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ABSTRACT

In the study, we have studied; the sequence space ¢(F,p) of non-absolute type
which is the domain of the double band matrix F' defined by the sequence of the
Fibonacci numbers in the sequence space £(p), where ¢(p) denotes the space of all
sequences * = (xy) such that >, |z;|P* < oo and was defined by Maddox [1]. Fur-
thermore, the alpha-, beta- and gamma-duals of the space ¢(F,p) are determined,
and the Schauder basis is given. The classes of matrix transformations from the
space ((F,p) to the spaces (., ¢ and ¢y are characterized. Additionally, the charac-
terizations of some other classes of matrix transformations from the space ¢(F,p) to
the Euler, Riesz, difference, etc., sequence spaces are obtained from the main results

of the study.

Keywords: Paranormed sequence space, double sequential band matrix, alpha-,
beta- and gamma-duals, matrix transformations of a sequence space.
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FIBONACCI SAYILARI ILE TANIMLANAN CIFT BANT
MATRISININ /(p) MADDOX UZAYI UZERINDEKI
ETKI ALANI
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Ocak 2014

Tez Danigmani: Prof. Dr. Feyzi BASAR

oY/

Yapmis oldugumuz ¢aligmada; Fibonacci sayilarinin bir dizisi ile tanimlanan F'
cift bant matrisinin, Maddox [1] tarafindan tanimlanan ), |zx|P* < oo olacak sekilde
x = (zy) dizilerinin ¢(p) uzay1 tizerindeki etki alam olan mutlak olmayan tiirden
((F,p) dizi uzay1 incelendi. Ayrica, {(F,p) uzaymnm alfa-, beta- ve gamma-dualleri
hesaplandi ve Schauder bazi verildi. ¢(F,p) uzayindan (.., ¢ ve ¢y uzaylarina matris
déniisiimlerinin simiflar1 karakterize edildi. Tlaveten, /¢ (F, p) uzaymdan Euler, Riesz,
fark, vb. dizi uzaylarina bazi matris doniigiimlerinin karakterizasyonlar1 ¢aligmanin

ana sonuclarindan elde edildi.

Anahtar Kelimeler: Paranormlu dizi uzayi, ¢ift sirali bant matris, alfa-, beta-,
gama-dualler, dizi uzayinda matris doniigtimleri.
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LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION

N Set of natural numbers, i.e., N=1{0,1,2,...}

R* Set of non-negative real numbers

R Set of real numbers, the real field

C Set of complex numbers, the complex field

F Collection of all finite subsets of N

w Set of all sequences with complex entries

0 Zero vector in a linear space X

[0) Set of all finitely non-zero sequences

0 Empty set

lso Space of all bounded sequences

c Space of convergent sequences

o Space of null sequences

bs Space of bounded series

cs Space of convergent series

0 Space of absolutely summable sequences

¢, Space of absolutely p-summable sequences

loo(p) Space of sequences () such that supyy |zx[P* < 0o
c(p) Space of sequences (xy) such that |z, — (| — 0, as k — oo
co(p) Space of sequences (z) such that |zg|P* — 0, as k — oo
((p) Space of sequences (xy) such that >, |z;[P* < oo

lml m' section of a sequence x = (zy)

e(k) Sequences whose only non-zero term is a 1 in k' place for each

ke N



1X

{(Az);,} im0
A-transform of a sequence x

Right inverse of a matrix A

Class of all matrices from a sequence space A into a sequence space
1

(Class of conservative matrices

Class of Teoplitz (regular) matrices

Class of Schur (coercive) matrices

Characteristic of a matrix A

a—dual of a sequence space A

[S—dual of a sequence space A

~v—dual of a sequence space A

Set of linear operators from a space X into a space Y
Set of bounded linear operators from a space X into a space Y
Continuous dual of a sequence space X

f—dual of a sequence space X

Domain of a infinite matrix A in a sequence space A

2 k=0



CHAPTER 1

INTRODUCTION

1.1 Preliminaries

Definition 1.1.1. [2, p. 71] A linear space over the field C is a nonempty set X

with the functions

+ o X xX > X,

CxX—-X
such that for all scalars A, p € C and elements (vectors) x,y,z € X we have
(L1) v 4+y =y + =,
(L2) (z+y)+2z=a+(y+2),
(L3) there exists # € X such that = + 0 = z,
(L4) there exists —x € X such that x + (—z) = 0,
(L5) 1 -2 ==,
(L6) Mz +y) =z + Ay,
(L7) (A +p)z = Az + pe,
(L8) A(uz) = (Ap)x.

Definition 1.1.2. [2, p. 74] A subset M in a linear space X is a nonempty subset
of X such that A\x + puy € M whenever z,y € M, for all A\, u € C.

By w, we denote the space of all sequences with complex entries which contains

¢, the set of all finitely non-zero sequences, that is,

w:={r = (vy) 2, € C forall ke N},



where C denotes the complex field and N = {0,1,2,...}. It is routine verification
that w is a linear space with respect to coordinatewise addition and scalar multipli-

cation of sequences which are defined, as usual, by
r+y=(vx) + (y) = (x +yx) and ax = a(zy) = (azy),

respectively; where x = (z3), ¥ = (yx) € w and a € C. By a sequence space, we

understand a linear subspace of the space w.

Definition 1.1.3. [2, p. 25] A metric space is a pair (X, d), consisting of nonempty
set X and a metric (or distance) function d : X x X — R such that for all z, y, z

in X, the following conditions hold:

(M1) d(z,y) =0 if and only if x =y,

(M2) d(z,y) = d(y, ©),

(M3) d(x,2) <d(z,y) +d(y, z), (the triangle inequality).

A metric function is thus a real-valued function defined on pairs of elements of X.

It is important to notice that d is necessarily non-negative.

Example 1.1.4. The most popular metric on the space w is defined by

’-731: - yk’
dw s = )
SAED D rn E

where z = (z¢), y = (yx) € w.

Definition 1.1.5. [2, p. 34] A sequence (x,,) = (21, z2, ...), where z,, € X for every

n, is called a Cauchy sequence in a metric space (X, d) if and only if

Tim. d(Zn, Tm) =0,

i.e. for every € > 0 there exists N = N(e) such that
d(xp, Tm) < €
for all n, m > N.

Definition 1.1.6. [2, p. 34] A sequence (z,,) in (X, d) is called convergent (to z)
if and only if there exists x € X such that d(x,,x) — 0, as n — oco. We then write

x = limx, or x,, — x and call x the limit of the sequence (x,,).



Now, we can give the following theorem.
Theorem 1.1.7. [2, p. 35]

(i) A convergent sequence has a unique limit.

(11) Every convergent sequence is also a Cauchy sequence, but not conversely, in

general.

(111) If a Cauchy sequence has a convergent subsequence then the whole sequence is

convergent.

Definition 1.1.8. [2, p. 36] A metric space (X,d) is called complete metric
space if and only if every Cauchy sequence converges (to point of X). Explicitly,
we require that if d(x,,z,,) — 0 (n,m — oo) then there exists z € X such that

d(zp,z) = 0 (n — 00).

Definition 1.1.9. [3, p. 16] Let X be a real or copmlex linear space and || - ||
be a function from X to the set R of non-negative real numbers. Then the pair
(X, ]|-) is called a normed space and || - || is a norm on X, if the following axioms

are satisfied for all elements =,y € X and for all scalars A:
(N1) ||z|| = 0 if and only if z = 6.

(N2) ||Az| = |A|||l=]|, (the absolute homogenity property).
(N3) ||z +y|| <||z] + ||y||, (the triangle inequality).

Definition 1.1.10. [3, p. 17] Let X be a real or copmlex linear space and || - || be
a function from X to the set R* of non-negative real numbers and p > 0. Then
the pair (X, || - ||) is called a p-normed space and || - || is a p-norm on X, if the

following axioms are satisfied for all elements x,y € X and for all scalars \:
(pN1) ||z|]| = 0 if and only if x = 0,
(pN2) Azl = A7l
(pN3) [l +yll < [l + [[y]l-

Now, we can give some examples for normed and p-normed spaces.



Example 1.1.11. Let us define the relations || - || and || - ||, by

[2lloo = sup|axl,
kEN

Yo lzel? , 0<p<l,

2l = ,
(Sloel)? , 1<p< oo

It is easy to see that || - || satisfies the norm conditions on the space (. Also, |- ||,

defines on the space ¢, p-norm and norm for 0 < p < 1 and 1 < p < 0o, respectively.

Definition 1.1.12. [4, p. 67|

(i) A sequence (x,) in a normed space X is called convergent if X contains an

x such that
lim ||z, —z| = 0.
n—oo

Then we write x,, — z and call = the limit of (z,,).

(ii) A sequence (z,) in a normed space X is called Cauchy if for every ¢ > 0

there is an N such that
[T — zal <€
for all m, n > N.

Definition 1.1.13. [2, p. 96] A Banach space X is a complete normed linear
space. Completeness means that if ||z, —z,|| — 0, as m,n — oo, where x,,, z,,, € X,

then there exists « € X such that ||z, — z|| — 0, as n — 0.

Example 1.1.14. The spaces {, and ¢ are Banach spaces with the norm || - ||«
defined in Example 1.1.11. In the cases 1 < p < oo and 0 < p < 1, the space ¢,
is a Banach space and a complete p-normed space with the norm || - ||, defined in

Example 1.1.11, respectively.

Definition 1.1.15. A linear topological space X over the real field R is said to be
a paranormed space if there is a function g : X — R satisfying the following

conditions for all z,y € X:

(i) If 2 =46, g(x) =0,



(iii) g(z +y) < g(x) + g(y),

(iv) Scalar multiplication is continuous, i.e., |a;, —a| — 0 and g(x, —x) — 0 imply
g(apx, —ax) — 0 for all @’s in R and all 2’s in X, where 6 is the zero vector

in the linear space X.

If g is a paranorm on X, then (X, g) is called a paranormed space. A paranorm ¢

is called total if g(x) = 0 implies x = .

Definition 1.1.16. [2, p. 87| Let (X, g) be a paranormed space. A sequence (by)
of elements of X is called a Schauder basis for X if and only if, for each x € X
there exists a unique sequence () of scalars such that x = ), Apby, i.e such that

lim g <:1: — Z )\kbk> =0.

k=0

Example 1.1.17. Let ¢™ be the sequence with e{” = 1 and ein) = 0 whenever

k # n for all n € N. Then (™)X is a Schauder basis of w. More precisely,

n=0
every sequence r = (xj)72, € w has a unique representation z = ), rre®) that is

2™ =z as n — oo, for 2™ = o zre™ | the m-section of z.

Definition 1.1.18. [2, p. 102] Let X, Y be linear spaces. Then, a function T :
X — Y is called a linear operator (or map, transformation) if and only if for all

1,9 € X, and all scalars A,
T(xy 4+ x9) = Tay + Ty and T(Axy) = NT'zy.

Definition 1.1.19. [2, p. 102] f is a linear functional on X if f : X — Cis a

linear operator, i.e. a linear functional is a complex-valued linear operator.

Definition 1.1.20. [2, p. 103] A linear operator 7' : X — Y is called bounded if

and only if there exists a constant M such that
| Tx|| < M||x|| for all x € X.
Note that a bounded functional f on X satisfies
|f(@)] < M|z

for all z € X.



Theorem 1.1.21. [2, p. 104] Let X, Y be two normed spaces and T : X —Y be a

linear operator. Then, T is continuous on X if and only if it is bounded.

Definition 1.1.22. [2, p. 105] Let X, Y be linear spaces. Then £(X,Y’) denotes

the set of all linear operators on X into Y.

Definition 1.1.23. [2, p. 105] The set £(X,C) of all linear functionals on X is
usually denoted by X' and is called the algebraic dual of X, that is

X' = {f|f:X — C,lincar}.

Definition 1.1.24. [2, p. 105] Let X, Y be normed spaces. Then B(X,Y") denotes

the set of all bounded (i.e. continuous) linear operators on X into Y.

Definition 1.1.25. [2, p. 106] The set B(X, C) of all bounded linear functionals on
X is called the dual (or continuous dual) of X and is denoted by X*, that is

X* = {f]f:X — C, linear and bounded} .
Definition 1.1.26. [3, p. 65] The f—dual X7 of a sequence space X is defined by
X' = {{f (™)} fex}.
Definition 1.1.27. [2, p. 106] Let 7" € B(X,Y’). Then the norm of T is defined as
T
T = supM < 00.
=20 2]
That the supremum is finite which follows from the fact that

|Tx| < M| z| when T" € B(X,Y).

Definition 1.1.28. [4, p. 75| A norm || - || on a vector space X is said to be

equivalent to a norm | - [|[p on X if there are positive number a and b such that
allzllo < flz]l < bllzllo

for all x € X. This concept is motivated by equivalent norms on X define the same

topology for X.

Theorem 1.1.29. [4, p. 75] On the finite dimensional vector space X, any norm

| - || is equivalent to any other norm || - ||o.



Definition 1.1.30. A sequence space A with a linear topology is called a K-space,
provided each of the maps ¢; : A — C defined by ¢;(x) = z; is continuous for all
t € N; where C denotes the complex field. If sequence space A is complete and
convergence in A requires coordinatewise convergence, then A is called F'K-space.

An F K-space whose topology is normable is called a BK-space.

Definition 1.1.31. [5] Let d be a metric on a linear space X. If algebraic operations
are continuous, namely (x,,) and (y,) are two sequences in X, and («,) is a sequence

of scalars such that

lim, oo d(zp,z) =0 and lim, oo d(yn,y) =0 implies lim, oo d(2p + Yn,x +y) =0,

lim,, oo Oy, = @ and lim, o d(zp,2) =0 implies lim, o d(apx,, az) =0

then, (X, d) is called linear metric space.

Definition 1.1.32. [6] If X is a complete linear metric space then it is called

Frechet sequence space.

Definition 1.1.33. [5] An FK space X D ¢ has AK if, for every sequence z =
(z1) € X, z =Y, 2™, that is

li [m] — (k) —

and X has AD if ¢ is dense in X. If an F'K space has AK or AD we also say that
it is an AK or AD space.

Remark 1.1.34. [5] Every AK space has AD. The converse is not true in general.

Now, let we define classical sequence spaces.
We write (., ¢ and ¢y for the spaces of all bounded, convergent and null

sequences, respectively, that is

loo = {x:(xk)Ew:sup|xk|<oo},
keN

c = {x:(xk)Ew:klim|xk.—l|:()forsomel€@},
—00

o = {x:(xk)szlimxk:0}.
k—ro0

Also by bs, cs, {1 and /,,; we denote the spaces of all bounded, convergent, absolutely



convergent and p—absolutely convergent series, respectively, that is
n

Zl’k < OO} ,

k=0
n

Z Ty — l

l = {m—(xk)Ew:Z|xk\<oo},

k

b, = {x:(xk)Ew:Z|wk|p<oo};

k

neN

bs = {x: () € w : sup

n—oo

cs = {m:(xk)ew: lim

:Oforsomele(C},

where 0 < p < .

Assume here and after that (py) be a bounded sequence of strictly positive real
numbers with suppy = H and M = max{l, H}. Then, the linear space ¢(p) was
defined by Maddox [1] (see also Simons [7] and Nakano [8]) as follows:

Up) = {x:(xk)Ew:Z]xk|p’“ <oo}, (0 < pp < H < 0)
k
which is the complete space paranormed by

1/M
glz) = (Z mw) .

For simplicity in notation, here and in what follows, the summation without limits

runs from 0 to co. Also other well-known paranormed spaces defined by Maddox [1]

as follows:
lo(p) = {m = (xr) € w: sup|zgP* < oo} ,
keN
c(p) = {x = (x) Ew: klim |z, — [|P* = 0 for some [ € @} ,
—00
co(p) = {x = (zg) €Ew: kh—>I£lo |y Pk = 0} :

We assume throughout that p; ' + (p},)~' = 1 and denote the collection of all finite
subsets of N by F and use the convention that any term with negative subscript is

equal to naught.

Definition 1.1.35. [3, p. 21] For the sequence spaces A and p, the set S(A, p)
defined by

S\ p) = {z= () €w: 2z = (vgzx) € p for all x = (z1) € A} (1.1.1)



is called the multiplier space of A and pu. With the notation of (1.1.1), the alpha-,
beta- and gamma-duals of a sequence space A which are denoted by A%, \? and \7,

respectively, are defined by
M =8\ ),  M=8(\cs) and A\ =S()\ bs),

that is

Y {x:(xk)ew:2|xkyk|<oo for all y:(yk)e)\},

k

Noo= {x:(xk)Ew: (Zxkyk) € ¢ for all y:(yk)eA},
neN

N = {x:(:vk) cw: (Z%%) € ly forall y= (y) G)\}.
neN

Theorem 1.1.36. [9, pp. 106, 108] Let X be an F K —space which contains ¢. Then,
(i) M c X\,

(i) If X\ has AK, \° = M.

(iii) If X has AD, \° = \7.

(iv) M = X* iff X has AD.

Definition 1.1.37. [3, p. 31] Suppose that A = (a,) is an infinite matrix of real
or complex numbers a,; and x = (z) € w, where k,n € N. Then, we obtain the

sequence Ax, the A-transform of x, by the usual matrix product

Qoo Qo1 Qo2 - Qok - Zo

a1 aixz Q2 -+ A T

Qoo QA21 Q22 -+ Q1 - X2
Ax =

Apo QAp1 Gp2 -+ Qpg - Tk

ApoTo + Ag1T1 + QgaXos + -+ - + Qop T + - - -

a10Zo + a111 + 122 + -+ A1Tr + -

Anolo + Ap1T1 + ApoXo + -+ - + QppTi + -
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Ek Aok Tk

Zk ATk

Zk kT

Hence, in this way, we transform the sequence x into the sequence space Ar =
{(Ax),} with

(Az), = Zankxk, (n € N), (1.1.2)

k

provided the series on the right hand side of (1.1.2) converges for each n € N. Let
A and p be any two sequence spaces. If Az exists and is in p for every sequence
x = (zx) € A, then we say that A defines matrix mapping from A into p, and we
denote it by writing A : A — u. By (A, ), we denote the class of all matrices A
such that A : X\ — p. Thus, A € (\: p) if and only if Ax exists i.e. A, € \? for all

n € N and is in p for all x € A\, where A,, denotes the sequence in the n-th row of A.

Definition 1.1.38. For any sequence space A, the matrix domain A4 of an infinite

matrix A is defined by
Ao = {z=(vp) €ew:Ax € \}.

Definition 1.1.39. Let A = (a,x) be an infinite matrix of complex numbers. If the
A-transform of any convergent sequence of complex numbers exists and converges
then, A is called conservative matrix. By (c : ¢), we denote the set of conservative

matrices.

Theorem 1.1.40 (Kojima-Schur). /3, p. 35/ A = (ank) is a conservative matriz if
and only if

(i) [|All = suppen 2_y, lank| < oo,
(11) im,, o anp = oy, for each k € N,
(4ii) limy, oo Yy ang = .

Definition 1.1.41. Let A = (a,x) be an infinite matrix and (z;) € w. If A is

conservative and preserves limits, i.e. xp — z, as k — oo, implies (Ax), — x, as
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k — oo, where (Ax), is the A-transform of the convergent sequence (zy), then A is

called regular matrix. By (c¢: ¢;p), we denote the set of all regular matrices.

Theorem 1.1.42 (Silverman-Teoplitz). [3, p. 35] A = (ank) is a reqular matriz if
and only if

(1) 1Al = suppen 2, |ank| < oo,
(11) lim,, o anp = 0 for each k € N |

(ii) limyp oo 3 e = 1.

Theorem 1.1.43 (Schur matrix). [3, p. 36] A = (ank) € (U : ©) if and only if
(1) The series Y, |an,| must be uniformly convergent with respect to n.

(11) There exists ay € C such that a,, — ag, asn — 0.

Definition 1.1.44. [3, p. 38] The characteristic IC(A) of a matrix A = (an) is
defined by

KA o= Jim 3o =37 (i )
k

k

which is a multiplicate linear functional. A matrix A is called coregular if IC(A) # 0

and is called conull if K(A) = 0.

Remark 1.1.45. [3, p. 39] The Silverman-Teoplitz theorem yields for a regular matrix
A that IC(A) = 1 which leads us to the fact that Toeplitz matrices form a subset of
coregular matrices. One can easily see for a Schur matrix A that K(A) = 0 which

says us that coercive matrices for a subset of conull matrices.

1.2 Some Inequalities

Here, we give the inequalities which will be used in the following chapters.

(1) Triangle inequality: Let a, b be any two complex numbers. Then, the

inequality
|a+ 0] < a| + ||

holds.
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(2) Let a,b € C and 0 < p < 1. Then we have the inequality

la+bJP < |al” + [b]". (1.2.1)

(3) Minkowski’s inequalty: Let 1 < p < oo and g, Z1, ..., T, Yo, Y1, ---» Y € C.

Then we have
o0 1/p 0 1/p 0 1/p
(Z |7k + yk\p> < (Z !mk’p> + (Z ’yk’p) :
k=0 k=0 k=0
Also, if z,y € £, then x +y € £, and we can write

[+ yllp < [l + [1yllp-

(4) Let a, b be any camplex numbers and B be any positive number. Then, the

inequality
lab| < B (¢aB—1|p' + |b|p> (1.2.2)

holds, where p > 1 and p~ ' 4+p/ ' = 1.



CHAPTER 2

CHARACTERIZATIONS OF F = (f,x) MATRIX TO
SOME MATRIX CLASSES

Consider the sequence (f,,) of Fibonacci numbers defined by the linear recur-
rence relations
1 , n=0,1,

fn—1+fn—2 9 TLZQ

fn =

Let us define the double band matrix F' = (f,x) by the sequence (f,), as follows:

_fnt1 k=n-—1

fno
= _fn -
fuk : A= k=n, (2.1)
0 , 0<k<n—1lork>n

for all k,n € N. That is to say that

% 0 0 0 - 1 0 00
1
L )
_f_i f_; 0O 0 --- —2 L 00
0 0 —% % 0 0 _g %

Now, let us investigate the classes of our matrix F' = (f,;) belonging to. Let

us consider the entries of the sequence (f},)
fo=fi=1 fo=2 f3=3, fi=2>5,..and general term f, = f,—1 + fn_2.

It is easy to see that |—f,11/fa] < 2 and |f,/ foi1| < 1. Also, we have |—f,11/fn] —
1,618... and |f,,/ foi1| — 0,618...; as n — oc.

13
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(i) Firstly, let us check the norm of the F' = (f,;) matrix.

||F|| = Sup2|fnk|—sup Z |fnk|

neN neN k=n

o ( fn+1 fn
= sup —
neN

f n f n+1
(ii) Since almost all of the elements of the column vectors of the matrix F' = (f,x)

+

)<3<oo.

are zero,
lim f,, =0 (2.2)
n—oo

for every k € N.

(iii) Let us compute the value of the expression ), fur, as n — oco.

LB IR

k=n—1
. fn+1 fn )
= lim | — + = —1.
n—0o0 ( fn fn+1

(iv) Now, we show whether the series ), | f,x| is uniformly convergent with respect
to n or not. For this, it is sufficient to analyze the values of lim,, o D, | fuk

and ), lim,_, | fox|. Then, we have

. . fn+1 fn )
lim E wkl = lim [ |———| + =22 2.3
e e n—r00 (‘ In frt1 (2.3)
and by (2.2) that
5 lim |f.x] = 0. (2.4)
k: n—oo

Since (2.3) and (2.4) not equal to each other, the series ), |fux| is not uni-

formly convergent with respect to n.

(v) Finally, we find the characteristic K(F) of F' = (f,;) matrix that

By means of (i)-(iii), (iv) and (v) we can say that; F' = (f,x) is a conservative matrix
but not regular matrix, it is not Schur matrix and it is coregular matrix but not

conull matrix, respectively.



CHAPTER 3

THE SEQUENCE SPACE /((F,p)

We employ the Fibonacci matrix F' = (f,x) as in (2.1), where k,n € N. Then,

we obtain the sequence F'z, the F-transform of x, by the usual matrix product

Zo
L0 0 - 0 0
L L g ... 0 0 o
fi f2 Lo
_I L2 ..
Fr — 0 fa  f3 0 0
0 0O 0 ... —Ier e Tkt
Tk St
. . Tk
fo
f1
$1+—l’2
_ Jrr1 I
fr e Tk +fk+1 k

where z = (z;) € w. Hence, we transform the sequence z into the sequence Fz =

{(F)i}-

We can define the sequence y = (yx) by the F-transform of the sequence

r = (), L.e.,

= (Fa)p = —fkﬂ Tp-1+ Je T (3.1)
Jr fr1
for all £ € N. At this situation we can express z in terms of y that
~ R
k+1
Z f]+1 ( )

15
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for all k € N. The inverse F~! = (¢,;) of the matrix F can be expressed as follows

2
Jw0<k<n,
Cope 1= kflt1
0 , k>n

for all k,n € N.

The main purpose of this study is to introduce the domain ¢(F, p) of the double
band matrix F' in the sequence space £(p), that is to say that

E(F,p)::{x:(xk)Ew:Z— pk<oo},

k
where 0 < pp < H < oo. In the case p, = p for all k£ € N, the space ¢(F,p) is

k k
fHﬂUk 1 +f—Ik

Tk fres1

reduced to the space (,(F), i.e.,

N , _fk+1 Jr
0,(F) = {x—(xk)ew.zk:‘ 7. Tp— 1+fk+1xk

p<oo}, (p>1).

Furthermore, the alpha-, beta- and gamma-duals of the space ¢(F, p) are deter-
mined, and the Schauder basis is constructed. The classes of matrix transformations
from the space ¢(F, p) to the spaces £, ¢ and ¢ are characterized. Some other classes

of matrix transformations are also characterized by means of a given basic lemma.

Theorem 3.1. ((F,p) is a linear, complete and metric space paranormed by h de-

fined by
e 1/M
) : (3.3)

1 I
<Z‘_ Bt g

where 0 < pr. < H < oo for all k € N.

Proof. To show the linearity of the space with respect to the coordinatewise addition
and scalar multiplication is trivial. Firstly, we show that ¢(F,p) is a paranormed
space with the paranorm h defined by (3.3).

It is clear that h(f) = 0, where § = (0,0,...) and h(z) = h(—z) for all

z € ((F,p).
Let © = (x),y = (yx) € (F,p). Then, by Minkowski’s inequality and the
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inequality (1.2.1), we have

[ frt1 Ir o] MM
h(r+y) = - Tp—1 +Yk—1) + T +y
( ) ; A (Th—1+Yr—1) fk+1( kT Uk) }
_ 1/M
pr/M\ M
. 7fk+1zk71+ Tk o — fk+1yk71+ Tk e
= Tk Jr+1 Tk Jrt1
- v 1/M
frt1 Pi/M Jrr1 fr Pi/M
< - Tg-1+ x + Yk—1 + Y
;( o N et fo N R
- /M w1 1/M
Srt1 fr pr/M ‘ frt1 I pi/M
< - Tkp—1 Tt x + - Yr—1 + Y
;( o TN e " ; o N R
1/M 1/M
Jrr1 Ir Pk frt1 Pr
= Tp—1+ x + -1+
<§kj fo T e Xkl A T T e
= h(z)+h(y)

Also, since the inequality |a|P* < max{1, |a|™} holds for a € R, we get

f ; o] 1M
B k1 K
hlaz) = [gk 7. (g )+fk+1 (axy)
e\ /M
) (23’ et )

< max{l, |a|}h(z).

oo
n=0

Let (o) be a sequence of scalars with «,, — «, as n — oo and {x(”)} be
a sequence of elements 2™ € ((F,p) with h [a:(” — 3:] — 0, as n — oo. Then, we

observe that

0<hlaa™ —az] = hlaa™ —az™ +az™ — az] (3.4)
= h(on —a)2™ +a (2™ —2)]
< hm%_aﬁMQ+hpmﬁm_xﬂ
= Jay —alh [z] + max{1, |a|}h [+ — 2] .

If we combine the facts a,, — a — 0, as n — oo and h [x(”) — :E} — 0, as n — 00
with (3.4) we obtain that h [a,,2™ — ax] — 0, as n — co. That is to say that the
scalar multiplication is continuous. This shows that h is a paranorm on ((F, p).

Moreover, if we assume h(z) = 0, then we get

S Jx 0

——Tg—1 T Tr| =

Jr Jrr
for each £ € N. If we put k = 0, since x_; = 0 and fo/f1 # 0, we have o = 0.

For k =1, since 2o = 0 and f1/fs # 0, we have x; = 0. Continuing in this way, we
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obtain zy = 0 for all £ € N. Namely, we obtain 2 = 6 = (0,0, ...). This shows that
h is a total paranorm.

Now, we show that ¢(F,p) is complete. Let (z") be any Cauchy sequence in
((F,p); where 2™ = {x(() ),xgn), xé"), .. } Then, for a given € > 0, there exists a
positive integer no(e) such that [h (z" — )] < &M for all n,m > ny(e). Since for

each fixed kK € N

[(Fa™) — (Fa™)i[™ < Y [(Fam)p — (Fa™ )™

Pk

_ Z fk+1 (m Jr 2 |:_fk+1$(m) n Ir x(m):|
k fk - fk+1 fio N fe F
Jrv1 [ () () Ix n) _—
= > T |:xl(cfl Ty } + Fot [351(@ -z )}
- 2 ket 1

= [h(@" —am)M <M

for every n,m > ng(g), {(Fa%), (Fz')y, (F2?)g, ...} is a Cauchy sequence of real
numbers for every fixed £ € N. Since R is complete, it converges, say (Fz");, —
(Fx), as n — oo. Using these infinitely many limits (Fx)o, (Fz)1, (Fx)s,... we
define the sequence {(Fz)o, (Fx)1, (Fx)s,...}. For each k € N and n > ng(e)

h(a" — )M = Z “fk“ o — | + Ji o — ]

fk+1

Pr

Pk

_ Jet1 2 fr 2 {_@ e }
Z‘ 1+fk+1 Jr e 1+fk:+1xk

= Z| FJ? k—(FSL’)k‘pk<€
k

This shows that ™ — x € ¢(F,p). Since {(F,p) is a linear space, we conclude that
x € ((F,p). It follows that 2" — z, as n — oo in ¢(F,p) which means that ¢(F|p)

is complete.

Now, one can easily check that the absolute property does not hold on the
space ((F,p), that is

; ; o\ /M ; 5 o\ /M
h(z) = _ Skl k L
(@) (zk: fo T R > s <Zk: Jr - 1‘+f+ 4 )
= h(lz)),
where |z| = (|xg|). This says that ¢(F,p) is the sequence space of non-absolute

type. O
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Theorem 3.2. Convergence in ((F,p) is strictly stronger than coordinatewise con-

vergence, but the converse is not true, in general.

Proof. First we show that h(z" — x) — 0, as n — oo implies x,(:) — T, AS N —> OO

for all k£ € N. If we fix k, then we have

Pk

Pk

IN

Jrr1 ) e ( Jr1 Ik )
0 -+, — | T+ —2
‘ o TN e R fo N fe
3 —fkﬂwgi)ﬁr Ji 2 (_fk+190k_1Jr Ji $k)

- Jr k1 Jr Jes

Pk

= S| () e (- )

- +
= [h(z"—a2)]".

Hence, we have for £ =0

‘_ﬁ m) . fo (n)_( i fo )

lim =0,
n—oo

T+ T — X1+ %o

fO 1 fO fl

that is, — 0,asn — oo and fo/fi =1 #0, then ‘x(()”) — x()’ — 0, as

4 =)
(n)

n — oo. Likewise, for each £ € N, we have ‘xk - xk) — 0, as n — oo.

Now, we show that the converse is not true in general. We assume x,gn) — Tk,

as n — 00. Then, there exists an N € N such that ’x;”) — xk’ < 1 for each fixed k

and for all n > N. Therefore, we see that

0 < h(z"—2x)= [Z ‘—@ (131(:—)1 — xk_1> 4 i <xl(€”) _ a:k)
k

Ir Jr+1
i} 1M
M
B e ) e (o) P/
= Z — Tl T )+ —— (7, Tp
pall LI Jr1
i} S UM
fr1 ( (n) ) P/ M v [ P /M
< — Ty 4 — Tp— + (x —x
; | S U fop VBT _
_ ka " e 1/M fk . e 1/M
< ——(x"_ —:U,> + —(a:n—x>
; i Rt ; fra VR

f Pk Dr 1/M f Pk Pr 1/M
k+1 (n) k (n)

< — | |7yl — T- + — |z, —=x

< Z _fk:+1 Pr 1/M+ Z fe | v

- - T ~ | it
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for all K and n > N. Since |—fri1/fr| — 1.6 and |fi/frs1| — 0.6, as k — oo,
h(z™ — x) in (3.5) does not converge for each fixed k € N and for all n > N. This
implies that the converse is not true. Let us consider the elements of the sequence
z™ be equal then we observe h(z™ — x) = 0, that is to say that coordinatewise
convergence requires convergence. Hence, we can say that the converse is not true

in general. O]
Theorem 3.3. ((F,p) is a K-space.

Proof. Firstly, we show that ¢;(z) = x; is linear for all : € N. Let x,y € ¢(F,p) and
« € C. Then, we get

gi(z+y)=(r+y)i=x+vyi =q(z)+qy) and ¢(azx)= (ax); = az; = ag;(x)

for all ¢ € N. Hence, ¢; is linear.

Now, we prove that ¢; is continuous. For this, it is sufficient to show that ¢; is

bounded.
Let x € ¢(F,p) be any vector. Then, since |¢;(z)| = |x;| for all i € N one can see

that

T
< oup ¥l

fall = sup AL gy Tl
o0 |7l o)

= =1 < o0,
220 1Tllerpy a0 |2llerp)

i.e. ¢; is bounded. Hence, p; is linear and continuous functional. That is to say that

((F,p) is a K-space. O
Theorem 3.4. ((F,p) is an FK-space.

Proof. 1t is easy to see by Theorems 3.1 and 3.2 that ¢(F,p) is complete sequence
space and convergence requires coordinatewise convergence. Hence, ((F,p) is an

F'K-space. O

Theorem 3.5. (,(F) is the linear space under the coordinatewise addition and scalar

p> 1/p

multiplication which is a BK -space with the norm

]l = (Z

k

—fk+1.1'k,1+ fk T

fk fk+1

where x = (xy) € Lp(F) and 1 < p < oo.



21

Proof. Since the first part of the theorem is a routine verification, we omit the detail.
Since ¢, is a BK-space with respect to its usual norm and F' is a triangle matrix,
Theorem 4.3.2 of Wilansky [9, p. 61] gives the fact that ¢,(F') is a BK-space, where

1 < p < co. This completes the proof. O
Theorem 3.6. (,(F) is a Frechet space.

Proof. 1t is easy to see that ¢,(F') is a linear, complete and metric space. We only
need to prove that ¢,(F') is a linear metric space. Let (x,,) and (y,,) be two sequences
in ¢,(F), and (o) be a sequence of scalars such that d(z,,z) — 0, d(y,,y) — 0 and

a, — a, as n — 0o. Then, we get that

0 < li_)m d(zp + Yn,x +y) = li_)m zn + yn — (x + )] (3.6)
< tim (Jan —all + 3 — ol

= lim d(x,,x) + lim d(y,,y) =0,
n—oo

n—o0

and

0 < lim d(apzy,,ax) = lim ||a,z, — azx|| (3.7)
n—oo n—oo

= li_)m | (an, — @)y, + (), — )|

< lim (Ja, —alllz, || + |afl[zn — )
n—oo

= lim |o, — of||z,|| + |of lim d(z,,z) = 0.
n—oo n—o0

It is easy to see from (3.6) and (3.7) that ¢,(F') is a linear metric space. Hence,

(,(F) is a Frechet space. O

With the notation of (3.1), the transformation 7" defined from ((F,p) to ¢(p)

by x +— y = Tz is linear bijection, we have the following

Theorem 3.7. The sequence space {(F,p) of the non-absolute type is linearly para-

norm isomorphic to the space {(p), where 0 < pp < H < oo for all k € N.

Proof. To prove the theorem, we should show the existence of a linear bijection
between the spaces ((F, p) and {(p) for 0 < pp < H < 0o0. Let T be a transformation
from ¢(F, p) to £(p) such that

T : (F,p) — L(p)

T — Tox=Fx=y.



22

The linearity of T is trivial. Further it is obvious that x = 6 whenever Tz = 6,

hence T is injective. Let y € ¢(p) and define the sequence x = () as in (3.2). Then

we have
_ e I
(Fo)e = fo o fk-i—l
fk+1 fk+1
Z fnfn-i—l fk-l—l Z fnfn+1
flcflc+1 fkfk+1

= nt Un
; fnfn-H n—0 fnfn-i—l
= Yk

for all £ € N, which leads us to the fact that

f Lo 1/M 1/M
(Z ‘—ﬂ Tp—1 + > = <Z \yk\pk> = h(y) < oo.
k

f k+1
Thus we deduce that « € ¢(F,p), T is surjective and paranorm preserving. Hence, T

is a linear bijection and so the spaces ¢(F, p) and ¢(p) are paranorm isomorphic. [J

Theorem 3.8. Let 0 < pp < H < o0 and A\, = (Fx);, for all k € N. Define the
sequence b*¥) = {b,(f)} of the elements of the spaces ((F,p) by
neN

i 0<n<k
bk = fngw ’ —k— ’ (3.8)
, n>

for every fivred k € N. Then, the sequence {b(k)}keN is a basis for the space {(F,p)

and any x € L(F,p) has a unique representation of the form

r=) Ab®. (3.9)
k
Proof. 1t is clear that {b® }k y C U(F, p), since
Fb® =e® cf(p), keN

for 0 < pr < H < 00. Let o € ¢(F,p) be given. For every non-negative integer m,

we put

Zlml — Z )\kb(k).
k=0
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Then, we have

Falm™ =3 "0 P =3 " 2e® =3 " (Far)e®
k=0 k=0 k=0
and
0 , 0<i1<m
{F (x—x[m])}i: (i,m € N)
(Fx); i>m

Given € > 0, then there is an integer mq such that for all m > m,

- 1M
(Z y(m)iypk) < g

Therefore,

00 /M 00 1/M
bz — o) = (D(Fmpk) < (z |<Fx>i|pk) -

1=mg
for all m > my, which proves that = € ¢(F,p) is represented as in (3.9).

Let us show the uniqueness of the representation for € ¢(F, p) given by (3.9).
Suppose, on the contrary, that there exists a representation x = ), wib™ . Since
the linear transformation T from ¢(F,p) to ¢(p), used in the proof of Theorem 3.7
is continuous, we have that

(Fx), = Z Ak (Fb(k))n = Zukeff) = lin
k

k

which contradicts the fact that (Fx), = A, for all n € N. Hence, the representation

in (3.9) of x € {(p) is unique. This completes the proof. ]



CHAPTER 4

THE ALPHA-, BETA- AND GAMMA-DUALS OF THE
SPACE ((F,p)

Prior to giving the alpha-, beta- and gamma-duals of the space ((F,p), we

quote some required lemmas for proving our theorems.

Lemma 4.1. [10, Theorem 5.1.0] Let A = (an) be an infinite matriz over the

complex field. The following statements hold:

(i) Let 0 < pr, <1 for all k € N. Then, A € ({(p): {1) if and only if

Pk
Ank < 0.

neN

sup sup
NEF keN

(i) Let 1 < pp, < H < oo for all k € N. Then, A € ({(p) : ¢1) if and only if there

exists an integer B > 1 such that

!
Dy

sup Z < 00. (4.1)

NeF L

E ankB’1
neN

Lemma 4.2. [11, (i) and (ii) of Theorem 1] Let A = (anr) be an infinite matriz

over the complex field. The following statements hold:
(i) Let 0 < pr <1 for all k € N. Then, A € ({(p) : L) if and only if

sup |an,["* < oo. (4.2)
n,keN

(i1) Let 1 < py < H < o0 for all k € N. Then, A € ({(p) : l) if and only if there

exists an integer B > 1 such that

neN

sup anp Bt i < 00. 4.3
> lanB| (4.3)
k

24
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Lemma 4.3. [11, Corollary for Theorem 1] Let A = (anx) be an infinite matriz over

the complez field and 0 < p, < H < oo for all k € N. Then, A € ({(p) : ¢) if and
only if (4.2), (4.3) hold, and
lim a,, = B for each k € N (4.4)
n—o0

also holds.

Let us define the sets Ey(p), E2(p), E3(p), Ea(p) and Es5(p), as follows:

) Pk
Ei(p) = <a=(ar) €w: supsup Z g, < ooy,
NEF keN | Sox JeJr+1
£ g
Es(p) = <a=(ap) €Ew: sup "l 4, BT < o0y,
2(p) () Ne]—'z %fkfk-&-l "
n 2 Pk
Es(p) = <a=(ax) Ew: sup il a;| < oo,
kneN | = Jifrn
E = Sa=(a;) €Ew: a; is convergent
4(p) { ( k‘) kafk+1 i g }
n p;c
Es(p) = a = (ag) € w :sup e < 00
() () neNZ kafk—f—l

Because of Part (i) can be established in a similar way to the proof of Part

(ii), we give the proof only for Part (ii) in Theorems 4.4 and 4.5, below.
Theorem 4.4. The following statements hold:

(i) Let 0 < pr, <1 for all k € N. Then, {{(F,p)}* = E1(p).

(11) Let 1 < py < H < oo for all k € N. Then, {{(F,p)}* = Ex(p).

Proof. Let us take any a = (a,) € w. By using (3.2), we obtain that

n+1
ATy = ayr = (By), foralln €N, 4.5
kafk-i—l yr = (Ey) (4.5)
where E = (e,) is defined by
2
| e 0sksn
0 , k>n
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for all k,n € N. Thus, we observe by combining (4.5) with the condition (4.1) of
Part (ii) of Lemma 4.1 that ax = (a,z,) € ¢; whenever x = (z) € ((F,p) if and
only if Fy € ¢, whenever y = (yx) € {(p). This leads to {{(F,p)}* = Es(p), as

asserted. O
Theorem 4.5. The following statements hold:

(i) Let 0 < pp <1 for all k € N. Then, {{(F,p)}’ = E3(p) N Ex(p).
(i) Let 1 < py < H < oo for all k € N. Then, {{(F,p)}’ = E4(p) N E5(p).

Proof. Take any a = (a;) € w. Then, one can obtain by (3.2) that

n

Zajxj—z(z o ) Z(Z G ) ve= Dy (46)

§=0 §=0

for all n € N, where D = (d,) is defined by

n fj2+1 .
Zj:k frefr+1 a 0<k<n,

dpy, = (4.7)

0 , k>n
for all n, k € N. Thus, we deduce from Lemma 4.3 with (4.6) that ax = (a;z;) € cs
whenever © = (x;) € ((F,p) if and only if Dy € ¢ whenever y = (yx) € {(p).
Therefore, we derive from (4.3) and (4.4) that

Supz zn: fkj+1

neN fk-i—l
Z J+1
flcfk+1

This shows that {¢(F,p)}* = E4(p) N E5(p). O

Theorem 4.6. The following statements hold:

(1) Let 0 < py <1 for all k € N. Then, {{(F,p)}" = E5(p).
(i1) Let 1 < py < H < 00 for all k € N. Then, {{(F,p)}" = E5(p).

Proof. From Lemma 4.2 and (4.6), we obtain that ax = (ajz;) € bs whenever
r = (x;) € {(F,p) if and only if Dy € (, whenever y = (y;) € {(p), where D = (d,)
is defined by (4.7). Therefore we obtain from (4.2) and (4.3) that {{(F,p)}" =
Es(p) . pe <1,
o(p) P = , as desired. O
E5(p) y Pk > 1



CHAPTER 5

MATRIX TRANSFORMATONS ON THE SPACE /((F,p)

In this section, we characterize some matrix transformations on the space
((F,p). Since the cases 0 < pr < 1 and 1 < p, < H < oo are combined, Theorem
5.1 gives the exact conditions of the general case 0 < pr < H < oo. We consider
only the case 1 < pr < H < 0o and omit the proof of the case 0 < pp < 1, since it

can be proven in a similar way.
Theorem 5.1. The following statements hold:

(i) Let 0 < pp <1 for all k € N. Then, A = (an) € (U(F,p) : L) if and only if

Pk

00 2
H—l
su < 00, 5.1
2 i 5-1)
+1
5.2
kafk—i—l (5:2)

(1) Let 1 < pp < H < oo forall k € N. Then A = (an;) € (U(F,p) : ) if and
only if (5.2) holds and there exists an integer B > 1 such that

sup Z

i < 00. (5.3)

pk
neN

Proof. Let A € ({(F,p) : ls) and 1 < py < H < oo for all k € N. Then, Az exists
for every # € ¢(F,p) and this implies that A, € {{(F,p)}? for each fixed n € N.
Therefore, the necessities of (5.2) and (5.3) are immediate.

Conversely, suppose that the conditions (5.2) and (5.3) hold, and take any
x € U(F,p). Since A, € {{(F,p)}? for every n € N, the A-transform of = exists. By
using (3.2), we obtain that

m m J m m
j L = ]—H J— J+1 '
jgo QL Z Z flcfk+1 Yk Qnj kz Zk fkkarl AnjYk (54)

7=0 k=0

27
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for all m,n € N. Taking into account the hypothesis, we drive from (5.4), as m — oo

that

Zamxl ZZ 7 }H aniyy for all n € N. (5.5)
kJrt1

By combining (5.5) and the inequality which holds for any complex numbers a,b
and any B > 0

lab| < B (\aB—lv" n |b|”> ,

where p > 1 and p~! + p'~! = 1, we obtain that

]+1
sup an;T;| = sup Ui Yk
Sup |2 ansts| = S szk v
< sup JH Y
nGNZ "
Py
< sup ) B i an; B7Y 4 |yl
neN; Z < frfri1 i
p/
= B |sup i +sup » |y | < .
neNg Z fkfk:—i—l nENZ
This shows that Ax € /. O

Theorem 5.2. The following statements hold:

(i) Let 0 < pr, < 1 for all k € N. Then, A = (an) € (((F,p) : ¢) if and only if
(5.1) and (5.2) hold, and there is a sequence o = (o) of scalars such that

lim i =ayg forall ke N. 5.6

”*”kafkﬂ e (5:6)

(i) Let 1 < pr, < H < oo for all k € N. Then, A = (an) € (((F,p) : ¢) if and
only if (5.2), (5.3) and (5.6) hold.

Proof. Let A € ({(F,p) : ¢) and 1 < pp < H < oo for all k£ € N. Then, since the
inclusion ¢ C /4, holds, the necessities of (5.2) and (5.3) are immediately obtained

from Theorem 5.1.
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To prove the necessity of (5.6), consider the sequence b*) defined by (3.8),
which is in the space ¢(F,p) for every fixed k € N. Since the A-transform of every
x € {(F,p) exists and is in ¢ by the hypothesis, we have

— S o J+1 h
=0 =0

= 1=

for every fixed k € N, which shows the necessity (5.6).

Conversely, suppose that the conditions (5.2), (5.3) and (5.6) hold, and take
any x = () in the space ¢(F,p). Then, Az exists.

We observe for all m,n € N that

! I
pk pk

]+1 ]+1
su < 00
kzg z; fifirr " nEINDZ Z fkfk+1
J
which gives the fact by letting m,n — oo with (5.3) and (5.6)
Pi p’k

]+1

< supz

neN

lim Z < 0.
mn—>oo

k=0

Z J+1 a. B!
n
fkfk+l ]

j=k

This shows that >, [axB~!["* < oo and (ay) € {¢(F,p)}’ which implies that the
series Y, oy, converges for all x € ((F,p).
Now, let us consider the equality obtained from (5.5) with a,; — «; instead of

an

— [

Api — Q)T = Qi = Crk Yk, 5.7
Ej (an; 7)%; Ek,E fkka( i~ )Yk = E kYk (5.7)
o f2
where C' = (cux) defined by cn = 32774 fkf:il (an; — o) for all k,n € N. From
Lemma 4.3, ¢, — 0, as n — oo for all k& € N. Therefore, we see by (5.7) that

> w(@nk — )z, — 0, as n — oco. This means that Az € ¢ whenever x € ((F,p) and

this step completes the proof. O

Corollary 5.3. (i) Let 0 < pp <1 forallk € N. Then, A = (anx) € (U(F,p) : co)
if and only if (5.1) and (5.2) hold, and (5.6) also holds with oy, = 0 for all
k e N.

(11) Let 1 < pp < H < oo for all k € N. Then, A = (an) € (U(F,p) : co) if and
only if (5.2) and (5.3) hold, and (5.6) also holds with o, = 0 for all k € N.
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Now, we can give the following lemma which is useful for deriving the char-

acterization of the classes of matrix transformations from the space ¢(F,p) to the

space A4, where \ € {l,c,co} and A € {A,E",Cy, R, F}.

Lemma 5.4. [12, Lemma 5.3] Let A, i1 be any two sequence spaces, A be an infinite

matriz and B be a triangle matriz. Then, A € (X : ug) if and only if BA € (\: p).

Lemma 5.4 has several consequences depending on the choice of the space u.

Indeed, combining Lemma 5.4 with Theorems 5.1, 5.2 and Corollary 5.3, one can

obtain the following results:

Corollary 5.5. Let A = (an,) be an infinite matriz of complex entries. Then, the

following statements hold:

(i) E = (enx) € (L(F,p) : buy) if and only if (5.1), (5.3) hold with d,. instead of

(i)

(iii)

(iv)

Anj; where dyy = epp — en—1 for all k,n € N and bu, denotes the space of all

sequences © = (xy) such that (v — xx—1) € L, and was introduced by Basar

and Altay [12].

E = (en) € (U(F,p) : €l) if and only if (5.1), (5.3) hold with d,; instead of
Qni, Where dpy, = Z?:o (?)(1 — )" Iriey, for all k,n € N and €7, denotes the
space of all sequences x = (xy) such that E"x € ly, and was introduced by

Altay, Basar and Mursaleen [15].

E = (en) € (U(F,p) : Xoo) if and only if (5.1), (5.8) hold with d, instead of

Qni; Where dyp, = ijo eji/(n+1) for all k,n € N and X, denotes the space

of all sequences x = (x) such that Cix € Uy, and was introduced by Ng and
Lee [14].

E = (enx) € (U(F,p) : 1) if and only if (5.1), (5.3) hold with d,j instead of
Qi where dpy, = Z?:o tiejr/ T, for all k,n € N and rt_ denotes the space of
all sequences x = (xy) such that R'x € ly, and was introduced by Altay and

Basar [15].

E = (enr) € (U(F,p) : bs) if and only if (5.1), (5.3) hold with d,. instead of

i, where dpy, = Z?:o ejr for all k,n € N,
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E = (enr) € (U(F,p) : loo(F)) if and only if (5.1), (5.3) hold with d instead
of ank, where d,j, = —%en,l,k + fZ_Le"k for all k,n € N and EOO(]/T\) denotes
the space of all sequences x = (xy) such that Fx € l, and was introduced by

Kara [16].

Corollary 5.6. Let A = (an) be an infinite matriz of complex entries. Then, the

following statements hold:

(i)

(i)

(iii)

(i)

(v)

(vi)

E = (enr) € (U(F,p) : c(A)) if and only if (5.1), (5.3) and (5.6) hold with d,
instead of ank; where dpy = enr, — €nq1x for all k,n € N and ¢(A) denotes the

space of all sequences x = (xy) such that (xy — xx41) € ¢, and was introduced

by Kizmaz [17].

E = (eq) € (U(F,p) : €.) if and only if (5.1), (5.3) and (5.6) hold with
dny, instead of ank, where dn, = Y7, (?)(1 — )" Iriey for all k,n € N and
e’ denotes the space of all sequences © = (xy) such that E"x € ¢, and was

introduced by Altay and Basar [18].

E = (enx) € (U(F,p) : ¢) if and only if (5.1), (5.3) and (5.6) hold with d,
instead of ani; where dy,, = Z?:o eji/(n+ 1) for all k,n € N and ¢ denotes
the space of all sequences x = (xy) such that Cyx € ¢, and was introduced by

Sengonil and Basar [19].

E = (enx) € (L(F,p) : 1t if and only if (5.1), (5.3) and (5.6) hold with d,
instead of any; where dp), = Z?:o tiejn/ Ty for all k,n € N and rl denotes the
space of all sequences x = () such that R'z € ¢, and was introduced by Altay

and Basar [20].

E = (en) € (L(F,p) : ¢(F)) if and only if (5.1), (5.3) and (5.6) hold with
f’}zlen_lvk + ff_Len’f for all k,n € N and

c(ﬁ) denotes the space of all sequences x = () such that Fx € ¢, and was

dypi nstead of apk;, where dy, = —

introduced by Basarur et al. [21].

E = (en) € (U(F,p) : cs) if and only if (5.1), (5.3) and (5.6) hold with d,

istead of any; where dy, = E?:o eji for all k,n € N.

Corollary 5.7. Let A = (ani) be an infinite matriz of complex entries. Then, the

following statements hold:
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(ii)

(iii)

(i)

(vi)
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E = (enr) € (U(F,p) : co(A)) if and only if (5.1), (5.3) hold and (5.6) also
holds with a, = 0 for all k € N and d,;, instead of a,i; where dy, = €ng—€ni1
for all k,n € N and co(A) denotes the space of all sequences x = (xy) such

that (x, — Tx41) € co, and was introduced by Kizmaz [17].

E = (en) € (U(F,p) : e}) if and only if (5.1), (5.3) hold and (5.6) also holds
with o, = 0 for all k € N and d,; instead of a,, where d,;. = Z?:o (’;)(1 —
r)"Iriey, for all k,n € N and efy denotes the space of all sequences © = (xy)

such that E"x € ¢o, and was introduced by Altay and Basar [18].

E = (en) € (U(F,p) : &) if and only if (5.1), (5.3) hold and (5.6) also holds
with oy, = 0 for all k € N and d,, instead of a; where dy,;, = Z?:o e/ (n+1)
for all k;n € N and ¢y denotes the space of all sequences x = (x) such that

Cix € ¢, and was introduced by Sengonil and Bagar [19].

E = (en) € (U(F,p) :rk) if and only if (5.1), (5.3) hold and (5.6) also holds
with g, = 0 for all k € N and d,;, instead of any; where d,, = Z?:o tiejn/Tn
for all k;n € N and rl denotes the space of all sequences x = (xy) such that

R'z € ¢, and was introduced by Altay and Basar [20].

E = (en) € (L(F,p) : co(F)) if and only if (5.1), (5.3) hold and (5.6) also holds

with o, = 0 for all k € N and d,;. instead of a,i; where dy, = —f}zlen_m +
fn A

T Cnk for all k,n € N and c¢o(F') denotes the space of all sequences x = (xy,)

such that Fx € ¢y, and was introduced by Bagarir et al. [21].
E = (ear) € (L(F,p) : cos) if and only if (5.1), (5.3) hold and (5.6) also holds

with ap = 0 for all k € N and d,;. instead of ani; where d, = Z?:o eji for

all k,n € N and cos denotes the space of all sequences x = (xy) such that



CHAPTER 6

CONCLUSION

Let 0 < r <1, ¢ = (q) be a sequence of non-negative reals with ¢o > 0 and
Qn = 1_oqk for all n € N, 7 = (ry) and 5§ = (sg) be the convergent sequences.
Suppose that the sequences u = (ug) and v = (vg) consist of non-zero entries;
u,s € R, and A = (\,) be the strictly increasing sequence of positive real numbers
tending to infinity with A, 11 > 2\,.

Let us define the summation matrix S = (s,), the matrix A" = (a,), the
generalized difference matrix B(u,s) = {bu(u,s)}, the matrix A* = (a¥%.),
double sequential band matrix B(7,S) = {bu (7x, s)}, the Riesz matrix R? = (r?,)
with respect to the sequence ¢ = (q), the factorable matrix G(u,v) = (gnx), the
matrix A = {a,x(\)} and the Nérlund matrix N7 = (a?,) with respect to the

sequence ¢ = (qx) by

1, 0<k<n, (=) *u, , n—1<k<n,
Spk = App =
0, k>n, 0 , 0<k<n-—1or k>n
u , k= i
r %Uk ) Oékgna
bk (u, s) = s , k=n-— A =
0 , k>n

Ty -

g—k , 0<Ek<n,
buk (Thy86) = sp , k=n—1, Tk = "

0 , k>n

0 , 0<k<n-—1 or k>n,

Upvp , 0<k<n, % , 0<k<n,
Ink = ank(N) == o
0 , k>n, 0 , k>n,

33



for all k,n € N.

dn—k
o 0<k<n,

0 , k>n

34

For concerning literature about the domain of the infinite matrix A in the

sequence space £(p), the following table may be useful:

Table 1: The domains of some triangle matrices in the space ¢(p).

A [0(p)]a | refer to:
R r(p) [15]
S ((p) [22]
A" a”(u,p) [23]
Blus) | Up) | [4
A bu(u, p) [25]
B(F3) | (B,p) | [26]
G(u,v) | (u,v;p) [27]
A (A, p) [28]
Ne | Ni(p) [29]

~

In first, the domains ¢,(F) and co(ﬁ), c(ﬁ) of the double band matrix F

defined by a sequence of Fibonacci numbers in the sequence spaces ¢, and ¢, ¢

have recently been studied by Kara [16] and Basarir et al. [21], respectively. It is

~

natural to expect for extending the normed space ¢,(F) to the paranormed space

((F,p) as was the space (, extended to the space ¢(p) which is the main subject of

the present paper. As a continuation of Kara [16], we have introduced the space

((F,p) and studied its algebraic and topological properties. We should record that

the geometric properties of the space {(F, p) can be investigated in a separate paper

which will be the main subject of our next work.
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