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DATA MINING APPROACHES TO DRUG REPOSITIONING TO 
MULTIPLE DISEASES 

 

Abdullah ALRHMOUN 

 

Biomedical Engineering Programme 

MSc Thesis 

 

Advisor: Assist. Prof. Dr. Aydın ALBAYRAK 

 

Drug repositioning is defined as the identification of new uses for existing drugs. The 
ultimate goal is to reduce time and costs associated with the traditional drug 
development process. In recent years, drug repositioning has garnered the attention of 
both pharmaceutical companies and academic research centers. 

In this study, drug and disease related data such as substructures, side effects, target 
protein and miRNA from a variety of online databases have been collected and 
compiled into feature matrix with 639 known drug-disease associations and 1647 drug-
disease related features. R language was used for cleaning and preparing the compiled 
data for analysis whereas numerous Python packages were used for applying the SVM 
classification routine to select features with better predictive potentials in drug-
repositioning. A classification accuracy of 99% has been achieved for drug 
repositioning with as few as 20 features which contain a conserved subgroup of 
chemical substructures and miRNAs.  
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VERİ MADENC İLİĞİ YÖTEMLER İ KULLANILARAK VAR 
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TASARLANMASI 
 

Abdullah ALRHMOUN 

 

Biyomedikal Mühendisliği Programı 

Yüksek Lisans Tezi 

 

Danışman: Yrd. Doç. Dr. Aydın ALBAYRAK 

 

İlaç repozisyonu var olan bir ilacın yeni kullanım alanlarını bulma süreci olarak 
tanımlanır. Bu işlemdeki asıl amaç geleneksel ilaç geliştirme süresini ve maliyetini 
azaltmaktır. Özellikle son yıllarda ilaç repozisyonu ilaç şirketlerinin ve akademik 
araştırma grupların yoğun ilgisini çekmiştir. 

Bu çalışmada ilaç-hastalık ilişkisini tanımlama da kimyasal altyapıları, yan etkiler, 
hedef protein ve miRNA gibi veriler değişik veribankalarından derlenerek 639 ilaç-
hastalık etkileşimi ve 1647 ilaç veya hastalık ilişkisine dair özellik içeren bir matriks 
oluşturulmuştur. İlaç repozisyon potansiyeli en yüksek olan ilaçların belirlenmesi işlemi 
sırasında kullanılan verilerin analize hazır hale getirilmesi için R yazım dili ile Destek 
Vektör Makineleri (SVM) yöntemi ile sınıflandırma işlemi sırasında birçok Python 
programcıkları kullanılmıştır. İlk defa kimyasal altyapılar ve miRNA gibi sadece 20 
adet özellik kullanılarak sınıflandırma işlemi sırasında %99 doğruluk oranı elde 
edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose of Thesis 

‘The most fruitful basis for the discovery of a new drug is to start with an old drug’ [57] 

-Noble laureate James Black- 

Drug repositioning is a collection of important strategic steps in drug development and 

discovery. It has a great potential to push the boundaries in drug related scientific 

researches and pharmaceutical industry companies’ revenues by reducing time and costs 

associated with new drug development. Works on drug repositioning have been 

achieved initially by noticing unexpected results that happen when experimenting a 

drug during development periods or trial stages. Serendipity was the most important 

factor during the early drug repositioning works and produced successful repositioned 

drugs like Sildenafil. 

 Besides the experimental research and noticed signs, the information revolution which 

dominates this century helped to increase the understanding of biological systems and 

provide the researchers with fruitful and useful data. Nevertheless, biological systems 

are highly complex and fuzzy and still cannot be completely understood. 

Interestingly, drug repositioning in the context of bioinformatics has a big potential to 

benefit from the rising number of data generated and provided through biological, 

chemical, biophysical, and genomic studies, or via the interactions between any of these 

disciplines. There is seemingly a proportional relationship between data and technology, 

where the rise in data produced is reflected on the development of more accurate and 

precise technologies to help understand the generated data. Hence, improved technology 

can help produce more clean and useful data. 
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Network analysis, machine learning, and natural language processing are the most 

successful techniques to extract information from digital data, and transform it into 

information. All these techniques have been used on drug repositioning research and 

generated important results, such as nominating new drug candidates and speeding up 

the drug development process. 

Computational drug repositioning which depends essentially on available data, benefits 

from open source and public databases. Such databases can provide either general 

information about various aspects and types of data or specific specialized databases on 

a single type of data. Examples of specialized databases are: side effect data available 

on SIDER [94], chemical structure data available on PubChem [95], and genes and 

genetic disorders available on OMIM [96]. 

The main objectives of the thesis can be summarized in the following points: 

1. Repositioning existing and selected drugs into different diseases, through drug-target, 

multiple targets, or other properties and associations. 

2. Enriching the drug repositioning and discovery research area, and to be part of 

pharmaceutical bioinformatics non-profit academic researches. 

3. Generate repositionable drug candidates that can be later experimentally researched 

for clinical use. 

4. Apply machine learning algorithms to drug related bioinformatics research. 

5. Bringing the attention of the bioinformatics community in Turkey into new, fruitful, 

applicable, and producible area of search. 

In this thesis, I am going to use the most proper tools of data mining and machine 

learning to analyze online available data sets related to drug repositioning. It is an effort 

expended to facilitate new drug repositioning candidates, pushing the scientific research 

one step forward. 

1.2 Thesis Overview 

This thesis is organized into four chapters in addition to the references. Chapter 1 is a 

general introduction to the topic, its importance, benefits, and the purpose of the thesis. 

Chapter 2 defines the topic, previous examples, its concepts and methods, and general 

literature review. Chapter 3 explains the methods that the thesis based on, and which 
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data sets and databases have been used. Chapter 4 shows the results, make a conclusion 

on the results. 
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CHAPTER 2 

DRUG REPOSITIONING 

2.1 Definition  

Drug repositioning by definition is the process of identifying new uses for existing 

drugs [1]. Alternative names are commonly used for the same expression including: 

drug repurposing, drug re-tasking, drug reprofiling, indication expansion, and 

therapeutic switching [1]. 

These drugs can be: 

1.  Approved drugs used for usual medical indications. 

2.  Compounds or molecules which did not pass the clinical trails. 

3.  Projects have been stoped for many reasons. 

Barrat and Frail [2] in 2013, revolutionized the definition of drug repositioning as 

“ renewing failed drugs and expanding successful ones” .  

It is a challenging task to find new modes to cure diseases, and lately it became a 

fundamental quesition in biomedical research. In the last year, with the raising  

importance of big data and the tools relating to it, bioinformatic approaches became 

required and promising to accurately predict drug targets for a disease. 

Enormous data sets describing drug effects and new exploited targets have been 

published, resulting in a massive amount of information and large-scale molecular data 

publically available on-line in libraries of biomedical publications such as PubMed [95] 

(Figure 2.1). 

Drug repositioning strategies can make use of a variety of data sources and data mining 

approaches. Drug repositioning can achieve successful results because of the improved 

technologies that can enable the analysis of large experimental data to find novel 

patterns or associations. Data mining methodologies have been widely used to extract
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 the knowledge from genomic, metabolic, chemical and proteomic data. 

Depending on the outcome of the data analysis and the extracted information, novel and 

unknown relationships can be discovered. These discoveries can lead to broader 

information enrichment in areas such as target selection and potential drug 

repositioning.  

 

Figure 2.1 The number of articles added to PubMed each year is plotted against the year 
they were added. The growth rate increased almost 3-folds in the past 10 years [3] 

The two main principles that usually rule the drug repositioning process are: i) the 

ability of one drug to affect several targets and ii) a disease specific target might be 

linked to another diseases or pathways. [4]. 

Based on these principles a shared gene or similar structures between two diseases, two 

drugs or a disease and a drug might be harnessed through some computational programs 

as candidates for drug repurposing [5]. 

The last decade witnessed a transition of experimental drug discovery from big 

pharmaceutical companies to startups, nonprofit organizations, and academic 

institutions [6], with special focus on rare diseases [7]. In the academic area, for 

example, there are several published studies from different universities [8], using a 

variety of computational and empirical methods, with high rate of positive results. 

This transition was probably due to several factors: (1) the lack of new inventions 
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noticed in pharmaceutical sectors; (2) loosing a large number of skilled staff, due to the 

global economic deterioration which caused them to move to other research centers 

such as the academic institutes; (3) the establishment of three big initiatives in the US 

and Europe: a) Molecular Libraries Program [97], which supports research in chemical 

probe development projects. B) Clinical and Translational Science Award [98], which 

supports clinical and translational projects. C) Innovative Medicines Initiative [99], 

which combines pharmaceutical units and academic centers; (4) the last important factor 

is the rising amount of open source big data, tools, software, that supports drug 

discovery research projects [8]. 

Drug repositioning researchers have utilized several powerful methodologies such as: 

systems biology, network medicine, and bioinformatics approaches in an effort to 

determine unknown indications for existing drugs [9]. Nevertheless, until now, 

occasional observations of unexpected side effects of drugs under experimental testing 

or in the market were responsible for most of the successfully repositioned drugs.  

Incorporation of advanced bioinformatics tools in drug repositioning studies, especially 

in the analysis of biomedical big data sets, led to a high quality and faster outcome. 

Analyzed data sets may consist of: gene expression profiles, chemical structure 

similarities, disease-drug network, literature mining, side-effect similarity, phenotypic 

disease network, disease comorbidity, pathway-based disease network and so on [9].  

2.2 Comparing Between Drug Repositioning and Drug Development 

A general comparison of novel drug development and drug repositioning based on 

several aspects and characteristics was provided in Table 2.1. This comparison serves 

the purpose of evaluating the advantages and disadvantages of the drug discovery 

research by both methods; whether in pharmaceutical companies or in non-profit 

research centers. 

Table 2.1 A comparison between novel drug development and drug repositioning 

Aspect Drug Development Drug Repositioning 

Time 15 – 20 year per drug 3 – 10 year 

Economic 
Cost: 1$- 2$ billion per drug 

Fixed revenue 
Reduce cost 

Extra revenue 
Risk Most candidate failed Higher success rate 
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Scientific Just 20 – 30 compounds each year 200 promising compounds 

2.2.1 Time Aspect: De novo drug development is laborious; requires 15 – 20 years to 

bring a new chemical entity to market [10],  while drug repositioning needs  3 – 10 

years (60% lower ) from indication identification to market [11]. Table 2.2 contains a 

summary of both drug repositioning and novel drug development pipelines from drug 

discovery and compound identification to approval and registration. 

Table 2.2 Timeline of de novo drug development and drug repositioning 

De novo drug development: Timeline to market 

Drug Discovery 
Discovery & 

screening 
Lead 

optimization 
ADMET Development Registration 

o Expression 
analysis 

o In vitro 
function 

o In vitro 
validation; 
for example: 
knockouts 

o Bioinformat
ics 

Discovery: 
o Traditional 
o Combinatori

al chemistry 
o Structure-

based drug 
design 

 
Screening: 
o In vitro 
o Ex vivo and 

in Vivo 
o High 

throughput 

o Tradition
al 
medicinal 
chemistry 

 
o Rational 

drug 
design 

o Bioavailabili
ty systemic 
exposure 
(absorption, 
clearance 
and 
distribution) 

 

o Must 
start 
clinical 
testing at 
phase 1 
(phase 
1/11 for 
cancer) 

o US 
(FDA) 

o Europe 
(EMEA) 

o Japan 
(MHLW) 

o Rest of 
the world 

Drug repositioning: Timeline to market 

Compound 
identification 

Compound 
acquisition 

Development Registration 

o Tradition
al 
medicinal 
chemistry 

 
o Rational 

drug 
design 

o Licensing 
o Novel IP 
o Both 

licensing and 
novel IP 

o Internal 
sources 

o May start 
at 
preclinica
l, phase 1 
or phase 
11 stages 

o Ability to 
leverage 
existing 
data 
packages 

o US 
(FDA) 

o Europe 
(EMEA) 

o Japan 
(MHLW) 

o Rest of 
the world 

2.2.2 Economic Aspect: The two important elements which suggest that drug 

repositioning is more advantageous economically over the de novo drug development 
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are: cost and revenue. 

A.  Cost: Developing a single drug requires 1$ - 2$ billion dollars [11] whilst 

repositioning an already existing drug costs much less because of reduced time and 

number of steps required for development. 

B.  Revenue: While drug development focuses on one target, drug repositioning takes 

in consideration several targets for a single drug. This will generate an extra revenue 

which can exceed billions. For instance, sales of sildenafil (brand name: viagra), 

repositioned for erectile dysfunction, reached US $1.88 billion annually, and 

thelidomide, repositioned drug for multiple myeloma and leprosy, had sales US $271 

million in 2003 alone [11]. 

2.2.3 Risk Aspect: The success rate for developing new drug candidates is less than 

10% [12], only 20 – 30 new chemical entities are approved per year in the US [13], and 

the development productivity has significantly declined in recent year [14]. On the other 

hand, repositioned drugs in the last few years account for about 30% of the new drugs 

that are approved and marketed.  In addition to that, there are at least 200 compounds 

which are promising to be repositioned to fit many targets and diseases [15]. 

2.2.4 Scientific Aspect: Risk, economic, and time aspects are all scientific, but 

scientific here refers to the positive effect of drug repositioning on the scientific 

research. Drug repositioning research is usually carried by non-profitable instituations, 

and results in scientific knowledge expansion and positive medical outcomes. On the 

other hand, 90% of novel drug research and development are carried by profitable 

entities with commercial rather than scientific goals.  

Rare diseases or the so called orphan diseases, are a group of diseases which affect a 

very small percentage of people. These diseases do not have usually persisting 

treatments, and because of its rareness no high cost drug development studies are 

usually performed. Nevertheless, many drug repositioning researchers consider these 

diseases in their research. In fact, the US food and drug administration (FDA) launched 

a database which incorporates all the reported disease and drug data about orphan 

diseases to facilitate drug repositioning studies for these diseases [16].   
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In summary, novel drug development is a time-consuming, expensive, and risky venture 

that requires coordinated multidisciplinary research in multiple stages with each 

requiring intensive and specialized resources.  
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2.3 Examples of Repositioned Drugs 

It is important to understand the concepts and factors behind the successful findings in 

order to establish solid predictive models to repositioning of drugs. I will briefly talk 

about some of the successfully repositioned drugs, recent discoveries, and ongoning 

projects.  

2.3.1 Most Successful Examples 

1. Sildenafil: Also known as Viagra®, Sildenafil was developed in the late 1980s for 

the treatment of angina, the effect on angina was mild compared to the penile erections 

reported by most patients during the clinical trails as a side effect. The scientists decided 

to investigate the drug for this new indication by trying it on 3,700 men [17]. After their 

observation on the efficacy of the compound and the pharmacokinetic eligibility, the 

drug was repositioned for the treatment of erectile dysfunction. Viagra which started as 

a drug for angina then for erectile dysfunction was also confirmed for the treatment of 

pulmonary hypertension, making $1.88 billion each year of sales [18]. 

2. Raloxifene (brand name Evista): Initially, this drug was developed and studied 

initially to be used against breast cancer [11], but during the experimental studies the 

drug showed anti-oestrogenic effects [19]. In order to expand the production line and 

for commercial and strategic reasons, raloxifene was confirmed in 1999 as a unique 

indication for osteporosis. Then, in 2007 the drug was suggested and approved as a 

breast cancer preventive agent [20].   

3. Thalidomide:  The drug was developed and marketed to treat nausea in pregnancy. 

However, due to its disastrous side-effects which caused severe skeletal birth defects in 

over 15,000 infants, the drug was stoped [21]. Later on, thalidomide came back to 

market as the only drug approved for the treatment of rethema nodosum leprosum and 

multiple myeloma [22]. Now, the drug sales reach $271 million each year. 

2.3.2 Recent Examples and Ongoning Projects 

In Table 2.3, a list of drug repositioning examples and projects that show the original 

and novel indications for each drug has been provided.   
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Table 2.3 List of example projects in drug repositioning 

Drug name 
Original 
target Original indication New target New indication Reference 

Duloxetine 
Serotonin and 
norepinephrine 

reuptake 
Depression 

Serotonin and 
norepinephrine 

reuptake 

Stress urinary 
incontinence, 
fibromyalgia 

chronic 
musculoskeletal 

pain 

23 

Imatinib BCR-ABL CML 
KIT, 

PDGFRA 
GIST 24 

Raltegravir - HIV-1 integrase - 

Metnase; 
adjuvant 

therapy in 
cancer 

8 

Astemizole - 

Histamine HI 
receptors; 

Antihistamine for 
treatment of 

seasonal allergy 

- 

Inducer of 
autophagy; as 

adjuvant 
therapy in 

prostate cancer 

8 

Celecoxib 
Cyclo 

oxygenase-2 
- 

Carbonic 
anhydrase 

Glaucoma, 
cancer 

25 

Nelfinavir 
HIV-1 

protease 
AIDS 

Inhibits AKT 
pathway 

Multiple 
disease 

26 

Minoxidil Unknown Hypertension Unknown Hair loss 27 

Sunitinib 
Multiple 
kinases 

GIST, renal cell 
carcinoma 

Unchanged 
Pancreatic 

neuroendocrine 
tumors 

28 

Everolimus mTOR Immunosuppressant Unchanged 
Pancreatic 

neuroendocrine 
tumors 

29 

Phenothiazines - 

Prototype for 
neuroleptic drugs; 
antipsychotics for 
the management of 

schizophrenia 

- 

Anti-adhesion 
inhibitors 
against 

inflammation 
and cancer 

8 

Trastuzumab HER2 
HER2-positive 
breast cancer 

Unchanged 
HER2-positive 

metastatic 
gastric cancer 

30 
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2.4 General Concepts and Models 

In order to choose the appropriate computational approaches and experimental methods 

for this study, it is important to understand the general principles of drug repositioning 

including the relationships between drugs, targets and diseases, their interactions and 

associations.  

2.4.1 On-Target Drug Repositioning 

It is known as “New target for known compound” paradigm (Figure 2.2). It is defined as 

investigating new biochemical pathways for possible targets to a known molecule 

(drug) [31]. 

 

Figure 2.2 Schematic drawing explaining the on-target drug repositioning model. The 
drug Astemizole, as an example drug, interacts with two different targets (receptors) 

affecting two different pathways [31] 
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2.4.2 Off-Target Drug Repositioning 

It is known as “new indication for known target” paradigm [31]. It can also be 

explained as using the same drug for two different biochemical pathways (diseases) 

which share the same drug target (Figure 2.3). 

 

Figure 2.3 Schematic drawing explaining the off-target drug repositioning model. Two 
different diseases share a single target (cholinesterase) in their pathways. Therefore, 

Galantamine which is originally designed to treat Glaucoma by targeting the 
cholinesterase can also be used against Alzheimer [31] 

2.4.3 Models of Drug-Target Interaction 

These models represent the different strategies in which drugs and targets could 

possibly interact with each other. Targets might consist of the different forms of 

biomolecules, such as protein, DNA, enzyme and etc. The interaction can be drug-drug 

similarity–based interaction, target-target similarity-based interaction, or a combination 

of both [32]. 

2.4.3.1 Triad-Based Model  

This model relies on two inverse strategies to predict the link between drugs and targets: 

Target-target similarity triad model : As its name implies, this model involves three 

elements. If two targets are similar to each other, then they are highly likely to interact 

with the same drug (Figure 2.4a). 

Drug-drug similarity triad model : If two drugs are similar to each other, they are 

expected to interact with the same target (Figure 2.4b) 
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Figure 2.4 The Triad-Based model. (a) Target 1 resembles Target 2. Accordingly, if a 
known drug interacts with target 2 then the same drug will probably interact with target 

1. (b) Drugs 1 and 2 are similar to each other. Accordingly, if drug 2 interacts with a 
target then drug 1 will possibly interact with same target [32] 

2.4.3.2 Tetrad-Based Model  

If two drugs are similar to each other and two targets are similar to each other, then 

knowing that the first drug is interacting with the first target suggests that the second 

drug would probably interact with the second target [32] (Figure 2.5). 

 

Figure 2.5 The Tetrad-Based model. If drug 2 interacts with target 2, drug 1 resembles 
drug 2 and target 1 resembles target 2, then drug 1 would presumably interact with 

target 1 [32] 
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2.5 Methods 

The increasing complexity and size of data about diseases and drugs mechanism of 

action are reflected in the increasing number of drug repositioning methods and 

techniques. Estimating the amount of available biological and pharmaceutical data and 

information is an essential step to decide the best methodology to be used for drug 

repositioning [33].  

Drug repositioning researchers have developed numerous methods to study the 

available data about drugs and diseases. These methods can be broadly divided into two 

categories: experimental and computational. I will explain briefly these methods with 

examples. 

2.5.1 Screening Methods 

Screening methods are either phenotypic screening (in vivo and in vitro HTS/HCS 

screening) or by using of FDA off label method (clinical decisions). Both of these 

methods do not include or depend on biological or pharmaceutical information. 

Therefore, these methods can not help to determine the mechanism of action for any 

drug.  

These methods are generally considered as of low complexity and simplicity. However, 

some of the most famous examples of repositioning such as rituximab (for breast 

cancer), sildenafil (for erectile dysfunction), and HDECC inhibitors (for lung cancer 

cells) have been discovered and tested serendipitously using these screening methods 

[34, 35]. 

The screening method is very flexible giving the ability to test any drug without the 

need for any prior knowledge about it. This ease of use was the reason behind the 

discovery of 28 molecules out of 75 approved for clinical usage between 1999 and 2008 

[33]. 

2.5.2 Target-Based Methods 

Two examples of target-based methods are screening and cheminformatics. The 

screening method consists of in vitro and in vivo investigations of drugs for correlation 

to specific biomarker or protein. The cheminformatics method consists of docking, in 
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silico screening, and ligands-based analysis of different compounds from drug libraries 

[36]. 

The more information is available about the targets which are involved or directly 

linked to a disease mechanism, the higher the probability of finding useful drugs is. 

Without the need for any extra information researchers can screen many compounds 

just by using known chemical structure information of drugs, ligands, and target 3D 

structure [36, 37]. 

Many pharmaceutical companies use these methods for either finding new drugs or 

repositioning existing drugs. For example, Melior Discovery, an in vivo pharmacology 

company has recently found a new indication of MLR-1023 for diabetes [33]. 

2.5.3 Information-Based Methods 

Information-based methods refer to the use of bioinformatics tools in order to 

systematically predict a drug-target interaction, predict unknown mechanism of action 

of a drug, or discover unknown drug-drug similarities for drug repositioning. 

Bioinformatics tools and system biology techniques utilizes the available information 

about drugs, targets, disease profiles, drug-target networks, disease networks 

(diseasome), chemical structure similarities between drugs, similarity of side effects, 

and signaling pathways for the purpose of repositioning drugs [33]. 

In contrast with previous methods, information-based methods use prior knowledge to 

start from known associations to identify unknown ones, whilst other methods start 

without any information or with little information about the targets. As an example; 

with chemical structure information, Simvastatin and Ketoconazole were repositioned 

for breast cancer. Moreover, with available pathway information a new indication for 

skin cancer was found by repositioning of Vismodegib [33]. 

Blatt J and Corey SJ have used these methods of drug repositioning and succeeded in 

identifying additional drugs for pediatric hematology oncology and for pediatrics 

generally [38]. In 2015, McCabe et al published a research paper on the importance of 

knowledge-based methods for repositioning compounds toward blood cancer treatment 

with special concern to dosage and toxicology [39]. 
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2.5.4 Genomic-Based Methods 

A large number of diseases are of genetic origin (e.g. autosomal recessive disorders) or 

are linked to genetic factors that play an important role in the disease etiology. 

Identifying the genetic causes of a disease on the molecular level is a key factor in the 

process of finding a treatment for the disease. Genomic techniques have reached an 

advanced level nowadays. For instance, microarray and next generation sequencing 

techniques generate a huge amount of disease related data. Genomic-based drug 

repositioning methods depend on the outcome of these techniques to identify new 

disease networks and to explore new relations between targets and drugs.  

Additionally, the rise of open source genomics databases speeds up the studies of drug 

repositioning. Some of the examples of these databases are: CMAP Connectivity Map 

[40, 41], NCBI-GEO [100], SRA Sequence Read Archive [101], and CCLE Cancer Cell 

Line Encyclopedia [42]. 

Gene expression data analysis [43], genome-wide association studies [44,45], gene set 

enrichment analysis (GSEA), microRNAs signatures analysis, and comparative 

genomic hybridization data measurement, all of these approaches can be modeled to 

build a conceptual framework for general genome-based drug repositioning [46].   

In the case of complex multifactorial disorders with a genetic component such as 

cancer, the genomic approaches will help in linking these disorders to other diseases 

through their genetic profiles allowing them to benefit from the same drug.  For 

example, Imatinib, an inhibitor originally developed for BCR-ABL fusion protein in 

chronic myelogenous leukemia (CML), was repositioned afterwards for gastrointestinal 

stromal tumor (GIST) [46]. 
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2.5.5 Biochemical Pathway-Based Methods 

In addition to genomic data, protein-protein interaction networks, and the known 

metabolic and signaling pathways, can be utilized to build another mode of drug 

repositioning which depends mainly on signal transduction data. 

This method recreates novel disease-specific pathways which provide key targets for 

drug repositioning. It can help in mining the general signaling networks to scale them 

down from enormous number of proteins to a specific network with few proteins [33]. 

In 2013, Zhao et al, [47] developed a computational model to explore specific signaling 

pathways allowing for the discovery of unknown connections between targets and 

diseases, and novel mechanisms for specific cancer subtypes. They identified a new 

type of signaling pathways, called cancer signaling bridges (CSB), which holds great 

promises for sourcing and facilitating systematic drug repositioning. In addition to that, 

they established what they called “individualized signaling network”, which showed a 

new perspective to deal with the complexity of three metastases of breast cancer [47]. 

2.5.6 Targeted Mechanism-Based Methods 

This is a very sophisticated methodology, but it is not well established yet. Several 

research groups are working to develop the ultimate configuration for this method.  

The biggest challenge that is confronted by this method is to identify, in addition to the 

general mechanisms related to drugs or diseases, the mechanism of drug action on the 

treatment of specific diseases. To address these challenges, systems biology and 

network biology approaches are applied to define unknown drug action mechanisms 

depending on the integration of protein functional networks, signaling cascades, and all 

omics data [34]. 

Iskar et al [48], in their approaches found 10 novel regulators of cellular cholesterol 

homeostasis which provided a starting point for drug repositioning. Figure 2.6 explains 

the workflow of the approach they developed, starting with:(1) Identification of drug-

induced modules in human cell lines and rat liver, the data received from two resources: 

(i) the CMap, and (ii) DrugMatrix, (2) conservation of drug-induced modules across cell 

types and organisms, (3) characterization of gene and drug members of drug-induced 

modules, (4) functional discovery within drug-induced modules, (5) rich source 

provided by drug-induced transcriptional will lead to drug repositioning. 
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2.6 Drug-induced transcriptional modules method fro drug repositioning and functional 
understanding [48] 

Over all, choosing between the methods mentioned above to start a drug repositioning 

study depends on the available data. Accordingly, selection of the research method can 

be prioritized as in Table 2.4 [34]. 

Table 2.4 Prioritizing drug repositioning methods according to the available data 

Available data Options 

Little information available for the disease 
Phenotypic screening 

FDA off-label 

One protein biomarker for the disease 
Target-based methods 

Knowledge-based methods 

More disease information available: 
disease pathways data, disease omics data, 

etc. 

Knowledge-based methods 

Genomic-based methods 

Treatment omics data (omics data 
generated from drug treatment) 

Genomic-based methods 

Targeted mechanism-based methods 
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2.6 Computational Approaches 

I will concentrate more on this section and explain it in more detail. This section, 

especially, the approach of data mining using machine learning algorithms is the most 

related section to my thesis research. 

The main aim of drug repositioning is to establish a link between a disease and a drug. 

Every computational approach tries to build a bridge between different biomedical 

concepts or any other concepts to prove the link. 

2.6.1 Chemical Similarity Approaches 

Molecular similarity or chemical structure similarity concepts are very applicable in 

drug repositioning. The logical principle for this concept is called: similar property 

principle [49]. This principle can be summarized as structural similarity yields to 

functional similarity. 

Similar property principle is derived from a known classification model used in 

biological science and chemical engineering, Quantitative Structure-Activity 

Relationship model (QSAR model), which suppose a relationship between chemical 

structures and biological activity [50].  

To compute the structural similarity of two chemicals there is a collection of 

methodologies that can be used such as clustering algorithms and fingerprints [50]. One 

of the most common measures of structural similarity depending on the fingerprints 

approach is the Tanimoto (or jaccard) coefficient T, where two structures are usually 

considered similar if T> 0.85 [51]. 

In 2006, Noeske et al. published one of the most interesting clustering approaches. They 

used an unsupervised machine learning algorithm (self-organizing map) with 

topological pharmacophore descriptor (CATS) to predict the interaction mechanism of 

mGluR antagonists with several receptors [52]. 

Keiser et al. (2009), developed another method called similarity ensemble approach 

[53], grouping the ligands according to their targets binding partners and predicting 

thousands of unanticipated associations based on the chemical similarities between 

drugs and ligands. They used a statistical model to calculate the possibility of a 

molecule to bind to a target depending on the shared chemical features between the 

molecule and known target ligands, see figure 2.7. 
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In summary, similarity principle is defined as drugs with similar structures have similar 

biological activity. For example, Drug A (which binds to H1 histamine receptor) in 

Figure 2.7 share some similarity with drug B (which binds to serotonin receptor 5A). 

This similarity suggests that Drug A could bind to serotonin receptor 5A and generate 

same activity. 

 

Figure 2.7 Similarity principle [54] 

2.6.2 Gene Expression Approaches 

The Connectivity Map (CMap) project is a powerful source of information for a variety 

of research studies. It depends mainly on gene-expression profiles to find new 

connections between diseases and drugs that share a mechanism of action or chemicals 

and physiological processes [40]. 

The differential gene expression is a characteristic of a molecular phenomenon known 

as the gene expression signature. Genes go through states of over and under expression 

in response to the different conditions. These states of expression are estimated by the 

relative numbers of the transcribed messenger RNA (mRNA) molecules for each gene.  

The idea behind the CMap states that the action of a drug is measured and then linked to 

the gene expression signature it creates when administered into a biological system. The 

data is freely available and can help to perform various types of analyses, such as the 

identification of the molecular mechanism of a drug. There are some cases in which 

known drugs that are used for different clinical indications showed similar gene 

expression signatures. Therefore, it is important to keep in mind when doing similar 

studies that further validation experiments and tests are required. 
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Lorio et al, (2010) developed an automated approach to exploit similarities in gene 

expression profiles by using network theory concepts [54]. They built a web-based tool 

called Mantra 2.0 [102] to analyze the Mode of Action (MoA) of new drugs based on 

network theory statistics of gene expression data. 

Figure 2.8 shows the principle of gene expression-based similarity for drug 

repositioning and drug-disease association. The gene expression data from the CMap 

are compared, genes in green color are up-regulated, and genes in red are down-

regulated. The data provides a signature which can relate drugs based on their 

functional aspect. For instance, drug X and Y are considered similar because they 

affected a significant number of genes in the same manner. 

 

Figure 2.8 Gene expression signature-based drug repositioning [54] 

2.6.3 Molecular Docking Approaches 

Molecular docking approaches which utilize similar binding sites have become one of 

the most important tools of drug discovery [55]. Knowing that different proteins might 

possess similar binding sites, it is reasonable to conclude that similar binding sites most 

likely bind to the same ligands.  

These kinds of approaches shed the light on the protein-drug interaction space, which 

helps to better understand drug modes of action and can also help in reducing drug 

doses. The growing amount of data in this field is an advantage that will support the 

optimization of drugs to gain higher selectivity and thus reduce side effects. 

The promiscuity of drugs empowers the ability of one drug to bind to multiple distinct 

targets. Figure 2.9 shows the process of drug repositioning using binding site similarity. 

A and B are proteins which were aligned (as we see on C) because of their binding site 

similarity. Due to the known binding between A and D, it is suggested that D might as 

well bind with B [56]. 
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Figure 2.9 Molecular docking concept [57] 

 

In a computational approach to perform molecular docking studies several algorithms 

were developed to increase the precision and accuracy of the technique [56]. A list of 

these algorithms with their functions and characteristics is provided in table 2.5 below. 

Table 2.5 Molecular docking algorithms 

Algorithm Function Characteristic 

Matching 
algorithm 
(MA) 

Based on molecular shape map a 
ligand into active site of a protein in 
terms of shape features and chemical 
information 

Geometry-based, suitable to 
VS and database enrichment 
for its high speed 

Incremental 
construction 
(IC) 

Put the ligand into an active site in a 
fragmental and incremental fashion 

Fragment-based and docking 
incrementally 

Multiple copy 
simultaneous 
search (MCSS) 

Randomly placed 1000-5000 copies of 
a functional group, in the binding site 
of interest and subjected to 
simultaneous energy minimization 
and/or quenched molecular dynamics 

Fragment-based methods for 
de novo design 
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in the forcefield of the protein 

Monte carlo 
(MC) 

Generate poses of the ligand through 
bond rotation, rigid-body translation 
or rotation 

Stochastic search 

Genetic 
algorithm (GA) 

The mutation and crossover are 
genetic operators affect the genes 
(which is binary string encoded to 
represent a degrees of freedom of the 
ligand), the result is a new ligand 
structure. 

Stochastic search 

Molecular 
dynamics 

Powerful simulation method, in the 
context of docking, by moving each 
atom separately in the field of the rest 
atoms, and represent the flexibility of 
both the ligand and protein 

For further refinement after 
docking 

 

Molecular docking is considered as an effective method to represent the physical 

interaction between a drug and a protein. Despite being far from covering the whole 

proteome, but scientists from all over the world are working on exploring the molecular 

docking mechanisms for most of the proteins available on the Protein Data Bank (PDB). 

2.6.4 Side Effect Similarity Approaches 

The simplest way to reposition a drug is to monitor carefully the side effects that might 

appear during the clinical trail of a drug, which might provide ideas for targets that can 

be exploited or diseases to be treated with the same drug. As mentioned previously, 

Sildenafil and Thalimode are examples for the most successful repositioned drugs 

which were repositioned after the observation of unexpected side effect. 

The concept of side effect observations has become very common in biological studies 

during the last few years. Consequently, a huge increase in the development of 

computational methods and tools to study diseases and drugs depending on side effect 

similarities and associations was recognized. These methods involved mainly two big 

areas: network theory’s concepts and property analysis, and machine learning methods 

and algorithms. 

Kuhn et al. (2010), developed a database called SIDER [94], as a source of side effects 

data, which connects 880 drugs to 1450 side effects [58]. The database serves the 

purpose of facilitating computational drug discovery and drug target predictions via side 
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effects data analysis. The drugs were grouped in the database according to their drug 

class, and shared side effects for each class of drugs are also provided. 

The basic principle of this drug repositioning approach, as it is explained in figure 2.10, 

is that the more side-effects shared by two drugs the stronger the similarity between 

them [54]. The similarity can be used to reposition either off-target or on-target drugs. 

 

Figure 2.10 Drug repositioning using side-effects similarity concept [54] 

2.6.5 Text Mining Approaches 

The advances in natural language processing (NLP) technology, have improved the text 

mining approaches resulting in more precise biomedical data mining studies. One more 

reason for the high demand and the improvements of text mining approaches is the vast 

increase in the number of published articles. PubMed, for example, contains more than 

20 million articles covering many scientific and medical disciplines [3].  

By definition, text mining is a method of textual analysis that transforms the text into 

significant indexes intended for data extraction and information identification [59]. Text 

mining in the context of drug repositioning is the attempt to link existing drugs to new 

diseases by thorough textual mining into the published biomedical abstracts. It is 

intended to identify alternative drug indications by overlapping or leveraging publicly 

available information resources and mechanism of action representations. 

Barcante et al. (2015) developed a drug repositioning approach based on text mining 

which consists of three distinct phases [60]. Phase 1: setting a programming framework 

which manifest the terms that will be used to search and recover abstracts in articles 

downloaded from PubMed. Phase 2: extracting protein names from full text articles that 

are previously selected, and searching for proteins with similar structure or function in 

the biological databases. Phase 3: suggest inputs for the repositioning of drugs. 
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Another approach was proposed by Patchala and Jegga [61] in 2015, in which they built 

a statistical topic model based on the Unified Medical Language System (UMLS) 

concepts which can be found in the disease and drug related abstracts in MEDLINE. 

This approach can be divided into four steps. Step 1: collection of drug and disease 

related abstracts from MEDLINE. Step 2: using MetaMap to map semantically the 

extracted disease and drug related abstracts. Step 3: building a topic model to determine 

the number of inherent topics in the dataset and to calculate the highest likelihood value 

for the trained model. Step 4: computing the differences between the topic distributions 

in the selected disease and drug profiles using Kullbak-Leibler divergence, see Figure 

2.11. 

 

Figure 2.11 Text mining approach based on topic modelling [61] 
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2.6.6 Machine Learning Approaches 

Machine learning is the science of constructing and exploring algorithms that can auto-

learn and perform predictions out of a given data [62]. In biomedical studies, it is 

perfectly feasible to use a combination of the biomedical descriptors such as chemical 

structure similarity, side effect associations, and protein-protein interactions (PPI), to 

train a machine learning algorithm and then generate predictions out of the statistical 

model. 

Recently, machine learning has been applied in almost every aspect of biomedical 

research making great improvements. Figure 2.12, shows a classification of the topics 

where machine learning methods are applied from system biology to function and 

structure prediction; it is everywhere [63]. 

 

Figure 2.12 Application of machine learning in biomedical topics [63] 
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Drug repositioning is also an area of research where machine learning approaches 

yielded several important studies: predicting new associations for unknown drug-

disease interactions, using many features or descriptors such as shared targets, side 

effect similarity, chemical structure similarity, and genetic variations similarity. Figure 

2.13 explains the concept of the machine learning approach [54]. 

 

Figure 2.13 The concept of machine learning approach. It uses different combinations 
of drug-drug similarity and disease-disease similarity to predict new indications [54] 

Napolitan et al (2013), proposed a machine learning approach by integration and 

prediction from three types of data: 1) the similarity in chemical structures of drugs, 2) 

proximity of targets in protein-protein interaction network, 3) correlation of gene 

expression patterns, based on building a classification algorithm which classifies drugs 

according to their therapeutic uses [64]. Figure 2.14 demonstrates the workflow of the 

analysis using this machine learning approach [64]. 

PREDICT is another example where machine learning algorithms that were designed by 

Gottlieb et al (2011) [65]. It depends on creating a drug-drug similarity and disease-

disease similarity matrix to predict a new drug indication according to its similarity to a 

known drug using a classification scoring system. The method is performed in three 

steps: 1) construction of drug-drug and disease-disease measures, 2) exploiting these 

similarity measures to construct classification rule, 3) application of the classifier to 

predict new associations. 
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Figure 2.14 Workflow of one machine learning approach example: red boxes are the 
process; green boxes are the data [64] 

2.7 Data sources for drug repositioning 

It is highly recommended in any drug repositioning process, particularly computational 

approaches, to create a list of data sources to extract the required information from it. 

Computational scientists in biomedical research have access to a wide range of 

information sources across multidisciplinary fields. 

In order to generate a solid model for data analysis, computational drug discovery 

requires all sorts of clinical, chemical and biological data sources. Data sources that are 

used for drug repositioning can be divided into three categories: chemical data 

(cheminformatics) such as chemical structure databases, biological data 

(Bioinformatics) such as pathways information databases, and literature or textual data 

like PubMed and MEDLINE, see table 2.6 [33]. 

Table 2.6 Databases for drug repositioning studies 

Field Databases Website  

Chemical 
structure 

PubChem http://pubchem.ncbi.nlm.nih.gov/  

Drugbank http://www.drugbank.ca/  

Therapeutic Target 
Database 

http://bidd.nus.edu.sg/group/TTD/ttd.asp  

Collaborative Drug https://www.collaborativedrug.com/  

PharmGKB http://www.pharmgkb.org/  

ChemSpider http://www.chemspider.com/  
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ChemFrog http://www.chemfrog.com/  

Chemicalize http://www.chemicalize.org/  

Drug-target 
information 

Drugbank http://www.drugbank.ca/  

SuperTarget http://bioinf-apache.charite.de/supertarget_v2/  

BindingDB http://www.bindingdb.org/bind/index.jsp  

Chemical-Protein 
Interactions 

http://stitch.embl.de/  

Literature 
houses and 
research 

tools 

PubMed http://www.ncbi.nlm.nih.gov/pubmed  

MEDLINE http://www.nlm.nih.gov/bsd/pmresources.html  

Google Scholar https://scholar.google.com.tr/  

Target 3D 
structure 

Protein Data Bank http://www.rcsb.org/pdb/home/home.do  

OCA http://oca.weizmann.ac.il/oca-bin/ocamain  

OPM http://opm.phar.umich.edu/  

Proteopedia http://proteopedia.org/wiki/index.php/Main_Page  

TOPSAN http://www.topsan.org/  

Side effects 

SIDER http://sideeffects.embl.de/  

FAERS http://www.fda.gov/Drugs/  

Clinicalrial.gov http://clinicaltrials.gov/  

Molecular 
omics data 

NCBI-GEO http://www.ncbi.nlm.nih.gov/geo/  

Sequence Read 
Archive 

http://www.ncbi.nlm.nih.gov/Traces/sra/  

Stanford Microarray 
Database 

http://smd.princeton.edu/  

ArrayExpress http://www.ebi.ac.uk/arrayexpress/  

Princeton University 
MicroArray database 

https://puma.princeton.edu/  

CellMiner http://discover.nci.nih.gov/cellminer/  

Oncomine https://www.oncomine.org/resource/login.html  

Cancer Cell Line 
Encyclopedia 

http://www.broadinstitute.org/ccle/home  

Genetic data 
dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/  

OMIM http://www.omim.org/  

Pathway 
information 

NCI-PID http://pid.nci.nih.gov/  

KEGG http://www.genome.jp/kegg/  
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Pathway 
information 

BioCarta http://www.biocarta.com/  

Reactome http://www.reactome.org/  

PathwayCommons http://www.pathwaycommons.org/about/  

Drug omics 
data 

Connectivity Map http://www.broadinstitute.org/cmap/  

CCLE http://www.broadinstitute.org/ccle/home 

NCBI-GEO http://www.ncbi.nlm.nih.gov/geo/  

SRA http://www.ncbi.nlm.nih.gov/Traces/sra/  

Protein 
interaction 
information 

HPRD http://www.hprd.org/  

BioGRID http://thebiogrid.org/  

STRING http://string-db.org/  

MIPS http://mips.helmholtz-muenchen.de/proj/ppi/  

IntAct http://www.ebi.ac.uk/intact/  

DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi  

2.8 Examples of Notable Databases 

I will briefly describe four databases that represent four concepts of drug repositioning. 

These databases were developed to be a source of information and a computational tool 

which provide the capacity of analyzing its own data content. The concepts represented 

here are: analyzing complex networks based on probability theory, analyzing networks 

based on similarities, molecular docking, and disease-disease similarities. 

2.8.1 Pharm DB 

Pharm DB [103] is a Korean platform based on network structural and topological 

properties analysis [9]. This platform aims to establish a linkage between drugs, 

proteins, diseases and side effects, and to discover unknown associations in various 

complex networks. It targets four kinds of nodes: drugs or chemical molecules, drug 

targets which can be protein or DNA, diseases, and side effects.   

To do so, they constructed an algorithm called Shared Neighborhood Scoring (SNS), to 

predict any kind of relationships between the four kinds of nodes. The algorithm 

depends on probability theory to evaluate and calculate the connections between two 

nodes (which can be drug and protein for example). It sums up what they called “Shared 

Nodes Count”, the number of shared nodes, and “Shared Nodes Weight”, the product of 

each weight of direct or indirect links bridging the two end nodes. The represented 
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nodes can be one of these combinations: drug-disease, drug-drug, drug-protein, drug-

side effect, disease-protein, and protein-protein see Figure 2.15.  

 

 

Figure 2.15 Shared Neighborhood Scoring (SNS) Algorithm [9] 
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The pharm DB platform has three interfaces: web browser for data collection, 

phExplorer for data visualization, and BioMart for predicting the shortest path between 

two nodes. Figure 2.16 shows an overview of the pharm DB platform [9]. 

 

Figure 2.16 Overview of pharm DB which showing the nine data sources in top, with 
terms references to overlap the synonyms, the shared neighborhood scoring algorithm, 

and the three component of the interface of the platform [9] 

2.8.2 Promiscuous 

Promiscuous, the term is derived from the word promiscuity which means the ability to 

have several partners or connections in the same time. It is a web-based tool [104] and 

network-focused database which contain three types of entities: proteins, drugs and 

side-effect data. The analysis is performed on combinations of the different entities 

interaction possibilities: drug-drug, drug-protein, protein-protein, and drug-side effect. 

The interaction combinations are subjected to a rule-based classification algorithm 

which classifies the drug-drug structural similarities, the networks of protein-protein 

interaction and its distances, and so on for drugs side effects.  



34 
 

As shown on Figure 2.17, promiscuous has five interfaces: 1) data visualizer which can 

represent the entities as nodes and can analyze the nodes and their links, 2) KEGG 

pathway mapping which allows users to explore the drugs or proteins involved in 

some signaling and metabolic pathways, 3) full text search that can view any ID 

information of a drug or a disease in any context in detail, 4) relation viewer which 

provides the information of the relationships between entities in detail, 5) pin board 

interface which facilitates searching and enables the saving of searched information to 

make it available anytime. 

Performing a search in promiscuous, based on drug similarity features, the database 

developers found an important connection between two known drugs. Memantine, a 

drug prescribed for dementia in Alzheimer’s disease patients, and Amantadine, an anti-

Parkinson drug, were found to share the same target (NMDA glutamate receptor) in 

their mechanism of action [66].  

 

Figure 2.17 Promiscuous schematic illustration [66] 
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2.8.3 DRAR-CPI 

DRAR-CPI [93] is a server that contains a library designed to find candidates for drug 

repositioning based on two elements: Chemical-protein interactome (CPI) and adverse 

drug reaction (ADR). The server works in parallel with DOCK, a software engineered 

in the 1980s to predict the binding modes of small molecules. DOCK uses geometric 

algorithms to calculate the probability of docking score [67]. 

The DRAR-CPI server has created an in silico association data using the DOCK 

software, and established a library of 385 target proteins and 254 small molecules. The 

drugs included in the library have an extensive description of their indications and 

ADRs which allows for the prediction of repositioning candidates based on the 

association scores between library molecules. 

Figure 2.18 bellow, illustrates the main stages in the DRAR-CPI server workflow. The 

workflow starts by uploading a drug file in the format of mol or smiles. Then, the 

DOCK will hybridize the drug with all the targets in the library and will calculate the 

binding affinity scores. The binding scores of the uploaded drug will then be compared 

to the drugs existing on the server library resulting in negative and positive association 

scores representing a weak or strong correlation respectively [68]. 

 

Figure 2.18 procedure of DRAR-CPI work [93] 

2.8.4 Disease-Connect 

Disease-connect [105] is a web-hosted server aims to classify diseases using a 

completely new strategy, trying to solve the problem of traditional classification method 
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which groups diseases according to their clinical symptoms and phenotypic traits. 

Diseases with similar clinical presentations and completely different etiologies will be 

grouped together which will mislead the drug designing process. Disease-Connect 

overcome this problem by classifying diseases according to their molecular etiology not 

their phenotypic presentations. This classification method will provide a substantial data 

source for the repositioning of existing drugs toward the treatment of many diseases 

[69].  

The user interface on the Disease-Connect platform provides the possibility to search 

for a gene, a disease or a comparison between two diseases. The data outcome of 

diseases correlation search includes: disease-related gene expression, disease-related 

microRNA expression, disease-related SNP, disease-drug, disease-comorbidity, disease-

gene relationships from Gene RIF database, disease-gene relationships from literature 

corpus mining, and disease-gene relationships from OMIM. 

Figure 2.19 represents the Disease-Connect operational network for the analysis of the 

correlation between two or more diseases. It combines the disease-gene associations 

from three different databases. Then, it enriches this combination by appending the 

disease-drug relations to it.  In addition to that, it calculates the p-value for the number 

of genes shared between two diseases to assess the significance of the relation between 

these diseases. 
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Figure 2.19 Overview of Disease-Connect server [69] 
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CHAPTER 3 

METHODS AND MATERIALS 

3.1 Why Machine Learning?  

Machine learning (ML) is a subfield of artificial intelligence, which depends on 

intelligent algorithms that enables the machine to learn and predict from a provided 

data. In the data perspective, machine learning is a type of data mining that improve the 

program’s own ability to extract and recognize the patterns inside the data. 

I decided, in my thesis, to apply machine learning techniques to predict unknown drug-

disease associations (patterns) in order to reposition existing drugs to multiple diseases. 

The process is initiated by feeding the programming language (Python in my case) with 

data about drugs, diseases, and proteins resulting in calculated associations between the 

provided data inputs. The reasons behind the use of machine learning can be 

summarized in the following points: 

1. Big biomedical data available online 

2. ML is fast and time saving 

3. ML can lead to highly accurate results 

4. Can incorporate many descriptors, compared to one descriptor in other repositioning 

methods 

5. The existence of many drug interaction models to work with 

Generally, the process of machine learning can be divided into several main steps [63]:  

1.  Collecting the data (in our case, collecting structure, activity, phenotype data for 

drugs, and the data that will characterize the diseases). 

2.  Integration and merging the different data sources into only one format, in purpose 

of resolute and detect of outliers and inconsistencies, and solve it.
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3.  90% of the time in machine learning projects is spent on selection, cleaning, 

transforming, and correcting the uncorrected data. (step 2 and 3 known as data 

preparation). 

4.  Taking the objectives of the study into account in order to choose the most suitable 

analysis method for the data (data mining step), and selecting the model of learning 

according to the encountered problem. In machine learning there are two main types 

of learning: 

A.  Supervised learning: (I will explain it in more detail, because most of my work is 

based on the supervised learning), but in general, supervised learning is an algorithm 

that uses a known dataset (called the training data) to make predictions, the input and 

desired output value are determined. 

B.  Unsupervised learning: is an exploratory data analysis to discover hidden patterns or 

grouping in data, without labeled responses, leaving the algorithm to find structures 

on the data on its own. 

5. The last step after obtaining the predicted model from the data is the testing, 

evaluation, and interpretation of the model in the biological and statistical perspectives.  

Yaser S. Abu-mostafa, professor of machine learning at California institute of 

technology, and author of classic book in the field titled “Learning from data”, said: in 

any learning problem and machine learning task you need three components to apply 

machine learning techniques to the problem you are facing [70]: 

1. A pattern exists, and we have to find it (unknown drug-disease associations in our 

case)  

2. We cannot pin it down mathematically 

3. We have data on it 

3.1.1 Supervised Learning  

As I have mentioned, the thesis is based on supervised learning framework, which can 

be achieved by two main steps: 1. Taking a known data set as an input, and known 

responses (desired labels) to the data as an output to train a model (Figure 3.1), 2. 

Generating predicted responses using the trained model on a new dataset (Figure 3.2). 
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Figure 3.1: First step of supervised learning [71] 

 

 

 

3.2 Second step of supervised learning [71] 

 

There are two main categories of supervised learning: regression analysis and statistical 

classification. Here is the explanation of both categories:  

1.  Regression is the prediction of a changeable and continuous measurement for an 

observation. Response variables are real numbers. 

2.  Classification is the process of taking a data set as an input, and assigning a class 

(labels can be: true or false) from a finite set of classes to the input. Classes are 

categorical variables [71]. 

3.2 Materials 

The essential data involved in my thesis include drug chemical substructures, drug 

targets information [72], drug side effects [73], disease-related genes and disease-

miRNA expressions. To stand on the shoulders of previous research work, I used 

already constructed data sets from one of the most successful works on systematic drug 

repositioning. Then, I extracted determined amount of data and integrate it into a proper 

structure to fit the thesis analysis format, which I will explain in the next section of this 

chapter. 

3.2.1 Sources 

The datasets that were used in this thesis have been acquired from multiple databases 

because individually each database was not comprehensive enough.  
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1. DrugBank: DrugBank is the most powerful tool and comprehensive database for any 

drug-related data including drug target information, drug chemical structures, drugs side 

effects data, pharmacogenomics data, drug action pathways information [106]. It is also 

useful for any in silico application such as drug target discovery, rational drug design, 

drug metabolism prediction, molecular docking [74]. DrugBank contain until now 7,795 

(small molecule, experimental, biotech) drugs, 237 unique enzymes (with 3483 drug-

enzymes associations), 4,140 unique targets (with 15,376 drug-target associations), 117 

unique transporters (with 1769 drug-transporter associations), and 24 unique carriers 

(with 321 drug-carrier associations) [75]. 

2. PubChem: PubChem [95] is part of the National Center for Biotechnology 

Information (NCBI) databases. It is an open source of data about biological activities of 

small molecules, molecular structure and bioassay data. It enables biomedical 

researchers and medicinal chemists to search, retrieve and analyze the available data. 

PubChem is divided into three main parts [76]: i) PubChem Substance which contains 

descriptions about the chemical structures, substructures, and their biological activities, 

ii) PubChem Compound for searching into the chemical properties of unique 

compounds or similar action group searching, iii) PubChem BioAssay is a database that 

provide the biological activity experimental data from different sources.  

3. KEGG : an abbreviation of Kyoto Encyclopedia of Genes and Genomes [107]. The 

original purpose of this database was to become a main source of information for the 

genes and their functions [77]. Nowadays; KEGG is collection of many databases with 

tools to explore and search in these databases, including: KEGG DRUG, KEGG 

DISEASE, KEGG PATHWAY, KEGG GENES, KEGG GENOME, KEGG BRITE, 

KEGG COMPOUND (for small molecules) and KEGG REACTION (for biochemical 

reactions) and others. In perspective of statistics, KEGG contain: 10,305 drugs, 1,870 

drug groups, 17,484 compounds (metabolites and other small molecules), 1,432 human 

diseases, and 17,855,904 genes (not only human genes) [78]. 

4.SIDER: [93]is a specialized database on drug related side effects data, including 

normal and placebo drugs. SIDER became a primary source for biomedical research 

that based on side effects data [91]. The database contains 5,880 side effects, 1,430 

drugs, and 140,064 drug-side effect pairs. 
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3.3 Methods 

The method goes into many steps: i) drug and disease data acquisition, ii) preprocess, 

clean and prepare the data, iii) drug and disease feature extraction and build the 

associations profiles, iv) reduce the feature and select the most predictive features v) 

building the classification model using support vector machine (SVM) algorithms, vi) 

test the model into new data and predict new drug-disease associations, see Figure 3.3 

which for the workflow of the work.  

 

Figure 3.3 Workflow  
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3.3.1 Feature Types 

1. Chemical Structure  

The principle of chemical structure property is derived from the medicinal chemistry 

traditional concept which suggests that similar molecules exert similar biological 

activities within the biological systems [81]. That similarity can be searched and 

explored computationally by 3D structure or 2D fingerprint.  

To calculate the chemical structure similarity, I used Tanimoto coefficient. In order to 

understand the Tanimoto coefficient I have first to explain the Jaccard Index or Jaccard 

similarity coefficient, which was originally coined (1912) by the Swiss scientist Paul 

Jaccard. Jaccard index is a statistical measurement that compares the similarity and 

diversity between two data sets, it is a ratio of the intersection between two sets over the 

union of them [82], which is presented as: 

 

 

 

T.T. Tanimoto developed his similarity and distance index at IBM labs [83], which have 

the same mathematical model (similarity ratio) of Jaccard Index, but the application 

proof of concept was different. In the chemical structure similarity context, Tanimoto 

coefficient calculates the similarity (SIMchem) between two drugs (dx, dy) which were 

presented as a binary fingerprints ƒ(dx) and ƒ(dy) to indicate the existence of predefined 

fragment [84]:   

 

Where: ƒ(dx) is the number of fragments of dx, ƒ(dy) is the number of fragments of dy, 

and the dot is used to produce the number of shared fragments of dx and dy. 

To compute the calculation of Tanimoto similarity coefficient, PubChem developed a 

web-based tool known as Score Matrix Service, which enables the user to identify 2D 
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fingerprint similarity for an uploaded matrix CSV file resulting in scores in the range of 

[0…100].  

2. Side Effect 

Side effect means in biological and pharmacological sciences all the effects that appear 

when trying a molecule or a drug which were unintended originally upon the 

development of the drug. It is a secondary, unknown, and unexpected effect. These kind 

of effects which are observed during experimental testing or clinical trials are divided 

into two types: i) therapeutic effect, which is considered as a positive drug effect which 

was unknown before, ii) adverse effect which is harmful and might be a lethal effect in 

some cases. 

In both types, the reason behind using side effect data to identify drug-disease 

associations in purpose of repositioning drugs is that the side effect might highlight and 

delineate an unobservable mechanism of action for the tested drug [73]. Specific effects 

are linked to specific pathways, when the tested drug produce a certain side effect which 

is linked to a known pathway new drug targets can be identified. Finally, drugs that 

generate similar effects (or side effects) might share some similarity in terms of their 

targets [73]. 

3. Drug Target 

Identification of new drug targets is an important approach in drug repositioning, and a 

first step of drug development. If drug repositioning research can help to speed up this 

step, then the results will speed up all the process of drug production. Drug target also is 

a core and fundamental property to construct a similarity association between two drugs 

involving that they share a similar target or a large percent of multi-targets in drug 

combinations.  The targets might be genes, proteins, and enzymes (which have been 

used) by changing their functions, downregulating their functions, or upregulating their 

functions. Subsequently, by calculating the shared targets similarity between two drugs 

(SIMtarget) Dx and Dy would suggest a functional similarity between them, leading to the 

assumption that Dx can treat unknown common diseases treated by Dy. 

Based on the materials provided earlier, two types of calculations were used to 

investigate targets similarities, associations and interactions. First: the distance 

measurement which is used to calculate the closeness between two drug-related gene 
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pairs [69]. Second: using an already calculated Smith-Waterman sequence alignment 

scores provided by MimMiner [84], which have been done for all genes and genetic 

disorders available on OMIM.  

4. miRNA  

Micro RNA is a short RNA molecule of about 22 nucleotides in length that possess a 

regulatory function. The main function of miRNA is to downregulate the gene 

expression at the post-transcriptional level. It is considered as a key element for cellular 

signaling and cell viability, therefore maintaining the miRNA levels is very critical in 

most biological systems. The dysregulation of miRNA expression can lead to a wide 

range of diseases such as cardiovascular diseases and some types of cancer [80].   

The many interesting feature of miRNAs, including specific secondary structures and 

conserved sequences, elected them to be good potential targets for drug design. 

Therapeutic uses of miRNA are preferred over the use of a mixture of small interfering 

RNAs (siRNAs) that are specifically designed to bind to specific messenger RNAs 

(mRNA) leading to their cleavage. Accordingly, specific miRNAs are believed to 

become the next treatment targets for a majority of diseases [85]. 

In terms of drug repositioning, most of the data published about miRNAs and their 

specific features and functions can be viewed in two ways: i) miRNA-drug associations 

data (available at SM2miR database) which provide experimentally validated effects, 

and contains (for homo sapiens) 161 drugs, 748 miRNAs, and 2307 miRNA-drug 

associations, ii) miRNA-disease associations data (available at HMDD database) which 

contains 502 miRNAs, 396 diseases, and 5075 associations.    

The potential use of miRNA for drug repositioning rises with the importance of using it 

as a drug target. Several associations can be built between drugs and diseases based on 

the affected miRNAs. Knowing the miRNAs involved in the manifestation of certain 

untreatable diseases and comparing them with miRNAs that are affected by known 

drugs is a hopeful approach for the repositioning of known drugs toward many diseases.  

3.3.2 Machine Learning Format 

All the previous works in drug repositioning combines their data using kernel methods 

to be ready to fuse the data into kernel matrix, which is known as similarity-based 
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machine learning. I prefer in this thesis to work with traditional machine learning where 

there are the instances (objects) of interest, features (or attributes) that will be the 

descriptors of the instances, and the classes (in classification context, where the 

instances will be: associated 1 class, non-associated 0 class). 

Figure 3.4 shows the format of similarity-based machine learning using kernel methods, 

and Figure 3.5 shows the format of traditional machine learning, where there are the 

instances (gene as example) and features. In the Table 3.1 I will show the format of this 

work where it will summarize the instances, features, and classes. 

 

 

Figure 3.4 Format of the data in the similarity-based machine learning using kernel 

method [92] 
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Figure 3.5 Format of the data in the traditional machine learning [92] 
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Table 3.1 The form of learning: summarizes the instances, features, and classes of this 

work, where 1 stand for associated drug-disease pairs, and 0 for non-associated drug-

disease-pairs 

Instance 
Feature 1: 
Chemical 
structure 

Feature 2: 
Side effect  

Feature 3: 
Drug target  

Feature 4: 
miRNA 

expression 

Feature 5: 
Disease-

related genes 
class 

Drug1-
disease1 

     1 

Drug1-
disease2 

     1 

Drug2-
disease1 

     0 

Drug2-
disease2 

     0 

 

3.3.3 Dimensionality Reduction 

In the preprocessing step of data mining, dimensionality reduction is bringing out the 

useful part of the data by reducing the number of non-useful or missing features [86]. It 

is also known that the transformation of data from high-dimensional space to low 

dimensional space incorporates the most variable and valuable data by removing 

irrelevant (e.g., near duplicates, poor predictors) and weakly relevant features. 

There are two approaches of dimensionality reduction: i) feature selection, and ii) 

feature extraction. Feature selection techniques used to simplify the predictive model, 

reduce the data training times, and avoiding the Overfitting while feature extraction, 

which is very important in image and signal processing is an operation of extraction or 

identification of meaningful and accurate features inside raw data. See Figure 3.6 to get 

the idea of feature extraction, and Figure 3.7 which illustrate the whole process and the 

role of feature extraction and selection (dimensionality reduction) on it.  

 

Figure 3.6 Feature extraction [88] 
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Figure 3.7 Dimensionality reduction in data mining [88] 

One of the most important issues in machine learning after overfitting is the curse of 

dimensionality which dimensionality reduction techniques can help to solve. Curse of 

dimensionality occurs when adding more features compared to the number of instances 

leads to poor classifier performance [89]. 

Figure 3.8 shows the relationship between increasing dimensionality and classifier 

performance. There is a point called optimal number of features where the classifier 

performs the best until this point with the addition of extra features. However, each 

additional feature above this point decreases the performance of the classifier. 

 

Figure 3.8 Dimensionality and performance [91] 
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3.3.4 Classification of Dataset  

In this thesis, I will use supervised classification framework to solve binary vector-like 

problem which represent drug-disease pairs association. In addition, I will use support 

vector machine (SVM) algorithms which belong to the classification category of 

machine learning, to train a classifier on the data set to build a predictive model that will 

predict if the drug is associated with the disease or not. 

3.3.4.1 Classification Definition  

In a classification problem, there are a class-like sets of instance, the classes (in our 

case: associated, and non-associated of drug-disease pairs) are divided based on defined 

features and classification rules. The role of supervised classification algorithms is to 

discover the unknown classification rules from the raw data.  

In statistical classification, there is a feature binary vector X, which contains two main 

components: i) predictor variables and ii) class variables C = {0, 1}. The predictive 

model result from induction of classifiers from the training data which contain a set of N 

observations DN = {(x (1), c (1), …, (x(N), c(N)) [90]. 

3.3.4.2 Support Vector Machine (SVM) 

Support vector machine (SVM) is a linear discrimination type of learning, and decision 

based algorithm for making predictions by classifying the data into classes or several 

groups. SVMs algorithms generally classify the instances based on a linear function of 

the features, the following equation describes this linear discrimination (a general linear 

model) mathematically: 

Ƒ(x) = w0 + w1x1 + w2x2 + … 

Considering that x is feature vector, and xi is individual features. 

Support vector machine algorithms are based on a simple idea: firstly, fitting the widest 

bar between the classes (which is known as the maximal margin), then separating the 

classes with a line which will be in the middle of the bar (known as the separating 

hyperplane) [90]. 

 In other words, support vector machine is based on three basic ideas: i) finding the 

most proper hyperplane which will separate all points of class one from all points of 

class two, the most proper hyperplane is the one that has widest margin between the two 
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classes, ii) the margin is the maximal width that has no inner points between two 

parallel lines of the hyperplane, iii) support vectors are the closest point to the 

hyperplane [90]. 

A simple example is shown in figure 3.9, there are two classes, green squares are data of 

class one while orange circles are data of class two. The support vector machine 

algorithm sets up the black line (hyperplane), and margin (blue and dotted gray parallel 

lines) separating the two classes. In addition to that, support vectors (in red: circles and 

squares) defines the hyperplane.     

 

3.9 Support vector machine 

3.3.4.3 Two Approach of Classification 

1. Two class classification using (SVM) problem, where I tried to distinguish between 

two classes of objects. In the thesis context, class 1 (represented as 1) is associated 

drug-disease pairs, while class 2 (represented as 0) is non-associated drug-disease pairs. 

2. One class classification using (SVM) problem, where I tried to describe one class of 

objects, distinguish it from all other possible objects and find the outliers. I the thesis 

context class 1 for associated drug-disease pairs, where class -1 is the outliers. 

3.3.5 Validating the Classification Model  

The main phases in any classification task are: training phase, and testing phase. 

Training the data set, also known as model building, is using part of the data set to train 
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the algorithm. The testing step is applying the model to unseen data using known values 

to compare the values that are predicted with the known values. The reason behind the 

testing phase is to assess the accuracy of the model predictions. 

In this study, as it is usually in model evaluation, I used the accuracy to test the 

classification performance and examine its ability to construct (predict) the drug-disease 

associations. Accuracy is defined as the percentage of the closeness of predicted values 

to the known values. The following equation is used to calculate the accuracy:  

 

3.3.6 Scripts and Programming Tools 

In this thesis, I used two programming language, R language for data acquisition and 

preprocessing, and Python for data analysis and machine learning. R language is a 

powerful language for applied statistics with thousands of packages; see Table 3.2 

which contains these packages and their functions. Python is an important language for 

data science with libraries that makes the data analysis easier; also see the used libraries 

in Table 3.3. 

Table 3.2 R language packages 

Package Function 

XLConnect package 
Provides comprehensive functionality to read, write and format 

excel data 

Tidyer package Used for data tidying, reshaping and aggregating 

Dplyer package Used for data manipulation 

Openxlsx package Used for read, write and edit XLSL files 
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Table 3.3 Python libraries 

Library Function  

Pandas Data analysis library 

NumPy Scientific computing library 

Scikit-learn Machine learning library 

Matplotlib 2D plotting library 

Seaborn Statistical data visualization library 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter, I will present the hybridized data sets, the dimensionality reduction 

results, the classification results and the classification accuracy. In addition to that, I 

will end that with a conclusion based in the results. 

4.1 Hybrid Dataset 

The original size of data I acquired from the databases is shown in Table 4.1. The 

hybridized data sets made of different combinations of the features that related to the 

drug-disease associations. Using the original data, I prepared four data sets which 

contains different types of features, and I chose to work with the fourth data set because 

it contains all the types of the features and the suitable amount of associations. See 

Table 4.2 which summarizes these data sets. 

Table 4.1 Original size of data 

Data Original size 

Drug-disease known associations 

Drug 1066 

Disease 364 

associations 1976 

Drug-chemical substructures 
Drug 888 

Chemical 
substructure 

881 

Drug-side effect 
Drug 888 

Side effect 881 

Drug-targets 
Drug 11771 

Target 11771 

Disease-genes 
Disease 3306 

Genes 3306 

Disease-miRNA expressions 
Disease 1207 

miRNA expression 1207 
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Table 4.2 Hybrid datasets 

Data 
set 

Chemical 
substructure 

Side 
effect 

Target Gene miRNA Drug Disease Associations 

1 ✔ ✔ ✘ ✔ ✘ 109 109 369 
2 ✔ ✔ ✘ ✔ ✔ 56 56 926 
3 ✔ ✔ ✔ ✔ ✘ 106 106 208 
4 ✔ ✔ ✔ ✔ ✔ 55 55 639 

 

Table 4.3 shows information about the number of each type of feature of the selected 

data sets. In addition, I checked the frequency of the diseases and the drugs, because 

each drug associated with many diseases, and each disease associated with many drugs. 

Figure 4.1 contains a plot for disease occurrence, and Figure 4.2 contains a plot for 

drugs occurrence. 

Table 4.3 Information about selected data set 

Drug-disease 
pairs number 

Chemical 
substructure 

Side 
effect 

Target Gene miRNA 
Features total 

numbers 
639 491 817 137 65 137 1647 

 

Figure 4.1 Number of the diseases occurrence 
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Figure 4.2 Number of the drugs occurrence 

4.2 Basic Statistics 

First of all, I checked the mean and the standard deviation values of the features of the 

selected data set, to get first hunch for the overall distribution of the entire dataset. 

Table 4.4 contains the mean value of each feature type and Figure 4.3 shows its chart. 

Table 4.5 contains the standard deviation value of each feature type and Figure 4.4 

shows its chart. 

 

Table 4.4 Mean value of each feature type 

Feature mean 
Chemical substructure 0.319308 

Side effect 0.139238 
Drug target 0.030746 

Genes 0.021823 
miRNAs 0.039346 
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Figure 4.3 Chart for feature types mean 

 

Table 4.5 Standard deviation value of each feature type 

Feature mean 
Chemical substructure 0.466209 

Side effect 0.346195 
Drug target 0.172631 

Genes 0.146105 
miRNAs 0.194417 

 

 

Figure 4.4 Plot Chart for feature types standard deviation 
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4.3 Dimensionality Reduction 

1. Dimensionality reduction for two classes classification approach: to prepare the data 

set for two classes (SVM) and to use dimensionality reduction methods, I needed to 

split the data set into training and testing set, then to randomize each data set to have 

positives and negatives. Table 4.6 shows the size of each after splitting, and Table 4.7 

the data sets after randomization. 

Table 4.6 Training and testing data sets splitting 

Data set Object Feature 

Original data set 639 pairs 1647 

Training data set 439 pairs 1647 

Testing data set 200 pairs 1647 

 

Table 4.7 data sets before and after randomization 

Training data 

439 pairs Before randomization All positives pairs 

1000 pairs After randomization 
439 positives pairs 

561 negatives pairs 

Testing data 

200 pairs Before randomization All positives pairs 

500 pairs After randomization 
200 positives pairs 

300 negatives pairs 

 

To reduce the features and select the best predictive ones, I used three methods 

available on Python scikit-learn library for machine learning: i) feature importance 

using Extra trees classifier, ii) recursive feature elimination (RFE), iii) principal 

component analysis (PCA). Using each method, I reduced the features into 100 features 

and 20 features.  

i) Feature importance using Extra trees classifier:  

A) 100 features approach: Table 4.8 contains the selected 100 features according to this 

method for each feature type. Figure 4.5 shows the chart of the selected 100 features, 

where we can see that the biggest number of important features is from miRNA type. 

Where there is no any chemical substructure or drug target features.  
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Table 4.8 100 features reduction using Extra trees classifier for two classes SVM 
approach 

Feature type Amount 

Chemical substructure 0 

Side effect 1 

Drug target 0 

Gene 25 

miRNA 74 
 

 

Figure 4.5 Chart for the 100 features that selected using Extra trees classifier for two 
classes SVM approach 

B) 20 features approach: Table 4.9 contains the selected 20 features according to this 

method for each feature type. Figure 4.6 shows the chart of the selected 20 features, 

where we can see that the biggest number of important features is from miRNA type, 

again. Where there is no any chemical substructure, drug target or side effect features. 

In addition, Figure 4.7 illustrates the most weighted 20 important feature. 

Table 4.9 20 features reduction using Extra trees classifier for two classes SVM 
approach 

Feature type Amount 
Chemical substructure 0 

Side effect 0 
Drug target 0 

Gene 6 
miRNA 14 
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Figure 4.6 Chart for the 20 features that are selected using Extra trees classifier for two 
classes SVM approach 

 

 

Figure 4.7 Chart for the most weighted 20 important feature according to Extra trees 
classifier  

ii) Feature reduction using recursive feature elimination (RFE): 

A) 100 features approach: Table 4.10 contains the selected 100 features according to 

this method for each feature type. Figure 4.8 shows the chart of the selected 100 

features, where we can see that the biggest number of important features is still from 

miRNA type, but we can see based on this method features from side effect and 

chemical substructure feature types also.  
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Table 4.10 100 features reduction using RFE for two classes SVM approach 

Feature type Amount 
Chemical substructure 11 

Side effect 14 
Drug target 10 

Gene 23 
miRNA 42 

 

 

Figure 4.8 Chart for the 100 features that selected using RFE for two classes SVM 
approach 

 

B) 20 features approach: Table 4.11 contains the selected 20 features according to this 

method for each feature type. Figure 4.9 shows the chart of the selected 20 features, 

where we can see that the biggest number of important features is still from miRNA and 

gene types, but we can see proportionally, based on this method features from side 

effect and chemical substructure feature types also.  

Table 4.11 20 features reduction using RFE for two classes SVM approach 

Feature type Amount 
Chemical substructure 1 

Side effect 1 
Drug target 4 

Gene 6 
miRNA 8 
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Figure 4.9 Chart for the 20 features that are selected using RFE for two classes SVM 
approach 

iii) Feature reduction using PCA: 

I also applied this principal component analysis (PCA) method, to do two approaches to 

reduce the features into 100 and 20. Nevertheless, due to its transformation the data set 

into different format by combining many features, I can not figure out the amount of the 

features each type based on because I can not know what is these features. But the 

efficiency of the method will appear after applying the model constructed using SVM. 

2. Dimensionality reduction for one class classification approach: I used two methods 

for dimensionality reduction for one class SVM. Extra trees classifier and recursive 

feature elimination (RFE) methods can not be used for one class classification. Then I 

used state-space search method and principal component analysis PCA. Using State 

space search method, I was able to reduce the features into 20 features: 

Table 4.12 contains the selected 20 features according to this method for each feature 

type. Figure 4.10 shows the chart of the selected 20 features, where we can see that the 

biggest number of important features is still from Chemical substructure and side effect 

types, and less amount of drug target and miRNA features, where the gene feature type 

is zero.  
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Table 4.12 20 features reduction using state-space search method for one class SVM 
approach 

Feature type Amount 
Chemical substructure 10 

Side effect 5 
Drug target 3 

Gene 0 
miRNA 2 

 

 

Figure 4.10 Chart for the 20 features that selected using state-space search method for 
one class SVM approach 

4.4 Pearson Correlation Coefficient 

The Pearson’s correlation coefficient is calculated by dividing the covariance of the two 

variables by the product of their standard deviations. It ranges from 1 for perfectly 

correlated variables to -1 for perfectly anti-correlated variables and 0 means 

uncorrelated. Figure 4.11 shows the high and low correlations between features and 

classes, while Figure 4.12 shows hot plot for Pearson correlation between the important 

features. 
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Figure 4.11 Pearson correlation coefficient between highest and lowest features and 

classes 
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Figure 4.12 Pearson correlation coefficient between most important features 
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4.5 Classification Test Accuracy 

A perfect model of classification would have an accuracy 1.00 resulting from the 

correct distinguish of all true positives and true negatives in the two classes’ 

classification task and to figure out the true positives and true outliers in the one class 

classification. I built models and tested its accuracies after using previous reduction 

methods. Table 4.13 shows the results for two class classification accuracies, and Table 

4.14 for one class approach. 

Table 4.13 classification test accuracy for two classes approach 

Method  
Features 
number 

Test set 
accuracy 

Data set after using Extra trees classifier for 
reduction 

100 0.265 

Data set after using Extra trees classifier for 
reduction 

20 0.00 

Data set after using RFE for reduction 100 0.586 

Data set after using RFE for reduction 20 0.17 

Data set after using PCA for reduction 100 0.355 

Data set after using PCA for reduction 20 0.33 

 

Table 4.14 classification test accuracy for one class approach 

Method  
Features 
number 

Test set 
accuracy 

Data set after using PCA for reduction 100 0.965 

Data set after using PCA for reduction 20 0.975 

Data set after using state-space search for 
reduction 

20 1.00 

 

Classification accuracies that were obtained using PCA and state-space search methods 

of one class classification are extremely higher than those obtained using all the 

dimensionality reduction methods of two classes’ classification. This shows that the 

randomization of drug-disease pairs that were picked up from data sets to utilized the 

two classes’ classification was wrong and imprecise. 
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4.6 The Most Predictive Features 

Since I utilized 1.00 classification test set accuracy based on dimensionality reduction 

using state-space search method (reduced into 20 features) and one class support vector 

machine (SVM) for model building, then I checked how much these features have 

associations either with drugs or with diseases. Table 4.15 summarizes these features, 

their type and their associations. 

Table 4.15 Summary of most predictive features 

Feature Type Associations Drug/disease 

sub571 Chemical substructure 34 Drug 

sub700 Chemical substructure 17 Drug 

sub413 Chemical substructure 5 Drug 

sub635 Chemical substructure 34 Drug 

sub338 Chemical substructure 12 Drug 

sub685 Chemical substructure 24 Drug 

sub393 Chemical substructure 23 Drug 

sub424 Chemical substructure 3 Drug 

sub359 Chemical substructure 14 Drug 

sub443 Chemical substructure 18 Drug 

Cancer Side effect 17 Drug 

adenomas benign Side effect 9 Drug 

arteriosclerosis Side effect 9 Drug 

leukocytosis Side effect 3 Drug 

sinus congestion Side effect 9 Drug 

tubb6 Target 19 Drug 

tubb1 Target 19 Drug 

kcnmb4 Target 2 Drug 

microRNA 138-1 miRNA 7 Disease 

microRNA 125b-2 miRNA 10 Disease 
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4.7 Conclusion 

In this chapter, I prepared four hybridized data sets using drug-disease known 

associations and five types of features which describe these associations. In addition, I 

carried out three methods for dimensionality reduction for two classes classification 

approach, and two methods for dimensionality reduction for one class classification 

approach. I also generated classification models using those features which were found 

based on these methods. 

 Once a model with high accuracy is generated, in my case (state-space search for 

feature reduction and one class support vector machine algorithms for model 

generation), it can be used to predict the class of a newly drug-disease associations, and 

further computational and experimental analysis can be carried out in a more informed 

manner. 
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