(x,y)+ d(y, z), (the triangle inequality).

Definition 1.1.2. (The space w) By w, we mean the set of all sequences with

complex terms, i.e., w = {x = (x;) : z, € C for all £ € N}. The most popular



metric on the space w is defined by

|z — Yil
d = . —_= —_= .
w(,Y) Ek:Qk(l‘i"xk:_ykl), = (wg),y = (yr) Ew

Here and after, for short we use ), instead of > ;.

Definition 1.1.3. (The space /) The space ¢, of bounded sequences is defined
by

ﬁoo:{x:(:lrk)szsupmk\ <oo}.
k

The natural metric on the space /., is defined by

doo(2,y) = sup T —ykl; = (21),y = (Y) € leo-
S

Definition 1.1.4. (The spaces ¢ and ¢q) The spaces ¢ and ¢y of convergent and

null sequences are defined by
c = {m:(xk)ew:EllECE lim |x;€—l|:0},
k—o0
o = {x:(a:k)ewzljggouﬂ:o}.

The metric dy, is also a metric for the spaces ¢y and c. It is trivial that since the
concept supremum and maximum are equivalent on the space cy, the metric d, is

reduced to the metric dy defined by

do(%y) = rilg@(‘xk — yk\; r = (l’k),y = (yk) € Co-

Definition 1.1.5. (The space ¢,) The space ¢, of absolutely p—summmable

sequences is defined as

k

fp:{x:(xk)6w12|xk|p<oo}, 0<p<o0).

In the case 1 < p < oo, the metric d, on the space ¢, is given by

1/p
dy(z,y) = (Z Tk — yk|p> ;ox = (),y = (Yr) € bp.

Also in the case 0 < p < 1, the metric c?p on the space ¢, is given by

dy(w,y) =D |re = wl’s == ()5 = () € .
k



Definition 1.1.6. (Normed space) Let X be a real or complex linear space and
| - || be a function from X to the set R of non-negative real numbers. Then the
pair (X, || - ||) is called a normed space and || - || is a norm for X, if the following

norm axioms are satisfied for all elements =,y € X and for all scalars a:
(N.1) ||z|]| = 0 if and only if x = 0.

(N.2) ||laz|| = |«|||x||, (the absolute homogenity property).

(N.3) |l +yll < |lz]| + |lyll, (the triangle inequality).

Definition 1.1.7. (Banach space) A Banach space X is complete normed linear
space. Completeness means that if ||z, — z,|| = 0 as m,n — oo, where z,, € X,

then there exist x € X such that ||z, — z| — 0 as n — oco.

Definition 1.1.8. (Linear operator) In calculus we consider real line R and real-
valued functions on R (or on a subset R). Obviously, any such function is a mapping
of its domain into R. In functional analysis, we consider more general space, such
metric space and normed space and mapping of these space in the case of vector
space and in particular, normed space a mapping is called an operator.

A linear operator T is an operator such that

(i) the domain D(T) of T' is a vector space and range R(7T') lies in a vector space

over the same field

(ii) for all x,y € D(T) and scalars «,

Tx+y) = Tzx+Ty
T(az) = olx

Observe the notation; we write Tz instead of T'(z); this simplification is standard

in functional analysis.

Definition 1.1.9. (Bounded linear operator) Let X and Y be the normed
spaces and T : D(T) — Y a linear operator, where D(T) C X. The operator T is

said to be bounded operator if there is a positive real number ¢ such that

17| = cf||



for all x € D(T'). Let X and Y be linear spaces. By L(X,Y) and B(X,Y), we
denote the set of all linear operators and the set of all bounded linear operators

from X into Y.

Definition 1.1.10. (Norm of a bounded operator) Let T € B(X,Y). Then,

the norm of 7T is defined as

T
T = sup—x < 00. (1.1)

w0 1]l

The supremum on the right side of (1.1) is finite which follows from the fact that
|Tx|| = ¢||x|| when T € B(X,Y).

1.2 SPECTRUM AND FINE SPECTRUM

Let X and Y be Banach spaces, and T': X — Y also be a bounded linear operator.
By R(T), we denote the range of T, i.e.,

RT)={yeY:y=Tx, € X}.

By B(X), we also denote the set of all bounded linear operators on X into itself. If
X is any Banach space and T' € B(X) then the adjoint T* of T is a bounded linear
operator on the dual X* of X defined by (T*f) () = f (Tx) for all f € X* and
reX.

Given an operator T' € B(X), the set

p(T) :={X € C: Ty =\ —T is a bijection}

is called the resolvent set of T and its complement with respect to the complex

plain
o(T) := C\p(T)
is called the spectrum of T'. By the closed graph theorem, the inverse operator
RNT) = (M =T)7", (A€ p(T)) (1.2)

is always bounded and is usually called resolvent operator of T at .



1.3 SUBDIVISIONS OF THE SPECTRUM

In this section, we define the parts point spectrum, continuous spectrum, residual
spectrum, approximate point spectrum, defect spectrum and compression
spectrum of the spectrum. There are many different ways to subdivide the
spectrum of a bounded linear operator. Some of them are motivated by

applications to physics, in particular, quantum mechanics.
1.3.1 The point spectrum, continuous spectrum and residual spectrum

The name resolvent is appropriate, since T ! helps to solve the equation Thz = y.
Thus, x =Ty 1y provided Ty ! exists. More important, the investigation of
properties of T} ! will be basic for an understanding of the operator 7T itself.
Naturally, many properties of T\ and 7', L' depend on A, and spectral theory is
concerned with those properties. For instance, we shall be interested in the set of
all A’s in the complex plane such that T\ ! exists. Boundedness of Ty !'is another
property that will be essential. We shall also ask for what \’s the domain of 7', Lis
dense in X, to name just a few aspects. A regular value X\ of T is a complex
number such that T3 ! exists and bounded and whose domain is dense in X. For
our investigation of T', T and T} ! we need some basic concepts in spectral theory
which are given as follows (see (Kreyszig, 1978, pp. 370-371)):

The resolvent set p(T, X) of T is the set of all regular values A\ of T'. Furthermore,
the spectrum o (7, X) is partitioned into three disjoint sets as follows:

The point (discrete) spectrum o,(T, X) is the set such that Ty ' does not exist. An
A€ 0,(T, X) is called an eigenvalue of T

The continuous spectrum o.(T, X) is the set such that T} ' exists and is
unbounded and the domain of T} !'is dense in X.

The residual spectrum o,(T, X) is the set such that T ' exists (and may be
bounded or not) but the domain of T} ' is not dense in X.

Therefore, these three parts form a disjoint subdivisions such that
o(T,X) =0,(T, X)Uo.(T,X)Uo,. (T, X). (1.3)

To avoid trivial misunderstandings, let us say that some of the sets defined above,

may be empty. This is an existence problem which we shall have to discuss.



Indeed, it is well-known that o.(7T, X) = 0,.(T, X) = () and the spectrum o (7T, X)

consists of only the set 0,(7, X) in the finite dimensional case.

1.3.2 The Approximate Point Spectrum, Defect Spectrum and

Compression Spectrum

In this subsection, following Appell et al. (Appell et al., 2004), we define the three
more subdivisions of the spectrum called as the approzimate point spectrum, defect
spectrum and compression spectrum.

Given a bounded linear operator 7" in a Banach space X, we call a sequence (zy)
in X as a Weyl sequence for T if ||| = 1 and ||Tz|| — 0, as k — oo.

In what follows, we call the set
0ap(T, X) := {\ € C : there exists a Weyl sequence for \I —T'} (1.4)
the approximate point spectrum of T'. Moreover, the subspectrum
o5(T, X) :={\ € C: A — T is not surjective} (1.5)

is the called defect spectrum of T.
The two subspectra given by (1.4) and (1.5) form a (not necessarily disjoint)

subdivisions
o(T,X) =04,(T, X)Uos(T,X)
of the spectrum. There is another subspectrum,
0eo(T, X) = {A € C: RO\ = T) # X}

which is often called the compression spectrum in the literature. The compression

spectrum gives rise to another (not necessarily disjoint) decomposition
0(T,X) =04,(T, X)Uo,(T,X)

of the spectrum. Clearly, 0,(T, X) C 0,,(T, X) and o.,(T, X) C os(T, X).
Moreover, comparing these parts with those in (1.3) we note that
UT(Tv X) = UCO(T7 X)\UP(T7 X)v

0 (T, X) = o(T,X)\[o,(T, X) Uo(T, X)].



Sometimes it is useful to relate the spectrum of a bounded linear operator to that
of its adjoint. Building on classical existence and uniqueness results for linear

operator equations in Banach spaces and their adjoints are also useful.

Proposition 1.3.1. (Appell et al., 2004, Proposition 1.3, p. 28) Spectra and
subspectra of an operator T' € B(X) and its adjoint T* € B(X™*) are related by the

following relations:

(a) o(T*, X*) = o(T, X).

(b) o.(T%, X*) C 04(T, X).

(¢) 0ap(T*, X*) = 05(T, X).

(d) o5(T*, X*) = 04(T, X).

(e) 0p(T*, X*) = 00,(T, X).

(f) oco(T*, X*) 2 0,(T, X).

(9) o(T, X) = 00p(T, X) U 0p(T*, X*) = 0, (T, X) U 04 (T, X*).

The relations (c¢)—(f) show that the approximate point spectrum is in a certain
sense dual to defect spectrum, and the point spectrum dual to the compression
spectrum.

The equality (g) implies, in particular, that o(7, X) = 0,,(7, X) if X is a Hilbert
space and T is normal. Roughly speaking, this shows that normal (in particular,
self-adjoint) operators on the Hilbert spaces are most similar to matrices in finite

dimensional spaces (see (Appell et al., 2004)).
1.3.3 Goldberg’s Classification of Spectrum

If X is a Banach space and T' € B(X), then there are three possibilities for R(7T):



Table 1.1 State diagram for B(X) and B(X*) for a non-reflective Banach space X

Cs
Ca
&
B;
B
By
Az
Ay
Ay

T*

Al A2 Ag Bl B2 Bg Cl CQ Cg

T

(1)  T! exists and is continuous.
(2)  T! exists but is discontinuous.

(3)  T~! does not exist.

If these possibilities are combined in all possible ways, nine different states are
created. These are labelled by: Ay, Ay, As, By, B, Bz, C1, Cy, C5. If an operator
is in state C for example, then T) # X and T~! exist but is discontinuous

(see (Goldberg, 1985)).

If X is a complex number such that T\ = A —T € Ay or T\ = Al — T € By, then
A € p(T, X). All scalar values of A not in p(7', X') comprise the spectrum of 7. The
further classification of o (T, X) gives rise to the fine spectrum of 7. That is,

o(T, X) can be divided into the subsets Aso (T, X) =), A30(T, X), Boo (T, X),
Bso(T, X), Cio(T, X), Coo(T, X), C30(T, X). For example, if T\ = A\ — T is in a
given state, Cy (say), then we write A € Cyo (T, X).

By the definitions given above, we can illustrate the subdivisions in Table 1.2.

Observe that the case in the first row and second column cannot occur in a Banach

space X, by the closed graph theorem. If we are not in the third column, i.e., if A



Table 1.2 Subdivisions of spectrum of a linear operator

1 2 3
Ty T exists N T exists Ty :
and is bounded | and is unbounded | does not exist
Aeo,(T, X)
A|RN-T)=X A€ p(T, X) — A€ og,(T, X)

A€o (T, X) A€ o,(T, X)
BIRM-T)=X| Mep(T[.X) | Neonl,X) | A€ ouy,(T,X)
)\GO'(;(T,X) )\EU5(T,X)
A€o (T,X) A€o (T,X) Aeo,(T, X)
CIRM-—T)£X | Neos(T,X) | N€ow(T,X) | \€ou(T,X)
A€ os(T,X) A€ os(T,X)
A€ o,(T, X) A€ 0T, X) A€ 0T, X)

is not an eigenvalue of 7', we may always consider the resolvent operator 75 ' (on a

possibly “thin” domain of definition) as “algebraic” inverse of A\l — T

By a sequence space, we understand a linear subspace of the space w = CNt of all
complex sequences which contains ¢, the set of all finitely non—zero sequences,
where N; denotes the set of positive integers. We write (., ¢, ¢y and bv for the
spaces of all bounded, convergent, null and bounded variation sequences which are
the Banach spaces with the sup-norm ||z||o = supsey |2x| and

zllow = > peg [Tk — 41| while ¢ is not a Banach space with respect to any norm,
respectively, where N = {0,1,2,...}. Also by ¢,, we denote the space of all
p-absolutely summable sequences which is a Banach space with the norm

|2l = (352, 24 [P) 7, where 1 < p < oo,

Let A = (an) be an infinite matrix of complex numbers a,, where n, k € N, and

write

(AI>n - Zankxk ) (TL S N7 YRS DOO(A))7 (16)
k
where Dg(A) denotes the subspace of w consisting of z = (z;) € w for which the
sum exists as a finite sum. For simplicity in notation, here and in what follows, the
summation without limits runs from 0 to co and we shall use the convention that
any term with negative subscript is equal to zero. More generally if i is a normed

sequence space, we can write D,(A) for the x € w for which the sum in (1.6)
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converges in the norm of u. We write
(\:p) = {A:AC D,(A)}

for the space of those matrices which send the whole of the sequence space A into p
in this sense.

We give a short survey concerning with the spectrum and the fine spectrum of the
linear operators defined by some triangle matrices over certain sequence spaces.
The fine spectrum of the Cesaro operator of order one on the sequence space ¢,
were studied by Gonzalez (Gonzalez, 1985), where 1 < p < co. Also, weighted
mean matrices of operators on ¢, investigated by Cartlidge (Cartlidge, 1978). The
spectrum of the Cesaro operator of order one on the sequence spaces bvy and bv
investigated by Okutoyi (Okutoyi, 1992); (Okutoyi, 1990). The spectrum and fine
spectrum of the Rhally operators on the sequence spaces ¢y, ¢, £,, bv and buvy
examined by Yildirim (Yildirim, 1996); (Yildirim, 1998); (Yildirim, 2001);
(Yildirim, 2002a); (Yildirim, 2002b); (Yildirim, 2003); (Yildirim, 2004a); (Yildirim,
2004b). The fine spectrum of the difference operator A over the sequence spaces cq
and c¢ studied by Altay and Bagar (Altay and Basgar, 2004). The same authors have
also worked the fine spectrum of the generalized difference operator B(r, s) over ¢
and ¢, in (Altay and Bagar, 2005). The fine spectrum of A over ¢; and bv is
studied by Kayaduman and Furkan (Furkan et al., 2006a). Recently, the fine
spectrum of the difference operator A over the sequence spaces ¢, and bv, studied
by Akhmedov and Bagar (Bagar and Akhmedov, 2004); (Basar and Akhmedov,
2007), where bv, is the space of p-bounded variation sequences and introduced by
Bagar and Altay (Altay and Bagar, 2003) with 1 < p < oo. Also, the fine spectrum
of the generalized difference operator B(r, s) over the sequence spaces ¢; and bv is
determined by Furkan et al. (Furkan et al., 2006b). Recently, the fine spectrum of
B(r, s,t) over the sequence spaces ¢y and ¢ is studied by Furkan et al. (Furkan

et al., 2007). Quite recently, de Malafosse (de Malafosse, 2002); Altay and

Bagar (Basar and Altay, 2004) study the spectrum and the fine spectrum of the
difference operator on the sequence spaces s, and ¢y, ¢; where s, denotes the
Banach space of all sequences x = () normed by ||z||s, = supyen |f—,’§|, (r>0).
Altay and Karakug (Altay and Karakus, 2005) have determined the fine spectrum

of the Zweier matrix which is a band matrix as an operator over the sequence
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spaces {1 and bv. de Malafosse and Farés (de Malafosse and Farés, 2008) studied
the spectrum of the difference operator on the sequence space £,(«), where (a,)
denotes the sequence of positive reals and ¢,(«) is the Banach space of all
sequences © = () normed by |||z, @) = Donry (|Zn| /)PP with p > 1. Also the
fine spectrum of the same operator over ¢; and bv is studied by Bilgi¢ and

Furkan (Bilgi¢ and Furkan, 2007). More recently the fine spectrum of the operator
B(r,s) over ¢, and bu, has been studied by Bilgi¢ and Furkan (Bilgi¢ and Furkan,
2008). In 2010, Srivastava and Kumar (Srivastava and Kumar, 2010a) have
determined the spectrum and the fine spectrum of the generalized difference
operator A, on {1, where A, is defined by (A,)n, = v, and (A))nt1.0 = —Vn,
under certain conditions on the sequence v = (v,,) and they have just generalized
these results by the generalized difference operator A, defined by

Ay = (UpZp + Vp_1Zn_1)nen for all n € N| (see (Srivastava and Kumar, 2010b)).
Karakaya and Altun computed respectively the fine spectrums of the upper
triangular double-band matrices and the lacunary matrices as an operator over the
sequence spaces ¢g and ¢, (Karakaya and Altun, 2010); (Karakaya and Altun,
2009) Later, Altun (Altun, 2011) has studied the fine spectra of the Toeplitz
operators, which are represented by upper and lower triangular n-band infinite
matrices, over the sequence spaces c¢g and c. Quite recently, Akhmedov and
El-Shabrawy (Akhmedov and El-Shabrawy, 2011) have obtained the fine spectrum
of the generalized difference operator A,, defined as a double band matrix with
the convergent sequences @ = (ay) and b= (b) having certain properties, over the
sequence space c. Finally, the fine spectrum with respect to the Goldberg’s
classification of the operator B(r, s, t) defined by a triple band matrix over the
sequence spaces £, and bv, with 1 < p < 0o has recently been studied by Furkan et
al. (Bilgi¢ and Furkan, 2010).

Now, let us briefly describe the contents of the various sections of the thesis. It

consists of five chapters.

First chapter is the introduction.

Second chapter we study the fine spectrum of the generalized difference operator
defined by a double sequential band matrix B(7,s) acting on the sequence

space ¢, where(1 < p < 0co) with respect to the Goldberg’s classification .
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Third chapter we study the fine spectrum of the generalized difference operator
defined by an upper double sequential band matrix A(7,s) acting on the
sequence spaces ¢, ¢ and £, with respect to Goldberg’s classification.
Additionally, we give the approximate point spectrum, defect spectrum and
compression spectrum of the matrix operator A(7,s) over the spaces cg, ¢

and /,, together with a Mercerian Theorem, where 0 < p < co.

Fourth chapter we determine the fine spectra of upper triangular triple-band
matrices over the sequence spaces u, where p denotes any of the spaces of £,
c or ¢y. The operator A(r, s, t) on sequence space on  is defined
A(r,s,t)x = (rag + sTp1 +tTp42)50,, Where x = (xy) € p, with p € {€,,¢,co}
with 0 < p < co. In this chapter, we obtain the results on the spectrum and
point spectrum for the operator A(r,s,t) on the sequence space p. Further,
we also derive the results on continuous spectrum, residual spectrum and fine
spectrum of the operator A(r,s,t) on the sequence space £,. Additionally, we
give the approximate point spectrum, defect spectrum and compression

spectrum of the matrix operator A(r, s, t) over the space u with applications.

Fifth chapter contains conclusions.



CHAPTER 2

SPECTRUM OF LOWER DOUBLE SEQUENTIAL BAND
MATRIX OVER THE SEQUENCE SPACE 7/,

In this chapter, we study the fine spectrum of the generalized difference operator
B(7,3) defined by a double sequential band matrix acting on the sequence spaces

¢, where 1 < p < oo with respect to the Goldberg’s classification.

Let 7= (ry) and s = (si) be sequences whose entries either constants or distinct

non-zero real numbers satisfying the following conditions:

lim 7, =,
k—o00

lim s, = s #0,
k—o0

|7 = 7| # [l

Then, we define the double sequential band matrix B(7,s) by

n 0 0 0
So T1 0 0
B<?7 E) - 0 S1 To 0

0 0 So T3

Therefore, we introduce the operator B(7,s) from £, to itself by

B(7, )z = (rpxy, + Sp—1Tk-1)pee With 1 =0, where z = (x)) € {,.

13
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2.1 SPECTRUM OF LOWER DOUBLE SEQUENTIAL BAND
MATRIX OVER SEQUENCE SPACE /,

In this section, our purpose is to determine the spectrum of the operator B(7,s)
defined by a double sequential band matrix acting on the sequence space ¢, with
respect to the Goldberg’s classification, where 1 < p < co. Additionally, we give
the approximate point spectrum, defect spectrum and compression spectrum of the
matrix operator B(7,s) over the space £,.

We quote some lemmas which are needed in proving the theorems given in this

section.

Lemma 2.1.1. (Choudhary and Nanda, 1989, p. 253, Theorem 34.16) The matriz
A = (ank) gives rise to a bounded linear operator T € B({y1) from ¢y to itself if and

only if the supremum of {1 norms of the columns of A is bounded.

Lemma 2.1.2. (Choudhary and Nanda, 1989, p. 245, Theorem 34.3) The matriz
A = (any) gives rise to a bounded linear operator T € B(ly) from ls to itself if

and only if the supremum of {1 norms of the rows of A is bounded.

Lemma 2.1.3. (Choudhary and Nanda, 1989, p. 254, Theorem 34.18) Let
l<p<ooand A€ (lo:l)N(y:4y). Then, A€ (£,:1Ly).

Theorem 2.1.4. The operator B(7,s) : £, — {, is a bounded linear operator and
(Irol” + [50")"? < I B(F 3| < [I5]lo0 + 7] oo- (2.1)

Proof. Since the linearity of the operator B(7,s) is not hard, we omit the details.

Now, we prove that (2.1) holds for the operator B(r,s) on the space ¢,. It is trivial
that B(7,3)e® = (rg, 50,0,...,0,...) for e € ¢,. Therefore, we have

1B(7, 3)e™||
e = (ol + fsol)' 7
p
which implies that
(Irol” + s0l)'"” < | BF )] (2.2)

Let x = (z) € £y, where p > 1. Then, since (sx_125-1), (rrxi) € £, it is easy to see
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by Minkowski’s inequality that

1/p
|1B(r, )z, = <Z|Sk—1l‘k—1+7’k$k|p>

k

1/p 1/p
(Z |Sk—1f€k—1|p> + (Z |7“kl‘k|p>
2 3

(II8lloo + I7leo )l I

IN

IN

which leads us to the the result that
1B )| < [I5]loo + (17| co- (2.3)

Therefore, by combining the inequalities in (2.2) and (2.3) we have (2.1), as
desired. O

Theorem 2.1.5. Let A={a e C:|r—al <|s|} and
B={ry:keN,|r—ry >|s|}. Then, the set B is finite and o|B(7,5),{,] = AUB.

Proof. We firstly prove that

o[B(F,3),0,) C AUB (2.4)

which is equivalent to show that a € C such that |r —a| > |s| and « # 7y, for all
k € N implies a ¢ o[B(7,5),{,]. Since 1, — 1 as k — oo, B is finite and

{rr e R: ke N} C AUB.

It is immediate that B(7,s) — al is a triangle and so has an inverse. Let

y = (yx) € £1. Then, by solving the equation

rg— QU 0 0 o o
S r—Q 0 - T
[B(F,3) — allz = o '
0 S1 To—o ... To
(7’0 - Oé)xo Yo
B 0% + (11 — @)y %
5101 + (12 — @)y Yo




for x = () in terms of y, we obtain

16

Yo
o = —,
o — &
= n —5S0Y0
! rn—a (rn—a)(ro—a)
e — Y2 —S1 S051Y0
2 — )
ro—a (ro—a)(rr—a) (r2—a)(r; —a)(ro — a)
N (—1)k505182 © Sk—1Y0 Sk—1Yk—1 Yk
xk — + e e —
(ro —a)(ry —a)(re —a) - (ry — a) (ry —a)(rp—1 —a) 1 — «

Therefore, we obtain B = (b,) = [B(7,3) — al] ™! as follows:

Tol_a 0 0
— S0 1 0
bn _ (ri—a)(ro—a) ri—a
( k) S0S1 —S1 1

(ro—a)(ri—a)(re—a) (re—a)(ri—a) re—«a

Then, >, |zx| <3, S*|y|, where

1
T — &

Sk

(rk — a)(rps1 — @)

SkSk+1

k
o= (e — @) (i1 — ) (ress — )

Since |si/(rgs1 — )| — |s/(r — a)| < 1, as k — oo, then there exists kg € N
and a real number go such that |s./(rx — a)| < go for all k > ko. Then, for all
k> ko+1,

Sk <
1, — @

(I+qp+ag+--).

But, there exists k; € N and a real number ¢; such that |1/(r, — a)| < ¢ for all
k > k. Then, S* < q/(1 — qo), for all k > max{ko, k1}. Thus, sup,cy S*¥ < cc.

Therefore,

D lanl <30S el < N0SH)low Yyl < o0,
k k k

since y € £;. This shows that [B(7,3) —al]™t € (¢ : £1).
Suppose that y = (yx) € lw. By solving the equation [B(7,s) — al]z = y, for

xr = (xy) in terms of y, we get

|zs| < Sy (Suplykl) ,
keN

R
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where;
S, = 1 n Sk—1 Sk—15k—2 n
T — QU (rp—1 — a)(ry — a) (rp—e — a)(rp_1 — a)(ry — @)
S0S1 ... Sk—1
(ro—a)(r —a)--(ry — «)

Now, we prove that (Sy) € lo. Since |si/(ry —a)| — |s/(r —a)|=p < 1, as

k — oo then there exists ko € N such that |s;/(rry —a)| < po with py < 1 for all

k Z kO + 17
1 Sp— Sk—1Sk—
S, = {1 n L S Y k—1Sk—2 n
I — af Thl — O (re—1 — a)(rp_e — @)
N Sk—1Sk—2 -+« Sko+1Sky - - - SO :|
(rr—1 — @) (T2 — @) = (Thgr1 — @) (Thy — ) -+ (r0 — @)
Sk
1 — The—1 — @
k—ko Sko—15ko—2 - - - S0 }
¢ (Tho—1 — @) (Thg—2 — @) -~ (10 — @)
Therefore;
Sk < (L+po+pg+-+p5 " Mk),
71, — af
where
M]{,’O -1 i Sko—1 Sko—1Sko—2 +oeeet Sko—1Sko—2 - - - S0 ‘
Tho—1 — | | (rgg—1 — @) (Thy—2 — @) (rkg—1 — @) (Thg—2 — @) -+ (10 — @)

Then, Mky > 1 and so

S, < Mk

1 24 .. k—koY
_|Tk_a|(+]90+po+ +p5 ")

But there exists k; € N and a real number p; such that 1/(|ry — «|) < py for all
k > ky. Then, Sy < (Mkop1)/(1 — po) for all k > max{ko, k1}. Hence,

supgen Sk < 00. This shows that ||z||ec < ||(Sk)|leo||¥]]ec < 00 which means
[B(T,3) —al]™' € ({s : s). By Lemma 2.1.2, we have

[B(T,3) —al] ™' € (¢,:¢,) for a€C with |r—a|>|s| and a#ry. (2.5)
Hence,
o|B(T,5),4,) CAUB. (2.6)

Now, we will show that AU B C o[B(7,s),{,)].
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Conversely, assume that o ¢ o[B(7,3),¢,]. Then, [B(7,s) — al|™* € B({,). Since
e® =(1,0,0,0...) € €, [B(7,3) — al]~" transform of the unite sequence e® in /,,.
The calculation [B(7,3) — al]'e® gives that;

5@ _ ( 1 —3So o S0S182...S8k—1 ...)
k ro—a (rn—a)(ro—a)  T(ro—a)(ri—a)(ro—a), - (r, —a)’
By ratio test;
SO p St p p
lim k”gl = lim = <1lforall keN, r, # a.
k—oo | S} k=00 [Tpy1 — Qv r—«

Hence, {a € C: |r — a| < |s|} C o[B(7,5),£,]. Since the spectrum any bounded
operator is closed, we have {a € C: |r — a| < |s|} C o[B(7,5),{,)].

If r, = « for some k, then we have either a = r or a = r, # r for some k. We have

T — Tk 0 0 o
S r—r 0 T
[B(F,5) —rllz = Co :
0 S1 To — Tk i)
(To—Tk)xo

SoTo + (11 — Tk) 21

s121 + (1o — 71) e

Sk—9%p—o + (Th1 — Th)Tr_1
Sk—1Tk—1 + (7K — T5) Ty,

SpT + (Th1 — Th) Tt

Let aw = 1, = r for all k£ and solving the equation [B(7,s) — al]x =  we obtain
Ty = r1 = Ty = --- = 0 which shows that B(7,s) — al is one to one but its range
R[B(r,s) —al] ={y = (yx) €Ew :y € {,, y1 = 0} is not dense in ¢, and

a=r € o[B(r,s),l,]. Now let a = ry for some k. Then the equation

[B(T,3) — allx = 0 yields

Sn—1
To=21=Tog=-+=2,_1 =0 and z, = Tp_q forall n>k+1.
Tk —Tn

This shows that B(7,s) — al is not injective for a = ry such that | — 7| > |s].

Therefore [B(7,s) — al] ™! does not exist. So rx € o[B(7,3),¥,] for all & € N. Thus,

AUBC o[B(F.3),0,). (2.7)
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Combining the inclusions (2.6) and (2.7), we get o[B(7,s),(,] = AU B.

This completes the proof. O]

Throughout the text, by C and SD we denote the set of constant sequences and

the set of sequences of distinct none-zero real numbers, respectively.

0 , r,5€ecC,
B , 7.5¢8D,

Theorem 2.1.6. 0,[B(7,s),{,] =

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that 7,5 € C. Consider B(7, s)x = ax for z # 6 = (0,0,0,...) in

¢,. Now, we solve the system of linear equations

Ty — QX
STo+rry = ax
ST1+T1rTre = Qo

STr_1+rr, = arg

Case a = r. Let x,, is the first non zero entry of the sequence = = (x,,) and o = r,
then we get sz, + r2,,+1 = aTp,4+1. This implies z,, = 0 which contradicts the
assumption x,, # 0. Hence, the equation B(7,s)z = ax has no solution = # 6.
Part 2. Assume that 7,5 € SD. Then, by solving the equation B(7,s)x = ax for
z#6=(0,0,0,...)in ¢, we obtain (rg — a)zxo = 0 and (1411 — @)Tk11 + skrp =0
for all k£ € N. Hence, for all o ¢ {ry : k € N}, we have z;, = 0 for all £ € N, which
contradicts our assumption. So, « ¢ 0,[B(7,5), £,]. This shows that

o, B(7,5),4p] € {r: k € N}\{r}. Now, we prove that
a € 0,[B(7,5),4,] if and only if o € B.

Let a € 0,[B(7,5),¢,]. We consider the case a = ry and a = ry for some k > 1.
Then, by solving the equation B(7,s)x = ax for = # 6 = (0,0,0,...) in ¢, with

o = ro we final that

505152 ...S8k—-1

xo forall k>1
(ro — 7%)(ro — 75—1) (ro — rp—s) -+~ (ro — 11) =

T =
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which can be expressed by the recursion relation

Sp—
Tp = i rp_q for all k€ Nj.
To — Tk
Therefore,
p p
Sp— S
lim = lim |[—=| = <1.
k—o0 Th—1 k—o0 T, — T r—To
p
But, [;-| # 1. Then, a =1y € {ry : k € N, |rj, — 1| > |s[} = B.
If we choose oo = ry # r for all k € Ny, then we get xg =21 =25 =+ =241 =0
and
SnSn—1Sp—2...8
Tpil = non_1on—2 i x, forall n>k
(rk = o) (rk = ) (T = Tnot) -+ (T — Thg1)

which can also be expressed by the recursion relation

STL
Tpi1 = ——x, forall n>k.
Tt — Tnt+1
Therefore, we have
P P P
. Tn+1 . Sn S

lim = lim = <1
nreo | T =00 [Tpy1 — Tk =T

S

| #1. Then a =7, € {rp : k € N, |r, — 7| > [s|} = B. Thus
0y B(7,5),6,) € B.

But

Conversely, let o € B. Then, there exists k € N, o = r, # r and

. Sn S
lim = <1,
n=00 [Ty — T =T
so we have z € {,. Thus B C 0,[B(7,5),{,]. This completes the proof. O

If7T:4¢,— {,is a bounded linear operator with the matrix A, then it is known
that the adjoint operator T : {5 — £ is defined by the transpose of the matrix A.
It is known that the dual space £} of ¢, is isomorphic to £,, where 1 < p < oo and

Pt =1

{aeC:|r—al <]|s|} , r,s€eC,

Theorem 2.1.7. 0,[B(7,5)*, (3] =
{aeC:|r—al<|s|}UB , 7,5€SD.
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Proof. By solving the equation B(7,3)*f = af for 0 # f € {3 = {,, we derive the

system of linear equations

rofo +sofi = afy
mfi+sife = afi
rofe + Safs = afs

Th—1fo—1 + Se—1fe = afipr

This gives f, = (air’“ 1) fr_1 for all k > 1. Therefore, we have

Sk—1

7"k1

| fel = |fr—1| for all ke Nj. (2.8)

We also prove this theorem by dividing into two parts.
Part 1. Assume that 7,5 € C with r, = r and s = s for all £ € N. Using (2.8), we

get

k
fi = (O‘_T) fo forall keN.
S

Then, since

fk,+1q_ a—rl? -«

i
the series > oo | | fil? = Yoe, |( — 1) /5|%*=V| fy| converges by the ratio test, i.e.,
fel,.

If & € C with |a — r| = |s|, then the ratio test fails. But, since |fx| — |fo| # 0 as

lim

k—o0

<1

S S

< 1 provided ‘T

k — oo the series > -, | fx|? is divergent. This means that f € ¢, if and only if
fo#0and [r —af < |[s|. Hence, 0,[B(7,5)",£;] = {a € C: |[r — a| < [s]}.

Part 2. Let r, s € SD. It is clear that for all £ € N, the vector

f=(fo, f1,---, fx,0,0,...) is an eigenvector of the operator B(7,s)* corresponding
to the eigenvalue o = r, where fy # 0 and f,, = <M> fn_1 for all
ke{1,2,3,...,n}. Thus B C 0,[B(7,35)*, £3]. If [r —a| < |s| and a # 7y, by taking
into account (2.8), since

q

lim
k—oo
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the ratio test gives that f € ¢,. If a € C with |[r — a| = |s]|, the ratio test fails. But
one can easily find a decreasing sequence of positive real numbers f = (fx) € ¢,
such that |fi/fr_1] — 1 as k — oo , for example f = (fi) = (1/k?). Hence,

|r —a| < |s| implies f € ¢,.

Conversely, we have to show that f € ¢, implies |[r — a| < |s|. If the condition

|r — a| < |s| does not hold, then |r — «| > |s| which implies that Y, |f|? is

divergent. This means that f € ¢, if and only if f; # 0 and |r — a| < |s|. Hence,
op[B(7,3)", (5] ={a € C: |r —al < |s|}UB.
This completes the proof. O

Lemma 2.1.8. (Goldberg, 1985, p. 59) T has a dense range if and only if T* is

one to one.

Lemma 2.1.9. (Goldberg, 1985, p. 60) The adjoint operator T* of T is onto if
and only if T is a bounded operator.
~ {aeC:|jr—al<|s|} , 7,5€C,
Theorem 2.1.10. 0,[B(7,5),{,] =
{aeC:|jr—al<|s|]} , 7,5€S8D.
Proof. We prove the theorem by dividing into two parts.
Part 1. Let 7,5 € C. We show that the operator B(7,s) — ol has an inverse and

R[B(7,s) — al] # ¢, for « satisfying |r — | < |s|. For a # r, B(r,s) — al is a

triangle so has an inverse. For o = r, the operator B(7,s) — al is one to one by
Theorem 2.1.6. So it has an inverse. By Theorem 2.1.7, the operator

[B(,5) — al)|* = B(7,5)* — al is not one to one for a € C such that |r — o < |s].
Hence the range of the operator B(7,s) — al is not dense in ¢, by Lemma 2.1.8.
So, 0,.[B(r,s), L] ={a e C:|r—a| <|s|}.

Part 2. Let ¥, s € SD with r, — r and s, — s as k — oo for o € C such that
|r — | < |s|. Then, the operator B(r,s) — ol is triangle with « # ry for all £ € N.
So, the operator B(7,s) — al has an inverse. By Theorem 2.1.6 the operator
B(T,3) — al is one to one for a = 1y, for all k € N. Thus, [B(7,5) — al]™! exists.
But by Theorem 2.1.7, [B(7,s) — al]* = B(7,s)* — al is not one to one with o € C
such that |r — a| < |s|. Hence, the range of the operator B(7,s) — al is not dense
in ¢,, by Lemma 2.1.8. So, 0,[B(7,5),{,] ={a € C: |r —a| <|s|}.

This completes the proof. n
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o€ C = = |Ss , ’zf-/’ge C’
Theorem 2.1.11. o [B(7,5),{,] = { | | =[s[}
0 , 7,5€8D.

Proof. We prove the theorem by dividing into two parts.

Part 1. Let 7,5 € C for a € C such that |r — a| = |s|. Since o[B(T7,s),{,] is the
disjoint union of the parts o,[B(7,5),,], 0.|B(7,5),{,] and o.[B(7,s), ()], we must
have o [B(7,5),0,) = {a € C: |r —a| = |s|}.

Part 2. Let 7,5 € SD. It is known that 0,[B(7,5), {,], 0,[B(7,5), {,] and
o.[B(7,S),{,] are mutually disjoint sets and their union is o[B(7,5), {,]. Therefore,
it is immediate from Theorems 2.1.5, 2.1.6 and 2.1.10 that

o[B(7,3),4,) = 0,[B(7,5)), £,] Uo,.[B(T,5)), £, and hence o.[B(T,3),{,] = 0.

This completes the proof. O

Theorem 2.1.12. When |r — | > |s| for a # ry, [B(7,s) — al] € A;.

Proof. We show that the operator B(7,s) — al is bijective and has a continuous
inverse for a € C such that |r — a| > |s|. Since « # 7, then B(7,5) —al is a
triangle. So, it has an inverse. The inverse of the operator B(7,s) — al is
continuous for a € C such that |r — a| > |s|, by equation (2.5). Thus for every

y € {,, we can find that = € ¢, such that
[B(7,3) — allx =y, since [B(7,3)—al]™t € ((,:4,).
This shows that the operator B(r,s) — al is onto and so B(r,s) — al € Aj. O

Theorem 2.1.13. Let r,s € C with r, =r and s = s for all k € N. Then,
r € olB(T,5s),0,)Ch.

Proof. We have ¢,[B(T,5),(,] = {a € C:|r —a| <|s|}, by Theorem 2.1.10.
Clearly, r € 0,[B(7,3), £,]. It is sufficient to show that the operator [B(7,s) — rI]™!
is continuous. By Lemma 2.1.9, it is enough to show that [B(r,s) — Ir|* is onto

and for given y = (yx) € £} = {4, we have to find x = (x3,) € £, such that
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[B(,5) — Ir]*z = y. Solving the system of linear equations

So0T1 = Yo

$1T2 = U1

S2X3 = Y2
Sk—-1TE = Yk—1

one can easily observe that sz, = yx_; for all k£ > 1 which implies that (zy) € ¢,
since y = (yx) € ¢,. This shows that [B(7,s) — Ir]* is onto. Hence,

e 0{13<?;§),£%]C71. O
Theorem 2.1.14. Let 7,5 € SD and « € {a € C: |r — a| < |s|}. Then,

a € o[B(7,5),4,]Ch.

Proof. Let o € {a € C: |r — a| < |s|}. Then, by Theorem 2.1.10
a € 0,[B(7,5),4,]. So we have R[B(r,s) — al]| # {,. Since B(r,s) — al is triangle,

it has an inverse. It is sufficient to show that the operator [B(7,3) — al] ™! is
continuous. By Lemma 2.1.9, it is enough to show that [B(7,s) — al]* is onto and
for given y = (yx) € £, = {,, we have to find z = (z}) € £, such that

[B(T,5) — Ir]*z = y. Let us solve the matrix equation [B(r,s) — Ir|*x = y. Let

2o = 0. Therefore, we obtain

Yo
rr = —,
S0
Ty = (04—7"1)(@0_’_@7
S150 S1
a—ri)a—ry)- - (a— 17— Th—o — Q)Yp— _
o ( 1)( 2) ( k1)yo+”_+(k2 Yk 2+Z/k L
S0S1 ** Sk—1 Sk—15k—2 Sk—1
Then, >, |xx|? < suppen(Ri)? Y, |yxl?, where
1 Thtl — QU Tht1 — Q) (Thy2 — @
R = L)) e =)k — o))
Sk SkSk+1 SkSk4+15k+2

for all k£ € N. Since |(rgy1 — @)/skr1| — |s/(r — a)| < 1, as k — oo, then there
exists ko € N and a real number zy such that |sg1/(ree1 — )] < 2o for all k& > k.

Then, for all & > ko + 1,

R’fgi(l—l—zo%—zg—k---).
| skl
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But, there exists k; € N and a real number z; such that |1/s;| < 2z; for all k > k.

Then, R* < z1/(1 — 2), for all k > max{ko, k1 }. Thus, sup,ey R*¥ < co. Therefore,

Z k| < Sup(Rk)pZ [yl < oo.
keN -

k
This shows that [B(7,s) — Ia]* is onto for « € {a € C: |r — a] < |s|}. This

completes the proof.

Theorem 2.1.15. Letr,s € C with r, =1, s, = s for all k € N. Then, the

following statements hold:
(1) 0up[ B(,5), €] = A\ {r}.
(ir) o5[B(r,3), (] = A.
(iii) 0w B(F.3), £, = A°.
Proof. (i) Since from Table 1.2,
Tap| B(7, 5), £p] = 0 [B(7,5), p] \o [B(7,5), £,] C
we have by Theorem 2.1.13 and Theorem 2.1.5 that
Tap| B(T,5), 6] = A\ {7} .
(ii) Since the following equality
05| B(7,8), 6] = o[B(F, 8), (p]\o [B(7,5), £,] As

holds from Table 1.2, we derive by Theorem 2.1.5 and Theorem 2.1.6 that
05[3(?7 g)a gp] = A
(iii) From Table 1.2, we have

0eo[B(F,3),0,) = o [B(F,3),0,) Cy U [B(F,3), £, Cy U [B(F,3),£,] Cs

and since o [B(7,5),{,] C5 = ) by Theorem 2.1.6 it is immediate that
0o B(T, ), 4p] = 0, [B(T,35), £, = A°. O

Theorem 2.1.16. Let 7,5 € SD. Then

0w BF.3).4,) = 03(B(7.3), ) = 0.,[B(.3). 4, = AUB.
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Proof. We have by Theorem 2.1.7 and Part (e) of Proposition 1.3.1 that
op[B* (7, 8), b)) = 0o B(7,5), ] ={a € C : |r —a] <|s]}.

Furthermore, because of 0,[B(7,s), £,] = {rr} by Theorem 2.1.6 and the

subdivisions in Goldberg’s classification are disjoint, we must have
o [B(7,3),l,) As = 0 [B(7,3),{,] Bs = 0.

Hence, o [B(7,3),{,] C5 = {r}. Additionally, by Theorem 2.1.14
o[B(7,5),0,] C;y ={a € C: |r—a| <|s|}. Therefore, we derive from Table 1.2 that

0| B(7,5), 6] = o [B(r,5), 6] \o [B(r,5), 6] Ct = {a € C: |r —af = [s]},
05[3(?73%@3] = 0 [B(Fag)vgp] \U [B(Fag)vgp] Az =0 [B(’Fvg)v“gp] :



CHAPTER 3

SPECTRUM OF UPPER DOUBLE SEQUENTIAL BAND
MATRIX OVER SOME SEQUENCES SPACES

In this chapter, we study the fine spectrum of the generalized difference operator
A(7,’S) defined by an upper double sequential band matrix acting on the sequence
spaces ¢y, ¢ and ¢, with respect to Goldberg’s classification. Additionally, we give
the approximate point spectrum, defect spectrum and compression spectrum of the
matrix operator A(r,s) over the spaces ¢y, ¢ and ¢, together with a Mercerian

Theorem, where 0 < p < 0.

Lemma 3.0.17. (Akhmedov and El-Shabrawy, 2011) Let (c,), (d,) € w such that
lim,, o ¢, = ¢ with |¢| < 1. Define the sequence (z,) € w such that

Zna1l = ZnCpa1 + dpyq for all n € N. Then we have;
(i) If (d,) € loo, then (z,) € lu.
(i) If (d,) € ¢, then (z,) € c.

(iii) If (d,) € co, then (2,) € .

Let 7 = (ry) and s = (si) be sequences whose entries either constants or distinct

non-zero real numbers satisfying the following conditions:

lim r, =r >0,
k—o00

lim s, = s;|s| =,
k—oo
sup || <7, r,% > si.

keN

27
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Then, we define the upper double sequential band matrix A(7,s) by

o So 0 0

0 T S1 0
A("A:ag) = 0 0 ry s9
0 0 0 73

Let A denote any of the spaces cg, ¢ or {,. Now, we introduce the operator A(7,s)

from A to itself by
A(r,s) A — A

= (1) > A7, 3)x = ("%, + SkThi1)70-

3.1 THE FINE SPECTRUM OF THE OPERATOR A(r,s) ON THE
SEQUENCE SPACE ¢,

In this section, we examine the spectrum, the point spectrum, the continuous
spectrum, the residual spectrum, the fine spectrum, the approximate point
spectrum, the defect spectrum and the compression spectrum of the operator
defined by the upper double sequential band matrix A(7,s) on the sequence space

Co.

Theorem 3.1.1. A(7,S) : ¢ — ¢o is a bounded linear operator and

AT, 3) [l (coreco) = supd[ral + |sil}- (3.1)
keN
Proof. Since the linearity of the operator A(7,s) is clear. Now we prove that (3.1)
holds on the space cg. Let = (zx) € ¢y. Then, since (sgxgy1), (rrxy) € co it is
easy to see by triangle inequality that

|A(T,8)z||lw = sup|rezr + SpTp1]
keEN

2up(|7“k1‘k:| + [SkTrp1])
eN

< sup(|ri| + [sk/)[|2]|o-
keN

IN

Hence; ||A(7,5)2||oo < ||7]loo + |[S]loc Which leads us

JAF, Dllepery = sup LAT e

< 17 loo =+ [I5]]oo- (3.2)
veer(ey Tl
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Conversely, define y = (y,,) = (0,0,0,...,0,1,1,0,...) € ¢y, where 1 stand on k"
and (k + 1) places. Then, we have
A(r,8)y = (0,0,0, ..., 851,k + Sk, Tks1,0, .. .). Therefore, we see that

AT $)llcoreo) 2 AT, $)z[loo = max{|si—a], [re + sl [riea |} = max |y + si. (3.3)
Combining the inclusions (3.2) and (3.3), we derive (3.1), as desired. O

If T:cy — ¢y is a bounded matrix operator with the matrix A, then it is known
that the adjoint operator 7™ : ¢ — ¢ is defined by the transpose of the matrix A.

The dual space cf of ¢y is isomorphic to ¢;.

0 , s rec,
B , s,reSD.

Theorem 3.1.2. 0,[A(7,5)*, c¢f] =

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that 5,7 € C. Consider A(7,s)*f = af with f # 6 = (0,0,0,...)

in ¢ = ¢;. Then, by solving the system of linear equations

\

rfo = afo
sfot+rfi = af

sfi+rf = afs

Sfeer+rfe = afy

we find that fo =0if a #r =ry and f; = fo = --- = 0 if fy = 0 which contradicts
f#0.1If f,, is the first non zero entry of the sequence f = (f,) and a = r, then
we get sfn, + T frno+1 = @ fno+1 Which implies f,,, = 0 which contradicts the
assumption f,, # 0. Hence, the equation A(7,5)* f = af has no solution f # 6.
Part 2. Assume that 7,5 € SD. Then, by solving the equation A(7,s)*f = af for
f#60=1(0,0,0,...)in ¢; we obtain (ro — «)fo =0 and (rg11 — @) frs1 + Spfe =0
for all k£ € N. Hence, for all o ¢ {ry : k € N}, we have f; = 0 for all £ € N, which
contradicts our assumption. So, o ¢ o,[A(7,5)*, ¢1]. This shows that
op|A(7,5)*, 01) C {rr : k € N}\{r}. Now, we prove that a € 0,[A(7,s)", (1] if and
only if v € B. Let a € 0,[A(7,5)*, 1]. Then, by solving the equation
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A(r,s)* f = af for f # 0 in ¢, with a = ry we obtain that

f . 505152 ...Sk—1
=
(7”0 - Tk)(To - T‘k—1)(7"o - T’k—z) ce (7’0 - 7”1)

which can be expressed by the recursion relation

| fxl =

fo forall ke Ny

505152 ...Sk—1
(ro —r1)(ro —r2) -+ (ro — 1)

Here and after Ny denotes the set of positive integers. Using the ratio test, we have

| fol-

Sk—1 S

Ty —To

<1

= lim
k—o0

lim
k—o0

k—1 r—"To

Since |s/(r — )| # 1 by the hypothesis, we have
a=r19€{ry:keN,|r,—r|>]s|} =B. If we choose o = ry, # r for all k € Ny,
then we get fo=fi=fo=---= fr_1 =0 and

SnSn—1Sn—2 ... Sk
(e = T (e = o) (re = 1) -+ (P = Tt

which can be expressed by the recursion relation
SnSn—18n—2-..98k

|fn+1| = (Tk _ Tn+1)(rk — Tn)(Tk — T’n71) T (rk - rk+1)

Using the ratio test, one can see that

i1 = fr foralln >k

| fel.

fh+1 Sn S

= <1

= lim
n—oo

lim
n—oo

n Tyl — Tk r—Tg

Nevertheless |s/(r — ri)| # 1, by our assumption. So, we have
a=r;€{ry:keN|r,—r|>|s|} = B. Hence, 0,[A(r,s)*, (1] C B.

Conversely, let a € B. Then, there exists k£ € N with a = r, # r and

fim || = him |5l o || <1
n—oo | fr_1 n—oo | T, — Tk T =T
That is, f € ¢;. So, we have B C 0,[A(7,5)*, 1]. This completes the proof. O]
{aeC:jr—al<|s|} , r,seC,

Theorem 3.1.3. 0,[A(7,5),co] =
{aeC:|jr—al<|sl}UB , 7,5€S8D.

Proof. Let A(r,s)x = ax for « € ¢o \ {#}. Then, by solving the system of linear

equations
3
ToXo + Sol1 = QX
T+ 812 = Xy
ToXg + Soky = Qo

Tk 1Tk—1 + Sp—1Tk = QTp_q
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we obtain that x; = [(a — 75—1)/Sk—1]xk—1 for all k& € Ny and

k—1

T’j —
T = H Zg-
Sj

Part 1. Assume that 7,5 € C with r, = r and s, = s for all £ € N. Therefore, we

observe that x = [(a — 1) /s]¥z¢ for all k € N;. This shows that x € ¢ if and only
if |a —r| < |s|, as asserted.

Part 2. Let r, s € SD. Now, firstly we show that

{aeC:|r—al <|s|}UB C0,[A(T,S),c). Let oo —r| <|s|. Since

|z /x| = |(Tk—1 — @) [Sg—1| — |(r —a)/s| < 1 as k — oo, x € 4. Since

0y C o, T € ¢p. 1t is clear that x = (xg, 1, ..., 2, 0,0,...) is an eigenvector of the
operator A(7,s) corresponding to the eigenvalue a = ry, for all k € N, where x¢ # 0
and z, = [(o—1y_1)/Sn-1]Tp_1 for 1 < n < k. Thus, {ry : k € N} C 0,[A(7,3), co).
This shows that {a € C: |r — a| < |s|} UB C 0,[A(7, ), col.

Conversely, let z = (x) € ¢p. Since ¢; C ¢y, we can apply the ratio test that

Th_1 — Q r—o

= lim < 1.
k—o0

lim
k—o0

Tp—1 Sk—1 S

In the case |(r — a)/s| = 1, the ratio test fails. Now, we prove that z = (zy) ¢ co if

|(r —a)/s| = 1. Let @ = ay + iag such that |r — a| = |s|. Then,

r—af=s|,
r? —2ra; +af + a3 = s?,

o + a3 = 2ra;.
For all £ € N, we have

2 2 2 2
It — al® = 71— 2rga; + ai + a;

= 77+ 20 (r — i) > st

Hence, |(r), — @)/sx| > 1 for all k € N. This shows that = ¢ cg if [r — a| = |s].

Hence, 0,[A(7,5),c0) C {a € C: |r —a| <|s|} UB. This completes the proof. [
Theorem 3.1.4. 0,.[A(7,5), co) = 0,[A(T,5)*, c§]\op[A(T,S), co] -

Proof. The proof is obvious so is omitted. O]
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Theorem 3.1.5. Let 7, s € 8D or C. Then, 0,.[A(T,5),co] = 0.

Proof. Theorem 3.1.2 and Theorem 3.1.4 imply that o,[A(7,5), c] = 0, as
asserted. O

Theorem 3.1.6. o[A(T,3),c] = AUB.

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that 7,5 € C and y = (yx) € ¢1. Then, by solving the equation

Az = A[(r,s) — la]*z = y for x = (x}) in terms of y, we obtain

_ Yo
To = =&
_ Y1 —3SY0
1 = 73 + (r—a)??
i Y2 —Sy1 S7Yo
T2 = 24 + (r—a)? + (r—a)3”
T — skyo + . SYk—1 + Yk
k (r—a)ktl (r—a)? r—a’

which yields that

L& g\
for all & € N. Therefore, we can observe with |s| < |r — a] that

Yol + [ya| + -+ + |yl

[zo| + [aa| + - -+ || <
r—al —s|

for k € N. Therefore, by letting k — oo in (3.4), we derive that

@l < o @l

pl
Thus, A.(7,$)* is onto for |s| < |r — a| and A,(7,S) has a bounded inverse by
Lemma 2.1.9. This means that

o [A(T,35),co] C{a € C:|r—al <|s|}.
Combining this fact with Theorem 3.1.3 and Theorem 3.1.5, we get
{aeC:|r—al <|s|} CalA(r,35),c) C{aeC:|r—al <|s|}.

Since the spectrum is closed, we have o[A(7,3),c0) = {a € C: |r —a| < |s|}.



33

Part 2. Assume that 7,5 € SD and y = (yx) € ¢1. Then, by solving the equation
A, (7,8)*x = y in terms of y, we obtain that

(
Yo

To = =
L = le*la (7”1:045)%?“3*01)’
T2 = szia (7"2:031(7%1—&) - (T2—a)f7?18igé())(7“o—a)’
T = Gl e +
\
Then, >, |zx| <>, Sklyy|, where
gk — 1 Sk SkSk+1 L
re—al (e —a)(rep — )| [ (rk — a)(ree1 — @) Tk — @)

for all k € N. Since |s/(rg11 — )] — |s/(r — )| < 1, as k — oo, then there
exists ko € N and a real number ¢q such that |sg/(ry —a)| < qo for all k > k.
Then, for all k > kg + 1,

Sk <
I — af

(I+q+a+-)-

But, there exists k; € N and a real number ¢; such that |1/(r, — a)| < ¢ for all
k > ki. Then, S* < ¢q,/(1 — qo), for all k > max{ko, k; }. Thus, sup,.y S* < co.

Therefore,

Dotz <D SM iyl < N(5*)lloe Y Lyl < oo,
k k k

since y € (1. Thus for |s| < |r — al, Ax(7,5)* is onto and by Lemma 2.1.9, A,(7,s)

has a bounded inverse. This means that
o [A(T,5),c0) C{a e C:|r—a| <|s|}.
Combining this fact with Theorem 3.1.3 and Theorem 3.1.5, we get
o[A(T,8),c0] C{a € C:|r—al <|s|} UB. (3.5)

Again from Theorem 3.1.3, {a € C: |r — a| < |s|} C o[A(T,S), o] and

B C o[A(T,5), co|. Since the spectrum is closed, thus we have
{aeC:|r—al <|s|} UB C alA(T,5), o). (3.6)

Combining the relations (3.5) and (3.6), we get o[A(T,S), co] = AU B.

This completes the proof. n
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Theorem 3.1.7. Let r,s € SD or C. Then,
0. [A(T,3),c0) ={a € C:|r—al =|s|}.

Proof. Since the union of disjoint parts o.[A(7,S), o], 0.[A(T,S), o] and
a,|A(T,S), co| is o[A(T,5), ¢ol, the proof immediately follows from Theorem 3.1.6,
Theorem 3.1.5 and Theorem 3.1.3. O

Theorem 3.1.8. Let 7,5 € SD. If |a — 1| < |s|, a € oA(T,5), co] As.

Proof. From Theorem 3.1.3, a € 0,[A(T,5), ¢o]. Thus, [A(7,3) — al] ! does not
exist. It is sufficient to show that the operator A(7,s) — al is onto, i.e., for given
y = (yx) € co, we have to find x = (xy) € ¢y such that [A(7,3) — al]z = y.

Therefore, solving the matrix equation [A(7,S) — al]x = y, we derive

Yo
ry = —,
S0
1o = (04—7“1)yo_|_&7
S150 S1
a—nr)(a—1r9) (a0 — T3 Tho — O)UYp— _
T, = ( 1)( 2) - ( k1)yo+”_+(k2 )Yn 2+yk1 (3.7)
5051+ Sk—1 Sk—15k—2 Sk—1

for all k € Ny, if 9 = 0. Thus, (3.7) gives for all £ € Ny that
Ty = ———Tp-1 + —. (3.8)

Since |(a —1k-1)/Sk-1| — |[(a@ —7)/s| <1 as k — o0 and (yx—_1/Sk-1) € co,
xr = (x) € ¢o by Lemma 3.0.17. Hence, A(7,S) — ol is onto. So, we have

a € a[A(T,5), co)As. O

Theorem 3.1.9. Let 7,5 € C withry =1 and sy = s for all k € N. If |ao —r| < |s|,
then o € o[A(T, ), col As.

Proof. From Theorem 3.1.3, a € 0,[A(T,5), ¢o]. Thus, [A(7,3) — al]~* does not
exist. It is sufficient to show that the operator A(7,s) — al is onto, i.e., for given
y = (yx) € co, we have to find z = (x) € ¢p. Let r, =7 and s, = s for all kK € N.
The relation (3.8) yields for all k£ € Ny that

a—r Y1
Tp—1+ —.
S

T =

By Lemma 3.0.17, = = (x}) € c¢o. Hence, the operator A(7,s) — ol is onto. So, we
have a € o[A(7,5), co) As. O



35

Theorem 3.1.10. Letr,s € C withr, =71, s, = s for all k € N. Then, the

following statements hold:

(1) 0uplA(7,5), co] = o[A(7, 5), col.

(i1) os[A(r,S),co) = {a € C:|r—a| =]s|}.

(iii) 0co[A(T,5), co] = 0.

Proof. (i) Since 0,,[A(T,5), co] = o[A(T,5), co]\d[A(T,S), co]Cy from Table 1.2, we
have by Theorem 3.1.2 that o[A(7,5), co|Cy = o[A(F, S), ¢o]Co = (). Hence,
0ap[A(T,5), co) = A.

(ii) Since the equality o5[A(T,S), co] = o[A(T,S), co]\o[A(T, S), co)] A3 holds from
Table 1.2, we derive by Theorem 3.1.6 and Theorem 3.1.9 that

o5[A(T,5),col ={a € C: |r —al = |s[}.

(iii) From Table 1.2, we have

000 A(T,S), co) = aA(T,3), co]C1 U a[A(T,5), o] Co U a[A(T,5), ¢o] Cs

by Theorem 3.1.2 it is immediate that o.,[A(7,3), co] = 0. O

Theorem 3.1.11. Letr,s € SD. Then, the following statements holds:

(1) ouplA(T,3),c0) = AU B,
(it)  os[A(T,S),c0) ={a e C:|r—a| =]s|}UB,
(ii7)  0w[A(T,3), co) = B.

Proof. We have by Theorem 3.1.2 and Part (e) of Proposition 1.3.1 that
a,[A(T,5)*, cf] = 000|A(T,S), co) = B. By Theorem 3.1.5 and Theorem 3.1.3, we
must have o[A(7,5), c]C1 = 0[A(T,S), ¢o]Cy = (). Hence, o[A(F,35), c]Cs = {ri}.
Additionally, since o[A(F,3), ¢]C1 = 0.

Therefore, we deduce from Table 1.2 that the statements (i) — (i) are

satisfied. O
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3.2 THE FINE SPECTRUM OF THE OPERATOR A(r,s) ON THE
SEQUENCE SPACES ¢ AND /,

Theorem 3.2.1. The operator A(7,S) : u — p is a bounded linear operator with
the norm A, 3)lgum = NG 5y where p € e, Lo},

Proof. This proof can be obtained by proceeding as in the proof of Theorem 3.1.1.

So, we omit the details. m

Theorem 3.2.2. The following statements hold:

(1) If T,s€C, o,]AT,S),c]={acC:|r—a| <|s|}U{r+s}.

(ii) If 7,5 € SD, 0,[A(T,5),c]={aeC:|r—a|] <|s|}UB.

Proof. (i) Assume that 7,5 € C. Let 7, = r and s, = s for all k£ € N. Consider
A(r,8)x = ax for f # 0 in c. Then, by solving the system of linear equations, we
observe that x;, = [(a — r)/s]¥xy. This shows that z € c if and only if |a — 7| < |s]

and a = s 4 r, as asserted.

(ii) This part is similar to the proof of the second part of Theorem 3.1.3. ]

If T :c— cis a bounded matrix operator with the matrix A, then T : ¢* — ¢*
0
acting on C & ¢; has a matrix representation of the form X , where y
b A
denotes the characteristic of the matrix A and b is the column vector whose k"
entry is the limit of the column of A for each k € N. For A(7,s) : ¢ — ¢, the

matrix A(r,s)* € B({,) is of the form

A3 r+s 0
r,s5) =
0 A(r,5S)
r+s , s,reC,

Theorem 3.2.3. 0,[A(7,5)", ¢*] =
BuUu{r+s} , s,7€S8D.
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Proof. Let f € ¢* = ¢ with f # 0. Consider the system of linear equations:

(r+s)fo = afo \

rofi = afi
sofi+rife = afs

Sk—ofi—1 +Teo1fe = afy

We prove the theorem by dividing into two parts.

Part 1. Assume that r,s € C with r, = r and s, = s for all £k € N. If fy # 0, then
a=r+s. So, « =r+ s is an eigenvalue with corresponding eigenvector
(f0,0,0,...), that is, « =7 + s € 0,[A(T,5)*,¢*]. If a # r + s, then fy = 0. On the
other hand, if @ # r we find that f; =0 and f; = fo = --- = 0 which contradicts
f#0.If f,, is the first non zero entry of the sequence f = (f,,) and o = r, then
we get Spo—1fne + Tno fro+1 = @ fny+1 Which implies f,,, = 0 which contradicts the
assumption f,, # 0. Hence, the equation A(7,s)f = af has no solution f # 6.
Part 2. Assume that 7,5 € SD. Then, by solving the equation A(7,s)*f = af for
f # 0 in {1 we obtain [(r 4+ s) — a|fo =0, (r0 — ) fi = 0 and

(rps1 — @) fro1 + sefr =0 for all k € N. If fy # 0, then « =r+ 5. So, @« =7+ s is
an eigenvalue with corresponding eigenvector (fy,0,0,...), that is,
a=r+s€o,[Ar, s)", c*]. If a#r+s, then fy =0. On the other hand, for all

a ¢ {ry : k € N}, we have fi =0 for all £ € N, which contradicts our assumption.
So, a ¢ 0,[A(7,5)*, 1]. This shows that o,[A(7,s)*, (1] C {ry : k € N}. Now, we
prove that a € 0,[A(7,5)*, (1] if and only if o € B. Let a € 0,[A(7,5)*, {1]. Then,
by solving the equation A(7,$)*f = af for f # 6 in ¢ with a = rg that

S$08182...S8k—1

(1o — 1) (ro — Tk—1)(r0 — Th2) -+ (10 — T1)

Ji =

fo forall ke N;

which can be expressed by the following recursion relation

505152 ...Sk—1

(ro —r1)(ro —72) -+ (ro —

| fx] =

’ ‘f0| for all k€ Nl.
Tk)

Using the ratio test, one can see that

Sk—1 S

Ty —To

<1

= lim
k—o0

lim
k—o0

fkfl r—To
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Since |s/(r —19)| # 1, we have a« = rg € {rp : k € N, |rp, — 7| > |s|} = B.

If we choose a = ry # r for all k € Ny, then we get fo=fi=fo=---=fr-1=0
and
SnSn—1Sn—2 ... Sk
n+l = foralln >k
I (k= ro) Pk — ) (T — Tm1) - (1 — 7“k+1)fk

which can be expressed by the following recursion relation

SnSn—15n—2 ... Sk
(e = Tns1) Pk — 1) (Pl — T1) o (k= Tg1)

|fn+1|: ‘fk‘

Therefore, we obtain by applying the ratio test that

fn+1 Sn S

< 1.

= lim =
n—oo

lim
n—0o0

n Tnt1 — Tk T =Tk
Since |s/(r — ri)| # 1 by the assumption, we have
a=r,€{ry:keN,|r,—r|>|s|} = B. Hence, 0,[A(7,5)*, (1] C B. Conversely,
let « € B. Then there exists a k € N such that a = r, # r and

S

lim < 1.

n—oo

n—1 r—Tg

That is, f = (fn) € {1. So, we have B C 0,[A(7,5)*, ¢1]. This completes the
proof. O

Theorem 3.2.4. The following statements hold:
(i) If 7,5 € C, 0,.[A(T,35),c] = 0.
(i) If 7,5 € 8D, 0,[A(F,S),c] = {r + s}.

Proof. This is immediate by Theorem 3.1.4 and Theorem 3.2.3. L]
Theorem 3.2.5. o[A(T,3),c] = AUB.

Proof. The proof is similar to the proof of Theorem 3.1.6. m
Theorem 3.2.6. Let r,s € SD or C. Then,

o [A(T,8),c] ={a e C:|r—al=|s|} \{r+ s}

Proof. This immediately follows from Theorem 3.2.2, Theorem 3.2.4 and Theorem
3.2.5 because of the union of disjoint parts o .[A(T,S), ¢], 0,.[A(T,S), c] and
O-P[A(?7§)7c] is O-[A(?ag)ac]‘ [
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Theorem 3.2.7. The following statements hold:

(i) Let 7,5 € C with ry, =r and sy = s for all k € N. If |a —r| < |s|, then
a € alA(r,5), c|As.

(i) Let 7,5 € SD. If |a —r| < |s|, then a € g[A(F,3), c]As.
Proof. This is obtained by proceeding as in Theorems 3.1.8 and 3.1.9. O]

Theorem 3.2.8. Letr,s € C with r, =1 and sy = s for all k € N. Then, the

following statements hold:
(i) 0| AF.3),¢] = o[A(F3), d].

(ii) 05l A(F,3),d = {a e C:|r—al = |s|}.
(iii) oeo|A(F,3),c] = {r + s}.

Proof. (i) Since 0,,[A(T,5), c] = o[A(T,35), c]\c[A(T,5), c]C} from Table 1.2, we
have by part (i) Theorem 3.2.4 that o[A(7,3), c|Cy = o[A(T,5), ]Cy = (). Hence,
oaplA(F,3), d = A.

(ii) Since Table 1.2 gives the equality o5[A(7,5), c] = o[A(7,S), c]\o[A(T,3), c] As,
we derive by Theorem 3.2.5 and Theorem 3.2.7 that

os[A(r,5), ) ={aeC:|r—a|=|s|}.

(iii) Combining Theorem 3.2.3 with Table 1.2, we have

0eo|A(T,5), ] = a[A(T, 5), ]Gy U a[A(7, 5), (] C2 U aA(F, 5), €] Cs
which immediately gives that o.,[A(7,3), ] = {r + s}. O
Theorem 3.2.9. Let r,s € SD. Then, the following statements hold:
(1) 0aplA(T35), c] = g[A(7,5), c] or o[A(T,5), ] \{r + s}
(ii) o5[A(T,S),c]={aecC:|r—al=|s|} UB.
(i11) 0| A(T,3),c] = BU{r + s}.

Proof. We have by Theorem 3.2.3 and Part (e) of Proposition 1.3.1 that
0, [A(T,35)%, ¢*] = 00| A(T, S), ¢] = BU {r + s}. Therefore, (iii) holds. By Theorem



40

3.2.4 and Theorem 3.2.5, we also have o[A(T,3), c|C; U o[A(F,S),c]Cy = {r + s}. If
(r +s) € o[A(T,5), c]C, we derive from Table 1.2 that

oap[A(T,5), ] = o[A(7, 5), ]\o[A(T, 5), c]C1 = o[A(7, 5), ] \ {r + s}
If (r + ) & o|A(7,3), dCy, o[A(F,3), |0y = 0. Therefore,
0up|A(F,3),d = o[A(F,3), d\o[A(F, 3), | C1 = oA, 3), ).
Hence, (i) holds. By Theorem 3.2.5 and Theorem 3.2.7, we see that (ii) holds. [J

It is known from Cartlidge (Cartlidge, 1978) that if a matrix operator A is
bounded on ¢, then o(A,c) = 0(A, ). So, we have the following.

Corollary 3.2.10. ¢[A(7,9),lx] = AU B.

Theorem 3.2.11. If 7,5 € C, 0,[A(T,5),ls] ={a e C: |r—a| <|s|}.

Proof. Assume that r,s € C. Let r, = r and s, = s for all £ € N. Consider
A(r,s)xz = ax for f # 60 in . Then, by solving the matrix equation we observe

that 2, = [(a — 7)/s]*xo. This shows that x = (z}) € l if and if only

o — 7| < |s|, as asserted. O
Theorem 3.2.12. If 7,5 € C, 0.[A(T,3),lx] = 0 and 0,.[A(T,3), (o] = 0.

Proof. Because of the parts 0.[A(T,5), lx], 0,[A(T,S), lx] and 0,[A(T,5), ls] are
pairwise disjoint sets and their union is o[A(7, S), {], the proof immediately

follows from Corollary 3.2.10 and Theorem 3.2.11. O

To avoid the repetition of the similar statements we give the results in the

following theorem without proof.

Theorem 3.2.13. Let (1), (sx) € C with ry, =1, s = s for all k € N. Then, the

following statements hold:
(i) If |ao —r| <|s|, then a € o[A(T,5), l] As.
(”) O-GP[A(?vgJ)?EOO] = O-[A(Tvv g)v EOO]

(111) o5[A(r,s), ls] ={a € C:|r—al =]s|}.
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Let A be an infinite matrix and the set ¢4 denotes the convergence domain of that
matrix A. A theorem which proves that ¢4 = c is called a Mercerian theorem, after

Mercer, who proved a significant theorem of this type.

Theorem 3.2.14. Suppose that « satisfies the inequality
la(l —7)+r| > |s(1 —a)|. Then the convergence field of B = al(1 — ) A(7,5) is c.

Proof. B € B(c), since
(i) suppen 2 [bnk| = suppenlla(l =) 4+ 72| + [sn(1 = )] < o0,
(ii) Limy_o0 b = 0,

(iii) limy oo Dbk = a(l —7) + 74+ s(1 — ).

Now, we show that B! exists and belongs to B(c) for |a(1 —r) + 7| > [s(1 — a)].
By matrix multiplication, one can see that B~! is both a right inverse and left

inverse of the matrix B.

1 —s0(1—a) 5051 (1—a)?
ro(l—a)+a  (ro(l—a)+a)(ri(l—a)+a) (ro(l—a)+a)(ri(l1—a)+a)(ra(1—a)+a)
O 1 —81(1—06)
Bfl _ (akj> _ ri(1—a)+a (rl(l—a)+a)1(r2(1—a)+a)
0 0 ro(l1—a)+a

B~! € B(c) if and only if
(i) supyen S* < 0o, where S* = 37 |a;| for each k € N.
(ii) For each j € N the sequence (ag;, a1j, asj, . ..) is convergent.

(iii) The sum of row sequences (ay;) is finite.

ok _ 1 sp-1(1 — ) ‘
el =)+ )| [(rea(1 =) + ) (re(1 — @) + @)
- 5081 .. 8p_1(1 — )k
(ro(l—a)+a))(rn—(1—a)+a))(r(l—a)+a)|

Then, we have

1
(1 —a) + )

sk—1(1 — )

5= (1l —a) + «)

Skl 4




42

By applying Lemma 3.0.17, we see that (S*) is convergent. Hence, sup,cy S* < co.
Also it is easy to see that limy_,« |ag;| = 0 for each j € N, since

s(1—a)
r(l—a)+ «)

sk—1(1 — )

| T A re(l—a)+a)|

k—o00

So, the sequence (aoj;, ay;, asj, - . .) is convergent for each fixed j € N. Now, let the

general term in sum of the row sequences B~! is S), and

[e%s) oo J
Si—1
So = ;
’ Zao] (1—a +ZHT11—04 a)
7=0 7=0 i=1
Since,
4 (1 — 1
lim Q04 | — lim s @) al @) <1,
j=oo |agj—1| = |ri(l —a) + ) r(l—a)+ a)

> ao; is convergent. Similarly, we can say that 3, ay; is also convergent for all

k € N;. Hence, B™! € B(c). Since both B and B! are in B(c), cg = c. O

3.3 FINE SPECTRA OF UPPER TRIANGULAR DOUBLE-BAND
MATRIX OVER THE SEQUENCE SPACE /,, (1 <p < o0)

The fine spectra of lower triangular double-band matrix have been examined by
several authors. Here we determine the fine spectra of upper triangular
double-band matrix over the sequence spaces £, where 0 < p < oo. The main
purpose of this paper is to determine the fine spectrum of A(7,s) in the space of ¢,

with respect to the Goldberg’s classification, where p > 1.

Theorem 3.3.1. The operator A(T,s) : £, — £, is a bounded linear operator and
sup(|ri|” + [5") 7 < A, 3)llgyee,) < Sp |7 + sup |3y (3.9)

Proof. Since the linearity of the operator A(7,s) clear. Now we prove that (3.9)
holds on the space £,. It is trivial that A(7,5)e® = (0,0,...,8,1,7%,0,...,0,...)

for e®) € ¢,. Therefore, we have

1A 5)e™ L,

[A(7, gH(fp:fp) 2 [e® ],
P

= (Irsl” + [sx-a ")
which implies that

A 5lty,) = sup(ral? + 1) (3.10)
€
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Let © = (z) € £, where p > 1. Then, since (syzi41), (rpx)) € ¢, it is easy to see

by Minkowski’s inequality that

1/p
A $)xll e, = (lekkaerxk!p)
k
1/p 1/p
(Z |Sk$k+1|p> + (Z |7“kl‘k|p>
k k

1/p
< sup|rg z|? + sup |sg Trr1|?
gl (ho) s 5 e

= (sup]rk| +Sup\5k|) [zlle,
keN keN

IN

1/p

which leads us to the the result that

AT, 5) | (e,:0,) < sup |7 + sup |sg]. (3.11)
keN keN

Therefore, by combining the inequalities in (3.10) and (3.11) we have (3.9), as
desired. [

Lemma 3.3.2. (R.El-Shabrawy, 2012, p. 115, Lemma 3.1) Let 1 < p < oo. If
ac{aecC:|r—al=]ls|},

then the series

f: (ri-1 = @)(rp—2 — @) - (r1 — &)(ro — @) |*
k=1 Sk_1Sk_92...8180

18 not convergent.
Theorem 3.3.3.

_ {aeC:|r—al <|s|} , 1,s€C,
O-P[A<717§)>€p] =

{aeC:|r—al <|s|}U{(ri)ren} , 7,5€ 8D,

Proof. Let A(r,s)x = ax for § # x € ¢, Then, by solving the system of linear

equations
3
ToXo + Sol1 = QX
™MTL + S1X9s = QX
ToXg + S0y = Qo

Tk 1Tk—1 + Sp—1Tk = QTp_q
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we find that x;, = (Q*T’“)a:k_l for all K > 1 and

Sk—1

|1 —a)(re—2 —a) -+ (1 — a)(ro — @)
T = Zg-
Sk—1Sk—2 ...5150

Part 1. Assume that 7,5 € C. Let r, = r and s, = s For all £ € N. We observe

that x) = (a;T)kxo. This shows that x = (z,) € ¢, if and only if |a — | < |s|, as
asserted.

Part 2. Assume that 7, s € SD. We can take g # 0, since x # 0. It is clear that,
for all £k € N, the vector z = (xg, z1,...,2k,0,0,...) is an eigenvector of the
operator A(T,s) corresponding to the eigenvalue av = ry, where zy # 0 and

T, = (%)xn_l for 1 <n < k. Thus, {ry: k € N} C 0,[A(7,5),4,). If ry # «, for
all k € N, then zy # 0. If we take | — r| < |s|, since

|2t |P = | P |22 < 1 as k —> o0, @ = (x) € {,. Hence,

Tk Sk

{a € C:|r—al <|s|} Co,[A(T,5),L,]. Conversely, let a € 0,[A(7,S),¢,]. Then,

there exists © = (zg, 21,22, ...) in £, and we have z; = (OS‘:f)xk,l for all £ > 1.

p
Tk+1 _

k=&
Sk

k— ocoorae€{r,:keC} If | —r| =|s|, by Lemma 3.3.2; = ¢ {,,. This

p
Since x € ¢, we can use ratio test. Therefore, — }%‘p <1 as

completes the proof. O

0 , rsec,

Theorem 3.3.4. 0,[A(7,5)", (5] =
B , 7,5€8D,

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that 7,5 € C. Consider A(7,s)*f = af for f #6 =(0,0,0,...) in

3 = {,;. Then, by solving the system of linear equations

\

rofo = afo
sofot+rifi = afi
sifi+rafe = afs

Sp—1frv—1 +1efr = afi

/

we find that fo =0if a #r =rp and f; = fo =--- =0 if fy = 0 which contradicts
f#0. If f,, is the first non zero entry of the sequence f = (f,,) and o = r, then
we get Sng frng + T fno+1 = @ fng+1 Which implies f,,, = 0 which contradicts the

assumption f,, # 0. Hence, the equation A(7,35)* f = af has no solution f # 6.
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Part 2. Assume that 7,5 € SD. Then, by solving the equation A(r,s)*f = af for
f#60=1(0,0,0,...)in ¢, we obtain (ro — ) fo = 0 and (rr+1 — @) frs1 + Sk fe =0
for all k£ € N. Hence, for all o ¢ {ry : k € N}, we have f; = 0 for all £ € N, which
contradicts our assumption. So, « ¢ 0,[A(7,5)*,{,]. This shows that
oplA(7,5)*, 4,] C {rr : k € N} \ {r}. Now, we prove that o € o,[A(7,5)*,¢,] if and
only if a € B. If a € 0,[A(T,5)*, {,], Then, by solving the equation A(7,s)*f = af
for f #60 = (0,0,0,...) in ¢, with a =19

505152 .. .Sk—1

(7"0 - Tk)(ﬁ) - Tk—l)(To - Tk—2) T (7”0 - 7”1)

Je= fo forall k>1

which can be expressed by the recursion relation

505152 .. .Sk—1
Jil = ‘ Jol-
N (e s el LA
Using ratio test,
q q q
T L I L Y
k—o0 k—1 k—oo T — T r—To
But | 2-| # 1. Hence, a =rg € {r: k € N, |r, —r| > |s[} = B. If we choose
a=rg #rforall k€ Ny, then we get fo=fi=fo=--= fr_1 =0 and
SnSn—1Sn—2 ... Sk
fra1 = fr foralln >k
o (k= ro) (re — 1) (T — Tm1) -+ (T — Tht1)

which can be expressed by the recursion relation

Spn—15n—25n—2 - - - Sk
(Tk - 7’n+1)(7’k - Tn71>(7ﬁk - Tn72) ce (Tk - Tk+1)

|fh+1‘:: ’fkh

Using ratio test;

q

= lim
n—oo

1 s

fﬁ+1
I

# 1. So we have, a =1, € {ry, : k € N, |r,, — 7| > |s|} = B. Hence,

S
i < 1.

lim
n—oo

Tn+1 — Tk r="Tg

S
T—Tk

But

o,(A(7,5)*,¢,) C B. Conversely, Let o € B. Then, there exists k£ € N such that

a =71 # 1 and
q

= lim
n—oo

q q

<1

fn
fhfl

That is f = (f.) € £,. So we have B C 0,[A(r,5)*, {,]. This completes the

Sn S

lim
n—oo

Tn+1 — Tk =T

proof. n
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Theorem 3.3.5. If 7,5 € SD and C, then o,[A(T,5),£,] = 0.

Proof. By Theorem 3.3.4 and Theorem 3.1.4 0,[A(7, ), (,] = 0. O

Theorem 3.3.6. o[A(7,5),(,] = AU B, where the set B is finite.

Proof. We will show that A, (7, s)* is onto, for |r — «| > |s|. Thus, for every y € ¢,
we find z € {,. A,(7,5)* is triangle so it has an inverse. Also the equation

Ay (7, 8)*x = y gives [A4(T,3)*] 'y = x. Tt is sufficient to show that

[An(T,35)* ] € (¢, : £,). By equation (2.5), we have

[(A(T,3) —al)*] ' e (4, :¢,) for a €C with |r—a|>|s|.

Hence, A,(7,s)* is onto. By Lemma 2.1.9, A, (7, ) has bounded inverse. This
means that o [A(7,5),0,] C{a € C:|r—al <|s|}.

Combining this with Theorem 3.3.3 and Theorem 3.3.5, we get
o[A(r,9),0,)) C{aeC:|r—a|<|s|}UB (3.12)

Again from Theorem 3.3.3 {a € C: |r — | < |s|} C o[A(7,5), (] and

B C o[A(r,s), {,]. Since the spectrum of any bounded operator is closed, we have
{aeC:|r—al <|s|}UBColA(F,3),4,]. (3.13)
Combining (3.12) and (3.13), we get

o[AF,3),6,] = AUB.

Theorem 3.3.7. Ifr,s € SD orC, then o [A(T,5),(,) ={a € C:|r—a| =|s|}.

Proof. The proof immediately follows from Theorem 3.3.3, Theorem 3.3.5 and
Theorem 3.3.6 because the parts o.[A(7,5), 4], 0.[A(7,5), £, and o,[A(T,5), (] are

pairwise disjoint sets and union of these sets is o[A(7,5), {,]. ]

Theorem 3.3.8. If7,5€ 8D or C and |a — 1| < |s|, then a € o[A(T,5), (] As.
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Proof. From Theorem 3.3.3, a € 0,[A(T,5), {,]. Thus, [A(F,S) — al]* does not
exist. It is sufficient to show that the operator A(7,s) — ol is onto, i.e., for given
y = (yx) € ¢, we have to find x = (z) € ¢, such that [A(7,5) — al]r = y. Let us

solve the matrix equation [A(7,s) — al]lr = y. Let g = 0. Therefore, we obtain

Yo
r = —,
S0
Ty = (o —r1)yo Q’
5150 S1
a—ry)ac—1ry) - (v — 1 Th_9 — O)Yg_ _
T, = ( 1)( 2) ( k 1)y0+n_+(k 2 )Z/k 2+yk 1.

S0S1 " "+ Sk—1 Sk—1Sk—2 Sk—1
Then, > |zel” < supgen(Be)” 2, [yel”, where

1

Sk

(i1 — @) (rppe — @)

SkSk4+1Sk+2

(Th41 — @)

SkSk+1

R, =

for all £ € N. By Theorem 2.1.14, we have sup,y(Rg)? < co. Therefore,

> Janl? < sup(Rp)” > |yel? < oo
p keN p

This shows that x = (z) € £,. Thus A(r,s) — af is onto. So, we have
a € o[A(T,5), () As. O

Theorem 3.3.9. Letr,s € C withr, =71, s, = s for all k € N. Then, the

following statements hold:
(1) 0aplA(T,8)-Lp] = o[A(T, 5), £
(ii) 0s[A(F,5), 6] = {a € C: |r —af = [s]}.
(iii) 0eo[A(T,3),£,] = 0.
Proof. (i) Since from Table 1.2,
0aplA(F,8), L] = o [A(7,5), L] \a [A(7, 5), £,] C

we have by Theorem 3.3.5 that o [A(7,5), {,] C1 = o [A(7,S), £,] C2 = 0. Hence;
Oap [A(ﬁ g)? gp] = A
(ii) Since the following equality

o3l AF,3), 4] = olARF,3), 4 1\0 [AG,3), 6] A,
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holds from Table 1.2, we derive by Theorem 3.3.6 and Theorem 3.3.8 that
os|A(r,5), L] ={a e C:|r—a| =|s|}.
(iii) From Table 1.2, we have

el A(T, 8), ] = 0 [A(F, 8), £p] C1 U 0 [A(F, 8), £,] C2 U o [A(T, 5), o] Cs
by Theorem 3.3.4 it is immediate that o.,[A(T,5), (,] = 0. O
Theorem 3.3.10. Let 7,5 € SD. Then
ap| AT, 8), Lp] = AU B, os[A(T,5),4,] ={a € C:|r—a| =|s|} UB,0,[A(T,3),{,] = B.
Proof. We have by Theorem 3.3.4 and Part (e) of Proposition 1.3.1 that
oA 3", 6] = 0 AT, 5),4,] = B.
By Theorem 3.3.5 and Theorem 3.3.4, we must have
o [A(T,3),4,) Cy = o [A(T,5), £,] Cy = 0.

Hence, o [A(T,5),£,] C3 = {r}. Additionally, since o [A(T, ), (,] C1 = 0.
Therefore, we derive from Table 1.2, Theorem 3.3.6 and Theorem 3.3.8 that

ol ARG = o[AF3),6)\0 [AF3),6]Cr = o [AF5), 6]

os[AF.5),6] = o[AF3).6)\o[AF ). 4] A ={aeC:lr—al = s} UB.

]

3.4 FINE SPECTRA OF UPPER TRIANGULAR DOUBLE-BAND
MATRIX OVER THE SEQUENCE SPACE /,, (0 < p < 1)

Theorem 3.4.1. The operator A(r,s) : £, — £, is a bounded linear operator and
|A(7, 5]/ (¢,:0,) = sup |1 " + sup |sg[". (3.14)
keN keN

Proof. 1t is obvious that the operator A(7,s) is linear. Now, we prove that (3.14)

holds for the operator A(r,s) on the space £,. It is trivial that

AT, 3)e®) =(0,0,...,8,1,7%,0,...,0,...) for e® € £,. Therefore, we have
IAG, 3)e™ |l

1e®le,

A, Sl epe,) = == gl + [sp-a |
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which implies that
AT, 5l (gy:0) = sup [ri]” 4 sup |sp " (3.15)
keN keN

Let x = (z) € £, where 0 < p < 1. Then, since (sxZr+1), (rkzx) € £, it is easy to

see by triangle inequality that

A, $)zlle, = Z|Sk$k+1+rk$k|p
k

< Z |spTpi1]? + Z |rezel?

k k
< sup [ryl” Z x|’ + sup |si|? Z |k |”
keN - keN -

= (sup [ri]” + sup [sg[")[|lz]le,
keEN keN

which leads us to the the result that

AT, 5) || (e,:0,) = sup |r|? + sup |sg|”. (3.16)
keN keN

Therefore, by combining the inequalities in (3.15) and (3.16) we have (3.14), as
desired. ]

{aeC:|r—al<|s|]} , 7,s€C,

Theorem 3.4.2. 0,[A(7,5),(,] =
{aeC:|r—al<|sl]}UB , 7,5€ 8D,

Proof. This may be obtained in the similar way used in the proof of Theorem

3.3.3. So, we omit the details. O

If7T:¢, — {, is a bounded matrix operator with the matrix A, then it is known
that the adjoint operator T : 7 — €7 is defined by the transpose of the matrix

A. Tt is known that the dual space £} of £, is isomorphic to {,, where 0 < p < 1.

0 , rsec,

Theorem 3.4.3. 0,[A(7,5)", (5] =
B , r,5e€ 8D,

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that 7,5 € C. Consider A(7,8)*f = af for f #6 = (0,0,0,...) in
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0¥ = l. Then, by solving the system of linear equations

)

rofo = afo
sofot+rifi = afi
sifi+rafe = afs

Sp—1fr—1 +1ref = afi

Vs

we find that fo=0if a #r =r; and f; = fo = --- =0 if fy = 0 which contradicts
f#0. If f,, is the first non zero entry of the sequence f = (f,,) and o = r, then
we get Sng fng + T fno+1 = @ fng+1 Which implies f,,, = 0 which contradicts the
assumption f,, # 0. Hence, the equation A(7,s)* f = af has no solution f # 6.
Part 2. Assume that 7,5 € SD. Then, by solving the equation A(7,s)*f = af for
f#60=1(0,0,0,...)in ¢y we obtain (ro — a)fo = 0 and (rgs1 — @) fry1 + Sefr =0
for all £ € N. Hence, for all o ¢ {rj : kK € N}, we have f; = 0 for all k € N, which
contradicts our assumption. So, o & 0,[A(T,5)*, {s]. This shows that
0plA(T,5)", les] C{rr : k € N} \ {r}. Now, we prove that a € 0,[A(7,5)*, ] if and
only if o € B. If a € 0,,[A(T, 5)*, ], then, by solving the equation A(7,s)*f = af
for f # 60 =(0,0,0,...) in {o, with o = ry we find

S0S5182 .. .Sk—1

(ro = 1) (ro — Th—1)(r0 — Th2) -+ (10 — T1)

Jr= fo forall keN

which can be expressed by the recursion relation

508152 . ..S8k—1

(ro—r1)(ro—19)---(ro—7r

| fil =

k)\ ol

Since ¢, C /., we can apply the ratio test,

Sk—1 S

Ty —To

= <1

= lim
k—o0

lim

k—o0 k—1

r—To

S
r—T0

But

# 1. Hence, a =r¢ € {ry : k € N, |ry —r| > |s|} = B. Similarly we can

prove that o =1, € {ry : k € N, |ry — 7| > |s|} = B, for « = ry # r for all k € N;.
Hence, 0,[A(7,5)*, {s] C B. Conversely, Let o € B. Then exists k € N, a =ry #r

and
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This shows that f = (f,) € {x, since {1 C ly. So, we have B C 0,[A(7,5)*, l].
This completes the proof. n

Theorem 3.4.4. If 7,5 € 8D or C, then o,.[A(T,3), £, = 0.

Proof. Let 7,5 € 8D or C. By Theorem 3.4.3 and Theorem 3.1.4 it immediate that
o, [A(T,5), 0] = 0. O

Theorem 3.4.5. o[A(7,5),(,] = AUB.

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that 7,5 € C and y = (yx) € {s. Then, by solving the equation

An(r,5)*z =y for x = (x}) in terms of y = (yx), we obtain

Yo
o= 2o
_ Y1 —SYo
o= T—oz+(r—oz)2’
- Y2 —SU1 $"Yo
? r—a (r—a? (r—a)?®
k—1
_ S5 Y o SYk— Yk
k= (r—a)k+ (r—a)2+r—a’

which gives that,

1 k s k—i
T = [
= ()

1=0

for all £ € N. Hence,

1 - s |
k| < - > || lyllee.
r—oa|l~r—a«a
1=0
For |s| < |r — a, we can observe that
< — .
2]l < al = 19llo0

Thus, A.(7,$)* is onto for |s| < |r — a| and by Lemma 2.1.9, A, (7, ) has a

bounded inverse. This means that

oA, 3),6,) C{aeC:|r—a| <|s|}.
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Combining this with Theorem 3.4.2 and Theorem 3.4.4, we get
{aeC:|r—al <|s|} ColA(r,3),0,] C{acC:|r—a <|s|}.
Since the spectrum any given operator closed. Thus, we have
olA(r,5), 6] ={a € C: |r —al < s[}.

Part 2. Assume that 7,5 € SD and y = (yx) € f. Then, by solving the equation

A, (7, 8)*z = y in terms of y, we obtain

Yo
Ty = )
To —
= n —So0Yo0
! rn—a (ri—a)(rg—a)
e — Y2 —S1Y1 S051Yo0
2 — )
ro—a (re—a)iri—a) (re—a)(r; —a)(ro—a)
B (—1)Fs05182 - -+ Sk—110 Sk—1Yk—1 Yk
T = + e — ’
(ro—a)(ry —a)(rg —a) - (ry — ) (rp —a)(rp—1 — @) T —«

Thena ‘xk| < SkHy“OCM where

1 Sk—1 Sk—15k—2
S, = + +
k T — QU (rp—1 — a)(ry — a) (rp—e — a)(rp_1 — a)(ry — @)
S0S1 ... Sk—1
(ro—a)(r —a)--(ry — )

By Theorem 2.1.5, we have sup;cy Sk < co. This shows that

17]|co < 1(Sk) ||so||¥]|oo < 00, since (yx) € loo. Thus for |s| < |r — a|, An(F,3)* is

onto and by Lemma 2.1.9, A,(7,s) has a bounded inverse. This means that
0c[A(F, ), 6] C{a € C:|r —af <|s[}.
Combining this with Theorem 3.4.2 and Theorem 3.4.4, we get
BU{aeC:|r—a| <|s|} Co[A(T,35),0) C{aeC:|r—al<|s|]}UB
Since the spectrum compact operator so it has closed. Thus, we have
olA(7,5),0,) = AU B.

This completes the proof. n
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In the case (0 < p < 1), since the spectrum and fine spectrum of the matrix A(7,s)
as an operator on the sequence space ¢, are similar to that of the (1 <p< o), to
avoid the repetition of similar statements we give the results by the following

theorem without proof:

Theorem 3.4.6. The following statements hold:

(i) If 7,5 in SD or C, then o [A(T,5), ;)] ={a € C:|r —a| =|s|}.
(ii) If 7,5 in SD or C and |a — 1| < |s|, then a € o[A(T,5), l,] As.
(iii) If 7,5 in SD or C, then 04,,[A(7,3), L, = o[A(T, 5, 4,).

() If 7,5 in 8D or C. o5[A(T,35),0y] = {a e C: |r—a|=|s|}.

(v) If 7€ 8D, then o.,[A(T,S), L, = 0.

(vi) If 7 € SD, 0.[A(F,3),1,] = B.



CHAPTER 4

FINE SPECTRUM OF UPPER TRIANGULAR
TRIPLE-BAND MATRIX OVER SOME SEQUENCE
SPACES

In chapter 4, we determine the fine spectrum of the upper triangular triple-band
matrix A(r,s,t) over the sequence space p where p € {¢,, ¢, co} with (0 < p < 00
The operator A(r, s,t) on sequence space p is defined by

A(rys,t)x = (roy + STpgq + togi2)5e,, where x = (zx) € p. In this chapter, we
obtain the results on the spectrum and point spectrum for the operator A(r, s, t)
on the sequence space p. Further, the results on continuous spectrum, residual
spectrum and fine spectrum of the operator A(r, s,t) on the sequence space p is
also derived. Further, we give the approximate point spectrum, defect spectrum
and compression spectrum of the matrix operator A(r, s, t) over the space p and

we give some applications.

Our main focus in this chapter is on the triple-band matrix A(r, s,t), where

0 r s t
A(T’,S,t) = 0 0 r S
00 0 r

We assume here and after that s and t are complex parameters which do not

).

simultaneously vanish. Let we introduce the operator A(r, s,t) from p to itself by

A(r, s, t)x = (rag + stpe1 + txgyo)iey, where z = () € p.

54
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4.1 FINE SPECTRUM OF UPPER TRIANGULAR TRIPLE-BAND
MATRIX A(r,s,t) OVER THE SEQUENCE SPACE (,, (0 < p < 1)

Theorem 4.1.1. The operator A(r,s,t) : £, = {, is a bounded linear operator and
1ACr s, D)y, = 77+ [s]P + 127 (4.1)

Proof. The linearity of the operator A(r, s,t) is trivial. Let us take e € ¢p. Then,
A(r,s,t)e® = (t,5,7,0,...) and observe that

1A(r, s, )|,

[A(r, 8,8) [l (6,:0,) > EEl] = ||+ |s]” + [t]P
p
which gives the fact that
IA(r, s, 0)llgye,) = 77+ [[” + [, (4.2)

Let © = (z) € £, where 0 < p < 1. Then, since (txj42), (rey) and (sxpp1) € £, it

is easy to see by triangle inequality that

JA(r, s, t)zll, = ) |rag + swper + togol’
k
< Y lraelP+ ) lswenl” + ) ftreol?
k k k
= Y lwalP [P el 1P Y Jensal?
k k k

= (Irl" =+ [s[” + [t") lz][»
which leads us to the result that
[A(r, s, ) lepee,) < [P+ [s]7 + [¢[P. (4.3)

Therefore, by combining the inequalities (4.2) and (4.3) we see that (4.1) holds

which completes the proof. O

Before giving the main theorem of this section, we should note the following
remark. In this work, here and in what follows, if z is a complex number then by
\/z we always mean the square root of z with a nonnegative real part. If

Re(y/z) = 0 then /z represents the square root of z with Im(y/z) > 0. The same

results are obtained if \/z represents the other square root.
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Theorem 4.1.2. Let s be a complex number such that /s> = —s and define the
set Dy by

D, = {aEC:Q}r—a| < |—s+\/32—4t(r—a)’}.
Then, o.[A(r,s,t),£,] C D;.

Proof. Let y = (yx) € . Then, by solving the equation A,(r,s,t)*r =y for

x = (xx) in terms of y, we obtain

Yo
g = s
r—
—38
g = n X Yo -,
r—a (r—a)
2
—S s —tr —«
Ty = Y2 i hn _ [ ( )]Z/O
r—a (r—a) (r—a)?
If we denote a; = #, g = ﬁ, as = W, then we have
o = G1Yo,
T1 = a1Y1 + a2yo,
To = a1Y2 + ay1 + asyo,
Tp = @Yn + a2Yp_1+ -+ Q1Yo = Z Cnt1—kYk- (4.4)

k=0
Now, we must find a,. We have y,, = tz, o + sz,_1 + (r — a)z,. If we use relation

(4.4), then we obtain that

n—2 n—1 n
Yn = tz An-1-kYk + 8 Z An—Yr + (r — a) Z Ant1-kYk
k=0 k=0 k=0

= yo(tan_1 + san, + (r — @)aps1) + y1(tan—o + san_1 + (r — a)a,) + -+ + ypar (r — a).
This implies that
tan,—1 + sa, + (r — @)ay1 =0, tay,—o+sa,—1+ (r—a)a, =0,..., a(r—a)=1.

In fact, this sequence is obtained recursively by letting

1 B —S
r—a’ (r—a)?

a; = and ta, s+ sa,_1+ (r—a)a, =0 forall n>3.
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The characteristic polynomial of the recurrence relation is (r — a)A\? + s\ +t = 0.
There are two cases:
Case 1. If A = s — 4t(r — ) # 0 whose roots are

A — —s+ VA —s— VA
T o(r—a) T 2r—a)
Elementary calculation on recurrent sequence gives that
AT — Ay
V82— 4t(r —a)

n+l—k n+l1—k
A A7)

an = forall n>1. (4.5)

In this case 7} = \/LZ ol Yr. Assume that |A;| < 1. So we have

Since |1 — /z| < |1+ /2| for any z € C, we must have

4t(r — «)

11— 2

3 ‘2(7“_—804) |

It follows that |As| < 1. Now, for |\;] < 1 we can see that

n

1 B SN
|| < WZIXJ“ ’“H%HZ!AQ“ Iyl (4.6)

k=0 k=0

for all n € N. Taking limit on the inequality (4.6) as n — oo, we get

T = ol = X)) VA

Thus for |\ < 1, Au(r,s,t)* is onto and by Lemma 2.1.9, A, (7, s,t) has a

[9]]oo-

bounded inverse. This means that

oc[A(r,s,t),6,] C {a €C:2r—a| < |—s+4/s2 —dt(r — a)‘} _ D,

Case 2. If A = s? — 4t(r — a) = 0, a calculation on recurrent sequence gives that

a, = 2_n 5 for all n > 1.
—s ) [2(r — )

Now, for | — s| < 2|r — | we can see that

2l <D lan—syil (4.7)
k=0
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for all n € N. Taking limit on the inequality (4.7) as n — oo, we obtain that

o
12]loo < lylloo D laxl.
k=0

>k lak| is convergent, since | — s| < 2|r — «|. Thus, for | — s| < 2|r — af, Au(r,s,t)*

is onto and by Lemma 2.1.9, A,(r, s,t) has a bounded inverse. This means that

o [A(r,s,t),0,) C{aeC:2|r—a| <|-s|} C Dx.

O
Theorem 4.1.3. 0,[A(r,s,t)", (5] = (.
Proof. Consider A(r,s,t)*f = af with f # 0 =(0,0,0,...) in 5 = (. Then, by
solving the system of linear equations
.
rfo = afo
sfot+rfi = afi
thot+sfi+rfe = afs
th+sf+rfs = afs
tfe2t+sfkr+rfi = afy
Vs
we find that fy =0if a # r and f; = fo =--- =0 1if fy = 0 which contradicts
f#0. If f,, is the first non zero entry of the sequence f = (f,,) and o = r, then
we get tfro—2 + Sfno—1 + 7 fny = afn, which implies f,,, = 0 which contradicts the
assumption f,, # 0. Hence, the equation A(r,s,t)*f = af has no solution
f#£0. ]

Theorem 4.1.4. 0,[A(r, s,t),{,] = D2, where

DQZ{OCEC:2’T_06’<‘_S+\/82_4t(r_06)|}.

Proof. Let A(r,s,t)x = ax for § # x € {, Then, by solving the system of linear
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equations
)\
rro+ sr1+tra = axg
T + ST+t = axy
Ty + Sr3+1trxy = QX9
TTp_o + STp_1 +1tx = axy
/
we have
—s r—o
To = —x1 — T
2 ;0 ;Lo
2
s —t(r — «) s(r — a)
T3 = 12 L1 2 Lo
ap(r —a)” Ap_1(r —a)™
T, = ”(tn—_l)xl -z 1£n_1 ) xog forall n>2. (4.8)
Assume that o € Dy. Then, we choose g = 1 and 2, = Ar—a) . We show

—s+\/52—4t(r—a)
that x, = 27 for all n > 2. Since A\, \y are roots of the characteristic equation

(r —a))\? + s\ +t = 0 we must have

A
and /\1—/\2: \/_

rTr—« r—«

Ay =

combining the fact ;7 = 1/A; with relation (4.8) we can see that

a,(r—a)” Ap_1(r — a)”
Ty = —(tn—l ) 1 — —lin—l ) X
n—1
r—Q
= ( ; ) (r —a)(—ap_120 + anzy)
1 r—Q

= (AT AT AT = AT

(M)t VA

e () (5
AT AN =) M

1
AT

_ n
- xl-

The same result is obtained in case A = 0. Now = = (xy) € ¢, since |z, < 1. This

shows that Dy C 0,[A(r, s, 1), £,).
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Now, we assume that a ¢ Ds, i.e, |[A\;| < 1. We show that a ¢ o,[A(r, s,1),4,)].
Therefore we obtain from the relation (4.8) that

— an
Tni1 [T — Q) Gpy [ “T0F ZET
T t Qpo \ —20 + =Ly |-
an—2

Now, we examine three cases.

Case 1. |\y| < |\ < 1. In this case we have s # 4t(r — a) and

n+1
A
G A ape M {1‘ (%) }

- - n
R EO)
1
Then, we have
A n+1|P
P — (22
P ) P |)‘1| 1 1)
lim =1i “—| = lim = [\ P
n—00 | Ay —1 n—00 | Ay—9 n— 00 ‘1 o (&)
1

Now, if —z¢ + Ajx1 = 0; then we have (z,,) = (x¢/A}) which is not in ¢,. Otherwise

p
. | 1 1
1 = MP=——>1
E e B W TP W Sl YW
Case 2. |\y| = |\1] < 1. In this case we have s*> = 4t(r — ) and using the formula
2 _ n
a, = Ay forall n>1
—s) |2(r —a)
we obtain that
p . p
lim |- | = T =
n—00 | (1 2(r — )
which leads to
P
1 = MP=——>1
T | T PP T P
Case 3. |\y| = |\i| = 1. In this case we have s> = 4¢(r — ) and so we have

| —s/2t] = 1. Assume that a € 0,[A(r,s,t),£,]. This implies that = € £, and = # 6

Thus we again derive (4.8)

n—1
Ty = <2—:) [—(n — 1)2—:x0 + nxy
Since x,, — 0 as n — 0o, we must have zq = x1 = 0 which implies that x = 0, a

contradiction. This means that a ¢ o,[A(r, s,t),£,]. Thus o,[A(r,s,t),£,] C Ds.

This completes the proof. n
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Theorem 4.1.5. o,[A(r, s,t),(,] = 0.

Proof. By Proposition 1.3.1, 0,.[A(r, s,1),£,] = 0,[A(r, 5,1)*, L3]\op[A(r, 5,1), £,].
Since by Theorem 4.1.3, 0,[A(r, 5,1)*, (3] = 0 and 0,.[A(r, 5,t),(,] = (. This
completes the proof. O

Theorem 4.1.6. Let s be a complex number such that \/s2 = —s. Then,
olA(r, s,t),L,] = D;.

Proof. By Theorem 4.1.4,

{a €eC:2r—al< ‘—S—l— \/ 82 —4t(r—a))} C o[A(r, s,t), Lp).

Since the spectrum of any bounded operator is closed, we have

{a eC: 2‘7"—04‘ < ‘—s—k /82 — 4t( r—oz)|} C o[A(r, s, 1), 4] (4.9)

and again from Theorem 4.1.2, Theorem 4.1.4 and Theorem 4.1.5

alA(r, s, t),4,] C {a €eC:2lr—a|<|-s+ /82 — 4t(r — a)‘} (4.10)

Combining (4.9) and (4.10), we get

olA(r, s,t), 0, = {aE(C 2}r—a|<|—s+\/s2 4t7’—a)‘} D,

Theorem 4.1.7. o [A(r, s, t),{,] = D3, where

Dgz{ae(C 2’7‘—04‘—‘—5—1-\/52 4tr—a)|}

Proof. Because of the parts o.[A(r, s,t),¢,], 0.[A(r, s,t),¢,] and 0,[A(r, s,t),{,] are
pairwise disjoint sets and the union of these sets is o[A(r, s, ), ¢,], the proof

immediately follows from Theorem 4.1.4, Theorem 4.1.5 and Theorem 4.1.6. [
Theorem 4.1.8. If a € Dy, a € o[A(r, 5,1),(,|As.

Proof. From Theorem 4.1.4, « € 0,[A(r, s,t),£,]. Thus, [A(r,s,t) — al]~' does not
exist. By Theorem 4.1.3 A(r, s, t)* — al is one to one, so A(r,s,t) — ol has a dense
range in £, by Lemma 2.1.8. [
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Theorem 4.1.9. The following statements hold:
(1) oaplA(r, s, t).0,] = Dy,
(it) os[A(r,s,t),¢,) = Ds.
(iii) oeoA(r,5,1),4,] = 0.
Proof. (i) Since from Table 1.2,
oaplA(r, s,t), 0, = o [A(r, s,t),£,) \o [A(r, s,1),£,] Cy

we have by Theorem 4.3.6 o [A(r, s,t), £,] C1 = 0 [A(r, s,t), £,] C2 = (). Hence;
oaplA(r, 8,1),¢,] = Dy (ii) Since the following equality

os[A(r, s, t), 0, = o[A(r, s, t), L,)\o [A(r, s, 1), L,] As

holds from Table 1.2, we derive by Theorem 4.1.5 and Theorem 4.1.8 that
os[A(r, s, t),0,] = Ds.

(iii) From Table 1, we have
TeolA(r, 5,t), 0] = 0 [A(r,5,1),£,) Cr U o [A(r, s,t),£,] Co U [A(r, s,t), o] Cs

by Theorem 4.1.3 it is immediate that o.[A(r, s,t), (] = 0. O

4.2 FINE SPECTRUM OF UPPER TRIANGULAR TRIPLE-BAND
MATRIX A(r,s,t) OVER THE SEQUENCE SPACE /(,, (1 < p < )

In the present section, we determine the fine spectrum of the operator

A(r,s,t) : £, = £, in the case 1 < p < oo.

Theorem 4.2.1. The operator A(r,s,t) : £, = {, is a bounded linear operator and
(Irl” -+ [sl” + [t) V7 < | ACr, s, )l gyee,) < Il + Is] + 2. (4.11)

Proof. Since the linearity of the operator A(r, s, t) is trivial. Now, we prove that
(4.11) holds for the operator A(r,s,t) on the space ¢,. It is trivial that
A(r,s,t)e® = (t,5,7,0,...) for e® € {,. Therefore, we have

HA(T? S, t)€(2) ||p

= (" + |s[” + [t17)'7.
le® 1,

[A(r, s, )l gyie,) >
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which implies that
1ACr, 5, 8) ey = (IrfP + [P + [2]7) 2. (4.12)

Let = (z) € £, where 1 < p < 0o. Then, since (tzji2), (rey) and (szppq1) € £, it

is easy to see by Minkowsky’s inequality that

1/p
[A(r, s, t)zll, = <Z ra + sTpn + t:vk+2|p>

k

1/p 1/p 1/p
(Sirar) + (Srar) (S )
k k k
1/p 1/p 1/p
_ (Zlmklp> oy (zmw) i (z\xm\p)
k k k

= (Il + Il + [tD

A

which leads us to the the result that
[A(r, 8, )|l 0o,y <[]+ [s] + [E]. (4.13)

Therefore, by combining the inequalities in (4.12) and (4.13) we have (4.11), as
desired. O

Theorem 4.2.2. Let s be a complex number such that v/s> = —s. Then,
o [A(r, s, t),4,) C Dy.

Proof. We show that A, (r,s,t)* is onto, for 2‘7’ — a| > |—s + /5% —4t(r — a)|.
Thus, for every y € £, we find x € {,. A,(r,s,t)* is triangle so it has an inverse.
Also the equation A, (r, s, t)*x =y gives [A4(r, s,t)*] "ty = x. Tt is sufficient to
show that [A.(r,s,t)*]7 € (¢, : £,). We calculate that A = (a,;) = [Aa(r, s, t)*]

as follows:

aq 0 0

Ao A1 0
A:<ank): )

a3z az ai
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where
1
a; =
r—a
—s
ay = —
2 (r —a)?
2
—t(r —
0w = 5 (r—a)
(r—a)?

It is known from Theorem 4.1.2 that

A — \T — A —s— VA
ap = ! 2 for all n > 1, where A\ = L\/_, Ao = i
Vs2 —4t(r — a) r—a r—a

Now, we show that [A,(r,s,t)*]71 € (¢1 : £1) for |\;| < 1. Since |\;| < 1, Theorem
4.1.2 gives that |A\y| < 1. We assume that s — 4¢(r — a) # 0 and |\| < 1.

Therefore,

[Aa(r, 5, 8) ] llewien) —SUPZ|ak|

> Jal
=1
1 o0 o0
< Al (Z M+ Z |)\2’k> < 00
k=1 k=1

This shows that [A,(r,s,t)*]7! € (¢; : £1). Similarly we can show that
[Aa(r,s,8)* 71 € (o i lo).
Now assume that s? — 4t(r — ) = 0. Then,

o= (%) o]

and simple calculation gives that (a,) € ¢, if and only if | — s| < 2|r — a|.

[(A(r, s,t) —ad)* ™" € (b, : €,) for a €C with 2|r —a| > ‘—S—F\/SQ At(r — a)|

Hence, A,(r,s,t)* is onto. By Lemma 3.3.2, A,(r, s,t) has a bounded inverse. This

means that

JC[A(r,s,t),Ep]g{aE(C 2|r—a‘<‘—s+\/s2 4tr—a)‘} D;.

Theorem 4.2.3. 0,[A(r,s,t)", 5] = ().
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Proof. Consider A(r,s,t)*f = af with f # 0 =(0,0,0,...) in £; = {,. Then, by

solving the system of linear equations

rfo = afo

sfotrfi = afi
th+sfi+rfz = af
tfi+sfa+rfs = afs

tfo—o+ s +rfe = afy

J

we find that fy =0if a #r and f; = fo =--- =0 if fy = 0 which contradicts
f#0.If f,, is the first non zero entry of the sequence f = (f,,) and o = r, then
we get tfn,—2 + Sfng—1 + 7 fno = @ fn, which implies f,,, = 0 which contradicts the
assumption f,, # 0. Hence, the equation A(r,s,t)*f = af has no solution

f#0. =

In the case 0 < p < 1, since the spectrum and fine spectrum of the matrix A(r, s, )
as an operator on the sequence space £, are similar to to case 1 < p < oo, to avoid
the repetition of similar statements we give the results by the following theorem

without proof:

Theorem 4.2.4. The following statements hold:
(1) oA(r,s,t),,] = D;.

(ii) o.[A(r,s,t), 0, = 0.

(i) o,[A(r,s,t),4,] = Ds.

(iv) o.]A(r,s,t),¢,] = Ds.

(v) 04pA(r,s,t),4,] = Ds.

(Vi) 0eolA(r, s,t), Ly = 0.

(vii) o5[A(r,s,t),£,] = Ds.
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4.3 FINE SPECTRUM OF UPPER TRIANGULAR TRIPLE-BAND
MATRIX A(r,s,t) OVER THE SPACE OF NULL SEQUENCES

In the present section, we determine the fine spectrum of A(r, s,t) in the space of

null sequences.

Theorem 4.3.1. (Wilansky, 1984) Let T' be an operator with the associated

matriz A = (ank). Then, the following statements hold:

(1) T € B(c) if and only if

Al == sup ) |an| < o0, (4.14)
neN &
ap := lim a, ezists for each fized k € N, (4.15)
n—oo
a = nll_r)IOlogank exists.

(ii)) T € B(co) if and only if (4.14) holds and (4.15) are also hold with a; =0
for each k.

(i1i) T € B({) if and only if (4.14) holds.
In these cases, the operator norm of T is ||T'||(c:cy = |1 || (co:co) = 1T ]| ey = | A]l-

Corollary 4.3.2. Let A\ € {l,co,c}. A(r,s,t) : X = X is a bounded linear
operator and

[ACrs s O)llony = Il =+ [s] + ]2

Proof. The linearity of A(r,s,t) is trivial and so it is omitted. By Theorem 4.3.1,
it is immediate that ||A(r, s, )|l o) = Subpen 2o |ank| = |r| + |s] + [t]. O

Theorem 4.3.3. o.[A(r, s,1),co] C Ds.

Proof. Let y = (yx) € ¢1. Then, by solving the equation A,(r,s,t)*z =y we find
the matrix in the proof of Theorem 4.1.2. Then, we have

n

Tp = Q1Yn + A2Yn—1+ -+ Apt1Yo = Z On+1—kYk (4.16)
k=0
where,
a, = AL A for all n > 1. (4.17)

Vst —At(r —a)
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If we use the relation (4.16), then we get

n

eal <Y lantaellyel

k=0

and so we have

0 1 n
ol + 1|+ |zal < Y larsillyel + > lao—ellynl + -+ ) lansa—el|ysl
k=0 k=0 k=0

n+1 n 1

= D lagllyol + D laglln] + -+ ) lajllynl
j=1 j=1 Jj=1
n+1

< > lagl(wol + loal + - + |yal)
j=1

for all n € N. By letting n — oo, we get

o
lzlh < Myl Y layl.
j=1

We must show that ), [a;| < co. There are two cases here:

Case 1. If A = s — 4t(r — ) # 0, the relation (4.17) holds for all k¥ € N;. Since
|A1] < 1, Theorem 4.1.2 gives that |As| < 1. Now, for |\;] < 1 we can see that

Z|aj| < |—\/13| (Z A1) +Z|)\2|j) :

Thus, for |\| < 1, A,(r, s,t)* is onto and by Lemma 2.1.9, A,(r, s,t) has bounded

inverse. This means that

o [A(r,s,t),co] € {a €C:2lr—a| <|—s+ /s —4t(7’—a)|} — D,

Case 2. If A = s — 4t(r — a) = 0, calculation on recurrent sequence give

a, = 2_n 7 for all n > 1.
—s ) [2(r—a)

Now, for | — s| < 2|r — | we can see that
a -5
lim |——| = < 1.
n—00 | Uy _1 '2(7’ — )

Therefore, ), |ax| is convergent. A, (r,s,t)* is onto by Lemma 2.1.9, A,(r, s,t)

has bounded inverse. This means that

oc|A(r, s,t),co] C {a eC: 2‘7“ — a‘ < ‘—s|} C D;.
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Proof. Consider A(r,s,t)*f = af with f # 6 = (0,0,0,...) in ¢; = ¢;. Then, by

solving the system of linear equations

rfo = afo
sfotrfi = afi
th+shi+rfa = af
tfi+sfat+rfs = afs
tfk—2t+sfi1+71fi = afi
J
we find that fy =0if a #r and f; = fo =--- =0 if fy = 0 which contradicts

f#0.If f,, is the first non zero entry of the sequence f = (f,,) and o = r, then

we get tfno—2 + Sfno—1 + 7 fny = afn, which implies f,,, = 0 which contradicts the

assumption f,, # 0. Hence, the equation A(r,s,t)*f = af has no solution

f#9.

Theorem 4.3.5. 0,[A(r,s,t),co] = Ds.

Proof. Let A(r,s,t)x = ax for  # x € ¢y. Then, by solving the system of linear

equations

we have

TTo+ STr1 + 1ty = axg
T + ST9 + 13 = axy
rTo + STz + 1Ty = QTo
TTrp_o + STp_1 +1tx = axy
Vs
\
S —S T—Q
To — T.Tl - ZTo
s2—t(r—a) s(r—a)
T3 = L1+ =z %o
_ ap(r—a)™ an—1(r—a)”
xn - ntn—l ml - = tn—l xO

(4.18)
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for all n > 2. Assume that a € Dy. Then, we choose x¢o = 1 and

r1=2(r—a)/[-s+ \/52 — 4t(r — «)]. By Theorem 4.1.4, z,, = z7 for all n > 2.

Now, = = (x)) € co, since |z1| < 1. This shows that Dy C 0,(A(r, s,t), co).

Now, we assume that o ¢ Do, i.e, [A;| < 1. We must show that

a & o,(A(r,s,t),co). In this situation, we examine three cases.

Case 1. |\y| < |A\;] < 1. In this case we have s? # 4t(r — a)) and we obtain from

relation (4.18) that

_ n _ n
- an(;“n_loz) azl—an_l(T Q)

t

r—ao
= ————— (AN + A g + Ay — Ay

\/Z()\l)\z)nfl
B r—a{( 11 )er(Al B Ag)x]
VNN A Ve A VY

— 1 1
T\/ZOJ |:W (1‘0 — )\QZL‘l) + F (—$0 + )\1!L'1)j| . (419)
1 2

If —xg+ Mz =0 and g — Agx; = 0 in (4.19), then we have Ay = Ay which is a

_ <7“ - “)n_l (r — @) (=120 + anz1)

contradiction. Otherwise, z = (zx) ¢ co.

Case 2. |\2| = |\;| < 1. In this case we have s = 4¢(r — a) and using the formula

a, = 2_n 7 forall n>1.
—s ) [2(r—a)

We again derive (4.18)
2(r —a)

T [zo(n — 1) — nxi ] .

Ty =

If xyg = 21 =0, then & = 0, a contradiction. Otherwise = = (xy) ¢ co, since

/A > 1.

Case 3. |\y] = |\1| = 1. In this case, we have s> = 4t(r — a)) and so we have

| —s/2t] = 1. Assume that a € 0,[A(r, s,t), co]. This implies that x € ¢g — {6} .

Thus, we again derive (4.18)

n—1
Ty = (2—:> {—(n — 1)2—:91:0 + nay
Since x,, — 0 as k —> oo we must have xy = x1 = 0. This yields that x = 0, a
contradiction which means a ¢ o,[A(r, s,t),co]. Thus o,[A(r, s,t),co] C Dy. This

completes the proof. n
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Theorem 4.3.6. o,[A(r, s,t),co] = 0.

Proof. This may be obtained in the similar way as mentioned in the proof of

Theorem 4.1.5. So we omit details. O

Theorem 4.3.7. Let s be a complex number such that Vs> = —s. Then,
o[A(r, s, t),co) = Ds.

Proof. The inclusion

{aEC 2|r —al < |—s+\/s2 4t( r—a)‘} C alA(r, s,t), co)

holds by Theorem 4.3.5, since the spectrum of any bounded operator is closed, we

have

{a €eC:2r—a|<|-s+ /82 — 4t(r — a)|} C o[A(r,s,t), co). (4.20)

Again, Theorem 4.3.3, Theorem 4.3.5 and Theorem 4.3.6 give that

o[A(r, s, t),co] C {a eC:2r—a|l <|-s+ /s — 4t r—a)|} (4.21)

By combining (4.20) and (4.21), one can observe that o[A(r, s,t), c] = Dy, as
desired. [

Theorem 4.3.8. o.[A(r,s,t),co] = Ds.

Proof. Since the parts o.[A(r, s,t), o], 0,[A(r, s,1), co] and o0,[A(r, s, 1), co] are
pairwise disjoint and their union is o[A(r, s,t), ¢o], the proof is immediate, from

Theorem 4.3.5, Theorem 4.3.6 and Theorem 4.3.7. O

Theorem 4.3.9. Let s be a complex number such that \/s2 = —s. If a € Dy, then
o € U[A(T, S, t), Co]Ag.

Proof. From Theorem 4.3.5, a € 0,[A(r, s,t), co]. Thus, [A(r,s,t) — al]™' does not
exist. By Theorem 4.3.4 A(r,s,t)* — al is one to one, so A(r,s,t) — ol has a dense
range in ¢y by Lemma 2.1.8. This completes the proof. O]

Theorem 4.3.10. The following statements hold:

(1) oaplA(r, s, t)co] = D
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(ii) os[A(r,s,t),c) = Ds.

(iii) o.|A(r, s,1),co] = 0.

Proof. (i) Since from Table 1.2,
OaplA(T, 8,1), c0] = 0 [A(r, 5, 1), co) \o [A(r, s, 1), co] C1, we have by Theorem 4.3.6
o [A(r, s,t),co] Cy = 0 [A(T,S), co) Co = 0. Hence, 0,4,[A(r, s,t), co] = Dh.

(ii) Since the following equality
o5[A(r, s,t), co] = a[A(r,s,t), co)\o [A(r, s, 1), co] A3

holds from Table 1.2, we derive by Theorem 4.3.6 and Theorem 4.3.9 that
U§[A<T7 S, t)a CO] = DS-

(iii) From Table 1.2, we have
OeolA(T, 8,1), co] = 0 [A(r, 5,1), 0] CL U [A(r, s, 1), o] Co Ua [A(r, s, 1), o] Cs

by Theorem 4.3.4 it is immediate that o.,[A(r, s,t),co] = 0. O

4.4 FINE SPECTRA OF UPPER TRIANGULAR TRIPLE-BAND
MATRICES OVER THE SPACE OF CONVERGENT
SEQUENCES

In the this section, we determine the fine spectrum of the operator
A(r,s,t) 1 c— c.

For A(r,s,t) : ¢ — ¢, the matrix A(r,s,t)* € B({;) is of the form

r+s+t 0

A(r, s, t)" =
0 At(r, s,t)

Theorem 4.4.1. A,(r,s,t) : ¢ — ¢ has a dense range if and only if « # r+ s+ t.

Proof. First let us show that o,[A(r,s,t)*,C & ¢1] = {r + s+ t}. Suppose that « is
an eigenvalue of the operator A(r,s,t)* : C® ¢; — C @ ;. Then there exists f € ¢,



satisfying the system of equations

(r+s+t)fo = afo
rfi = ah

sfi+rfe = afs
th+sfatrfs = afs

V
From above one can see that o = r 4+ s+t is an eigenvalue corresponding to the
eigenvector (1,0,0,0,...). Now, suppose that o # r 4+ s + t. Then we find that
fi=fa=---=0if fy =0 which contradicts f # 6. If f,,, is the first non zero
entry of the sequence f = (f,,) and o = r, then we get

tfro—2 + Sfng—1 + T fny = afpn, which implies f,,, = 0 which contradicts the
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assumption f,, # 0. Hence, the equation A(r,s,t)*f = af has no solution f # 0.

So, 0,[A(r,s,t)*,C® 1] = {r+ s+ t}.

]

Since the operator on the sequence space c is similar to that of on the space c¢g, to

avoid the repetition of similar statements we give the results by the following

theorem without proof:
Theorem 4.4.2. Following statements hold:
(i) o[A(r,s,t),c] = Dy.
(ii) op[A(r,s,t),¢] = Doy U{r + s+ t}.
(111) o.[A(r,s,t),c] =0.
(iv) o.JA(r,s,t),c] = D3\ {r +s+t}.
(v) os(A(r, s,t),c|] = Ds.
(vi) oeo[A(r,s,t),c] ={r+s+t}.
(vii) oup[A(r,s,t),c] = Dy.
It is known from Cartlidge (Cartlidge, 1978) that, if a matrix operator A is
bounded on ¢, then o(A,c) = (A, ls). So we have the following.
Corollary 4.4.3. o[A(r,s,t), 0] = Dy.

Theorem 4.4.4. 0,[A(r, s,t),ls] = Dh.



73

Proof. Let A(r,s,t)xr = ax for x € ly with = # 0. Then, by solving the matrix
equation A(r,s,t)x = ax, we obtain the relation (4.18). Combining the fact xy = 1
and x; = 1/A; with the relation (4.18), one can see that

ro=22 x3=a3,... 1, =2a7,... forall n > 2, and so x € {4, since |z;| < 1. This
shows that Dy C 0,[A(r, s,1t),l~]. Conversely, we prove that o,[A(r,s,t),lx] C Dy

which is similar to the proof of Theorem 4.3.3. O]
Theorem 4.4.5. 0 [A(r, s,1), o] = 0 and 0,.[A(r, s,t), L] = 0.

Proof. Because of the parts o.[A(r, s,t), lx], 0, [A(7,5,1), lo] and o,[A(r, s, 1), loo)
are pairwise disjoint and their union is o[A(r, s,1), (5], the proof immediately

follows from Corollary 4.4.3 and Theorem 4.4.4. O

Theorem 4.4.6. Let s be a complex number such that Vs> = —s . If
a € Dy, € a[A(r, 5,1), loo] As.

Proof. This is similar to the proof of Theorem 4.3.9. So, we omit the detail. O

4.5 SOME APPLICATIONS

In this section, we give two theorems related to Toeplitz matrix.

Theorem 4.5.1. Let P be a polynomial that corresponds to the n-tuple a and
21,722, 23, - - -, Zn_1 also be the roots of P. DefineT" as a Toeplitz matrix associated

with P, that is,

ag a; as ... a, 0 0 O
7 — 0 agp a4 ay ... a, 0 O
0 0 a a a ... a, O

The resolvent operator T over £, with 1 < p < oo, where the domain of the
resolvent operator is the whole space £, exists if and only if all the roots of the
polynomial are outside the unit disc {z € C:|z| <1}. That is T~ € (L, : 4,) if

and if only |z;| > 1, 1 <i <n—1. In this case the resolvent operator is
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represented by the

1
T! = AN =2, DA (=29,1) - AN (=21, 1),  where

Qp—1

1z 1/22 1/28 1)z 1/29

i i i 7

0 1/z 1/22 1/2 1/}

(2 (2 K3

0 1/z 1/22 1/z

(2 K3

0
0 0 0 1/z 1/2
0

A71<—Zi, 1) = —

(2

0o 0 0 1/z

Proof. Suppose all the roots of the polynomial
P(z)=ay+a1z+ -+ ap 12" =an(z — 21)(z — 29) - (2 — 2,_1) are outside of

the unit disc. The Toeplitz matrix associated with P can be written as the product
T =a,A(—21,1)A(—22,1) - - - A(—2p-1, 1).

Since multiplication of upper triangular Toeplitz matrices is commutative, one can

see that

T =

14_1<——Zl,1)f1_1<——22,1)"’/4_1(——Zn_1,1)

Ap—1

is left inverse of 7. Since all roots polynomial are out side of the unit disc,

- 1 =1
—1
1T (=20, Dl (toite) = S%PZ = > T <
k=n k=1

Therefore, each T7!(—2;,1) € (l : loo), for 1 < i < n — 1. Similarly we can say
that 77 (—z;,1) € (¢4 : £1). So we have T™(—z;,1) € (£, : £p). O

Theorem 4.5.2. The resolvent operator of A(r,s,t) over {, with 1 < p < oo,
where the domain of the resolvent operator is the space £, exists if and only if
2|r| > | — s+ V/s? — 4tr|. In this case, the resolvent operator is represented by the

infinite band Toeplitz matrix

uy udoud ouy ... uy ui oud uj
) 0 w uw? ud ... 0 wuy ud ud
Alrys,t)t = Lo 0w g 0 0 w w2 ... |, (422
0 0 0 w ... 0 0 0 wu
—s + /82— dtr —s5 — /8% — dtr
where u; = . Ug = . (4.23)
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Proof. By Theorem 4.5.3, we can see that A(r,s,¢)”" is inverse of the matrix
A(r,s,t). But this is not enough to say it is resolvent operator. By Lemma 2.1.1,
2.1.2 and 2.1.3, A(r,s,t)7* € (£, : ), when 2|r| > | — s + +/s2 — 4¢r|. That is for
2lr| > | — s 4 /52 — 4tr|, A(r,s,t)~! is resolvent operator. O

Theorem 4.5.3. Let \ denotes any of the spaces Ly, ¢ or co. The resolvent
operator T over \, where the domain of the resolvent operator is the whole space \,
exists if and only if all the roots of the polynomial are outside of the unit disc
{ze€C:|z|<1}. Thatis T~ € (A: ) if and only if |z] > 1,1 <i<n—1. In

this case the resolvent operator is presented by

T_l = A_l(—Zl,]_)A_l(—ZQ,]_)"'A_l(—Zn_l,1).

an—1
Proof. Suppose all the roots of the polynomial
P(z)=ag+a1z+ -+ a, 12" =a,(z — 21)(2 — 22) - -+ (2 — 2,_1) are outside of

the unit disc. The Toeplitz matrix associated with P can be written as the product
T = a,A(—z1, ) A(=22,1) - - A(—2p_1, 1).

Since multiplication of upper triangular Toeplitz matrices is commutative, we can

see that

,I'_1 = A_1<—Zl, 1)14_1(—22, ].) ce A_l(—Zn_l, 1)

Ap—1

is the left inverse of T'. If we apply Theorem 4.3.1,

oo
1T (=2, 1) SUPZ| |k+1+n
neN o 1% k=1
1
lim ——— =0 for each k,

nroo |25 [FHIET

1
lim E ———  exists, since z; > 1.
n—o00 ‘Zi’k+1+n ’ !

Since all the roots of the polynomial are out side the unit disc, each
T =z,1)e(XA:N), for 1 <i<n-—1.
m

Theorem 4.5.4. Let A € {cy,c}. The resolvent operator A(r,s,t) over A\, where
the domain of the resolvent operator is the space \, exists if and only if

27| > | — s+ /52 — 4tr|. In this case, the resolvent operator is represented by the
infinite band Toeplitz matriz defined (4.22) which are continuous.
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Proof. By Theorem 4.5.3, we can see that [A(r, s, t)]™! is inverse of the matrix of
A(r,s,t). But this is not enough to say it is resolvent operator. By Theorem 4.3.1,
[A(r,s,8)] 7" € (A : \), when 2|r| > | — s+ /s2 — 4tr|. That is for

2lr| > | — s 4+ /52 — 4tr|, A(r,s,t)"" is resolvent operator. If

2|r| < | — s+ v/s% — 4tr|, we know by Theorem 4.3.5, 4.3.9 and 4.4.2 that the
resolvent operator whose domain is the whole space A does not exist. For

2|r| > | — s 4 /52 — 4tr| the continuity of the resolvent operator follows from
Theorem 4.3.3. O

Theorem 4.5.5. Suppose that satisfies the inequality
(1l —r) 47| > —s(1—a)+/s2(1 —a)? —4t(1 — a)(a(l — 1) +1)|. Then the
convergence field of B = ol + (1 — a)A(r, s,t) is c.

Proof. Since B is an upper triangle triple-band Toeplitz matrix, the polynomial P
that corresponds to a upper triangular matrix. So we have

P(z) = (1 —a)tz*+ (1 — a)sz + (a(l — r) + r)z and whose roots 21, 2o such that

1 —(1—a)s+/(1—a)s—4t(l —a)a(l —r) +r

1 2la(l —7) + 7] ;
1 —(-a)s—/I-a)s—atl-a)a(l—r)+7
22 2[a(l —7r) + 7] .

We know from Theorem 4.3.3 that if |1/z;| < 1, then |1/25| < 1. Since B is an
upper triangle triple-band Toeplitz matrix and |1/z;| < 1 for ¢ = 1,2, by Theorem
4.5.3 B has an inverse and B~! € B(c).

Now, we show that B € B(c).

B € B(c) if and only if
(i) supg Y5 gl = (1 =) + [+ [(1 — a)s[ + [(1 — a)t].
(ii) For each j € N, by; — 0 ask — oo.
(iii) Z§bkj —a(l=r)+r+(1—a)s+ (1 —a)t,ask — 0.

Hence, B! € B(c). Since both B and B! are in B(c), cg = c. O



CHAPTER 5

CONCLUSION

In the present work, as a natural continuation of Yildirim (Yildirim, 1998), Altay
and Bagar (Altay and Bagar, 2005); (Bagar and Akhmedov, 2007); (Bagar and
Altay, 2004) and, Akhmedov and El-Shabrawy (Akhmedov and El-Shabrawy,
2011), we have determined the spectrum and the fine spectrum of the upper
double sequential band matrix A(7,s) on the spaces ¢, ¢y and ¢, the lower the
double sequential band matrix B(7,s) on the spaces bv,, {,; and determined the
spectrum and the fine spectrum of upper triangular triple-band matrix A(r, s, t)
over the sequence spaces /£, ¢y and c. Since Akhmedov and

El-Shabrawy (Akhmedov and El-Shabrawy, 2011), and Srivastava and

Kumar (Srivastava and Kumar, 2010a); (Srivastava and Kumar, 2010b) are
interested in the fine spectrum of the operator defined by a lower double sequential
band matrix over the spaces ¢ and ¢, respectively, our work is a natural
continuation of them. In addition to this, we add the definition of some new
divisions of spectrum called approximate point spectrum, defect spectrum and
compression spectrum of the matrix operator and give the related results for the
matrix operator A(r,s), B(r,s) and A(r,s,t) on the spaces £, bu,, ¢y and ¢ which
is a new development for this type works giving the fine spectrum of a matrix

operator on a sequence space with respect to Goldberg’s classification.

Finally, we should note that in the case ry = r and s, = s for all k£ € N since the
operator A(7, ) defined by an upper double sequential band matrix reduces to the
operator U(r, s) defined by the upper triangular double-band matrix, our results
are more general and more comprehensive than the corresponding results obtained
by Karakaya and Altun (Karakaya and Altun, 2010) and since the operator B(7, )

defined by a double sequential band matrix is reduce to the operator B(r, s)

7
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defined by the generalized difference matrix, our results are more general and more
comprehensive than the corresponding results obtained by Furkan et al. (Bilgic

and Furkan, 2008).
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