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It is approved that this thesis has been written in compliance with the format-

ting rules laid down by the Graduate School of Sciences and Engineering.

Assoc. Prof. Dr. Nurullah ARSLAN

Director

January 2014



iii

DOMAIN OF THE DOUBLE BAND MATRIX DEFINED
BY FIBONACCI NUMBERS IN THE MADDOX’S

SPACE `(p)
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Thesis Supervisor: Prof. Dr. Feyzi BAŞAR

ABSTRACT

In the study, we have studied; the sequence space `(F, p) of non-absolute type

which is the domain of the double band matrix F defined by the sequence of the

Fibonacci numbers in the sequence space `(p), where `(p) denotes the space of all

sequences x = (xk) such that
∑

k |xk|pk < ∞ and was defined by Maddox [1]. Fur-

thermore, the alpha-, beta- and gamma-duals of the space `(F, p) are determined,

and the Schauder basis is given. The classes of matrix transformations from the

space `(F, p) to the spaces `∞, c and c0 are characterized. Additionally, the charac-

terizations of some other classes of matrix transformations from the space `(F, p) to

the Euler, Riesz, difference, etc., sequence spaces are obtained from the main results

of the study.

Keywords: Paranormed sequence space, double sequential band matrix, alpha-,
beta- and gamma-duals, matrix transformations of a sequence space.
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FİBONACCİ SAYILARI İLE TANIMLANAN ÇİFT BANT
MATRİSİNİN `(p) MADDOX UZAYI ÜZERİNDEKİ
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Hüsamettin ÇAPAN

Yüksek Lisans Tezi – Matematik
Ocak 2014

Tez Danışmanı: Prof. Dr. Feyzi BAŞAR

ÖZ

Yapmış olduğumuz çalışmada; Fibonacci sayılarının bir dizisi ile tanımlanan F

çift bant matrisinin, Maddox [1] tarafından tanımlanan
∑

k |xk|pk <∞ olacak şekilde

x = (xk) dizilerinin `(p) uzayı üzerindeki etki alanı olan mutlak olmayan türden

`(F, p) dizi uzayı incelendi. Ayrıca, `(F, p) uzayının alfa-, beta- ve gamma-dualleri

hesaplandı ve Schauder bazı verildi. `(F, p) uzayından `∞, c ve c0 uzaylarına matris

dönüşümlerinin sınıfları karakterize edildi. İlâveten, `(F, p) uzayından Euler, Riesz,

fark, vb. dizi uzaylarına bazı matris dönüşümlerinin karakterizasyonları çalışmanın

ana sonuçlarından elde edildi.

Anahtar Kelimeler: Paranormlu dizi uzayı, çift sıralı bant matris, alfa-, beta-,
gama-dualler, dizi uzayında matris dönüşümleri.
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vi

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor Prof. Dr. Feyzi BAŞAR

for his guidance, help and suggestions throughout the research and writing the thesis.

I express my thanks and appreciation to my family for their understanding,

motivation and patience. Lastly, but in no sense the least, I am thankful to all

colleagues and friends who made my stay at the university a memorable and valuable

experience.



vii

TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

Definition 1.1.1. [2, p. 71] A linear space over the field C is a nonempty set X

with the functions

+ : X ×X → X,

· : C×X → X

such that for all scalars λ, µ ∈ C and elements (vectors) x, y, z ∈ X we have

(L1) x+ y = y + x,

(L2) (x+ y) + z = x+ (y + z),

(L3) there exists θ ∈ X such that x+ θ = x,

(L4) there exists −x ∈ X such that x+ (−x) = θ,

(L5) 1 · x = x,

(L6) λ(x+ y) = λx+ λy,

(L7) (λ+ µ)x = λx+ µx,

(L8) λ(µx) = (λµ)x.

Definition 1.1.2. [2, p. 74] A subset M in a linear space X is a nonempty subset

of X such that λx+ µy ∈M whenever x, y ∈M , for all λ, µ ∈ C.

By ω, we denote the space of all sequences with complex entries which contains

φ, the set of all finitely non-zero sequences, that is,

ω := {x = (xk) : xk ∈ C for all k ∈ N} ,

1
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where C denotes the complex field and N = {0, 1, 2, . . .}. It is routine verification

that w is a linear space with respect to coordinatewise addition and scalar multipli-

cation of sequences which are defined, as usual, by

x+ y = (xk) + (yk) = (xk + yk) and αx = α(xk) = (αxk),

respectively; where x = (xk), y = (yk) ∈ w and α ∈ C. By a sequence space, we

understand a linear subspace of the space ω.

Definition 1.1.3. [2, p. 25] A metric space is a pair (X, d), consisting of nonempty

set X and a metric (or distance) function d : X ×X → R such that for all x, y, z

in X, the following conditions hold:

(M1) d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x),

(M3) d(x, z) ≤ d(x, y) + d(y, z), (the triangle inequality).

A metric function is thus a real-valued function defined on pairs of elements of X.

It is important to notice that d is necessarily non-negative.

Example 1.1.4. The most popular metric on the space w is defined by

dw(x, y) :=
∑
k

|xk − yk|
2k(1 + |xk − yk|)

,

where x = (xk), y = (yk) ∈ w.

Definition 1.1.5. [2, p. 34] A sequence (xn) = (x1, x2, ...), where xn ∈ X for every

n, is called a Cauchy sequence in a metric space (X, d) if and only if

lim
n→∞

d(xn, xm) = 0,

i.e. for every ε > 0 there exists N = N(ε) such that

d(xn, xm) < ε

for all n, m > N .

Definition 1.1.6. [2, p. 34] A sequence (xn) in (X, d) is called convergent (to x)

if and only if there exists x ∈ X such that d(xn, x)→ 0, as n→∞. We then write

x = limxn or xn → x and call x the limit of the sequence (xn).
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Now, we can give the following theorem.

Theorem 1.1.7. [2, p. 35]

(i) A convergent sequence has a unique limit.

(ii) Every convergent sequence is also a Cauchy sequence, but not conversely, in

general.

(iii) If a Cauchy sequence has a convergent subsequence then the whole sequence is

convergent.

Definition 1.1.8. [2, p. 36] A metric space (X, d) is called complete metric

space if and only if every Cauchy sequence converges (to point of X). Explicitly,

we require that if d(xn, xm) → 0 (n,m → ∞) then there exists x ∈ X such that

d(xn, x)→ 0 (n→∞).

Definition 1.1.9. [3, p. 16] Let X be a real or copmlex linear space and ‖ · ‖

be a function from X to the set R+ of non-negative real numbers. Then the pair

(X, ‖ · ‖) is called a normed space and ‖ · ‖ is a norm on X, if the following axioms

are satisfied for all elements x, y ∈ X and for all scalars λ:

(N1) ‖x‖ = 0 if and only if x = θ.

(N2) ‖λx‖ = |λ|‖x‖, (the absolute homogenity property).

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, (the triangle inequality).

Definition 1.1.10. [3, p. 17] Let X be a real or copmlex linear space and ‖ · ‖ be

a function from X to the set R+ of non-negative real numbers and p > 0. Then

the pair (X, ‖ · ‖) is called a p-normed space and ‖ · ‖ is a p-norm on X, if the

following axioms are satisfied for all elements x, y ∈ X and for all scalars λ:

(pN1) ‖x‖ = 0 if and only if x = θ,

(pN2) ‖λx‖ = |λ|p‖x‖,

(pN3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Now, we can give some examples for normed and p-normed spaces.
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Example 1.1.11. Let us define the relations ‖ · ‖∞ and ‖ · ‖p by

‖x‖∞ = sup
k∈N
|xk|,

‖x‖p =


∑

k |xk|p , 0 < p < 1,

(
∑

k |xk|p)
1/p , 1 ≤ p <∞.

It is easy to see that ‖ · ‖∞ satisfies the norm conditions on the space `∞. Also, ‖ · ‖p
defines on the space `p p-norm and norm for 0 < p < 1 and 1 ≤ p <∞, respectively.

Definition 1.1.12. [4, p. 67]

(i) A sequence (xn) in a normed space X is called convergent if X contains an

x such that

lim
n→∞

‖xn − x‖ = 0.

Then we write xn → x and call x the limit of (xn).

(ii) A sequence (xn) in a normed space X is called Cauchy if for every ε > 0

there is an N such that

‖xm − xn‖ < ε

for all m, n > N .

Definition 1.1.13. [2, p. 96] A Banach space X is a complete normed linear

space. Completeness means that if ‖xm−xn‖ → 0, as m,n→∞, where xn, xm ∈ X,

then there exists x ∈ X such that ‖xn − x‖ → 0, as n→∞.

Example 1.1.14. The spaces `∞ and c are Banach spaces with the norm ‖ · ‖∞
defined in Example 1.1.11. In the cases 1 ≤ p < ∞ and 0 < p < 1, the space `p

is a Banach space and a complete p-normed space with the norm ‖ · ‖p defined in

Example 1.1.11, respectively.

Definition 1.1.15. A linear topological space X over the real field R is said to be

a paranormed space if there is a function g : X → R satisfying the following

conditions for all x, y ∈ X:

(i) If x = θ, g(x) = 0,
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(ii) g(x) = g(−x),

(iii) g(x+ y) ≤ g(x) + g(y),

(iv) Scalar multiplication is continuous, i.e., |αn−α| → 0 and g(xn−x)→ 0 imply

g(αnxn − αx)→ 0 for all α’s in R and all x’s in X, where θ is the zero vector

in the linear space X.

If g is a paranorm on X, then (X, g) is called a paranormed space. A paranorm g

is called total if g(x) = 0 implies x = θ.

Definition 1.1.16. [2, p. 87] Let (X, g) be a paranormed space. A sequence (bk)

of elements of X is called a Schauder basis for X if and only if, for each x ∈ X

there exists a unique sequence (λk) of scalars such that x =
∑

k λkbk, i.e such that

lim
n→∞

g

(
x−

n∑
k=0

λkbk

)
= 0.

Example 1.1.17. Let e(n) be the sequence with e
(n)
n = 1 and e

(n)
k = 0 whenever

k 6= n for all n ∈ N. Then (e(n))∞n=0 is a Schauder basis of w. More precisely,

every sequence x = (xk)
∞
k=0 ∈ w has a unique representation x =

∑
k xke

(k) that is

x[m] → x, as n→∞, for x[m] =
∑m

k=0 xke
(k), the m-section of x.

Definition 1.1.18. [2, p. 102] Let X, Y be linear spaces. Then, a function T :

X → Y is called a linear operator (or map, transformation) if and only if for all

x1, x2 ∈ X, and all scalars λ,

T (x1 + x2) = Tx1 + Tx2 and T (λx1) = λTx1.

Definition 1.1.19. [2, p. 102] f is a linear functional on X if f : X → C is a

linear operator, i.e. a linear functional is a complex-valued linear operator.

Definition 1.1.20. [2, p. 103] A linear operator T : X → Y is called bounded if

and only if there exists a constant M such that

‖Tx‖ ≤M‖x‖ for all x ∈ X.

Note that a bounded functional f on X satisfies

|f(x)| ≤M‖x‖

for all x ∈ X.



6

Theorem 1.1.21. [2, p. 104] Let X, Y be two normed spaces and T : X → Y be a

linear operator. Then, T is continuous on X if and only if it is bounded.

Definition 1.1.22. [2, p. 105] Let X, Y be linear spaces. Then L(X, Y ) denotes

the set of all linear operators on X into Y .

Definition 1.1.23. [2, p. 105] The set L(X,C) of all linear functionals on X is

usually denoted by X† and is called the algebraic dual of X, that is

X† := {f | f : X → C, linear} .

Definition 1.1.24. [2, p. 105] Let X, Y be normed spaces. Then B(X, Y ) denotes

the set of all bounded (i.e. continuous) linear operators on X into Y .

Definition 1.1.25. [2, p. 106] The set B(X,C) of all bounded linear functionals on

X is called the dual (or continuous dual) of X and is denoted by X∗, that is

X∗ := {f | f : X → C, linear and bounded} .

Definition 1.1.26. [3, p. 65] The f−dual Xf of a sequence space X is defined by

Xf :=
{{
f
(
e(k)
)}

: f ∈ X∗
}
.

Definition 1.1.27. [2, p. 106] Let T ∈ B(X, Y ). Then the norm of T is defined as

‖T‖ := sup
x6=0

‖Tx‖
‖x‖

<∞.

That the supremum is finite which follows from the fact that

‖Tx‖ ≤M‖x‖ when T ∈ B(X, Y ).

Definition 1.1.28. [4, p. 75] A norm ‖ · ‖ on a vector space X is said to be

equivalent to a norm ‖ · ‖0 on X if there are positive number a and b such that

a‖x‖0 ≤ ‖x‖ ≤ b‖x‖0

for all x ∈ X. This concept is motivated by equivalent norms on X define the same

topology for X.

Theorem 1.1.29. [4, p. 75] On the finite dimensional vector space X, any norm

‖ · ‖ is equivalent to any other norm ‖ · ‖0.
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Definition 1.1.30. A sequence space λ with a linear topology is called a K-space,

provided each of the maps qi : λ → C defined by qi(x) = xi is continuous for all

i ∈ N; where C denotes the complex field. If sequence space λ is complete and

convergence in λ requires coordinatewise convergence, then λ is called FK-space.

An FK-space whose topology is normable is called a BK-space.

Definition 1.1.31. [5] Let d be a metric on a linear space X. If algebraic operations

are continuous, namely (xn) and (yn) are two sequences in X, and (αn) is a sequence

of scalars such that

limn→∞ d(xn, x) = 0 and limn→∞ d(yn, y) = 0 implies limn→∞ d(xn + yn, x+ y) = 0,

limn→∞ αn = α and limn→∞ d(xn, x) = 0 implies limn→∞ d(αnxn, αx) = 0

then, (X, d) is called linear metric space.

Definition 1.1.32. [6] If X is a complete linear metric space then it is called

Frechet sequence space.

Definition 1.1.33. [5] An FK space X ⊃ φ has AK if, for every sequence x =

(xk) ∈ X, x =
∑

k xke
(k), that is

lim
n→∞

x[m] = lim
m→∞

m∑
k=0

xke
(k) = x

and X has AD if φ is dense in X. If an FK space has AK or AD we also say that

it is an AK or AD space.

Remark 1.1.34. [5] Every AK space has AD. The converse is not true in general.

Now, let we define classical sequence spaces.

We write `∞, c and c0 for the spaces of all bounded, convergent and null

sequences, respectively, that is

`∞ :=

{
x = (xk) ∈ w : sup

k∈N
|xk| <∞

}
,

c :=
{
x = (xk) ∈ w : lim

k→∞
|xk − l| = 0 for some l ∈ C

}
,

c0 :=
{
x = (xk) ∈ w : lim

k→∞
xk = 0

}
.

Also by bs, cs, `1 and `p; we denote the spaces of all bounded, convergent, absolutely
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convergent and p−absolutely convergent series, respectively, that is

bs :=

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣
n∑
k=0

xk

∣∣∣∣∣ <∞
}
,

cs :=

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣
n∑
k=0

xk − l

∣∣∣∣∣ = 0 for some l ∈ C

}
,

`1 :=

{
x = (xk) ∈ w :

∑
k

|xk| <∞

}
,

`p :=

{
x = (xk) ∈ w :

∑
k

|xk|p <∞

}
;

where 0 < p <∞.

Assume here and after that (pk) be a bounded sequence of strictly positive real

numbers with sup pk = H and M = max{1, H}. Then, the linear space `(p) was

defined by Maddox [1] (see also Simons [7] and Nakano [8]) as follows:

`(p) :=

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
, (0 < pk ≤ H <∞)

which is the complete space paranormed by

g(x) =

(∑
k

|xk|pk
)1/M

.

For simplicity in notation, here and in what follows, the summation without limits

runs from 0 to∞. Also other well-known paranormed spaces defined by Maddox [1]

as follows:

`∞(p) :=

{
x = (xk) ∈ w : sup

k∈N
|xk|pk <∞

}
,

c(p) :=
{
x = (xk) ∈ w : lim

k→∞
|xk − l|pk = 0 for some l ∈ C

}
,

c0(p) :=
{
x = (xk) ∈ w : lim

k→∞
|xk|pk = 0

}
.

We assume throughout that p−1k + (p′k)
−1 = 1 and denote the collection of all finite

subsets of N by F and use the convention that any term with negative subscript is

equal to naught.

Definition 1.1.35. [3, p. 21] For the sequence spaces λ and µ, the set S(λ, µ)

defined by

S(λ, µ) := {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (1.1.1)
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is called the multiplier space of λ and µ. With the notation of (1.1.1), the alpha-,

beta- and gamma-duals of a sequence space λ which are denoted by λα, λβ and λγ,

respectively, are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs),

that is

λα :=

{
x = (xk) ∈ ω :

∑
k

|xkyk| <∞ for all y = (yk) ∈ λ

}
,

λβ :=

{
x = (xk) ∈ ω :

(
n∑
k=0

xkyk

)
n∈N

∈ c for all y = (yk) ∈ λ

}
,

λγ :=

{
x = (xk) ∈ ω :

(
n∑
k=0

xkyk

)
n∈N

∈ `∞ for all y = (yk) ∈ λ

}
.

Theorem 1.1.36. [9, pp. 106, 108] Let λ be an FK−space which contains φ. Then,

(i) λβ ⊂ λγ ⊂ λf .

(ii) If λ has AK, λβ = λf .

(iii) If λ has AD, λβ = λγ.

(iv) λf = λ∗ iff λ has AD.

Definition 1.1.37. [3, p. 31] Suppose that A = (ank) is an infinite matrix of real

or complex numbers ank and x = (xk) ∈ w, where k, n ∈ N. Then, we obtain the

sequence Ax, the A-transform of x, by the usual matrix product

Ax =



a00 a01 a02 · · · a0k · · ·

a10 a11 a12 · · · a1k · · ·

a20 a21 a22 · · · a1k · · ·
...

...
...

. . .
... · · ·

an0 an1 an2 · · · ank · · ·
...

...
...

...
...

. . .





x0

x1

x2
...

xk
...



=



a00x0 + a01x1 + a02x2 + · · ·+ a0kxk + · · ·

a10x0 + a11x1 + a12x2 + · · ·+ a1kxk + · · ·
...

an0x0 + an1x1 + an2x2 + · · ·+ ankxk + · · ·
...
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=



∑
k a0kxk∑
k a1kxk

...∑
k ankxk

...


.

Hence, in this way, we transform the sequence x into the sequence space Ax =

{(Ax)n} with

(Ax)n =
∑
k

ankxk, (n ∈ N), (1.1.2)

provided the series on the right hand side of (1.1.2) converges for each n ∈ N. Let

λ and µ be any two sequence spaces. If Ax exists and is in µ for every sequence

x = (xk) ∈ λ, then we say that A defines matrix mapping from λ into µ, and we

denote it by writing A : λ → µ. By (λ, µ), we denote the class of all matrices A

such that A : λ→ µ. Thus, A ∈ (λ : µ) if and only if Ax exists i.e. An ∈ λβ for all

n ∈ N and is in µ for all x ∈ λ, where An denotes the sequence in the n-th row of A.

Definition 1.1.38. For any sequence space λ, the matrix domain λA of an infinite

matrix A is defined by

λA := {x = (xk) ∈ w : Ax ∈ λ} .

Definition 1.1.39. Let A = (ank) be an infinite matrix of complex numbers. If the

A-transform of any convergent sequence of complex numbers exists and converges

then, A is called conservative matrix. By (c : c), we denote the set of conservative

matrices.

Theorem 1.1.40 (Kojima-Schur). [3, p. 35] A = (ank) is a conservative matrix if

and only if

(i) ‖A‖ = supn∈N
∑

k |ank| <∞,

(ii) limn→∞ ank = αk for each k ∈ N,

(iii) limn→∞
∑

k ank = α.

Definition 1.1.41. Let A = (ank) be an infinite matrix and (xk) ∈ w. If A is

conservative and preserves limits, i.e. xk → x, as k → ∞, implies (Ax)n → x, as
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k →∞, where (Ax)n is the A-transform of the convergent sequence (xk), then A is

called regular matrix. By (c : c; p), we denote the set of all regular matrices.

Theorem 1.1.42 (Silverman-Teoplitz). [3, p. 35] A = (ank) is a regular matrix if

and only if

(i) ‖A‖ = supn∈N
∑

k |ank| <∞,

(ii) limn→∞ ank = 0 for each k ∈ N ,

(iii) limn→∞
∑

k ank = 1.

Theorem 1.1.43 (Schur matrix). [3, p. 36] A = (ank) ∈ (`∞ : c) if and only if

(i) The series
∑

k |ank| must be uniformly convergent with respect to n.

(ii) There exists αk ∈ C such that ank → αk, as n→∞.

Definition 1.1.44. [3, p. 38] The characteristic K(A) of a matrix A = (ank) is

defined by

K(A) := lim
n→∞

∑
k

ank −
∑
k

(
lim
n→∞

ank

)
which is a multiplicate linear functional. A matrix A is called coregular if K(A) 6= 0

and is called conull if K(A) = 0.

Remark 1.1.45. [3, p. 39] The Silverman-Teoplitz theorem yields for a regular matrix

A that K(A) = 1 which leads us to the fact that Toeplitz matrices form a subset of

coregular matrices. One can easily see for a Schur matrix A that K(A) = 0 which

says us that coercive matrices for a subset of conull matrices.

1.2 Some Inequalities

Here, we give the inequalities which will be used in the following chapters.

(1) Triangle inequality: Let a, b be any two complex numbers. Then, the

inequality

|a+ b| ≤ |a|+ |b|

holds.
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(2) Let a, b ∈ C and 0 < p ≤ 1. Then we have the inequality

|a+ b|p ≤ |a|p + |b|p. (1.2.1)

(3) Minkowski’s inequalty: Let 1 ≤ p < ∞ and x0, x1, ..., xn, y0, y1, ..., yn ∈ C.

Then we have(
∞∑
k=0

|xk + yk|p
)1/p

≤

(
∞∑
k=0

|xk|p
)1/p

+

(
∞∑
k=0

|yk|p
)1/p

.

Also, if x, y ∈ `p then x+ y ∈ `p and we can write

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

(4) Let a, b be any camplex numbers and B be any positive number. Then, the

inequality

|ab| ≤ B
(∣∣aB−1∣∣p′ + |b|p) (1.2.2)

holds, where p > 1 and p−1 + p′−1 = 1.



CHAPTER 2

CHARACTERIZATIONS OF F = (fnk) MATRIX TO

SOME MATRIX CLASSES

Consider the sequence (fn) of Fibonacci numbers defined by the linear recur-

rence relations

fn :=

 1 , n = 0, 1,

fn−1 + fn−2 , n ≥ 2.

Let us define the double band matrix F = (fnk) by the sequence (fn), as follows:

fnk :=


−fn+1

fn
, k = n− 1,

fn
fn+1

, k = n,

0 , 0 ≤ k < n− 1 or k > n

(2.1)

for all k, n ∈ N. That is to say that

F = (fnk) =



f0
f1

0 0 0 · · ·

−f2
f1

f1
f2

0 0 · · ·

0 −f3
f2

f2
f3

0 · · ·

0 0 −f4
f3

f3
f4
· · ·

...
...

...
...

. . .


=



1 0 0 0 · · ·

−2 1
2

0 0 · · ·

0 −3
2

2
3

0 · · ·

0 0 −5
3

3
5
· · ·

...
...

...
...

. . .


.

Now, let us investigate the classes of our matrix F = (fnk) belonging to. Let

us consider the entries of the sequence (fn)

f0 = f1 = 1, f2 = 2, f3 = 3, f4 = 5, ... and general term fn = fn−1 + fn−2.

It is easy to see that |−fn+1/fn| ≤ 2 and |fn/fn+1| ≤ 1. Also, we have |−fn+1/fn| →

1, 618... and |fn/fn+1| → 0, 618..., as n→∞.

13
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(i) Firstly, let us check the norm of the F = (fnk) matrix.

‖ F ‖ = sup
n∈N

∑
k

|fnk| = sup
n∈N

n∑
k=n−1

|fnk|

= sup
n∈N

(∣∣∣∣−fn+1

fn

∣∣∣∣+

∣∣∣∣ fnfn+1

∣∣∣∣) < 3 <∞.

(ii) Since almost all of the elements of the column vectors of the matrix F = (fnk)

are zero,

lim
n→∞

fnk = 0 (2.2)

for every k ∈ N.

(iii) Let us compute the value of the expression
∑

k fnk, as n→∞.

lim
n→∞

∑
k

fnk = lim
n→∞

n∑
k=n−1

fnk

= lim
n→∞

(
−fn+1

fn
+

fn
fn+1

)
∼= −1.

(iv) Now, we show whether the series
∑

k |fnk| is uniformly convergent with respect

to n or not. For this, it is sufficient to analyze the values of limn→∞
∑

k |fnk|

and
∑

k limn→∞ |fnk|. Then, we have

lim
n→∞

∑
k

|fnk| = lim
n→∞

(∣∣∣∣−fn+1

fn

∣∣∣∣+

∣∣∣∣ fnfn+1

∣∣∣∣) ∼= 2.2 (2.3)

and by (2.2) that ∑
k

lim
n→∞

|fnk| = 0. (2.4)

Since (2.3) and (2.4) not equal to each other, the series
∑

k |fnk| is not uni-

formly convergent with respect to n.

(v) Finally, we find the characteristic K(F ) of F = (fnk) matrix that

K(F ) = lim
n→∞

∑
k

fnk −
∑
k

(
lim
n→∞

fnk

)
∼= −1.

By means of (i)-(iii), (iv) and (v) we can say that; F = (fnk) is a conservative matrix

but not regular matrix, it is not Schur matrix and it is coregular matrix but not

conull matrix, respectively.



CHAPTER 3

THE SEQUENCE SPACE `(F, p)

We employ the Fibonacci matrix F = (fnk) as in (2.1), where k, n ∈ N. Then,

we obtain the sequence Fx, the F -transform of x, by the usual matrix product

Fx =



f0
f1

0 0 · · · 0 0 · · ·

−f2
f1

f1
f2

0 · · · 0 0 · · ·

0 −f3
f2

f2
f3
· · · 0 0 · · ·

...
...

...
. . .

...
...

...

0 0 0 · · · −fk+1

fk

fk
fk+1

· · ·
...

...
...

...
...

...
. . .





x0

x1

x2
...

xk−1

xk
...



=



f0
f1
x0

−f2
f1
x0 + f1

f2
x1

−f3
f2
x1 + f2

f3
x2

...

−fk+1

fk
xk−1 + fk

fk+1
xk

...


where x = (xk) ∈ w. Hence, we transform the sequence x into the sequence Fx =

{(Fx)k}.

We can define the sequence y = (yk) by the F -transform of the sequence

x = (xk), i.e.,

yk = (Fx)k = −fk+1

fk
xk−1 +

fk
fk+1

xk (3.1)

for all k ∈ N. At this situation we can express x in terms of y that

xk =
(
F−1y

)
k

=
k∑
j=0

f 2
k+1

fjfj+1

yj (3.2)

15
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for all k ∈ N. The inverse F−1 = (cnk) of the matrix F can be expressed as follows

cnk :=


f2n+1

fkfk+1
, 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N.

The main purpose of this study is to introduce the domain `(F, p) of the double

band matrix F in the sequence space `(p), that is to say that

`(F, p) :=

{
x = (xk) ∈ ω :

∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk <∞
}
,

where 0 < pk ≤ H < ∞. In the case pk = p for all k ∈ N, the space `(F, p) is

reduced to the space `p(F ), i.e.,

`p(F ) :=

{
x = (xk) ∈ ω :

∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣p <∞
}
, (p ≥ 1).

Furthermore, the alpha-, beta- and gamma-duals of the space `(F, p) are deter-

mined, and the Schauder basis is constructed. The classes of matrix transformations

from the space `(F, p) to the spaces `∞, c and c0 are characterized. Some other classes

of matrix transformations are also characterized by means of a given basic lemma.

Theorem 3.1. `(F, p) is a linear, complete and metric space paranormed by h de-

fined by

h(x) =

(∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk
)1/M

, (3.3)

where 0 < pk ≤ H <∞ for all k ∈ N.

Proof. To show the linearity of the space with respect to the coordinatewise addition

and scalar multiplication is trivial. Firstly, we show that `(F, p) is a paranormed

space with the paranorm h defined by (3.3).

It is clear that h(θ) = 0, where θ = (0, 0, . . .) and h(x) = h(−x) for all

x ∈ `(F, p).
Let x = (xk), y = (yk) ∈ `(F, p). Then, by Minkowski’s inequality and the
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inequality (1.2.1), we have

h(x+ y) =

[∑
k

∣∣∣∣−fk+1

fk
(xk−1 + yk−1) +

fk

fk+1
(xk + yk)

∣∣∣∣pk
]1/M

=

∑
k

(∣∣∣∣−fk+1

fk
xk−1 +

fk

fk+1
xk −

fk+1

fk
yk−1 +

fk

fk+1
yk

∣∣∣∣pk/M
)M

1/M

≤

∑
k

(∣∣∣∣−fk+1

fk
xk−1 +

fk

fk+1
xk

∣∣∣∣pk/M +

∣∣∣∣−fk+1

fk
yk−1 +

fk

fk+1
yk

∣∣∣∣pk/M
)M

1/M

≤

∑
k

(∣∣∣∣−fk+1

fk
xk−1 +

fk

fk+1
xk

∣∣∣∣pk/M
)M

1/M

+

∑
k

(∣∣∣∣−fk+1

fk
yk−1 +

fk

fk+1
yk

∣∣∣∣pk/M
)M

1/M

=

(∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk

fk+1
xk

∣∣∣∣pk
)1/M

+

(∑
k

∣∣∣∣−fk+1

fk
yk−1 +

fk

fk+1
yk

∣∣∣∣pk
)1/M

= h(x) + h(y).

Also, since the inequality |α|pk ≤ max{1, |α|M} holds for α ∈ R, we get

h(αx) =

[∑
k

∣∣∣∣−fk+1

fk
(αxk−1) +

fk
fk+1

(αxk)

∣∣∣∣pk
]1/M

=

(∑
k

|α|pk
∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk
)1/M

≤ max{1, |α|}h(x).

Let (αn) be a sequence of scalars with αn → α, as n → ∞ and
{
x(n)
}∞
n=0

be

a sequence of elements x(n) ∈ `(F, p) with h
[
x(n) − x

]
→ 0, as n → ∞. Then, we

observe that

0 ≤ h
[
αnx

(n) − αx
]

= h
[
αnx

(n) − αx(n) + αx(n) − αx
]

(3.4)

= h
[
(αn − α)x(n) + α

(
x(n) − x

)]
≤ h

[
(αn − α)x(n)

]
+ h

[
α
(
x(n) − x

)]
= |αn − α|h

[
x(n)
]

+ max{1, |α|}h
[
x(n) − x

]
.

If we combine the facts αn − α → 0, as n → ∞ and h
[
x(n) − x

]
→ 0, as n → ∞

with (3.4) we obtain that h
[
αnx

(n) − αx
]
→ 0, as n→∞. That is to say that the

scalar multiplication is continuous. This shows that h is a paranorm on `(F, p).

Moreover, if we assume h(x) = 0, then we get∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣ = 0

for each k ∈ N. If we put k = 0, since x−1 = 0 and f0/f1 6= 0, we have x0 = 0.

For k = 1, since x0 = 0 and f1/f2 6= 0, we have x1 = 0. Continuing in this way, we
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obtain xk = 0 for all k ∈ N. Namely, we obtain x = θ = (0, 0, . . .). This shows that

h is a total paranorm.

Now, we show that `(F, p) is complete. Let (xn) be any Cauchy sequence in

`(F, p); where xn =
{
x
(n)
0 , x

(n)
1 , x

(n)
2 , . . .

}
. Then, for a given ε > 0, there exists a

positive integer n0(ε) such that [h (xn − xm)]M < εM for all n,m > n0(ε). Since for

each fixed k ∈ N

|(Fxn)k − (Fxm)k|pk ≤
∑
k

|(Fxn)k − (Fxm)k|pk

=
∑
k

∣∣∣∣−fk+1

fk
x
(n)
k−1 +

fk
fk+1

x
(n)
k −

[
−fk+1

fk
x
(m)
k−1 +

fk
fk+1

x
(m)
k

]∣∣∣∣pk
=

∑
k

∣∣∣∣−fk+1

fk

[
x
(n)
k−1 − x

(m)
k−1

]
+

fk
fk+1

[
x
(n)
k − x

(m)
k

]∣∣∣∣pk
= [h (xn − xm)]M < εM

for every n,m > n0(ε), {(Fx0)k, (Fx1)k, (Fx2)k, . . .} is a Cauchy sequence of real

numbers for every fixed k ∈ N. Since R is complete, it converges, say (Fxn)k →

(Fx)k as n → ∞. Using these infinitely many limits (Fx)0, (Fx)1, (Fx)2, . . . we

define the sequence {(Fx)0, (Fx)1, (Fx)2, . . .}. For each k ∈ N and n > n0(ε)

[h (xn − x)]M =
∑
k

∣∣∣∣−fk+1

fk

[
x
(n)
k−1 − xk−1

]
+

fk
fk+1

[
x
(n)
k − xk

]∣∣∣∣pk
=

∑
k

∣∣∣∣−fk+1

fk
x
(n)
k−1 +

fk
fk+1

x
(n)
k −

[
−fk+1

fk
xk−1 +

fk
fk+1

xk

]∣∣∣∣pk
=

∑
k

|(Fxn)k − (Fx)k|pk < εM .

This shows that xn − x ∈ `(F, p). Since `(F, p) is a linear space, we conclude that

x ∈ `(F, p). It follows that xn → x, as n → ∞ in `(F, p) which means that `(F, p)

is complete.

Now, one can easily check that the absolute property does not hold on the

space `(F, p), that is

h(x) =

(∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk
)1/M

6=

(∑
k

∣∣∣∣−fk+1

fk
|xk−1|+

fk
fk+1

|xk|
∣∣∣∣pk
)1/M

= h(|x|),

where |x| = (|xk|). This says that `(F, p) is the sequence space of non-absolute

type.
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Theorem 3.2. Convergence in `(F, p) is strictly stronger than coordinatewise con-

vergence, but the converse is not true, in general.

Proof. First we show that h(xn − x)→ 0, as n→∞ implies x
(n)
k → xk, as n→∞

for all k ∈ N. If we fix k, then we have

0 ≤
∣∣∣∣−fk+1

fk
x
(n)
k−1 +

fk
fk+1

x
(n)
k −

(
−fk+1

fk
xk−1 +

fk
fk+1

xk

)∣∣∣∣pk
≤

∑
k

∣∣∣∣−fk+1

fk
x
(n)
k−1 +

fk
fk+1

x
(n)
k −

(
−fk+1

fk
xk−1 +

fk
fk+1

xk

)∣∣∣∣pk
=

∑
k

∣∣∣∣−fk+1

fk

(
x
(n)
k−1 − xk−1

)
+

fk
fk+1

(
x
(n)
k − xk

)∣∣∣∣pk
= [h (xn − x)]M .

Hence, we have for k = 0

lim
n→∞

∣∣∣∣−f1f0x(n)−1 +
f0
f1
x
(n)
0 −

(
−f1
f0
x−1 +

f0
f1
x0

)∣∣∣∣ = 0,

that is,
∣∣∣f0f1 [x(n)0 − x0

]∣∣∣→ 0, as n→∞ and f0/f1 = 1 6= 0, then
∣∣∣x(n)0 − x0

∣∣∣→ 0, as

n→∞. Likewise, for each k ∈ N, we have
∣∣∣x(n)k − xk

∣∣∣→ 0, as n→∞.

Now, we show that the converse is not true in general. We assume x
(n)
k → xk,

as n → ∞. Then, there exists an N ∈ N such that
∣∣∣x(n)k − xk

∣∣∣ < 1 for each fixed k

and for all n ≥ N . Therefore, we see that

0 ≤ h(xn − x) =

[∑
k

∣∣∣∣−fk+1

fk

(
x
(n)
k−1 − xk−1

)
+

fk
fk+1

(
x
(n)
k − xk

)∣∣∣∣pk
]1/M

(3.5)

=

∑
k

[∣∣∣∣−fk+1

fk

(
x
(n)
k−1 − xk−1

)
+

fk
fk+1

(
x
(n)
k − xk

)∣∣∣∣pk/M
]M

1/M

≤

∑
k

[∣∣∣∣−fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣pk/M +

∣∣∣∣ fkfk+1

(
x
(n)
k − xk

)∣∣∣∣pk/M
]M

1/M

≤

[∑
k

∣∣∣∣−fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣pk
]1/M

+

[∑
k

∣∣∣∣ fkfk+1

(
x
(n)
k − xk

)∣∣∣∣pk
]1/M

≤

(∑
k

∣∣∣∣−fk+1

fk

∣∣∣∣pk ∣∣∣x(n)k−1 − xk−1
∣∣∣pk)1/M

+

(∑
k

∣∣∣∣ fkfk+1

∣∣∣∣pk ∣∣∣x(n)k − xk
∣∣∣pk)1/M

≤

(∑
k

∣∣∣∣−fk+1

fk

∣∣∣∣pk
)1/M

+

(∑
k

∣∣∣∣ fkfk+1

∣∣∣∣pk
)1/M
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for all k and n ≥ N . Since |−fk+1/fk| → 1.6 and |fk/fk+1| → 0.6, as k → ∞,

h(xn − x) in (3.5) does not converge for each fixed k ∈ N and for all n ≥ N . This

implies that the converse is not true. Let us consider the elements of the sequence

xn be equal then we observe h(xn − x) = 0, that is to say that coordinatewise

convergence requires convergence. Hence, we can say that the converse is not true

in general.

Theorem 3.3. `(F, p) is a K-space.

Proof. Firstly, we show that qi(x) = xi is linear for all i ∈ N. Let x, y ∈ `(F, p) and

α ∈ C. Then, we get

qi(x+ y) = (x+ y)i = xi + yi = qi(x) + qi(y) and qi(αx) = (αx)i = αxi = αqi(x)

for all i ∈ N. Hence, qi is linear.

Now, we prove that qi is continuous. For this, it is sufficient to show that qi is

bounded.

Let x ∈ `(F, p) be any vector. Then, since |qi(x)| = |xi| for all i ∈ N one can see

that

‖qi‖ := sup
x 6=θ

|qi(x)|
‖x‖`(F,p)

= sup
x 6=θ

|xi|
‖x‖`(F,p)

≤ sup
x 6=θ

‖x‖`(F,p)
‖x‖`(F,p)

= 1 <∞,

i.e. qi is bounded. Hence, pi is linear and continuous functional. That is to say that

`(F, p) is a K-space.

Theorem 3.4. `(F, p) is an FK-space.

Proof. It is easy to see by Theorems 3.1 and 3.2 that `(F, p) is complete sequence

space and convergence requires coordinatewise convergence. Hence, `(F, p) is an

FK-space.

Theorem 3.5. `p(F ) is the linear space under the coordinatewise addition and scalar

multiplication which is a BK-space with the norm

‖x‖ =

(∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣p
)1/p

,

where x = (xk) ∈ `p(F ) and 1 ≤ p <∞.
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Proof. Since the first part of the theorem is a routine verification, we omit the detail.

Since `p is a BK-space with respect to its usual norm and F is a triangle matrix,

Theorem 4.3.2 of Wilansky [9, p. 61] gives the fact that `p(F ) is a BK-space, where

1 ≤ p <∞. This completes the proof.

Theorem 3.6. `p(F ) is a Frechet space.

Proof. It is easy to see that `p(F ) is a linear, complete and metric space. We only

need to prove that `p(F ) is a linear metric space. Let (xn) and (yn) be two sequences

in `p(F ), and (αn) be a sequence of scalars such that d(xn, x)→ 0, d(yn, y)→ 0 and

αn → α, as n→∞. Then, we get that

0 ≤ lim
n→∞

d(xn + yn, x+ y) = lim
n→∞

[‖xn + yn − (x+ y)‖] (3.6)

≤ lim
n→∞

(‖xn − x‖+ ‖yn − y‖)

= lim
n→∞

d(xn, x) + lim
n→∞

d(yn, y) = 0,

and

0 ≤ lim
n→∞

d(αnxn, αx) = lim
n→∞

‖αnxn − αx‖ (3.7)

= lim
n→∞

‖(αn − α)xn + α(xn − x)‖

≤ lim
n→∞

(|αn − α|‖xn‖+ |α|‖xn − x‖)

= lim
n→∞

|αn − α|‖xn‖+ |α| lim
n→∞

d(xn, x) = 0.

It is easy to see from (3.6) and (3.7) that `p(F ) is a linear metric space. Hence,

`p(F ) is a Frechet space.

With the notation of (3.1), the transformation T defined from `(F, p) to `(p)

by x 7→ y = Tx is linear bijection, we have the following

Theorem 3.7. The sequence space `(F, p) of the non-absolute type is linearly para-

norm isomorphic to the space `(p), where 0 < pk ≤ H <∞ for all k ∈ N.

Proof. To prove the theorem, we should show the existence of a linear bijection

between the spaces `(F, p) and `(p) for 0 < pk ≤ H <∞. Let T be a transformation

from `(F, p) to `(p) such that

T : `(F, p) −→ `(p)

x 7−→ Tx = Fx = y.
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The linearity of T is trivial. Further it is obvious that x = θ whenever Tx = θ,

hence T is injective. Let y ∈ `(p) and define the sequence x = (xk) as in (3.2). Then

we have

(Fx)k = −fk+1

fk
xk−1 +

fk
fk+1

xk

= −fk+1

fk

k−1∑
n=0

f 2
k

fnfn+1

yn +
fk
fk+1

k∑
n=0

f 2
k+1

fnfn+1

yn

= −
k−1∑
n=0

fkfk+1

fnfn+1

yn +
k∑

n=0

fkfk+1

fnfn+1

yn

= yk

for all k ∈ N, which leads us to the fact that

h(x) =

(∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk
)1/M

=

(∑
k

|yk|pk
)1/M

= h(y) <∞.

Thus we deduce that x ∈ `(F, p), T is surjective and paranorm preserving. Hence, T

is a linear bijection and so the spaces `(F, p) and `(p) are paranorm isomorphic.

Theorem 3.8. Let 0 < pk ≤ H < ∞ and λk = (Fx)k for all k ∈ N. Define the

sequence b(k) =
{
b
(k)
n

}
n∈N

of the elements of the spaces `(F, p) by

b(k)n =


f2k+1

fnfn+1
, 0 ≤ n ≤ k,

0 , n > k
(3.8)

for every fixed k ∈ N. Then, the sequence
{
b(k)
}
k∈N is a basis for the space `(F, p)

and any x ∈ `(F, p) has a unique representation of the form

x =
∑
k

λkb
(k). (3.9)

Proof. It is clear that
{
b(k)
}
k∈N ⊂ `(F, p), since

Fb(k) = e(k) ∈ `(p), k ∈ N

for 0 < pk ≤ H < ∞. Let x ∈ `(F, p) be given. For every non-negative integer m,

we put

x[m] =
m∑
k=0

λkb
(k).
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Then, we have

Fx[m] =
m∑
k=0

λkFb
(k) =

m∑
k=0

λke
(k) =

m∑
k=0

(Fx)ke
(k)

and

{
F
(
x− x[m]

)}
i

=

 0 , 0 ≤ i ≤ m;

(Fx)i , i > m
(i,m ∈ N).

Given ε > 0, then there is an integer m0 such that for all m ≥ m0(
∞∑
i=m

|(Fx)i|pk
)1/M

<
ε

2
.

Therefore,

h
(
x− x[m]

)
=

(
∞∑
i=m

|(Fx)i|pk
)1/M

≤

(
∞∑

i=m0

|(Fx)i|pk
)1/M

< ε

for all m ≥ m0, which proves that x ∈ `(F, p) is represented as in (3.9).

Let us show the uniqueness of the representation for x ∈ `(F, p) given by (3.9).

Suppose, on the contrary, that there exists a representation x =
∑

k µkb
(k). Since

the linear transformation T from `(F, p) to `(p), used in the proof of Theorem 3.7

is continuous, we have that

(Fx)n =
∑
k

λk
(
Fb(k)

)
n

=
∑
k

µke
(k)
n = µn

which contradicts the fact that (Fx)n = λn for all n ∈ N. Hence, the representation

in (3.9) of x ∈ `(p) is unique. This completes the proof.



CHAPTER 4

THE ALPHA-, BETA- AND GAMMA-DUALS OF THE

SPACE `(F, p)

Prior to giving the alpha-, beta- and gamma-duals of the space `(F, p), we

quote some required lemmas for proving our theorems.

Lemma 4.1. [10, Theorem 5.1.0] Let A = (ank) be an infinite matrix over the

complex field. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (`(p) : `1) if and only if

sup
N∈F

sup
k∈N

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣
pk

<∞.

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then, A ∈ (`(p) : `1) if and only if there

exists an integer B > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ankB
−1

∣∣∣∣∣
p
′
k

<∞. (4.1)

Lemma 4.2. [11, (i) and (ii) of Theorem 1] Let A = (ank) be an infinite matrix

over the complex field. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (`(p) : `∞) if and only if

sup
n,k∈N

|ank|pk <∞. (4.2)

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then, A ∈ (`(p) : `∞) if and only if there

exists an integer B > 1 such that

sup
n∈N

∑
k

∣∣ankB−1∣∣p′k <∞. (4.3)

24
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Lemma 4.3. [11, Corollary for Theorem 1] Let A = (ank) be an infinite matrix over

the complex field and 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (`(p) : c) if and

only if (4.2), (4.3) hold, and

lim
n→∞

ank = βk for each k ∈ N (4.4)

also holds.

Let us define the sets E1(p), E2(p), E3(p), E4(p) and E5(p), as follows:

E1(p) :=

{
a = (ak) ∈ ω : sup

N∈F
sup
k∈N

∣∣∣∣∣∑
n∈N

f 2
n+1

fkfk+1

an

∣∣∣∣∣
pk

<∞

}
,

E2(p) :=

a = (ak) ∈ ω : sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

f 2
n+1

fkfk+1

anB
−1

∣∣∣∣∣
p
′
k

<∞

 ,

E3(p) :=

{
a = (ak) ∈ ω : sup

k,n∈N

∣∣∣∣∣
n∑
j=k

f 2
j+1

fkfk+1

aj

∣∣∣∣∣
pk

<∞

}
,

E4(p) :=

{
a = (ak) ∈ ω :

∞∑
j=k

f 2
j+1

fkfk+1

aj is convergent

}
,

E5(p) :=

a = (ak) ∈ ω : sup
n∈N

∑
k

∣∣∣∣∣
n∑
j=k

f 2
j+1

fkfk+1

ajB
−1

∣∣∣∣∣
p
′
k

<∞

 .

Because of Part (i) can be established in a similar way to the proof of Part

(ii), we give the proof only for Part (ii) in Theorems 4.4 and 4.5, below.

Theorem 4.4. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, {`(F, p)}α = E1(p).

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then, {`(F, p)}α = E2(p).

Proof. Let us take any a = (an) ∈ ω. By using (3.2), we obtain that

anxn =
n∑
k=0

f 2
n+1

fkfk+1

anyk = (Ey)n for all n ∈ N, (4.5)

where E = (enk) is defined by

enk =


f2n+1

fkfk+1
an , 0 ≤ k ≤ n,

0 , k > n
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for all k, n ∈ N. Thus, we observe by combining (4.5) with the condition (4.1) of

Part (ii) of Lemma 4.1 that ax = (anxn) ∈ `1 whenever x = (xk) ∈ `(F, p) if and

only if Ey ∈ `1 whenever y = (yk) ∈ `(p). This leads to {`(F, p)}α = E2(p), as

asserted.

Theorem 4.5. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, {`(F, p)}β = E3(p) ∩ E4(p).

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then, {`(F, p)}β = E4(p) ∩ E5(p).

Proof. Take any a = (aj) ∈ ω. Then, one can obtain by (3.2) that

n∑
j=0

ajxj =
n∑
j=0

(
j∑

k=0

f 2
j+1

fkfk+1

yk

)
aj =

n∑
k=0

(
n∑
j=k

f 2
j+1

fkfk+1

aj

)
yk = (Dy)n (4.6)

for all n ∈ N, where D = (dnk) is defined by

dnk =


∑n

j=k

f2j+1

fkfk+1
aj , 0 ≤ k ≤ n,

0 , k > n
(4.7)

for all n, k ∈ N. Thus, we deduce from Lemma 4.3 with (4.6) that ax = (ajxj) ∈ cs

whenever x = (xj) ∈ `(F, p) if and only if Dy ∈ c whenever y = (yk) ∈ `(p).

Therefore, we derive from (4.3) and (4.4) that

sup
n∈N

∑
k

∣∣∣∣∣
n∑
j=k

f 2
j+1

fkfk+1

ajB
−1

∣∣∣∣∣
pk
′

<∞,

∞∑
j=k

f 2
j+1

fkfk+1

aj <∞.

This shows that {`(F, p)}α = E4(p) ∩ E5(p).

Theorem 4.6. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, {`(F, p)}γ = E3(p).

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then, {`(F, p)}γ = E5(p).

Proof. From Lemma 4.2 and (4.6), we obtain that ax = (ajxj) ∈ bs whenever

x = (xj) ∈ `(F, p) if and only if Dy ∈ `∞ whenever y = (yk) ∈ `(p), where D = (dnk)

is defined by (4.7). Therefore we obtain from (4.2) and (4.3) that {`(F, p)}γ = E3(p) , pk ≤ 1,

E5(p) , pk > 1
, as desired.



CHAPTER 5

MATRIX TRANSFORMATONS ON THE SPACE `(F, p)

In this section, we characterize some matrix transformations on the space

`(F, p). Since the cases 0 < pk ≤ 1 and 1 < pk ≤ H < ∞ are combined, Theorem

5.1 gives the exact conditions of the general case 0 < pk ≤ H < ∞. We consider

only the case 1 < pk ≤ H < ∞ and omit the proof of the case 0 < pk ≤ 1, since it

can be proven in a similar way.

Theorem 5.1. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A = (ank) ∈ (`(F, p) : `∞) if and only if

sup
k,n∈N

∣∣∣∣∣
∞∑
i=k

f 2
i+1

fkfk+1

ani

∣∣∣∣∣
pk

<∞, (5.1)

∞∑
i=k

f 2
i+1

fkfk+1

ani <∞. (5.2)

(ii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then A = (ank) ∈ (`(F, p) : `∞) if and

only if (5.2) holds and there exists an integer B > 1 such that

sup
n∈N

∑
k

∣∣∣∣∣
∞∑
i=k

f 2
i+1

fkfk+1

aniB
−1

∣∣∣∣∣
p
′
k

<∞. (5.3)

Proof. Let A ∈ (`(F, p) : `∞) and 1 < pk ≤ H < ∞ for all k ∈ N. Then, Ax exists

for every x ∈ `(F, p) and this implies that An ∈ {`(F, p)}β for each fixed n ∈ N.

Therefore, the necessities of (5.2) and (5.3) are immediate.

Conversely, suppose that the conditions (5.2) and (5.3) hold, and take any

x ∈ `(F, p). Since An ∈ {`(F, p)}β for every n ∈ N, the A-transform of x exists. By

using (3.2), we obtain that

m∑
j=0

anjxj =
m∑
j=0

j∑
k=0

f 2
j+1

fkfk+1

ykanj =
m∑
k=0

m∑
j=k

f 2
j+1

fkfk+1

anjyk (5.4)

27
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for all m,n ∈ N. Taking into account the hypothesis, we drive from (5.4), as m→∞

that ∑
i

anixi =
∑
k

∞∑
i=k

f 2
i+1

fkfk+1

aniyk for all n ∈ N. (5.5)

By combining (5.5) and the inequality which holds for any complex numbers a, b

and any B > 0

|ab| ≤ B
(∣∣aB−1∣∣p′ + |b|p) ,

where p > 1 and p−1 + p′−1 = 1, we obtain that

sup
n∈N

∣∣∣∣∣∑
j

anjxj

∣∣∣∣∣ = sup
n∈N

∣∣∣∣∣∑
k

∞∑
j=k

f 2
j+1

fkfk+1

anjyk

∣∣∣∣∣
≤ sup

n∈N

∑
k

∣∣∣∣∣
∞∑
j=k

f 2
j+1

fkfk+1

anjyk

∣∣∣∣∣
≤ sup

n∈N

∑
k

B

∣∣∣∣∣
∞∑
j=k

f 2
j+1

fkfk+1

anjB
−1

∣∣∣∣∣
p
′
k

+ |yk|pk


= B

sup
n∈N

∑
k

∣∣∣∣∣
∞∑
j=k

f 2
j+1

fkfk+1

anjB
−1

∣∣∣∣∣
p
′
k

+ sup
n∈N

∑
k

|yk|pk
 <∞.

This shows that Ax ∈ `∞.

Theorem 5.2. The following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A = (ank) ∈ (`(F, p) : c) if and only if

(5.1) and (5.2) hold, and there is a sequence α = (αk) of scalars such that

lim
n→∞

∞∑
j=k

f 2
j+1

fkfk+1

anj = αk for all k ∈ N. (5.6)

(ii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A = (ank) ∈ (`(F, p) : c) if and

only if (5.2), (5.3) and (5.6) hold.

Proof. Let A ∈ (`(F, p) : c) and 1 < pk ≤ H < ∞ for all k ∈ N. Then, since the

inclusion c ⊂ `∞ holds, the necessities of (5.2) and (5.3) are immediately obtained

from Theorem 5.1.
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To prove the necessity of (5.6), consider the sequence b(k) defined by (3.8),

which is in the space `(F, p) for every fixed k ∈ N. Since the A-transform of every

x ∈ `(F, p) exists and is in c by the hypothesis, we have

Ab(k) =

(
∞∑
j=0

aijb
(k)
j

)∞
i=0

=

(
∞∑
j=k

f 2
j+1

fkfk+1

aij

)∞
i=0

∈ c

for every fixed k ∈ N, which shows the necessity (5.6).

Conversely, suppose that the conditions (5.2), (5.3) and (5.6) hold, and take

any x = (xk) in the space `(F, p). Then, Ax exists.

We observe for all m,n ∈ N that

m∑
k=0

∣∣∣∣∣
n∑
j=k

f 2
j+1

fkfk+1

anjB
−1

∣∣∣∣∣
p
′
k

≤ sup
n∈N

∑
k

∣∣∣∣∣
∞∑
j=k

f 2
j+1

fkfk+1

anjB
−1

∣∣∣∣∣
p
′
k

<∞

which gives the fact by letting m,n→∞ with (5.3) and (5.6)

lim
m,n→∞

m∑
k=0

∣∣∣∣∣
n∑
j=k

f 2
j+1

fkfk+1

anjB
−1

∣∣∣∣∣
p
′
k

≤ sup
n∈N

∑
k

∣∣∣∣∣
∞∑
j=k

f 2
j+1

fkfk+1

anjB
−1

∣∣∣∣∣
p
′
k

<∞.

This shows that
∑

k |αkB−1|
p
′
k < ∞ and (αk) ∈ {`(F, p)}β which implies that the

series
∑

k αkxk converges for all x ∈ `(F, p).

Now, let us consider the equality obtained from (5.5) with anj − αj instead of

anj ∑
j

(anj − αj)xj =
∑
k

∞∑
j=k

f 2
j+1

fkfk+1

(anj − αj)yk =
∑
k

cnkyk, (5.7)

where C = (cnk) defined by cnk =
∑∞

j=k

f2j+1

fkfk+1
(anj − αj) for all k, n ∈ N. From

Lemma 4.3, cnk → 0, as n → ∞ for all k ∈ N. Therefore, we see by (5.7) that∑
k(ank−αk)xk → 0, as n→∞. This means that Ax ∈ c whenever x ∈ `(F, p) and

this step completes the proof.

Corollary 5.3. (i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A = (ank) ∈ (`(F, p) : c0)

if and only if (5.1) and (5.2) hold, and (5.6) also holds with αk = 0 for all

k ∈ N.

(ii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A = (ank) ∈ (`(F, p) : c0) if and

only if (5.2) and (5.3) hold, and (5.6) also holds with αk = 0 for all k ∈ N.
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Now, we can give the following lemma which is useful for deriving the char-

acterization of the classes of matrix transformations from the space `(F, p) to the

space λA, where λ ∈ {`∞, c, c0} and A ∈ {∆, Er, C1, R
t,
∑
, F}.

Lemma 5.4. [12, Lemma 5.3] Let λ, µ be any two sequence spaces, A be an infinite

matrix and B be a triangle matrix. Then, A ∈ (λ : µB) if and only if BA ∈ (λ : µ).

Lemma 5.4 has several consequences depending on the choice of the space µ.

Indeed, combining Lemma 5.4 with Theorems 5.1, 5.2 and Corollary 5.3, one can

obtain the following results:

Corollary 5.5. Let A = (ank) be an infinite matrix of complex entries. Then, the

following statements hold:

(i) E = (enk) ∈ (`(F, p) : bv∞) if and only if (5.1), (5.3) hold with dnk instead of

ank; where dnk = enk − en−1,k for all k, n ∈ N and bv∞ denotes the space of all

sequences x = (xk) such that (xk − xk−1) ∈ `∞, and was introduced by Başar

and Altay [12].

(ii) E = (enk) ∈ (`(F, p) : er∞) if and only if (5.1), (5.3) hold with dnk instead of

ank, where dnk =
∑n

j=0

(
n
j

)
(1− r)n−jrjejk for all k, n ∈ N and er∞ denotes the

space of all sequences x = (xk) such that Erx ∈ `∞, and was introduced by

Altay, Başar and Mursaleen [13].

(iii) E = (enk) ∈ (`(F, p) : X∞) if and only if (5.1), (5.3) hold with dnk instead of

ank; where dnk =
∑n

j=0 ejk/(n+ 1) for all k, n ∈ N and X∞ denotes the space

of all sequences x = (xk) such that C1x ∈ `∞, and was introduced by Ng and

Lee [14].

(iv) E = (enk) ∈ (`(F, p) : rt∞) if and only if (5.1), (5.3) hold with dnk instead of

ank; where dnk =
∑n

j=0 tjejk/Tn for all k, n ∈ N and rt∞ denotes the space of

all sequences x = (xk) such that Rtx ∈ `∞, and was introduced by Altay and

Başar [15].

(v) E = (enk) ∈ (`(F, p) : bs) if and only if (5.1), (5.3) hold with dnk instead of

ank, where dnk =
∑n

j=0 ejk for all k, n ∈ N.
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(vi) E = (enk) ∈ (`(F, p) : `∞(F̂ )) if and only if (5.1), (5.3) hold with dnk instead

of ank, where dnk = −fn+1

fn
en−1,k + fn

fn+1
enk for all k, n ∈ N and `∞(F̂ ) denotes

the space of all sequences x = (xk) such that Fx ∈ `∞, and was introduced by

Kara [16].

Corollary 5.6. Let A = (ank) be an infinite matrix of complex entries. Then, the

following statements hold:

(i) E = (enk) ∈ (`(F, p) : c(∆)) if and only if (5.1), (5.3) and (5.6) hold with dnk

instead of ank; where dnk = enk − en+1,k for all k, n ∈ N and c(∆) denotes the

space of all sequences x = (xk) such that (xk − xk+1) ∈ c, and was introduced

by Kızmaz [17].

(ii) E = (enk) ∈ (`(F, p) : erc) if and only if (5.1), (5.3) and (5.6) hold with

dnk instead of ank, where dnk =
∑n

j=0

(
n
j

)
(1 − r)n−jrjejk for all k, n ∈ N and

erc denotes the space of all sequences x = (xk) such that Erx ∈ c, and was

introduced by Altay and Başar [18].

(iii) E = (enk) ∈ (`(F, p) : c̃) if and only if (5.1), (5.3) and (5.6) hold with dnk

instead of ank; where dnk =
∑n

j=0 ejk/(n + 1) for all k, n ∈ N and c̃ denotes

the space of all sequences x = (xk) such that C1x ∈ c, and was introduced by

Şengönül and Başar [19].

(iv) E = (enk) ∈ (`(F, p) : rtc) if and only if (5.1), (5.3) and (5.6) hold with dnk

instead of ank; where dnk =
∑n

j=0 tjejk/Tn for all k, n ∈ N and rtc denotes the

space of all sequences x = (xk) such that Rtx ∈ c, and was introduced by Altay

and Başar [20].

(v) E = (enk) ∈ (`(F, p) : c(F̂ )) if and only if (5.1), (5.3) and (5.6) hold with

dnk instead of ank; where dnk = −fn+1

fn
en−1,k + fn

fn+1
enk for all k, n ∈ N and

c(F̂ ) denotes the space of all sequences x = (xk) such that Fx ∈ c, and was

introduced by Başarır et al. [21].

(vi) E = (enk) ∈ (`(F, p) : cs) if and only if (5.1), (5.3) and (5.6) hold with dnk

instead of ank; where dnk =
∑n

j=0 ejk for all k, n ∈ N.

Corollary 5.7. Let A = (ank) be an infinite matrix of complex entries. Then, the

following statements hold:
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(i) E = (enk) ∈ (`(F, p) : c0(∆)) if and only if (5.1), (5.3) hold and (5.6) also

holds with αk = 0 for all k ∈ N and dnk instead of ank; where dnk = enk−en+1,k

for all k, n ∈ N and c0(∆) denotes the space of all sequences x = (xk) such

that (xk − xk+1) ∈ c0, and was introduced by Kızmaz [17].

(ii) E = (enk) ∈ (`(F, p) : er0) if and only if (5.1), (5.3) hold and (5.6) also holds

with αk = 0 for all k ∈ N and dnk instead of ank, where dnk =
∑n

j=0

(
n
j

)
(1 −

r)n−jrjejk for all k, n ∈ N and er0 denotes the space of all sequences x = (xk)

such that Erx ∈ c0, and was introduced by Altay and Başar [18].

(iii) E = (enk) ∈ (`(F, p) : c̃0) if and only if (5.1), (5.3) hold and (5.6) also holds

with αk = 0 for all k ∈ N and dnk instead of ank; where dnk =
∑n

j=0 ejk/(n+1)

for all k, n ∈ N and c̃0 denotes the space of all sequences x = (xk) such that

C1x ∈ c0, and was introduced by Şengönül and Başar [19].

(iv) E = (enk) ∈ (`(F, p) : rt0) if and only if (5.1), (5.3) hold and (5.6) also holds

with αk = 0 for all k ∈ N and dnk instead of ank; where dnk =
∑n

j=0 tjejk/Tn

for all k, n ∈ N and rt0 denotes the space of all sequences x = (xk) such that

Rtx ∈ c0, and was introduced by Altay and Başar [20].

(v) E = (enk) ∈ (`(F, p) : c0(F̂ )) if and only if (5.1), (5.3) hold and (5.6) also holds

with αk = 0 for all k ∈ N and dnk instead of ank; where dnk = −fn+1

fn
en−1,k +

fn
fn+1

enk for all k, n ∈ N and c0(F̂ ) denotes the space of all sequences x = (xk)

such that Fx ∈ c0, and was introduced by Başarır et al. [21].

(vi) E = (enk) ∈ (`(F, p) : c0s) if and only if (5.1), (5.3) hold and (5.6) also holds

with αk = 0 for all k ∈ N and dnk instead of ank; where dnk =
∑n

j=0 ejk for

all k, n ∈ N and c0s denotes the space of all sequences x = (xk) such that∑
k xk = 0.



CHAPTER 6

CONCLUSION

Let 0 < r < 1, q = (qk) be a sequence of non-negative reals with q0 > 0 and

Qn =
∑n

k=0 qk for all n ∈ N, r̃ = (rk) and s̃ = (sk) be the convergent sequences.

Suppose that the sequences u = (uk) and v = (vk) consist of non-zero entries;

u, s ∈ R, and λ = (λn) be the strictly increasing sequence of positive real numbers

tending to infinity with λn+1 ≥ 2λn.

Let us define the summation matrix S = (snk), the matrix Ar = (arnk), the

generalized difference matrix B(u, s) = {bnk(u, s)}, the matrix Au = (aunk), the

double sequential band matrix B(r̃, s̃) = {bnk (rk, sk)}, the Riesz matrix Rq = (rqnk)

with respect to the sequence q = (qk), the factorable matrix G(u, v) = (gnk), the

matrix Ã = {ank(λ)} and the Nörlund matrix N q = (aqnk) with respect to the

sequence q = (qk) by

snk :=

 1 , 0 ≤ k ≤ n,

0 , k > n,
aunk :=

 (−1)n−kuk , n− 1 ≤ k ≤ n,

0 , 0 ≤ k < n− 1 or k > n

bnk(u, s) :=


u , k = n,

s , k = n− 1,

0 , 0 ≤ k < n− 1 or k > n,

arnk :=

 1+rk

n+1
uk , 0 ≤ k ≤ n,

0 , k > n

bnk (rk, sk) =


rk , k = n,

sk , k = n− 1,

0 , 0 ≤ k < n− 1 or k > n,

rqnk =


qk
Qn

, 0 ≤ k ≤ n,

0 , k > n

gnk :=

 unvk , 0 ≤ k ≤ n,

0 , k > n,
ank(λ) :=


λk−2λk−1+λk−2

λn−λn−1
, 0 ≤ k ≤ n,

0 , k > n,
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aqnk =


qn−k

Qn
, 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N.

For concerning literature about the domain of the infinite matrix A in the

sequence space `(p), the following table may be useful:

A [`(p)]A refer to:

Rq rq(p) [15]

S `(p) [22]

Ar ar(u, p) [23]

B(u, s) ̂̀(p) [24]

Au bv(u, p) [25]

B(r̃, s̃) `(B̃, p) [26]

G(u, v) `(u, v; p) [27]

Ã `(Ã, p) [28]

N q N q(p) [29]

Table 1: The domains of some triangle matrices in the space `(p).

In first, the domains `p(F̂ ) and c0(F̂ ), c(F̂ ) of the double band matrix F

defined by a sequence of Fibonacci numbers in the sequence spaces `p and c, c0

have recently been studied by Kara [16] and Başarır et al. [21], respectively. It is

natural to expect for extending the normed space `p(F̂ ) to the paranormed space

`(F, p) as was the space `p extended to the space `(p) which is the main subject of

the present paper. As a continuation of Kara [16], we have introduced the space

`(F, p) and studied its algebraic and topological properties. We should record that

the geometric properties of the space `(F, p) can be investigated in a separate paper

which will be the main subject of our next work.
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