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 ABSTRACT 

 

POWERLINE DETECTION FOR AIRCRAFT FLIGHT SAFETY                

USING IMAGE PROCESSING 

 

Ömer Emre YETGİN 

 

Department of Electrical and Electronics Engineering  

Anadolu University, Graduate School of Sciences, November, 2018 

 

Supervisor: Prof. Dr. Ömer Nezih GEREK 

 

In this thesis, several active methods have been proposed for the safety of air ve-

hicles, which prevent air vehicles from colliding with electrical wires. In this context, 

Discrete Cosine Transform, Linear Binary Pattern, Histogram of Gradient and Convolu-

tional Neural Network methods were used. The methods were tested on image databases, 

which consist of real life aerial images that were captured and curated by ourselves. The 

recognition performances of such scenes with these methods were compared. The effects 

of various pre-processing / pre-training on the classification and feature extraction steps 

were also examined. 

 

Keywords:  Powerlines, Discrete cosine transform, Linear binary pattern, Histogram of 

gradients, Convolutional neural network. 
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ÖZET 

 

HAVA ARACI UÇUŞ GÜVENLİĞİ İÇİN GÖRÜNTÜ İŞLEME                       

KULLANILARAK GERİLİM TELİ TESPİTİ 

 

Ömer Emre YETGİN 

 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Kasım, 2018 

 

Danışman: Prof. Dr. Ömer Nezih GEREK 

 

 Bu tezde, hava araçlarının güvenliğine yönelik olarak, hava araçlarının elektrik 

tellerine çarpmalarını engeleyecek aktif birkaç yöntem önerilmiştir. Bu kapsamda, Ayrık 

Kosinüs Dönüşümü, Lineer İkili Desen, Gradyenlerin Histogramı ve Evrişimsel Nöral 

Ağ yöntemleri kullanılmıştır. Kullanılan yöntemler, tarafımızdan oluşturulan ve gerçek 

görüntülerden oluşturulan veritabanı üzerinde denenmiştir. Bu yöntemlerin elektrik teli 

içeren sahneleri tanıma performansları karşılaştırılmıştır. Yöntemler uygulanmadan önce, 

ön-işleme / ön-eğitim işlemlerinde hangi metodların kullanılacağı ve bu metodların per-

formansları da incelenmiştir.  

 

Anahtar Kelimeler:  Yüksek gerilim telleri, Ayrık kosinüs dönüşümü, Lineer ikili 

desen, Gradyenlerin histogramı, Evrişimsel nöral ağ. 
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1. INTRODUCTION 

 Flight safety for air vehicles is one of the most important issues. There are many 

factors affecting flight safety. One of the most important of these factors are electrical 

wires. For this reason, it is of great importance to develop a system that will warn the 

pilots beforehand by detecting which may pose great danger for certain aircrafts, such 

as helicopters. 

 Wire accidents usually occur during low altitude aircraft flights. Helicopters and 

small aircraft pilots have difficulty in detecting thin electrical wires when flying low.  A 

low-flying aircraft is at danger because it is close to obstacles such as trees, electrical 

wires, buildings and radio poles. Furthermore, in urban areas, objects with linear pat-

terns such as buildings, trees and shadows on helicopters' flight routes make the detecti-

on of electrical wires even more difficult. 

 Due to the low contrast between the cable and the background, especially in clo-

udy weather, the detection of thin objects such as electrical wires become a very diffi-

cult problem and several studies have been carried out on this problem (Yetgin, 2013, 

Liu, 2014, Song, 2014).  

 Conditions where the wire cannot be distinguished from the background are a ma-

jor danger to the aircraft. Often, the only electrical wires in the most unexpected places 

in the countryside are the biggest danger and it is very difficult to detect these wires 

from the aircraft. 

 Factors affecting the visibility of the wires are the position of the sun, the backg-

round color of the wire, the terrain obstacles and the bad weather conditions. In additi-

on, the correct detection of the wire can be difficult due to various optical events. When 

the low-lying wires are displayed together with the high-pitched wires, they appear to 

be even farther away. This effect is improved when these wires are approached closer. 
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 Another factor that prevents the pilot's ability to detect electric poles is the physi-

ological limitations of the eye. When looking forward, the normal viewing angle of each 

eye is approximately 120 degrees in the vertical and 200 degrees in the horizontal. Ho-

wever, the field of view, which provides a clear detail of the electrical wires, is rather 

narrow. Therefore, the detection of electrical wires by the human eye becomes a very 

difficult problem. 

 In addition to the physical conditions mentioned above, there are many human 

factors such as stress, physical and mental fatigue. However, the most important human 

factor associated with low flight missions is the distraction of the pilot. There are seve-

ral reasons for the distraction of the pilot. These are bad weather, personal stress, objects 

on the ground, radio calls, disturbances in hardware and passengers. 

Distractibility generally be divided into four classes: 

1. Visual distributions-especially eye-catching images 

2. Audio distributions - radio or telephone 

3. Physical distributions-disease 

4. Mental distributions-diving into the tHought  

 These distractions can take place one by one or together and turn the pilot's atten-

tion away from the flight. 

 The pilot's view of the outside environment is also affected by the shadow and 

vibration in the cockpit. Shadows often reduce the quality of vision.  As is known, hu-

man performance decreases after exposure to a certain level of vibration for a long time. 

For example, the natural frequency of the human eye and internal structure ranges from 

20 to 90 Hz. Similarly, the structural frequency of many helicopters is in the range of 20 

Hz. 
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 Although power poles are one of the most reliable indicators for wire detection, in 

some cases it is not easy to see these poles. In particular, wooden poles can be camouf-

laged with landscapes or greenery or trees. For example, since the color of oxidized 

copper wires turns green, it is very difficult to separate these wires from the grasses and 

trees in the background. 

Various exciter objects can be placed near the wire to indicate the presence of 

electrical wires. In order to warn the pilots in the current situation, 2 colored (white and 

orange) and 4 kg weighted aluminum spheres are placed on high voltage cables (Yetgin, 

2017). 

               

Figure. 1.1. Alert sphere is an example app and warning ball (Yetgin, 2017). 

 Pilots are given various trainings on avoidance of wire accidents, and helicopter 

pilots can avoid wire accidents with various maneuvers. Experts thinks that the area to 

be operated before the low flight operations will be explored from a higher flight. Ho-

wever, this is not always possible. 

1.1. Alert Response Time Measurement 

 Pilots can save a helicopter as soon as possible and in an emergency. For this pur-

pose, it is necessary to determine the operational characteristics of the pilots, such as 

"detection time" and "response time".  

 The “Civil Aviation Authority (CAA)” report also stated that the correct reaction 

time will be between 0.8 and 3.9 seconds depending on the flight phase. When the heli-

copter pilots give their full attention to the test tasks, the reaction times are very fast. 

However, they cannot always focus their attention on a single job.  
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 Generally, the average detection time varies between 1 and 2.5 seconds (CAA, 

1999). The helicopters have an average flight speed of 135 knots (250 km/h) in addition 

to the necessity of low flight in special missions such as military operations. Based on 

this data, a helicopter with a speed of 135 knots per hour travels about 200 meters in an 

average of 3 seconds. Therefore, an electrical wire detection system to be developed 

based on computer vision or image processing should be able to detect electrical wires 

at a distance of at least 200 meters. 

1.2. Related Work 

 In this section, we will discuss the work done to recognize the electrical cables. 

Several methods have been proposed in the literature for the detection of electrical lines. 

1.2.1. Academic literature 

 H. Saito and his colleagues proposed a laser-based method. The advantages of this 

laser system have been reported to be compact and operational. However, the lasers 

used in this system are not suitable for human eye health and have some weaknesses 

such as being affected by weather conditions (humidity, fog, heat, etc.) very quickly 

(Saito, 1992). 

  K. Sarabandi and his colleagues have recommended using Millimeter-Wave 

Radars to avoid a reduction in laser performance due to bad weather conditions. The 

periodic effects of the helical surface properties of the electrical lines at high frequen-

cies (34 and 94 GHz) are important factors in the scattering behavior of electric lines. 

Therefore, due to their surface properties, radar back scattering occurs in the diagonal 

and horizontal polarized component, and these components use a unique separator sig-

nature (Sarabandi, 1999, Wei, 2008). 

 Again, K. Sarabandi and his colleagues in another study identified electrical ca-

bles using polarimetric SAR images obtained from the scattering of electromagnetic 

waves using the helical structure of powerlines (Sarabandi, 1994). They also proposed a 

method of extracting electric lines by using SAR images from Millimeter-Wave Radars 

operating at 35 GHz (Sarabandi, 2000). 
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Hiroyuki Yamaguchi and his colleagues proposed the use of the Millimeter-Wave 

Radar based on Bragg scattering method to determine the azimuth angular profile matc-

hing (APM) structure. As a result of the analysis at 35 GHz and 94 GHz frequencies, the 

probability of detection at 94 GHz was found to be higher (Yamaguchi, 2000). 

Qirong Ma and his colleagues first applied the Hough transformation to detect all 

the lines in the millimeter wave radar image. To eliminate lines that do not belong to the 

electric lines, they used a 14-dimensional feature vector using Bragg patterns for each 

line they found and classed them using SVM classifiers. Finally, they determined the 

electrical wires by looking at the correlation between consecutive frames (Ma, 2011). 

Another method is the detection of electrical lines based on the linear characteris-

tics of the powerline, and therefore these methods are called line-based methods. Gu-

angjian Yan and his colleagues first identified the line with a dash mask they identified. 

Secondly, they used the Radon transformation to express each line as a vector according 

to the slope and length criteria, and finally, using the Kalman Filter, they filled the gaps 

between the lines to obtain more robust lines (Yan, 2007). 

Joshua Candamo and his colleagues first analyzed consecutive frames in the video 

and found the changing pixels. They then used the Canny edge detector to map edge 

areas of the varying pixel areas (property map) and used morphological filters (8 linked 

components) to eliminate unbound pixels (Candamo, 2006; 2008; 2009). 

Again, in a similar study by Joshua Candamo and colleagues, they first performed 

edge detection to identify candidate pixels. They then used an 8-way chain-code histog-

ram method to eliminate noise detected as an edge and to detect straight lines. Then, in 

order to analyze whether the detected lines were powerlines, they determined the Gaus-

sian distributions of the pixels in a given region around each line and eliminated those 

that were not in the same group (Candamo, 2010). 

Zhengrong Li and colleagues have developed a PCNN (Pulse-Coupled Neural Ne-

twork) to separate the powerlines from the background. They then applied the Hough 

Transform to find the powerlines in the background separated image (Li, 2008, 2010). 
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Yuee Liu and colleagues used a directional filter to detect the differences in the 

image in the first stage and then used region magnification, bound component analysis 

and line addition methods to obtain lines from the resulting tread points, respectively 

(Liu, 2012). 

Ömer Emre Yetgin and his colleagues have shown that electrical line detection 

can be done with high accuracy and fast line finding method such as EDLines, LSD and 

Hough Transform (Yetgin, 2013; 2015). 

Xiaoyan Luo and his friends have proposed a method using new images created 

by combining RGB and NIR images. Then, electrical wire detection is performed by 

applying edge detection, line detection and verification methods in new fusion images 

(Luo, 2014). 

Biqin Song et al. found primarily FDOG values of gray level images. They then 

applied a morphological filter to the FDOG response to obtain an edge map and using 

edge maps, they obtained line pools. Then, they realized the validation process with the 

developed graphical cutting model (Song, 2014). 

Jun Zhang and his colleagues proposed a system of two stages (training and re-

cognition). Poles and wires were determined during the training phase and the spatial 

correlation was calculated between them. A Bayesian probability classification model 

based on the correlation values was trained. During the detection phase, the detected 

posts and wires were classified using a pre-trained model (Zhang, 2014). 

 Carol Martinez and her colleagues have developed a system based on the prototy-

pes of the power poles in their video frames. First, vertical components were found by 

applying a vertical Sobel filter and Hough Transform on each frame. Then, a specific 

area in the vertical components was divided into windows and the feature vector was 

obtained by using a HOG identifier in each window. Finally, the resulting feature vec-

tors were classified using MLP (Multilayer Perceptron) (Martinez, 2014, Shan, 2015). 

 Feng Tian and his colleagues applied bilateral filtering to improve their video and 

then applied the Hough Transform to detect electrical wires (Tian, 2015). 
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 Chaofeng Pan and his colleagues suggested a 3-step method. In the first step, they 

have extracted an edge map from each image using the directional filters. The extracted 

edge map has both electrical lines and background edges. In the second step, they used 

a CNN structure consisting of 5 hidden layers and 2 classes to eliminate the effects of 

the background (there is a powerline, there is no powerline). They determined the con-

figuration parameters of CNN according to the fixed trial and error in the training phase 

and trained the CNN network. When the pictures in the database they used were exami-

ned, it was found that the pictures were taken from the ground. In other words, they 

used images with a background sky. In the last step, line detection was performed using 

Hough Transform (Pan, 2016). In reality, images with background shapes should be 

used in the background. For this reason, in our works, real images taken from the plane, 

images with ground shapes in the background were used (Yetgin, 2017). 

 For powerline detection, various systems have been developed to assist pilots. 

These systems will be briefly discussed below. 

1.2.2. Industrial application literature  

1.2.2.1. Powerline detector 

 An electronic unit for the limited detection of power cables has been developed 

(Vengalattore, 2008). This detector detects the electromagnetic field around the electri-

cal wires and gives a warning to the pilot that it is close to an electric wire and consists 

of an electronic unit in the cockpit and a whip antenna mounted on the helicopter surfa-

ce. This system can detect an electromagnetic field at a distance of about 1800 meters 

depending on the distance between the powerlines and the current (power) it contains. 

The warning sound increases as you approach the powerline. The electronic unit opera-

tes with 28 Vdc from the aircraft and can detect electrical wires at a frequency of 60 Hz. 

This detector can produce healthy results only for active powerlines and fails for other 

cables, inactive lines, phone lines, etc. (Vengalattore, 2008). 
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1.2.2.2. WSPS (Wire Strike Protection System)  

 Powerline accidents produce serious results for helicopters. For example, if the 

helicopter hits a cable with enough speed, the electrical wire may break the helicopter 

glass. Protection systems protect the helicopter from the wires that hit the windshield. 

Another commercially available system, namely WSPS, consists of one or more cutters 

mounted on the helicopter surface. The aim is not the detection of the cable, but rather 

elimination of the cable wire before it may impose a threat. There is a deflector verti-

cally in the middle of the windshield and this deflector allows the electric cable to slide 

from the helicopter surface to the cutter. 

 In order for the cutters to be effective, the flight speed of the helicopter must be 

higher than 30 knots. According to the information obtained from the manufacturer, if a 

helicopter with a WSPS is struck by an angle less than 60°, there is a possibility that 

WSPS may not be able to cut its electrical wire. However, if a wire has hit the cutters on 

the helicopter, this cutter must be replaced with a new one (Vengalattore, 2008). 

1.2.2.3. OASYS (Obstacle Avoidance Laser Radar System) 

 OASYS is a 35 GHz radio-frequency radar mounted on the nose of the helicop-

ter and is used to detect obstacles in the direction of flight. This radar constantly scans 

obstacles in the field of view. At any time, the system uses the data from the aircraft 

GPS to identify the flight path of the aircraft and the three potentially risky areas in this 

direction. If an object is in any of these 3 zones, a warning is given to the pilot accor-

ding to the proximity of the obstacle and the distance of the object to the aircraft and its 

location on a screen in the cockpit is indicated. The system scans a large area around the 

helicopter during take-off, but the scanning area narrows as the helicopter moves at high 

speed. The OASYS has a maximum coverage of 1600 meters, an optimal coverage of 

800 meters and a minimum coverage of 2 meters. The system can also work effectively 

in rainy and foggy weather. The OASYS cannot detect objects above or behind the airc-

raft (Vengalattore, 2008). 
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1.2.2.4. LOAS (Laser Obstacle Awareness System)    

 LOAS is a warning system that can detect small objects such as wires. It uses a 

laser that is not harmful to the eye. The system can be directed to the desired direction 

by the pilot. The minimum coverage of the system is 2 m and the maximum coverage is 

2 km. The viewing angle of the scan head can vary between 180° horizontally and bet-

ween “+ 30° and -90°” in the vertical (Vengalattore, 2008). 

1.2.2.5. HELLAS (Helicopter Laser Radar System) 

 HELLAS is a system that can detect as thin objects as wire. The system uses a 

laser that is not harmful to the eye and can be mounted anywhere on the helicopter. The 

air space around the helicopter is shown on the screen and the obstacles in the flight 

path of the helicopter are marked. HELLAS is a system that helps pilots in low visibility 

conditions. The coverage area of the system is reduced in bad weather (Vengalattore, 

2008). 
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2. EXPERIMENTAL WORK 

2.1. Aerial Image Dataset 

Creating a database of aerial images taken from an aircraft is a difficult and very 

expensive method. Therefore, the limited number of aerial images has been used for the 

powerline detections in the literature. The aerial image dataset used in this study was 

created by TEIAS. The dataset contains VL and IR videos for the same scene. The air-

borne image system is shown in Figure 2.1. 

 

     

      (a) External appearance of the helicopter.            (b) Imaging system mounted on a gimbal. 

Figure 2.1. Airborne imaging system implemented by TEIAS (Yetgin, 2017). 

The video resolutions are 576 × 325 for IR and 1920 × 1080 for VL. As can be 

seen from the Figure below, an image database consisting of the pictures we obtained 

from the videos was created. 

The first data set consists of 6000 VL and 6000 IR images in 128 × 128 dimen-

sions (Figure 2.2.). Each image spectrum contains 4000 negative and 2000 positive 

samples. Also, the pictures in the database are classified as “Easy” and "Difficult", ac-

cording to their contents. The videos were obtained from different geographical loca-

tions in Turkey (21 different cities). The samples were chosen to provide various diffi-

culties due to different backgrounds, lighting and weather conditions. 
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Figure 2.2. Examples from the aerial image dataset. (a) IR images (with powerlines), (b) IR image                           
  (without powerlines), (c) VL images (with powerlines) and (d) VL images (without                            

    powerlines). 

The second data set consists of 400 VL and 400 IR images with 512 × 512 dimen-

sions. Each image spectrum consists of 200 negative and 200 positive sample images 

and their Ground Truths. Electrical lines are generally warmer or colder than the envi-

ronment, which significantly increases the visibility of electrical wires in IR images. 

However, this effect is reversed when the line temperature is close to the ambient tem-

perature. When creating a database, we aimed to select examples of IR images that rep-

resent both of these conditions. In addition to proposing a method for powerline recog-

nition, an important contribution to this study is to provide a real database for the prob-

lem of powerline recognition that can be used to compare studies in the literature. The 

database can be downloaded from (Yetgin, 2017). 
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 Due to the limited amount of useful load handling of small aircraft such as heli-

copters, computer vision systems offer several advantages for applications such as low 

size, weight and power consumption, wire detection. In order to assist pilots in aircraft, 

there are imaging systems using various equipment, such as thermal (night) and night 

vision cameras. Each of these imaging systems has its own specific purpose. When pi-

lots are difficult to fly, they try to fly safely using these imaging systems. 

 Within the scope of this thesis, studies have been carried out on adequate remote 

recognition of electrical wires by using methods not previously used in the literature. In 

addition, a database of images taken from the aircraft not yet found in the literature was 

created. 

 DCT / FFT, LBP, and HOG methods are commonly used to extract features in  

image / pattern recognition applications. CNN is a machine learning method and it can 

be used as both feature extractor and classifier. In our study, the aforementioned met-

hods have been used for detection powerlines in scene together with the various classi-

fier methods. 

2.2. Image Feature Extraction 

2.2.1. Discrete cosine transform (DCT) 

 A signal / picture is subdivide to the sub-bands in the frequency domain with us-

ing DCT. The information in a signal / picture is scattered across various frequencies in 

the frequency domain. By using DCT, it is revealed how much density the information 

in the picture is in the frequency component. A signal/picture provides a conversion 

from a spatial domain to a frequency domain with using DCT, and in this respect is a 

similar conversion to a Discrete Fourier Transform (DFT). 

 Both Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT) 

perform the following similar functions: Both represent a discrete time vector of finite 

length as a sum of the basic functions scaled and shifted. The difference between the 

two is the basic type of function used by each conversion. While DCT uses only (real-

valued) cosine functions, the DFT uses a series of complex exponential functions with a 

series of harmonics. 
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 DCT is often used in lossy data compression applications such as JPEG image 

format. The DCT representation of a signal, compared to other transformations such as 

DFT, is that most of the energy of the signal / image causes it to condense in a small 

number of coefficients. This is one of the most desirable features for a compression al-

gorithm. If the original (time or spatial area) signal can be approximately represented 

using a relatively small set of DCT coefficients, we can reduce the data storage re-

quirement by storing only significant amounts of energy-consuming DCT outputs. 

2.2.1.1. Advantages and disadvantages of DCT 

DCT is orthogonal (the opposite is equal to transpose and maintains its energy) 

and is a linear transformation and can be calculated with rapid algorithms. Energy con-

servation means that the sum of the squares of the values of the pixels in the image is 

equal to the sum of the squares of the coefficients obtained after DCT. Therefore, it is 

understood that there is no loss of information as a result of DCT. 

 The advantage of DCT is that it can collect the energy in the original picture to 

several frequency coefficients, depending on the correlation between the pixel values in 

the image. So many DCT coefficients have zero or very small values. Orthogonality 

means that the signal's auto-correlation is low. If the auto-correlation of a signal is high, 

that is, if there is a strong relationship between the signal values or if there is a strong 

correlation between the pixels in the image (the correlation is high), many DCT coeffi-

cients will be zero or too small. 

 The first DCT coefficients refer to low frequency DCT coefficients. High-value 

DCT coefficients are called high-frequency components, and for the 2-D matrices (im-

ages), the number of components with higher frequencies to the bottom right increases. 

For pictures, regions with low frequency components represent slow transitions / varia-

tions in the picture, and regions with high frequency components represent the location 

of rapid transitions / changes in the picture. Therefore, low-frequency components con-

tain a lot of information about the overall image, while high-frequency components in-

clude the edge of the image.  
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 If there is a pattern in the image, it can be said that the correlation between the 

components in that image is high. In the case of high correlations, the values of the low 

frequency components are high and the values of the high frequency components are 

low. For images without any pattern, no information can be obtained about which fre-

quency component will receive low values. They may all be high or low value. 

Inverse DCT (Inverse DCT) provides the original data from DCT coefficients. 

This conversion can occur 100% lossless depending on the data. In addition, if IDCT is 

applied to the signal which is obtained by making other coefficients zero excepts the 

first few coefficients on the DCT coefficients, the difference of obtained signal with 

original signal (mean square error) is very low. This is because the majority of the ener-

gy of the original signal is collected in the first few DCT coefficients. This means that 

the signal has high correlation. 

2.2.1.2. Dynamic range adjustment (LOG-DCT)  

When the magnitudes of coefficients have a huge variation, it may be difficult to 

depict small differences due to the exaggerated dynamic range. A popular method to 

suppress the dynamic range whilst retaining visualization of the differences at small 

values is taking the logarithm of the values. “LOG-DCT” is the logarithm of the DCT 

coefficients of an image. The logarithm function is often used for two purposes in many 

image processing / pattern recognition applications. The first is to minimize the changes 

in the illumination that is usually encountered in the preprocessing phase. For this pur-

pose, the logarithm of the DCT is taken and the problems caused by the illumination are 

minimized. 

 Second, due to any conversion the pixel values between 0-255 in the image can be 

very large and a wide range. In this case, trading with these values increases both the 

workload and the interpretation of the data. For this reason, logarithms of these large 

values are obtained and the data is formed to smaller values. Thus, Although the process 

load resulting from the size of the data is reduced, the larger range covered by the data 

is narrowed to provide better interpretable data. 
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 For example, the DCT of the IR image, which has pixel values between “0-214”, 

takes values between -5095.3-26036 in both a high value and a wide range, while the 

l o g a r i t h m o f t h e a b s o l u t e v a l u e o f t h e s e v a l u e s ( l o g ( a b s ( d c t ) ) ) , 

“-10,4236-10,1672” (Figure 2.3).  

  

          (a)                                                        (b)                                                        (c) 

Figure 2.3. LOG-DCT examples for IR image. (a) IR image (with powerlines), (b) DCT of (a),                         

        (c) LOG-DCT of (a). 

 For example, the DCT of the VL image, which has a pixel value of “56-240”, 

takes values between “-1089.2-59730” in both a high value and a very wide range, 

while the logarithm of the absolute value (log (abs (dct))), “-13,1476-10,9976” (Figure 

2.4). 

 
              (a)                                           (b)                                                        (c)   

Figure 2.4. LOG-DCT examples for VL image. (a) VL image (with powerlines), (b) DCT of (a),                                 
        (c) LOG-DCT of (a). 
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2.2.1.3. Formulation 

 For an exemplary matrix  in image , Type-II 2-D DCT (commonly used) is 

defined as follows: 

 

 

                       (2.1) 

Where $  and $  represent vertical and horizontal frequencies, respectively. It has 

not yet been determined whether the DCT of electrical wires is a global structure or a 

detail. As can be seen from the Figure 2.5, a different pattern is observed in the DCT of 

the lines in various angles. 

$  

Figure 2.5. Line image and its abs-log DCT (a) A 5o line image and its abs-log DCT, (b) A 63o line image 
      and its abs-log DCT, (c) A 126o line image and its abs-log DCT, (d) A 176o line image and its          

      abs-log DCT.                                                                
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 Unfortunately, as in the picture Figure 2.6., electrical wires do not always have a 

simple background. Therefore, the real problem is to look for electrical wires in the real 

images. Otherwise, Hough Transform (HT) (Duda, 1972) would be an excellent and 

clear choice to detect artificial lines on images, but it was observed that actual images 

had a very negative impact on the performance of HT. Therefore, more robust results 

will be obtained with DCT. The Figure 2.6. shows IR and VL images with and without 

electrical wires and corresponding abs-log DCT images. 

 

Figure 2.6.  IR and VL images and its abs-log DCT (a) IR image without powerlines and corresponding                
       abs-log DCT, (b) IR image with powerlines and corresponding abs-log DCT, (c) VL image                                       

     without powerlines and corresponding abs-log DCT, (d) VL image with powerlines and                       
           corresponding abs-log DCT. 
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2.2.1.4. DCT feature selection strategies  

Because most of the signal energy is present at low frequencies, the choice of fe-

atures in the upper left of the DCT is a conventional approach. In this study, we consi-

dered the selection of the property area in the 2x2, 4x4, 8x8, 16x16, 32x32, 64x64 and 

128x128 DCT window sizes (as shown in Figure 2.7 (a)) except the DC coefficient it-

self. In our experimental studies, we defined this path of DCT feature selection as 

“Classical Selection (CS)”. 

In contrast to the classical approach, electricity lines are expected to be at higher 

frequencies. Therefore, a trial worth approach is to select the DCT field starting from 

the highest frequency region (as in Figure 2.7 (b)) of similar variable field dimensions. 

In our experimental studies, we defined this path of DCT feature selection as “Reversed 

Selection (RS)”. 

Another alternative to the above two strategies is to select block regions on the 

DCT data in the form of a pavement, as seen in Figures 2.7 (c, d and e). In our experi-

mental studies, we defined this path of DCT feature selection as “Proposed-2 (Patch-

Based-PB)”. For all DCT block selection methods above, the number of properties inc-

reases as the block size increases. This is expected to improve classification performan-

ce. However, excessive adaptation to the model may cause degradation of performance 

during the testing phase. This effect was also investigated in the following experimental 

sections.  

$18



 
Figure 2.7. DCT features selection methods (a) Low frequency favored selection of DCT features at                     
      increasing sizes, (b) High frequency favored selection of DCT features at increasing sizes                    
         (Proposed-1), (c-d-e) Patch-Based Selection of DCT features at different sizes (Proposed-2) 

2.2.2. LBP and HOG  

 LBP is widely used as a feature extraction method in the areas of image proces-

sing and computer vision (Ojala, 2002). It provides resistance to different lighting con-

ditions and is simple in terms of calculation. Quite simply, the 8-neighbor with a pixel 

of interest is compared. As a result of the comparison, instead of the neighboring pixel, 

when the neighboring pixel is larger than the compared pixel, a value consisting of 1 

and otherwise a value of 0 is written, resulting in the 8-bit code.  

 The decimal value of this 8-bit number naturally identifies local structural infor-

mation around the corresponding pixel. Another very popular object detection method is 

HOG (Dalal, 2005). It is known that the gradient information obtained from the image 

carries distinctive information between the foreground and background in the image. In 

the HOG method, the image is divided into blocks and the gradients in each cell are cal-

culated (at certain angular intervals - usually around 20 degrees). HOG deals with the 

histogram of the gradient angles, and these gradient angles create a distinctive property 

for the objects.  
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 These two methods and the properties obtained from DCT were tested / used on 

the same classifiers to detect images containing electrical wires. 

2.2.3. Experimental Results for Features 

 The properties obtained using the above-described feature extraction / selection 

methods were fed into the Naïve Bayes, Random Forest and SVM classifiers to define 

scenes with electrical wires. Classification success was evaluated according to accuracy 

rate (%). 

 Figure 2.8 shows the accuracy of Naive Bayes, Random Forest and SVM classifi-

er results in different dimensions obtained by the LBP method for (a) IR and (b) VL 

images. 

The corresponding results for the HOG method are shown in Figure 2.9. The re-

sults for DCT properties begin with Figure 2.10, where the property dimensions are se-

lected according to CS. Figure 2.11 illustrates the results for DCT feature selection this 

time with an inverse selection path (Proposed-1 as described in Figure 2.7). 

 A quick comparison between Figures 2.11 and 2.12 shows that selecting DCT 

samples from high frequency regions (Figure 2.12) significantly improves the electrical 

wire detection performance (Proposed-2 as described in Sec.2.2.1.4). 

By comparison, LBP performs better on VL images, while HOG on IR images 

performs better. Nevertheless, with the patch-based selection, DCT-based classification 

gives good results from both. 
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Figure 2.8. Classification results using LBP at various feature sizes for (a) IR and (b) VL images. 

 
Figure 2.9. Classification results using HOG at various feature sizes for (a) IR and (b) VL images. 

 
Figure 2.10. Classification results using CS at various DCT feature sizes for (a) IR and (b) VL images. 
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  Figure 2.11. Classification results using Proposed-1 (RS) at various DCT feature sizes for (a) IR and                     

            (b) VL images. 

The final comparison is performed with the-Patch-Based Based DCT Selection, 

which is called Proposed-2. In this method, DCT samples from low and high frequency 

components are selected. As we can see in Figure 2.12 (a), while the Patch-Based Based 

DCT Selection is the most successful method for IR images, Reverse DCT Selection 

method is the most successful method for VL images. 

 
Figure 2.12. Classification results using Proposed-2 (PB) Selection at various DCT feature sizes for               
         (a) IR and (b) VL images. 
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In the Classical and Proposed-2 methods, the conversion of matrices into 1-D 

property vectors before classification was carried out by zigzag scanning of DCT 

blocks. On the other hand, in the Proposed-1 method, a 1-D feature vector was created 

by zig-zag scanning method (from the highest frequencies to low frequencies) starting 

from the bottom right of the DCT matrix. 

Table 2.1 and 2.3. show the maximum results from the IR and VL image database, 

IR and VL results are also presented as confusion matrices (Tables 2.2 and 2.4) to better 

explain false alarm and missing rates. Typically, LBP and HOG are not available in 4x4 

and 8x8 property sizes. 

Table 2.1. Detailed results (at maximum accuracy, corresponding to Patch-Based-64x64 (Proposed-1)                    
     selection and Random Forest classifier) for IR database. 

Table 2.2. The confusion matrix of the IR database. 

Class TP Rate FP Rate Precision Recall F-Measure

1 
(with cable)

0,991 0,044 0,958 0,991 0,974

0 
(without cable)

0,957 0,009 0,991 0,957 0,973

Weighted Avg. 0,974 0,026 0,974 0,974 0,974

A b Classified as

1982 18 a = 1 (with cable)

87 1913 b = 0 (without cable)
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Table 2.3. Detailed results (at maximum accuracy, corresponding to Reverse-128x128 (Proposed-2)                     

       selection and Random Forest Classifier) for VL database. 

Figure 2.13. Receiver Operating Characteristic (ROC) curves for (a) Patch-Based Feature Selection                             
 Method for IR and (b) Reverse Feature Selection Method for VL images with different                          
 classifiers. 

Table 2.4. The confusion matrix of the VL database. 

Class TP Rate FP Rate Precision Recall F-Measure

   1 
(with cable)

0,930 0,140 0,870 0,930 0,899

              0 
(without cable)

0,861 0,071 0,924 0,861 0,891

Weighted Avg. 0,895 0,105 0,897 0,895 0,895

 (a)  (b)

a b Classified as

1859 141 a = 1 (with cable)

279 1721 b = 0 (without cable)

$24



For the corresponding maximum accuracy conditions presented in Table 2.1-2.3, 

receiver operating characteristic curves are also determined and are presented in Figure 

2.13. When these curves are examined, it can be seen that most of the classifiers provide 

a very efficient (sharply curved) ROC curve with the most efficient classifier, Random 

Forest (labeled green and labeled as RF). Again, the IR images show higher performan-

ce (Figure 2.12 (a)). In particular, the effects of objects such as roads, buildings, rail-

ways in the background of the images on the recognition performance of electrical wires 

appear to be less in IR images than in VL images. The success and robustness of the 

classification results of the proposed algorithms are illustrated in more detail by compa-

ring with popular methods based on edge / line detection throughout Figures 2.14-2.19. 

 The Figures presented in Figures 2.14 and 2.19 illustrate the case in which the 

images with electrical wires are properly classified by our method and the edge / line 

detection methods successfully find the electrical wires (despite the scattered backgro-

unds). 

 

Figure 2.14. Edge/Line detection results : (a) IR images (with powerlines, correctly detected by our                     

 method), (b) Ground Truth of (a), (c) EDLines, (d) LSD and (e) HT. All methods are                   

 successful.               
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Figure 2.15. Edge/Line detection results : (a) VL images (with powerlines, correctly detected by our                 
 method), (b) Ground Truth of (a), (c) EDLines, (d) LSD and (e) HT. All methods                       

 are successful. 

 Figures 2.14 and 2.15 illustrate situations in which the image includes electrical 

wires and is properly classified by our methods, but edge / line detection methods      

usually detect edges / lines corresponding to the wrong lines/edges. 
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Figure 2.16. Edge/Line detection results : (a) IR images (with powerlines, correctly detected by our                

     method), (b) Ground Truth of (a), (c) EDLines (d) LSD and (e) HT. Edge/line detection                
         methods incorrect. 

 

Figure 2.17. Edge/Line detection results : (a) VL images (with powerlines, correctly detected by our                                                    

     method), (b) Ground Truth of (a), (c) EDLines (d) LSD and (e) HT. Edge/line detection                                  
         methods incorrect. 

$27



 Although the images presented in Figures 2.16 and 2.17 are are correctly 

classified by our methods, but it has been observed that edge / line detection methods 

give more false alarms. 

 

 Figure 2.18. Edge/Line detection results: (a) IR images (without powerlines, correctly identified by our         

     method), (b) Ground Truth of (a), (c) EDLines (d) LSD and (e) HT. Edge/line detection                         
         methods incorrect. 
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Figure 2.19. Edge/Line detection results: (a) VL images (without powerlines, correctly identified by our                     

     method), (b) Ground Truth of (a), (c) EDLines, (d) LSD and (e) HT. Edge/line detection                                            
         methods incorrect. 

The detailed results for the various DCT feature selection methods (with LBP and 

HOG), applied to various classification methods, are presented in Table 2.1 (for IR) and 

Table 2.3 (for VL images).  

The best performing examples of each class are highlighted in bold. The experi-

mental results are presented for a small number of data samples (ie 4x4 or 8x8), for this 

case, the conventional DCT selection method provides more successful results (compa-

red to higher frequency features only). 

However, starting from the 16x16 dimension, the larger and higher frequency fe-

atures start to offer better performance, so the Proposed-2 and Recommended-1 met-

hods provide more successful results than other methods. If a comparison is made bet-

ween the classifiers, it can be said that Random Forest and SVM classifiers perform bet-

ter than Naïve Bayes. Interestingly, IR images provide higher classification results in 

larger feature sizes. However, for small property sizes, this does not apply. 
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Considering the criticality of accurate detection of images with electrical wires in 

air vehicles, the Random Forest classifier applied to IR images and the choice of Patch-

Based DCT (Recommended-2) with the size of 64x64 achieved the highest success with 

a test classification accuracy of 97.38%. Experimentally, the 64x64 size region corres-

ponds to the 4th region we identified in the DCT matrix (corresponds to the DCT samp-

les in the highest frequency range). This region is in fact the same as the 64x64 region 

in Proposed-1. 

The only difference is the low-high frequency zig-zag sequence in Proposed-2 and 

the high-low-frequency (traditional) zig-zag scan in Proposed-1. Experimentally, the so-

called proposed-2 method appears to perform better, particularly using Random Forest 

classification. Edge / line detection-based methods (as shown in Figure 2.14-2.19) exhi-

bit very high false positive rates and their classification performance is usually below 

55% for IR and below 48% for VL databases. 

The Table 2.5 shows the IR and VL image classification performances. VL images 

were more successful for 4x4 and 8x8 features, but for larger feature sizes, IR images 

were more successful. 

Table 2.5. Comparison of IR and VL Database Classification Results. 

FEATURE EXTRACTION / SELECTION 
METHOD

FEATURE 
SIZE

SUCCESSFUL 
DATABASE

SUCCESSFUL 
CLASSIFIER

 CLASSICAL SELECTION 4x4 VISIBLE
RANDOM 
FOREST 
(69,58%)

 CLASSICAL SELECTION 8x8 VISIBLE
RANDOM 
FOREST 
(69,95%)

 PATCH-BASED SELECTION  (PROPOSED-2) 16x16 INFRARED SVM 
(96,20%)

 PATCH-BASED SELECTION  (PROPOSED-2) 32x32 INFRARED SVM 
(96,30%)

 PATCH-BASED SELECTION  (PROPOSED-2) 64x64 INFRARED
RANDOM 
FOREST 
(97,38%)

 CLASSICAL SELECTION 128x128 INFRARED SVM 
(96,88%)
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Figure 2.20. Process time per image using: (a) Classic and Reversed Selection (Proposed-1) of DCT                 
    Feature and Classification Methods, (b) Patch-Based Selection (Proposed-2) of DCT                  

       Feature and Classification Method, (c) LBP Feature Extraction and Classification Method                     
          and (d) HOG Feature Extraction and Classification Method. 

 As expected, the property size affects the computation time for all classifiers. The 

classification results of the LBP and HOG based classification results and the 16x16 

DCT features work at approximately the same time. However, as the size of the DCT 

feature grows, the time consumption begins to increase. However, there is no significant 

difference between the working hours of the classifiers. The critical observation is that 

the detected operating times are below the limit of 3 seconds. Therefore, it can be said 

that the proposed methods can be easily implemented in real-time systems. 

2.3. Classifiers 

 An important step in recognizing the image containing the electrical wire is to use 

the features on the classifiers. In our problem, there are 2 classes with and without elect-

rical wires. Our aim is to determine whether there is powerline within the given image 

by classification methods.  
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 As classifier, famous classifiers such as Naïve Bayes (Murphy, 2001), Random 

Forest (Breiman, 2001) and Support Vector Machines (SVM) (Cortes, 1995) were used. 

10-fold method was used in the test phase of the classification process. 

2.3.1 Naïve Bayes  

 The regular Bayesian classifier is based on obtaining a threshold for classifying 

two probability density functions with known conditional distributions. The Bayes clas-

sifier, which can also be described as a stationary Gaussian random distribution, uses 

two mean vectors and two covariance matrices to separate two different classes using 

quadratic hyper-planes.  

 For this problem, vector / class membership probabilities are calculated (counted) 

according to the given ground truth and a priori (hence a-posteriori) probability model 

is created. In the test phase, an observation feature vector is simply put into the probabi-

lity model and a decision is made by maximizing the possibility of a-posteriori. Due to 

its simple and relatively successful performance, this classifier has been used for power-

line classification problem (Murphy, 2001). 

2.3.2. Random Forest 

Random Forests begin from the entire dataset in the property field. Rather than 

creating a single decision tree, a number of decision trees are created by combining the 

best representative features of the tree, and these decision trees are combined. In this 

classifier, random feature extraction / selection plays an important role (Breiman, 2001). 

2.3.3. Support Vector Machines (SVM) 

SVM is a very popular classifier that aims to achieve an optimal hyperplane as a 

decision function on a higher dimensional space that is extended via support vectors and 

appropriate kernels. The closest feature vector of the hyperplanes for each class is called 

support vectors. These support vectors are then mapped to a vector space (possibly a 

higher dimensional) (with linear or non-linear kernels), so that the separation between 

the support vectors and the hypersensitive surfaces is as large as possible.  
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After completion of the training (using a linear SVM based on logistic 

regression), relevant decisions were obtained (Cortes, 1995). 

2.4. Deep Learning and Convolutional Neural Network 

The classical method for general purpose object recognition is to select the prop-

erties in an image and classify them by means of a classifier (Csurka, 2004). CNN ar-

chitecture is a neural network that combines both property extraction and classification 

(He, 2016). 

In recent years, large image data sets such as ImageNet (Krizhevsky, 2012) have 

resulted in the discovery that CNN models are very efficiently scaled with data. Image-

Net, Large-Scale Visual Recognition Data Set (ILSVRC) (Donahue, 2014) is used by 

deep CNN models every year (Zeiler, 2014, Bengio, 2013, Razavian, 2014) and is 

known to be one of the best data sets for high-level recognition. 

The use of the ImageNet database varies according to the purpose to be per-

formed. If the data content of the target task is significantly different, no preliminary 

training is performed in ImageNet. For example, Liu et al. Instead of using a pre-trained 

ImageNet network to find the face region in the picture, they used a separate network, 

trained only with facial images, to define the facial features (Gao, 2017). In some cases, 

ImageNet pre-training is completely omitted if the target task field is substantially       

different (Penatti, 2015), (Hu, 2015). 

Figure 2.21. Two alternative methods for using CNNs for powerline recognition : end-to-end                                                             

            classification and CNN feature classification. 
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The image classification with a pre-trained and fine tuned ILSVRC is also called 

a transfer learning method. Deep networks benefit significantly from transfer learning 

(Yetgin, 2017). However, it is not right to expect that ImageNet pre-training is always 

useful. Qualifications learned by deep networks become more specialized as layers 

progress (Ioffe, 2015). 

We propose two alternative methods for the use of CNNs in the context of the 

electrical wire recognition problem (see Figure 4.1). The first method is end-to-end 

classification. In this method, we start with a CNN (ILSVRC) designed to be used for 

image classification. Normally, this CNN has 1000 outputs for each class in the 

ILSVRC dataset, and finally a softmax layer. In our problem, we replace this final layer 

with a 2-layer softmax layer to make a binary classification (no wire or not). Then, we 

only train this last layer until we get convergence. Subsequently, fine tuning is carried 

out for feature extraction and classification sections. 

In end-to-end classification, the entire network can be trained jointly. On the oth-

er hand, in CNN feature classification, the feature extractor and the classifier are trained 

separately. The disconnect is represented by dashed arrows. 

In the second method, we used CNN to extract features on the images in the 

database. We split CNN to 5 stage for feature extraction. We obtained properties from 

each stage. The properties obtained were classified using 3 different classifiers. In par-

ticular, less GPU memory and processing power were spent than we used to feature 

specific areas of CNN only. In the following subsections, we will introduce certain 

CNN architectures and classifiers that we use to implement these methods.      
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2.4.1. CNN Architectures 

(a) VGG-19 

(b) ResNet-50 

Figure 2.22. CNN architectures used in the study. The convolutional stages of the architectures are            
          illustrated in different colors. Convolutional and identity blocks of ResNet-50 are expanded 
          on its left hand-side. (a) VGG-19 and (b) ResNet-50. 
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For these reasons, power line recognition methods in the
literature tend not to be tested thoroughly.

In this paper, we present an aerial image dataset that we have
generated in cooperation with the Turkish Electricity Trans-
mission Company (TEIAS). A helicopter mounted imaging
system was used to capture visible light (VL) and infrared
(IR) videos from the air. The video resolutions were 576⇥325
for IR and 1920 ⇥ 1080 for VL. We inspected the videos,
manually selected examples that represent the presence or
absence of power lines, and scaled them down (see Fig. 1).The
dataset is composed of 4000 VL and 4000 IR images of size
128⇥ 128. For each imaging spectrum, half of the images are
selected to contain power lines. The videos are captured from
21 different geographical locations in Turkey. The examples
are chosen to provide a variety of difficulties, due to different
backgrounds, lighting and weather conditions. Finally, the
constructed dataset is put in a web repository [7] with the
corresponding localization ground truth [8].

IV. PROPOSED METHOD

We propose two alternative methods for the usage of CNNs
for power line recognition (see Fig. 2). The first method is
end-to-end classification. In this method, we start with a CNN
that was designed to be used for ILSVRC image classification.
This CNN has a final softmax layer with 1000 outputs, one for
each class in the ILSVRC dataset. We replace this final layer
with a randomly initialized softmax layer with 2 outputs for
binary classification. Then, we train only this final layer until
convergence. Following this, we jointly fine-tune the feature
extraction and classification parts.

The second method utilizes the same CNN as a feature
extractor. We use only the parts up to a certain CNN stage,
and remove the further layers. The output of the partial CNN
is flattened, and fed into a separate classifier. We train this
classifier separately from the CNN.

In the following subsections, we will introduce the specific
CNN architectures and classifiers we have used to implement
these methods.
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Fig. 3: CNN architectures used in the study, VGG-19 [4] and
ResNet-50 [6]. The stages of the architectures are illustrated
in different colors. Note that the convolutional and identity
blocks of ResNet-50 are composed of multiple layers.
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For these reasons, power line recognition methods in the
literature tend not to be tested thoroughly.

In this paper, we present an aerial image dataset that we have
generated in cooperation with the Turkish Electricity Trans-
mission Company (TEIAS). A helicopter mounted imaging
system was used to capture visible light (VL) and infrared
(IR) videos from the air. The video resolutions were 576⇥325
for IR and 1920 ⇥ 1080 for VL. We inspected the videos,
manually selected examples that represent the presence or
absence of power lines, and scaled them down (see Fig. 1).The
dataset is composed of 4000 VL and 4000 IR images of size
128⇥ 128. For each imaging spectrum, half of the images are
selected to contain power lines. The videos are captured from
21 different geographical locations in Turkey. The examples
are chosen to provide a variety of difficulties, due to different
backgrounds, lighting and weather conditions. Finally, the
constructed dataset is put in a web repository [7] with the
corresponding localization ground truth [8].

IV. PROPOSED METHOD

We propose two alternative methods for the usage of CNNs
for power line recognition (see Fig. 2). The first method is
end-to-end classification. In this method, we start with a CNN
that was designed to be used for ILSVRC image classification.
This CNN has a final softmax layer with 1000 outputs, one for
each class in the ILSVRC dataset. We replace this final layer
with a randomly initialized softmax layer with 2 outputs for
binary classification. Then, we train only this final layer until
convergence. Following this, we jointly fine-tune the feature
extraction and classification parts.

The second method utilizes the same CNN as a feature
extractor. We use only the parts up to a certain CNN stage,
and remove the further layers. The output of the partial CNN
is flattened, and fed into a separate classifier. We train this
classifier separately from the CNN.

In the following subsections, we will introduce the specific
CNN architectures and classifiers we have used to implement
these methods.
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Fig. 3: CNN architectures used in the study, VGG-19 [4] and
ResNet-50 [6]. The stages of the architectures are illustrated
in different colors. Note that the convolutional and identity
blocks of ResNet-50 are composed of multiple layers.



 In this section, we will briefly introduce the CNN architectures that we use with 

the recommended method, VGG-19 and ResNet-50. We chose these two architectures 

(ResNet-50 and VGG-19) because of the successes on the ILSVRC image database. 

2.4.2. VGG-19  

 In previous architectures, convolution has manually adjusted the core dimensions 

for each layer. The main contribution of the VGG model, using the 3 × 3 fixed kernel 

size, performs as well as the architectures using larger kernel sizes, thus greatly simpli-

fying the architectural design process. 

2.4.3. ResNet-50 

Krizhevsky and others first simplified the architectural design by designing Incep-

tion Blockes and using them to create GoogLeNet. Similarly, ResNet was designed as a 

combination of these blocks. The main difference of ResNet is that it is much deeper 

than previous architectures (Krizhevsky, 2012). 

2.4.4. Experimental Works 

In this section, we present the experimental results for the two recommended 

methods. End-to-end classification using CNN and classification by feature extraction. 

2.4.5. Implementation Details 

We ran all experiments with 10-fold cross validation. The data set for each fold is 

divided into 70% training data, 20% validation data, and 10% test data. The learning 

rate for the CNN final layer was started at 0.1 and reduced to five times when the loss 

of verification stopped. The fine-tuned learning rate was set to the same, but was started 

at 0.01. Weight reduction is set to 0.001 for all layers. The classifier parameters are kept 

as default values in Weka 3.8. 

$36



Two popular alternatives for image preprocessing have been tested. In the first, 

the average extraction method was used. In this method, the average pixel value in the 

image is subtracted from all pixel values to make images approximately zero-mean. The 

second one is scaling. In this method, the pixel values of all images are divided into 255 

to scale between 0 and 1. 

2.4.6. End-to-end Classification 

Our experiments were initiated with pre-trained CNNs for ILSVRC image classi-

fication (hereinafter referred to as ImageNet pre-trained networks). These networks in-

clude filters, such as edge and block detectors, found in earlier layers that may be useful 

in most visual tasks.  

As discussed earlier, the randomly initiated final layer is separately trained, fol-

lowed by fine tuning of the entire network. The whole network has millions of parame-

ters that can be fine-tuned. The number of free parameters increases the impressive 

power of the model. However, if there is no more training data, this also causes the 

model to be overfit. Since our training set is relatively small, we must limit the number 

of free parameters in the model. Therefore, we only fine-tune the final convolution stage 

(Step 5 in Figure 2.21) and limit it to the following layers. 

See Table 2.6 for results where pre-trained networks are fed with mean-extracted 

images. By training only the last layer, we can see that we have achieved remarkable 

performance with the features learned before the training. ResNet-50 performs signifi-

cantly better than VGG-19. Following this, we fine-tune the final stage of the networks. 

Here, we see that the ResNet-50 performance is further improved and results in the best 

performance reported in this study.  

On the other hand, there was no improvement in the IR performance of the VGG-

19. Confusion matrices in which step 5 is precisely adjusted are given in Table 2.7. Er-

rors in the IR data set are balanced. 
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Table 2.6. Classification errors in percentages for the end-to-end classification method (pre-training,                     

      mean subtraction preprocessing). 

Table 2.7. Confusion matrices for the end-to-end classification method (trained final layer and fine-tuned 
    Stage 5, ImageNet pre-training, mean subtraction preprocessing). Rows are ground truths, and 
    columns are predictions. 

  

False positive images had linear properties that misaligned the network. In the 

case of VL images, powerlines are not visible and false negative results have increased. 

Also, in most of these faulty pictures, we see that the electrical wires are close to the 

edges of the image. The reason for this is that CNNs have difficulty in recognizing envi-

ronmental objects because of the first convolutional layers. This problem can be pre-

vented by filling or transforming images. 

IR            VL IR           VL

VGG-19           1.85          8.167          4.967          8.167

ResNet-50           0.65          1.0          0.25          0.267

Trained last layer
Trained last layer & Fine-

tuned Stage 5

ResNet-50 VGG-19

IR Neg Pos VL Neg Pos IR Neg Pos VL Neg Pos

False 3994 6 False 3994 6 False 3836 164 False 3691 309

True 9 1991 True 10 1990 True 134 1866 True 181 1819
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In the second experiment, we used the scaling method instead of the average sub-

traction method. See the results in Table 2.8 and compare with Table 2.6. In this 

method, the average extraction is done for the pre-training process. The interesting thing 

is that after fine-tuning the 5th stage, the performance is significantly increased and 

comparable to the average extraction process. CNN architectures are naturally frequen-

cy selective. Therefore, Gabor is sensitive even to wavelet-like structures when they 

generate random weights. In other words, ImageNet pre-training may not have a signifi-

cant effect on achieving the performance in Tables 2.8 and 2.6. 

Table 2.8. Classification errors in percentages for the end-to-end classification method (pre-training,               

      scaling preprocessing). 

To test the effect of ImageNet pre-training, we created networks with random 

weights using Xavier initialization and repeated the experiments. See Table 2.9 for re-

sults. It is clear that ImageNet pre-training is particularly useful for powerline recogni-

tion even when images are in the IR spectrum. However, untrained networks also per-

formed better than random estimates.  

IR           VL IR           VL

VGG-19        57.183        44.433           1.467          1.967

ResNet-50          0.55          4.7           0.217          0.55

Trained last layer
Trained last layer &  
Fine-tuned Stage 5

$39



Table 2.9. Classification errors in percentages for the end-to-end classification method (random weights,              

     scaling preprocessing). 

The best performances in Tables 2.9-2.10 can be compared to the best perfor-

mances in Table 2.9; this is equivalent to subtracting the properties of Stage 5 and clas-

sifying it with a single-layer network. Refer to Figure 2.26 for the receiver operator 

characteristic curve of the best performance tests in this section. 

Table 2.10. Detailed results (at maximum accuracy with using SVM classifier) for IR database with using                   
      ResNet-50/mean subtraction preprocessing (for Stage-4). 

IR VL IR VL

VGG-19        22.283         21.633          27.933           17.5

ResNet-50        40.517         48.983          13.333           20.5

Trained last layer
Trained last layer & Fine-

tuned Stage 5

Class TP Rate FP Rate Precision Recall F-Measure

  1 
     (with cable)

0,997 0,002 0,998 0,997 0,998

  0 
(without cable)

0,999 0,003 0,997 0,999 0,998

Weighted Avg. 0,998 0,002 0,998 0,998 0,998
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Table 2.11. Detailed results (at maximum accuracy with using SVM classifier) for VL database with using                

      ResNet-50/mean subtraction preprocessing (for Stage-3). 

      (a) IR, ResNet-50          (b) IR, VGG-19        (c) VL, ResNet-50          (d) VL, VGG-19      

Figure 2.23. Receiver operating characteristic (ROC) curves of the end-to-end classification method. The 
        legend is in the order of decreasing area under the curve. Note that the curves of the best per  
        forming methods overlap and occlude each other in some Figures. 

Table 2.12. Classification errors in percentages for the CNN feature classification method (VGG-19,             
        scaling preprocessing). 

      Class TP Rate FP Rate Precision Recall F-Measure

            1 
(with cable)

0,992 0,014 0,986 0,992 0,989

            0 
(without cable)

0,986 0,008 0,992 0,986 0,989

Weighted 
Avg.

0,989 0,011 0,989 0,989 0,989

SVM NB RF SVM NB RF

Stage 1 9.125 11.35 11.375 10.25 32.8 15.925

Stage 2 3.025 12.375 8.875 3.425 21.575 12.125

Stage 3 0.8 10.375 2.45 2.275 16.125 4.75

Stage 4 0.6 11.85 2.9 2.475 17.925 6.275

Stage 5 0.875 9.475 1.6 4.45 16.9 6.575

IR VL
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Table 2.13. Classification errors in percentages for the CNN feature classification method (ResNet-50,                

       scaling preprocessing). 

Table 2.14. Classification errors in percentages for the CNN feature classification method (VGG-19,                  
        mean subtraction preprocessing). 

Table 2.15. Classification errors in percentages for the CNN feature classification method (ResNet-50,                  
       mean subtraction preprocessing). 

SVM NB RF SVM NB RF

Stage 1 21.9 7.875 7.25 36.725 20.975 8.775

Stage 2 11.2 12.925 6.275 29.025 29.45 10.125

Stage 3 12.45 21.15 6.05 30.175 35.575 14.925

Stage 4 11.6 23.025 5.0 27.875 35.2 13.425

Stage 5 10.2 17.325 5.1 25.95 35.525 14.675

IR VL

SVM NB RF SVM NB RF

Stage 1 12.383 29.917 26.2 4.933 35.233 24.95

Stage 2 7.4 28.633 24.433 1.9 37.883 26.8

Stage 3 2.267 14.167 18.667 1.15 27.617 20.6

Stage 4 0.917 17.4 16.467 2.0 30.55 21.233

Stage 5 0.85 21.183 11.75 2.85 30.15 21.9

IR VL

SVM NB RF SVM NB RF

Stage 1 10.07 31.183 23.4 2.717 38.233 26.733

Stage 2 3.95 15.65 19.267 1.7 23.483 20.317

Stage 3 0.833 16.733 11.85 0.883 14.733 19.167

Stage 4 0.417 7.767 10.417 1.67 29.917 19.3

Stage 5 0.417 19.75 11.1 1.083 33.483 22.417

IR VL
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 In addition, we see that random forests produce the best results from ResNet-50. 

See Figure 2.23 for the receiver operator characteristic curve of the best performance 

tests in this section. This suggests that the proposed method is particularly strong for 

mixing backgrounds (roads, buildings, railways, etc.) in the case of IR imaging. The 

proposed algorithm is further described by comparing the classification results with 

popular methods based on line detection along Figures 2.24 and 2.25. 

 

Figure 2.24. The first row shows negative examples from both spectra, which were classified correctly by  

        the end-to-end method. 
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Figure 2.25. The first row shows four negative and four positive examples, which were classified                         

          incorrectly by the end-to-end method. 

In general, line detection methods can be said to produce more false alarms. Exist-

ing line detection-based methods (as shown in Figure 2.24 and 2.25) exhibit very high 

false positive rates for IR and VL databases. 

2.4.7. Running Time 

The operating times given in Table 2.16 were obtained with an Nvidia GTX 1080 

GPU and the operating times in Table 2.17 with the Intel Core i7 2.8 GHz CPU. Our 

best configuration, end-to-end classification with ResNet-50, runs at 21.7 ms, which is 

reasonable for a real-time application. 

Table 2.16. Running times of the classifiers for a single image in milliseconds. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 End-to-end

VGG-19 3.7 4.1 5.4 8.0 10.0 10.6

ResNet-50 2.2 7.9 11.1 16.6 19.3 21.7
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Table 2.17. Cumulative running times of the CNN models for a single image in milliseconds. 

We see that we can improve working time by switching to VGG-19 and using in-

termediate stage features. For example, the VGG-19 feeds the Stage 4 properties to an 

SVM of 9.8 ms. However, this configuration offers approximately five times more er-

rors. 

 

                (a) IR, Features from Stage 4         (b) VL, Features from Stage 3 

Figure 2.26.  Receiver operating characteristic (ROC) curves of the CNN feature classification method.                                                
 ImageNet pre-trained ResNet-50 model is used with mean subtraction preprocessing.                   

 Stage 4 for IR and Stage 3 for VL are shown because they delivered the best results. 

2.4.8. Results 

In this study, we proposed two CNN based powerline recognition methods for real 

time warning system. Both methods use CNNs designed for ImageNet object recogni-

tion. In the first method of end-to-end classification, the CNN was modified and co-

trained for the target task. 

In the second method, CNN is the property classification. In this method, the 

properties are subtracted from the intermediate stages of the CNN and fed to a classifier. 

Best results were obtained by end-to-end classification in which the network was previ-

ously trained with the ImageNet data set, and powerline images were pre-processed by 

the mean extraction. 

SVM NB RF

1.8 7.5 1.7
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The classification error was 0.025% for infrared images and 0.275% for visible 

light images. In almost all experiments, infrared images have been classified more suc-

cessfully. This suggests that it is preferable to use infrared imaging for a powerline 

warning system. However, with visible light images the performance was also reason-

able. 

CNN property extraction has the advantage that it can use outputs from any stage 

of the network.  The best results of CNN feature extraction were obtained by the proper-

ties obtained from the later stages which were close to the end-to-end classification re-

sults prior to fine-tuning. 

The CNN feature classification allows the lower processing time to be balanced 

for a higher error rate. In the experiments without fine tuning, we observed that the pre-

processing method was critical. Specifically, we should use the preprocessing method 

used in the preprocessing, which is the mean subtraction in our case. However, fine-tun-

ing overrides the effect of the difference between pre-training and training methods used 

in education. 

Although the architectures we used are designed for ImageNet object recognition, 

we have shown that they perform well in the target task. What's more, the architecture 

that performs better in the ImageNet object classification, performs better in powerline 

recognition, whether pre-trained or not. This implies that an architecture's ImageNet 

performance is a general indication of the performance of other visual tasks. Our data 

set consists of aerial images of visible light and infrared spectra. This is a very different 

domain than the ImageNet dataset. However, we observed that ImageNet pre-training 

was the most important positive factor in our experiments. 

 In CNN's stage analysis, maximum result is found in ResNet-50 (mean subtrac-

tion process) architecture, IR image dataset, false negative results in Figure 2.27. 
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Figure 2.27. In CNN's stage analysis, maximum result is found in ResNet-50 (mean subtraction                                  
  process) architecture, IR image dataset, False positive results compared to other methods.           
 Line detection results: (a) IR images (with powerlines, incorrectly detected                                      

 with CNN stage analysis), (b) Ground Truth (c) EDLines, (d) LSD and (e) HT.                                            
 Edge/line detection methods incorrect. 
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3. CONCLUSION 

 In this thesis, it has been shown that powerlines can be detected using DCT and 

CNN methods at high accuracy and speed. The accuracies of both methods render them 

plausible alternatives for aircraft safety. When the two methods are further compared, it 

can be concluded that the CNN method gives higher accuracy results at the expense of a 

slower pre-processing stage. Conversely, the DCT method produces slightly less accu-

rate results after a rapid preprocessing. However, it must be noted that both methods 

provide rapid and accurate detection results within the state-of-the-art aircraft safety 

regulations. Sequential and video based scene classification for detection of cable wires 

can be listed as possible future works. 
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