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ABSTRACT 
 

 

 

 In this thesis, a new spectral conjugate gradient algorithm (SCG) is proposed for 

solving unconstrained nonlinear optimization problems. All work can be summarized in 

two parts: Firstly, a minor modification to the standard Conjugate Descent (CD) 

algorithm is proposed. The direction generated by the modified approach provides a 

descent direction for solving the objective functions and the modified algorithm 

coincide with the standard CD-algorithm if line search is exact.  It is well-known that 

the search direction generated by a CG-algorithm may not be a descent direction of the 

objective function. This property depends neither on the Wolfe line search used, nor on 

the convexity of the objective function. 

Secondly, we have studied and derived theoretically the stability and the global 

convergence properties for the new proposed SCG algorithm by introducing some well-

known and new mild assumptions, which will be used in the proof of the basic idea's of 

the new algorithm.  

 Lastly, the performance of the new SCG algorithm is reported on the selected 

test problems whose second derivatives are available. Modified FORTRAN codes have 

been written in double precision arithmetic and all the tests were performed on a PC. In 

order to assess the reliability of our new proposed SCG algorithm, the results of new 

SCG are compared with the results of three standard CG algorithms and four recent 

published SCG algorithms in terms of solution quality and performance. 

 

 

Keywords: Spectral Conjugate Gradient, Global Convergence Property, Unconstrained 

Nonlinear Optimization, Descent Search Direction, Line Searches. 
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ÖZ 
 

 

 

 Bu tezde, kısıtsız doğrusal olmayan optimizasyon problemlerinin çözümü için 

yeni bir spektral eşlenik gradyan (SCG) algoritması önerilmiştir. Yapılan çalışmalar iki 

kısımda özetlenebilir: İlk olarak, standart Eşlenik İniş (CD) algoritmaları üzerinde 

küçük bir değişiklik yapılmıştır, şöyle ki, değişiklik yapılan yaklaşıma göre oluşturulan 

yön, seçili amaç fonksiyonlarını çözmek için iniş yönü göstermekte ve doğrultu 

belirleme tamamen aynıysa, standart CD algoritmasıyla değiştirilmiş algoritma 

örtüşmektedir. Eşlenik Gradyan algoritması sayesinde oluşturulan arama yönünün, amaç 

fonksiyonunun iniş yönü olmayacağı bilinen bir gerçektir. Bu özellik ne kullanılan 

Wolfe doğrultu arama ne de amaç fonksiyonunun dışbükeyliğine bağlıdır. 

 İkinci olarak, yeni algoritmanın temel fikirlerini kanıt olarak kullanabileceğimiz, 

tanınmış ve yeni mutedil varsayımları tanıtarak yeni önerilen SCG algoritmasının 

küresel yakınsama ve kararlılık özellikleri üzerine çalıştık ve kuramsal olarak türettik.   

Son olarak ikinci türevleri mevcut olan seçili test problemleri üzerinde yeni SCG 

algoritmasının performansı raporlanmıştır. Değiştirilmiş FORTRAN kodları çifte 

hassasiyetli aritmetik ile yazılmış ve tüm testler PC üzerinde gerçekleştirilmiştir. Yeni 

önerilen SCG algoritmamızın güvenirliğini değerlendirmek için, algoritmamızın 

sonuçları üç standart CD-algoritması ve dört yeni yayımlanan SCG algoritması ile 

çözümün kalitesi ve performans kriterleri açısından karşılaştırılmıştır.    

 

 

                Anahtar Kelimeler: Spektral Eşlenik Gradyan, Global Yakınsama Özelliği, 

Kısıtsız Doğrusal Olmayan Optimizasyon, İniş Arama Yönü, Doğrultu Aramalar
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 OVERVIEW 

 Optimization is a word that means, making some times,  “optimum”; optimum 

is Latin, and it means  “the best.” value.  Therefore, optimization refers to bringing 

whatever we are dealing with towards its optimum. Now, optimization is a 

mathematical technique that is concerned with finding the maxima and minima of 

non-linear functions, some times, subject to constraints. (Andreessen et al., 2005).  

 In other words, optimization is a mathematical technique used for finding the 

least possible values of a mathematical function where the function to be optimized 

may be a function of any number of independent variables and may also be subject to 

certain constraints.  

 However, in optimization problems we seek those independent variables that 

do not violate the constraints of the  objective function to be optimized. All problems 

in all areas of mathematical programming or computational mathematics can be posed 

in terms of optimization. Mathematical models are often developed in order to 

analyze and understand the objective function phenomena.  

 Moreover, the word optimization is an important tool in mathematics. Our aim  

in this thesis is to find  the best optimal values of the variables that minimize the 

nonlinear unconstraint objective functions and the variables are restricted or 

constrains in some ways. 
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 The mathematical model for the optimization algorithm can be used to find a 

solution for such problems. For all but the simplest problems, an exact solution cannot be 

calculated directly. Instead, suitable algorithms must be chosen that will approximate the 

solution as closely as required to the optimal solution. Often a set of optimality conditions 

can be applied to the final values returned by the algorithm to check that they yield a 

solution to the problem, (Baldick, 2009).  

 

1.2 NOTATIONS 

 We use the following notations throughout this thesis : The working space is 
nR , the 

set of column n-vectors with real components, we denote elements of 
nR  by lower case 

letters e.g.: x the transpose  of a given column vector x is a row vector with the 

corresponding elements  and denoted by 
Tx ,  where the scalar product will be denoted by 

yxT
 (actually it will be the usual dot-product  



n

i
ii

T yxyx
1

 and   .  will denote the 

associated norm. The gradient (vector of partial derivative) of the differentiable function 

RRf n :  will be denoted by f , and the Hessian matrix (matrix of second derivatives) 

by )(2 xf . We will also use continually use the notation fxg )( , )(2 xfG  , and 

 H  represents an approximation of the inverse Hessian. We refer to the current point 

(vector) as 
k

x ,  the value of )(xg , )(xf  at 
k

x  denoted as  kk fg    ,   respectively for an 

optimal point denoted by 
*x .  Greek letters such as . ,.., refers to the scalars. 

 

1.3 CLASSIFICATION OF OPTIMIZATION MODELS 

 The general form of the unconstrained optimization problem to be considered may 

be expressed in mathematical terms as follows: 

                                          )(min xf
nRx

                                                   (1. 1) 

 This problem type depends on the nature of the functions and the constraints. 

Examples are the follows: 
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1)  Unconstrained Optimization (UO) 

2)  Constrained Optimization (CO) 

3)  Parametric Optimization (PO) 

4)  Differentiable Optimization (DO) 

5)  Non-Differentiable Optimization (NDO) 

6)  Linear Programming (LP) 

7)  Nonlinear Programming (NLP) 

8)  Integer Programming (IP)  

9-  Convex Programming (CP) 

10- Non-Convex Programming (NCP) 

 (Andreessen et al., 2005) 

 

1.4 GRADIENT VECTOR 

 The vector of the first partial derivative ,),...,,( 21

T

nxfxfxfg   called a 

gradient vector of an n-variable continuously differentiable function f(x1,x2,…,xn), and may 

also be written as f  (or sometimes as fx), (Biggs, 2005). 

 

1.5 HESSIAN MATRIX 

 The nn  matrix H of second partial derivatives of an n-variables continuously 

differentiable function f(x1,x2,…,xn) is given by the following (Biggs, 2005):  
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



























22

1

2

1

22

1

2

...

.....

.....

.....

...

)(

nn

n

xfxxf

xxfxf

xH       

 (1.2) 

is known as the  Hessian matrix, which  is always symmetric and  f (x1,x2,…,xn)   is a twice 

continuously differentiable function because of the properties of the second derivatives of 

continuous functions:     

               njni
xx

f

xx

f

ijji

,...,2,1,,...,2,1
22










                                                  (1. 2) 

 

1.6 POSITIVE DEFINITE/ POSITIVE SEMI-DEFINITE MATRIX 

 A positive definite symmetric matrix A is one that has all positive eigenvalues. 

Equivalently, a matrix A is positive definite if and only if: 

      .0,0  xanyforGxxT                                                                                   (1. 3) 

For a positive definite symmetric matrix the condition (1.4) becomes:   

          .0,0  xanyforGxxT                                                                                (1. 4) 

 (Biggs, 2005). 

 

1.7 OPTIMALITY IN UNCONSTRAINED OPTIMIZATION 

 What are the necessary and sufficient conditions for a vector 
*x  to be a local 

optimum? This is an important question, because the algorithms that we will investigate for 

solving important classes of optimization problems are always devised based on those 

conditions that we would like to fulfill. 
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 This is a statement that seems to be universally true: efficient, locally or globally 

convergent iterative algorithms for an optimization problem are directly based on its 

necessary and/or sufficient local optimality conditions, (Andreessen et al., 2005). Different 

definitions for necessary and sufficient optimality conditions may be found in (Fletcher, 

1978). 

1.7.1 The First-Order Necessary Optimality Condition 

Suppose that nf : is in C
1
 on 

n . Then, 
*x  is a local minimum of  f 

 over 0)( *  xfn .  Note that 

n

jjx

xf
xf

1

)(
)(




















  .  

1.7.2 The Second-Order Necessary Optimality Condition 

 Suppose that nf : is in C
2
 on 

n . Then, 
*x  is a local minimum of  f 

(x1,x2,…,xn) 












)5.1()(

.0)(

*2

*

conditoinsatisfymatrixHissiantesemidefinipositiveisxf

xf n

 

1.7.3 The Second-Order Sufficient Optimality Condition 

 Suppose that nf : is in C
2
 on 

n .  Then, 
*x  is a strict local minimum of  f 

(x1,x2,…,xn) 












)4.1()(

.0)(

*2

*

conditoinsatisfymatrixHissiandefinitepositiveisxf

xf n

 

 

1.8 LOCAL MINIMUM 

 Analytically, a local minimizer is a point 
*x  that satisfies the condition )()( * xfxf   

for all x-values such that ,*  xx  where   is some (typically small) positive number 

whose value may depend on 
*x . By optimality conditions, if f(x) is an n-variable function 
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whose gradient and Hessian satisfy g(x*) =0  and  H(x*) is positive semi-definite or positive 

definite as defined in  (1.5) then the point x* is a local minimum of  f(x).  

 

 It is the second of the optimality conditions (1.5) that distinguishes a minimum from 

a maximum (or any other stationary point). It is the second derivative condition in equation 

(1.5) that ensures that f(x*) <  f(x) , for all x in some, possibly small, region around x* 

(Griva et .al., 2009). 

 

1.9 GLOBAL MINIMUM 

 Analytically, a local minimizer is a point 
*x  that satisfies the condition )()( * xfxf   

for all x-values such that .0 *  xx  It is possible for a function to have a local 

minimizer and yet have no global minimizer. It is also possible to have neither global nor 

local minimizers, to have both global and local minimizers, to have multiple global 

minimizers, and various other combinations (Biggs, 2005). Under optimality conditions, for 

some functions f(x) there may be several points 
*x  that satisfy equation (1.5). These are all 

local minima; and the one that gives the least value of  f  will be called the global minimum  

 

1.10 A DESCENT (DOWNHILL) DIRECTION 

 From the current position we wish to find a direction that brings us downhill, a 

descent direction. This means that if we take a small step in that direction we get to a 

position with a smaller function value, (Frandsen,  2004) and (Fletcher, 1987).  Let 

n

k Rx  and .: RRf n   Then the vector 
nRd   is  a descent direction with respect to the 

function  f  at kx  if: 

 “ 
.00)(  k

T

k

T gdxfd
      (1. 5)  
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1.11 RATE OF CONVERGENCE OF OPTIMIZATION METHODS 

 For many optimization methods, the number of operations or steps required to find 

an exact solution will be infinite, so some other measure of efficiency must be used. The rate 

of convergence is one of such measures; it describes how quickly the estimates of the 

solution approach the exact solution. That is the rate of convergence concerned with the 

speed at which various algorithms converge.  

 Let us assume that we have a sequence of points kx converging to a solution 
*x . We 

define the sequence of errors to be .*xxe kk   where kx  is the point reached at the k-th 

iteration and x
*
 is the minimum note that .0lim 


k

k
e  We say that the sequence { kx } 

converges to 
*x  with rate of convergence p and rate constant C  if: 

  .lim

1

C
e

e
p

k

k

k





       (1. 6) 

 If P = 1 and C = 0, the convergence is called superlinear. When P=2, the 

convergence is called quadratic. For optimization algorithms there is one other important 

case, and that is when 1< P < 2. This is another special case of superlinear convergence 

(Griva et. al., 2009).  This case is important because: 

(a) it is qualitatively similar to quadratic convergence for the precision of common 

computer calculations and 

(b) it can be achieved by algorithms that only compute first derivatives, whereas to 

achieve quadratic convergence it is often necessary to compute second derivatives as well.  

 

1.12 UNCONSTRAINED OPTIMIZATION ALGORITHM 

 The outlines of this algorithm can be found in (Andreessen et. al., 2005).  

Step1.  Given ,0

nRx   10   .  

Step2.  Compute the descent direction kd  , say kk gd   
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Step3.  Compute the size k , such that );(min)( 11
0

11 


  kkkkkk dxfdxf 


 

Step4.  Set 11   kkkk dxx  and hence compute )( kxf . 

Step5.  If ,)(  kxf  stop ; otherwise, repeat the above steps.         

 

1.13 STEEPEST DESCENT METHOD 

 It is one of the first and well known method for unconstrained optimization, which 

designed by Cauchy early in 1847, in which the negative gradient direction is used to find a 

local minimizer of a differentiable function. 

 The steepest descent method is one of the simplest and most fundamental 

minimization methods for unconstrained optimization. Since it uses the negative gradient as 

its descent direction, it is also called the gradient method (Wenyu and Yuan, 2006). It's 

direction ;kk gd   suppose that f(x) is continuously differentiable near xk, and for  Taylor 

expansion:  

  
),()()()( kk

T

kk xxogxxxfxf      (1. 8) 

 We know that, if we write ,kk dxx   then the direction dk satisfying 0k

T

k gd  is 

called a descent direction that is such that  f(x)<f(xk). By the Cauchy-Schwartz inequality:  

  
,kkk

T

k gdgd 
       

(1. 9) 

 We have that the value k

T

k gd  is the smallest if and only if kd = kg . The iterative 

scheme of the steepest descent method is as follows: 

  
.11   kkkk gxx 
       

(1. 10) 

1.13.1 Outlines of Steepest Descent Algorithm 

 The outlines of this algorithm can be found in (Wenyu and Yuan, 2006). 

Step1. Let 10    be the termination tolerance. Given an initial point .0

nRx   Set k=0.    
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Step2. If ,kg  stop ; otherwise let kk gd  . 

Step3. Find the step length factor k , such that 

  
);(min)( 11

0
11 


  kkkkkk dxfdxf 


 

Step4. Compute 11   kkkk dxx   

Step5. Set k=k+1, return to Step 2. 

1.13.2 Basic Properties of Steepest Descent Method 

1) The quantity k

T

k dg  is called the directional derivative of  f  at kx  in the direction 

kd . 

2) Analytically, the condition 0k

T

k dg  requires that the directional derivative in the 

direction kd  be negative. 

3) Geometrically, this condition requires that the angle between kd and -gk be less than 

90
0, 

for dk to be a descent direction, (Wenyu and Yuan, 2006). 

1.13.3 The Initial Step Length of Steepest Descent Direction 

 Steepest descent and  CG- methods do not produce well-scaled search directions, it is 

important to use current information about the problem and the algorithm to make the initial 

guess. A popular strategy is to assume that the first-order change in the function at iterate xk 

will be the same as that obtained in the previous step. We therefore have: 

  

,

2

2
1

1

k

k

kk
d

d 



       

(1. 11) 

Next to interpolate a quadratic to the data )(),( 1 kk xfxf  , and k

T

k df)0(' to define 

k  to its minimizer (Nocedal and Wright, 2006). This strategy yields the following: 

  )0('

)(2 1


 

 kk

k

ff
,       (1.12) 
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 It can be shown that if 
*xxk   is super linear, then the ratio in this expression 

converges to one. We find that the unit step length 1k  will eventually always be tried 

and accepted, and the superlinear convergence properties of Newton and quasi-Newton 

methods will be observed.  

 

1.14 NEWTON METHOD 

 A local minimizer x
*
, is sometimes,  approximated well by a quadratic function. 

Thus, methods based on quadratic function models should have a rapid ultimate rate of 

convergence. If first and second derivatives of f(x) are available, a quadratic model of the 

objective function is obtained by taking the first three terms of a truncated  Taylor series 

expansion about the current point xk , i.e., 

  
..)(

2

1
)()(  k

TT

kkk xHssgxfsxf
    

(1. 13) 

Minimizing f yields:  

  )()]([ 1

1

1

2

1 



  kkkk xfxfxx
     (1. 14) 

Which is Newton’s formula. Set   ).(,)(2

kkkk xggxfH   , then (1. 14): 

  ,
1

1 kkkk gHxx


 
       

(1. 15) 

where kkkkk gHxxs 1

1



   is pure Newton direction (Navon and Legler, 1987). 

Newton’s direction is clearly a descent direction because it satisfies 0 kk

T

kk

T

k gHgsg   

if  the matrix Hk  is  positive definite. 

1.14.1 Outlines of Pure Newton Algorithm 

 The outlines of this algorithm can be found in (Wenyu and Yuan, 2006). 

Step1. Given ;0,0,0  kRx n   

Step2. If ,kg  stop; 
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Step3. Solve Hk sk = -gk  for sk. 

Step4. Set xk = xk-1 + sk; 

Step5. .k=k+1, go to Step2. 

 

1.15 EXACT LINE SEARCH 

 A line search chooses 
*  to minimize )()( 11   kk dxf  , that is if  we find 

* such that the objective function in the direction dk is minimized, i.e., 

);(min)( 11
0

11 


  kkkkkk dxfdxf 


. Such a line search is called an exact line search or 

an optimal line search or perfect line search, and k  is called optimal step size, (Fletcher, 

1987). Also, we say that an optimization algorithm has an exact line search (ELS), if and 

only if:   

  01 i

T

i dg , for i=1,2,3,…      (1. 16) 

 An exact line search gives the greatest possible reduction in the objective function (f) 

along the search direction. However, as we shall see in, it may be computationally expensive 

to do an accurate minimization of )(  on every iteration.  

 

1.16 INEXACT LINE SEARCH 

 If we choose k  such that the objective function has an acceptable descent amount 

i.e., such that the descent 0)()( 11   kkkk dxfxf   is acceptable to the users, or it is one 

that accepts any value of k  such that )()( 11 kkkk xfdxf     is negative and bounded 

away from zero. Such a line search is  called an  inexact line search  (ILS), an approximate 

line search, an acceptable line search, or a weak line search. Hence weak (inexact) searches 

are often preferred in practice. (Biggs, 2005).      
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1.17 A LINE SEARCH METHOD 

 Another important issue related to the performance of conjugate gradient methods is 

the line search, which requires sufficient accuracy to ensure that the search directions yield 

descent. A common criterion for line search accuracy is the Wolfe conditions (Wolfe, 1969): 

  ,)()( 11111   k

T

kkkkkk dgxfdxf 
    (1. 17) 

  ,1121   k

T

k

T

k dgdg         (1. 18) 

where .10 11    In the “strong Wolfe” conditions, (1.18)  is replaced by 

.1121   k

T

kk

T

k dgdg   The strong Wolfe conditions may not yield a direction of descent 

unless 21 . Inequality given in (1.17) is sometimes called the Armijo condition (Hager 

and Zhang, 2005). 

 

1.18 CONVERGENCE OF NEWTON’S METHOD 

 Let 
2Cf   and xk be close enough to solution x

*
 of the minimization problem with 

g(x
*
)=0. If the Hessian H(x

*
) is positive definite and H(x) satisfies Lipschitz condition:  

  ,)()( yxyHxH ijij    for some    for all i,j   (1. 19) 

Hij is the (i,j)-element of H(x), then for all k values, Newton’s iteration equation (1.14) is 

well-defined; the generated sequence {xk} converges to x
*
 with a quadratic rate where 

Newton’s iteration with a line search is as follows: 

  
,1

kkk gHd 
        

(1. 20) 

Proof   ( see Fletcher, 1987). 

 

1.19 OUTLINES OF NEWTON'S METHOD WITH LINE SEARCH 

 The outlines of this algorithm can be found in (Wenyu and Yuan, 2006). 

Step1. Initial step: Given ;0,0,0  kRx n   
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Step2. Compute gk. If ,kg  stop and out put xk; otherwise continue 

Step3. Solve Hk sk = -gk  for sk. 

Step4. Line search step: Find k  such that: );(min)( 11
0

11 


  kkkkkk dxfdxf 


 

Step5. Set 11   kkkk dxx  , k=k+1 , go to Step2.   

 

1.20 LAYOUT OF THE THESIS 

 The rest of the thesis is organized as follows: In the second chapter a literature 

review on CG-methods sheds light on the different types of CG-algorithms that have been 

used to solve our selected set of  55-test problems. In the third chapter, we have described 

different types of spectral CG-methods with their outlines which are used in our thesis, 

especially those that are used in our comparisons theoretically and numerically.  In chapter 

four, we have  produced a new spectral CG algorithms with both theoretical and 

experimental implementation and properties. The fifth chapter, provides our practical 

implementation for solving  our complicated set of nonlinear test problems. This chapter,  is 

very important because it compares our numerical results with the previously published 

works, taking into consideration the different data sets used by the  previous researches and 

also partial results in some recent research papers and it could be used as reference for later 

papers in the future.  The last chapter - chapter six - discusses the  concluding results of this 

thesis, some limitations and future works; what are the positive results we  have achieved, 

what could be better, and all the weakness that may be found in our work and all possible 

improvements in the future which will be good starts for new researches. 
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CHAPTER 2 

 

 

LITERATURE REVIEW  

 

 

 

2.1 INTRODUCTION 

 The development of modern numerical descent methods for unconstrained  nonlinear 

optimization has been taking place over the last fifty years ago and considerable progress 

has been made. We now have good methods for many classes of problems and many 

insights into why these methods are successful. There is a wealth of literature available, 

nevertheless there is a number of open questions of interest and new ideas continue to enrich 

the field. It is turns out that most, if not all optimization algorithms are based on the idea of 

iterative descent. The method generates a sequence of points each of which is calculated 

based on the one preceding it and as each new point is generated by the method, the 

corresponding value of some function decreases as illustrated in the gradient descent 

method. Of course we would like the sequence of points generated by the algorithm to 

converge to either a global  or a local minimum of  )(xf . An even more desirable feature is 

that such a converge occurs in a finite number of steps. One of the most natural and widely, 

some times,  classes of iterative descent algorithm is the class of the so called gradient 

descent methods. 

Let RRf n :  be a continuously differentiable function and try to find the following: 

  
)(min xf

nRx
        (2.1) 

 Consider the unconstrained optimization problem given in equation 2.1.  In general it 

may be too ambitious to find a global minimum of f . Hence we will just look for stationary 

points of  f  i.e. a point  
nRx *

 that satisfies  0)( * xg . To begin, let 
nRx 0  be an 
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initial estimate with 0)( 0 xg . In order to achieve progress we need to proceed in some 

search direction  
n

k Rd    .  For instance we can update the iterates according to:  

 

  
(2.2)                                                             1                  11   kdxx kkkk   

 We know that  ,0
k

  controls how far we proceed in the direction
k

d .  Note that 

equation 2.2 actually defines a family of update rules that are parameterized by the search 

direction 
k

d  and step-sizes k
 . There are  many possibilities in choosing search directions 

and step-sizes in gradient descent methods and it must be said that there is no single choice 

that is superior to others in most situations.  

 

2.2 HISTORY OF CONJUGATE GRADIENT METHODS 

 The work of (Hestenes and Stiefel, 1952) was the beginning of CG-methods. They 

presented an algorithm for solving symmetric, positive definite linear algebraic systems. In 

1964 (Fletcher and Reeves, 1964) extended the domain of the application of CG methods to 

non-linear problems, thus starting the non-linear CG-directions. The main advantages of the 

CG methods are their low memory requirements, its convergence speed and it satisfaction of 

a quadratic termination property in which the method is able to locate the minimizer of 

quadratic function in a finite number of iterations, yet which can be applied iteratively to 

minimizing non-quadratic functions.  

A set of non-zero vectors n)1,2,....,(k   kd  are said to be conjugate relative to a given 

positive definite matrix G if: 

  
                                    0   jidGd j

T

i 
   (2.3) 

 Hence,  CG-method is Conjugate Direction (CD) method, which generates such 

directions when applied to a quadratic function with Hessian G. It's readily shown in this 

case that the CD methods terminates in at most n  iterations if exact line search are used 

(Fletcher, 1987). 
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 An excellent survey of development of different versions of non-linear CG methods, 

is presented by (Hager and Zhang, 2006). This family of algorithms includes a lot of 

variants with important convergence properties and numerical efficiency. For solving the 

non-linear unconstrained optimization problem (2.2), a CG-method generates a sequence 

according to (2.2) and the directions k
d  are generated as:  

  1  kkkk dgd 
  

1k      (2.4) 

 Therefore, various choices of the scalar k  (known as the conjugacy parameter) 

exists which give different performances on non-quadratic functions, yet are equivalent for 

quadratic functions. The line search in the CG algorithms often  based on the standard or 

strong Wolfe conditions that are needed to ensure convergence and to enhance stability 

(Andrei, 2007a). According to the formula for k  computation the conjugate gradient 

algorithms can be classified as follows: 

 

2.3 CLASSICAL CONJUGATE GRADIENT METHODS 

 These algorithms are defined by (2.2) and (2.4) where the parameter k  is 

computed, as in one of the following manners. 

 

   (2.6)                
 

 
                (2.5)                  

 

 

1111 


k

T

k

k

T

kDY

k

T

k

k

T

kFR

yd

gg

gg

gg
  

(2.8)                   
 

              (2.7)                
 

   
11

1HS

11 









k

T

k

k

T

k

k

T

k

k

T

kCD

yd

yg

dg

gg
  

(2.10)                  
 

             (2.9)                    
 

 
11

1LS

11

11  



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 
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T
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k

k

T

k

k

T
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dg

yg

gg

yg
  
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 Observe that these algorithms can be classified as algorithms with k

T

k gg  in the 

numerator of 
k

  and algorithms with 1k

T

k yg  in the numerator of parameter
k

  where 

ky =
kg - 1kg . 

 The first CG algorithm 2.5 was introduced by (Fletcher and Reeves, 1964), for non-

linear functions. Equation 2.6   was proposed by (Dai and Yuan, 1999) and equation 2.7 was 

introduced by (Fletcher, 1987). On the other hand  equation 2.8 suggested by (Hestenes and 

Stiefel, 1952) and equation 2.9 was developed by (Polak and Ribiere, 1969) while equation 

2.10 was derived by (Liu and Story, 1991). However, HS, PR and LS methods automatically 

adjust k
  to avoid jamming and their performances are better than the performance of CG 

methods with k

T

k gg  in the numerator of  k
  (Dai and Yuan,  2001). 

 

2.4 HYBRID CONJUGATE GRADIENT METHODS 

 There are two classes of hybrid algorithms. The first class computes k
  in (2.4), by 

one of the following manners:  

  
     } },{  min,{    max HS Dy

kk

Dy

k

HDY C  
   (2.11) 

or  

  
FR

k

PR

k

PR

k
 0        

 

HTS

k  
wiseotherFR

k         
       

)12.2(
 

 

  where 
HDY

k
  is due to (Dai and Yuan, 2001) and 

HTS

k  was proposed by (Touti-Ahmed  

and Story, 1990). 

 Another class of hybrid algorithms, involves with more recently established convex 

combinations of CG-algorithms with k

T

k gg  in the numerator of  k
  and algorithms having 

1k

T

k yg  in the numerator of k
 . For reference we list some of this type of k

 : 
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k gggggsgy

gggyysgy
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   (2.14) 

where CC  with 
k

  is defined in equation 2.14 and introduced by (Andrei,  2007b; 2009b). 

 

2.5 SCALED CONJUGATE GRADIENT METHODS 

 This  class involves CG-algorithms that generates the sequence k
x

 according to 

(2.2) and defines the  new search directions as follows:  

  
          1 kkkkk dgd       (2.15) 

where k
  is a parameter. The first iteration is initialized with an initial point 1x  and 

.11 gd   Observe that if 1
k

 , then we get the classical CG-algorithms according to the 

value of k
 . On the other hand, if 0

k
  then we get another class of algorithms according 

to the selection of the parameter k
 . considering 0

k
  there are two possibilities for k

  

a positive scalar or positive definite matrix. If 1
k

  then we have SD-algorithms. If 

,1
kk

G  or an approximation of it, then we get Newton-algorithm.  

 Therefore, we see that in the general case, when 
0

k


 and 
,0

k


 in equation 

2.15, it represents a combination between the QN and CG methods. However if k
  is a 

matrix , we are better of using  kkk
gd    since the addition of the term kk

d  in 

equation 2.15 may prevent the direction k
d  from being a descent direction unless the line 

search is  sufficiently accurate. Therefore in the scaled CG,  k
   is considered as a positive 

scalar. 

The first SCG method computes  k
   in (2.15) as follows : 
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k
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kkkk
k

yd

gsy
       (2.16) 

which is called a scaled Perry CG introduced by (Birgin and Martinez, 2001). Other scaled 

CG methods are introduced by (Andrei, 2007c). 

          (2.18)                             (2.17)                        
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where 

  11

11




k

T

k

k

T

k

k
ys

ss
         (2.19) 

 

2.6 MODIFIED CONJUGATE GRADIENT METHODS 

 All modified CG-methods are designed to improve the performance of the classical 

CG-methods using the idea of modification of classical CG-methods in order to satisfy the 

sufficient descent condition. The most famous algorithms in this class are given  by 

equations 2.2 and 2.4, where k
  is computed (for example) as one of the following 

methods: 
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(2.21)   

or   
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where       21 AA and  are introduced by (Andrei, 2009a) and equation 2.22 is suggested by 

(Shanno, 1978). For other methods in this class see (Hager and Zhang, 2005). 

 

2.7 PARAMETRIC CONJUGATE GRADIENT METHODS 

 The parametric CG methods have been introduced in the same way that the QN 

methods have been combined to get the Broyden or Huang families. These algorithms are 

defined by equations  2.2 and 2.4 where the parameter k  is computed (for example) as 

follows:  

  

 

11

11

 

    
 







kk

kkk
k ys

styg
T

T

  ,     0  t  constant    (2.23) 

 introduced by (Dai and Liao, 2001).  

or 

  

[0,1]    , 

 

 
11)1(

2


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
 k

T

k yd
k

k

k
g

g

    

(2.24) 

(Dai and Yuan, 2001). Other forms of this type of methods can be found in (Zhang et. al., 

1999) and (Nazareth, 1999). Usually CG methods are implemented with restart since the rate 

of convergence of the algorithm is only linear unless the iterative procedure is occasionally 

restarted occasionally. It is typical to restart at every )1(     norn  iterations, but this is not 

satisfactory since n  is large, therefore other restarts are used such as the Powell restart 

(Powell, 1977) defined as follows:  

  k

T

kk

T

k gggg 2.01         (2.25) 

 

2.8 CONVERGENCE OF LINE SEARCH DESCENT METHODS 

 To ensure that an algorithm converges to a point x  where 0)( xg  , we need not 

only well-chosen step lengths but also well-chosen search directions k
d . We focus in this 
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section, on a key parameter. The angle k
  between k

d  and the SD direction k
g  is 

defined by:  

  
      cos 1111   kkkk

T

k dggd       (2.26) 

Zoutendijk theorem analyses the convergence properties of the various descent methods. 

 

2.9 ZOUTENDIJK THEOREM 

 Consider any iteration of the from equation 2.2 where: 

(i)    k
d  is descent direction.  

(ii)   k
  satisfies Wolfe conditions 1.17 and 1.18 

(iii)  f  is bounded below in 
nR   

(iv)  The gradient g  is Lipschitz continuous in an open set N  containing the  level set 

)}()(:{
1

xfxfx   where 1
x  is the starting point i.e.  there exists a constant L  such 

that: 

       ,                        )()( NyxyxLygxg    (2.27) 

Then 

                cos
2

1



kk

k

g      (2.28) 

Proof.  (see Zoutendijk, 1970) 

 

2.10 APPLICATION AREA 

 The word optimization means selecting the best value (the optimal solution) from a 

range of choices (local solutions). Optimization is an important tool in many fields of the 

life, such as;  management and engineering sciences,  mathematics of finance and in 

physical mathematics. Hence, it is central to any problem involving engineering, 
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mathematics and computer science,  and any subject related to the computational 

mathematics. (Andreessen et al., 2005). The procedure consists of first identifying some  

non-linear models for the a non-linear objective or  a quantitative measure of the 

performance of the system under study for some examples of the profit from an investment 

or the potential energy of a physical system and the objective depends on certain 

characteristics of the system, the variables or the unknown (which is under control). Our aim 

in this thesis is to find values of the variables that minimize some complicated non-linear 

objective functions, the variables are restricted or constrained in some ways. This must be 

done after designing the non-linear model for the selected model. Once the physical or 

financial description of the non-linear optimization problem has been translated into the 

mathematical notation of a mathematical model, then  the optimization algorithm can be 

used to find the optimal solution for this complicated test problem. In general, for all but the 

simplest problems, an exact solution cannot be calculated directly. Instead, a suitable CG- or 

SCG-algorithm must be chosen which will approximate the solution as closely as required. 

Often a set of optimality conditions can be applied to the final values returned by the 

algorithm to check that they yield a solution to the problem.



 

23 
 

CHAPTER 3 

 

 

SPECTRAL CONJUGATE GRADIENT METHODS 

 

 

 

3.1 INTRODUCTION 

 Our aim in this chapter is to study the performance of different  recent spectral CG-

methods (SCG) proposed by different authors with the outlines of their algorithms suitable 

for  solving  nonlinear unconstrained optimization problems with  or without different 

restarting criteria and with appropriate conditions. 

 

3.2 SCG-Method of Raydan  (1997) 

 A  new class of  SCG-algorithms was established by  Raydan (1997), for solving 

large-scale optimization problems. The main property of this method (Algorithm R) is that 

only gradient directions are used at each iteration. The first idea was started by Barzilai and 

Borwein (1988). Birgin and his friends (2000) discussed the effect of  SCG-methods based 

on spectral projected gradient methods on convex sets.  In addition,  this method 

outperforms standard CG-method in many problems. Birgin and Martinez  (2001)   proposed 

three kinds of spectral CG-methods. The search direction kd  is given by the following way:  

  1 k

R

kk

R

k

R

k dgd 
       

 (3.1) 

 where the parameter k  is computed in the following way: 
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respectively, and 
R

k  is taken to be the spectral gradient parameter and computed by the 

following: 

  
11

11




k

T

k

k

T

kR

k
ys

ss
         (3.3) 

3.2.1  Algorithm R 

Step 1:  Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

              set 00 gd   for 0k . 

Step 2:  Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3:  Compute kg  ; if  kg ,  then stop ; otherwise continue. 

Step 4:  If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

             do a restart step by 0g  direction; otherwise continue. 

Step 5: Compute the parameter 
R

k   from equation 3.3.  

Step 6: Compute  the parameter k from one of the forms given in equation 3.2. 

Step 7: Compute the new search direction from equation 3.1. 

Step 8: Set k=k+1 and go to Step 2. 

 The search direction kd  computed by Step 6 can fail to be a descent direction. This 

fact motivated several modifications. One of them suggested by Raydan is to  “restart” the 

algorithm with the spectral gradient direction. For more details and comparisons see 

(Yu,et.al., 2008). 

 

3.3 SCG-METHOD  OF AL-BAYATI AND ABDULLAH  (2008) 

 A new family of  SCG–methods for solving large-scale unconstrained optimization 

problems was introduced by Al-Bayati and Abdullah  (2008) using both spectral  and scaling 
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properties for their search directions, which is a generalization of Algorithm R. They 

implemented two modifications in their method (Algorithm BA), one using Raydan line 

search, and in the other, they modified the standard Wolfe line search subroutine. 

3.3.1  Algorithm BA   

Step 1:  Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

              set 00 gd   for 0k . 

Step 2:  Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3:  Compute kg  ; if  kg ,  then stop ; otherwise continue. 

Step 4:  If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

             do a restart step by 0g  direction; otherwise continue. 

Step 5: Compute the parameter BA

k :  0001.0,
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Step 6: Compute the parameter: 
11 


k
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k
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kCD

k
dg

gg
    

Step 7: Compute the new search direction: 1 k

BA

kk

BA

kk dgd   

Step 8: Set k=k+1 and go to Step 2. 

 

3.4 SCG-METHOD OF AL-BAYATI AND HASSAN (2011) 

 In this work,  another family of  SCG–methods for solving large-scale unconstrained 

optimization problems was introduced by Al-Bayati and Hassan (2011). The search 

directions of the new SCG method (Algorithm BH) are always of sufficient descent.  They 

have proven the global convergence property of the proposed method. Finally, they have 

presented some numerical results to examine the efficiency of  their SCG- method.  
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3.4.1  Algorithm BH   

Step 1:  Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

              set 00 gd   for 0k , 1.1 . 

Step 2:  Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3:  Compute kg  ; if  kg ,  then stop ; otherwise continue. 

Step 4:  If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

               do a restart step by 0g  direction; otherwise continue 

Step 5:  Set 
11 


k

T

k

k

T

kCD

k
dg

gg
  

Step 6:  Compute the parameter .
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Step 7: Compute the new search direction: 1 k

CD

kk

BH

kk dgd   

Step 8: Set k=k+1 and go to Step 2.  

 

3.5 SCG-METHOD  OF LIU AND JIANG ( 2012) 

 Liu and Jiang  in 2012 did a minor modification to the CD-method  in such away that 

the  search directions generated are always descent directions. For any line search, their new 

method satisfies the sufficient descent condition. For more details see (Liu and Jiang, 2012).  

 Moreover, the authors proved that their  method (Algorithm LJ) was globally 

convergent under the strong Wolfe line search. Their numerical results show that their 

spectral method was more effective for their selected test problems taken from the CUTE  

library. The search direction kd  is defined  by:  



27 
 

 

  












 2,

1,

1 kifdg

kifg
d

kkkk

k

k


     (3.4) 

where k  is specified by the following 
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3.5.1  Algorithm LJ 

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

              set 00 gd   for 0k  

Step 2: Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3: Compute kg  ; if  kg ,  then stop ; otherwise continue 

Step 4: If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

             do a restart step by 0g  direction; otherwise continue. 

Step 5: Compute the parameters 
LJ

k , LJ

k from equations 3.6 and 3.5 respectively 

Step 6: Compute the  new search direction from equation 3.4 

Step 7: Set k=k+1 and go to Step 2 

 

3.6 SCG-METHOD  OF LIU, DU AND WANG  (2012) 

 Liu, Du and Wang  (2012)  proposed a mixed spectral CD-DY method for solving 

unconstrained optimization problems. Their proposed method (Algorithm LDW) generates 

descent directions and satisfies the global convergence property at each iteration. Their 
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numerical results show that their  SCG-method is efficient when compared against the 

others. The new search directions are defined as follows: 
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 Under certain conditions, they proved the global convergence of their mixed spectral 

CD-DY,  CG-method with the Wolfe line search. For more details see (Liu, et. al., 2014) 

and (Zhang,  et. al., 2009 ). 

 Recently, Liu and Zeng (2015),  proposed a new SCG-method to solve unconstrained 

optimization problems. Their algorithm has the following properties: (1) Their method 

satisfies the sufficient descent condition with any line searches condition; (2) their method 

possesses inherent properties when 0k ; (3) under the strong Wolfe line search their 

method was globally convergent. Preliminary numerical results show that their method was 

very efficient. 

3.6.1  Algorithm LDW   

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

              set 00 gd   for 0k  

Step 2: Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3: Compute kg  ; if  kg ,  then stop ; otherwise continue 

Step 4: If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  
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 do a restart step by 0g  direction; otherwise continue 

Step 5: Compute the parameters 
LDW

k  and 
LDW

k  from equations 3.9 and 3.10  

Step 6: Compute the parameter LDW

k  from equation 3.8 

Step 7: Compute the new search direction from equation 3.7 

Step 8: Set k=k+1 and go to Step 2 

 

3.7 SCG-METHOD  OF LIVIERIS AND PINTELAS (2012) 

 Livieris and Pintelas (2012) proposed a new class of  SCG-methods (Algorithm LP) 

that ensures sufficient descent  directions independent of the accuracy of the line search and 

the global convergence property for general functions is established provided that the line 

search  procedure satisfies the Wolfe conditions. Their numerical trials indicate that their 

proposed method is superior to the classical CG-methods. The search direction is defined 

by: 
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3.7.1  Algorithm LP 

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

 set 00 gd 
 for 

0k
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Step 2: Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3: Compute kg  ; if  kg ,  then stop ; otherwise continue 

Step 4: Compute the new search direction from equations 3.11 and 3.12 

Step 5: Set k=k+1 and go to Step 2 

 

3.8 SCG-METHOD  OF AL-BAYATI AND AL-KHAYAT (2013) 

 Recently, a new spectral CG-methods was proposed by Al-Bayati and Al-Khayat 

(2013)  in this field. They tried to construct a descent direction:   

  1 k

CD

kk

BK

kk dgd 
      (3.13) 

  
11

2




k

T

k

kCD

k
dg

g


       (3.14)  

  11

2

11

11

11







 

k

T

kk

k

T

kk

T

k

k

T

k

k

T

kBK

k

gdg

gggd

gd

yd


     (3.15)  

 This spectral CG-method  (Algorithm BK) is  reduced to the standard CD-method if 

the line search is exact. But generally the authors prefer to use the  inexact line search (ILS), 

i.e., Wolfe line search. They have reported the performance of their SCG methods on a set 

of  selected test problems.  

 In order to assess the reliability of their proposed method, they have tested their 

algorithm against standard (CD; FR and  modified FR) methods using the same test 

problems. 

3.8.1  Algorithm BK 

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

 set 00 gd 
 for 

0k
 

Step 2:  Compute k  satisfying Wolfe conditions  1.17 and 1.18. 
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Step 3: If  (
510


kg or kk

T

kk fdg 1010 ) is satisfied then stop; otherwise continue 

Step 4: If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

 do a restart step by 0g
 direction; otherwise continue 

Step 5: Compute 
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Step 6: Compute  
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Step 7: Compute  1 k

CD

kk

BK

kk dgd   . 

Step 8: Set k=k+1 and go to Step 2 

 

3.9 SCG-METHOD  OF GHANBARI,  AHMAD, ALIAS AND ASKARIPOUR (2013)  

 A new nonlinear SCG-method for solving optimization problems was proposed by 

the Ghanbari and his friends (2013). Their method (Algorithm GAAA) is based on a mixed 

spectral  Hestenes and Stiefel  CG-method, which combines the advantages of the SHS-

method, and the CD-method. The directions generated by the method are descent directions 

for the objective function. They have proven that their SCG-method with an Armijo-type 

line search was globally convergent. Numerical results show that their proposed method was 

promising. 

3.9.1  Algorithm GAAA 

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

 set 00 gd 
 for 

0k
 

Step 2:  Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3:  If  ( kg ) is satisfied then stop; otherwise continue 
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Step 4:  If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

 do a restart step by 0g
 direction; otherwise continue 

Step 5: Compute    
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Step 7: Compute  1 k

GAAA
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kk dgd   

Step 8: Set k=k+1 and go to Step 2 

 

3.10  SCG-METHOD  OF  SUN AND LIU (2013)  

 SUN  and LIU (2013),  proposed a new spectral CG-algorithm combining the 

advantage of spectral-gradient method, a SCG-method for the global optimization was 

presented. Their method  (Algorithm SL) has the property that the generated search direction 

is sufficiently descending without utilizing the  used line search. Their numerical 

experiments show that their method was efficient and feasible. 

3.10.1 Algorithm SL 

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

 set 00 gd 
 for 

0k
 

Step 2:  Compute k  satisfying Wolfe conditions  1.17 and 1.18. 

Step 3:  If  ( kg ) is satisfied then stop; otherwise continue 

Step 4:  If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then  

 do a restart step by 0g
 direction; otherwise continue 
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Step 5: Compute    
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Step 6: Compute   
4

1

2

1 /)(  kk

T

k

SL

k ggg  

Step 7: Compute  1 k

SL
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SL

kk dgd   

Step 8: Set k=k+1 and go to Step 2 

 

3.11  SCG-METHOD  OF LIU, ZHANG AND XU  (2014) 

 Recently, a new SCG method (Algorithm LZX)   used to prove the global 

convergence of the nonlinear CG-methods, the spectral method, was proposed by (Liu et al., 

2014) and it is applied with sufficiently descending property. Under standard Wolfe line 

searches, the global convergence of their SCG algorithm has been proven for non-convex 

functions. They demonstrated their algorithms using 72 unconstrained problems. The search 

directions of their method are defined by:  
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C,  is a small positive number 

 

  





 






otherwised

dgifdy

kk

kkkk

T

k
LZX

k

,
2

1

2

1

2

111






   (3.17) 

3.11.1 Algorithm LZX 

Step 1: Take nRx 0  and the parameter 10   . Compute )( 0xf  and  

 set 00 gd 
 for 

0k
 

Step 2: Compute k  satisfying Wolfe conditions  1.17 and 1.18. 
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Step 3: Compute kg  ; if  kg ,  then stop ; otherwise continue 

Step 4: Compute the new search direction from equations 3.16 and 3.17 

Step 5: Set k=k+1 and go to Step 2. 
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CHAPTER 4 

 

 

A FAST SPECTRAL CG-METHOD 

 

 

 

4.1 INTRODUCTION 

 Now, here we are concerned with the CG-methods for solving unconstrained  

nonlinear optimization problems. We know that the direction generated by a CG-method 

may not be a descent direction for certain objective function. Therefore, we are going to do 

some modifications to the  standard CD-method such that the direction generated by the 

proposed Fast SCG-method  hopefully provides descent directions for any objective 

function. In addition, the proposed fast SCG-method reduces to the standard CD-method if 

the line search is exact. We call the newly proposed SCG method as Fast SCG method. 

Under certain conditions, here, we are going to prove that the proposed Fast SCG-method 

with a strong Wolfe line search is globally convergent even if the objective function is non 

convex. We are also going to present some numerical results to prove the efficiency of the 

proposed Fast SCG-method. 

 

4.2 THE FAST SCG-METHOD   

 In this section we have, first, to investigate how to determine sufficiently decreasing 

descent directions of any general objective function. Now, let kx  be the current iterate and 

let kd  be defined by: 

    

,1 k

CD

kk
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New

k dgd 
      (4.3)

 

where, CD

k  is defined by equation 2.7 with the following fast spectral parameter defined in 

equation 4.2  which is a combination of new gradient and old gradient and old search 
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directions. The main advantages for the this type of search direction are  employing the 

descent and conjugacy properties, therefore  using  these   two different types of 

theoretical properties in the above new search direction yields the unknown parameter k  . 
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(4.2) 

 This is the proposed fast SCG-method designed for solving  a number of some 

complicated nonlinear unconstrained optimization problems which is reduced to the 

standard CD-method if the line search is exact. Here,  we use Wolfe's inexact line search to 

get better results. We have to first prove that kd  is a sufficiently descending direction. 

 

4.3 LEMMA (DOWNHILL DIRECTION) 

 Suppose that 
New

kd   which is defined by equations 4.1 and 4.2 is used with the 

parameter k  of the strong Wolfe conditions defined in equations 1.17 and 1.18 

respectively, with 5.0k . Then:                                            

  k
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kk

T

k ggcdg 1
       (4.3) 

holds  for any 0k  

Proof 

 For initial  k , we have the following: 
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000 ggdT 
        (4.4) 

For the second step, suppose that the condition 4.3 is true for all values of k-1; i.e.   

  

2

111   kk

T

k ggd
      (4.5) 
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Using induction scheme,  condition 4.3 must be true for all values of k, i.e. 

  1
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      (4.6) 

From equations 4.1 and 4.2, it is follows that: 
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Now,  from equation 1.18, we have the following: 
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Therefore,  using equations 4.9; 4.8 becomes: 
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From equation 4.5 we have: 
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Hence: 
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this implies: 
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  02/1  c

     (4.13) 

Hence, the Lemma is true.  

From Lemma 4.3, and for the new descent directions of the proposed fast CG-method, 

using exact line searches, we have:   
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and the proposed Fast  SCG-method is reduced to the standard CD-method. Next, for the 

Fast SCG-algorithm defined by equations 4.1-4.2, and with inexact line search, we are going 

to study the effect of the modified line search. 

 

4.4 A MODIFIED LINE SEARCH PROCESS 

 This modified type line search scheme was originally established by  (Andrei, 

2009b). In  this accelerating process, the new estimation of the minimum point is computed 

as follows: 

)15.4(11   kkkkk dxx 

 

Let: 

                          kkk dxz  , )(, zfgggy zzkk  . 
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Compute:                 k

T

kkkk

T

kkk dybdga   , ,                                                   (4.16) 

If   0kb , then   compute,  
k

k
k

b

a
    and use (4.15); otherwise update  

11   kkkk dxx  . 

 Hence,  using the above acceleration scheme algorithm defined by equations 4.15 

and 4.16   in equation 4.1:  

 

4.5 ALGORITHM FAST SCG 

 Below are the outlines of the proposed fast SCG-method: 

Step 1:  Take nRx 0  ; set the parameters 10     

             Compute
 

)( 0xf  and )( 00 xfg 
; 

 set 00 gd   for 0k  

Step 2: Compute k  satisfying Wolfe conditions 1.17 and 1.18 

             Compute  kkk dxz  , )(, zfgggy zzkk  . 

             Compute,  k

T

kkkk

T

kkk dybdga   , ,  if  0kb  compute,  
k

k
k

b

a
     

            Update 11   kkkkk dxx  ;  otherwise use 11   kkkk dxx   

Step 3: If  
kg

  
or number of iterations (NOI) exceeds 1000, then 

             the iterations are stopped,
 
  is a small positive number, and

 
1.ooooo  

Step 4: If the restarting criterion  k

T

kk

T

k gggg 2.01   is satisfied then 

             do a restart step by negative gradient direction; otherwise continue 

Step 5: Compute the parameters: 
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Step 6:  Compute the new spectral search direction   
 
 

  1 k

CD

kk

New

kk dgd 
 

Step 7: Set k=k+1 and go to Step 2. 

 It is well known that, if   the  nonlinear objective function is bounded along the 

direction dk , then α k satisfies the Wolfe line search conditions 1.18.  

 In our proposed fast SCG-algorithm, when the Powell restarting condition defined by 

(2.25) is satisfied, then we restart the algorithm with the negative gradient. Hence, 

conditions 1.18 and 2.25 are sufficient to prove the global convergence of the new proposed 

SCG-algorithm. 

 

4.6 SPEED OF CONVERGENCE OF FAST SCG METHOD 

 To study the  speed of convergence of the proposed fast SCG-method  defined by 

equations 4.1-4.2. we first state the following common and general assumptions, that will be 

used in the proof of  the convergence  of any CG-method. 

4.6.1  Assumptions 

(i) The level set )}()(,:{ 1xfxfRxxS n  , which satisfies the descent property, is 

bounded below, where 1x  is the starting point. 

(ii) In a neighborhood  Ω  of  the level set S, the objective function  f , is continuously 

differentiable and its gradient g is Lipschitz continuously; namely, there exists a constant 

0L such that: 

  
 kkk xx, ||,xx -||L  ||)g(x  -g(x)||

   (4.17)    
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From Assumption (4.6.1., i) there exists a positive constant D  such that: 

  },,max{ SxxxxD kk       (4.18) 

 where D is the diameter of  the neighborhood Ω.  

From Assumption (4.6.1., ii), there exists a constant 0 , such that: 

  
Sxxg  ,)(

       (4.19) 

 

4.7 A NEW THEOREM ON CONVERGENCE OF FAST SCG METHOD 

 Suppose that the proposed fast SCG-algorithm which is defined by equations 4.1 and 

4.2 satisfies both strong Wolfe line search conditions 1.18 and the assumptions  of section 

(4.6.1), for both parts (i) and (ii) , with    
5.0k   , then it yields: 
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       (4.20) 

Proof  

Assume that there exists a positive constant 
o

 such that: 

  

kg
        (4.21) 

then, for all k, from (4.1), it follows that:
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  but the new search direction is defined by   

  1 k
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hence:
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 In the last  equality 4.22,  if we divide both sides of the above by 2)( k

T

k dg , then from 

equations 4.3, 4.17, and 4.22 we obtain:  
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We have, from  equation 4.13  
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Equation  4.24 becomes: 
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 Reformulating the above inequality, yields:                               
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and the mid term of equation 4.26 is always positive followed by negative sign 

 Now, from equation 4.17 and  the definition of the norm of the search direction d:   
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We have: 
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 Therefore, from equations 4.28 and 4.21 we have: 

  
kd

gd

k

k

T

k 


2

2)(

       
(4.29)

 

which indicates: 
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 This is  a contradiction to our assumption in equation 4.20.  

 Hence the proof of this new theorem is complete and the proposed Fast SCG has a 

global convergence property. 
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CHAPTER 5 

 

 

EXPERIMENTAL  RESULTS 

 

 

 

5.1 INTRODUCTION 

 The main work of this section is to report the performance of the proposed Fast 

SCG on a set of  55-complicated nonlinear unconstrained test problems. The  original codes 

were written by (Andrei, 2008) in the FORTRAN language and in double precision 

arithmetic and modified in this work to make it suitable to evaluate all algorithms 

considered in this thesis. All the tests were performed on a PC with CPU intel core i7, RAM 

8G, HD Graphics 3000 approximate and total memory: 1696 MB. Our experiments were 

performed on the selected set of  complicated nonlinear unconstrained problems that have 

second derivatives available. These test problems are contributed in CUTE  (Bongartz et al., 

1995) and their details are given in the Appendix. For each test function we have considered 

four different numerical experiments with a number of variables n= 100,400,700 and 1000. 

All these methods terminate when the following stopping  criterion  is met.  

  
510


kg

        (5.1) 

 We also force these routines to be stopped if the number of  iterations (NOI) exceed 

1000 or the number of functions (NOF) reaches 2000 without achieving the minimum. In all 

these tables (n) indicates as a dimension of the problem; (NOI) number of iterations; and 

(NOF) number of function evaluations. 
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5.2 NUMERICAL RESULTS 

 In Table 5.1 we assess the reliability of the standard CD-method, against the 

standard (FR and PR) classical CG-methods using standard Wolfe conditions as a line 

search subroutine and using the same group of our test problems. 

 In Table 5.2 we have compared the percentage performance of the standard CD-

method against (FR and PR) CG-methods, using the standard Wolfe conditions as a line 

search subroutine. Now, taking over all the tools (NOI and NOF)  as 100% , in order to 

summarize our numerical results, we have concentrated only on a total of four different 

dimensions n= 100, 400,700 and 1000,  for all tools used in these comparisons. 

 In Tables 5.3 we assess the reliability of Fast SCG against some recent spectral CG-

algorithms like (BK and LDW) SCG-methods using both standard and modified Wolfe 

conditions respectively as a line search subroutine and using the same set of test problems.  

 In Table 5.4 we have compared the percentage performance of Fast SCG against  

(BK and LDW) SCG algorithms using both standard and modified Wolfe conditions 

respectively as a line search subroutine. Now, taking over all the tools (NOI and NOF)  as 

100%, in order to summarize our numerical results, we have concentrated only on the total 

of  four different dimensions n= 100, 400,700 and 1000,  for all tools used in these 

comparisons. 

 In Tables 5.5 we assess the reliability of Fast SCG against some other spectral CG-

algorithms like (BH and BA) SCG-methods using both standard and modified Wolfe 

conditions respectively as a line search subroutine and using the same set of test problems.  

 In Table 5.6 we have compared the percentage performance of Fast SCG against  

(BH and BA) SCG algorithms using both standard and modified Wolfe conditions 

respectively as a line search subroutine. Now, taking over all the tools (NOI and NOF) as 

100%, in order to summarize our numerical results, we have concentrated only on the total 

of  four different dimensions n= 100, 400,700 and 1000,  for all tools used in these 

comparisons. 

 In Tables 5.7 we assess the reliability of Fast SCG against all other spectral CG-

algorithms; namely, (LDW, BK,  BH and  BA) SCG-methods using both standard and 
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modified Wolfe condition respectively s as a line search subroutine and using the same set 

of test problems. 

 In Table 5.8, we have compared the percentage performance of Fast SCG against 

(LDW, BK,  BH and  BA) SCG algorithms. Now, taking over all the time tool CPU as 

100%, in order to summarize our numerical results, we have concentrated only on the total 

of  four different dimensions n= 100, 400,700 and 1000,  for all tools used in these 

comparisons. 

 In Table 5.9,  we have compared the percentage performance of Fast SCG against 

both standard and spectral CG-algorithms mentioned in this thesis; namely  ( CD,  FR,  PR, 

LDW, BK,  BH and  BA) algorithms. Now, taking over all the  tool NOI as 100%, in order 

to summarize our numerical results, we have concentrated only on the total of  four different 

dimensions n= 100, 400,700 and 1000,  for all tools used in these comparisons. 

 In Table 5.10,  we have compared the percentage performance of Fast SCG against 

both standard and spectral CG-algorithms mentioned in this thesis; namely  ( CD,  FR,  PR, 

LDW, BK,  BH and  BA) algorithms. Now, taking over all the tool NOF as 100%, in order 

to summarize our numerical results, we have concentrated only on the total of  four different 

dimensions n= 100, 400,700 and 1000,  for all tools used in these comparisons. 

 

Table  5.1 Comparisons between  FR, PR & CD Algorithms 

 

  

PR PR CD 
No. of 

Test 

Functions 

  NOI NOF NOI NOF NOI NOF 

1 235 389 268 470 265 426 

2 23 52 23 52 23 52 

3 47 126 54 129 47 126 

4 53 148 53 148 53 148 

5 72 151 80 163 72 149 

6 17 46 17 46 17 46 

7 26 61 24 59 25 60 

8 29 71 30 73 29 71 
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9 20 55 20 55 20 55 

10 22 58 22 58 22 58 

11 22 50 17 40 22 50 

12 163 329 164 331 163 329 

13 26 95 38 115 26 95 

14 7 25 7 25 7 25 

15 30 90 30 90 30 90 

16 29 59 29 59 29 59 

17 33 73 33 74 33 72 

18 29 78 30 79 29 78 

19 18 33 18 33 18 33 

20 4 12 4 12 4 12 

21 1438 2320 1575 2122 1699 2556 

22 25 69 25 69 25 69 

23 69 200 105 230 68 194 

24 4 12 4 12 4 12 

25 7 16 7 16 7 16 

26 4 8 4 8 4 8 

27 34 59 37 63 34 59 

28 19 65 19 65 19 65 

29 23 54 23 54 23 54 

30 31 52 31 52 31 52 

31 25 54 25 54 25 54 

32 24 48 22 41 24 48 

33 58 135 58 129 58 135 

34 73 151 81 173 75 154 

35 23 59 23 59 23 59 

36 17 46 17 46 17 46 

37 24 36 24 36 24 36 

38 23 62 23 62 23 62 

39 30 60 31 61 30 60 

40 59 138 58 140 55 132 

41 19 55 19 55 19 55 

42 41 95 47 111 41 95 

43 20 44 20 44 20 44 

44 57 134 59 141 57 134 

45 10 35 10 35 10 35 

46 13 43 13 43 13 43 

47 7 27 7 27 7 27 
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48 16 72 16 72 16 72 

49 33 73 33 74 33 72 

50 24 64 24 64 24 64 

51 117 250 118 236 120 266 

52 4 12 4 12 4 12 

53 77 154 74 154 76 153 

54 8 16 8 16 8 16 

5 21 60 21 60 21 60 

TOTAL 3382 6779 3626 6747 3671 7053 

 

 

 

 

 Table 5.2 Running Percentage Performance of CD against FR and PR  

 

 

Tools 

 

 

CD 

 

 

FR 

 

 

PR 

 

 

NOI 

 

 

100% 

 

 

92% 

 

98% 

 

NOF 

 

 

100% 

 

 

96% 

 

95% 

 

 

 Clearly, this table shows that the CD-method is the worse, because it does not 

generate sufficiently descending search directions in general. For this reason many authors 

deal with improving the search direction of this method by implementing spectral CG-

methods (as we will show in the next table). From this table we can conclude that both (FR 

and PR) are very close to each other, while CD needs some an additional necessary 
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conditions to become an effective method. The numerical results of this table indicates that 

FR saves about  8%  NOI  and 4%  NOF to complete solving this set of selected complicated 

nonlinear test problems, while PR saves about 2%  NOI  and 5%  NOF to complete solving 

this set of selected complicated nonlinear test problems. 

 

Table 5.3  Comparisons between   BK, LDW  & Fast SCG   Algorithms 

 

No. of 

Test 

Functions 

BK LDW Fast SCG  

NOI   NOF NOI   NOF NOI NOF 

1 154 332 122 331 48 56 

2 23 52 23 52 24 72 

3 55 148 59 148 39 79 

4 53 148 53 148 26 103 

5 69 135 67 132 69 77 

6 17 46 17 46 14 25 

7 22 53 22 53 24 82 

8 29 71 29 71 32 62 

9 20 55 20 55 18 51 

10 22 58 22 58 9 20 

11 24 51 24 51 15 24 

12 166 333 164 329 72 101 

13 27 105 35 113 8 20 

14 7 25 7 25 7 22 

15 30 90 30 90 29 77 

16 29 59 29 59 27 83 

17 34 76 36 78 20 52 

18 26 72 26 72 24 83 

19 18 33 18 33 14 38 

20 4 12 4 12 8 16 

21 1113 2017 1158 2058 85 132 

22 24 67 24 67 27 45 

23 59 173 76 205 22 39 

24 4 12 4 12 5 19 

25 7 16 7 16 7 17 

26 4 8 4 8 16 47 

27 27 52 27 46 42 93 

28 19 65 19 65 14 45 

29 23 54 23 54 16 26 
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30 31 52 31 52 22 33 

31 25 54 25 54 23 34 

32 23 46 24 48 25 36 

33 56 124 55 123 35 46 

34 78 167 79 164 62 96 

35 23 59 23 59 18 53 

36 17 46 17 46 14 25 

37 28 44 28 44 28 40 

38 23 62 23 62 30 62 

39 29 57 29 57 23 58 

40 60 138 58 134 27 92 

41 19 55 19 55 16 26 

42 44 98 43 99 36 62 

43 20 44 20 44 8 20 

44 62 142 64 149 34 45 

45 10 35 10 35 18 26 

46 13 43 13 43 11 44 

47 7 27 7 27 11 19 

48 16 72 16 72 10 22 

49 34 76 36 78 22 48 

50 24 65 24 65 22 41 

51 95 219 99 222 74 170 

52 4 12 4 12 4 16 

53 73 146 76 158 75 120 

54 8 16 8 16 8 20 

55 21 60 21 60 15 27 

Total 2952 6377 3001 6465 1432 2887 
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Table 5.4 Running Percentage Performance of  Fast SCG against  BK and LDW  

 

Tools LDW 

 

BK 

 

Fast SCG 

 

NOI 100% 

 

98% 47% 

NOF 100% 

 

98% 44% 

 

 

 The numerical results of this table indicates that the Fast SCG  algorithm saves 

about 53%  NOI  and 56%  NOF compared with the  LDW-algorithm  and  about 51%  NOI 

and 54%  NOF against the spectral BK-algorithm to complete solving the set of selected 

complicated nonlinear test problems.  

 

Table 5.5 Comparisons between   BA, BH  & Fast SCG  Algorithms 

 

No. of Test 

Functions 

BA BH Fast SCG 

NOI NOF NOI NOF NOI NOF 

1 229 395 232 413 48 56 

2 23 52 23 52 24 72 

3 45 120 64 158 39 79 

4 53 148 53 148 26 103 

5 76 157 77 150 69 77 

6 17 46 17 46 14 25 

7 25 60 22 48 24 82 

8 29 71 29 71 32 62 

9 20 55 20 55 18 51 

10 22 58 22 58 9 20 

11 22 50 22 49 15 24 

12 161 335 158 326 72 101 

13 30 95 51 135 8 20 
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14 7 25 7 25 7 22 

15 30 90 30 90 29 77 

16 29 59 29 59 27 83 

17 33 73 31 67 20 52 

18 29 78 28 78 24 83 

19 18 33 18 33 14 38 

20 4 12 4 12 8 16 

21 1433 2332 1357 2325 85 132 

22 25 69 25 69 27 45 

23 112 235 59 183 22 39 

24 4 12 4 12 5 19 

25 7 16 7 16 7 17 

26 4 8 4 8 16 47 

27 34 59 29 52 42 93 

28 19 65 19 65 14 45 

29 23 54 23 54 16 26 

30 31 52 31 52 22 33 

31 25 54 25 54 23 34 

32 24 48 24 48 25 36 

33 61 135 58 125 35 46 

34 76 157 81 162 62 96 

35 23 59 23 59 18 53 

36 17 46 17 46 14 25 

37 24 36 56 104 28 40 

38 23 62 23 62 30 62 

39 30 60 29 57 23 58 

40 54 135 56 125 27 92 

41 19 55 19 55 16 26 

42 41 95 48 107 36 62 

43 20 44 20 44 8 20 

44 56 132 52 116 34 45 

45 10 35 10 35 18 26 

46 13 43 13 43 11 44 

47 7 27 7 27 11 19 

48 16 72 16 72 10 22 

49 33 73 31 67 22 48 

50 24 64 24 64 22 41 

51 119 252 93 210 74 170 

52 4 12 4 12 4 16 

53 74 149 74 151 75 120 

54 8 16 8 16 8 20 

55 21 60 5 14 15 27 

Total 3416 6835 3311 6784 1432 2887 
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Table  5.6  Running Percentage Performance of  Fast SCG against BA and BH  

 

 

Tools 

 

 

BA 

 

 

BH 

 

 

Fast SCG 

 

 

NOI 

 

 

100% 

 

97% 

 

42% 

 

NOF 

 

 

100% 

 

99% 

 

42% 

 

 

 Again our numerical results in this table indicates that the Fast SCG algorithm saves 

about 58%  for both (NOI  and   NOF)  compared with the BA-algorithm  and  about 55%  

NOI and 57%  NOF  when compared against the BH-algorithm to complete solving the set 

of 55-selected complicated unconstrained nonlinear test problems.  

 

Table 5.7 Comparisons of CPU-Times  (in Seconds) Between All SCG-Algorithms  

 

N. T. Fs. LDW BK BA  BH 
Fast 

SCG 

1 0,09 0,03 0,04 0,08 0,01 

2 0,1 0,02 0,01 0,06 0,04 

3 0,04 0,01 0,01 0,03 0 

4 0,03 0,01 0 0,02 0 

5 0,07 0,02 0,02 0,05 0,02 

6 0,01 0,01 0 0,01 0 

7 0,02 0,01 0,01 0,02 0,01 
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8 0,03 0,01 0 0,03 0,01 

9 0 0 0 0,01 0 

10 0 0 0 0,01 0,01 

11 0,04 0,01 0,01 0,02 0 

12 0,06 0,01 0,02 0,09 0,01 

13 0,01 0,01 0 0,01 0 

14 0,02 0 0,01 0,04 0 

15 0,01 0 0 0,01 0,01 

16 0,04 0,01 0,01 0,04 0,01 

17 0,05 0,01 0 0,04 0,01 

18 0,02 0,01 0,01 0,02 0,01 

19 0,02 0,01 0 0,02 0 

20 0,01 0 0 0 0 

21 0,28 0,06 0,09 0,3 0,01 

22 0 0 0 0 0,01 

23 0,12 0,03 0,03 0,12 0,01 

24 0 0 0 0 0 

25 0 0 0 0 0 

26 0 0 0 0 0,01 

27 0,01 0 0,01 0 0,01 

28 0,02 0 0 0,02 0,01 

29 0,02 0 0,01 0,02 0 

30 0,02 0 0 0,01 0,01 

31 0,02 0,01 0,01 0,02 0 

32 0,03 0 0 0,02 0,01 

33 0,58 0,15 0,16 0,6 0,08 

34 0,03 0 0 0,03 0 

35 0,01 0,01 0 0 0 

36 0,01 0 0,01 0,01 0,01 

37 0,01 0 0 0,01 0 

38 0,01 0 0 0,01 0 

39 0,02 0 0,01 0,02 0,01 

40 0,06 0,02 0,01 0,05 0,01 

41 0,01 0 0 0,01 0 

42 0,02 0 0 0,02 0 

43 0 0 0 0 0,01 

44 0,05 0,01 0,03 0,04 0 

45 0 0 0 0,01 0 

46 0,01 0 0,02 0,01 0,01 

47 0,01 0 0 0,02 0 

48 0,02 0,01 0,01 0,03 0 

49 0,03 0,01 0,01 0,03 0,01 
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50 0,01 0 0 0 0,01 

51 0,02 0,01 0,01 0,02 0 

52 0,01 0 0 0,01 0 

53 0,02 0 0 0,02 0 

54 0,01 0,01 0 0 0 

55 0 0 0 0,01 0 

Total 2,14 0,52 0,57 2,08 0,38 

 

 

 

Table 5.8  Running Percentages Performance of CPU-Times  (for Fast SCG) Against  

All  other SCG-Algorithms 

 

      ALGORITHM 

 

TOOL 

 

LDW  

  

 

BK 

 

BA  

 

BH 

 

Fast SCG 

 

 

CPU (Sec) 

 

 

100% 

 

24% 

 

26% 

 

97% 

 

18% 

 

 

 Now, this table indicates a very nice comparison between the CPU time required by 

each SCG-methods, regarding in that too small numbers can be represented by zero as the 

computer program was designed for that purpose. The above results indicates that the Fast 

SCG-algorithm saves about 82% of CPU time  compared with the SCG-algorithm LDW-

method; saves about 79% of CPU time, when compared against spectral BH-method;  saves 

about 6% of CPU time, when compared against the spectral BK-method and saves about 8% 

of CPU time, when compared against the spectral BA-method for solving the set of 55-

selected complicated  unconstrained nonlinear test problems.  
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5.3. DISCUSSIONS OF THE NUMERICAL RESULTS 

 There exists a large variety of CG-algorithms. Here, we have presented a Fast SCG-

algorithm in which the parameter kg  is computed as kk g . For uniformly convex functions, 

if the step-size kd  approaches zero, the gradient is bounded and the line search satisfies the 

strong Wolfe conditions, then our Fast SCG-algorithm is globally convergent. Also, for 

general nonlinear functions, if the parameter k   is bounded, then our Fast SCG-algorithm is 

globally convergent. The performance percentage of our fast proposed fast SCG-algorithm 

is very effective compared with other established CG-algorithms for a selected set of test 

problems found in the  CUTE library. However, in general among the eight CG algorithms 

mentioned in this thesis, we have found that the CD algorithm is the worse and the proposed 

Fast  SCG algorithm is the best. The argument of these algorithms as shown here is given: 

 

Table 5.9  Running Percentages Performance of (Fast SCG) Algorithm Against  All  

other Standard and  SCG-Algorithms with Respect to NOI 

 

METHOD 

 

TOOL 

CD 

 

PR 

 

BA 

 

FR 

 

BH 

 

LDW 

 

BK 

 

Fast 

SCG 

 

 

NOI 

 

 

100% 

 

98% 

 

93% 

 

92% 

 

90% 

 

82% 

 

80% 

 

39% 

 

 

NOI:  CD (the worst) ---PR----BA-----FR-----BH------LDW-----BK---- Fast SCG (the best 

and fastest SCG-Method) 
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Table 5.10  Running Percentages Performance of (Fast SCG) Algorithm Against  All  

other Standard and  SCG-Algorithms with Respect to NOF 

 

METHOD 

 

TOOL 

CD 

 

BA 

 

FR 

 

BH 

 

PR 

 

LDW 

 

BK 

 

Fast 

SCG 

 

NOF 100% 97% 96% 96% 95% 92% 90% 41% 

NOF: CD (the worst) ---BA----FR-----BH------PR----LDW-----BK---- Fast SCG (the best 

and fastest SCG-Method)
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CHAPTER 6 

 

 

CONCLUSION  

 

 

 

6.1 CONTRIBUTIONS 

 Our study is restricted to the non-linear CG- optimization algorithms, widely used in 

optimization, especially for large scale complicated non-linear unconstrained optimization 

problems in extended or generalized form with four different dimensions: 

 1) The new SCG method is proposed by adding a new  spectral parameter Ѳ and by 

modifying the Wolfe line search algorithm.  

 2) The new algorithm is compared with standard and spectral CG-methods; namely  

(FR; PR and CD) and (BK; BH; BA and LDW) using 55- well-known non-linear test 

functions by obtaining very promising results for both groups of the above algorithms. 

 3) The new algorithm is generic and easy to implement in all gradient-based 

optimization processes. 

 4) The new algorithm does not need the storage of any matrix, and so it is easily 

implemented both theoretically and experimentally. 

 

6.2 LIMITATIONS  

 There are several limitations in this study that can be mentioned here:  

1) There is no standard CG algorithm that is suitable for solving  all complicated non-

linear test functions and that is  used to compare all studies. 

2) Some authors do not publish their instance problems, thus making comparisons 

impossible. 
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 3) The computers hardware specifications of different papers with different 

published years is another issue in comparing the numerical results.  

 

6.3. FURTHER WORKS 

 We hope to follow the following steps for our future implementations: 

1- This work may be extended for the field of non-quadratic models, especially for the 

conic section models. 

2- This work may also be extended for the constrained optimization algorithms, 

especially for large-scale optimization problems. 

3- The modified Wolfe line searches are used in this study, so this may be improved 

further by implementing modified Goldstein Line search techniques. 

4-  Implementing all the new algorithms developed in this thesis with other  type of  

inexact line search techniques such as backtracking or Armijo line searches 

5- The domain of these algorithms may be  extended to training artificial neural 

networks which is used to solve different types of optimization problems. 

6- The parallel algorithms entered many algorithms by customizing the CG-algorithm 

to fit parallel programming requirements.  

7- Finally, for a practical purposes, one may form,  a mathematical model for any 

complicated project; the model must be first analyzed further to find the appropriate 

CG-type algorithms used to solve it; after that  a computer code will be prepared to 

solve such nonlinear-complicated problem. 
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APPENDIX 

 The details of all selected test problems can be found in CUTE  (Bongartz et al, 

1995): 

1) Extended Freudenstein & Roth  

2) Extended Trigonometric Function         

3) Extended Beale Function 

4) Extended Penalty Function 

5) Raydan 1 Function 

6) Raydan 2 Function  

7) Diagonal2 Function 

8) Hager Function 

9) Generalized Tridiagonal-1 Function 

10) Extended Tridiagonal-1 Function 

11) Extended Three Exponential Terms 

12) Generalized Tridiagonal-2 

13) Diagonal4 Function 

14) Diagonal5 Function 

15) Extended Himmelblau Function 

16) Generalized PSC1 Function 

17) Extended PSC1 Function 

18) Extended Block Diagonal BD1 Function 
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19) Extended Cliff  

20) Quadratic Diagonal Perturbed Function 

21) Extended Wood Function 

22) Extended Quadratic Penalty QP1 Function 

23) Extended Quadratic Penalty QP2 Function 

24) Extended EP1 Function 

25) Extended Tridiagonal-2 Function 

26) ARWHEAD 

27) NONDQUAR 

28) EG2 

29) DIXMAANA 

30) DIXMAANB 

31) DIXMAANC 

32) DIXMAANE 

33) Partial Perturbed Quadratic 

34) Broyden Tridiagonal 

35) EDENSCH Function 

36) DIAGONAL 6 

37) DIXON3DQ 

38) ENGVAL1 

39) DENSCHNA 

40) DENSCHNC 

41) DENSCHNB 
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42) DENSCHNF 

43) BIGGSB1 

44) Extended Block-Diagonal BD2 

45) Generalized Quartic GQ1 function 

46) Diagonal 7 

47) Diagonal 8 

48) Full Hessian 

49) SINCOS 

50) Generalized Quartic GQ2 function 

51) EXTROSNB 

52) ARGLINB 

53) FLETCHCR 

54) HIMMELBG 

55) HIMMELBH
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