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SUMMARY 

 

MORPHOLOGICAL ANALYSIS OF MAGNETIC RESONANCE 

IMAGES IN PATIENTS WITH CHIARI MALFORMATION 

 

Engin AKAR 

 

Biomedical Engineering Programme 

Ph.D. Thesis 

 

Advisor: Prof. Dr. Sadık KARA 

 

Chiari malformation type I (CM-I), which can be congenital or acquired, is a serious 

neurological disorder described as the descent of cerebellar tonsils through the foramen 

magnum. This anomaly can be diagnosed by a Magnetic Resonance Imaging (MRI) 

examination based on the conventional diagnostic criterion, a tonsillar descent of 5 mm 

or more. Fractal dimension (FD) estimation is a popular technique for measuring and 

characterizing the structural complexity in objects and has been widely used for 

morphological evaluation of brain. Thus, FD was used in this thesis to evaluate the 

morphological properties of cerebellum and to find out the distinguishing features in 

cerebellar structures between patients with CM-I and healthy subjects.  

In this study, FD analyses were employed using the MRI data of the patients with CM-I 

and the healthy control subjects. Initially, brain was partitioned into different tissue 

classes, that is white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). 

Using a mask image of cerebellum, cerebellar WM, GM and CSF tissues were obtained. 

Next, area, volume and 2D and 3D FD estimations were performed using segmented 

cerebellar images. Moreover, the herniation size were measured and correlated with the 

mentioned values in the patients. In 2D analysis, the results indicated that the patients 

had larger area and FD values; however, lower results were obtained for the patients in 

the 3D analysis. The results indicated that FD analysis is an effective method for 

describing morphological details and variations in cerebellum between the patients and 

controls. 

Keywords: Chiari malformation type I, MRI, fractal dimension, white matter, gray 

matter, cerebrospinal fluid. 
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ÖZET 

 

BEYİNCİK SARKMALI HASTALARDA MANYETİK REZONANS 

GÖRÜNTÜLERİNİN MORFOLOJİK ANALİZLERİ 

 

Engin AKAR 

 

Biyomedikal Mühendisliği Programı 

Doktora Tezi 

 

DanıĢman: Prof. Dr. Sadık KARA 

 

DoğuĢtan gelen ya da sonradan oluĢabilen beyincik sarkması tip I hastalığı beyincik 

tonsillerinin foramen magnum alt bölgesine sarktığı ciddi bir nörolojik rahatsızlıktır. Bu 

durum Manyetik Rezonans Görüntüleme (MRG) muayenesi ile sarkma boyunun en az 5 

mm olması kıstası ile teĢhis edilebilmektedir.  

Fraktal boyut (FB) hesaplaması nesnelerdeki yapısal karmaĢıklığın ölçümü ve 

nitelendirilmesinde kullanılan popüler bir yöntem olup beynin yapısal olarak 

değerlendirilmesinde sıkça kullanılmıĢtır. Bu yüzden bu tezde beyinciğin yapısal 

özelliklerinin değerlendirilmesi ve beyincik yapılarında hasta ve sağlıklı bireyleri ayırt 

edebilecek özelliklerin ortaya konulması amacıyla FB kullanıldı. 

Bu çalıĢmada beyincik sarkması tip I hastaları ve sağlıklı kontrollere ait MRG verileri 

kullanılarak FB analizleri gerçekleĢtirildi. Öncelikle beyin bölütlenmesi ile beyaz 

madde (BM), gri madde (GM) ve beyin omurilik sıvısı (BOS) elde edildi. Sonra, 

beyincik maskesi yardımı ile beyinciğe ait BM, GM ve BOS dokuları elde edildi. 

Ardından, bölütlenmiĢ beyincik dokuları kullanılarak alan, hacim ve iki ve üç boyutlu 

FB hesaplamaları yapıldı. Ayrıca sarkma boyutu da ölçülerek diğer bulgular ile iliĢkisi 

incelenmiĢtir. Ġki boyutlu analizlerde, hastalar daha büyük alan ve FB değerlerine sahip 

iken, üç boyutlu analizlerde hastaların düĢük değerlere sahip olduğu gözlemlendi. 

Sonuçlar FB analizinin beyinciğin yapısal detaylarının tanımlanması ve ayrıca hasta ve 

sağlıklı bireyler arasındaki beyincik dokusu farklarının ortaya konmasında etkili bir 

yöntem olduğunu göstermiĢtir. 

 

Anahtar kelimeler: beyincik sarkması, MRG, fraktal boyut, beyaz madde, gri madde, 

beyin omurilik sıvısı. 
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CHAPTER 1 

INTRODUCTION 

1.1  Literature Survey 

Chiari malformations (CM), which were first described by Hans von Chiari in 1890s [1, 

2], are a set of structural hindbrain and spinal cord abnormalities in which parts of the 

posterior fossa contents such as cerebellum and/or brain stem are underdeveloped or 

descend through the foramen magnum, the large hole under the skull, into the spinal 

canal [3, 4]. This descent may lead to compression of the tissues in the foramen 

magnum and upper section of the spinal canal with a probability of blocked 

cerebrospinal fluid (CSF) flow and thus pressure alterations between cranium and spinal 

cord may occur [5]. CM may be congenital or acquired and are classified into various 

forms, which are characterized by the intensity of the malformations.  

The most prevalent and the least severe form of CM is defined as Chiari Malformation 

type I (CM-I). In this type of CM, cerebellar tonsils, which are rounded lobule like tips 

under each hemisphere of cerebellum, and medial parts of the inferior vermis, bottom 

portion of the narrow structure connecting two cerebellar hemispheres, elongate 

caudally outside the cranial cavity through the foramen magnum [6, 7]. In a radiological 

point of view, for the diagnosis of CM-I, a herniation size of 5 mm or more under the 

foramen magnum is necessary [8-10]. In this anomaly, brainstem and the fourth 

ventricle keep their normal position nonetheless; they may be smaller or slightly 

deformed. Despite the lack of meticulous epidemiological studies, it has been suggested 

by recent studies that CM-I has a prevalence rate of 0.1 - 0.5% in the overall population 

and more frequently seen on females with a rate of 3:1 [11]. Even though this type of 

malformation is not generally associated with other cerebral type abnormalities, 

approximately 65 - 80% of CM-I patients may involve a serious chronic disorder, 

syringomyelia, which is a cavity filled with fluid formed inside the spinal canal [11, 12]. 
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Formation of associated syringomyelia depends on the extent of natural CSF flow 

between cranium and the spine [13]. Chiari malformation type II is another form of CM 

and characterized by caudal displacement and elongation of brain structures, such as 

brain stem, cerebellar vermis and fourth ventricle from a small posterior fossa and 

through a broad foramen magnum with CSF flow impediment. Like type I anomaly, this 

group is also rarely seen with an incidence rate of 0.02% live births [13]. This form can 

be frequently observed in patients with myelemeningocele (approximately 90 or 95%), 

which is a defect of the neural tube in which spinal canal do not close before birth due 

to the incomplete formation of the bones of the spine [4, 14]. Further unusual findings 

related to this type of malformation are kinking of medulla, midbrain distortion and 

aqueductal stenosis, which is the blockage of cerebral aqueduct (of Sylvius) connecting 

the third and the fourth ventricle [14]. One of five patients with this type of anomaly 

manifests symptoms related to brainstem dysfunction [15, 16]. Chiari type II associated 

brainstem dysfunction is one of the most common reason of death [17]. 

The third form of malformation, Chiari III, is a very infrequent anomaly and is 

described by an occipital or high cervical encephalocele, which is a very rare birth 

defect characterized by a sac-like projection or protrusion of the brain out of the skull, 

associated with herniation of posterior fossa contents, such as lower brainstem, 

cerebellar tonsils and vermis. It has many common features with Chiari II malformation 

including small posterior fossa, medullary kinking, obvious hydrocephalus and tectal 

beaking. In other words, this type of malformation combines anatomical abnormalities 

of an occipital or high cervical encephalocele with those, which are typical of Chiari 

type II malformation [13, 18-21]. Similarly, Chiari type IV malformation is an 

extremely rare and controversial abnormality [19, 22]. The properties of primary 

cerebellar agenesis is considered as a type IV malformation [13]. Namely, the formation 

of cerebellum is incomplete and thus this type is not actually a form of hindbrain 

herniation. There are remaining parts in primary cerebellar agenesis including an 

ordinary brainstem and a posterior fossa of normal size. Myelemeningocele, which is a 

frequently seen associated condition of Chiari II malformation, is not observed in type 

IV malformation. In addition to the four types of malformation, some other types of 

malformations have also been suggested. One of them is Chiari 0 which is described by 

presence of syringomyelia without tonsillar herniation [23]. Another type, which is 
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known as Chiari type 1.5 malformation, is defined by tonsillar herniation as in CM-I 

with additional caudal protrusion of brainstem [24]. Furthermore, Tubbs et al. [4] 

described a new and an extremely rare form of chiari abnormality in which occipital 

lobes of a patient herniates into the neck.   

CM may occur as a congenital anomaly, meaning present at birth, or due to acquired 

anomalies associated with the development of skull and posterior fossa. Originally, it 

was thought to be resulted from a long-standing hydrocephalus [1]. However, recently it 

has been considered that it may be resulted from a variety of precipitating conditions, 

such as hydrocephalus, a tethered spinal cord, relatively small posterior fossa 

dimensions. Underdevelopment of the posterior cranial fossa (PCF) was reported to be 

an element that may predispose CM occurrence [9, 25-31]. It has been reported by 

several studies that small posterior fossa size can be attributed to embryological 

imperfections in the para-axial mesoderm [9, 26, 29, 32]. Because of the developmental 

pathology, plenty of herediatry CM-I cases have been mentioned in the literature [26-

29, 33, 34]. In addition, insufficient posterior fossa dimension can be resulted from 

some other reasons including hypophosphatemic rickets [35], idiopathic growth 

hormone deficiency [29, 36, 37], craniofacial malformations, such as Crouzon, 

Carpenter and apert syndromes [38]. Apart from the mentioned congenital reasons, CM 

may also be occurred as an acquired from following lumbo-peritoneal shunting, which 

is a surgical technique to divert CSF, carried out for treating communicating 

hydrocephalus or for relieving idiopathic intracranial hypertension [39-41]. 

Furthermore, cysto-peritoneal shunt placement for the early treatment of supratentorial 

arachnoid cyst may also lead to the development of acquired form CM [42-44]. 

CM has a large and a variable number of clinical signs and symptoms. Occipital 

headaches, explained as a sense of heavy pressure felt at the back of the head and 

radiating behind the eyes and to the neck and shoulders [26], are the most common 

symptom and observed in the majority (approximately 60-80%) of patients [26, 45, 46]. 

These headaches has an inclination to be induced or emphasized by physical activities, 

sudden changes in postures and valsalva maneuvers, which are efforts performed by 

attempting to exhale forcibly while keeping the nose and mouth closed, such as strains 

during coughing, vomiting, sneezing and laughing [26, 47]. Additionally, patients may 
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present symptoms related to ocular disturbances. These symptoms include visual 

experiences including wavy lines, floaters, blurry vision, photophobia, which is a 

condition of light sensitivity involving abnormal intolerance of bright light, diplopia, 

which is a condition of seeing two images of a single objects and visual field loss. The 

similar factors that affect the occipital headaches also accentuate these ocular related 

symptoms. Furthermore, otoneurological type symptoms may also be presented by 

some patients. Dizziness, a condition of feeling lightheaded or unbalanced, vertigo, 

disequilibrium, tinnitus, pressure in ears, reduced hearing and nystagmus, a condition in 

which the eyes make rapid, involuntary and repetitive movements [26]. Moreover, some 

of the symptoms of CM may be related to cerebellar, brainstem and cranial nerve 

dysfunction [26, 48-51]. The most common ones in this category are dysphagia, a 

condition of difficulty in swallowing, dysarthria, a motor speech disorder caused by 

impaired movement of the speech production muscles like lips, tounge and vocal folds, 

palpitations, a feeling of more noticeable heartbeats, poor coordination, sleep apnea [52-

55], tremors, involuntary trembling or shaking movements of some parts of the body 

[26]. In addition, symptoms related to spinal cord function impairment may also be 

presented in the patients with CM. Features of symptoms, such as severity and 

incidence were peculiar to syringomyelia [45, 56, 57]. The most common ones in this 

group are analgesia or anesthesia, the loss of sensibility to pain, spasticity, muscular 

weakness, paresthesia or hyperesthesia and so on [26]. On the other hand, CM-I 

anomaly may be asymtomatic; that is, patients may not present any CM-I related 

symptom throughout their life. In such cases, CM-I can incidentally be discovered using 

cerebral imaging [58, 59]. 

The preferred imaging modality for the diagnosis of CM-I is MRI, since the herniation 

of cerebellar tonsils and the associated syringomyelia (if present) are clearly visualized 

on MRI images of brain or brainstem [7, 60]. The primary criterion for the diagnosis is 

the length of the cerebellar tonsils' displacement. If both tonsils or one of them descend 

5 mm or more under the line between basion and opisthion, the diagnosis of CM-I can 

be made [8]. In addition, other aspects may also be taken into account, if the length of 

the elongation through the foramen magnum is approximately 3 - 5 mm. These features 

include: peg-like view of cerebellar tonsils, subarachnoid space size over the cerebral 

hemisphere, cervicomedullary kinking, existence of syrinx and relatively small posterior 
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fossa [7, 61]. As to identification of Chiari malformation type II, together with the 

radiographic demonstration of tonsillar herniation, presence of associated anomalies, 

such as spina bifida, myelodysplasia, and neuroectodermal defects may also be 

considered. A further consideration for planning a suitable treatment presence of 

symptoms and a CSF flow test based on a phase contrast cine MRI image to check the 

flow amount around the foramen magnum [62]. On the other hand, in some exceptional 

cases, if an MRI scan is not possible to be carried out or it is unable to provide clear and 

sufficient visual information related to skull base anatomy or bony abnormalities in the 

spine, a computer tomography image may provide appropriate diagnostic information. 

Besides, for making a successful treatment plan, a combination of computed 

tomography and MRI may be useful [63]. 

At the present time, surgical procedure, which is called as posterior fossa 

decompression, is the only treatment option available for improving the conditions of 

patients with CM. This procedure can simply be defined as the removal of the bone 

from the skull and the spine. Primarily, this procedure aims to enlarge the posterior 

fossa volume so that the compression of the structures in posterior fossa region such as 

brainstem, cerebellum and spine may be reduced. Further goals of it include: to restore 

the natural circulation of CSF flow, to stop the progress of further neurological damage, 

to stabilize pressure variations between the brain and spine and to assist recovery [5, 

64]. 

In previous studies [9, 26, 30-32, 65-72], using MRI and CT images of brain and 

craniocervical junction, several morphological and volumetric analyses of posterior 

fossa and intracranial regions have been conducted. Various measurements were 

performed to obtain the morphological properties of PCF. Essentially, the length of 

tonsillar displacement that can be determined by measuring the space between the 

bottom part of cerebellar tonsils and the line segment constructed between the basion 

and the opisthion, which are the middle points of the front and the rear margins of the 

foramen magnum, respectively. Another feature is the length of the clivus, a surface in 

the portion of the bones at the skull base, which can be measured by taking the distance 

between the basion and the dorsum sellae, which is a bony part in the skull. 

Furthermore, basiocciput and supraocciput lengths were also measured for evaluation of 
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PCF characteristics. Basiocciput length can be determined by measuring the space 

between the basion to the basioccipital sychondrosis. As to supraocciput length, it can 

be defined by the distance between the opisthion and the internal occipital protuberance, 

which is located at the center of the cruciform eminence in the internal surface of the 

occipital bone. Measuring the distance between the midbrain-pons junction and the 

craniocervical junction as the length of hindbrain is another feature. Besides, length of 

cerebellar hemisphere, length of McRae's line, which is a line segment between the 

opisthion to the basion, size of Twining's line, which is the distance between dorsum 

sallea and internal occipital protuberance and angle between the Twining's line and the 

tentorium cerebelli.  In addition to the morphometric measurements of PCF region, 

volumetric evaluations of posterior and interior cranial regions have also been carried 

out in some previous studies [9, 26, 30, 65, 69, 72]. Milhorat et al. [26] performing both 

linear and volumetric measurements for the assessment of PCF region, reported that 

patients with CM-I had lower mean clivus length, increased values of tentorial angle, 

lower mean value of total volume and CSF volume of the PCF. Nonetheless, a 

significant difference was not observed in the mean brain volume of the PCF between 

healthy controls and patients. 

Lately, imaging science is one field of the science and information technology which 

has developed rapidly, because the existences of an increasing demand to acquire 

information regarding the properties and structures of various materials. For this reason, 

it has been extensively used in many areas, such as remote sensing, medicine, 

astronomy and space exploration and so on. Image processing, or more specifically 

digital image processing, is one important subfield of imaging science, which can be 

defined as the processing of digital images with the help of a digital computer using 

several mathematical operations. The principle targets of digital image processing is to 

improve the image quality for human interpretation and perform necessary operations 

on image data for transmission, storage and autonomous machine perception [73]. The 

tasks performed in digital image processing can be classified into different categories. 

Some of these fundamental steps involve image acquisition, preprocessing and 

enhancement of images, segmentation, morphological and color image processing and 

so on. 
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Medical imaging has a significant role in clinical diagnosis, arrangement and 

assessment of treatment operations of patients. An important medical imaging modality, 

which provides descriptive figures of tissues and organs inside the body [74]. 

Demonstration of physiological and pathological variations of living tissues is some of 

the essential uses of MRI [75, 76]. Due to some issues during the MRI acquisition 

process, such as acquisition speed and resolution, quality of the images and signal-to-

noise ratio (SNR) can be negatively affected. Since the patient comfort and technical 

limitations constrain the increase in the MRI acquisition time to obtain an image of 

higher quality, the preprocessing of images is required to improve the SNR. Conditions 

degrading the quality of MRI data, such as low contrast and noise may negatively affect 

the results of subsequent image processing tasks. It has been reported that low contrast, 

noise and intensity inhomogeneities are factors that may reduce the performance of 

segmentation algorithms [77]. Therefore, to eliminate the noise and to enhance the MRI 

data qualification for additional image operations and studies, image preprocessing is a 

major and necessary step of digital image processing. To reduce the noise in the images, 

numerous filtering approaches have been reported previously. These methods include 

linear filters applied in temporal [78] and spatial domains like averaging [78-80], non-

linear filters, such as median filtering [79-83], anisotropic diffusion filter based methods 

[84-87], the nonlocal means approach [88-91], bilateral and trilateral filters [92-94]. In 

addition to these linear and non-linear noise filtering approaches, noise elimination 

methods based on curvelet, contourlet and wavelet transforms has also been proposed 

[95-98], Moreover, other noise removal methods, such as maximum likelihood 

approach [99-101], nonparametric neighborhood estimation [102, 103] and singularity 

function analysis [104] are some of statistical approaches that have been employed to 

improve SNR.  

Image segmentation is one of the crucial initial steps that leads to image analysis, which 

has become an interested and essential field in recent years [105, 106]. Segmentation 

can be described as the partitioning of an image into different sections and has a broad 

range of application areas, such as machine vision, biometric measurements, medical 

imaging, computer-assisted diagnosis, and so on. Specifically, in medical imaging 

studies, segmentation is used for the purpose of detection and recognition of biological 
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structures to measure the areas and volumes of interested tissues for assisting pathology 

localization and diagnosis [107, 108]. 

One important application area of segmentation is brain image analysis based on MRI 

data, since the detection of brain structures is essentially used in many applications, 

such as brain development studies, analysis of neuroanatomical variations, clinical 

diagnosis of psychiatric and neurodegenerative defects, evaluation of treatment and 

surgery [109] For this reason, a large number of automated and semi-automated 

segmentation approaches were proposed in the literature. A straightforward method to 

separate the interested regions from the whole image is manual segmentation. Manual 

determination of the borders is sometimes necessary when the region of interest doesn't 

have a clear shape or its boundaries are difficult to interpret [110]. Another approach is 

to use thresholding based techniques [111-113]. Thresholding is an easy and 

computationally fast algorithm; nevertheless, noise and intensity inhomogeneity 

artifacts in MRI may negatively affect its performance. Besides, if there are intense 

overlaps between different tissue intensities, specifying a proper threshold value may be 

problematic. Recently, segmentation methods based on statistical classification has 

become preferred over simple thresholding approaches. In statistical classification, a 

Gaussian mixture model is employed to parametrically represent the probability density 

function of different tissue intensities [114]. Markov random field regularization and 

expectation-maximization algorithm are the examples of segmentation methods to 

statistically classify the different tissue groups [115-118]. Clustering based techniques 

are other significant classes of classification approaches. Pattern recognition and image 

segmentation is some of the application areas of clustering, which encompasses a 

number of methods to group a set of objects into different categories according to 

similar features of these objects [119-122]. In this category, the fuzzy c-means 

clustering [123-129] and k-means clustering algorithms [130, 131] are two popular 

methods, which have been recently employed for the segmentation of MRI data. Unlike 

from clustering based approaches, region growing techniques, which take spatial 

interactions between adjacent voxels into consideration, have been applied to MRI data 

for segmentation [132, 133]. Additionally, watershed [134-136] and split-and-merge 

[137, 138] based methods have also been suggested for the MRI image segmentation. 

Furthermore, segmentation techniques, which detect the different objects in an image 
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using their boundaries, are defined as contour-based methods. Edge detection based 

approaches, which can be employed for MRI segmentation [139], are simple examples 

of this category. Besides, active contour or deformable model based methods have been 

employed to detect and fit the borders of an object of interest in an image based on the 

minimization of an energy functional that consists of a combination of some external 

and internal forces [140-143]. Unlike from the approaches mentioned above, atlas based 

techniques attempt to segment an image by incorporating atlas information into the 

segmentation procedure. In the presence of a standard atlas or template, Atlas based 

approached can be successfully utilized for MRI data. In the literature, it has been 

implemented for the segmentation of various structures in MRI data of brain [144-148].  

Automatic segmentation of brain structures in MRI data is also possible with the help of 

several software packages. One of these packages is FSL/FIRST (FMRIB Integrated 

Registration and Segmentation Tool, Oxford University, Oxford UK), which contains a 

comprehensive library for functional and structural MRI data analysis [149]. Another 

popular application is FreeSurfer [150] (Martinos Center for Biomedical Imaging, 

Harvard-MIT, Boston USA), which involves a number of tools for structural and 

functional brain imaging data analysis. Previously, FreeSurfer has been employed in 

several studies, including segmentation brain structures [151] and hippocampal 

subfields [152], processing related to cortical folding patterns [153, 154] and so on. In 

addition, SPM (Statistical Parametric Mapping, Wellcome Department of Imaging 

Neuroscience at University College London, UK) is another powerful software tool 

developed for the study of brain image data sets. In its segmentation process, SPM uses 

an integrated approach, which combines intensity normalization, segmentation of 

tissues and nonlinear warping. All these operations are carried out within the same 

Gaussian mixture model [155].     

Fractal dimension (FD), which is a single numeric value to designate the structural 

details in irregular objects, has been widely applied to brain research for quantification 

and characterization of brain morphology [156-158]. In neuroscience, FD analysis has 

been extensively employed in many fields. Several previous studies have been used FD 

for evaluation and determination of fMRI time series [159] and cell morphometrics as 

well [160-162]. Additionally, FD based studies have also been carried out for the 
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complexity analyses of white matter (WM) and gray matter (GM) structures [156, 158, 

163-175]. 

A minor FD value variation means that there is a major change in complexity due to the 

logarithmic scale of FD analysis [160]. It has been suggested by Shan et al [176] that 

FD values can be used as a compact index for the structural irregularity and complexity. 

It has further been reported that fractal geometry can be a suitable descriptor of cortical 

abnormalities in patients with neurological disorders. Moreover, sulci and gyri 

convolutions of brain possess obvious fractal properties. Therefore, one of the most 

frequently investigated structures has been the brain surface so far. It has been reported 

by Kiselev et al. [177] that cerebral cortex has a self-similar fractal structure having an 

FD value 2.80±0.05. Additionally, functional and structural complexity alterations in 

the neural system during degeneration or development of brain may also be 

characterized by means of FD analysis [144, 165, 174, 178]. FD method has further 

been employed in a large number of works related to image analysis of neurological 

disorders including multiple sclerosis [174, 175], schizophrenia [179, 180], multiple 

system atrophy [156], tumor evaluation and detection [181-184], Alzheimer's Disease 

[184], respiration system analysis [185] and obsessive–compulsive disorder [179].   

Several methods have been used for the calculation of FD value. The most desirable and 

proper method in estimating the FD of brain structures is box-counting [156-158, 163, 

164, 166, 167, 171, 174, 175]. One reason for its widespread use is its applicability to 

structures with or without self similarity and its easy implementation [158, 186]. 

Another approach for calculation of FD is surface based algorithm [169, 187]. 

Moreover, an approach based on fast Fourier transform were used by Kiselev et al. 

[177] for FD value estimation. 

1.2 Purpose of the Thesis 

CM-I is mainly diagnosed considering the extent and the positions of the cerebellar 

tonsils by means of sagittal MRI images. The existence of asymptomatic patients with 

tonsillar herniation far longer than the diagnosis criterion of 5 mm and symptomatic 

patients with elongation less than 5 mm makes it necessary to search for new and more 

descriptive features to increase the diagnostic accuracy of this disorder. In previous 
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research, Linear and volumetric measures of the PCF and the entire brain were 

investigated; nevertheless a comprehensive analysis of brain tissues such as WM and 

GM has not been implemented so far. Therefore, by this study we aimed to implement 

morphological analyses of cerebellar tissues such as WM, GM and additionally CSF 

spaces that surround the cerebellum using FD analyses based on 2D and 3D box-

counting methods. Thus, demonstrating the usefulness of FD approach for 

characterizing and quantifying the morphological properties of cerebellar structures in 

healthy subjects and patients with CM-I was a primary goal of this thesis. Additionally, 

revealing structural variations in cerebellum and introducing new discriminative 

features between patients and healthy subjects was another purpose of this study. A 

further purpore was to correlate the results of complexity analyses with the lengths of 

the cerebellar tonsils’ descent in patients to see the effects of herniation size on the 

morphology of cerebellum. 

1.3 Hypothesis 

CM-I is an anatomical disorder of hindbrain structures like cerebellum and brainstem. 

In patients with this anomaly, physical variations such as elongation of cerebellar 

tonsils, deformation in the medulla and in the fourth ventricle, compression of the 

tissues in a relatively small PCF may be presented. According to our hypothesis, 

morphological features like complexity and irregularity of cerebellar tissues, namely 

WM and GM and additionally CSF spaces around the cerebellum may potentially be 

affected by the alterations in these mentioned structures. Complexity and structural 

details of brain tissues can be well-characterized by FD approach, which is a popular 

and widely used method to define the structural details of objects in many fields 

including neuroscience. Therefore, FD approach was selected to quantify and to assess 

the variations in structural details of cerebellum between CM-I patients and healthy 

subjects. 
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CHAPTER 2 

MATERIAL AND METHODS 

The aim of this chapter is to introduce the properties of the materials that was used and 

the methods that was performed throughout this research.  

2.1 Demographic Features of Subjects 

MRI images of patients and healthy controls were acquired from the archive imaging 

records of two hospitals: Medicana International Hospital, Istanbul and Mehmet Akif 

Ersoy Cardio-Thoracic Surgery Training and Research Hospital. Brain images of 17 

CM-I patients (7 males and 10 females, 16 - 55 years age range) and 16 healthy subjects 

(5 males and 11 females, 16 - 50 years age range) were chosen and obtained from 

already existing MRI records at the mentioned hospitals, which were scanned and 

recorded in the period between 2013 and 2015. These parameters are presented in Table 

2.1. The procedures applied in this study were approved by the Ethical Committee of 

Fatih University. 

Table 2.1 Demographic Properties of Subjects 

 Controls Patients p-value 

Gender (M/F) 8/8 7/10 - 

Age 37.56 ± 9.21 37.94 ± 10.57 0.914 

M/F: male/female 

2.2 MRI image properties 

Three-dimensional and high-resolution brain images were recorded by a Siemens 

Symphony Magnetom Aera 1.5 T MR scanner (Erlangen, Germany). 
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The image series had the following properties: 24 contiguous 5 mm sagittal slices; flip 

angle 90º, TE (echo time) 9.8 ms, TR(repetition time) 511 ms, FOV 25 cm, matrix size 

512x512 and in-plane resolution of 0.5mm × 0.5 mm. 

2.3 Steps of Image Processing 

Major steps of image processing tasks are presented in Figure 2.1. The primary purpose 

of performing these tasks is to obtain CSF tissue that surrounds the cerebellum and 

constituent tissues of cerebellum namely WM, GM and thereby, to estimate the area, 

volume and FD features of these tissues. For this reason, the three tissues that consist of 

the brain, WM, GM and CSF, need to be segmented and a mask image of cerebellum 

has to be generated. In this study, sagittal brain images were used in all the image 

processing operations, which were completely implemented in MATLAB environment.  

A cerebellar mask image was created to get the cerebellar GM, WM and CSF. In the 

first place, the entire cerebellum part was extracted from the whole brain image using 

manual and semi-automatic means. To facilitate the manual and semi-automatic 

segmentation methods, a graphical user interface application (GUI) were developed in 

MATLAB GUIDE (graphical user interface design environment) utility. After that, the 

image slices that contained the extracted cerebellum were resliced using the provided 

functions by SPM software package. Finally, the binary cerebellar mask images were 

created using a simple thresholding operation.   

Brain tissue segmentation is another important part of the image operations performed 

in this study. The segmentation operation was carried out using the Segment utility of 

SPM package. As the products of this operation, three image series, which contained the 

WM, GM and CSF tissues of the entire brain, were obtained. Next, masking operations 

were applied on these three image series using the previously generated cerebellar mask 

image. Finally, the three image series that contained the cerebellar WM and GM tissues 

and as well as the CSF tissues located around the cerebellum were achieved. After that, 

the desired features were acquired using these final products. Initially, area and 2D FD 

calculations for WM, GM and CSF were carried out using only a single slice. Secondly, 

3D measures, namely volume and 3D FD calculations were performed using all the 

image slices that contained in the final image series.   
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Figure 2.1 Steps of image processing. 
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2.4 Image Preprocessing 

Noise in digital images, which can be defined as the production of new erroneous 

intensity values due to the alteration of pixels from their original values, may severely 

corrupt the image quality. Noise may be generated at any stage of image processing, 

including image capture, formation and transmission. Therefore, removal of noise is an 

important phase of image processing to improve image quality by increasing the SNR 

and may have a great impact on the results of subsequent operations such as 

segmentation and estimation of image complexity features. Thus, the noise presented in 

the MRI images were filtered by two different filtering approaches: median and bilateral 

filtering.  

2.4.1 Noise Characteristics in MRI 

A primary reason of noise in MRI is the thermal effects, which are originated from the 

random movement of free electrons. This noise, which can be assumed to be white and 

additive, can be described based on a zero mean Gaussian distribution with equal 

variance [188]. Fourier transformation is applied on the acquired complex raw MR data 

to reconstruct the real and imaginary pieces of an MR image. Because of the linearity 

and orthogonality principles of the Fourier transform, the data in imaginary and real 

parts of MR data keep complying with Gaussian distribution [189]. Square root of the 

sum of two independent random variables from the imaginary and real images are 

calculated to achieve the pixel magnitude values and thereby the magnitude image is 

produced. The characteristics of the noise presented in the obtained magnitude image 

follow a Rician distribution [190] and its corresponding probability distribution function 

(PDF) is formulized as follows [191]: 

𝑃𝑀𝑎𝑔  𝑀 =
𝑀

𝜎2 𝑒
−

𝑀2+𝐴2

2𝜎2 𝐼0(
𝐴.𝑀

𝜎2 ) (2.1)  

𝑀 =  ℛ2 + ℐ2 (2.2) 

𝐴 =   𝜇ℛ
2 + 𝜇ℐ

2  (2.3) 

where 𝐼0 is the modified first kind zero order Bessel function. M is the measured pixel 

intensity and A is the pixel intensity without noise. ℛ and ℐ are the real and imaginary 
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portions of the complex MR data, which is distorted by Gaussian noise of zero mean 

and the standard deviation 𝜎. 𝜇ℛ and 𝜇ℐ represents the mean values of ℛ and ℐ 

respectively. The form of the Rician distribution is affected by SNR, which is 

characterized by the ratio 𝐴/𝜎. When the SNR gets close to zero, the Rician distribution 

have a tendency to be a Rayleigh distribution, which is a particular type of Rician 

distribution. Rayleigh distribution has a PDF as given below: 

𝑃𝑀𝑎𝑔  𝑀 =
𝑀

𝜎2 𝑒
−

𝑀2

2𝜎2   (2.4) 

On the contrary, in case of large SNR values, Rician distribution have a tendency to 

Gaussian distribution with the following PDF [189]: 

𝑃𝑀𝑎𝑔 𝑀 =
1

 2𝜋𝜎2
𝑒−(𝑀− 𝐴2+𝜎2) 2𝜎2   (2.5) 

The effect of Rician noise on MRI images are demonstrated in Figure 2.2. A normal 

axial T1 slice is indicated in the left image; however, the image in the right has been 

corrupted with the addition of extra Rician noise. 

 

Figure 2.2 T1 weighted Axial MRI; a) Normal, b) Rician noise added images [12].  

2.4.2 Estimation of Noise Variance 

Noise variance can be described as a measure to reflect the noise level in a digital image 

and to quantify the MRI data quality. For this reason, to achieve a better performance in 

image processing tasks, such as noise filtering, clustering and segmentation, considering 

the noise variance in the corresponding image is important [192]. In this study, the noise 

variance in MRI data was estimated using an approach by means of local computation 

a b 
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of the magnitude data skewness which had been proposed by Rajan et al. [193]. 

Intensity weight factor of bilateral filtering approach was determined using the 

estimated noise variance.  

By the approach mentioned above, variance of the Gaussian noise (𝜎2) and variance of 

the Rician distributions (𝜎𝑀
2 ) has different relationships at low and high SNR values. At 

high SNR values, this relationship can be given as: 

𝜎2 = 𝜎𝑀
2   (2.6) 

At high SNR values, it can be formulated as: 

𝜎2 = 𝜎𝑀
2 (2 −

𝜋

2
)−1   (2.7) 

Generally, 𝜎2 can also be expressed in terms of 𝜎𝑀
2  as in the following: 

𝜎2 = 𝜎𝑀
2 × 𝜑  (2.8) 

where 𝜑 is the element of correction located within the range [1;  (2 − 𝜋/2)−1 ]. This 

means that, in case of low SNR when the Rician distribution tends to a Rayleigh 

distribution, the correction element approaches(2 − 𝜋/2)−1. On the other hand, when 

the Rician distribution is similar to a Gaussian distribution, i.e. when SNR is large, it 

approaches to 1.  

The skewness of the Rician distribution can be used to measure the proximity of it 

toward Gaussian or Rayleigh. The skewness can be given as: 

𝛾 =
2𝐸[𝑀]3−3𝐸 𝑀 𝐸[𝑀2]+𝐸[𝑀3]

(−𝐸[𝑀]2+𝐸[𝑀2])
3
2

  (2.9) 

Analytical computation of the above formula can be done by employing the following 

equation: 

𝐸 𝑀𝑣 =  2𝜎2 𝑣 2 г  1 +
𝑣

2
 𝐹1[−

𝑣

2
; 1; −

𝐴2

2𝜎2
]  (2.10) 

The skewness is decreasing monotone function based on SNR, which is characterized 

by he ratio 𝐴/𝜎. Skewness of a Rician distribution can assume values within the range 

0.631 to 0 for SNR = 0 and ∞, respectively. If 𝐴 is fixed, the skewness only depends on 

the noise variance of the Gaussian distribution (𝜎2) and besides the variance of the 

Rician distribution (𝜎𝑀
2 ) only depens on 𝜎2. Thus, the correction value, which is used to 
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reach the true value of noise variance (𝜎2), can be calculated with the skewness of the 

Rician distribution for various SNR values.   

Variance of the noise in an MR image can be computed by calculating the skewness and 

the variance for each pixel (𝑖, 𝑗) in a local window 𝑊. The correction element is 

calculated using the skewness value and noise variance can be achieved by the equation 

given in (2.8). The noise variance of the overal image can be achieved by means of a 

mode operation of all local noise variance estimates, which is given in the following: 

𝜎𝑠
2 = 𝑚𝑜𝑑𝑒  𝜎𝑊𝑖,𝑗

2    (2.11) 

where 𝜎𝑠
2  represents the value of noise variance in the image, 𝜎𝑊𝑖,𝑗

2  is the noise variance 

of o local window around pixel (𝑖, 𝑗). 

2.4.3 Median Filtering 

A popular and widely used nonlinear approach for removing noise from digital images 

is median filtering, which was proposed by Tukey [194]. This method takes a pixel 

value of a corresponding image and replaces it with the median value of the pixels, 

which is located in its local neighborhood and with the same manner it handles all the 

pixels in an image to improve its quality. A more specific description of its filtering 

mechanism can be as follows. Let a digital image is represented by a matrix [𝐼𝑖𝑗 ].  

  

Figure 2.3 Median filtering on T1 weighted axial slice; a) Normal, b) filtered image.  

a b 

http://tr.wikipedia.org/wiki/Y%C4%B1ld%C4%B1z_Teknik_%C3%9Cniversitesi_Fen_Edebiyat_Fak%C3%BCltesi
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Median filter generates another image [𝐼  𝑖𝑗 ] in a local neighborhood represented by an 𝑚 

by 𝑛 window, where 𝑚 and 𝑛 are odd integers. In the output image, a pixel unit 𝑝𝑖𝑗  has 

an intensity value, which is equal to the median value of pixel units' intensity values 

located in a 𝑚 𝑥 𝑛 local window of a pixel 𝑝𝑖𝑗  in the input image. This study employed 

the standard 2D median filtering for noise removal from each MR image slice with 

default window size parameter, i.e. a 3𝑥3 local neighborhood. Figure 2.3 ilustrates the 

influence of median filterin on a T1 weighted axial MRI slice.  

2.4.4 Bilateral Filtering  

Tomasi and Manduchi [195] proposed a simple, nonlinear and non-iterative filter, which 

is called as Bilateral filter, to remove noise from an image while preserving its 

important features like edges. Filtering process by traditional filters is implemented in 

the domain of an image. That means, the geometric closeness of pixels is considered by 

these filter as weighing factor. Conversely, in bilateral filtering case, this approach is 

combined with a filtering in the range of an image. This second approach computes the 

averages of image pixel values using weight parameters, which can be determined 

considering the radiometric distance between the pixel units. Because the weighing 

parameters are influenced by the image intensity, filtering in the range of an image is 

assumed to be non-linear [196, 197]. Expression of the bilateral filter is formed by the 

product of the domain filter and the range filter components in each neighborhood. The 

following formula is used for the computation of bilateral filter for a pixel located at x 

[198]: 

𝐼   𝑥 =
1

𝐶
 𝑒

− 𝑦−𝑥 2

2𝜎𝑑
2

𝑒
− 𝐼 𝑦 −𝐼 𝑥  2

2𝜎𝑟
2 𝐼(𝑦)𝑦∈𝑁(𝑥)   (2.12) 

where 𝑁(𝑥) stands for the spatial neighborhood around 𝑥, 𝑦 is the location in the 

neighborhood, 𝜎𝑑  and 𝜎𝑟  are parameters to manage the decrease of the weighing factors 

in spatial and intensity domains, respectively. C reflects the normalization constant, 

which can be written by, 

𝐶 =  𝑒

− 𝑦−𝑥 2

2𝜎𝑑
2

𝑒
− 𝐼 𝑦 −𝐼 𝑥  2

2𝜎𝑟
2

𝑦∈𝑁(𝑥)   (2.13) 
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In this study, for the application of bilateral filter, window size parameter (size of (𝑥) ) 

was set to 11 𝑥 11. Spatial domain weight factor control parameter (𝜎𝑑) was set to 1.8,  

because Riji et al. [188] suggested using this value for 𝜎𝑑 . Finally, intensity domain 

weight factor control parameter (𝜎𝑟) was specified according to the noise variance 

calculated using the original MR data. Some preliminary experiments were conducted 

to determine a suitable value for 𝜎𝑟 . According to the results of these experiments, the 

value of 𝜎𝑟  was specified using the expression 𝜎𝑟 =  𝜎 × 2, where 𝜎 was the noise 

variance estimated from the MR image to be filtered. Effect of bilateral filtering on a T1 

weighted axial MRI slice is ilustrated in Figure 2.4. 

 

Figure 2.4 Bilateral filtering on T1 weighted axial slice; a) Normal, b) filtered image.  

2.5 Segmentation of Cerebellum 

To achieve the segmented sub-cerebellar tissues such cerebellar WM and GM, and 

additionally CSF regions that surround the cerebellum, a mask image of cerebellum has 

to be created first. The regions that cover the entire cerebellum need to be separated 

from the whole brain image to create a cerebellar mask image. 

a b a b 
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2.5.1 Manual Segmentation of Cerebellum 

Segmentation of cerebellum was performed by manually specifying the borders of 

cerebellum using the sagittal MRI slices. A sample T1 image weighted series is 

demonstrated in Figure 2.5. This operation was facilitated by means of a custom GUI 

application developed in MATLAB environment (Figure 2.7).  

 

Figure 2.5 Sample T1 weighted sagittal MRI data series.  

GUI application allows the determination of the borders of interested regions in three 

different ways, such as free hand, rectangle and polygon. The MATLAB code to 

implement the manual segmentation is given in Figure 2.6. Border specification type 

can be chosen using the radio button group in manual segmentation parameters panel on 

GUI. According to the value of manual selection radio button, segmentation handle is 

assigned. After the user has finished specifying the borders of an interested region, it 

can be separated from the whole image. 
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Figure 2.6 MATLAB code for manual segmentation. 

Figure 2.8 illustrates the manual segmentation of cerebellum. The extracted part 

(cerebellum) of the corresponding image slice is indicated in Figure 2.8c. Segmented 

images of cerebellum were stored and resliced to 1x1x1 mm
3
 isotropic relation so that 

they could be used as mask images of segmented brain tissue images.
 
 

 

 

 

function mask = manualSegmentation(handles) 

 

    h = getSegmentationHandle(handles); 

    wait(h);     

    mask = h.createMask(); 

 

function h = getSegmentationHandle(handles) 

          

    switch get(get( handles.btgHandleType, 

'SelectedObject'),'Tag') 

        case 'rbFreeHand'                         

            h = imfreehand;  

        case 'rbRect' 

            h = imrect; 

        case 'rbPoly' 

            h = impoly; 

        otherwise               

    end 
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Figure 2.7 MATLAB based GUI application for facilitating image processing tasks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Manual segmentation of cerebellum; a) Original image, b) manual 

specification of cerebellum, c) segmented part, d) binary mask image. 

a b 

c d 
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2.6 Spatial Transformation of MR Images 

2.6.1 Conversion of MRI Dicom Files into Nifti Format 

Before the reslicing of MR images, they need to be converted into a different image 

type, namely Nifti [199] format, because SPM software package operates on MRI data 

in this format. A major concern of this data format is to promote near-term 

interchangeability of data between tools related to fMRI analysis. Therefore, Nifti team 

has dealt with the issue of neuroimaging data interoperability of analysis packages to 

make data interchangeability simpler between analysis software. It provides some 

beneficial features, such as definitions of two affine coordinate systems that associates 

voxel index to spatial location and some codes to represent spatial normalization type, 

spatio-temporal dimensions' units such as mm, seconds and ordering of spatio-temporal 

slices as well [200]. Dicom image files that were used in this study were converted into 

Nifti file format using the functions based on SPM's dicom conversion utility. A sample 

image manifesting the nifti format of sagittal image series is demonstrated in Figure 2.9. 

By means of this format, coronal and axial views of data series are easily obtained as 

shown in the left of this figure. 

 

Figure 2.9 Sample T1 weighted sagittal MR image in Nifti format. 
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2.6.2 Reslicing 

Reslicing is a type of spatial transformations, which are employed to match dimensions 

of one image to those of a target image. This is an important task for many aspects of 

image analysis. It provides a way to warp images of different individuals into a standard 

space, so that averaging of signals across different subjects is possible. In this study, 

reslicing was performed for volumetric analyses to achieve an isotropic resolution of 

1×1×1 mm
3
 in the image series. To obtain resliced image series, SPM based functions 

were employed in MATLAB environment. In Figure 2.10, resliced version of the image 

series shown in Figure 2.5 is demonstrated. In this second image series the voxel, size is 

1 mm
3
 at everywhere volumetric image. The dimensions of the initial image (shown in 

Figure 2.5) are 25×512×512; on the other hand, the dimensions of the resliced image are 

170×237×237.  

 

Figure 2.10 Resliced T1 weighted sagittal image series. 
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2.7 Brain Tissue Segmentation 

Segmentation of brain MR images refers to the separation of tissue classes that 

constitutes the brain, such as WM, GM, CSF and bone into different image series to 

obtain the data of the interested tissue types. In this study, Segment utility of SPM 

software package was used to segment brain images and to obtain image series of WM, 

GM and CSF structures. 

The default segmentation procedure presented in SPM performs the image registration, 

tissue segmentation and intensity non-uniformity correction all with the same unified 

model. A mixture of Gaussians form the basis of this model, which is extended to 

include nonlinear registration with tissue probability maps and a smooth intensity 

variation [155]. The essential idea under this approach is to apply a 𝑘 Gaussians mixture 

to model the image intensities. This method is demonstrated in Figure 2.11. In this 

figure, it can be clearly indicated that each tissue class is represented by a different 

Gaussian curve. If the intensity information of voxels is solely used for tissue clustering, 

potential misclassifications can be obtained outside the cortex, since gray matter image 

intensity is similar to that of regions around the scalp.  

 

Figure 2.11 Modeling image intensity distributions as a mixture of Gaussians [201]. 

Before the classification of brain tissues, the images of interest are required to be 

registered with tissue probability maps [202]. These maps serve as a reference providing 

prior probability information of any voxel, regardless of its intensity, that belongs to any 
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of the tissue classes after the registration. Large number of subjects is registered and an 

tissue classes are averages over subjects to obtain these priors. SPM uses a modified 

version of the ICBM Tissue Probabilistic Atlas which is available at [203]. These files 

contain probabilistic spatial properties for WM, GM and CSF (Figure 2.12). 

 

Figure 2.12 The tissue probability maps for classification of GM, WM and CSF tissues.   

Figure 2.13 sketches a general overview of brain tissue segmentation approach in SPM 

is demonstrated. After tissue classification, the posterior probability for each tissue 

classes are obtained by combining the probabilities of tissues derived from intensities of 

voxels with the prior probalities. In addition to segmentation, SPM handles correction 

of intensity nonuniformity (bias), which is generated by some spatially varying and 

smooth artifact. This condition can negatively influence the success of automated image 

processing, although it does not present a problem regarding visual inspection.  
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Figure 2.13 General steps of SPM based segmentation. 

In this study, for the segmentation of brain tissues, segment method of the SPM toolset 

were executed with default parameters including default atlas files, which are modified 

versions of the ICBM Tissue Probabilistic Atlases, 4 Gaussians for non-brain structures, 

2 Gaussians for WM, GM and CSF tissues, 1 for warping regularization and 25 for warp 

frequency cut-off. Additionally, sampling distance was selected as 3, 0.0001 was used 

for a very light bias regularization and a 60 mm cutoff value was assigned to the bias 

full width at half maximum (FWHM). These values were listed in Table 2.2.  

Image Series Template 

Unified Segmentation 

Registration 

Segmentation 

 

Bias correction 

 

Non-linear 

registration 

 

Tissue Probability Maps 

Modulation 

Smoothing 



 

 

29 

Table 2.2 Parameters of SPM8 Segment Module 

Property Value Definition 

Tissue Probability 

Maps 
3 files 

Modified versions of the ICBM Tissue 

Probabilistic Atlases    

Gaussians per class [2,2,2,4] 
Number of Gaussians for tissue classes 

WM,GM,CSF=2; others=4 

Affine 

Regularization 

ICBM -

European 

brains 

Applied for a robust affine registration 

Warping 

Regularisation 
1 

A factor that regulates the tradeoff 

between the terms used in registration 

of images 

Warp Frequency 

Cutoff 
25 

Parameter for arranging non-linear 

deformations in image normalization 

Bias Regularisation 0.0001 
Light arrangement of intensity non-

uniformities 

Bias FWHM 60mm cutoff 
FWHM of Gaussian smoothness for 

intensity non-uniformity 

Sampling distance 3 

Approximate value of distance 

between sampled points during 

estimation of model parameters 

Masking image none No image were used for masking 

As a result of the brain tissue segmentation, three nifti files containing three classes of 

brain tissues, namely WM, GM and CSF were generated. A sample of each tissue class 

are illustrated in Figure 2.14. These output files shared the same spatial properties 

(voxel size, resolution) with the original input image. 
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Figure 2.14 Segmentation of brain tissues by SPM version 8 (SMP8) and the outputs. 

 

SPM8 - Segmentation 

Original image series GM tissue 

WM tissue CSF tissue 
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Figure 2.15 Segmented brain tissues after masking applied; a) Original image, b) Mask 

image of cerebellum, c) GM tissue, d) GM tissue in cerebellum, e) WM tissue, f) WM 

tissue in cerebellum, g) CSF tissue, h) CSF tissue in cerebellum.    

After the brain tissue segmentation, cerebellar WM, GM and CSF spaces that surround 

the cerebellum were obtained using the previously created mask image. Figure 2.15 

demonstrates the original image, the corresponding mask having been obtained 

previously by means of a manual segmentation process, segmented brain tissues and the 

segmented cerebellar tissues obtained by a masking operation. 

2.8 Area and Volume Calculations 

After segmenting the cerebellar WM, GM and CSF structures around cerebellum, 

several calculations were performed to calculate the area, for 2D morphological 

operations, and volume, for 3D operations, values of segmented tissues. To estimate 

these features, first a simple thresholding operation was applied to all images containing 

segmented structures. After that, for calculations of areas MATLAB method bwarea 

was employed. For volume estimations, all the pixels having a non-zero value were 

counted. Since the images were previously resliced into 1 mm
3
 isotropic resolution, sum 

of non-empty pixels gave us the volume of the corresponding image. 

e 

f 

g 

h 

c a 

b d 
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Figure 2.16 Reconstructed 3D models of segmented brain tissues; 3D GM, WM and 

CSF tissues for a-c-e) a patient with CM-I and b-d-f) a healthy control, respectively.  

a b 

c d 

e f 
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Figure 2.17 Reconstructed 3D models of segmented cerebellar tissues after masking 

applied. Cerebellar a-c-e) GM, WM and CSF tissues for a patient, respectively; b-d-f) 

GM, WM and CSF tissues for a healthy control subject, respectively. 

Surface reconstruction of segmented tissues for whole brain and cerebellar tissues, 

which were obtained after the masking operation were carried out to render the 3D 

models of segmented tissues. Figures 2.16 and 2.17 demonstrate the 3D surface models 

of segmented brain tissues and cerebellar tissues, respectively. In these figures, GM 

tissues are illustrated in gray color, and WM tissues are illustrated in gold. Besides CSF 

regions is indicated in blue-gray color. 

2.9 Fractal Dimension Analysis 

FD was first introduced by Mandelbrot [204] and it provides an approach to measure 

the complexity of a self-similar object as a single numerical value. By this way, it may 

help investigate the morphological characteristics of a wide range of objects for many 

a b 

c d 

e f 
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disciplines including biology and medicine. This section provides a brief information 

about the concept of 'fractal' and describes the methods for estimation of 2D and 3D FD 

values for segmented MRI brain images. 

2.9.1 Fractal Concept 

Classical Euclidian geometry, which is the study of geometry based on figures with 

integer dimensions, such as points, lines, and planes, is not sufficient to describe some 

nature objects with irregular shapes that can be better described by a dimension of 

decimal number. For this reason, in 1975, Benoit Mandelbrot coined the term 'fractal' 

based on the Latin word 'fractus', which means broken or irregular. As a further 

definition, fractals are entities that display infinitely repeating complex patterns, which 

are self-similar at every scale. Objects with these fractal properties such as a large 

number of details, self-similarity and scale invariance are widely encountered in nature 

including, coastlines, plants, trees, clouds, mountains and etc.  

As mentioned above, self-similarity is a basic fractal property stating that an object is 

self-similar when it has a substructure identical or analogous to its entire structure. That 

means, when a fractal image is magnified many times, the similar shape will be 

observed after each step. Another characteristic of fractals is that they possess infinite 

detail. More specifically, if such a figure is zoomed in or out, details in the image will 

not decrease and its complexity will remain the same.   

 

 

 

 

 

 

 

Figure 2.18 Fractal object examples. a) The Sierpinski triangle, b) Koch snowflake.  

 

a b 
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Having a non-integer dimension is another property of fractals. In classical geometry, a 

line has a topological dimension of one. Whereas, a fractal object may have a dimension 

between one and two, which depends on the area or space occupied by that object as it 

curves or bends. If a fractal curve covers more area, its dimension will get closer to the 

value of two. Sample fractal figures, the Sierpinski triangle and Koch snowflake, are 

demonstrated in Figure 2.18. 

2.9.2 Fractal Dimension Estimation 

There are several definitions of FD in mathematics. The most extensively employed 

definition is the Hausdorff dimension, which can be theoretically applied to any fractal 

set [205]. Assume that an object has a dimension D in classical Euclidian geometry. If 

its linear size is decreased by dividing it by a factor 𝑠 in every spatial direction, the 

measured size would change to 𝑠𝐷  times the initial object. This is illustrated in Figure 

2.19. 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 Relation between scaling and dimension. 

In general, when an object is magnifies by a scaling factor 𝑠, the number of fractions 𝑁 

to cover the original image in dimension 𝐷 can be estimated by the equation given as. 

𝑁 =  𝑠𝐷  (2.14) 

D = 1 D = 2 D = 3 

s = 2 

s = 3 

N = 2 N = 4 N = 8 

N = 16 

 

N = 9 

 

N = 3 
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If the logarithm of the both side is taken, the following formula is obtained to calculate 

the fractional dimension. 

𝐷 =
log  𝑁 

log  𝑠 
   (2.15) 

2.9.2.1 Box-Counting Method 

Various metrics have been considered to calculate FD value, including the Hausdorf 

dimension, capacity dimension, box-counting method, mass-radius method and hand 

and dividers method. Among these methods, the most popular one is box-counting 

method that uses the best fitting procedure [204, 206]. Its automatic computation and 

capability to be applied on patterns with or without self-similarity like brain structures 

which possess self-similarity feature in a certain scale [158, 173, 186, 206].  

The Box-counting method works by dividing and covering a fractal figure residing on a 

d-dimensional space by grid of boxes of equal size. It has an iterative approach in which 

the box-size is gradually changed and number of boxes completely covering the fractal 

is evaluated.  

The FD of a fractal objects can be defined by the relationship between the minimal 

number of nonempty boxes 𝑁𝑟 of size 𝑟 required to cover the fractal, which can be 

written as 

𝑁𝑟~ 𝑟−𝐹𝐷   (2.16) 

The Box-counting algorithm calculates the number Nr for different r values and plot the 

log-log diagram of Nr versus r. Box-counted dimension FD can be estimated from the 

slope of the regression line fitted in the Richardson’s plot. 

−𝐹𝐷 =  lim𝑟→0
log ⁡(𝑁𝑟)

log ⁡(𝑟)
  (2.17) 

The steps describing the general procedure of FD estimation based on box-counting 

approach for 2D and 3D structures is given in the Figure 2.20. 

 

 

 

 

 



 

 

37 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 Steps that indicate the procedure for the box-counting approach. 

The process of FD estimation based box-counting method is visually illustrated in 

Figure 2.21. Figure 2.21a and 2.21b show the two iterations (3rd and 7th iterations) of 

2D box-counting approach applied on a cerebellar GM tissue. In the first one, the image 

is partitioned into 2D boxes of size 𝑟 = 4 and corresponding number of nonempty 

boxes 𝑁𝑟 = 127 (Figure 2.21a). The second picture demonstrates the another iteration 

of the process; in this time, the GM image is divided into boxes of size 𝑟 = 8 and 

counting the number of nonempty boxes, namely the boxes that contain at least one 

pixel having an intensity value of greater than zero, gives us 𝑁𝑟 = 45 (Figure 2.21b). 

On the other hand, Figure 2.21c and 2.21d show the two iterations of 3D box-counting 

process. In the third figure, the volumetric cerebellar GM image is partitioned into 

cubes of size  𝑟 = 16 and number of nonempty cubes is 𝑁𝑟 = 100 (Figure 2.21c). The 

last one shows the iteration with the cube size 𝑟 = 32 and corresponding box count 

𝑁𝑟 = 22 (Figure 2.21d.) 

 

 

1. Initialize parameters, set box size  𝑟 = 2 and number of boxes 𝑁𝑟 = 0. 

2. Cover the image with boxes of size 𝑟 and count the number of boxes 𝑁𝑟 that 

include at least one pixel having an intensity value greater than zero. 

3. Gradually increase the box size 𝑟 and return step 2 and repeat the process. If 

the box size 𝑟 reaches a value that is greater than the minimum size of the 

image, continue with the step 4. 

4. Plot a log-log scatter diagram of 𝑙𝑜𝑔𝑁𝑟 versus log⁡(
1

𝑟
); next, carry out a linear 

regression analysis and calculate correlation coefficient for different box size 

ranges and take the highest correlation coefficient as the FD value of the 

image. 
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Figure 2.21 Illustration of box-counting method in 2D and 3D cerebellar GM tissue; 2D 

box-counting approach with box-size a) Nr = 4, b) Nr = 8; and 3D approach with box-

size values c) Nr = 16, b) Nr = 32.  

Since the objects in the images of interest are not pure fractals, the slope of the line 

range that covers all the box size values is not appropriate to estimate the FD value. 

Therefore, it is important to select an appropriate range of box-size values [158].When 

too small or too large values are chosen for the size of the boxes that cover a 

corresponding image, the complexity value of that image cannot be determined 

properly. To accurately estimate the FD value linear portion of the line in the log-log 

diagram shown in Figure 2.22 is required. Thus a linear regression analysis was 

implemented on the whole data set. 

a b 

c d 
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Figure 2.22 Log-log plot of box-count (Nr) versus box size (1/r). 

In Figure 2.22, linear regression analysis on the log-log diagram of calculated values 

box-count versus box size is illustrated. To estimate the FD value more accurately, 

taking the slope of the regression line fitted on all data points, which is indicated by 

dashed line in Figure 2.22, would not be appropriate. Therefore a slope analysis is 

required. In this study, we implemented a full slope analysis, in which the correlation 

coefficients of all line segments were checked. The minimum number of data points to 

fit the regression lines was specified as 10. That is in the first place, a regression line 

was fitted to the data points ranging from 𝑟 = 2 to 𝑟 = 12 and its correlation coefficient 

was calculated. Next, another line was fitted on data range starting from 𝑟 = 3 to  

𝑟 = 13. These operations continued until reaching the last data point. After that, number 

of data points was incremented to 11 and the similar operations were repeated for this 

data range. In this way, all the data range possibilities were checked and the slope of the 

line segment that generated the largest correlation coefficient was selected as the FD 

value of image of interest. In Figure 2.22, the green line represents the regression line 

ln(Nr) 

ln(1/r) 

r = 3 

r = 16 



 

 

40 

which was fitted to data range from 𝑟 = 3 to 𝑟 = 16 with a maximum correlation 

coeffient of 𝑅 = 0.9998. The slope of this line (2.3251) gives us the proper estimation 

of FD value.  

2.9.2.2 Evaluating the Accuracy of 3D FD Estimation 

The validity of the FD estimation algorithm was evaluated using a synthetically 

generated 5th iteration Menger cube of size 243 × 243 × 243. The second and third 

iteration of this cube is demonstrated in Figure 2.23a-b. The slope analysis of 

correlation lines (checked for data ranges starting from 10 to 15) produced a correlation 

coefficient of 𝑅 = 0.9945 as the greatest value. The FD value of this sample fractal 

object was obtained from the slope of this fitted line, which was 2.7289. The theoretical 

FD value of menger cube is 2,726833 (𝑙𝑜𝑔20 𝑙𝑜𝑔3) , which is a close value to the 

result of our program. This shows that our method was valid and suitable for FD 

calculation.   

 

   

 

Figure 2.23 Assesment of FD estimation algorithm; a) Second and b) Third iteration of 

Menger cube, c) Correlation (green) line of best fitting data range. 

 

 

a b 
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Figure 2.23 (continue) Assesment of FD estimation algorithm; a) Second and b) Third 

iteration of Menger cube, c) Correlation (green) line of best fitting data range. 

2.10 Measuring the Descent of Cerebellar Tonsils 

Cerebellar tonsils are located under each cerebellar hemisphere as rounded like tips 

of cerebellum. In this thesis, the extent of tonsillar descent was measured using midline 

sagittal MRI data. This can be measured using a line segment, which is drawn from the 

tip of a cerebellar tonsil to a second line segment constructed between the basion and 

the opisthion, which can be defined as the midpoints of the anterior and the posterior 

margins of the foramen magnum. The length of the first line gives the extent of 

cerebellar tonsils. This task is demonstrated in Figure 2.24. In this figure, B and O 

stands for basion and opisthion, respectively and the yellow line indicates the aperture 

of foramen magnum. The blue line indicates the extent of cerebellar tonsils under the 

foramen magnum and the length of this line gives the value that we try to measure, 

which is represented as L in the figure. 

ln(1/r) 

ln(Nr) 
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Figure 2.24 Midline sagittal image displaying the herniation of cerebellar tonsils. B and 

O stands for basion and opisthion, respectively. L is the length of the tonsillar descent. 

2.11 Statistical Analysis 

In this thesis, several morphological image processing tasks were carried out to obtain 

features, such as area and volume values of segmented tissues for whole brain and for 

cerebellum, 2D and 3D FD values of segmented cerebellar tissues, the size of the 

descent of cerebellar tonsils. Evaluation of the variations in these measured features 

between patients with CM-I and healthy control subjects were performed using 

independent samples t-tests. A Kolmogorov-Smirnov test was employed to check the 

normality of the data that indicates the absence of any differences between the two 

groups. A bivariate correlation analysis of cerebellar measures such as size of tonsillar 

descent, areas and volumes of segmented cerebellar tissues with the corresponding 2D 

or 3D cerebellar FD values was performed based on Pearson's method for both patient 

and control groups. The significance level was accepted as p<0.05 for evaluation of all 

results. Statistical utility application, SPSS version 20.0 (SPSS Inc., Chicago, Illinois) 

were used for all statistical analyses in this thesis. 
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CHAPTER 3 

RESULTS 

This chapter presents the results of the image processing tasks performed in this thesis. 

In the first section, 2D operations such as area and 2D FD analyses on cerebellar tissues, 

WM, GM and CSF, are given. Next, the outputs of volume and FD measurements on 

3D MRI data of segmented cerebellar tissues are presented. Effects of image 

preprocessing, such as removal of noise from MRI data, on the segmentation and FD 

estimation are presented in the third section. Finally, volumetric analysis of BOS 

regions in the whole brain are given in the last section. 

3.1 Area and 2D FD Analysis of Cerebellar SubstructuresIn this first part of this 

thesis, MRI data of 17 patients (10 female, 7 male) and 16 healthy control subjects (8 

female, 8 male) were used. The mean age value for the control group was 37.56 and for 

the patients, it was 37.94.  

Table 3.1 Average Results of Area and 2D FD Analysis  

 Controls Patients p-Value 

Gender (M/F) 8/8 7/10 - 

Age 37.56±9.208 37.94±10.57 0.914 

WM Area 487.82±79.37 394.16±125.55 0.016 

GM Area 649.79±65.61 897.80±134.92 < 0.001
* 

CSF Area 393.25±55.05 405.51±102.01 0.673 

WM FD 1.49±0.06 1.57±0.07 0.001
* 

GM FD 1.56±0.05 1.68±0.07 < 0.001
* 

CSF FD 1.16±0.06 1.37±0.13 < 0.001
*
 

M: Male, F: Female; *Statistically significant values, p < 0.05.
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Average results of the initial study, in which single slice area and FD analyses were 

performed are presented in Table 3.1. The mean value of cerebellar WM area in controls 

were found to be 487.82 with a standard deviation of 79.37. On the other hand, the 

mean and the standard deviation value of the cerebellar WM area was found to be 

394.16 and 125.55, respectively. This indicates that in the midline sagittal cerebellar 

region patients have smaller areas for WM. This condition is clearly indicated in the 

box-plot diagram presented in Figure 3.1a. The statistical analysis indicated that this 

difference is significant with p value lower than 0.05 (p=0.016, Table 3.1). 

 

 

Figure 3.1 Box-plot diagrams indicating the variations in area values of cerebellar 

substructures between controls and patients. a) WM, b) GM and c) CSF areas. 

a 

b 
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Figure 3.1 (continue) Box-plot diagrams indicating the variations in area values of 

cerebellar substructures between controls and patients. a) WM, b) GM and c) CSF 

areas. 

The average area value of cerebellar GM for the control group was estimated to be 

649.79 with a standard deviation of 65.61. The corresponding mean and standard 

deviation value for the patients was found to be 897.80±134.92. According to the 

statistical analysis, unlike cerebellar WM, the area of cerebellar GM in midline sagittal 

region is significantly higher in patients (p < 0.001, Table 3.1) than in controls. The 

box-plot diagram in Figure 3.1b clearly pictures this opposite case. Area of CSF regions 

around the cerebellum in control group was found to be 393.25 in average with the 

standard deviation of 55.05. Besides, it was found that patients had a CSF area value of 

405.51±102.01 as mean and standard deviation values. The condition related to CSF 

tissue is different from both WM and GM tissues. It can be additionally monitored in 

Figure 3.1c where the two boxes representing the controls and the patients are located in 

the same region. A statistical variation was not found between the two groups in area 

values of CSF tissues (p = 0.673, Table 3.1). 

Apart from the area calculations, FD value estimation was additionally performed based 

on a single sagittal slice. The average FD value of cerebellar WM tissue was found to be 

1.49 with a standard deviation of 0.06. On the other hand, the corresponding average 

FD value in patients was calculated as 1.57 with a standard deviation value of 0.07. 

c 
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Patients with CM-I had a higher mean FD value in cerebellar WM compared to the 

control group. The significance value of this variation is p = 0.001 (Table 3.1). 

The box-plot diagram in Figure 3.2a evidently displays this variation in WM FD values 

between the control subjects and the patients. The mean and the standard deviation of 

FD values in cerebellar GM were found to be 1.56 and 0.05 for the control group, 

respectively. Additionally, the corresponding values in patients were observed to be 

1.68 and 0.07, respectively. Similarly, the patient group had a significantly higher mean 

FD value than the control group (p< 0.001, Table 3.1). 

 

  

Figure 3.2 Box-plot diagrams demonstrating the variations in FD values of cerebellar 

substructures between controls and patients. a) WM, b) GM and c) CSF FD values. 

a 

b 
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Figure 3.2 (continue) Box-plot diagrams demonstrating the variations in FD values of 

cerebellar substructures between controls and patients. a) WM, b) GM and c) CSF FD 

values. 

This FD value difference in cerebellar GM tissue between the control subjects and the 

patients is clearly visible in the Figure 3.2. The control group had an average FD value 

of 1.16 with a standard deviation 0.06, which was estimated for CSF regions around the 

cerebellum. On the other hand, it was found for the patient group to be 1.37 and 0.13 as 

the mean and the standard deviation values. Similar to the average cerebellar WM and 

GM FD values, the mean CSF FD value was bigger in patients in comparison with 

healthy control subjects (p< 0.001, Table 3.3). This variation in FD values of CSF 

regions surrounding the cerebellum between the two groups is also demonstrated in 

Figure 3.2c. 

All the area and FD values of the three segmented tissues in cerebellar region is listed in 

Tables 3.2 and 3.3 for the control subjects and for the patients, respectively. WM area 

values in the control group range from 360.71 to 588.8. On the other hand, this interval 

was found to be much larger in patients than in controls. The minimum cerebellar WM 

area calculated for the patients is 125.93, while the maximum one is 670.27. 

Additionally, the minimum GM area value for the controls is 523.97 and the maximum 

one is 742.84. The corresponding values for the patients are 643.97 and 1118.52 as 

minimum and maximum values in GM areas. Besides, the control group has a CSF area 

range between 235.23 and 476.67. 

c 
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Table 3.2 Area and 2D FD values for control subjects 

Subjects WM 

Area 

GM 

Area 

CSF 

Area 

WM FD GM FD CSF FD 

1 588.8 624.36 436.96 1.321928 1.516211 1.006648 

2 575.91 707.17 440.60 1.504858 1.557315 1.201049 

3 535.22 600.15 343.08 1.520817 1.501947 1.103225 

4 427.56 557.49 476.67 1.508496 1.514874 1.163343 

5 363.68 669.23  235.23 1.496384 1.630264 1.067757 

6 437.04 709.42  341.24 1.511542 1.592786 1.197451 

7 360.71 523.97 394.52 1.528558 1.568752 1.220919 

8 582.87 742.84 387.29 1.545646 1.517245 1.157347 

9 432.76 653.78 407.52 1.497434 1.507253 1.202344 

10 428.63 678.83 368.37 1.383453 1.585633 1.193553 

11 533.46 677.35 392.48 1.472266 1.568436 1.226747 

12 564.25 703.74 432.35 1.505622 1.625662 1.213453 

13 487.34 564.45 401.34 1.494474 1.493633 1.183633 

14 503.65 734.52 396.54 1.507532 1.617474 1.165343 

15 411.83 646.73 432.65 1.516433 1.558635 1.093534 

16 571.41 602.54 405.12 1.528353 1.542424 1.195756 

For the patients, on the hand, this range is between 187.96 and 598.05. In all the 

measurements and calculations, the patients had a larger range of area values for 

cerebellar subtructures than the control group. The lowest WM FD value estimated for 

the controls was 1.32 and the highest estimated value was 1.55. The corresponding 

values for the patients were 1.43 and 1.66. Although the difference between the 

minimum and the maximum WM area values is considerably larger in the patients 

compared to that of the controls, the corresponding variation in WM FD results is not 

quite different between the two groups. 
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Table 3.3 Area and 2D FD values for patients 

Patients WM 

Area 

GM 

Area 

CSF 

Area 

WM FD GM FD CSF FD 

1 408.94 841.85 222.89 1.428723 1.741267 1.138062 

2 670.27 678.17 389.00 1.627605 1.633046 1.624155 

3 506.61 643.97 408.00 1.610575 1.573499 1.257287 

4 425.07 807.53 187.96 1.593814 1.757912  1.580687 

5 125.93 814.84 414.52 1.620716 1.691235 1.431036 

6 178.34 1118.52 322.06 1.642701 1.715407 1.255823 

7 424.21 1078.45 392.35 1.616578 1.679227 1.179948 

8 366.26 982.25 429.96 1.588904 1.770947 1.557739 

9 371.51 911.87 508.68 1.578252 1.679810 1.401790 

10 376.33 887.66 368.01 1.660618 1.709662 1.356264 

11 413.82 989.45 498.78 1.471679 1.702652 1.364464 

12 359.34 1056.27 504.74 1.500000 1.739438 1.380920 

13 583.79 780.27 598.05 1.490132 1.500000 1.307055 

14 367.72 928.21 347.61 1.613727 1.715484 1.398734 

15 346.22 859.69 478.63 1.467593 1.679843 1.374946 

16 372.75 1036.83 436.72 1.579534 1.708403 1.324653 

17 403.58 846.73 385.75 1.634763 1.579432 1.286235 

On the other hand, GM FD value range was between 1.49 and 1.63 for the controls; and 

between 1.5 and 1.77 for the patients. The interval among GM FD values was larger in 

the patients in parallel with that among GM area values. Finally, CSF FD values ranged 

from 1 to 1.23 for the controls; and from 1.14 to 1.63 for the patients. Like CSF area 

values, patients had a larger interval among CSF FD values in comparison with that of 

the controls. 
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The correlation between the area and FD values of segmented tissues for both groups 

were illustrated by the scatter diagrams in Figure 3.3. The relation between WM area 

and the WM FD value for the controls and the patients is depicted in Figure 3.3a. The 

linear fit line for both groups is also indicated in the figure. The green line that 

represents the measurements about the control group has a weak correlation coefficient 

R2 = 0.018. Similarly, the red dotted fit line of the patients' values has a correlation 

coefficient R2 = 0.023. These relations show us that the increase in WM area causes a 

slight decrease in FD values for both groups. On the other hand, Figure 3.3b shows the 

correlation between GM area and GM FD value. In this figure, it can be clearly 

observed that the values that belong to the patients and the controls are distributed 

within two distinct clusters in the corners of the figure. This figure additionally 

indicates that the correlation between the GM FD with the GM area is stronger than 

those for the other segmented tissues in cerebellar region, namely WM and CSF.  

 

Figure 3.3 Scatter plots illustrating the correlation between area and FD values in both 

patients and controls. a) WM FD versus WM Area, b) GM FD versus GM area, c) CSF 

FD versus CSF Area. 

 

Controls: R
2 

= 0.018 
Patients: R

2
 = 0.023 
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Figure 3.3 (continue) Scatter plots illustrating the correlation between area and FD 

values in both patients and controls. a) WM FD versus WM Area, b) GM FD versus 

GM area, c) CSF FD versus CSF Area. 

Controls: R
2
 = 0.241 

Patients: R
2 

= 0.292 

 

Controls: R2 = 0.045 
Patients: R2 = 0.0 
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According to the fit lines, the increase in the area value leads to the increase in the FD 

values. The correlation coefficient for the controls R
2
 = 0.241 and for the patients, R

2
 = 

0.292. Figure 3.3c illustrates the correlations between the CSF area and the CSF FD 

value for both the controls and the patients. In this figure, it can be evidently exhibited 

that the values for the controls and the patients accumulated in the lower and upper 

portions of the figure, respectively. Moreover, the change in the area values of the CSF 

tissue surrounding the cerebellum does not have a strong effect on the FD values of this 

tissue. The red dotted line, which represents the fit line of CSF FD values of the 

patients, has a slope value that is very close to the zero and the corresponding 

correlation coefficient R
2
 = 0.0. Whereas, the green fit line representing the correlation 

between CSF area and CSF FD values of the controls has a slope value, which is 

slightly larger than zero. The correlation coefficient for the controls R
2
 = 0.045. 

3.2 Volume and 3D FD Analysis of Cerebellar Substructures 

The results of the measurements and the analyses on the segmented tissues of the 

overall cerebellum is presented in this section. The average values of the WM, GM and 

CSF volumes and 3D FD results for the same tissues are listed in Table 3.4. In this 

second part of this thesis, MRI data of 16 healthy control subjects (5 male, 11 female) 

and data of 15 patients (5 male, 10 female) were used. The control group had an average 

age value of 36,75 with the standard deviation of 6.04. The corresponding values of the 

patients were 39,07±12.21 as the mean and the standard deviation of the age values, 

respectively. Statistical analysis indicated that there was not a significant difference in 

the age values between the two groups (p = 0.504, Table 3.4).  

The control subjects had an average cerebellar WM volume value of 45.77 with a 

standard deviation of 6.13. Whereas, the mean and the standard deviation of the WM 

volumes for the patients were found to be 41.7 and 8.01. According to these results, the 

mean cerebellar WM volumes are slightly larger in the controls than in the patients. 

This condition is also demonstrated in Figure 3.4a. Nevertheless, statistical analysis 

showed that this difference is not statitistically significant (p = 0.121, Table 3.4). The 

mean and the standard deviation of the GM volume for the controls were calculated as 

93.94 and 9.2, respectively. 



 

 

53 

Table 3.4 Average Results of 3D FD Analysis  

 Controls Patients p-Value 

Gender (M/F) 5/11 5/10 - 

Age 36.75±6.04 39.07±12.21 0.504 

WM Volume 45.77±6.13 41.7±8.01 0.121 

GM Volume 93.94±9.2 85.6±12.06 0.038
* 

CSF Volume 103.05±17.81 77.53±22.29 0.001
* 

3D WM FD 2.26±0.05 2.20±0.08 0.015
* 

3D GM FD 2.49±0.04 2.46±0.05 0.055 

3D CSF FD 2.34±0.07 2.23±0.08 < 0.001
*
 

M: Male, F: Female; *Statistically significant values, p < 0.05. 

On the other hand, the corresponding values for the patients were found to be 85.6 and 

12.06 as the mean and the standard deviation values of GM volumes. These outcomes 

indicated that the controls has larger GM volumes and this variation is statistically 

significant (p = 0.038, Table 3.4). This condition can also be illustrated in the box-plot 

diagram in Figure 3.4b.  

 

Figure 3.4 Box-plot diagrams demonstrating the variations in volume values of 

segmented cerebellar tissues between controls and patients. a) WM, b) GM and c) CSF 

volumes. 
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Figure 3.4 (continue) Box-plot diagrams demonstrating the variations in volume values 

of segmented cerebellar tissues between controls and patients. a) WM, b) GM and c) 

CSF volumes. 

The average volumes of the CSF tissue around the cerebellar region were found to be 

103.05 for the controls with a standard deviation of 17.81. Whereas, the mean and the 

standard deviation values calculated for the patients were 77.53 and 22.29. It is obvious 

from the results, that patients had considerably smaller CSF volumes in comparison 

with the control subjects. The box-plot diagram in Figure 3.4c additionally pictures this 

situation. The statistical difference in this case is quite significant with a p-value far less 

than 0.05 (p = 0.001, Table 3.4).The mean and the standard deviation values of 3D WM 

FD of cerebellum were found to be 2.26±0.05 and 2.20±0.08 for the controls and the 

patients respectively. These results indicated that the average 3D FD values of WM are 

higher in the controls than in the patients, which is also illustrated in the box-plot 

b 
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diagram in Figure 3.5a. According to the statistical analysis, this difference is 

significant with p = 0.015 (Table 3.4). The average 3D FD value for the cerebellar GM 

tissue in the controls were estimated as 2.49 and the corresponding standard deviation 

was 0.04. The mean value of the 3D GM FD in the patients were found to be 2.46 with 

a standard deviation of 0.05. The 3D GM FD value is slightly larger in the control group 

in comparison with the patients. This condition is also pictured in Figure 3.5b. 

 

 

Figure 3.5 Box-plot diagrams indicating the variations in 3D FD values of cerebellar 

substructures between controls and patients. a) WM, b) GM and c) CSF FD values. 
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Figure 3.5 (continue) Box-plot diagrams indicating the variations in 3D FD values of 

cerebellar substructures between controls and patients. a) WM, b) GM and c) CSF FD 

values. 

Nevertheless, this difference in 3D GM FD values is not statistically significant between 

the patients and the controls (p = 0.55, Table 3.4). It was found that the control subjects 

had an average 3D CSF FD value of 2.34 and the standard deviation value of 0.07. 

Whereas, the corresponding values estimated was 2.23±0.08. As clearly shown in the 

box-plot diagram in Figure 3.5c, the 3D CSF FD values is quite lower in the patients 

compared to those in the controls. Besides, this variation in FD values was found to be 

considerably significant as a result of the statistical analysis (p < 0.001, Table 3.4).  

Scatter plot graphs in Figure 3.6 demonstrates the correlation between the volume and 

the 3D FD values of segmented cerebellar tissues. Scatter plot in Figure 3.6a illustrates 

the relation between the WM volume and the 3D WM FD value of the cerebellar region 

for both the controls and the patients. A clear separation between the values of the 

controls and the patients is not shown in this figure. The correlation coefficient of the 

regression line of the control values demonstrated as a solid green line R
2 

= 0.299. The 

correlation coefficient of the red dotted line that represents the regression line of patient 

values R
2 

= 0.123. For both groups, there is a trend to increase in FD values when the 

volume values increase. However, the rate of change between the FD and the volume 

values is larger in the controls.  
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Figure 3.6 Scatter plot diagrams illustrating the correlation between volume and 3D FD 

values in both patients and controls. a) WM FD versus WM Volume, b) GM FD versus 

GM Volume, c) CSF FD versus CSF Volume. 
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Figure 3.6 (continue) Scatter plot diagrams illustrating the correlation between volume 

and 3D FD values in both patients and controls. a) WM FD versus WM Volume, b) GM 

FD versus GM Volume, c) CSF FD versus CSF Volume. 

The correlation between the GM FD values and the GM volumes is demonstrated in 

Figure 3.6b. The correlation coefficients of the fit lines are 0.094 and 0.245 for the 

controls and the patients, respectively. In both groups, FD values are affected by the 

volume changes; however this effect is stronger for the patients. In addition, the 

correlation between the 3D CSF FD values and the CSF volumes were exhibited by the 

scatter plot diagram in Figure 3.6c. The correlation coefficient for the controls R
2 

= 

0.109 and for the patients R
2 

= 0.410. This figure indicates that 3D FD values of CSF 

tissue increase when the volumes increase for both groups. However, CSF FD values in 

the patients are affected much more than those in the controls. 

Additionally, the correlations between the lengths of the cerebellar tonsils and the FD 

values of the segmented tissues in cerebellar region, for the patients solely, are 

displayed in Figure 3.7. The scatter plot in Figure 3.7a shows the correlation between 

the WM FD values and cerebellar tonsils' length. The fit line and the small value of R
2
, 

which is equal to 0.002, indicate that the variation in the length of the cerebellar tonsils 

does not affect the FD value of the WM tissue.  

Controls: R
2
 = 0.109 

Patients: R
2
 = 0.410 
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Figure 3.7 Scatter plots between length of cerebellar tonsils and 3D FD values 

segmented cerebellar tissues. a) WM FD, b) GM FD, c) CSF FD values versus the 

length of cerebellar tonsils. 
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Figure 3.7 (continue) Scatter plots between length of cerebellar tonsils and 3D FD 

values segmented cerebellar tissues. a) WM FD, b) GM FD, c) CSF FD values versus 

the length of cerebellar tonsils. 

The relation between the 3D FD values of the cerebellar GM tissue and the lengths of 

the cerebellar tonsils is demonstrated in Figure 3.7b. The correlation coefficient in this 

case R
2 

= 0.287. The regression line clearly shows that a negative relation exists 

between the GM FD values and the lengths of tonsils. Moreover, the scatter diagram in 

Figure 3.7c illustrates the correlation between the CSF FD values and the tonsils' 

lengths. It can be clearly figured out from the regression line and the small correlation 

coefficient (R
2 

= 0.028) that a strong correlation does not exist between the CSF FD 

values and the lengths of the cerebellar tonsils.  

All the volume and the FD values of the three segmented tissue types in cerebellar 

region are presented in the Table 3.5 and the Table 3.6 for the controls and the patients, 

respectively. As a result of the volumetric analysis, cerebellar WM volumes of the 

controls took values ranging from 36.6 to 58.16. Whereas for the patients, the 

corresponding range for the patients was between 56.22 and 25.26. This means that the 

alteration between the maximum and the minimum WM volume results of the patients 

was larger than that of the controls. Furthermore, calculated GM volumes ranged from 
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72.77 to 108.85 and from 60.19 to 106.28 for the controls and the patients, respectively. 

In this case, the interval among the volume values of the patients was larger, too. 

Finally, volume values were calculated for CSF regions around the cerebellum. The 

minimum values were 66.25 and 45.45; and the maximum values were 136.53 and 

129.88 for the controls and the patients, respectively. Similarly, as in the case for WM 

and GM tissues, the patients has larger interval between the minimum and the 

maximum CSF tissue volumes.  

Table 3.5 Volume and 3D FD values for controls 

Subjects WM 

Volume 

GM 

Volume 

CSF 

Volume 

WM FD GM FD CSF FD 

1 46.5780 103.9760 101.6660 2.1670 2.4826 2.2280 

2 44.5700 95.9780 106.6460 2.2938 2.4564 2.2623 

3 55.3400 72.7670 112.6900 2.3799 2.4221 2.2328 

4 45.6180 99.5580 92.6770 2.2913 2.4736 2.2523 

5 49.4350 88.3740 106.5840 2.3148 2.4096 2.2808 

6 49.5050 90.2580 104.6620 2.3081 2.5129 2.4098 

7 41.6480 94.6560 103.9910 2.2167 2.5040 2.3590 

8 50.7900 100.7440 136.5320 2.2302 2.5075 2.4193 

9 44.5640 96.8830 87.4800 2.2524 2.5090 2.3551 

10 39.8550 86.4790 90.5390 2.2274 2.5185 2.3732 

11 58.1590 108.8530 103.9000 2.3013 2.5125 2.3824 

12 37.7120 96.1960 89.5270 2.2170 2.5232 2.3696 

13 40.5740 95.2410 130.9200 2.1890 2.5187 2.3785 

14 36.6000 89.9660 125.4740 2.2867  2.5105 2.4164 

15 49.8470 103.2760 66.2460 2.2729 2.4508 2.2543 

16 41.5770 79.9010 89.3390 2.2497 2.4924 2.4107 
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Table 3.6 Volume and 3D FD values for patients 

Subjects WM 

Volume 

GM 

Volume 

CSF 

Volume 

WM FD GM FD CSF FD Tonsil 

Length 

1 37.5360 94.4010 65.0440 2.1675 2.4741 2.2021 6 

2 52.5250 78.3720 111.8940 2.3439 2.4402 2.3182 13 

3 39.7710 72.1760 48.7120 2.1657 2.4365 2.1322 17 

4 41.8070 60.1900 89.1300 2.3004  2.4155 2.3394 16 

5 56.2180 80.8550 129.8780 2.0604 2.3251 2.2498 23 

6 43.7300 93.7460 82.0600 2.2849 2.4851 2.1718 15 

7 25.2610 106.2760 87.0320 2.1360 2.5395 2.2678 7 

8 52.8270 103.4940 66.8180 2.2572 2.4358 2.1892 13 

9 46.1120 86.8040 73.4700 2.2588 2.4705 2.2543 7 

10 36.7120 77.5570 57.1300 2.1802 2.4749 2.2243 12 

11 36.0060 90.2440 69.8790 2.1274 2.4955 2.2508 6 

12 40.0500 90.3180 45.4470 2.1665 2.4792 2.0358 18 

13 35.9670 81.4040 69.0310 2.1032 2.4398 2.2666 6 

14 36.3080 76.6150 80.6260 2.1973 2.4750 2.2855 22 

15 44.6540 91.5420 86.7950 2.2406 2.4781 2.2461 14 

The control groups had WM FD values ranging from 2.17 to 2.38. Whereas the WM FD 

values for the patients ranged from 2.06 to 2.34. The corresponding GM FD value range 

was between 2.41 and 2.52 for the control subjects and between 2.33 and 2.54 for the 

patients. Furthermore, the minimum estimated FD value of CSF tissue was 2.23 and the 

maximum value was 2.42 for the controls. Whereas the corresponding lowest and the 

highest values for the patients were 2.04 and 2.34, respectively. For all the three types 

of segmented tissues in the cerebellar region, the intervals among the FD values were 

larges in the patients than those in the control group. Additional to the calculations of 

the volume and the FD values, the size of the cerebellar tonsils' extent were measured. 
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The results of these measurements were also listed in Table 3.6. It was observed that the 

patients with CM-I had the tonsillar herniation ranging from 6 to 23 millimeters in size. 

3.3 Effects of Bilateral Filtering on FD Analysis 

In this thesis, the importance of image preprocessing were investigated by evaluating 

the effects of two different noise filtering approaches, namely the Median and the 

Bilateral Filters. The average values of the 3D FD results for the segmented cerebellar 

tissues, such as WM, GM and CSF are listed in Table 3.7 after a prior application of the 

Median and the Bilateral filtering. In this third part of the thesis, MRI images of 16 

healthy control subjects (5 male, 11 female) and 14 patients (4 male, 10 female) were 

used. The mean and standard deviation values of ages for the controls and the patients 

are 36,75±6,04 and 38.93±12.66, respectively. Statistical analysis indicated that there 

was no significant difference in the age values between the both groups (p = 0.504, 

Table 3.7).  

Table 3.7 Average Results of Comparison between Median and Bilateral Filtering  

 Controls Patients p-Value 

Gender 

(M/F) 
5/11 

4/10 
- 

Age 36,75±6,04 38.93±12.66 0.504 

 
Median 

Filter 

Bilateral 

Filter 

Median 

Filter 

Bilateral 

Filter 

Median

Filter 

Bilateral 

Filter 

3D WM FD 2.26±0.05 2.28±0.05 2.20±0.08 2.14±0.13 0.013 0.0003 

3D GM FD 2.49±0.04 2.50±0.04 2.46±0.05 2.45±0.05 0.051 0.007 

3D CSF FD 2.34±0.07 2.35±0.08 2.23±0.08 2.23±0.11 0.0004 0,001 

After a prior application of the Median filter, the mean and the standard deviation 

values of 3D FD value for the cerebellar WM was found to be 2.26±0.05 and 2.20±0.08 

for the controls and the patients, respectively. In this case, the mean FD value for WM 

is higher in the control group than in the patients and this variation is statistically 

significant (p = 0.013, Table 3.7). On the other hand, after the Bilateral filter had 

applied, different numbers were found as the mean and standard deviation values. These 
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are 2.28±0.05 and 2.14±0.13 for the controls and the patients, respectively. In this case, 

the statistical difference is more significant (p = 0.0003, Table 3.7). In addition, this 

situation is visually illustrated by the box-plot diagram in Figure 3.8a. 

 

 

Figure 3.8 Box-plot diagrams illustrating the effects on Median and Bilateral Filter on 

the 3D FD analysis of subcerebellar tissues. a) WM, b) GM and c) CSF FD values.  

a 
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Figure 3.8 (continue) Box-plot diagrams illustrating the effects on Median and Bilateral 

Filter on the 3D FD analysis of subcerebellar tissues. a) WM, b) GM and c) CSF FD 

values. 

The average FD value for the cerebellar GM tissue was found to be 2.49 for the controls 

with a standard deviation value of 0.04 in the case that a prior application of the Median 

filter was performed. In this case, the calculated mean FD value for the patients was 

2.46 with the standard deviation of 0.05. The variation in GM FD values between the 

patients and the controls is not statistically significant (p = 0.051, Table 3.7). However, 

after a prior application of the Bilateral filter, the corresponding values were found to be 

2.50±0.04 and 2.45±0.05 for the controls and the patients, respectively. In this case, the 

difference in the GM FD values is quite significant (p = 0.007, Table 3.7). Figure 3.8b 

clearly demonstrates this condition. In the Median filtering case, the mean and the 

standard deviation of CSF FD values were calculated as 2.34±0.07 for the controls. The 

corresponding values for the patients were found to be 2.23±0.08. In this first case, the 

variation between the two groups is quite significant with a significance level p = 

0.0004 (Table 3.7). Whereas, in the Bilateral filtering case, the results were 2.35±0.08 

and 2.23±0.11 for the controls and the patients, respectively. The variation in this 

second case is not as significant as that of the first case (p = 0.001, Table 3.7). 

Variations in CSF FD values between the controls and the patients as a result of the two 
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different filtering approaches are demonstrated in Figure 3.8c. Additionally, the FD 

value results after a prior application of the Bilateral filter are listed in Table 3.8 for the 

controls and the patients. 

Table 3.8 Comparison of FD values between patients and controls after bilateral 

filtering 

Subjects Patients with CM-I Controls 

 WM FD GM FD CSF FD WM FD GM FD CSF FD 

1 2.0639 2.4762 2.2654 2.1526 2.4757 2.2230 

2 2.3438 2.4546 2.3276 2.2632 2.4475 2.2639 

3 2.0367 2.4397 2.1363 2.3732 2.4099 2.2383 

4 2.2849 2.4035 2.3408 2.2403 2.4708 2.2389 

5 2.1456 2.3321 2.2585 2.2418 2.4111 2.2908 

6 2.2366 2.4365 2.1732 2.3602 2.5175 2.4301 

7 2.0989 2.4846 2.2643 2.2535 2.5138 2.4059 

8 2.1501 2.4512 2.2442 2.2736 2.5172 2.4508 

9 2.1512 2.4602 2.1201 2.2902 2.5147 2,3787 

10 1.9196 2.5233 1.9288 2.2738 2.5260 2.4130 

11 2.2458 2.5001 2.2721 2.3654 2.5279 2.4031 

12 1.9164 2.4424 2.2786 2.2858 2.5311 2.3849 

13 2.1708 2.4295 2.2862 2.2636 2.5269 2.4192 

14 2.1898 2.4687 2.3235 2.3141 2.5188 2.4202 

15 - - - 2.2923 2.5266 2.2746 

16 - - - 2.2836 2.5009 2.4203 
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CHAPTER 4 

DISCUSSION 

CM-I is an anatomical disorder of the hindbrain structures, such as the cerebellum and 

the brainstem, in which the cerebellar tonsils descend below the foramen magnum into 

the spinal canal. This anomaly may cause a wide variety of symptoms due to the 

compression of the tissues including the brainstem, the cerebellum and the spine [3]. 

According to the clinical and the experimental evidences, an inadequate development of 

the occipital bone causing the development of a small PCF, which allows little space for 

the brainstem and the cerebellum, may be a major source of this disorder [26]. An 

sagittal MRI image is a suitable diagnostic method to find out this condition, because it 

provides a good visualization cerebellar tonsils. After a successful diagnosis, the only 

treatment option is surgical operations known as posterior fossa decompression. 

For the assessment of the pathological conditions in CM-I, morphological analyses of 

PCF were carried out in some of the previous studies [9, 26, 30, 68, 207]. In these 

studies, significant evidences were provided for the overcrowding of the hindbrain as a 

result of the evaluation of MRI data. Moreover, it was reported as a prevalent 

radiological finding that herniation of cerebellar tonsils may cause the compression of 

the CSF spaces. Further results of these studies indicated that PCF and CSF volumes in 

patients with CM-I were considerably smaller in comparison with those in health 

controls. Nevertheless, a variation in brain volumes between patients and controls was 

not detected. Besides, properties of CSF flow were additionally evaluated by means of 

cine PC MRI [208] and ultrasonic Doppler color flow imaging [209]. 

Some previous studies have reported that redefinition of this disorder and novel 

research is required due to a couple of reasons [26, 60, 71, 207, 210-212]. First, precise 

criteria are required for a successful clinical diagnosis of the CM-I. It has been reported 

that the extent of tonsillar herniation, which is currently used as the primary criterion for 

diagnosis of the CM-I, is indeed not sufficient for detection of the disorder. 
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It was further reported that a weak correlation exists between the size of the tonsillar 

herniation and the clinical implications of the CM-I. A long descent of cerebellar tonsils 

below the foramen magnum may not necessarily be an indication of the disorder is 

symptomatic [26]. Additionally, it has been reported that approximately 30 percent of 

the patients manifesting symptoms of CM-I have a tonsillar descent of less than 5 mm 

[212]. Besides, some patients lacking the herniation of cerebellar tonsils may present 

symptoms that respond to surgical intervention just like typical patients with CM-I do. 

A second reason that necessitates new studies on this anomaly is its potential 

misdiagnosis with other neurological disorders, such as migraine, fibromyalgia, 

multiple sclerosis and spinal cord tumors [26, 210]. Third, it has been reported that the 

actual pathogenesis, that is the mechanisms causing the formation of the anomaly, and 

the natural history of the CM-I have not yet been clearly defined. Finally, the unclear 

issues related to treatment, such as inadequate and incomplete standards for surgical 

management, results anticipated from the surgery and specification of the proper extent 

of the decompression may require the further investigation about this malformation. 

Therefore new studies are needed to discover more elucidatory and discriminative 

characteristics to achieve a more accurate diagnosis of CM-I and to differentiate it from 

similar disorders. They may further be beneficial in making more convenient and 

successful treatment and patient management plans. Existence of such reasons have 

motivated us to implement new analyses based on the MRI data of CM-I.   

In this thesis, morphological analyses based on MRI data was performed to find out new 

and elucidatory features regarding the pathophysiology of CM-I anomaly. In the first 

part of this study, structural properties of segmented cerebellar tissues, such as 

cerebellar WM, GM and CSF surrounding the cerebellum were investigated using a 

single midline slice of sagittal MRI data series. The main tasks in the first section 

included the calculation of areas and the estimation of FD values from the segmented 

images. In the second part of this study, all the sagittal slices of the MRI sequence were 

taken into account rather than using a single slice and volumes of segmented tissues 

were calculated for the whole cerebellum. Moreover, FD values of the segmented 

structures were calculated based on a 3D box-counting approach for the entire 

cerebellum. In the third part of this thesis, the importance of preprocessing, namely the 

effects of noise filtering on the 3D complexity analysis were evaluated using two 
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different filtering methods, including Median and Bilateral filters. To the best 

knowledge of the authors, FD analysis of cerebellar WM, GM and CSF structures have 

not been implemented for morphological complexity evaluation in CM-I patients.  

In our thesis, FD analysis based on 2D and 3D box-counting method was implemented 

to perform morphological complexity analysis of segmented tissues for a couple of 

reasons. First of all, it was stated that the structural complexity in objects could be better 

described and categorized by means of an FD analysis approach [213]. Moreover, it was 

reported that the FD analysis produces quantitative information about the folding 

structures on the cortex and that alterations in  FD value may be a sign for cortex 

anomalies [165]. It can be inferred from this information that FD analysis is a suitable 

method for discovering irregularities in regions of interest in brain. For this reason, we 

believe that our approach is advantageous over past works in that it yields a numeric 

descriptor regarding the structural features of interior regions of cerebellar tissues such 

as WM, GM, and as well as of CSF around the cerebellum. 

In the first part of this thesis, it was found that GM areas were larger in patients than in 

controls. Contrary to the findings from some previous studies having reported lower 

PCF volumes for patients with CM-I [9, 26, 30, 207], it has been found in the present 

study that patients had increased values of cerebellar GM areas. This difference might 

be resulted from the fact that the calculations were performed using a single slice in the 

midline sagittal region. Moreover, another reason for the increased area values of 

cerebellar GM tissues might be the tissue gathering within the midline region because of 

a potential compression of cerebellum in the lateral regions. A second finding was that 

the patients with CM-I had larger FD values of cerebellar GM in comparison with the 

control subjects. It was stated that, because the FD value provides a suitable numerical 

index for the morphological complexity, an increase in the FD value may be an 

indication of a more complex structure; on the other hand, a lower FD value may be a 

sign of a degradation in the object complexity [156]. For this reason, it may be stated 

that cerebellar GM tissues in midline sagittal region have a more complex structure in 

patients with CM-I as a result of their higher FD values. Our results are analogous to the 

findings of a past study reported that multiple sclerosis (MS) patients had higher FD 

values of cerebral GM tissues, which was considered to be resulted from the availability 
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of the  inflammatory component and the cellular changes as a sign of higher structural 

complexity [175]. 

A significant variation in FD values of WM tissue discovered between patients with 

CM-I and the control group is another important finding of this study. In comparison 

with the healthy control subjects, higher FD values were estimated for the cerebellar 

WM. That means, like the cerebellar GM tissue, morphological complexity of cerebellar 

WM tissue was larger in the patients compared to the controls. Additionally, area of the 

cerebellar WM tissue was found to be lower in the patients than in the controls. We 

believe that this finding is supported by the results of the previous studies that reported 

compression and overcrowding of cerebellar structures because of the small PCF 

volume [9, 26, 30, 207]. It can be stated more clearly that cerebellar WM development 

may be adversely affected because of the relatively small size of the PCF. It can be 

further suggested by this finding that the effects of CM-I on the WM tissue may be 

different from those on the GM, because it was discovered that the patients had 

significantly higher area values of cerebellar GM than the controls. Interestingly, while 

it was found that WM areas were smaller in the patients, their estimated FD values of 

cerebellar WM were still larger. Thus, this result may imply that WM tissue located in 

the midline cerebellar region has a regular and proper formation in the patients with 

CM-I. Consequently, according to these results, it can be stated that the physical 

conditions available in CM-I anomaly, such as different geometries of the cranio-

cervical junction, the PCF and distinct flow properties of CSF, have important effects 

on the cerebellar structure. Therefore, these variations may be the reasons for the higher 

FD values estimated for the patients. 

The FD values of CSF regions surrounding the cerebellum were found to be larger in 

the patients compared to those in the control subjects. Nevertheless, the area values of 

cerebellar CSF were not observed to be significantly dissimilar between the controls 

and the patients, in spite of the that compressed CSF spaces caused by the tonsillar 

descent were reported by several past studies [26, 207].  Although CSF areas were not 

different between the patients and the controls, CSF structures of the CM-I patients 

were more complex in the midline sagittal region in comparison with those of the 

controls. Moreover, it can be stated in the light of these findings, FD analysis is a useful 
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approach for discovering the structural variations in tissues even using a single slice 

MRI data. 

An important finding in the second part of this thesis, namely volumetric and 3D FD 

analysis, was that the patients with CM-I had lower FD values for all three segmented 

cerebellar structures, WM, FM and CSF surrounding the cerebellum. Since it was 

reported that a decrease in FD value may imply reduced complexity in objects [174], it 

can be inferred from this result that altered conditions available in CM-I may distort the 

structural regularity of mentioned tissues. That means, this result may be beneficial in 

figuring out the effects of these conditions on the cerebellar substructures. 

It was observed that the patients with CM-I had lower FD values of GM than the 

controls did. Nevertheless, this variation was not found to be significant statistically 

(p=0.55). This condition enabled us to carry out a preprocessing task lately to improve 

this result. The details of this are mentioned in the following. Some previous studies 

[156, 174, 175] reported that lower FD values estimated for GM in cerebellum and 

brain were associated with GM damage and degeneration. A deterioration of GM in 

neurodegenerative anomalies such as MS and MSA may occur naturally in the course of 

the disorder. Despite the fact that, no information about the structural variations of GM  

has been reported so far, we believe that the present study would be helpful in 

elucidating the incidents that cause the development of CM-I.  

FD values of cerebellar WM were found to be higher in the controls than in the patients. 

Compared to the FD value variations in GM, this difference in WM FD values was 

statistically more significant. That means, in the patients with CM-I, structural 

abnormalities in the cerebellar WM tissue are further than those in the cerebellar GM 

tissue. Information about WM morphology in CM-I have not been reported to date. One 

exception is that micro-structural abnormalities in WM were revealed by a previous 

study [214] utilizing diffusion tensor imaging to investigate the brains of adolescents 

with Chiari malformation type two, a different type of Chiari malformations. 

The findings of this study showed that the variation in FD values of CSF spaces around 

the cerebellum between the patients and the controls was found to be the most 

distinctive statistically (p < 0.001). Like the cases in cerebellar WM and GM, this result 

may suggest that CSF spaces surrounding the cerebellum are structurally more irregular 
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or more disrupted in the patients with CM-I than in the healthy controls. It should be 

noted that issues regarding the CSF are especially important in researches related to 

Chiari anomalies since the alterations in CSF spaces and natural flow of CSF between 

the cranium and the spinal canal are considered as the possible grounds of the anomaly 

and primary contributors to its symptomatology.    

Findings related to the CSF volume in the present study are consistent with those of 

previous studies, which reported decreased volumes of CSF in the entire cranium. Our 

study is different in that only the CSF spaces around the cerebellum and in the fourth 

ventricle were considered. CSF volume values in the patients were found to be 

significantly reduced (p=0.001) compared to the corresponding values in the controls. 

Additionally, it can be stated that this result of the present study is supported by 

previous studies, which reported that CSF spaces are effaced in Chiari anomaly. 

Correspondingly, it was observed that CSF FD values were significantly correlated with 

CSF volumes for both the controls and the patients. 

Interestingly, while FD values of cerebellar WM were estimated to be significantly 

distinct between the controls and the patients, no significant difference was found in the 

WM volumes between the two groups (p = 0.121). A possible explanation of this 

condition is that compression of cerebellum due to the small PCF size may have a very 

slight effect on the size of the cerebellar WM tissue. Nevertheless, FD analysis still 

revealed an irregularity in the tissue complexity. On the other hand, an opposite 

situation was found out for GM. While the variation in FD values between the two 

groups was not significant enough (p = 0.055), cerebellar GM volumes were found to be 

significantly different (p = 0.038). This may suggest that the mechanisms, which are 

responsible for the pathological conditions in CM-I, have different effects on cerebellar 

WM and GM structures.  

The size of the tonsillar herniation below the foramen magnum was another feature that 

was measured in this thesis. Conventionally, the length of tonsillar descent is the 

primary factor to diagnose the disorder and to determine its severity. However, in some 

cases, patients may have no symptoms despite they have a considerably long herniation 

of cerebellar tonsils, while in some other cases, patient may present severe symptoms, 

even they have little tonsillar descent, which do not satisfy the diagnosis criterion of 5 
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mm. In the present study, a strong correlation was not detected between the FD values 

of cerebellar WM and CSF and the length of the tonsillar descent. Hence, the notion 

which states that the length of tonsillar descent is not solely sufficient to diagnose the 

disorder is supported by these findings. Conversely, GM FD values were found to be 

negatively correlated with the size of tonsillar herniation. This result may additionally 

indicate that WM and GM structures in cerebellum are influenced by the available 

conditions in CM-I in different ways.  

In the 2D FD analysis based on a single slice MRI data, higher FD values of segmented 

cerebellar tissues were found for the patients in comparison with those of the control 

subjects. Nevertheless, in the second part of this thesis, in which the entire cerebellum 

was investigated based on a 3D FD analysis, lower FD values were estimated for the 

patients. The second study provides more comprehensive, accurate and reliable results 

regarding the morphological complexity of the whole cerebellum. Additionally, 

diversity in the results of the FD analysis between 2D and 3D studies may indicate that 

morphological complexity of tissues in different cerebellar regions may be affected 

diversely by the physical conditions in this disorder. 

In the third part of the thesis, the significance of preprocessing in the analyses of MRI 

data was investigate by evaluating the effects of two noise removal methods (Median 

and Bilateral filtering) on FD analysis of segmented cerebellar tissues in the patients 

with CM-I and the controls. To the best knowledge of the authors, this is the first study 

that investigates the effects of MRI data preprocessing on cerebellar tissue complexities 

in CM-I patients. 

After a prior Median filtering application, FD values of cerebellar GM tissue was found 

to be lower in the patients than in the controls. However, statistical evaluation indicated 

that the difference in GM FD values between the two groups is not sufficiently 

significant (p = 0.051). On the other hand, when a prior Bilateral filtering operation was 

performed as the preprocessing of MRI data, the difference in FD values became highly 

significant (p = 0.007). In addition, significantly lower FD values were detected in the 

patients with CM-I compared to those in the controls after both Median (p=0.013) and 

Bilateral filters (p=0.0003) were applied to MRI data as an initial step for the 

elimination of noise. However, the difference in WM FD values between the controls 
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and the patients became more significant after a prior application of Bilateral filtering 

rather than Median filtering. This indicates that pre-applied noise elimination approach 

may change the variations in estimated FD values.  

It was stated that the visual investigation of medical images by clinicians and the 

success of automated image processing tasks like segmentation may be restricted by the 

noise available in these images. Particularly, since brain MRI images contain intensity 

values of narrow interval, discovering the boundaries between different regions is 

challenging due to the lack of sufficient intensity variations between voxels. Therefore, 

eliminating the noise from image is crucial to improve the accuracy and the 

performance of the segmentation. For this reason, Bilateral filtering was implemented in 

the present study to improve the segmentation process of brain tissues. The results of 

the present study confirm that Bilateral filtering improves the image quality successfully 

considering Rician properties of noise in MRI data and preserves important features in 

the images like edges better than Median filtering. It was reported in some previous 

studies [83] that Median filtering have some undesired features such as removing fine 

details and rounding the corners . Thus, we believe that discovered small variations in 

FD values between the two groups after a prior Median filtering application may be 

resulted from these undesired properties of Median filtering.    

There were several reasons that prevented us making comprehensive and effective 

assessment about CM-I anomaly. Relatively insufficient number of subjects in each 

group was our primary limitation. Thus, the operations carried out in all parts of this 

thesis should be reimplemented using data of the groups containing larger number of 

subjects to verify the accuracy and usefulness of the results. Moreover, this condition 

prevented us performing an evaluation of gender differences of the findings. 

Furthermore, the image data of the subjects used throughout this thesis were acquired 

from existing archive records of radiology departments. Consequently, a correlation 

study between the CM-I patients' symptoms and the findings of this study could not be 

performed.  
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CONCLUSIONS AND RECOMMENDATIONS 

Diagnosis of CM-I primarily depends on the size of the cerebellar tonsils' herniation 

below the foramen magnum. However, this measure may not be sufficient always to 

make an accurate diagnosis of this condition, as there are asymptomatic patients with a 

herniation of size longer than 5 mm and symptomatic patients with a herniation of size 

less than 5 mm. Therefore, FD based 2D and 3D complexity analyses of cerebellum 

were implemented in this study to investigate the morphological variances between 

CM-I patients and healthy subjects and to discover new discriminative features to 

support the diagnosis of CM-I anomaly. The results of 2D analysis indicated that the 

patients had lower FD values in cerebellar WM, GM tissues and CSF spaces around the 

cerebellum. On the other hand, higher FD values in the corresponding tissues were 

observed for the patients according to the findings in 3D analysis. We believe that this 

may serve as a useful criterion to assist the diagnostic process and to discriminate 

between symptomatic and asymptomatic CM-I patients. However, future studies are 

still needed to verify and support the findings of this study. Applying the analyses used 

in this study to the entire brain can be a potential further study. Another one can be an 

implementation of correlation analyses to investigate the relation between the findings 

of this study and the symptoms of CM-I patients. Finally, implementation of new 

evaluation and analysis methods are necessary to support the CM-I research and to 

contribute the ongoing redefinition of this anomaly. 
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