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WELL-POSEDNESS OF TELEGRAPH DIFFERENTIAL
AND DIFFERENCE EQUATIONS

Mahmut MODANLI

Ph.D. Thesis — Mathematics
May 2015

Thesis Supervisor: Prof. Allaberen ASHYRALYEV

ABSTRACT

Cauchy and nonlocal boundary value problems for telegraph equations in a
Hilbert space H with the self-adjoint positive definite operator A are analyzed. Sta-
bility estimates for the solution of these problems are formed. A first and a second
order of accuracy difference schemes for the approximate solution of these problems
are presented. Stability estimates for the solutions of these difference schemes are
installed. In implementations, two mixed problems for telegraph partial differen-

tial equations are investigated. The methods are tested by numerical examples by
MATLAB programming.

Keywords:  Telegraph Equations, Cauchy Problem, Hilbert Space, Difference
Schemes, Stability, Initial Boundary Value Problem.
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Y/

H Hilbert uzayinda bir self-adjoint pozitif tanimli A operatorii igin telegraf
diferensiyel denklemlerde Cauchy ve lokal olmayan bir sinir deger problemi ¢alisildi.
Bu denklemin ¢oztimii i¢in kararhlik kestirimleri bulundu. Bu problemler i¢in birinci
ve ikinci dereceden dogruluk fark gsemalar: verildi. Bu dogruluk fark denklemleri
igin kararlilik kestirimleri insa edildi. Uygulamalarda telegraf kismi diferansiyel
denklemleri i¢in karigik problem incelendi. Metotlar, MATLAB programi yardimiyla
niimerik orneklerle gosterildi.

Anahtar Kelimeler: Telegraf Denklemler, Hilbert Uzay1, Fark Semasi, Kararlilik,
Basglangi¢ Sinir Deger Problemleri.
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CHAPTER 1

INTRODUCTION

It is well-known that hyperbolic partial differential equations arise in many
branches of science and engineering e.g., electromagnetic, electrodynamics, thermo-
dynamics, hydrodynamics, elasticity, fluid dynamics, wave propagation, materials
science. In numerical methods for solving these equations, the problem of stability
has received a great deal of importance and attention. Specially, a suitable model for
analyzing the stability is provided by a proper unconditionally absolutely stable dif-
ference scheme with an unbounded operator (Ashyralyev and Yildirim, 2013). The
role played by positivity property of differential and difference operators in Hilbert
and Banach spaces in the study of various properties of boundary value problems for
partial differential equations, of stability of difference schemes for partial differential
equations, and of summation of Fourier series is well-known (see, (Fattorini, 1985);
(Goldstein, 1985); (Ashyralyev and Koksal, 2009); (Ashyralyev and Sobolevskii,
2004); (Ashyralyev and Sobolevskii, 1994); (la Sen, 2013); (la Sen, 2011); (Achour
and Belacel, 2014); (Ghorbanalizadeh and Sawano, 2014)). The method of operators
as a instrument for the examination of the solution of local and nonlocal problems
for hyperbolic differential equations in Hilbert and Banach spaces, has been system-
atically developed by several authors (see, e.g., (Fattorini, 1985); (Goldstein, 1985);
(Ashyralyev and Sobolevskii, 2004); (Krein, 1971); (Vasilev et al., 1990)).

The telegraph hyperbolic partial differential equation is significant for modeling
a few suitable relevant problems such as signal analysis, wave propagation, random
walk theory (Jordan and Puri, 1999); (Weston and He, 1993); (Banasiak and Mika,

1998). To deal with the equation, various mathematical methods have been proposed



for obtaining exact and approximate analytic solutions. For instance, Dehghan and
Shokri proposed a new numerical scheme based on radial based function method
(Kansa’s method) (Dehghan and Shokri, 2008). Gao and Chi developed a numeri-
cal algorithm for the solution of nonlinear telegraph equations (Gao and Chi, 2007).
Biazar applied the variational iteration method to obtain the approximate solutions
to the telegraph equations (Biazar et al., 2009). Saadatmandi and Dehghan used the
Chebyshev Tau method for numerically solving the telegraph equation (Saadatmandi
and Dehghan, 2010). Twizell used the explicit difference method for the wave equa-
tion with extended stability range (Twizell, 1979). Finally, Ashyralyev and Akat
applied the difference method for the approximate solution of stochastic hyperbolic
and stochastic telegraph equations (Ashyralyev and Akat, 2011); (Ashyralyev and
Akat, 2013); (Ashyralyev and Akat, 2012). Koksal computed numerical solutions of

the telegraph equations arising in transmission lines (Koksal, 2011).

In this thesis, we consider a Cauchy problem

Tult) 4 o2 | Au(t) + Bult) = f(t) (0<t<T),

dt?

u(0) = ¢, u'(0) = ¢

and a nonlocal boundary value problem

Pl 08O | Au(t) + Bult) = f(t) (0 <t < T),

u(0) = Mu(T) + ¢, u'(0) = pu/(T') + ¢
for a telegraph equation in a Hilbert space H with a self-adjoint positive definite

operator A and A > d1. Here 6 > 0, a > 0 and
2

o
o> —.

B+4d> 1

In this thesis, we research the stability of solutions of Cauchy and nonlocal

boundary value problems for telegraph equations.

A problem is called well-posed if for each set of data there exists exactly one
solution and dependence of the solution on the data continuous (Jiwari et al., 2012).

Our goal in this work is to show that various types of the boundary value problems



for equations of telegraph type are stable (Jiwari et al., 2012). Also, we will consider

the stability of difference schemes for solving these problems for telegraph equations.

It is known that local and nonlocal boundary value problems for telegraph

equations can be solved analytically by Fourier series, Fourier transform and Laplace

transform methods. Now, let us illustrate these three different analytical methods

by examples.

Example 1.1. "Obtain the Fourier series solution of the initial-boundary value

problem for a telegraph equation

¢

t>0,0<x<m,

uw(0,2) =sinz, u (0, 2) = —sinz,0 < x <,

| u(t,0) = u(t,m) =0,t > 0.

i (t, ) + u(t, ©) — uge (t, x) + u(t, v) = 2exp(—t) sinz,

(1.1)

Solution. In order to solve problem (1.1), we will use following transformation

and to get
u(t,x) =v(t,z)+w(t ),

v (t, x) is the solution of the initial-boundary value problem

.

0% | B 82
St tv=5951t>00<z<m,
§ v(0,2) =sinz,v(0,2) = —sinz,0 <z <,

v(t,0) =v(t,m) =0,t >0,

\

and w (¢, z) is the solution of the initial-boundary value problem

(52 2 .
%712”+%—1f—‘3712"+w:2exp(—t)smx,t>O,O<x<7r,

w(0,z) = 0,w(0,2) =0,0 <z <,

w(t,0) =w(t,m) =0,t > 0.

(1.2)

(1.3)

(1.4)



First, let us obtain the solution of (1.3) by the method of separation of variables.

To do this a solution of the form
v(t,z) =T(t)X(x) #0

is suggested. Taking the partial derivatives and substituting the result in (1.3), we

obtain
'O+ TM+T)  X'@)
T(t) X(x) 7
rO+TM+Tl) _ X'@) (1.5)

T(t) X(x)
The boundary conditions presented in (1.3), require X (0) = X (7) = 0. Hence, from

(1.5) we have the boundary value problem
X () =XX(2),0 <z <7 X(0)=X(m)=0. (1.6)

If A > 0, then boundary value problem (1.6) has only trivial solution X (z) = 0. For

A < 0, the nontrivial solutions of the initial value problem (1.6) are
Xi(x) =sin(kz), k= 1,2,...,\s = —k*.

The other ordinary differential equation presented in (1.5) is
T' )+ T (t)+T(t) = T(t),0<t<T

and applying formula A = —k?, we get

T, (t) + Tp(t) + (K* + 1) Ti.(t) = 0. (1.7)

The auxiliary equation is

m?+m+ (k> +1) = 0.

We have two roots

1 V4k?2+3
miyo = —5 + ZT.

Then, the general solution of equation (1.7) is

VA4k? VA4k?
Ay, cos (—+3t> + By, sin (——i_?)t>

Tolt) = exp(—3) . ;




Therefore, using the superposition principle, we get the formula

ol(t,z) = ng(t) sin kz = gexp (—%)

% 2 2

VA4k? VA4k?
Ay, cos <—+3t> + By, sin (—%t>

sin kx

for the general solution of problem (1.3). Applying initial condition v(0,z) = sinz,

we get

Z Apsinkx = sinz.
k=1
From that it follows that

A =1,A, =0k >2.

4k2
Ay, cos (%t)

Taking the derivative, we get

wlt x) = —%exp <_%) i

k=1
V4k? 4+ 3
+ B, sin (%t) sin kx
£ — VA2 +3 . [(VAK2+3
+ exp (—5) Z — A 5 sin ( 5 t>
k=1
V4k? 4+ 3 V4k? + 3 .
+B,————cos | ————¢ | | sinkzx.
2 2
Applying initial condition v;(0,z) = —sinz, we get

1 & . VAR? 3
—3 E Apsinkx + E BkT—i_ sinkr = —sinz.
k=1 k=1

From that it follows that

1 7 1

Then, using (1.8), we get

Thus, s e
t 7 1 7
)

v (t,x) = exp (—5 cos —t — —=sin —t | sinxz

2 T 2

(1.9)



is the solution of problem (1.3).

Second, we will obtain the solution of problem (1.4). We seek a solution of

problem (1.4) by the Fourier series method
w(t,z) = Z Ag(t) sinkx.
k=1

Then, taking derivatives and using equation in (1.4) and initial conditions, we can

write

Z Ay (t) sin kx + Z Ay (t) sin kx
k=1 k=1

+ Z Ap(t)k? sin kx + Z Ag(t) sinkx = 2 exp(—t) sinz,
k=1 k=1

Z Ar(0)sinkz = 0, Z AL (0)sinkz = 0.
k=1 k=1
From that it follows that
AL(t) + AL(t) + 24, (t) = 2exp(—t),
A(t) + AL(t) + (K + 1) Ax(t) = 0,k > 2,
Ar(0) =0, A, (0) = 0.

It is easy to see that Ag(t) = 0,k > 2. Therefore, we will obtain A;(t) as the solution

of the following initial value problem
AL() + AL(t) + 24, (1) = 2exp(—t), 41(0) = 0, A}(0) = 0.
We have that
Ai(t) = Af(t) + AL(1),

where

t
Af(t) = exp(—=) | cos ﬂt + ¢osin ﬂt :
2 2 2
AL (t) = Aexp(—t).

It is easy to see that A = 1. Therefore,

Af(t) = exp(—t)



and

t
Ai(t) = eXp(—i) 1 COS gt + cosin \/77?5 + exp(—t).

Using initial conditions A;(0) = 0, A;(0) = 0, we get

A(0)=c;+1=0,

/ 1 7
A1(0>:§—1+02§:0.

From that it follows that ¢; = —1 and ¢y = —=. Then,

VT

Aq(t) = exp(—z) —cos —t + L sin ﬁt + exp(—t)

2 T 2 AT 2

Sl-

and
w(t,x) = Ay (t)sinx (1.10)
=—e (—t)cos 7ts +e (—t)s t sinx + exp(—t) si
= —exp(—5 5 tsine +exp in \/_ inz + exp inz

is the solution of problem (1.4). Applying formulas (1.9) and (1.10), we can write
u(t,z) = v(t,z) + w(t,z) = exp(—t)sinx.

Note that using similar procedure one can obtain the solution of the following initial-

boundary value problem for a multidimensional telegraph equation

( n
A?u(t,x Ou(t,x A?u(t,x
61(52 ) + (f(?t ) ZOZT#:JC(L‘IL

r=1

= (11,..,2,) €EQ0<t<T,

U(O,l') = qb(x),ut((),x) = ¢($),ZE €,

Ou(p ) =0,240) — 0z € S,

. on oz,

where o, > a > 0 and f(t,7), (t € [0,T],z € Q), ¢(x), ¥(x), (v € Q) are given
smooth functions. Here €2 is the unit open cube in the n-dimensional Euclidean

space R" (0 <z < 1,1 < k < n) with the boundary 5,

Q=QuUS.



Here % indicates differentiation in the direction of the exterior normal to S. How-
ever, the method of separation of variables described in solving (1.3) can be used

only in the case when (1.1) has constant coefficients.”

Example 1.2. ”Solve the mixed problem

(

u(t, ) + ue(t, ©) — Uz (t, ) + 2u(t, x) = exp(—t — x),

t>0,2>0,
(1.11)

u(0,2) = exp(—x),u(0,2) = —exp(—z),z > 0,

\ u(t,0) = exp(—t), u,(t,0) = —exp(—t),t >0

using the Laplace transform method.

Solution. We denote
u(s,x) = L{u(t,z)}.

Then, taking Laplace transform of both sides of the differential equation (1.11) and

given conditions, we get

s?L{u(t,x)} — su(0,z) — us(0,2) + sL {u(t, )} — u(0, 2)

2

LAu(t,z)} — 2L {u(t, )} + L{exp(—t — x)},

~ ox?
LAut,0)} = — 5. L {uat,0)} = ——
ue s+ 1 Uathy o541
or
s*u(s, ) — sexp(—x) + exp(—x) + su(s,z) — exp(—x) + 2u(s, )
exp(—x) 1 1
- TT 9 PR > 07 70 — o, Uy ,0 —_ — .
Uze (S, T) + 1 " u(s,0) S_I_lu(s ) P
Therefore,

s24+s+1

2
- Uzzx\o, 2 ) =
Use (5, @) + (87 + s+ 2) u(s, z) pag]

exp(—z),z > 0,



1
u(s,0) = ?,ux(s,O) = EPE

In order to solve the problem, we need to separate u(t, x) into two parts
u(s, z) = u(s,z) + uP(s, ),
where u¢(s, x) is the solution of homogeneous equation
—Ugp(s,2) + (s° + 5+ 2) u(s,x) = 0,

and uP(s,x) = A(s) exp(—z) is the solution of nonhomogeneous equation

s+ s+1

2
Uz o, 2 ) =
Uy (5,2) + (87 4+ s+ 2) u(s, x) poaE|

exp(—x).
Now, we will obtain u(s, z). The auxiliary equation is
2 2 _
—-m°+ (s +s+2)=0.

We have two roots

m172::t\/82+8+2.

Then, the general solution of homogeneous equation is
u(s,x) = crexp(xVs? + s +2) + caexp(—avs? + s+ 2). (1.12)

It is easy to see that

Als) = = (1.13)

Using formulas (1.12) and (1.13), we obtain

u(s,r) = crexp(xVs? + s+ 2) + copexp(—aVs2 + s +2) + P exp(—).
Using initial conditions u(s,0) = =7, u.(s,0) = — o7, we get
c1 =0,c0 =0.
Then,
u(s,z) = . i . exp(—x). (1.14)

Applying inverse Laplace transform in formula (1.14), we get the exact solution of
the problem (1.11)”

u(t,r) = exp(—x —t).
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Note that using same procedure one can obtain the solution of the following

initial boundary value problem for the multidimensional telegraph equation

( n
02u(t,x ou(t,x 02u(t,x
i+ S = R et = (),

Ox2
=+
= (r1,...,2,) €Q ,0<t < T,

u(0,z) = ¢(x), w(0,2) = ¥(z), 2 € Q"

\ u(t,z) =0,z € ST,

where a, > o > 0 and f(t,z), ,¢(x), (), are given smooth functions. (¢t €
0,7],z € §+). Here Q7 is the open set in the n-dimensional Euclidean space R"

(0 < 2 < 00,1 < k < n with the boundary ST,
QO =0tust.

However, as the method of separation of variables, Laplace transform method can

be used only in the case when the differential equation has constant coefficients.

Example 1.3. Obtain the Fourier transform solution of the following Cauchy prob-

lem

e

wge (8, ) + uy (8, 7) — Uge(t, ) + u(t, z) = (3 — 42?) exp(—t — 2?),

t>0,z € (—00,00), (1.15)

| u(0,2) = exp(—2?),u(0, 2) = — exp(—2?),2 € (—00,00).

Solution. Let us denote

u(t,s)=FA{u(t,z)}.

Then, taking Fourier transform of both sides of the differential equation (1.15) and

given conditions, we get

ug (t,8) +ue (t,8) + (s° + 1) u(t, s) = exp(—t)F {(—4a® + 2) exp (—27) }
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+exp (— F{exp( )},t>0,
u(0,s) = F {exp(—2)},u(0,s) = —F {exp(—2?)}.
Then, in order to solve the problem we need to separate u(t,z) into two parts
u(t,s) =u(t,s)+uP (t,s),
where u(t, s) is the solution of homogeneous equation
ug (t,8) +ue (t,8) + (s + 1) u(t, s) =0,

and uP(t,s) = A(s) exp(—t) is the solution of nonhomogeneous equation

uy (t,8) +ue (t,8) + (s° + 1) u(t, s) = exp (—t) (s> + 1) F {exp (—2?)}.
Now, we will obtain u(t, s). The auxiliary equation is

m®+m+ (s +1) = 0.

We have two roots

—1Fiv4s2+3
5 .

myo =
Then, we obtain

u’ (t,s) = exp (—5 + cosin Tt . (1.16)

t)[ V452 +3 o V452 +3
clcosTt c

It is easy to see that
A(s) = F {exp (—2*)}
and
uP (t,s) = F {exp (—27) } exp (—t). (1.17)
Using formulas (1.16) and (1.17), we get

t V4s? +3 V 452
u(t,s) = exp —5 ) |[acos——F— ——— 1+ cysin ———

+exp (— F{exp( )}

Applying initial conditions u(0,s) = F {exp(—z?)},u:(0,5) = —F {exp(—z?)}, we
get
o+ 1 {exp (<)) = 1 fexp (—2)},
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e (<)} + Y = e (<0

From that it follows that

C1 :O,CQZO.

Then,
u(t,s) =exp(—t)F {exp (—2%)}
and
u(t,z) =F ' {u(t,s)} = exp (—t) exp (—27) = exp (=t — 2?)

is the solution of problem (1.15).

Note that using the same manner one obtains the solution of the following

initial value problem for the 2m — th order multidimensional telegraph equation

( 2 ||
% + % - Z O‘Taz{?...gx;" - f(t’ $>,

[r|=2m

0<t<T,x,reR" |r| =11+ ..+ 71y,

| u0,2) = 6(2), w(0,2) = b().x € R,

where o, > a > 0, f(t,x), ¢(z), ¥(x) are given smooth functions. (¢t € [0,7],
r € R™).

However, all analytical methods defined above, that is to say the Fourier series
method, the Laplace transform method and the Fourier transform method can be
used only when the differential equation has constant coefficients. It is well-known
that the most general method for solving PDEs with dependent coefficients in ¢ and
in the space variables is difference method, which is basically achieved by digital
computers and known to be numerical method. However the stability of different
difference schemes used in numerical methods need to be proved or justified theo-

retically.

Let us give a brief description of the contents of the various sections. It consists

of five chapters.
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First Chapter is the introduction.

Second Chapter analyzes the Cauchy problem for telegraph differential
equations in a Hilbert space with a self-adjoint operator. Stability estimates for the
solution of this problem are formed. The first and second order of accuracy differ-
ence schemes for the approximate solution of the Cauchy problem are constructed.
Stability estimates for the solution of these difference schemes are established. In
applications, two mixed problems for telegraph partial differential equations are

formed. The methods are tested by numerical examples.

Third Chapter investigated the nonlocal boundary value problem for tele-
graph differential equations in a Hilbert space with a self-adjoint operator. Stability
estimates for the solution of this problem are established. The first and second or-
der of accuracy difference schemes for the approximate solution of this problem are
given. Stability estimates for the solution of these difference schemes are established.
In applications, two mixed problems for telegraph partial differential equations are

researched. The methods are showed by numerical examples.
Fourth Chapter is conclusion.

Fifth Chapter is the algorithm and programming for the given applications.



CHAPTER 2

THE CAUCHY PROBLEM FOR A TELEGRAPH
DIFFERENTIAL EQUATION

We search a Cauchy problem for a telegraph equation

U 4 o0 4 Au(t) + Bult) = f(1) (0 <t < T),

(2.1)
u(0) = @, u'(0) =4
in a Hilbert space H with a self-adjoint positive definite operator A and A > d1.

Here 6 > 0, a > 0 and

B46> %2. (2.2)

7 A function u(t) is called a solution of the problem (2.1) if the following con-

ditions are satisfied:

(i) u(t) is twice continuously differentiable on the interval [0,7]. The derivatives

at the endpoints of the segment are understood as the appropriate unilateral

derivatives.

(ii) The element u(t) belongs to D(A) for all ¢ € [0, 7] and the function Au(t) is

continuous on the segment [0, 7.

(iii) u(t) satisfies the equation and initial conditions (2.1).”

"Let {c(t),t > 0} be a strongly continuous cosine operator-function defined by

the formula
eitB1/2 +€—itBl/2

clt) = ——

14
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Then, from the definition of the sine operator-function s ()

t

s(t)u = / o(s)u ds

0

it follows that
6itB1/2 N e—itBl/2
s(t)= B~'/? , D
21

Here B = A + (5 - %) I. Tt is easy to check under the assumption (2.2) that

the problem (2.1) for a telegraph equation has a unique mild solution given by the

formula

u(t) = e 2l (t) o + %e_%ts(t)go + 6_%t8(t)¢ + / 6_%(t_z)8(t —2)f(z)dz.  (2.3)
0

It is clear that (2.1) can be rewritten as the equivalent initial-value problem for a

system of first-order differential equations (see (Ashyralyev and Sobolevskii, 2005) )

u'(t) + Su(t) + iBzu(t) = 2(t), (0 < t < T),u(0) = up, u'(0) = u,
(2.4)

Z(t) + 22(t) — iBaz(t) = f(b).

Integrating these, now we get

( oL ni
7+237)(t75)

L ¢
u(t) = e~ (5TB2)y(0) + fe_( z(s)ds,

0

¢ 9_iBd)—s)

2(t) = e_(%_iB%)tz(O) + fe*(z f(s)ds.
\ 0

Applying the initial condition z(0) = u/(0) + (§ + iB2)u(0), we get

S

t
o ipd O‘ilfs D‘filsfp
u(t) = e~ (3B (0) +/e(§+32)(t )/e(j e )f(p)dpds
0 0

t

@4 3 t—s a_.pi
+/e_(72+ B (g-iBY)s g, (u’(O) 4 <% —1-2'3%) u(O)) .
0

By an interchange of the order of integration, we can write
t 1
1 Q1 iB2 —s o - 1
u(t) = |G (T 4iBh) /6_<2+ P e G| u(0)

0
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t
1
—(§+iB2)(t-s) _(a_.p%
+/e : e~ (G782 s/ (0)
0

t

1 1
N i(t—s)B2 __ _—i(t—s)B2
+/e‘2<t‘5)B‘§e 22.6 f(s)ds

1€ — €

1 1 1 1
[ (itB2 |y o—itB? tiB2 —itB2
t

1 1
i(t—s)B2 __ e—i(t—s)B?

2

f(s)ds.

Thus, by the definitions of Bz, ¢(t), and s(t) we obtain the formula (2.3). We will
prove the following main theorem on continuous dependence of the solution on the

given data.

1

Theorem 2.1. Suppose that ¢ € D(A), ¥ € D(A2) and f(t) is a continuously
differentiable function on [0,T] and the assumption (2.2) holds. Then, there is a

unique solution of problem (2.1) and the stability inequalities

Joax [lut)ll (2:5)

< M(a, 8,9) [nwnH T |42, + max HA—l/Qf(t)HH} ,

0<t<T

max
0<t<T

+ max ||AY2u(t)|, (2.6)

0<t<T

du(t) H
dt

< 80(0,58) [ 426l + 1ol + g 10|

0<t<T

max
0<t<T

+ x| Au()] (2.7)

d*u(t)
dt?

< Mo, 8,0) [ Aplly + || A0,

A, + max ||f’(t)||Hdt]

0<t<T

hold, where M («, [3,6) does not depend on ¢, 1 and f(t).



17

Proof. Using the formula (2.3), A > 61 and the following estimates

() lmu< 1|l B2s(t) luon< 1, |73 < 1,

(2.8)
ATyl < 5= HAl/QB—% < M(6
[A=20|, < Z llelly S M),
we can write the following inequalities
_a 1 1
lu@®) g < ez me 2t ol + HBzS(t)HHﬁH HAl/QB i HH

‘ (0%

AI/ZB_%
2¢3t

| A2l + || BAs(o)|

e |l AT,

H%HH H—H

t
+ [lpise=al, o s, e sl
0

< M 6,0) Il 1 4720 -+ guss | A721(0)

<t<T

for any t € [0, T]. Then, we obtain

max | u(t) w< Mi(a, B,6) [H ol + | A7720  + max || A2 () HH} .

0<t<T 0<t<T

Applying A2 to the formula (2.3) and using estimate for (2.8), in a similar manner,

we get
1 _a 1
|a2u)]| < Net®lamm e 5 a2e]
1 -1 @
1 BEs) i [A2873]| 5| e la

|| BEs(t) o A28

t
+/ HAWB—%
0

< e 5,) | 4t + 110+ gu 1706

e 2 | ¢ [|lu
—H

o 1 BEs(t =) llml] £(5) [ ds

0<t<T

for any ¢ € [0, T]. Then, we get

mas | Adu(t) < Mafa, B,9) [n A% [l + 110 s + gmas | (1) HH] .

First, we obtain an estimate for ||Au(t)|/,. Applying A to the formula (2.3)

and using an integration by parts, we can write the formula

Au(t)est = c(t)Ap + %A%s(t)A%go + Ars(t) A2y
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t
FAB |31 E(E) — c(t)£(0) — / eFelt — 2) [3 () + ()] dz
0
Using the latest formula and estimates (2.8), we obtain

Al < el n !6_%t\ 1A¢ll

1 BEs() i || 4274

508 |z

!e*ft\ | A2 ||
H|AB™Y o O g + e sz 1O ]

t

+AB / e et = 2) o |51 FG) N+ 1 /() lla | d

0

H—H

1 BEs(t) N || 412575
H—H

0<t<T

< Ms(a, 5,9) [HASOHHJr | A2 [l + [LF O + max || f(2) ||H:|

for any ¢ € [0,T]. Then, we get

0<t<T 0<t<T

max || Au(t) [lo< Ms(a, 8,6) [H Ag s+ 1 A3 it + 1FO) L + max || F(0) HH} .

follows from the final estimate and the triangle in-

2
The estimate for max, ”Clth
0< H

equality. Theorem 2.1. is proved. O]

Remark 2.1. All statements of Theorem 2.1. hold in an arbitrary Banach space E
under the assumptions (see (Ashyralyev and Sobolevskii, 2005)):

| e(t) [|pn< M, || B3s(t) ||pp< M, 2.9
B2 < M(5 AV2B3 < M(6). '
| ol < M©O) el . ||, S M)

Now, we assume the implementation of abstract Theorem 2.1. First, we take

into account the boundary value problem for telegraph equations

(

u(t, ) + au(t, x) — (a(x)uy), + oult, z) + pu(t,z) = f(t,x),

O<t<T,0<z<l,
(2.10)

u(0,z) = p(x), u (0, 2) = P(r),0 < x <,

u(t,0) = u(t, 1), u,(t,0) = u,(t,1), 0 <t <T.
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Problem (2.10) has a unique smooth solution w(t,z) for smooth a(x) > a > 0,
z € (0,1),6>0,a(l) =a(0), (x), Y(z) (z €[0,1]) and f(t,z) (t € (0,T),x € (0,1))
functions. This permits us to reduce the problem (2.10) to the initial value (2.1) in
a Hilbert space H = L0, (] with a self-adjoint positive definite operator A* defined

by the formula (2.10). Let us show a number of corollaries of abstract Theorem 2.1.

Theorem 2.2. For solutions of the problem (2.10) the stability inequalities

Jax [lu(t, )lwpg (2.11)
< Mi(a, B3,9) [Ofg%xT”f(t, Mg + 1wy + ||¢||L2[o,l}] ;
oo, [u(t, .) ||W22[o,l] + ook e (¢, )| 2,00, (2.12)
< Mi(a, B,0) {Ofg%XT (& M o + 170, ) o + lellwziog + ||77Z}||W21[0,l}:|

hold,where Mi(«a, 3,8) does not depend on f(t,z) and ¢(x), ¥ (x).

Proof. Problem (2.10) can be written in abstract form

Pl 1D 1 Au(t) + Bult) = f(t) (0 <t <T),

dt?

(2.13)
u(0) = ¢,u'(0) =4
in a Hilbert space Ls[0,!] of all square integrable functions defined on [0,!] with
self-adjoint positive definite operator A = A* defined by the formula

A'u(z) = — (a(x)uy), + ou(x) (2.14)
with the domain
D(A*) = {u(z) : u,uy, (a(z)uy,), € Ls[0,1],u(0) = u(l),u'(0) = (1)} .

"Here, f(t) = f(t,x) and u(t) = u(t,z) are known and unknown abstract functions
defined on [0, [] with the values in H = L5[0, {]. Therefore, estimates (2.11) and (2.12)
follow from estimates (2.5), (2.6) and (2.7). Thus, Theorem 2.2 is proved.” O

Second, "let 2 C R™ be a bounded open domain with smooth boundary S,

Q=QuUS. In[0,7] x Q we consider the boundary value problem for telegraph
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equations
( n
w(t, ) + auy(t, x) —

‘s

l(ar(x)uxr)xr + pu(t,x) = f(t,x),

= (21,..,2,) €EQ0<t<T,
(2.15)

u(0,2) = p(x), G = P(x),x € Q,

\ u(t,z) =0,z € S,0<t<T,

where a,(7), (x € Q), ¢(z), ¥(x) (v € Q) and f(t,z),t € (0,T), x € Q are given

smooth functions and a,(x) > 0. We introduce the Hilbert space Ly(f2), the space

of all integrable functions defined on Q, equipped with the norm”

1

1l ry@) = /.../|f(:v)]2dx1...dxn
)

Theorem 2.3. For solutions of problem (2.15) the stability inequalities

max |[u(t, )|y @) (2.16)

0<t<T

0<t<T

< M(a, 8,9) {max LA o+ 1o lwp + 119 IILQ(Q)] :

e u(t, g + ma (e )l (2.17)

< Mi(a, B,0) {max et My + 170, ) @ + ellwz @ + ||¢”W21(Q)1

0<t<T

hold, where M («, 3,60) and M (a, 3,9) do not depend on f(t,x) and p(z), ¥ (x).

Proof. Problem (2.15) can be written in abstract form (2.13) in Hilbert space Ly(Q)

with self-adjoint positive definite operator A = A* defined by formula

n

Au(z) = = (ap(2)ttg, )z, + ou() (2.18)

r=1

with domain
D(A*) = {u(z) : w(x), us, (z), (ar(2)ts, )s, € La(Q),1 <7 <nyu(z) =0,z € S}.

Here, f(t) = f(t,z) and u(t) = u(t,z) are known and unknown abstract functions
defined on Q with the values in H = Ly(f2). So, estimates (2.16) and (2.17) follow
from estimates (2.5), (2.6) and (2.7) and the following theorem. O
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Theorem 2.4. For the solutions of the elliptic differential problem (see (Sobolevskii,
1975))

A*u(z) = w(z),z € Q,

u(z) =0,z €S,

the following coercivity inequality holds

D ltere, N, < Mallwll ).
r=1

Here M, does not depend on w(x).

In the next section, the first and second order of accuracy difference schemes
for the approximate solution of problem (2.1) are investigated. Stability estimates
for the solution of the first and second order of accuracy difference schemes are
established. In applications, difference schemes for the approximate solution of two
mixed problems (2.10) and (2.15) are presented. Stability estimates for the solution
of two mixed problems (2.10) and (2.15) difference schemes are established.

2.1 STABLE TWO-STEP DIFFERENCE SCHEMES

First, we consider the first order of approximation in ¢ two-step difference

scheme

4
U1 —2Uptuk—1 Ukt1—Uk _
— + a=—" 4 Augyr + Buyr = Ji,

fo=f(tr1),1<kE<N—-1,N7 =T, (2.19)

| o = o, (1 +ar)=1 4 (A+ BI) Tuy =9

for the numerical solution of the initial value problem (2.1). Now, let us give some

lemmas that will be needed below.
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Lemma 2.1. The estimates hold:

(
<

HRHH—>H — 1+1%7
TB%RH <1,
H—H

-1
iﬂﬂ'B%) (Z'B%) ‘ <14 _a
L < ? H—H 2w/5+(5*%2>

1 -1 1 -1
R:((H%)J—m}}a) ,R:<(1+%)I+z’735> .

., <
H_LI/{ 1+
TBIR| <1, (2.20)

H—H

N\

Here

Theorem 2.5. Suppose that the assumption (2.2) holds and ¢ € D(A), ¢ €
D(A%). Then, for the solution of difference scheme (2.19) the following stability

estimates

max |lugl| s < M(O@B,é){l max || A2 fill g+ | AT |+ g IIH}, (2.21)

1<k<N <k<N-1

1/2 1/2
max |4 wella < M (o, B,9) {lgrlglgag_l el (1o L+ [ A= ||H}, (2.22)
1
< el _
max [ Auelly < M (o, 8,9) {Krlgga%_l — (i = Ji) ;
0 fille + 1A  + [ Ap |1} (2.23)

hold, where M («, 3,8) does not depend on 7, p, ¥ and fr, 1 < s < N — 1.

Proof. We will obtain the formula for the solution of problem (2.1). We can rewrite

(2.1) into the following difference problem

p

up—1 — (24 ar) Tu, + ((1—1—047')1—0—7'2 (B—i—‘%[))uk+1 = 72f,,

1<k<N-1, (2.24)

[ wo=p,u1=(1+ar) RRy + TRRi).

It is clear that there exist a unique solution of this initial value problem

(

up—1 — (2+ ar) Tu, + ((1+a7‘)[+72 <B+ %])) Uk 1

:Tkaa]-SkSN_]-7

| U0, uy are given values
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and for the solution of this problem the following formula is satisfied (see (Ashyralyev
and Sobolevskii, 2004))

— RR(R— R)"'[R* ' — R* Nuy + (R — R)"Y(R* — R*)u,
=1 .
+3 " RR <R - R) [R’H - R’H] 72f,,2 <k <N. (2.25)
s=1

Applying formula (2.25) and conditions uy = p,u; = (1 + ar) Réap + TRE’QD, we

can obtain the following formula for the solution of (2.24)
uy = @, u; = (14 ar) REQO + TRR,
uk:Rédi—RrWR“1—E”ﬂ¢+(§—3r%§k—RhU1+aﬂ3§¢+73§ﬂ
=1 L
+> " RR (R - R) [R’“‘S - R‘H] 72f,2 <k <N. (2.26)
s=1

Thus, we obtain estimates (2.21)-(2.23). Using the triangle inequality, formula
(2.26), and estimates (2.20), we obtain

hually < (U ar) |RE|| el

+HA%B—%

BERE| |[a),

<M (e, 8,0) [ AV |l + || @ |lu] -

H%HH H—H

In exactly the same manner, one establishes

1
HA2U1

o S Uron[RR],_ 48],

H—H

+HA%B—%

-
BiRE|
|rBERE|| vl

H—H
< M (e, 8,0) [0 Il + | A3 1],
Al < 1+ an)||RE|  14¢ll,

+HA%B—§

BARER|
|rBARE||  llly

H—H
1
< M (@, 8,0) [l A% |l + || Ap lu] .
Now, we will establish estimates (2.21)-(2.23) for £ > 2. Using formula (2.26) and

identities

J—R:T(%+uﬁ)31 R—w(%—wBa}&E—R:<—%ﬂﬁ>§R(2%)
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we can write

1

uy, = (2z‘B%>_1 (5 +iB3) RE+ (=5 +iB%) B o+ (-2iB%) (R - R

k—1 . 1 . .
+; (—2@B ) [Rk R } 7f,2 <k <N, (2.28)

Using the triangle inequality, formula (2.28), and estimates (2.20), we get

1 Q 1 1\ 1 ~
s ], 1]
Jurlly < 2“'( 2+z 1 . o
a 1 o1\t
+||RkHHaH <§—|—ZB2> (232) :| ”SOHH
H—H
1 Rk k 11 1
+§ [HR HH»HjL HR HH%H} HAZB ’ HHHHA 2wHH
k—1 1
Dk—s ks 11 )
+;§ [HR H—>H+HR HH"H}THAQB ’ H—)HHA *fs H
st s ol o ]

for any £ > 2. Combining the estimates ||uy||,; for any k, we obtain (2.21). Using

the triangle inequality, formula (2.28), and estimates (2.20), we obtain

[t < g [ (-5 +em0) 5) 7,

—1
(3i5t) i)

o

3

H—H

ak 4
H

HH—)H :|
H—H

111 ~
#5170+ 1

11

oo o

H—H
k—1

Sl

=1

R

THA%B*%

oo Il

H—H

vl

< e 5.6) [ ke, + Wl + _mas Uil

1<kE<N-1

for any k£ > 2. Combining the estimates HA%ukH for any k, we obtain (2.22). Using
H

the Abel’s formula, we can write

kol

= [Ek—s _ Rk—si| 1,

s=1

:#{u—ml

k-2
Efkq — ékfl + Z RFs (fs — fs+1)]
s=1
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—~(I—-R)!

k-2
Rfp — R fi + ZRk_s (fs — fs—l—l)] } :
s=1
Since identities (2.27) and
(I — R)(I — R) = RR7? (II + B) = AT’RR,

-1

RUI-R)'—R(I—-R) = (E - R) (I—R)'I-R)y'= (é . R) (ATQER) ,
RMI- Ry —R*(I-R)'= (ék(f ~R)— R*(I - }’é)) (I-R)YI-R)"

—(r (i) B~ (2 v iB}) R} (arBR)

we have that -
S rR(R-R) " [R - m) 22,
= o= (o) ) (R-R) ([ R - Rr R - R )

—l—(( 227’B1>Z§R)_1 _2{ (%—ZBI)Rﬁk’S—T<%+iB%> éRkS}(fs_fs+1>}

S o) (G G e
() (G ) B (Gt b .

Using this formula and applying A to the formulas (2.28), we can write

N

Auy — (2@3%)_1 [(% + z‘B%) R+ (—% + z’B%) PL’“} Ap+A (—2¢B%>_1 (R*—R*)y

thes = (-2mt) {(G -t B (G eimt) RO e (i)
X i{(— —iB2 > Rk—s—1 _ (% +z’B%) Rk—sq} (o fo) 2 <k <N,

Using the triangle inequality, last formula, and estimates (2.20), we obtain

il < 5 [ (=5 +o88) (52) )17,
1R | (5 +i22) (622) | ]l
+ [Hf*’l’“HM+ [y P S A B

Y IR R L T
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o

-2

+1]

[

1l ra 1
— =B 2
35

H—H H—H

{[j7ee +HRhﬂ4uHﬁH}nﬂ-ﬂ+ﬂH}

) [I14gl + el + | Ado|
F3 s~ foal + il

s=2

s=1

S M4(Oé,

=@

2

for any k£ > 2. Combining the estimates ||Aug||,, for any k, we obtain (2.23). Theo-

rem 2.5 is proved. [

Now, we consider two types of the second order of approximation in ¢ two-step
difference schemes for the numerical solution of the initial value problem (2.1) which

are as following

(

Ug4+1—2Uptug—1 Uk41—Uk—1 A
= + o= 4 S (up + up—1)

+§ (Uht1 + k1) = foo fo = f(te), 1 <k <N —1,

(2.29)
— g, 1z 4 2By + e (1B - 22 4 21T) g
1777 T
\:1+T(w+ fO) f f<0)7
.
uk“*iug”uk’l + oL %uh + %(uml + up_1)
+§uk + g (uk+1 +uk—l) = fkafk = f(tk)a 1 < k S N — 17
(2.30)

= @, =" + 2 Buy + 1+" (iB— @—i- I> TUg
1-<7 -
| = @ (¢+§f0) . fo= f(0).
Theorem 2.6. Suppose that the assumption (2.2) holds and ¢ € D(A), ¢ €
D(A%). Then, for the solution of difference schemes (2.29) and (2.30) the following

stability estimates

max [luslly < M(a @&{Imx|m1@mm+uA“wwH+n¢m}

1<k<N 0<k<N-1

max [[ A2l < M(a &®{IMXHﬁM+WwM+MAWwM}

1<k<N 0<k<N-1
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max || Augllg < M(a, B,9) { max

1<k<N 1<k<N-1

(e fi)

H

ol + 1 A0 Nl + || Ap i}

hold, where M («, 3,0) does not depend on 7, ¢, ¥ and fr, 0 <s < N — 1.

The proof of Theorem 2.6 is based on the formulas for the solution of difference
schemes (2.29) and (2.30), on the estimates for the step operators and on the self-

adjointness and positivity of operator A.

Now, we consider implementations of Theorem 2.5. ”"First, we consider the
boundary value problem (2.10). The discretization of problem (2.10) is carried out
in two steps. In the first step, we define the grid space

0, ={z=2x,:2,=nh, 0<n< M, Mh=1}.

Let us introduce the Hilbert space Lo, = La([0,1]n) of the grid functions
©"(z) = {pn}3F defined on [0,1],, equipped with the norm”

1/2

I e = | D le(@)*h

{L'E[O,”h

To the differential operator A* defined by the formula (2.14), we appoint the

difference operator A by the formula

Arp(x) = {—(a(x)pz)am + dpn 1 (2.31)

moving in the space of grid functions "(z) = {©,}}! providing the conditions
Yo = Pm, Y1 — Yo = Pm — pm—1- 1t is well-known that A7 is a self-adjoint positive

definite operator in Loj,. With the aid of A7, we reach the boundary value problem

(
uly(t,2) + aul(t,2) + Afuh(t,2) + Bul(t,z) = f(t,2),

0<t<T,x €0, (2.32)

uh(07x) = Qoh(x)>u?(07x> = wh(x)vx S [Oal]h

\
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In the second step, we modify (2.32) with the difference scheme (2.19)

uf (@) =2ul @) el (@) | up @) —uf@)
k1 k b1+ B - . +AhUZ+1(x)+6u5é+1(x) :f,f}(x),

T2

fl?(x) = fh(tk’-i-lax): ly = kT? 1< k < N — ]-7 T [Ovl]waT:T)
(2.33)

ug(r) = ¢"(x),

| (14 ar) A2 4 (47 1 ) rud(e) = (), € [0,
Theorem 2.7. For the solution {u]: (x)}év of problem (2.33) the following stability

estimates

s el < M50 § e 12+ 0% 1y, + 16" Dy

s o, < M 5.0) { g WAL, 1% Ly 416" Dy

S )

h
12hEN luillws, < Mafe, B,0) 2<hEN-1
Lon

S Ny + T g, + 1" v, }
hold, where M («, 3,6) and Ms(a, B,6) do not depend on o"(x), " (z) and fi(x),1 <

k<N-—1.

Proof. Difference scheme (2.33) can be written in abstract form

( .h h,h h h
Upyq —2ugtug U1~ Uk h h _ fh
+ o=+ Apugyy + Bug,y = i

T2

1<k<N-—1,Nr=T, (2.34)

\ ul =" (1+ ar) —u?(:c);ug(w) + (A7 + B) Tuf(x) = "

in a Hilbert space Loy, with self-adjoint positive definite operator Ay = Aj by formula

(2.31).

Here, ' = f(z) and u}! = ul(z) are known and unknown abstract mesh

functions defined on [0,[];, with the values in H = Lo,. Therefore, estimates of
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Theorem 2.7 follow from estimates (2.21), (2.22) and (2.23). Thus, Theorem 2.7 is

proved. O

”Second, we consider the boundary value problem (2.15). The discretization
of problem (2.15) is carried out in two steps. In the first step, we define the grid

space

ﬁh:{x:xrz<hlj17'“ ahnjn)7j:(j17"' ajn)a OSjT‘SNTy

N.h, =1, r=1,--- ,n}, QhZQhﬂQ,S}LIQhﬂS

and introduce the Hilbert space Lo, = Lo(€,) of the grid functions ¢ (z) =
{o(hij1, -+, hnjn)} defined on Q equipped with the norm”

11, = (3 1o <x>2hl...hn>5

iEGQh

To the differential operator A* defined by the formula (2.18), we assign the difference

operator A by the formula

n

Aju = — Z (ar(x)uﬁr)xr i (2.35)

r=1

where A7 is known as self-adjoint positive definite operator in Lsj, acting in the
space of grid functions u” (x) satisfying the conditions u" (z) = 0 for all x € Sj,.
With the help of the difference operator Ay, we arrive at the following boundary

value problem
(
uly(t,2) + aul (t,2) + Aful(t,2) + Bub(t,7) = fA(t, ),

O0<t<T,z e, (2.36)

uh(0,z) = p(x), ul(0,2) = V"(z),z € Q.

\
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In the second step, we change (2.36) with the difference scheme (2.19)

( uh xfuhx uh x uh xfuhx
b 2O+ oM Al (2) + Buf (2) = fR(),

Mz) = f*"(tgsr,z), ta =k, 1<kE<N-1,2€Q, NT=T,
(2.37)

uli(z) = "(x), (1 + ar) L@ L (A2 4 8) ryh(2)

= Y"(z), 1 € Qy

\

for an infinite system of ordinary differential equations.

Theorem 2.8. For the solution {uZ (m)}év of problem (2.33) the following stability
estimates

s i, < M 5,0 { s WA 00 iy, + 116 Iy

max [|ugllw;, < Ml(a,5,5){ max | fll,,, + 19" I, + 11 ¢" Hw;h},

1<k<N 1<k<N-1

h
max flugllwg, < Ma(a, ,0) § , max |

1
—(fe = 1)

Lap

A Ny 18" g, + " v, }

hold, where M («, B,6) and Ms(a, B,6) do not depend on o"(x), " (z) and fi(x),1 <
E<N-—1.

Proof. Difference scheme (2.33) can be written in abstract form (2.34) in a Hilbert
space Lo, = Lo(€,) with self-adjoint positive definite operator A4, = A? by formula
(2.35).

Here, f}! = f(z) and u} = ul(z) are known and unknown abstract mesh
functions defined on €, with the values in H = Lo;,. Therefore, estimates of Theorem
2.8 follow from estimates (2.21), (2.22) and (2.23) and the following theorem on the

coercivity inequality for the solution of the elliptic difference problem in Logy. O
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Theorem 2.9. For the solutions of the elliptic difference problem (Sobolevskii,
1975)

(

Ayl (z) = W (z), © € Uy,
(2.38)

ul(zr) =0, z € Sy,

\
the following coercivity inequality holds:

n
h

I [

r=1

where My does not depend on h and w".

Lo < M3||wh||L2h’

Note that the difference schemes of the second order of accuracy with respect
to one variable for approximate solutions of the mixed problems (2.10) and (2.15)
generated by difference schemes (2.29) and (2.30) can be constructed. The abstract
theorem given above and Theorem 2.8 and Theorem 2.9 permit us to establish the

stability estimates for the solution of these difference schemes.

In implementations, theorems on convergence estimates can be established.
The theoretical statements for the solution of difference schemes can be supported
by the result of the numerical experiment. We have not been able to obtain a sharp
estimate for the constants figuring in the stability inequality. Therefore we will
give the conclusions of numerical examples for the initial-boundary value problem.

(Ashyralyev and Altay, 20006)

p
A?u(t,x) + 28u((91;,x) _ 0 u:(;;w)

52 28 + u(t, ) = exp (—t) sinz,

O<t<l,0<x<m,

(2.39)

9

u(0,2) = sinz, Zu(0,r) = —sinz,0 <z <7,

| w(t,0) =u(t,m)=0,0<t<1

for the telegraph equation. The exact solution of above problem u(t, x) = exp (—t) sin x.

For the approximate solution of the initial-boundary value problem (2.39), we

consider the set w,, = [0, 1], x [0, 7], of a family of grid points depending on the
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small parameters 7 and h. We present the following first order of accuracy in ¢ and

second order of accuracy in x difference scheme for the approximate solutions of the

problem (2.39)

(. k+1 ko k—1 k+1 kK k+l o k41, k+1
u —2ur4u u —u Uyt —2up’ Hu, T k+1 :
. TQn 2 T S h2 =+ Uy~ = eXp<_tk+1> SIN T,

Ty =nh,tg = (K+ 1),

1<k<N-1,1<n<M-1

Y

(2.40)

0 — sinz,, 2= — —sinz,,0<n<M
Uy = SN Ty, 22 = —sinwz,, 0 <n < M,

Now, we consider two types of second order of accuracy in t and z difference

schemes for the approximate solutions of the problem (2.39)

— k+1 k+1 k+1
(uh bl pubtlubt g —2un et
72 2T 2 h2
k—1 k—1 k—1
1 Upy1—2Un  FU, 3 1 k+1 k—1\ __ :
—1 i + 5 (ubt + ul™t) = exp(—tg) sin(z,),

Tp=nht,=kr,1 <k<N-1,1<n<M-1,
(2.41)

u? = sin(z,), , = nh,
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4 _ _ k+1 k+1 k+1
ubtl _oyk o k-1 + 2uﬁ+17uﬁ ! . 1“5+1_2uﬁ+uﬁ71 _ l“n+1_2u” tun1
T2 2T 2 h? 4 h?
k—1 k—1 k—1
1Ung1=2Un  FUny 1k 1 () k+1 E—1\ _ :
-1 s + Uy + 7 (un + uy ) = exp(—tx) sin(z,),

Tp=nhtr=kr,1<k<N-1,1<n<M-1,

(2.42)
ud = sin(z,), z, = nh,
UaUn — sin(z,,) + TuT UL )< p < M
T - n 2 T2 ) ?

\

To solve these difference equations, an operation of modified Gauss elimination
method is applied. Hence, we look for a solution of the matrix equation in the

following form:
uj = Ui + B, uny =0, 5 =M —1,..,2, 1.

where o; (j = 1,2,..., M) are (N + 1) x (N + 1) square matrices, and 3; (j =
1,2,...,M) are (N + 1) x 1 column matrices defined by

aj1 = —(B+ Ca;) " A,

5j+1 = (B + COCJ)71<D¢ — Cﬂj)7 j = 1,2, ,M — 1,

where j = 1,2,..., M — 1, oy is the (N + 1) X (N 4 1) zero matrix, and (; is the
(N 4+ 1) x 1 zero matrix. The results of computer calculations show that the second

order difference schemes are more accurate than first order of accuracy difference

scheme. Table 1 is established for N = M = 20,40 and 80, in order of.
The errors are computed by

EN = max ‘u te, T —uk|
M k< NITa<n<M—1 (te ) nio

where u(ty,,) symbolizes the exact solution and u* seymbolizes the numerical

solution at (¢, x,) and the results are given in Table 2.1.
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T=+ h=20 N=M=20 N=M=40 N=M=80
The difference scheme (2.40) 0.0046 0.0021 0.0010

The difference scheme (2.41) 2.3651 x 107*  6.0209 x 107> 1.5196 x 10~°
The difference scheme (2.42) 1.3510 x 107*  3.4524 x 1075 8.7409 x 10~°




CHAPTER 3

NONLOCAL BOUNDARY VALUE PROBLEMS FOR A
TELEGRAPH EQUATION

We consider nonlocal boundary value problems for a telegraph equation

Pult) 4 o2 4 Au(t) + Bult) = f(£) (0<t < T),

u(0) = Mu(T) + o,/ (0) = put (T) + 1, (3.1)

OLQ
\ &>0,B+527,AZ51

in a Hilbert space H with a self-adjoint positive definite operator A.

7 A function u(t) is called a solution of the problem (3.1) if the following con-

ditions are satisfied:

(i) u(t) is twice continuously differentiable on the segment [0,7]. The derivatives
at the endpoints of the segment are understood as the appropriate unilateral

derivatives.

(i) The element u(t) belongs to D(A) for all ¢t € [0,7] and the function Au(t) is

continuous on the segment [0, 7.

(i3t) u(t) satisfies the equation and boundary conditions (3.1).”

Now, we will obtain the formula for the mild solution of problem (3.1) under

the assumption (2.2). Applying formula (2.3) for the mild solution of problem (2.1),

35
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we can write

u(t) = e e (t) u(0) + %e’%ts(t)u(O) + e 2ts(t)u/(0) (3.2)

From that it follows that

W(t) = e 51 [—%c(t) —(A+ (5 - O‘;) 1)3(7:)} u(0) + %e_%t [—%S(t) + c(t)} u(0)

+e 2! [——s /6—2“ Z> s(t—z) + c(t — z)} f(z)dz

—(A+ BI)e Hs(t)u(0) + 3" [—%s( )+ ()] /(0)

+/e 2= Z)[ ) (t—z)+c(t—z)] f(z)dz.

0
Appying this formula, conditions u(0) = Au(T") + ¢, v’ (0) = pu/(T) 4+, and formula
(3.2), we get

u(0) = A [(C(T) + —s(T)) e~ 5Tu(0) + e~ 37 s(T)u'(0) (3.3)

W(0) = 1 [—(A 4 BD)e $Ts(T)u(0) + e 57 [—%S(T) + c(T)] u'(oﬂ (3.4)

—l—,u/e_a(T ) (- —2)+¢(T - z)) f(z)dz + 1.

0
We will obtain «(0) and u/(0). We have that

I—Xe 2T (c(T) + 2s(T)) —Xe~275(T)
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— {[+ A [cz(T) + BS ] OCT} [ >\ +M T) + %((}\ N ,LL)S(T)} 5T

Since

iBT —iBT Y 2 iBT _ _—iBT Y 2
c%m+B§av:{i—%§——}+B{31ML_Ei__}:[
)

we have that
A={14+xpe "} 1- [(/\ +p)e(T) +

So, under the assumption

o) — .
1+ e | > ()\ + p| + 2“—”) e 2t

there exists of inverse of operator
—aT o —aer
(1+ e )1_[Q+uyav+§@—upaﬂe2.
We denote that
oy -1
p= {(1 + Ape=oT) T — [(A + 0)e(T) + %(A - u)s(T)] e—aT} .

Using the operator P, solving (3.3) and (3.4), we obtain

(3.5)

(3.7)
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T
—puNA+ BIe 2Ts(T) / e 2 T=2A(T — 2) f(2)d=
0

+ (I — e 2T (c(T) + %s(T))) Y — u(A+ ﬁ])e_%Ts(T)go} :

Consequently, the solution of problem (3.1) satisfy formulas (3.2), (3.6) and (3.7).

Theorem 3.1. Suppose that ¢ € D(A), 1 € D(AY?) and f(t) are continuously
differentiable on [0, T] and assumpion (3.5) holds. Then, there is a unique solution

of problem (3.1) and the stability inequalities

foax [lut)llx

< MM, p, a8, 9) {||<p||H + HA_1/2¢||H + max HA_l/Qf(t)”H} , (3.8)

0<t<T

max HAI/Qu(t)HH

0<t<T

< MO0 8.0 {42], + 10l + s 1O | (39)
d*u(t)

o | S|+ g wco, (3.10)

T
< M(A p, v, B, 0) IIASOIIH+HAW%DHH+||f(0)||H+/||f’(t)||Hdt
0

hold, where M (X, i, o, 3,0) does not depend on f(t),t € [0,T], ¢, and 1.

Proof. Using (3.2) and estimates (2.8), we obtain estimate

o

) < 1) €3] @) + || BEs (1)

H—H H—H

‘ a
2e5t

e = [lA™ 2 )]

| A—1/2u(0) e + HB%S(t)H ‘AWB‘%

H—H ‘ H—H

t
s [Bse-s)],, 0B, 147206, d
0

0<t<T

< My( 1, 0, 8, 6) [||u<o>||H A2 0)]], + max |42,

for any ¢ € [0, T]. Then, we obtain

max || u(t) ||g (3.11)

0<t<T
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+ max | ATV2f(t) ||n

HH 0<t<T

< MM\, B,6) [Ju(0)]|, + [|A~ 2/ (0)

Now, we will obtain estimate [[u(0)||,; and ||A=*/?u/(0)|,, . Applying the triangle
inequality, formulas (3.6) and (3.7) and estimate (2.8), we get

[l < I1Pllgn (3.12)

Iy 2

(0] 1 _1
{( +|N|6 2 (HC(T)HH%H_’_EHBQS HH%HHB H~>H>>
T
_a —z 1 1 _
W [era Bisw - a) s, A,
0
A El Sl ] S
T
_a_, o 1 _1 _
< [ AT (1T =i + 5B =), [, ) 1
0
_a «@ 1
(11l e F (le@llgom + 5 | BE@)|, {1872, ) el
+e T Biser)|| avmr| Ay,
H—H H—H
< 0100 s 5,0) { el + 470, + o 47270,
A2 O]l < 1P (3.13)

1

2

o))

H—H H

_a (8% 1
< { (14 N =T (el + 5 || BEs(T)|

T
<11 / 5T (T = 2l yom

—l—% HB%S<T —2)

|5

RSOl

Hlal N[+ DB, || B2 ()|

H—H H—H

H—H
T
—2(T—2) 1 B 1/2
x/e 10 | Bls(r o) A, d
0
( +[Ale” 27 [e(T ||H—>H+2 HBQS HH%HHB_i H—>H>>||A_1/2¢HH

+lule 3T |Bis(D)|| [+ DA el |

H—H

§M1(>\,M,a,575){\\90\|1{+ |A729|, + max ||ATY2f(t) HH}

0<t<T
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Estimate (3.8) follows from estimates (3.11), (3.12) and (3.13).
Applying A2 to formula (3.2) and estimates (2.8), we obtain

1 abucor],, + 50

‘A1/2B*%

[A3u < el e o

H—H

S ) I+ [[Baso)|, [|Aves
ez

| —%t‘ /0
il e 8 0)ll

< (00, 5.8) | [A5)] 4 10O+ g 170

H—H

1 ()l ds

0<t<T

for any t € [0, 7].Then, we obtain

max_ || A?u( ) & (3.14)

0<t<T

< Mi(\ 1,0, 8,) [HA%um)HH ' (0) 5 + ma | £(2) HH] .

0<t<T

Now, we will get estimate ’

(3.6) and (3.7) and estimates (2.8), we get

A%u(O)HH and ||v/(0)||; - Implementing Az to formulas

| 43| < 1Plsn (3.15)
—ar @ 2 -3
A e # (el + 5 [0, [27],,)
—a _1
<A / ] EERCEEl I P I FOTPEE
e ST Bhs(n)|  Jul||av2B
H—H H—H
T
_« —z Q 1 Y
x/e 2 (T )<||c(T—z)HH_>H+§HB?S(T—z H_>HHB >||f(2)||HdZ
0
o1l gty = }
(U8 (Do + 5 [|[BAo(7 L#NB ) |23,
_ar 1 1/2 np—3
e X I L
< 010 w50 {3 + ol + s 1501

1" Ol < 1Pllgr e (3.16)
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_a a i T2
X {<1+\)\]e 2T (||C(T)||H—>H+§HBZS HH—>HHB H—>H))
T
< |ul / e HT [T = 2|l ym

(1 Sl Pl O B (P

2 H—H H—H H
. 1
A A+ BDB |y HB?S”)HM

T
0

_a « 1
(14 e (el + 5 | B2

Bis(T—2)||  1If()l =

|5

o)) Il
s P I

H—H

+lule ¥ B, |
H—H

< 050 { b, + 1ol + g 10 |

0<t<T

Estimate (3.9) follows from estimates (3.14), (3.15) and (3.16).

Now, we obtain an estimate for ||Au(t)| 5. Applying A to formula (3.2) and

using an integration by parts, we obtain the formula

Au(t)e = ¢(t) Au(0) + %Ais(t)AEu(O) + Azs(t) Az (0)

BF0) e (0) - [ ettt =) [37)+ £2)] s

Using the last formula and estimates (2.8), we obtain

1Au@®) |y < el e 2" | Au(0) 1

|l BEs(t) Nl 4287

| A2u(0) ||

Qo

H—>H‘2 ot

1 BEs(t) o 42873 || | AB0(0) Iln
H—H

o

| AB7H Ly WOl + e 2 el o 11£0)]] ]

t

By [ €3 el =) o [ 15 o+ 1 7°2) ]

0

< Ms(A g, @, 3,0) [HAu(O)HHJr | A2/(0) [l + (1 (O)]] s + max || £/(2) HH}

0<t<T
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for any t € [0, T]. Then, we get

nax || Au(t) ||z (3.17)

< My(A, 1, @, 8,0) ||| Au(0) ||l + || A2 (0) [l + [ £ (O] + max || f'(¢) HH} '

0<t<T

Now, we will obtain estimates ||Au(0)||,; and HA%U’(O)HH. Applying A to
formula (3.6) and applying Az to (3.7) and estimates (2.8), we get

[AwO) i < 1PNl

_a (6% 1
A (L1 e 8 (Il + 5 [ B2

HAB™ |y Iy + €2 e gy 101
T
<NAB ™y [T T = 2) o
0

<[5 1L £E) i + 1 £1(2) ] =

Ay e ¥ [Bha)]
<[5 BEsr)| 1O
T
+ [ereo B |f’<z>|Hdz]
0
(e 3 (e s+ S B2 B ) 14l
i [, o], )
T
<M1<A,u,a,/3,a>{AsoH+A1/2w|H+f<o>H+ Jir@iag. @)
0

1
|45 )| < 1Pl

a «
A (L8 (el + 5 |[BEs(D)|

X HA%B_%

)

+ HA%B*%

H—H

|z
H—H

o))

|l
H—H

T
H Bhsn), L 15O+ [ [BEsr -2,
0

g dz]
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+lul Al || abBH |

A+, et [Brsm)|

J

< (IF D)l + €2 e g1y 1 0) 1]

A 42| A+ BDBTY e 8T || BRs(T)|

H—H

x [ e 3D (T = 2) i |5 11 £(2) i+ | £(2) Il | dz
2

# (U e (el o+ 3 |20, |27, ) 40,

A+ 8DA7 e 8 | BEs@)| - lAvll,

|5

+lul | 4sB3|

< Ma(A, i, @, 3, 9) \|A90HH+\\A1/2w|!H+\If(0)|!H+/Hf'(t)|!Hdt - (319)
0

Estimate

nax || Au(t)|

< M, p, o, 3,0) IIA@HH+HA”QZZJHHJr\|f(0)|!H+/Hf’(t)||Hdt

2

follows from estimates (3.17), (3.18) and (3.19). Finally, estimate for Joax, Ly

?
follows from the recent estimate and the triangle inequality. Theorem 3.1. is proved.

]

Now, we will search two implements of Theorem 3.1.

First, for implements of Theorem 3.1 we search nonlocal the boundary value

problem for telegraph equations

(

u(t, ) + au(t, x) — (a(x)uy), + oul(t, z) + pu(t,z) = f(t,x),

O<t<T,0<z<l,
(3.20)

uw(0,2) = (T, x) + p(z), u(0,2) = pu (T, z) + P(z),0 <z <,

u(t,0) = u(t, 1), u(0,2) = u,(t,1),0 <t <T.

Problem (3.20) has a unique smooth solution w(t,z) for smooth a(x) > a > 0,

€ (0,1), § > 0, a(l) = a(0), ¢(x),¥(x)(xz € [0,1] and f(t,z)(t € (0,T),z € (0,1))
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functions. This allows us to reduce the problem (3.20) to the nonlocal boundary
value problem (3.1) in a Hilbert space H = L5[0,l] with a self-adjoint positive
definite operator A” defined by (3.20). Let us give a number of corollaries of abstract

Theorem 3.1.

Theorem 3.2. For solutions of the problem (3.20) the stability inequalities

max HU( )HW%[O,Z] S M1()\,/~07047575)

0<t<T
*[ax [LF(E o + 1@ lwion + 14000 (3.21)
ol?ff%”“( )HW%Q"’OIEEE%H“M )HLQ[OZ] (3.22)

< Mi(A\ o, B, 5)[mtELXT||ft( Mo + 17O 0 + lellwzpog + 1€ wig):

hold, where My(\, p, v, 3,0) does not depend on f(t,x) and p(z), ¥ (x).

Proof. Problem (3.20) can be written in abstract form

Pult) 4o 4 Au(t) + Bult) = f(£) (0<t<T),
(3.23)
u(0) = Au(T) + 9, /(0) = pue(T) + ¥
in a Hilbert space Ly[0,] of all square integrable functions defined on [0,!] with
self-adjoint positive definite operator A = A”* defined by formula (2.14). Here,
f(t) = f(t,x) and u(t) = u(t, z) are known and unknown abstract functions defined
on [0,] with the values in H = L[0, []. Therefore, estimates (3.21) and (3.22) follow
from estimates (3.8), (3.9) and (3.10). Thus, Theorem 3.2 is proved. O

”Second, let 2 C R™ be a bounded open domain with smooth boundary S,
Q=QUS. In [0,7] x Q, we consider the nonlocal boundary value problem for the

telegraph equation”

[t 7) + aun(t, 7) — 3 (ap (@) Ve, + Bult,z) = (1),

r=1

r=(x1,..,2,) €EQ0<t<T,
(3.24)

(0, 2) = Mu(T, ) + (), 25 = 20D 4 y(2), 2 € O,

u(t,z) =0,z € S,0<t<T,

\
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where a,(z), (z € Q), ¢(z), ¥(z), (x € Q) and f(t,z),(t € (0,T)), z € Q are

given smooth functions and «,.(z) > 0.
Theorem 3.3. For the solution of the problem (5.24) the stability inequalities

max |lu(t, .)||W21 (@) (3.25)

0<t<T

< Mo g, B, ) e 11762y ) + Iy ) + 16

0<t<T

oLior . )||W22(§) + 0Lior a2 )HL2(§) (3.26)

< Ma(X, s e, B, 0)[ max [ £t )l @) + 1F0: ) @) + lollwz @) + 191wy @)

0<t<T

hold, where My(\, p, v, 5,0) does not depend on f(t,x) and p(z), P (x).

Proof. Problem (3.24) can be written in abstract form (3.23) in Hilbert space Lo (f2)
with self-adjoint positive definite operator A = A* defined by formula (2.18). Here,
f(t) = f(t,x) and u(t) = u(t, x) are known and unknown abstract functions defined
on Q with the values in H = Ly(f2). So, estimates (3.25) and (3.26) follow from
estimates (3.8), (3.9) and (3.10) and Theorem 2.4 on the coercivity inequality for

the solution of the elliptic differential problem in Ly(€2). O

In the next section, the first and second order of accuracy difference schemes for
the approximate solution of problem (3.1) are studied. Stability estimates for the so-
lution of these difference schemes are established. In applications, difference schemes
for the approximate solution of two nonlocal boundary value problems (3.20) and
(3.24) are presented. Stability estimates for the solution of these difference schemes

are established.
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3.1 STABLE TWO-STEP DIFFERENCE SCHEMES

First, we search the first order of accuracy difference scheme for approximately

solving the nonlocal boundary value problem (3.1)

.
Uk 1 —2Up+Uk—1 Uk 1 — U _
= + a2 + Augyy + Buggr = fi,

Jo=F(ter1) o = (k+ 1) 7,1 <k<N-1,N7=T,
(3.27)

Ug = >\uN + ¥,

| (L o) B2 (A4 BTy = pet gy,

We are interested to study the stability of solutions of the difference scheme
(3.27) under the presentations (3.5). We have not been able to get the discrete
analogue of estimates (3.8), (3.9), and (3.10) under the presumption (3.5) for the
solution of the difference scheme (3.27). Afterall, we can established the separate
similiar of estimates (3.8), (3.9), and (3.10) under the more powerful presumption

than (3.5).

Theorem 3.4. Let p € D(A),v) € D(AY?) and

2
o 3 1
1> A |ul {1+ ) az]— 5N
0+ (B=F)]4(1+9)
1 SN = 1
+ A+ pf ellnls (3.28)

1+9)"  Jfsrp_e(+g)"

Then for the solution of the difference scheme (3.27) the stability inequalities

Orgr}ggvllukHH

N-1
< M (A p,a, B,0) {Z AT fll 7+ (| AT 20|, + IIsOHH} : (3.29)

s=1

max ||A1/2ukH
0<k<N H

N—-1
s=1
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Upy1 — 2Up + U1
2

max

| max + max || Aug| g

T 0<k<N

N-1
< M (A p,a, 5,9) {Z 1 = fomilly + L Fill + [[AY20]]; + ||A<PHH} , (3.31)

s=2

hold, where M (A, i, o, B,0) does not depend on fs,1 < s < N —1, and 9, ¢.

Proof. We will write the formula for the solution of the difference scheme (3.27).
It is easy to show that (see (Ashyralyev and Sobolevskii, 2001)) there are unique
solution of the problem

.
Uk41—2UpHuk—1 Uk41— Uk _
= + o= + Ay + Buga = f,

Jo=fltre1),1 <k < N—-1,N7=T, (3.32)

ug =1, (1+ar) =2+ (A+BI)Tuy = w

\

and for the solution of these problems the following formulas hold:
ug = n,uy = (1+ar) RRy + 7RRw,

Up = RR <§ — R) - [Rk—l _ Ek_l]n
(3.33)
+RR (ﬁ — R>_17- (Ek _ Rk> [(1+ar)n+ Tw]

k=1

~ -1 -
+S RR (R . R) [R5 — R*]f,,2 < k < N,
s=1

\

where R = (14+ % — iTBl/Z)_I R = (1+%+ iTBl/Q)_l. Applying nonlocal

boundary conditions

Uy — W Un —UN-1

T

up = Auy + ¢, (1 +ar) + (A+BI) Tur = + 1,
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we can write

;

[y e

VYRR (ié . R>_1 (ﬁzN . RN) (1+ m)) 0

+ (R . R)_l (EN - RN> 7 RRw

+ 3 RE(R-R) [ - pv] 2 fs} ro,

s=1
w =t { [Rﬁ (E _ R>_1 (RN—I _ RN-1 _ RpN-2 | §N—2)
+ (E - R) B (EN ~ RN 4+ RN-1 EN—l) (1+ar) RE} 7
+(R—R) " (RY — BY + RV = ) rREw

N-1

+ ¥ RE (7~ R) - R Y|

SRR (R-R) RVt - pyet] 52 fs} .

\ s=1

From that it follows that
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({1 arR(R-r) " [(RY = R 4 (RY - RY) (0 an)] b

Y (é . R>_1 (EN . RN) rRRw

Y RE (R-R)" [~ rY] 21,

s=1

~4RR(R-R){(RY - R - Ry )
+ (EN — RN 4+ RN-1 §N4> (1+ 047)}77

¥ {z_ erRR(1+ar) (R—R) (BY = RN+ RV - EN—I)}w

— 1S RE (- R) o R R e ke

s=1

+URRT fy_1 + 0.

Since
R— R = —2irB'?RR,
(RN—I B EN—l) I (EN B RN) (14 ar)
= RV'—(1+4ar)RY—=R""'4+ (1 +ar)RY

= [1+ G B - an)] RY 4 [0 T —irBY 4 (14 or)| RY

— & ;g12| pN a 12| BN

T[Z—I—’LB ]R +T[2 1B ]R ,
(RN = BN = RY2 4 BY2) o (RY = RN 4+ RV = BY1) (14 ar)

=R 2(I-R+(1+ar)RN "1 (I - R)+§N_2 <I — E) —(1+ar) RN (I — é)

= [—1—%+i731/2+(1+a7’)} RN"'(I - R)

+ [1 + % +iTBY? — (1+a7’)] RN-! (I— ﬁ)

=7 |5 +iB| RN (I = R+ =5 +iB?| BN (1= R),
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RY R + R RN = RN (1 - R) - RN (1= R),

I—-—R= 7'[2 ZBI/Q]R] R— T[Q—H'BI/Q]E,

we have that

( {J — A (2iBY2) 7" [[g +iBY?| RN — [2 — iB'/?] ﬁN} } U]
2 (2iBY2) 7 (RY = RY ) w

N-1 1~
=AY (2B R R 7 fb g,
s=1
u(2iBY2) 7 [[5 +iB"°) [§ B RY
(3.34)
+[~5+iB"?) [§ +iBY] RY|

{1 = (2B 7" [[§ B2 RY — [+ BV BY | fw

=S (<2BY) (g — B R — [ 4BV BN 1

s=1

| HURRT fx 1+ 0.

For solving this system, we will consider the following operator

A={1=-x(@iBY) " [[5+iB| BY - |5 —iB'?| BY]}

{1 = (2B [[S - iB | RY - [ S+ iB ] BY] )

A (2iBY2) 7 (RY = RY) p (2iB)

|5 +iB72] |5 —iB 2 RY + |- +ip'?| | 4 iB'| BY]

2 2 2 2
=1-a @B |5 +iBY| RN - [ —iBY?| BV

(2B |5 -

e (2082) ([ +iB 2 BY - [ i8] BY]

B1/2} RN _ [2 JrzB1/2} RN}

X (—ZiBl/z)—l H% _ Z-Bl/2] RN _ [% +z’Bl/2] EN]



+ZBl/2 _iBY2| RN & gHBl/z 2+i31/2 RN
2 2 2 2

Using estimates

LM

HRHH~>H S 1+10¢2T> HeH 1+%7

TB%RH <1 HTB2RH <1,

H—H H—H

we get

Hm (4B)™" { {0‘; + B} (EQN - R2N> - {%2 - B] RNJ'%N}

< [Allpl |1+

ry 31
O+ (B—) 41+

(3.35)
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and the following estimate holds

2
e 3 1
“T HH H = {1 - |)‘| |N| 1 o2 ] n oON (3 36)
- i B-5)]4(1+%)
1
1 3 1A= pl 1

+ A+ pl

+
L+ forp-(+s)”

Using of operator 7%, solving (3.34), we obtain

n="T, HI — p(~2iB?)" H% - z'Bl/z} RN [% N Z'Bl/Z} EN} }

N-1
x [—/\ > (i) RV - R rf | = A (2B (RY - RY)

X [uNz:l (—22'31/2)*1 H% B z'Bl/Z} RN-s

s=1

— |5 +iBY] B r o+ uRBrfea + 0] (3.37)

o {1 awn [fe ] e [5-im] )

N-1
x [u (—2iB'?) | |5 iV RN

s=1
—[§ + B2 B wfo - pREr 40| - (202
|

X H% —|—z'Bl/2} %—z‘BW} RN + [—9 +z’Bl/2] [9

5 + z’Bl/Q] RN ]

2

A @B [EN*S _ RN*S} Tt o (3.38)

Hence, for the formal solution of the nonlocal boundary value problem (3.27) can be
use the formulas (3.33), (3.37), and (3.38). For substantiation of these formulas can
be need to obtain the estimates (3.29), (3.30), and (3.31). Using formulas (3.37),
(3.38) and estimates (3.36), (3.35), we obtain

1l < Tl gm

(st [ v )

H—H

e )],

N-1
(iB'?)” [uz (~2iBY2) |5 —iBY2| RN
2

N—
Z (20BY2) " [RY = R rf 4
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—[§+iB"| B v fo+ pBBrfya + 0| < ITln
1 o . 1
Lre g |[5 - m] 2mn 1R

IR

+ H [% + iBl/2] (—2iBY/?) 7"

H—H
P S L A= I
H—H 2 H—H H—H
s=1
X AT f 7+ el
1 ~ _
3 PR L+ | B ) 1472872,
(wZ 8- im) (c2immy|av—),,
H—H
@ p12]  oep1/2y BN—s —1/2
lul|rRE], Wl 4 200,,) )
N-1
M (A, p, v, 3, 0) {Z AT fo| 7+ | AT20|, + IISOIIH} : (3.39)
s=1
HAil/QwHH S HTT”HHH
1 a . —1
e [I[5 - i) a1
|, [
+H2+ZB }( 2B ) H—H ki H—>H}
N-1y / - .
1/2 - 1/2\ " —s
(3 s -] camy ) I
QO o12] (ospl/2)y 7L HNNfS —1/2
+H[2+ZB }( 2B ) H—H i H~>H:| HA fS”H
+ |l HTRéH | fnv—tlly + HAil/QwHH>}
N SN
S PR (. PR
N1y
- N—s DN—s —-1/2
. [w;z(\m o+ B YA,

N—-1
1
1 B2ATE el N D 5 A2y
s=1

<[4y (VR e+ | B ) + el }



N—-1
<01 0 1) S 1Al A7+l

s=1

Applying A'/? to the formulas (3.37), (3.38) and using the estimates (3.36),

in a similiar manner, we obtain
1/2
A2y < Tl

- e [ ] g R

Z 2131/2 [EN—S _ RN—S] FAVZf, 4 A2y

H—H

e (@ -,

[ERCALEN RS S A

H

A1/2 ZBl/2 [MZ 27,31/2

1 o . . 1
<NTellgon {1 + 35 lul [H [5 — ZBI/Q] (—2iB'?) H

+ H [% + z‘Bl/?} (—2iBY?) 7

N
12"
H—H H—H

IR

H—H

N—-1
— 1 —s HN-—s
(B2 ST (IR Y+ | B I
s=1

1 ~ _
a2l ] N (R e+ B v

(MZ HH 231/2} 22'31/2)—1

n H [5 +¢Bl/2] (—2iB"/2) " H

HH—>H

|-

HoH HH%H

‘EN—S

i

H—>H‘

1/2 D
[ AV RE]| el + ) }

N—-1
< M\, e, B8, 8) {Z 1 fsllzr ™+ 1]l + HA%HH} :
s=1

lwll g < 1Tl

<[ sl -] o, 1
[ +@Bl/2} (_2@'31/2)‘1“11%1 H}N%NHH%H}
(mZ (8- i5v] (<2im) R

54

(3.40)

(3.35)

(3.41)
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« . . -1 SN—s
L [CR L i M

H—H H—>H] ”szHT

+lul |[rRE| veally+ 1) §

[ + |||

H—H

) Ul 12y 7

1/2
) el

M(/\,,u,a,ﬂﬁ) {Z ||fs||HT + ||77ZJ||H + HAl/QSDHH} . (3-42)
s=1

1 o?
o lu H R

N-1 N
(W (1 7
1

H—>H:|

Wz Vel 7 A2 B2y (IR + | RV

Now, we obtain the estimates for [|An||, , ||A"?w||,,. Using formulas
I—R=r E—z’BW] RI-R=1 [%JriBl/Q] R,

the Abel’s formula, we can write

N-1

(—QiBl/z)fl H% B z‘Bl/Z} RN-s _ [% +z’Bl/2] EN_S: .

=3 (2B (= Ry RN (1= R) BN o,

=Y (—2ip) [(1 — R)RN—s (I - E) EN*H: fs

= 3 (-2iB'?)" [RN‘S — }?N‘S} (foor = fo) + (<2iBY?) " (3.43)

; (2231/2)—1 |:RN—S RN—S] .
— _N_l 2iBY/2) ™ — iBY?
3 (2iB7)
5 —iBY| RV - S4B S i RN‘S] /s
N-1



o6

_ [% _H-Bl/z]_l (I B ﬁ) EN31:| 1.

_ 2 (2iB1/2)_1 H% _ iBl/Q}l RN-s _ [% +z‘Bl/2}1 }’%N—sj| (forr — 1)
s=2
(g g e
—1

—(2iB"?)7" H2 +iBY2| RV RN 1} 5 —z‘BI/ﬂ_l fr. (3.44)

Applying A to the formula (3.37), and applying Az to the formula (3.38) and using
formulas (3.43), (3.44), we can write

o= {1ty [§ im0 - 5] )

N—-1 - -
Ay (2i8'2) “% —iB"?] RN S +iB"] 1 }’%N—S} (for — f2)

s=2

x A

[[3-m) =[5 m]  aves
— (2B “% n z’BW] RN RNll [% - z’Bl/Q} T 90}

—Ax(2iB"%) " (RN — RY)

X [ﬂ S (2B RN = BN (foy = fo) 4 (<2iBY%) 7 (3.45)
x [RN = RV fyt pRRr fea 49|
Abw =T, {12 @B") " [[5 + i8] R =[5 - BV BV}

N—

Z (~2iBY2) 7 [RY = R (for = f) + e (-2iBY2)

[RN I _ RN- 1} fi+ pRBRrfy -y 40 — p (2iBYV2) 7

« H%JriBl/z} [% —iBl/2:| RN & {—%jtiBl/Z] [%JFZ-BW] EN]
1 /\Zl (22,31/2)—1 H% B Z.B1/2] -1 RN-s _ [% —|—iBl/2] - ﬁNS} (fomr — fs)

(5w w) e
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_ (2@'31/2)_1 H% n Z-Bl/z] - RN-1 _ RNl} [% — iBl/Z] - fi+ gp” . (3.46)

Using the last two formulas and the estimates (3.41) and (3.42), we obtain

1Al g < Tl 1

o e A | P K s K 1

x [Al A )\Z 2231/2 - Hg — 31/2} - RN-s _ [%+i31/2}1 éN—s:|

\)

X (fso1—fs) — A H% — Z'Bl/z}_l — [% + z'Bl/z] _1] -1

—A (2iBY?) H% +iB'] TRV RN‘l} 5 —iB" T Ago]

H

s T
x [u 5 (~2iBY2) RN = R (foa = f) + e (<2iBY2)

[EN—l _ RN‘l] fio+ uRRT fy 1 + ¢] HH]

1 o . -1
< T {1 bl [ i (-2i5)

+ H [% + z’BW} (—2131/2)‘1”

[2™]]
HoH H—H

R

XA

A(2BV) [[g i) v [ apr] ENS]

(5~ vo7] ]

I H_A (22-31/2)—1 H% X iBl/ﬂ ! RN-1 _ RN—l} [% _ iBl/Q} -1

H—H

5

Vor = Foll + \ 4

| fn=1ll g
H—H

H—H

X ALl + 1Al ]

oI (IRN e + [

x [w;\

Y|,

AL/2 (_22-31/2)—1 [RNfs _ éNfs]

e = Fil

a2 (2B ) R =R AL

s R T PR PR M)




o8

N-1
<M\ p, e, B,9) {Z 1fs = Fomlly + I flly + (| A0 + HASOHH} , (347)
s=2

[AY 2], < 1Tl yon

<[{resmllly -] oy

n H [% + z’Bl/Q} (—2@'31/2)‘1H

1=

2

H—H

H—H ‘ H—>Hi|

[t = £l

H—H

N—-1
1 . B —s DN—s
(33 [ o, s 2
s=1

et (|

R
H—H H—H

o Wil + 43| )}

I Fill s + il | 437 RE|

H—>H] H—H

1B + | R

1 o?
- & L B| B! ]
+2|M"H4 N } H—H

H—H

_ —1 -1 -
Ab (2iBY2)7 H% —iB"2] RV - |2 4B RN‘S}

N-1
< w3
s=2

H—H
1o -1 o -1
s = Al 2% | [§ =) " =[] ]| gy
H—H
+ HAé (2iB'?) " Hﬁ + Z'BW] TNl RN—l} [9 _ z’Bl/Q] -
2 2 H—H

X ALAl ] + 1Al ]
N-1
<M\ p, e, 8,0) {Z 1fs = Fotllg + Lfallr + | A0 ], + ||A90||H} - (3.48)
5=2
Now, we will prove the estimates for (3.29), (3.30), and (3.31). We have that
hually < (Utar) |RE|| linlly

+HA%B—%

|rBiRR| A,

H—H H—H

< M (0, 8) [l A7 2w |+ Nl llae]

In exactly the same manner, one establishes

1
HAQU1

o < (1+ar) HREH HA%U

H—H ‘H

+ HA%B*%

B%RR'H
|rBiRR], Tl

H—H

< M (a,0) [lwllu+ | A%y [lu).
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| Al < (1 +an)||RE| - 14¢ll,

+HA%B*%

BARER|
|rB2RE||  llly

H—H

< M (a,0) ||| Abw |l + | Ay lu].

Let k > 2. Then, using the formula (3.33) and estimates (3.39), (3.40),(3.41) and
(3.42), we obtain that

s < %[H(gﬂm) ()"

H—H H—H

-1
+||1R*| 4 <% +z’B%> (iB%> } Wl
H—H
L[ =k . L B
+§ |:HR HH_>H+ ||R HH—>Hi| HA2B 2 . HA QwHH
k—1 1 _ 1 | |
+SZ:;§ H‘Rk*s o + HRkiSHH‘)H} T HA§B*§ . HA,gfs ;

1<k<N-1

< a0, 8,0) Il + -+ s Jacis]) |

for any £ > 2. Combining the estimates ||uy||,; for any k, we obtain (3.29). Using
the triangle inequality, formula (3.33) and estimates (3.39), (3.40),(3.41) and (3.42),

we obtain that

U (G REOICON

(% +¢B%) (iB%>1

) [ A45572

7

H—H

+||R*

o

‘ H

HH—)H :|
H—H

1 Dk
w17

on ”wHH

H—H H

k—1

SIS

=1

1B ] 7|42 B

H—H H—H ||fsl|H

»

< My(A 1,0, 8,9) U\A%n

|+l g 1l

for any k > 2. Combining the estimates HA%ukH for any &, we obtain (3.41). Using
H

the Abel’s formula, we can write

Auy, = (QZ'BE)_I [(% +iBh) R+ (—% +iB4) BF| An+a (-2@3%)_1 (R*—R*)w
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thes = (-2mt) {(G -t B (G eimt) RO (i)

x kzj{(% - z’B%> Rt (% +¢B%) R’H—l} (fs— for1),2 < k < N.

Using the triangle inequality, last formula, and estimates (3.39), (3.40),(3.41) and
(3.42), we obtain that

|7

H—H

H—H

+||R*

I

—1
(4i5t) ()

i

meH

3 [, IR

1
H

H—)H’

R e 1

oo

1 {fl@]

H—H

1o _1
+feall+5 557

H—H H—H

Do (L

1 8} 1
2\ ps
*3 [2 H ’

H—H

+ ||Rk7871HH%H} Hfs - fs+1HH]

< Mih, s, 8,0) [ 4ally + Il + | A%

N-1

+> M= Foally + 1Al
5=2

for any k& > 2. Combining the estimates || Aug||,; for any k, we obtain (3.42). Theo-
rem 3.4 is proved. O

Second, we consider the second order accuracy difference schemes for approx-

imately solving the boundary value problem (3.1)

U1 —2Up+Uk—1 Uk+1—Uk—1 A
— + o= S (U T+ Ug-1)

+§ (W1 + k1) = fo, fo = f(t), 1 <k <N -1,

ug = My + @, fo = f(0), fv = f(1), (3.49)

<[+ or §(B+%2)> w-w 1 (fo — (B + %) —a“l_“°>

T T

= p() + 1 (fy — (B + S)uy — a8 )] 4y,

\
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Uk +1—2up+Hug—1 Uk +1—Uk—1 A A
= + a4 S + (U + ug—1)

Houp + 2 (upgr +up1) = fo fo = f(tn), 1 <k <N -1,

(3.50)
uy = Ay + @, fo = f(0), fv = f(1),

(1+5+5B+5) =2 =5 (fo— (B+$u — a2

e
2

— /JL[(—“N_;‘N*) +3 <fN — (B + %)UN — (Jz—uN_fNA)] + ).

\

Theorem 3.5. Suppose that ¢ € D(A), 1 € D(AY?) and assumpion (3.28) holds.
Then for the solution of the difference scheme (3.49) the stability inequalities

<
()Igr}gaé}%\/ ||Uk||H >~ M(A7 M, a, ﬂa 5)

N
" {Z A2 g, A2, + “%O”H} | 390

s=0

N
max [[AV2u]], < MO 0 5, 0) {Z 1ol 7+ 1 + ||A1/2¢||H} . (3.52)

Upy1 — 2up + Up—1

max
T2

0<k<N-—1

+ max | Augl|

N
< M, p, o, 3,0) {Z 1fs = Fomrlli + I foll g + (| A2, + ||A¢||H} (353
s=1

hold, where M (X, u, «, 3,0) does not depend on fs,1 < s <N —1 and p, 1.

The proof of Theorem 3.5 is based on the formulas for the solution of difference
schemes (3.49) and (3.50), on the estimates for the step operators and on the self-

adjointness and positivity of operator A.

Now, we consider applications of Theorems 3.4-3.5. First, we consider the
nonlocal boundary value problem (3.20). The discretization of problem (3.20) is
carried out in two steps. In the first step, we consider the discretization in z.To
the differential operator A* defined by the formula (2.14), we assign the difference
operator A7 by formula (2.31). With the help of A7, we reach the nonlocal boundary
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value problem

( uft(t, x) + auf(t, x) + Aiuh(t, x) + Buh(t, x) = fh(t, x),

0<t<T,x €0, (3.54)

| ul(0,2) = (T, x) + "(x), ul (0, z) = pul(0,2) + " (z), x € [0, 4.

In the second step, we replace (3.54) with difference scheme (3.27)

( ul z)—2ul () +ul T ul z)—ul(x x
RO ¢ oM Al (0) + Bl (0) = S (),
f]il(x):fh(tk+lax)7 tk:kTy 1§k§N_17 xe[ovl]h)NT:T7

uh(w) = Ny (@) + (@), (14 ar) I+ 72(By + 1) ) “Hes (3.55)

+ (A7 + BI) Tul (z)

= pr (U (2) — uly 4 (%)) + 9" (@), z € [0, 1]

Theorem 3.6. For the solution {u]: (x)}év of problem (3.55) the following stability
estimates

2 i, < M pmaB,9) {mN L2 11" L, 1" Hm}

s g, < B0 0) g LA+ 00 iy, 1 T .

Y-

h
max flugllwg, < M2(A 1,0,6,0) || max

Lop

A gy 1" g, + " s, }

hold, where My (X, 1, v, 3,8) and My(\, p, v, 3,6) do not depend on ¢"(z),v"(x) and
fix),1<k<N-1.
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Proof. Difference scheme (3.55) can be written in abstract form

( ul,  —2ultul ult —uh
k41 BT %E—1 k41" Yk h h _ rh

72

1<k<N—1N7r=T,
. (3.56)
ul = o <(1 +ar)I +7%(By + %I)) —u’f;ué—l—

| (An + BL) u} = prH(uly — uf_y) + 0"

in a Hilbert space Loy, with self-adjoint positive definite operator A, = A} by formula
(2.31). Here, f = fi(x) and u} = ul(x) are known and unknown abstract mesh
functions defined on [0,[];, with the values in H = Loj,. Therefore, estimates of
Theorem 3.6 follow from estimates (3.51), (3.52), (3.53). Thus, Theorem 3.6 is
proved. O

Second, we consider the nonlocal boundary value problem (3.24). The dis-
cretization of problem (3.24) is carried out in two steps. In the first step, we consider
the discretization in z. To the differential operator A® defined by the formula (2.18),
we assign the difference operator A7 defined by formula (2.35). With the help of

A7, we reach the nonlocal boundary value problem

( u?t(t, x) + au?(t, x) + A"fluh(t, x) + Buh(t, x) = fh(t, x),

0<t<T,xeQy, (3.57)

| u(0,2) = oM (x), ul(0,2) = Y"(x),x € Q.

In the second step, we replace (3.57) with the difference scheme (3.27)

( uh z)—2ul (z)+ul T ul z)—ul(z
re1(®) ;;2( )+up_ (@) +a e ( 3_ r(z) +AiUZ+1($) +5UZ+1($) — f]?(g;)’
Ma) = 'ty ), =k, 1<k<N—-1, 2€Q, Nt =T,
(3.58)
h(.\ _ -k 1 ul (z)—uf (z) A I h
ug(z) = ¢"(2), (1 + ar) === + (Af + BIy) Tui ()

= wh(l’)’x € Qh7

\
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for an infinite system of ordinary differential equations.

Theorem 3.7. For the solution {u’g (:v)}év of problem (3.58) the following stability

estimates

12}@855\/ HUZHL% < Ml(A’M’&’B’a) {Krkn<a§7(1 Hfl?”Lzh—i_ H wh HLQh + H Sph “Lzh} !

12235\/ HUZHW/'th < Ml()‘nuaaaﬁvé) {1;1%8}3{(1 ||fl?HL2h+ || wh HLQh + || Soh ||W21h}’

h
max flugllwz, < Ma(X 0, 8,0) § | max

1
—(fe = 1)

Lap

A Ny 18" g, + 6" s, }

hold, where My (X, p, o, 3,6) and My(X, i, v, B,6) do not depend on o"(z),¢"(x) and
fi(x),1<k<N-1.

Proof. Difference scheme (3.58) can be written in abstract form (3.56) in a Hilbert
space Lo, = Lo(€,) with self-adjoint positive definite operator A4, = A? by formula
(2.35). Here, fl' = fi(x) and u} = ul(x) are known and unknown abstract mesh
functions defined on €, with the values in H = Lo;,. Therefore, estimates of Theorem
3.7 follow from estimates (3.51), (3.52), (3.53) and Theorem 2.8 on the coercivity

inequality for the solution of the elliptic difference problem in Loy,. ]

Note that the difference schemes of the second order of accuracy with respect
to one variable for approximate solutions of the mixed problems (3.20) and (3.24)
generated by difference schemes (3.49) and (3.50) can be constructed. The abstract
Theorems 3.4-3.6 given above and Theorem 2.8 permit us to establish the stability

estimates for the solution of these difference schemes.

In applications, the theorems on convergence estimates for the solution of
nonlocal problems can be established. The theoretical statements for the solution
of difference schemes can be supported by the result of the numerical experiment.
We have not been able to obtain a sharp estimate for the constants figuring in the

stability inequality. Therefore we will give the results of numerical experiments for
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the nonlocal boundary value problem.

( D2u(t,x oul(t,x &?u(t,x 1
pirt) 200 — SO 4y(t ) = exp (—t)sin,

0<t<l,0<z<m,

q u(0,2) = 1u(l,z) + (1 — S exp (—1))sinz, (3.59)
Qu(0,2) =12u(l,2) + (-1 + Lexp(—1))sinz,0 <z < T,

u(t,0) =u(t,m) =0,0<t <1

\

for the telegraph equation. The exact solution of this problem u(¢, ) = exp (—t) sin x.

For the approximate solution of the nonlocal initial-boundary value problem
(3.59), we consider the set w, = [0, 1], x [0, 7], of a family of grid points depending
on the small parameters 7 and h. We present the following first order of accuracy in
t and second order of accuracy in x difference scheme for the approximate solutions

of the problem (3.59)

(  k+1 k-1 k+1 k+1 k+1 g k+1
ukt —2uk + 2un+ —uk . Uty —2un Fu, Ty + uk+1
72 T h? n

= exp (—tgs1) siny,, ©, = nh,tpy = (k+ 1)1,

1<k<N-1,1<n<M-1,

(3.60)
ud = tul 4+ (1 — S exp (—1))sinzy,,
u}l—u% 1 uﬁ’—ug_l 1 .
—n =t 4 (=14 sexp(—1))sinz,,0 <n < M,
u’gzu’&:0,0SkSN

Now, we consider two types of second order of accuracy in t and z difference



66

schemes for the approximate solutions of the problem (3.59)

_ k41 k41, k+1
(bt _oyk k! + 2uﬁ+17uﬁ71 . l“n:1_2“n+ Fulty
72 2T 2 h2
k—1 k=1, k—1
1 “n+1_2un tu, 1 k+1 k—1\ _ :
-3 2 + 5 (un + ) = exp (—ty) sin(z,),

Tp=nhty=kr,1<k<N-1,1<n<M-1,

0 1N ) (3.61)
uy = 3u, + (1= 5exp(—1))sinz,,z, = nh,
uk —u . u2 —2ul +u?
T 2T -
N__,N-1 N _ N-1 N-2 .
L [un CHE 2un2T +up ] + (=1 + Lexp(—1))sin(z,),0 <n < M,
ub=uk, =0,0<k<N
\ 0 M b _— —_— 9
N T SR e e e e e
T2 27 2 h? 4 h?
k—1 k—1 k—1
1 Upyyq—2Un U, 1 1 _ X
— Lok 1 (w4 k) = exp (<) sin(zy,),
Tpn=nhty=kr,1 <E<N-1,1<n<M-—1,
ud = 2ull + (1 — Jexp (—1))sinz,, z, = nh, (3.62)
ul —ud . u2 —2ul+ud 1 u,lyfuﬁf*l + uﬁf2u7]:771+u71¥72
T 27 2 T 27
+(=1+ 2 exp(—1))sin(z,),0 <n < M,
ub=uk, =0,0<k<N
\ 0 M y Vo= = .

To solve these difference equations, a procedure of modified Gauss elimination

method is applied. Hence, we seek a solution of the matrix equation in the following

form:

uj = ajUji + By, uy =0, =M —1,..,2/1
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where a; (j = 1,2,..., M) are (N + 1) x (N + 1) square matrices, and 3; (j =
1,2,...,M) are (N + 1) x 1 column matrices defined by

Q1 = —(B + COéj)ilA,

Bis1=(B+Ca;) " (Dp—CBy), j=1,2,... M —1,

where j = 1,2,.... M — 1, oy is the (N + 1) x (N + 1) zero matrix, and f; is the
(N +1) x 1 zero matrix. The results of computer calculations show that the second
order difference schemes are more accurate than first order of accuracy difference

scheme. Table 1 is constructed for N = M = 20,40 and 80, respectively.
The errors are computed by
N _ ok
B = 1§k§NIr11,%}§<nng1 ‘u@k’x") u”| ’

where u(t, 7, ) represents the exact solution and u* represents the numerical solution

at (tx,z,) and the results are given in Table 3.1.

Table 3.1 Error analysis

T=+ h=20 N=M=20 N=M=40 N=M=280
The difference scheme (3.60) 0.0047 0.0020 0.0010

The difference scheme (3.61) 2.3457 x 10~*  6.0377 x 107° 1.5322 x 10~°

The difference scheme (3.62) 1.0311 x 107* 2.4370 x 1075  5.8980 x 10~°




CHAPTER 4

CONCLUSION

This work is dedicate to study the stability of Cauchy problem and nonlocal
boundary value problems for telegraph equations. The following original results are

acquired:

e The abstract theorem on the stability estimate for the solution of Cauchy

problem for telegraph equations is proved.

e Stability estimates for the solution of two initial boundary value problems for

telegraph equations are acquired.

e The first and second order of accuracy difference schemes for the approximate

solution of Cauchy problem for telegraph equations are introduced.

e Abstract theorems on the stability estimates for the solution of difference
schemes for the approximate solution of Cauchy problem for telegraph equa-

tions are proved.

e Stability estimates for the solution of difference schemes for two initial bound-

ary value problems for telegraph equations are obtained.

e The abstract theorem on the stability estimate for the solution of nonlocal

boundary value problems for telegraph equations is constructed.

e Stability estimates for the solution of two nonlocal boundary value problems

for telegraph equations are acquired.
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The first and second order of accuracy difference schemes for the approxi-
mate solution of nonlocal boundary value problems for telegraph equations

are presented.

Abstract theorems on the stability estimates for the solution of difference
schemes for the approximate solution of nonlocal boundary value problems

for telegraph equations are proved.

Stability estimates for the solution of difference schemes for two nonlocal

boundary value problems for telegraph equations are obtained.

The Matlab implementation of the first and second order of accuracy difference
schemes for the approximate solution of initial boundary value problem and

nonlocal boundary value problems for telegraph equations are presented.

The theoretical expressions for the solution of these difference schemes are

supported by the results of numerical examples.



CHAPTER 5

MATLAB PROGRAMING

In this chapter, Matlab programs for first and second order of accuracy differ-
ence schemes for test examples are given and numerical results are compared with

the exact solution.
i. The initial boundary value problem for a telegraph equation.
"First Order of Accuracy Difference Scheme
function firstorderaccuracy(N,M)
tau=1/N;h=pi/M;
a—(-1/(n"2));
b=(1/(tan"2));
c=(-2/(tau"2)-2/tau);
d=(1/(tau"2)+1/(tau)+2/(h"2)+1);
for i=2:N; A(i,i+1)=a; end;
A(N+1,N+1)=0;A;
C=A;

for i=2:N; B(i,i-1)=b; end;
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for i=2:N; B(i,i)=c; end;

for i=2:N; B(i,i+1)=d; end;
B(1,1)=1;B(N+1,1)=1/tau,B(N+1,2)=-1/tau;B(N+1,N+1)=0;B;
for i=1:N+1;D(i,i)=1;end;D;

'fii(j) finding’;

for j=1:M+1;

x=((j)*h);

fii(1,j:j)=sin(x);

fii(N+41,j:j)=sin(x);

for k=2:N;

fii(k,j:j)=exp(-tau*(k-1))*sin(x);

end;

end;

alpha(N+1,N+1,1:1)=0;

betha(N+1,1:1)=0;

for j=1:M-1;

alpha(:,:,j+1:j+1)=inv(B+C*alpha(:,:,j:j) ) *(-A);
betha(:,j4+1:j4+1)=inv(B+C*alpha(:,:,j:j))*(D*fii(:,j:j)-C*betha(:,j:j));
end;

U(N+1,1,M:M)=0;

for z=M-1:-1:1;
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U(:,:,z2z)=alpha(:,;,z+1:2+1)*U(:,:,z+1:z+1)+betha(:,z+1:z+1);
end;

for z=1:M;

p(:,z4+1:2+1)=U(:,:,z:2);

end;

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M+1;

for k=1:N+1;

=1 )

es(k.j:f) =exp(-tau* (k- 1)) Fsin (x);

end;

end;

es;

% ERROR ANALSIS’;

maxes=max(max(es));

maxapp=max(max(p));
maxerror=max(max(abs(es-p)))
relativeerror=max(max(abs(es-p)))/max(max(abs(p)));

cevap=[maxes,maxapp,maxerror,relativeerror]|.



Second Order of Accuracy Difference Scheme.
function secondorderaccuracy(N,M)
tau=1/N;h=pi/M;

a=(-1/(2%(b°2));
b=(1/(tau"2)-1/tau+1/(h"2)+1/2);

e=(2/ (tan"2));
d=(1/(tau"2)+1/(tau)+1/(h"2)4+1/2);

for i=2:N; A(i,i-1)=a; A(i,i+1)=a; end;
A(N+1,N+1)=0;A;

C=A;

for i=2:N; B(i,i-1)=Db; end;

for i=2:N; B(i,i)=c; end;

for i=2:N; B(i,i+1)=d; end;
B(1,1)=1;B(N+1,1)=3/2,B(N+1,2)=-2B(N+1,3)=1/2;B(N+1,N+1)=0;B;
for i=1:N+1;D(i,i)=1;end;D;

'fii(j) finding’;

for j=1:M-+1,

= ()

fii(1,j:j)=sin(x);

fii(N+1,j:j)=tau*sin(x);

for k=2:N;
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fii(k,j:j)=exp(-tau*(k-1))*sin(x);

end;

end;

alpha(N+1,N+1,1:1)=0;

betha(N+1,1:1)=0;

for j=1:M-1;

alpha(:,:,j4+1:j+1)=inv(B+C*alpha(:,:,j:j)) *(-A);
betha(:,j+1:j41)=inv(B+C*alpha(:,:,j:j))*(D*fii(:,j:j)-C*betha(:,j:j));
end;

U(N+1,1,M:M)=0;

for z=M-1:-1:1;
U(:,:,z2z)=alpha(:,;,z+1:z+1)*U(:,:,z+1:z+1)+betha(:,z+1:z+1);
end;

for z=1:M;

p(:,z+1:241)=U(:,:,2:2);

end;

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M-+1;

for k=1:N+1;

x=((j-1)*h);

es(k,j:j)=exp(-tau*(k-1))*sin(x);



end;

end;

es;

%'ERROR ANALSIS’;

maxes=max(max(es));

maxapp=max(max(p));
maxerror=max(max(abs(es-p)))
relativeerror=max(max(abs(es-p)))/max(max(abs(p)));

cevap=[maxes,maxapp,maxerror,relativeerror|.
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ii. The nonlocal boundary value problem for a telegraph equation.”
First Order of Accuracy Difference Scheme.
”function firstorderaccuracy(N,M)
tau=1/N;h=pi/M;

a=(1/(h°2));

b=(1/(tau"2));

c=(-2/(tau"2)-2/tau);
d=(1/(tau"2)+1/(tau)+2/(h"2)+1);

for i=2:N; A(i,i+1)=a; end;
A(N+1,N+1)=0;A;

C=A;

for i=2:N; B(i,i-1)=b; end;

for i=2:N; B(i,i)=c; end;

for i=2:N; B(i,i+1)=d; end;

B(1,1)=1;B(N+1,1)=-1/tau,B(N+1,2)=1/taw;B(1,N+1)=-1/2;B(N+1,N)
=1/(2*tau);B(N+1,N+1)=-1/(2*tau);B;

for i=1:N+1;D(i,i)=1;end;D;
'fii(j) finding’;

for j=1:M-+1;

x=((j)*h);

fi(1,3:) = (1-1/(2%0)) *sin(x);



fii(N+1,j:j)=(-1+1/(2%e) ) *sin(x);

for k=2:N;

fii(k,j:j)=exp(-tau*(k-1))*sin(x);

end;

end;

alpha(N+1,N+1,1:1)=0;

betha(N+1,1:1)=0;

for j=1:M-1;

alpha(:,:,j+1:j+1)=inv(B+C*alpha(:,:,j:j) ) *(-A);
betha(:,j+1:j4+1)=inv(B+C*alpha(:,:,j:j))*(D*fi(:,j:j)-C*betha(:,j:j) );
end;

U(N+1,1,M:M)=0;

for z=M-1:-1:1;
U(:,:,z:z)=alpha(:,:,z+1:24+1)*U(:,:,z4+1:24+1)+betha(:,z+1:2+1);
end;

for z=1:M;

p(:,z4+1:2+1)=U(:,:,z:2);

end;

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M+1;

for k=1:N+1;

7



x=((11)*h);
es(k,j:j)=exp(-tau*(k-1))*sin(x);

end;

end;

es;

% ERROR ANALSIS’;

maxes=max(max(es));

maxapp:maX(maX(p)) ;
maxerror=max(max(abs(es-p)))
relativeerror=max(max(abs(es-p)))/max(max(abs(p)));

cevap=[maxes,maxapp,maxerror,relativeerror|.”
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Second Order of Accuracy Difference Scheme.
function secondorderaccuracy(N,M)
tau=1/N;h=pi/M;

a=(-1/(2%h°2));
b=(1/(tau"2)-1/tau+1/(h"2)+1/2);

e=(2/ (tan"2));
d=(1/(tau"2)+1/(tau)+1/(h"2)4+1/2);

for i=2:N; A(i,i-1)=a;A(i,i+1)=a; end;
A(N+1,N+1)=0;A;

C=A;

for i=2:N; B(i,i-1)=Db; end;

for i=2:N; B(i,i)=c; end;

for i=2:N; B(i,i+1)=d; end;
B(1,1)=1:B(N+1,1)=-6;B(N+1,2)=8:B(N+1,3)=-2:B(1,N+1)=1/2;
B(N+1,N-1)=-1;B(N+1,N)=4;B(N+1,N+1)=-3;B;
for i=1:N+1;D(i,i)=1;end;D;

'fii(j) finding’;

for j=1:M-+1;

x=((i)*h);

fii(1,5:3)=(1-1/(2%e)) *sin(x);

fii(N+1,j:j)=2%tau™(-1+1/(2%¢) ) *sin(x);
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for k=2:N;

fii(k,j:j)=exp(-tau*(k-1))*sin(x);

end;

end;

alpha(N+1,N+1,1:1)=0;

betha(N+1,1:1)=0;

for j=1:M-1;

alpha(:,:,j+1:j+1)=inv(B+C*alpha(:,:,j:j) ) *(-A);
betha(:,j+1:j4+1)=inv(B+C*alpha(:,:,j:j))*(D*fii(:,j:j)-C*betha(:,j:j));
end;

U(N+1,1,M:M)=0;

for z=M-1:-1:1;
U(:,:,z2z)=alpha(:,;,z+1:2+1)*U(:,:,z+1:z+1)+betha(:,z+1:z+1);
end;

for z=1:M;

p(:,z+1:z+1)=U(:,:,2:2);

end;

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M+1,

for k=1:N+1;

x=((j-1)*h);



es(k i) —exp(-tau* (k-1)) ¥sin (x);

end;

end;

es;

% ERROR ANALSIS’;

maxes=max(max(es));

maxapp:maX(maX(P)) ;
maxerror=max(max(abs(es-p)))
relativeerror=max(max(abs(es-p)))/max(max(abs(p)));

cevap=|[maxes,maxapp,maxerror,relativeerror].
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