

BAZI TİYOFEN TÜREVLERİNİN KONFORMASYONLARI VE TİTREŞİM SPEKTRUMLARI ÜZERİNE ÇÖZÜCÜ VE HALOJEN ETKİSİNİN İNCELENMESİ Doktora Tezi

Esma GÜNEŞ KAYA

Eskişehir, 2018

BAZI TİYOFEN TÜREVLERİNİN KONFORMASYONLARI VE TİTREŞİM SPEKTRUMLARI ÜZERİNE ÇÖZÜCÜ VE HALOJEN ETKİSİNİN İNCELENMESİ

ESMA GÜNEŞ KAYA

DOKTORA TEZİ

Fizik Anabilim Dalı Danışman: Prof. Dr. Mustafa ŞENYEL (İkinci Danışman: Doç. Dr. Cemal PARLAK)

Eskişehir Anadolu Üniversitesi Fen Bilimleri Enstitüsü Ekim 2018

Bu tez çalışması BAP Komisyonunca kabul edilen 1503F103 no.lu proje kapsamında desteklenmiştir.

JÜRİ VE ENSTİTÜ ONAYI

Esma GÜNEŞ KAYA'nın "Bazı Tiyofen Türevlerinin Konformasyonları ve Titreşim Spektrumları Üzerine Çözücü ve Halojen Etkisinin İncelenmesi" başlıklı tezi 05/10/2018 tarihinde aşağıdaki jüri tarafından değerlendirilerek "Anadolu Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliği"nin ilgili maddeleri uyarınca, Fizik Anabilim dalında Doktora tezi olarak kabul edilmiştir.

<u>Jüri Üyeleri</u>		<u>Unvanı Adı Soyadı</u>	<u>İmza</u>
Üye (Tez Danışmanı)	:	Prof. Dr. Mustafa ŞENYEL	
Üye	:	Prof. Dr. Zeki KARTAL	
Üye	:	Prof. Dr. Güneş Süheyla KÜRKÇÜOĞLU	
Üye	:	Prof. Dr. Hakan DAL	
Üye	:	Doç. Dr. Özgür ALVER	

Prof.Dr. Ersin YÜCEL Fen Bilimleri Enstitüsü Müdürü

ÖZET

BAZI TİYOFEN TÜREVLERİNİN KONFORMASYONLARI VE TİTREŞİM SPEKTRUMLARI ÜZERİNE ÇÖZÜCÜ VE HALOJEN ETKİSİNİN İNCELENMESİ

Esma GÜNEŞ KAYA

Fizik Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Ekim, 2018

Danışman: Prof. Dr. Mustafa ŞENYEL

(İkinci Danışman: Doç. Dr. Cemal PARLAK)

Bu çalışmada ele alınacak olan, tiyofen-2-karbaldehit molekülünün ve halojen değişkenli türev moleküllerinin konformasyonları ve titreşim spektrumları üzerine, halojen (F, Cl ve Br) ve çözücü (polar ve apolar) etkisi deneysel ve teorik olarak incelenecektir. Çalışmada kullanılacak olan bu molekülün ve halojen değişkenli 9 türevinin, FT-IR ve Raman spektrumları deneysel olarak kaydedilecektir. Moleküllerin konformasyon durumları da göz önüne alınarak, yoğunluk fonksiyon teorisi (DFT) metoduna ait B3LYP yöntemi ile teorik hesaplamaları gerçekleştirilecektir. Teorik hesaplamalar sonucunda moleküllerin, titreşim işaretlemeleri ve bunlara karşılık gelen normal mod frekansları, optimize edilmiş geometrik parametreleri (bağ uzunlukları, bağ ve dihedral açıları) ve titreşim spektrumları, titreşim işaretlemelerine ait potansiyel enerji dağılımları (PED), konformasyon dengeleri, bazı termodinamik fonksiyonları, işgal edilmiş en yüksek ve işgal edilmemiş en düşük moleküler orbitalleri (HOMO ve LUMO) incelenecektir. Daha sonra, bu çalışmada kullanılacak molekülün ve türev moleküllerinin, polar ve apolar çözücülerde spektrumları alınıp, yine konformasyon durumları da hesaba katılarak çözücü etkisi teorik olarak incelenecektir.

Anahtar Sözcükler: DFT, PED, Titreşim Spektrumu, Tiyofen-2-karbaldehit.

ABSTRACT

INVESTIGATION OF THE EFFECTS OF SOLVENT, HALOGEN AND CONFORMATIONS ON VIBRATIONAL SPECTRUM OF SOME THIOPHENE DERIVATIVES

Esma GÜNEŞ KAYA

Physics Program

Anadolu University, Graduate School of Sciences, October, 2018

Supervisor: Prof. Dr. Mustafa ŞENYEL

(Co-Supervisor: Assoc. Prof. Dr. Cemal PARLAK)

In this study, halogen (F, Cl, and Br) and a solvent (polar and apolar) effect on thiophene-2-carbaldehyde and its halogenated derivatives of molecular conformation and vibrational spectra will be studied experimentally and theoretically. FT-IR and Raman spectra of the molecule and its 9-halogenated derivatives will be recorded experimentally in the study. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of molecules will be theoretically examined by means of B3LYP hybrid density functional theory (DFT) method. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) will be calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of molecules will be studied theoretically and experimentally.

Keywords: DFT, PED, Vibrational Spectrum, Thiophene-2-carbaldehyde.

TEŞEKKÜR

Tez çalışmam süresince bana yol gösteren, desteğini, bilgi ve birikimlerini esirgemeyen değerli danışman hocam Sayın Prof. Dr. Mustafa ŞENYEL'e içtenlikle teşekkür eder ve saygılarımı sunarım.

Çalışmam sırasında önerileriyle yönlendiren ve yardımını esirgemeyen ikinci danışman hocam Ege Üniversitesi Fizik Anabilim Dalı Öğretim Üyesi Sayın Doç. Dr. Cemal PARLAK'a teşekkür ederim.

Tez İzleme Komitesi'nde bulunan fikir ve önerileriyle tez çalışmasına katkıda bulunan hocalarım Sayın Prof. Dr. Hakan DAL ve Sayın Doç. Dr. Özgür ALVER'e teşekkürlerimi sunarım.

Çalışmam boyunca her daim yanımda olan ve her türlü desteği gösteren değerli çalışma arkadaşlarım Araş. Gör. Dr. Özge BAĞLAYAN, Mahir TURSUN ve Dr. Gürkan KEŞAN'a ayrıca Öğr. Gör. Dr. Neslihan ŞAHİN, Araş. Gör. Seçil ŞENTORUN ve Araş. Gör. Dr. Seval AKSOY'a en içten sevgimi ve teşekkürlerimi sunarım.

Öğrenim hayatım boyunca desteğini hiçbir zaman benden esirgemeyen aileme ve sevgili eşim Mehmet Fatih KAYA'ya sonsuz teşekkürlerimi sunarım.

Esma GÜNEŞ KAYA

ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ

Bu tezin bana ait, özgün bir çalışma olduğunu; çalışmamın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarında bilimsel etik ilke ve kurallara uygun davrandığımı; bu çalışma kapsamında elde edilen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; bu çalışmanın Anadolu Üniversitesi tarafından kullanılan "bilimsel intihal tespit programı"yla tarandığını ve hiçbir şekilde "intihal içermediğini" beyan ederim. Herhangi bir zamanda, çalışmamla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçları kabul ettiğimi bildiririm.

Esma GÜNEŞ KAYA

İÇİNDEKİLER

	<u>Sayfa</u>
BAŞLIK SAYFASI	. i
JÜRİ VE ENSTİTÜ ONAYI	. ii
ÖZET	. iii
ABSTRACT	. iv
TEŞEKKÜR	. v
ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ	. vi
İÇİNDEKİLER	. vii
ÇİZELGELER DİZİNİ	. ix
ŞEKİLLER DİZİNİ	. xi
SİMGELER VE KISALTMALAR DİZİNİ	. xiii
1. GİRİŞ	. 1
1.1. Literatür Özeti	. 1
1.2. Tezin Amacı	. 3
2. GENEL BİLGİLER	. 6
2.1. Moleküler Spektroskopi	. 6
2.2. İnfrared Spektroskopisi	. 10
2.3. Raman Spektroskopisi	. 11
2.4. Moleküler Titreşimler	. 14
2.4.1. Harmonik titreşici modeli	. 14
2.4.2. Anharmonik titreşici modeli	. 15
2.5. Moleküler Titreşim Türleri	. 17
2.6. Grup Frekansları	. 20
2.7. Grup Frekanslarını Etkileyen Faktörler	. 21
2.7.1. Molekül içi etkiler	. 21
2.7.2. Molekül dışı etkiler	. 22
2.8. Kuantum Kimyasal Hesaplamalar	. 24
2.8.1. Moleküler mekanik yöntemler	. 25
2.8.2. Elektronik yapı yöntemleri	. 25
2.8.2.1. Yarı deneysel yöntemler	. 27
2.8.2.2. Ab-initio yöntemler	. 27
2.8.2.3. Yoğunluk fonksiyonel teorisi (DFT)	. 28

2.8.3. Baz setleri	29
3. TEORİK-DENEYSEL ÇALIŞMA	31
3.1. Teorik Çalışma	31
3.2. Deneysel Çalışma	34
3.3. Kullanılan Teknik ve Cihazlar	34
3.3.1. FT-IR spektrometresi	34
3.3.2. Raman spektrometresi	37
3.3.3. Katı ve sıvıların infrared ve Raman spektrumlarının alınması	39
4. TEORİK-DENEYSEL SONUÇLAR ve TARTIŞMA	41
4.1. Geometrik Yapı ve Parametrelerin İncelenmesi	41
4.2. Titreşim Frekanslarının İncelenmesi	53
4.3. Homo Lumo Sınır Orbitalleri	81
4.4. Çözücü ve Halojen Etkisi	83
5. SONUÇLAR	86
KAYNAKÇA	88
EKLER	
ÖZGEÇMİŞ	

ÇİZELGELER DİZİNİ

Çizelge 1.1.	Çalışmada incelenecek olan moleküller (X: F, Cl ve Br)	5
Çizelge 2.1.	Elektromanyetik ışınıma dayanan spektroskopik yöntemler	6
Çizelge 2.2.	İnfrared spektral bölgeleri	11
Çizelge 2.3.	Bazı grup frekansları	21
Çizelge 4.1.	Gaz fazındaki moleküllerin enerji değerleri	43
Çizelge 4.2.	Benzen çözücüsündeki moleküllerin enerji değerleri	44
Çizelge 4.3.	Metanol çözücüsündeki moleküllerin enerji değerleri	45
Çizelge 4.4.	Farklı ortamlarda T2C ve türev moleküllerinin dipol moment (Debye) değerleri	47
Çizelge 4.5.	Gaz halindeki T2C ve birinci seri moleküllerinin geometrik parametreleri	48
Çizelge 4.6.	Gaz halindeki T2C ve ikinci seri moleküllerinin geometrik parametreleri	48
Çizelge 4.7.	Gaz halindeki T2C ve üçüncü seri moleküllerinin geometrik parametreleri	49
Çizelge 4.8.	Benzen çözücüsündeki T2C ve birinci seri moleküllerinin geometrik parametreleri	49
Çizelge 4.9.	Benzen çözücüsündeki T2C ve ikinci seri moleküllerinin geometrik parametreleri	50
Çizelge 4.10.	Benzen çözücüsündeki T2C ve üçüncü seri moleküllerinin geometrik parametreleri	50
Çizelge 4.11.	Metanol çözücüsündeki T2C ve birinci seri moleküllerinin geometrik parametreleri	51
Çizelge 4.12.	Metanol çözücüsündeki T2C ve ikinci seri moleküllerinin geometrik parametreleri	51
Çizelge 4.13.	Metanol çözücüsündeki T2C ve üçüncü seri moleküllerinin geometrik parametreleri	52

Çizelge 4.14.	T2C molekülünün gaz fazındaki titreşim işaretlemeleri	55
Çizelge 4.15.	F1 molekülünün gaz fazındaki titreşim işaretlemeleri	56
Çizelge 4.16.	Cl1 molekülünün gaz fazındaki titreşim işaretlemeleri	57
Çizelge 4.17.	Br1 molekülünün gaz fazındaki titreşim işaretlemeleri	58
Çizelge 4.18.	F2 molekülünün gaz fazındaki titreşim işaretlemeleri	59
Çizelge 4.19.	Cl2 molekülünün gaz fazındaki titreşim işaretlemeleri	60
Çizelge 4.20.	Br2 molekülünün gaz fazındaki titreşim işaretlemeleri	61
Çizelge 4.21.	F3 molekülünün gaz fazındaki titreşim işaretlemeleri	62
Çizelge 4.22.	Cl3 molekülünün gaz fazındaki titreşim işaretlemeleri	63
Çizelge 4.23.	Br3 molekülünün gaz fazındaki titreşim işaretlemeleri	64

ŞEKİLLER DİZİNİ

Şekil 1.1.	Tiyofen-2-karbaldehit ve türev molekülleri	4
Şekil 2.1.	İki atomlu bir molekül için elektronik, titreşim ve dönme geçişleri	9
Şekil 2.2.	Raman spektroskopisindeki saçılmaların şematik gösterimi	13
Şekil 2.3.	İki atomlu bir molekülün titreşim hareketi	14
Şekil 2.4.	Harmonik ve anharmonik osilatörün potansiyel enerji diyagramları	16
Şekil 2.5.	(a) Simetrik gerilme, (b) Asimetrik gerilme	17
Şekil 2.6.	Açı bükülme titreşimi	17
Şekil 2.7.	Açı bükülme titreşimleri	18
Şekil 2.8.	Burulma titreșimi	19
Şekil 2.9.	Düzlem dışı açı bükülme titreşimi	19
Şekil 3.1.	Tiyofen-2-karbaldehit molekülünün konformasyon durumları	32
Şekil 3.2.	Tiyofen-2-karbaldehit molekülünün potansiyel enerji yüzeyi taraması	33
Şekil 3.3.	Michelson interferometresinin optik diyagramı	35
Şekil 3.4.	FT-IR IFS 66v/S spektrometresi	36
Şekil 3.5.	Raman spektrometre ve mikroskobu	37
Şekil 3.6.	Senterra dispersif Raman mikroskop	38
Şekil 4.1.	Birinci seriye ait moleküller	41
Şekil 4.2.	İkinci seriye ait moleküller	41

Şekil 4.3.	Üçüncü seriye ait moleküller	42
Şekil 4.4.	T2C molekülünün FT-IR ve Raman spektrumu	68
Şekil 4.5.	F1 molekülünün FT-IR ve Raman spektrumu	69
Şekil 4.6.	Cl1 molekülünün FT-IR ve Raman spektrumu	70
Şekil 4.7.	Br1 molekülünün FT-IR ve Raman spektrumu	71
Şekil 4.8.	Cl2 molekülünün FT-IR ve Raman spektrumu	72
Şekil 4.9.	Br2 molekülünün FT-IR ve Raman spektrumu	73
Şekil 4.10.	F3 molekülünün FT-IR ve Raman spektrumu	74
Şekil 4.11.	Cl3 molekülünün FT-IR ve Raman spektrumu	75
Şekil 4.12.	Br3 molekülünün FT-IR ve Raman spektrumu	76
Şekil 4.13.	T2C molekülünün IR titreşim frekansları için korelasyon grafiği	77
Şekil 4.14.	Birinci seri moleküllerinin IR titreşim frekansları için korelasyon grafikleri	78
Şekil 4.15.	İkinci seri moleküllerinin IR titreşim frekansları için korelasyon grafikleri	79
Şekil 4.16.	Üçüncü seri moleküllerinin IR titreşim frekansları için korelasyon grafikleri	80
Şekil 4.17.	T2C molekülünün HOMO ve LUMO sınır orbitalleri	81
Şekil 4.18.	Birinci seri moleküllerinin HOMO ve LUMO sınır orbitalleri	82
Şekil 4.19.	İkinci seri moleküllerinin HOMO ve LUMO sınır orbitalleri	82
Şekil 4.20.	Üçüncü seri moleküllerinin HOMO ve LUMO sınır orbitalleri	83

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler

$\bar{\nu}$: Dalga sayısı
ν	: Titreșim frekansı
λ	: Dalga boyu
μ	: Elektrik dipol moment
α	: Kutuplanma yatkınlığı
h	: Planck sabiti
k	: Kuvvet sabiti
N	: Atom sayısı
Kısalt	malar
T2C	: Tiyofen-2-karbaldehit
IR	: İnfrared
R	: Raman
FT-IR	: Fourier transform infrared
DFT	: Density functional theory

HF : Hartree-Fock

1. GİRİŞ

1.1. Literatür Özeti

Tiyofen, C₄H₄S formülü ile beş üyeli bir halkadan oluşan heterosiklik bileşik sınıfına ait düzlemsel molekül yapısında aromatik bir bileşiktir [1]. Heterosiklik bileşikler, yüksek biyolojik aktiviteye sahip olduklarından doğada yaygın olarak bulunurlar ve teknolojide yeni materyallerin gelişmesinde, tıp, biyoloji, kimya ve ilaçbilimi gibi birçok uygulama alanında yaygın olarak kullanılırlar. Tiyofen ve türevleri, bazı doğal ürünlerde ve farmakolojik açıdan oldukça aktif bileşiklerde, petrol ve kömürlerin yapısında bulunurlar. Ayrıca tıbbi kimyada tedavi amaçlı uygulamalarda da yaygın bir şekilde kullanılmaktadırlar [2, 3].

Heterosiklik sınıfına ait önemli bir bileşik olan tiyofen; kimyasal tarım ilacının yapı taşı olması, antihipertansif, antialerjik ve kemoterapötik etkisi olması nedeniyle çeşitli biyokimyasal işlemlerde önemli bir rol oynar [2] dolayısıyla literatürde türev moleküllerinin sentezine dair birçok çalışma mevcuttur.

Ayrıca son yıllarda tiyofen ve türev moleküllerinin polimerlerinin yüksek iletken özellik göstermeleri bu bileşiklere olan ilgiyi oldukça arttırmıştır [4-6]. Tiyofen halkasının elektron karakteri bakımından zengin olmasından dolayı politiyofen ve türevleri iletken polimerlerin önemli bir araştırma konusu olmuştur. İletken polimerlerden politiyofen; güneş pilleri [7], ışık yayan diyotlar (OLED) [8], kimyasal sensörler [9], kapasitörler [10] gibi oldukça geniş kullanım alanlarında çalışılmaktadır. Ancak literatüre bakıldığında bu bileşiklere ait teorik çalışma sayısı oldukça az bulunmaktadır.

Bu çalışmada hedef molekül olarak incelenecek olan tiyofen-2-karbaldehit molekülü, C₅H₄OS formülü ile literatürde, 2-tiyofenkarbolsaldehit, 2-formiltiyofen, 2-tiyofenkarbaldehit, isimlerinde de bulunmaktadır. Molekül ağırlığı 112,146 g/mol olup, açık sarı renkte sıvı haldedir.

1979 yılında Kao ve Radom, 2 ve 3 mono değişkenli tiyofen bileşiklerini konformasyon, kararlılık ve yük dağılımlarını göz önünde bulundurarak moleküler orbital teorisi ab initio yöntemle STO-3G baz setini kullanarak incelemişlerdir [11].

Lunazzi ve Placucci 1984 yılında, dinamik nükleer manyetik rezonans spektroskopisiyle tiyofen-2-karbaldehit ve izomeri olan tiyofen-3-karbaldehit bileşiklerinin konformasyonları (cis-trans) arasındaki karşılıklı dönüşüm sınırını 10,15 kcal/mol olarak elde etmişlerdir [12]. Benzer şekilde tiyofen-2-karbaldehit molekülünün moleküler yapısı ve konformasyonel dengesi çeşitli spektroskopik yöntemler kullanılarak incelenmiştir [13, 14]. Başka bir çalışmada da tiyofen-2-karbaldehit molekülünün konformasyon çalışması normal koordinat analizi ve yoğunluk fonksiyonel teorisi kullanılarak teorik olarak incelenmiştir [15]. Ayrıca deneysel ve teorik olarak bazı termofiziksel özellikleri [16], bir yarıiletken yüzey üzerindeki olası soğurma yapılarının belirlenmesinde [17], orta gözenekli silika sentezlenmesinde [18] ve bazı filmlerin optik özelliklerinin karakterizasyonunda incelenmiştir [19].

Bizim daha önce yapmış olduğumuz bir çalışmada, bu molekülün halojen değişkenli türev moleküllerinin bir başka serisi olan tiyofen-2-karbonil-halojen [C₅H₃XOS, X = F (T2C-F), Cl (T2C-Cl), ve Br (T2C-Br)] molekülleri teorik olarak incelendi. Yoğunluk fonksiyonel teorisi (DFT) ve zamana bağlı yoğunluk fonksiyonel teorisiyle (TDDFT) konformasyon, titreşim ve elektronik özelliklerine çözücü ve halojen etkisi B3LYP fonksiyonu kullanılarak elde edildi [20]. Ayrıca 5-halojen-2-tiyofenkarboksaldehit serisinin karbonil gerilme titreşimleri KBM, AN, SWAIN ve LSER parametreleri ile teorik olarak incelenmiştir [21].

Çözücü etkisi kimyasal reaksiyonlarda önemli bir rol oynar ve herhangi bir molekülün fiziksel ve kimyasal özellikleri ile ilgili birçok parametreyi değiştirilebilir. Bu yüzden çözücü etkilerinin moleküler yapı üzerindeki etkisinin incelenmesi oldukça önemlidir. Çözücü ile etki edilmiş titreşim frekans kaymaları, kimyasal bağlanma ve çözünen-çözücü etkileşimleri hakkında önemli bilgiler verdiği için uzun yıllar boyunca ilgi görmüştür. Literatürde; çözücü polaritesi ile konformasyonel denge üzerindeki değişikliklerin ve C=O, S=O ve C=N gibi bazı grup frekansları üzerindeki çözücü etkisinin incelendiği birçok çalışma bulunmaktadır [22-30].

Halojen bağı genel olarak R-X...B (X: halojen atomu, B: N, O, S vs.) şeklinde tanımlanır ve halojen bağının karakteristik yapısal ve spektroskopik özelliklerinin hidrojen bağı ile birçok benzer yanı vardır [31]. Bir moleküler sistemde hidrojen atomuyla değiştirilen halojen atomu sistemin birçok fiziksel özelliğini değiştirir. Halojen bağları, moleküllerin arasındaki etkileşimleri tanımlama konusunda etkili bir araç olduğundan, son yıllarda kristal mühendisliğinde [32], organik iletken ve süper iletken materyallerin geliştirilmesinde [33, 34], biyokimya alanında moleküler materyallerin tasarımında [35, 36] bir araç olarak kullanılmaktadır.

1.2. Tezin Amacı

Yapılan literatür taraması sonucunda, hedef molekül olarak ele aldığımız tiyofen-2-karbaldehit molekülünün geniş bir uygulama alanında kullanıldığını ancak türev moleküller olarak inceleyeceğimiz moleküllere ait yeteri kadar çalışmanın olmadığını görmekteyiz. Çalışmada incelenecek olan bileşiklere ait daha önce yapılan çalışmalar hakkında bilgiler verdik ve bunlar arasında molekülün detaylı bir kuantum kimyasal çalışması ya da titreşim spektroskopisiyle ilgili herhangi bir detaylı çalışmanın bulunmadığını gözlemledik.

Bu çalışmayla beraber, ele alınan tüm bileşiklerin konformasyon durumları ve titreşim spektrumları üzerindeki halojen (F, Cl ve Br) ve çözücü (polar ve apolar) etkisinin deneysel ve teorik olarak incelenmesi amaçlanmaktadır. Çalışmada hedef molekül olarak kullanılan tiyofen-2-karbaldehit molekülü ve bu molekülün halojen değişkenli 9 türevinin FT-IR ve Raman spektrumları kaydedilip, moleküllerin konformasyon durumları göz önüne alınarak yoğunluk fonksiyon teorisi (DFT) metoduna ait B3LYP yöntemi ile yapılan teorik hesaplamaları sonucunda titreşim spektrumları üzerindeki halojen etkisi deneysel ve teorik olarak tartışılacaktır. Teorik hesaplamalar sonucunda moleküllerin, titreşim işaretlemeleri ve bunlara karşılık gelen normal mod frekansları, optimize edilmiş geometrik parametreleri (bağ uzunlukları, bağ ve dihedral açıları) ve titreşim spektrumları, titreşim işaretlemelerine ait potansiyel enerji dağılımları (PED), konformasyon dengeleri, bazı termodinamik fonksiyonları, işgal edilmiş en yüksek ve işgal edilmemiş en düşük moleküler orbitallerinin (HOMO ve LUMO) incelenmesi amaçlanmaktadır. Daha sonra bu moleküllerin çeşitli çözücülerle (polar ve apolar) spektrumları alınacak ve yine konformasyonları da hesaba katılarak çözücü etkisi deneysel-teorik olarak incelenecektir.

Şekil 1.1. Tiyofen-2-karbaldehit ve türev molekülleri

Şekil 1.1'de verilen tiyofen-2-karbaldehit molekülü ve bu molekülün halojen değişkenli 9 türev moleküllerinin; molekül formülü ve isimleri, çalışma boyunca kullanılacak olan kodlamaları ile birlikte Çizelge 1.1' verilmektedir.

İncelenecek Moleküller	Molekül Formülü	Molekül ismi	Kodlama
S Hedef Molekül	C5H4OS	tiyofen-2-karbaldehit	T2C
X S IO	C ₅ H ₃ OSF	5-florotiyofen-2- karbaldehit	F1
	C ₅ H ₃ OSCl	5-klorotiyofen-2- karbaldehit	Cl1
1. seri	C5H3OSBr	5-bromotiyofen-2- karbaldehit	Br1
s p	C ₅ H ₃ OSF	4-florotiyofen-2- karbaldehit	F2
н	C5H3OSCl	4-klorotiyofen-2- karbaldehit	C12
2. seri	C5H3OSBr	4-bromotiyofen-2- karbaldehit	Br2
s 0	C ₅ H ₃ OSF	3-florotiyofen-2- karbaldehit	F3
Н	C ₅ H ₃ OSCl	3-klorotiyofen-2- karbaldehit	Cl3
X 3. seri	C5H3OSBr	3-bromotiyofen-2- karbaldehit	Br3

Çizelge 1.1. Çalışmada incelenecek olan moleküller (X: F, Cl ve Br)

2. GENEL BİLGİLER

2.1. Moleküler Spektroskopi

Spektroskopi elektromanyetik ışınımın madde ile etkileşimini inceleyen, fizik ve kimyada önemli bir uygulama alanına sahip bir bilim dalıdır. Spektroskopik analiz yöntemlerinde, bir örnekteki atom veya moleküllerin bir enerji düzeyinden diğerine geçişi sırasında soğurulan, saçılan veya yayılan elektromanyetik ışınımın davranışı incelenir. Atomların ve moleküllerin spektrumlarından moleküler yapıya ait bilgiler (moleküler simetri, bağ uzunlukları ve bağ açıları) ve kimyasal özellikleri (elektronik dağılım, bağ kuvveti, molekül içi ve moleküller arası süreçler) hakkında bilgiler elde edilebilir [37]. Moleküler titreşim spektroskopisi, maddenin elektromanyetik dalgalarla karşılıklı olarak etkileşmesini inceler ve atomların molekül içindeki kararlılığını ve moleküller arası etkileşimleri araştırmak için kullanılır. Molekül üzerine bir elektromanyetik dalga gönderildiğinde, elektromanyetik dalga ile molekül arasındaki etkileşme sonucunda molekülün enerji düzeyleri arasında geçişler meydana gelir. Bu geçişler, gelen elektromanyetik ışınımın enerjisinin şiddetine bağlı olarak değişik spektrum bölgelerine ayrılır ve dalga boyu ve frekans değerlerine göre sınıflandırılarak elektromanyetik spektrum elde edilir. Elektromanyetik ışınıma dayanan spektroskopik yöntemler Çizelge 2.1'de görülmektedir [38].

Spektroskopi Türü	Dalga Boyu (λ) Aralığı	Dalga Sayısı (v̄) Aralığı (cm ⁻¹)	Kuantum Geçiş Türü
γ-ışını yayınımı	0,05-1,4 Å	-	Nükleer
X-ışını soğurması, yayınımı ve kırınımı	0,1-100 Å	-	İç elektronlar
Görünür-Ultraviyole (UV) soğurması ve yayınımı	180-780 nm	50000-13000	Dış elektronlar
İnfrared soğurması ve Raman saçılması	0,78-300 µm	13000-33	Moleküllerin dönmesi ve titreşimi
Mikrodalga soğurması	0,75-3,75 mm	13-27	Moleküllerin dönmesi
Elektron spin rezonansı (ESR)	3 cm	0,33	Manyetik alandaki elektron spinleri
Nükleer manyetik rezonans (NMR)	0,6-10 m	0,017- 1000	Manyetik alandaki çekirdeklerin spinleri

Çizelge 2.1. Elektromanyetik ışınıma dayanan spektroskopik yöntemler

Bu bölgeler aşağıdaki gibi özetlenebilir [39];

- Radyo dalgaları bölgesi: Elektron veya çekirdeğin spininin işaret değiştirmesinden kaynaklanan enerji değişimlerinin spektrumu radyo dalgaları bölgesinde incelenir. Bu bölgede, Nükleer Manyetik Rezonans (NMR) ve Elektron Spin Rezonans (ESR) spektroskopileri kullanılır.
- Mikrodalga bölgesi: Molekülün dönme enerji seviyeleri arasındaki geçişler bu bölgede incelenir ve ESR çalışmaları bu bölgede yapılır. Ayrıca bir sistem çiftlenmemiş elektrona sahip ise sistemin manyetik özelliklerindeki değişmeler de bu bölgede incelenir.
- İnfrared bölgesi: Bir molekülün titreşim ve dönme enerji seviyeleri arasındaki geçişleri bu bölgede spektrum verir. Yani molekülün titreşim frekansları IR bölgesinde, infrared soğurma ve Raman saçılma spektroskopisi yöntemleri ile incelenir.
- 4. Görünür-Ultraviyole bölgesi: Bu bölgede, atom veya moleküle ait olan dış kabuktaki elektronların yer değiştirmesi esastır. Bundan dolayı bu bölgedeki spektroskopi türü elektronik spektroskopisi adını alır. Bu spektroskopi dalı, molekül veya atomun en dış orbitalindeki elektronların çeşitli enerji düzeyleri arasındaki geçişlere dayanır.
- 5. X-ışınları bölgesi: Bir atomun veya molekülün iç orbitallerindeki elektron geçişleri bu bölgede incelenir.
- 6. γ-ışınları bölgesi: Çekirdekteki enerji seviyeleri arasındaki geçişler ise bu bölgede incelenir. Bu geçişteki enerji çok büyüktür ve çekirdek çok kısa süre uyarılmış seviyede kaldıktan sonra enerjisini kaybeder ve temel hale döner. Kaybedilen bu enerji yüksek frekanslıdır, dolayısıyla enerjisi oldukça büyüktür.

Moleküllerde birden fazla atom ve çok sayıda elektron bulunduğundan moleküler spektroskopi atomik spektroskopiye göre daha karmaşıktır. Çünkü moleküler spektrumlar, elektronik düzeyler arasındaki geçişlere ek olarak dönme ve titreşim enerji düzeyleri arasındaki geçişleri de içerir. Dolayısıyla, bir molekülün hareketini tanımlarken molekülün ötelenme, dönme, titreşim ve elektronik hareketlerini tanımlamak gerekir. Fakat molekülün ötelenme enerjisi kuantumlu olmadığı için spektroskopide gözlenmez [40]. Born-Oppenheimer yaklaşımına göre bir molekülün toplam enerjisi,

$$E_{toplam} = E_{dönme} + E_{titresim} + E_{elektronik}$$
(2.1)

şeklinde ifade edilir. Bu enerjiler arasındaki ilişki E_{elektronik} > E_{titreşim} > E_{dönme} biçiminde olup, bu ifadede toplam enerjiyi oluşturan elektronik, titreşim ve dönme enerjilerinin birbirlerine göre oranları,

$$\Delta E_e = 10^3 \Delta E_t = 10^6 \Delta E_d \tag{2.2}$$

şeklindedir [41].

Dönme enerjisi (E_d); molekülün kendi kütle merkezi etrafında dönmesiyle oluşur. Tek atomlu bir molekül sadece bir dönme serbestlik derecesine sahiptir. Fakat doğrusal olmayan üç ya da daha fazla atomlu bir molekül ağırlık merkezinden geçen üç dik eksen etrafında dönebilir. Bu nedenle üç dönme serbestlik derecesine sahip olduğu söylenebilir. Doğrusal bir molekül ise atomların bağlı olduğu çekirdekten geçen eksen etrafında dönemez bu da dönme serbestlik derecelerinden birinin kısıtlanmış olduğu anlamına gelir. Dolayısıyla doğrusal moleküller iki tane dönme serbestlik derecesine sahiptir.

Titreşim enerjisi (E_t); noktasal kütle olarak düşünülen molekülü oluşturan atomların denge pozisyonlarından salınımı ile ilgilidir ve kuantum mekaniksel temellere dayanarak açıklanır. Bir molekül enerji soğurduğunda molekülün titreşim ve dönme hareketinde artış meydana gelir. Bu oluşum infrared spektroskopisinin temelini oluşturur.

Elektronik enerji (E_e) ise, molekül çekirdeğini sabit noktalar olarak düşünürken elektronların hareketi ile ilgilidir. Bir molekülün elektronik enerji seviyesindeki artış, elektronun taban durumundan uyarılmış duruma geçmesi için gereken kinetik enerjideki artıştan dolayıdır ve elektronun bulunduğu moleküler bağın türüne bağlı olarak değişiklik gösterir. Ayrıca elektronik enerjilere titreşim ve dönme enerjileri de dahil olur [37].

Bir molekülün toplam enerjisi elektronik, titreşim ve dönme bileşenlerini içerir ve bu bileşenlerin tümü kuantumludur. Bir moleküldeki dönme enerji seviyeleri birbirlerine oldukça yakın olduğundan bu seviyeler arasındaki geçiş için gerekli olan enerji azdır. Bu geçişler elektromanyetik spektrumun mikrodalga ve uzak infrared bölgelerinde meydana gelir. Bu bölgelerdeki absorpsiyon çalışmaları molekül yapısı hakkında önemli bilgiler verir.

Bir molekülün titreşim enerji seviyeleri arasındaki mesafe ise dönme enerji seviyelerine kıyasla daha uzaktır bu yüzden de bu seviyeler arasındaki geçiş için

gerekecek enerji değeri daha yüksektir. Titreşim enerji seviyeleri elektromanyetik spektrumun infrared bölgesinde meydana gelir. Bu bölgede sadece titreşim geçişleri olmadığından, dönme geçişlerinin de varlığından dolayı titreşim spektrumları tek çizgilerden oluşmazlar, band spektrumu şeklindedirler. Molekül bir elektromanyetik ışınım absorpladığında, elektronik enerjisindeki artış elektronları daha yüksek enerji seviyesine taşır ve bu geçişe titreşim ve dönme enerji değişimleri de eşlik eder [37]. Bir moleküle ait enerji seviyelerindeki geçişler Şekil 2.1'de görülmektedir [42].

Şekil 2.1. İki atomlu bir molekül için elektronik, titreşim ve dönme geçişleri

Titreşim spektroskopisi; infrared ve Raman spektroskopisi olmak üzere iki başlık altında incelenir.

2.2. İnfrared Spektroskopisi

İnfrared (titreşim) spektroskopisi, maddenin infrared ışınlarını soğurması üzerine kurulmuş olan, organik ve inorganik yapıların analizinde kullanılan en genel spektroskopik yöntemlerden biridir. Bu yöntemde genellikle dalga boyları 2500 nm ve 25000 nm arasında olan ışınlardan yararlanılır [43]. İnfrared spektroskopisinde ışınlar dalga boyları (λ) yerine dalga sayıları ($\overline{\nu}$) ile verilir. Dalga sayısı;

$$\bar{\nu} = \frac{1}{\lambda} = \frac{\nu}{c} \quad (\text{cm}^{-1}) \tag{2.3}$$

şeklinde tanımlanır [44]. Hem enerji hem de frekansla doğru orantılı olduğundan IR spektroskopisinde genellikle doğrusal bir dalga sayısı ölçeği kullanılmaktadır. Bu tanımlamaya göre infrared bölgesinde dalga sayısı 4000 cm⁻¹ ve 400 cm⁻¹ aralığında olan ışınlar kullanılır.

İnfrared spektroskopisinin temeli ışığın soğurulmasına dayanır. Bir molekülün infrared ışınını soğurabilmesi için dipol momentinin değişmesi gerekir. Bu infrared spektroskopisi için seçicilik kuralıdır [45]. Bir madde IR ışınını soğurduğu zaman titreşim enerji seviyeleri uyarılır. Bu durumu Hooke yasasına göre şu şekilde açıklayabiliriz: Molekül içindeki atomların titreşimleri sırasında atomlar arasındaki mesafe sürekli büyüyüp küçüldüğünden molekülün dipol momenti değişir ve iki atom arasında titreşim halinde bir elektrik alan meydana gelir. Bu alanın değeri, belli bir frekans ile periyodik olarak değişir ve bu alan soğurulan elektromanyetik dalganın elektriksel alanı ile etkileşir. Eğer elektromanyetik ışımanın frekansı, moleküldeki dipol moment değişikliğine yol açan elektrik alanın frekansına eşit olursa, titreşim kuantum düzeyi uyarılır ve ışıma soğurulur. Yani ışıma sistemde dipol moment değişikliğine yol açmazsa soğurulamaz. Bu yüzden N₂, O₂, Cl₂ gibi homonükleer ve CCl₄ gibi simetrik yapıya sahip moleküllerde dipol moment değişikliği olmadığından bu moleküller IR ışınlarını soğuramazlar [37, 43]. İnfrared ışınlarını soğuran maddelere "IR aktif maddeler" denir. İnfrared soğurma bandının şiddeti dipol moment değişiminin karesi ile orantılıdır [46].

İnfrared spektroskopisi Çizelge 2.2'de gösterildiği gibi yakın, orta ve uzak infrared bölgeleri olmak üzere 3 bölgede incelenir [38].

Çizelge 2.2. İnfrared spektral bölgeleri

Bölge	Dalga boyu (λ) (μm)	Dalga sayısı (v) (cm ⁻¹)	Frekans (v) (Hz)
Yakın IR	0,78 - 2,5	12800 - 4000	$3,8x10^{14} - 1,2x10^{14}$
Orta IR	2,5 - 50	4000 - 200	$1,2x10^{14}-6,0x10^{12}$
Uzak IR	50 - 1000	200 - 10	$6,0x10^{12}-3,0x10^{11}$

Yakın İnfrared bölgesi (NIR); moleküllerin temel titreşim bandlarının üstton geçişleri veya harmoniklerinin incelendiği bölgedir. Özellikle karbon, azot ve oksijen atomları ile hidrojen bağı yapan bileşiklerin yapı analizinde kullanılır.

Orta infrared bölgesi (MIR); temel titreşimler bu bölgede gözlemlendiği için moleküler yapı analizinde genellikle bu bölge kullanılır. Bu bölge kendi içinde iki bölgeye ayrılabilir. 1350 cm⁻¹'in üzerindeki bölge birçok gerilme titreşiminin gözlendiği, 1350 cm⁻¹'in altındaki bölge ise parmak izi bölgesi olarak adlandırılır.

Uzak İnfrared bölgesi (FIR); ise özellikle inorganik bileşiklerin yapısını tayin etmek amacıyla kullanılır. Organometalik ve inorganik moleküllerin temel titreşimleri, ağır atomlar ile bu moleküllerdeki zayıf bağlar uzak infrared bölgesinde gözlenir. Ayrıca kristal metallerin örgü titreşimleri de bu bölgede gözlenir ve yarıiletkenlerdeki elektronların valans band ile iletim bandı arasındaki geçişlerine ait dalga sayıları da bu bölgedeki dalga sayılarına karşılık gelir.

2.3. Raman Spektroskopisi

İnfrared spektroskopisinin tamamlayıcısı olan Raman spektroskopisinde molekül üzerine görünür ya da yakın IR bölgesinden gönderilen elektromanyetik dalganın saçılımı incelenir. Bu yöntemde ışınlar monokromatik (tek frekanslı) bir lazer kaynağından gönderilir. IR ve Raman spektroskopilerinin ikisi de titreşim enerjileri üzerine kurulmuş olmasına rağmen dayandıkları temel mekanizmaları farklıdır. Şöyle ki; IR spektroskopisinin temelinde molekülün titreşimi sırasında bir dipol moment değişikliği şartı geçerliyken, Raman spektroskopisinin temelinde polarizibilite (kutuplanma yatkınlığı) değişikliğinin olması vardır [43].

Raman spektroskopisinde, gelen ışınım ile molekülün kutuplanma yatkınlığının etkileşmesi molekülde bir indüklenmiş dipol moment oluşturur ve indüklenen dipol moment tarafından yayılan ışınım gözlenen Raman saçılımını içerir [47]. Raman

saçılması sırasında saçılan ışığın enerjisinde molekül ile etkileşen ışığınkine göre oluşan fazlalık veya azlık ışıkla etkileşen molekülün titreşim enerji düzeyleri arasındaki enerji farkları kadardır. Bu farklar Raman kayması olarak adlandırılır. Bu nedenle Raman saçılmasının spektroskopik incelenmesi ile moleküllerin titreşim enerji düzeyleri hakkında bilgi edinilebilir.

Raman spektroskopisinin avantajı infrared spektroskopisinde moleküler simetriden dolayı aktif olmayan moleküler titreşimler hakkında bilgiler vermesidir. İnfrared ve Raman aktiflik şartlarının farklı olmasından dolayı, molekülün simetrisine bağlı olarak infrared spektrumunda gözlenmeyen bir titreşim frekansı Raman spektrumunda gözlenebilir.

Bazı titreşim frekansları ise her ikisinde de gözlenmeyebilir. Karşılıklı dışarlama ilkesi, simetri merkezine sahip olan molekülde bir titreşim geçişinin hem infrared hem de Raman spektrumunda gözlenemeyeceğini ifade eder. Bazı temel frekanslar hem infrared hem de Raman spektrumunda aktif olmayabilirler. Bu frekanslar infrared ve Raman kombinasyon bandlarından belirlenebilir [41, 48].

Raman spektroskopisinin en temel tanımı, klasik yaklaşım yapılarak titreşen bir elektrik alanın etkileşiminin yapısını açıklamaktır. Bir moleküle bir elektromanyetik dalga gönderildiği zaman, molekülün çekirdek ve elektronları elektrik alan kuvveti etkisiyle yer değiştirirler. Bu yer değiştirme sonucunda molekülde bir indüklenmiş dipol moment oluşur. Oluşan bu dipol moment ise elektromanyetik dalganın elektrik alan bileşeni ile doğru orantılıdır [37]. Böylece;

$$\vec{\mu} = \alpha \vec{E} \tag{2.4}$$

eşitliği yazılır. Burada; α , molekülün kutuplanabilme yatkınlığı (polarizibilitesi) ve $\vec{\mu}$, indüklenen elektriksel dipol momenttir. Molekül üzerine gönderilen v frekanslı elektromanyetik dalga ile elektrik alan titreşmektedir. Dolayısıyla indüklenmiş dipol moment de aynı frekansta titreşir. Gelen ışınım molekül ile etkileştikten sonra gelen ışığın farklı yönlerinde aynı frekanslı ışınlar yayar. Bu Rayleigh saçılmasının klasik olarak tanımlanmasıdır.

Kuantum mekaniksel olarak Raman saçılması ise şu şekilde açıklanmaktadır; moleküller, v₀ frekanslı elektromanyetik ışınım ile etkileşince esnek veya esnek olmayan çarpışmalar yapabilirler. Esnek çarpışmada enerji kaybı olmayacağı için saçılan fotonun enerjisi gönderilen fotonun enerjisi ile aynı olur. Bu tür saçılmaya Rayleigh saçılması denir. Esnek olmayan çarpışmada ise saçılan fotonun enerjisi gönderilen fotonun enerjisinden daha düşük veya daha yüksek olabilir. Moleküller fotonlarla esnek olmayan çarpışma yaparlarsa kuantum şartlarına uygun olarak enerji seviyelerini (titreşim veya dönme) değiştirirler.

Taban titreşim enerji düzeyinde bulunan bir molekül hv₀ enerjisini soğurarak üst enerji seviyesine uyarılır. Molekül h(v₀-v_{tit}) enerjili foton yayınlayarak bu üst enerji seviyesinden birinci uyarılmış titreşim seviyesine geçiş yapar. (v₀-v_{tit}) frekanslı bu saçılmaya Stokes saçılması denir. Birinci uyarılmış titreşim düzeyinde bulunan moleküllerde hv₀ enerjisini soğurarak daha üst kararsız enerji seviyesine uyarılırlar ve h(v₀ + v_{tit}) enerjili foton yayınlayarak taban enerji seviyesine geçerler. (v₀₊v_{tit}) frekanslı bu saçılma ise Anti-stokes saçılması adını alır [49]. Şekil 2.2'de Raman spektroskopisinde gözlenen saçılmaların şematik gösterimi verilmektedir [50].

Şekil 2.2. Raman spektroskopisindeki saçılmaların şematik gösterimi

Raman saçılması için seçicilik kuralı $\Delta v = \pm 1$ şeklindedir. Stokes çizgileri $\Delta v = \pm 1$, Anti-stokes saçılmaları ise $\Delta v = -1$ durumunda gerçekleşir. Maxwell-Boltzmann dağılımına göre normal koşullarda taban enerji seviyesinde bulunan molekül sayısı bir üst enerji seviyesinde bulunan molekül sayısından daha fazladır. Bu yüzden Stokes saçılmalarının gerçekleşme ihtimali Anti-Stokes saçılmalarından daha fazladır [51].

2.4. Moleküler Titreşimler

Bir moleküldeki atomları bir arada tutan kuvvetler kimyasal bağlardır. İki atomlu bir molekülün titreşimi incelenirken atomlar arasındaki kimyasal bağın, kütlesiz bir yay gibi davrandığı kabul edilir. Molekülde bulunan her bir atomun konumunu tanımlamak için x, y ve z bileşenleri olmak üzere kartezyen koordinat sisteminde 3 koordinata ihtiyaç vardır. Yani N atomlu bir molekülün 3N serbestlik derecesi vardır. Bunlardan üç tanesi molekülün kütle merkezinden kaynaklanan ötelenme hareketine, üç tanesi de dönme hareketine karşılık geldiğinden 3N-6 tanesi titreşim serbestlik derecesidir. Molekülün yapısının lineer (doğrusal) olması durumunda bağ etrafındaki dönme ihmal edileceğinden molekül 3N-5 titreşim serbestliğine sahip olur [52]. Her normal titreşim modunda moleküldeki tüm atomlar aynı frekansta titreşir ve tüm atomlar aynı anda denge pozisyonundan geçerler [46].

Titreşim modlarının frekansları harmonik ve anharmonik titreşici olmak üzere iki yaklaşımla açıklanmaktadır.

2.4.1. Harmonik titreşici modeli

Moleküler titreşimleri açıklamak için klasik görüş altında harmonik titreşici yaklaşımı kullanılır. Yani herhangi bir molekülün bir bağı için kütle-yay sistemi olarak bilinen Hooke Yasası'na uyan bir modelleme önerilebilir. Kütle-yay sisteminde geri çağırıcı yay kuvveti $\vec{F} = -k\vec{x}$ olarak verilir. Şekil 2.3 yay sabiti k olan kütlesiz bir yay ile bağlanmış, m₁ ve m₂ kütleli iki atomlu bir molekülü göstermektedir [53].

Şekil 2.3. İki atomlu bir molekülün titreşim hareketi

Her bir kütlenin yay ekseni boyunca denge konumundan yer değiştirmesi X_1 ve X_2 kadardır. Bir harmonik osilatör için zamanın bir fonksiyonu olarak iki kütlenin yer değiştirmesi periyodik bir şekilde bir sinüs (veya kosinüs) fonksiyonu olarak değişir. Gözlenen genlikler, kütle merkezini sabit tutan atomların kütlesi ile ters orantılıdır.

$$-\frac{X_1}{X_2} = \frac{m_2}{m_1} \tag{2.5}$$

İki atomlu bir molekül için titreşim frekansı klasik olarak;

$$\nu = \frac{1}{2\pi} \sqrt{k \left(\frac{1}{m_1} + \frac{1}{m_2}\right)}$$
(2.6)

şeklindedir. Bu ifade aynı zamanda µ indirgenmiş kütle ile de ifade edilir.

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} \tag{2.7}$$

ifadesi denklem (2.6)'da yerine yazıldığında titreşim frekansı,

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
(2.8)

elde edilir [53]. İki atomlu bir molekül için potansiyel enerji ifadesi klasik harmonik osilatör için $P.E = \frac{1}{2}kX^2$ şeklindedir. Bu iki atomlu sistemin kütleler arası uzaklığın bir fonksiyonu olarak potansiyel enerjisinin grafiği, denge uzaklığının etrafında simetrik olan bir paraboldür. Burada k, kuvvet sabiti olup enerjinin minimum olduğu denge noktasına yakın potansiyelin eğriliğinin bir ölçüsüdür.

Basit harmonik titreşicinin titreşim enerjileri Schrödinger dalga denkleminin çözümünden; n = 0, 1, 2, 3... titreşim kuantum sayıları olmak üzere,

$$E_{tit} = \left(n + \frac{1}{2}\right)h\nu\tag{2.9}$$

olarak elde edilir. Harmonik yaklaşıklıkta enerji seviyeleri aralıkları birbirine eşittir ve hv kadardır. Harmonik titreşicinin potansiyel eğrileri paraboliktir.

2.4.2. Anharmonik Titreşici Modeli

Gerçek bir moleküldeki bağlar homojen bir yapıda olmadıkları için tam olarak Hooke Yasası'na uymazlar. Bu yaklaşımda enerji seviyeleri aralıkları birbirine eşit değildir ve yüksek uyarılma seviyelerinde gittikçe bu aralıklar azalır. Yani moleküldeki atomları bir arada tutan bağlar kopma noktasına gelebilir. Bu yüzden harmonik titreşici modeli sadece küçük titreşimler için kullanılabilir [54].

Anharmonik titreșici modelinde Morse potansiyel enerjisi,

$$V(x) = hcD_e [1 - e^{-ax}]^2$$
(2.10)

kullanılır ve Schrödinger denklemi ile çözüldüğünde titreşim enerji seviyeleri,

$$E_{tit} = \left(n + \frac{1}{2}\right)h\nu - \left(n + \frac{1}{2}\right)^2 h\nu\chi_e \tag{2.11}$$

şeklinde bulunur. Burada χ_e , anharmoniklik sabiti olup denklemdeki ikinci terim düzeltme terimidir. Bu düzeltme terimi titreşim enerji seviyelerinin farklarındaki azaltmayı düzeltmektedir [55].

Şekil 2.4'de iki atomlu bir molekül için harmonik ve anharmonik titreşicinin potansiyel enerji seviyeleri karşılaştırılmıştır. D₀ deneysel olarak elde edilen molekülün kimyasal ayrışma enerjisi olup, D_e ise iki atom arasındaki bağın kırılması için gerekli olan spektroskopik ayrışma enerjisidir. Geçişler v = 0 temel titreşim enerji seviyesinden başlamakta ve D_e ile D₀ arasındaki fark sıfır nokta enerjisidir. Eşit enerji seviyeleri aralıklarına sahip harmonik osilatörün tersine anharmonik osilatörde Morse potansiyel enerji seviye aralıkları gittikçe azalmakta ve D_e ayrışma enerjisine yaklaşmaktadır [56].

Şekil 2.4. Harmonik ve anharmonik osilatörün potansiyel enerji diyagramları

2.5. Moleküler Titreşim Türleri

Çok atomlu moleküllerin yapacağı temel titreşim hareketleri dört grup altında incelenebilir [37, 45, 57].

a) Gerilme titreşimleri (stretching): Bir moleküldeki atomların bağ ekseni doğrultusunda atomlar arası bağların periyodik olarak uzama ve kısalma hareketine neden olan titreşimlerdir. Bu titreşim hareketlerinde bağ açısı değişmez ve sembolik olarak v ile gösterilir. Bu titreşimler simetrik ve asimetrik gerilme olmak üzere ikiye ayrılır. Moleküldeki tüm bağların uzaması veya kısalması şeklinde ise simetrik, bağlardan bir veya birkaçı uzarken diğerlerinin kısalması şeklinde ise asimetrik gerilme titreşimidir. Simetrik gerilme titreşimleri v_s ve asimetrik gerilme titreşimleri v_a ile temsil edilir. Asimetrik gerilme titreşim frekansı genel olarak simetrik gerilme titreşim frekansından büyüktür.

Şekil 2.5. (a) Simetrik gerilme, vs

(b) Asimetrik gerilme, v_a

b) Açı bükülme titreşimi (bending): Molekülde bulunan bağların uzunlukları değişmeden iki bağ arasındaki açının periyodik olarak değişmesine neden olan titreşimlerdir ve δ ile gösterilir. Açı bükülme titreşim hareketi yapan moleküldeki atomların yer değiştirme vektörleri bağ doğrultularına diktir. Açı bükülme titreşimlerinin düzlem içi ve düzlem dışı özel titreşim durumları vardır. Makaslama ve sallanma hareketi düzlem içi, dalgalanma ve kıvırma hareketi ise düzlem dışı açı bükülme titreşimleridir.

Şekil 2.6. Açı bükülme titreşimi, δ

Makaslama (scissoring); Düzlem içi açı bükülme titreşiminin simetrik bir türüdür. İki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak oluşan değişim hareketidir ve δ_s ile gösterilir. Yer değiştirme vektörleri bağa dik doğrultuda ve aynı noktaya doğrudur.

Sallanma (rocking); Düzlem içi açı bükülme titreşiminin asimetrik bir türüdür. Atomlar arasındaki açı değişmeden iki bağ arasındaki veya bir grup atomla bir bağ arasındaki açının bükülmesi ile oluşan titreşim hareketidir. Yer değiştirme vektörleri birbirini takip edecek yöndedir ve ρ_r ile gösterilir.

Dalgalanma (wagging); Düzlem dışı açı bükülme titreşiminin simetrik bir türüdür. Bir bağ ile iki bağ tarafından tanımlanan bir düzlem arasındaki açının değişimine neden olan titreşim hareketidir ve w ile gösterilir. Molekülün tüm atomları denge konumunda düzlemsel iken bir atomu bu düzleme dik hareket eder.

Kıvırma (twisting); Düzlem dışı açı bükülme titreşiminin asimetrik bir türüdür. Bir bağ ile düzlem arasındaki açının değişimine neden olan titreşim hareketidir ve t ile gösterilir. Lineer ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesine neden olur. Yer değiştirme vektörleri bağ doğrultusuna dik ve zıt yöndedir.

Şekil 2.7. Açı bükülme titreşimleri

c) Burulma titreşimi (torsion): İki düzlem arasındaki açının bir bağ veya açıyı deforme edecek şekilde değişimine neden olan titreşimlerdir ve τ ile gösterilir.

Şekil 2.8. Burulma titreşimi, τ

d) Düzlem dışı açı bükülme titreşimi (out of plane bending): Atomların hareketi ile bir düzlemin (genellikle bir simetri düzlemi) yok edilmesi hareketidir. Genelde kapalı bir halka oluşturan moleküllerde görülür ve hareketin biçiminden dolayı şemsiye (umbrella) titreşimi adını alır. Bu titreşim hareketi γ ile gösterilir.

Şekil 2.9. Düzlem dışı açı bükülme titreşimi, y

Bir molekülün infrared spektrumunda temel titreşim bandlarının yanı sıra üstton (overtone), fark (difference) ve birleşim (combination) titreşim bandları da gözlenmektedir. Maxwell-Boltzmann dağılım fonksiyonuna göre normal koşullarda taban enerji seviyesinde bulunan molekül sayısı bir üst enerji seviyesinde bulunan molekül sayısından daha fazladır. Bu sebeple bir molekülün infrared spektrumunda en şiddetli bandlar taban enerji seviyesinden birinci uyarılmış titreşim düzeyine olan geçişlerde gözlenir. $v = 0 \rightarrow 1$ şeklinde temsil edilen bu geçişler temel geçişlerdir. Temel titreşim frekanslarının iki, üç veya daha fazla katlarında oluşan geçişler ise üstton titreşim frekanslarıdır ve $v = 0 \rightarrow 2$, 3, 4... şeklindedir. Birleşim veya fark titreşim bandları ise iki veya daha fazla temel titreşim frekansının toplamı veya farkı olarak ortaya çıkar. Bazen de bir fotonun iki titreşim modunu aynı anda uyarması sonucu ortaya çıkar. Üstton ve birleşim bandları Raman spektrumunda çok zayıf oldukları için nadir olarak gözlenirken infrared spektrumunda zayıf şiddette olmalarına rağmen gözlenebilirler [37, 41, 58].

Aynı simetri türünde olan bir temel titreşim ile bir üstton veya birleşim titreşim frekansı birbirine çok yakın ise aralarında bir etkileşme (rezonans) meydana gelir. Bu durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üstton veya birleşim bandı yerine, temel titreşim bandı yakınlarında gerçek değerinden sapmış iki şiddetli titreşim bandı gözlenir. Bu olay ilk kez Fermi tarafından gözlendiğinden, bu etkileşme Fermi Rezonansı olarak bilinir. Fermi rezonansı IR ve Raman spektrumlarındaki fonksiyonel gruplarda önemli bir miktarda bulunabilir [45, 46, 53].

2.6. Grup Frekansları

Farklı fonksiyonel gruplar içeren çok atomlu moleküllerin titreşim spektrumlarının incelenmesinde karakteristik grup frekanslarından yararlanılır. Grup frekansları ve bu frekansların karakteristik tabloları bir molekülde hangi fonksiyonel grubun olup olmadığını belirlememize yardımcı olur. Organik bileşiklerdeki fonksiyonel gruplar infrared spektroskopisinde kolayca tanımlanabilirler. Grup frekanslarında meydana gelen kaymalar ise molekülün yapısı hakkında daha ayrıntılı bilgi sağlar.

Grup frekansları temel olarak moleküldeki bir grup atomun titreşiminin molekülün geri kalan kısmına ait titreşimlerden hemen hemen bağımsız olduğu gerçeğine dayanılarak açıklanır. Eğer molekül içindeki bir grup, moleküldeki diğer atomlara göre daha hafif (OH, NH, NH₂, CH, CH₂, CH₃ gibi) atomlar veya halojenler (CCl, CBr, F, Cl) gibi ağır atomlar içerirse, bu atomların harmonik salınım genliklerinin aynı moleküldeki diğer atomlara nispeten daha büyük veya daha küçük olmasından dolayı bu grupların molekülün geri kalan kısmından bağımsız olarak hareket ettikleri kabul edilir. Birden fazla bağ içeren grupların (C=C, C=N, C=C, C=N, C=O gibi) titreşimleri de eğer gruplar bir konjüge sisteme ait değilse molekülün geri kalan kısmından nispeten bağımsız olabilir [48].

Grup frekansları bulundukları spektral bölgeye göre belirlenmektedirler. İskelet titreşimleri genellikle 1500 cm⁻¹ ile 600 cm⁻¹ arasındaki bölgede moleküldeki lineer veya dallanmış zincir yapılardan dolayı gözlenirler. Bu bölgedeki bandların tümü incelenen moleküle özgüdür ve bu bölgeye parmak izi bölgesi de denir [59]. Grup frekanslarının çoğu 3600-1500 cm⁻¹ arasındaki fonksiyonel grup bölgesinde bulunmaktadır. Bu spektral

bölgeler; 4000-2500 cm⁻¹ arasındaki dalga sayısına sahip hidrojenik bağ gerilme (X-H) bölgesi, 2500-2000 cm⁻¹ arasındaki üçlü bağ gerilme bölgesi ve 2000-1500 cm⁻¹ arasındaki bölge ikili bağ gerilme bölgesidir [45].

Grup	Gösterim	Dalga Sayısı (cm ⁻¹)
-O-H gerilmesi	ν (OH)	3640-3600
-N-H gerilmesi	ν (NH)	3500-3380
-C-H gerilmesi (aromatik)	ν (CH)	3100-3010
-C-H gerilmesi (alifatik)	ν (CH)	3000-2900
-CH ₃ gerilmesi	v (CH ₃)	2960-2870
-CH ₂ gerilmesi	v (CH ₂)	2930-2855
-S-H gerilmesi	v (SH)	2600-2550
-C≡C gerilmesi	v (CC)	2260-2100
-C≡N gerilmesi	ν (CN)	2200-2000
-C=O gerilmesi	ν (CO)	1800-1600
-NH2 bükülmesi	δ (NH ₂)	1540
-CH ₂ bükülmesi	δ (CH ₂)	1465
-CH3 bükülmesi	δ (CH ₃)	1450–1375
C-CH3 bükülmesi	$\rho_r(CH_3)$	1150-850
-S=O gerilmesi	v (SO)	1080-1000
-C=S gerilmesi	v (CS)	1200-1050
-C-F gerilmesi	ν (CF)	1400-1000
-C-Cl gerilmesi	v (CCl)	800-600
-C-Br gerilmesi	v (CBr)	600-500
-C-I gerilmesi	ν (CI)	500

Çizelge 2.3. Bazı grup frekansları [43]

2.7. Grup Frekanslarını Etkileyen Faktörler

Grup frekanslarını etkileyen faktörler molekül içi ve molekül dışı etkiler olmak üzere başlıca iki gruba ayrılır.

2.7.1. Molekül içi etkiler

Bir molekülde frekansı birbirine yakın iki titreşim arasında görülen titreşimsel çiftlenim, komşu bağın kuvvet sabiti etkisi ve bir bağın elektron yoğunluğunda değişiklik oluşturan elektronik etki molekül içi etkilerdir.

• Çiftlenim (coupling): Bir atoma bağlı iki titreşim olduğunda veya bir molekülde frekansları birbirine çok yakın iki titreşim olduğu zaman titreşimsel çiftlenim gözlenir. Örneğin, A=X gibi bir bağa sahip bir molekülün gerilme titreşimi için

temel titreşim frekansı v₁ olsun. Bu iki atomlu molekülden türetilen X=A=X bağı için v'₁ < v₁ ve v'₂> v₁ frekanslarında iki gerilme titreşimi gözlenir. Bunun nedeni AX₂ molekülündeki titreşimlerin birbirini etkilemesi ve iki A=X bağının olması sebebiyle v₁ frekanslı titreşim bandı yerine v'₁ ve v'₂ frekanslı iki titreşim bandının gözlenmesidir. Bu olaya titreşimsel çiftlenim denir. Çiftlenim çizgisel moleküllerde en fazla, açılı moleküllerde ise açıdaki artışa bağlı olarak azalmaktadır.

- Komşu Bağın Kuvvet Sabiti Etkisi: Bir bağa komşu olan bağın kuvvet sabitinin küçülmesi veya büyümesi o bağın da kuvvet sabitinin sırayla küçülmesine ya da büyümesine neden olur. Dolayısıyla titreşim frekansları düşer veya yükselir. Bu şekilde komşu bağın etkisiyle bir bağın frekansının düşmesine veya yükselmesine komşu bağın kuvvet sabiti etkisi denir. Örneğin C=C, C=O, C=N gibi X=Y çift bağı içeren grupların gerilme titreşim frekansları X–Y gibi tek bağ içeren grupların titreşim frekanslarından daha büyüktür. Bunun nedeni, X=Y bağının kuvvet sabitinin X–Y bağının kuvvet sabitinin hemen hemen iki katı olmasıdır. X=Y grubuna ait titreşimler komşu grupların bağlanmasına karşı çok duyarlıdır.
- Elektronik Etki: Bağın elektron yoğunluğunda değişikliğe neden olan elektronik etki, indüktif etki ve rezonans etki olmak üzere iki şekilde gözlenir. İndüktif etki; bağ elektronlarının atomlar arasında ortaklaşılmasını zincir boyunca atomdan atoma değiştiren etkidir. Söz konusu bağın elektron yoğunluğunu arttıran pozitif etki ve söz konusu bağın elektron yoğunluğunu azaltan negatif etki olmak üzere ikiye ayrılır. Bir bağın elektron yoğunluğunda değişikliğe neden olan bu etkiler bağın kuvvet sabitinin ve dolayısıyla titreşim frekansının değişmesine neden olurlar. Rezonans etki ise çift bağ karakterinin azalmasına ve bağın zayıflamasına neden olur. Rezonans etki ile çift bağın tek bağa dönüşme olasılığı yüksektir. Bu nedenle düşük frekansa kayma olur yani grup titreşim frekansı azalır.

2.7.2. Molekül Dışı Etkiler

Bir maddenin en iyi spektrumu gaz fazında elde edilir. Bunun nedeni madde gaz fazında iken bir molekülün yakınında başka bir molekül bulunmaz ve molekül normal titreşimini yapar. Buna karşılık, madde sıvı halde iken molekülün yakınında bulunan başka moleküllerden etkilenir. İnfrared spektrumunda grup frekanslarının kaymasına
neden olan bu molekül dışı etkiler dipolar etkilenme ve hidrojen bağı ile etkilenme olmak üzere iki şekilde olur [43].

- Dipolar Etkilenme: Polar çözücülerde çözünen moleküllere ait bazı atomların çözücüde bulunan zıt yüklü atomlarla dipol oluşturması sonucu grup frekanslarının değişmesi dipolar etkilenme yüzündendir. Örneğin aseton molekülündeki [(CH₃)₂–C=O] karbonilin, molekül gaz halindeyken titreşimi 1742 cm⁻¹' de, molekül sıvı haldeyken titreşimi ise 1719 cm⁻¹' de gözlenmiştir. Bunun nedeni sıvı haldeyken dipol olan iki karbonil (C=O) grubunun birbirlerini çekmeleridir. Böylece bağların polarlığı artar ve karbonil grubunun bağ derecesi düşer. Polar çözücülerde çözünen ile çözücü arasında etkileşim söz konusu olduğu için değişik çözücülerde değişik dalga boylarında bandlar gözlenebilir.
- Hidrojen Bağı ile Etkilenme: Hidrojen bağı ile etkilenme sonucu grup frekanslarında meydana gelen kaymalar dipolar etkilenmeden ileri gelen kaymalardan daha büyüktür. Hidrojen bağının oluşabilmesi için molekül içindeki hidrojenle veya molekül dışındaki hidrojenle etkileşmeye girebilecek elektronegatif grupların molekülde bulunması gerekir. Hidrojen bağı bir molekülün X–H grubu ile bir başka molekülün Y atomu arasındaki etkileşme olarak tanımlanır ve X–H…Y şeklinde temsil edilir. Elektronegatif X atomu (O, N, F gibi) ile bir veya daha fazla ortaklanmamış elektron çiftine sahip Y atomu arasında meydana gelir. Y atomunun elektron verme yeteneği ne kadar yüksek olursa hidrojen bağı da o kadar kuvvetli olur. Hidrojen bağları donör (verici) ve akseptör (alıcı) grupların aynı molekül üzerinde olması durumunda molekül içi, farklı moleküller üzerinde olması durumunda moleküller arası bağlar olarak adlandırılmaktadır [46].

Hidrojen bağıyla etkilenmeye en iyi örnek RCOOH ile temsil edilen karboksilli asitlerde oluşan hidrojen bağı verilebilir. Bunlar polar olmayan çözücüler ile derişik çözeltilerinde dimer moleküllerden oluşurlar. Bu dimerleşmenin nedeni iki molekül arasında iki hidrojen bağının meydana gelmesidir. Bu bağlanmalarda OH bağının titreşim frekansı yaklaşık 1000 cm⁻¹ kadar düşer ve soğurma bandı genişler. Hidrojen bağı X–H bağını zayıflattığı için X–H gerilme titreşim frekansları azalırken, H…Y bağı nedeniyle X–H bükülme titreşim frekanslarının artmasına neden olur. Buna en iyi örnek de primer amidler [R-NH₂C=O] verilebilir. Primer amidlerde hidrojen bağları normal bağlara göre oldukça zayıftır fakat bulundukları grubun frekansının düşmesine neden olurlar. Frekans

kaymasının büyüklüğü hidrojen bağının şiddetine bağlıdır. Çözünen ile etkileşmeyen çözücüler hidrojen bağının etkisini azaltabilir hatta çok seyreltik çözeltiler hidrojen bağının etkisini yok edebilirler. Daha yoğunlaştırılmış çözeltilerde veya daha yoğun fazda X–H…Y hidrojen bağı oluşur [43, 46].

2.8. Kuantum Kimyasal Hesaplamalar

Hesaplamalı kimya, organik ve inorganik moleküller, biyomoleküller, polimerler, ilaçlar vb. gibi sistemlerin bilgisayar simülasyonu ve modellenmesi ile ilgilenen ve hızlı bir şekilde gelişen bir disiplindir. Son yıllarda hesaplamalı kimya üzerine yapılan bilgisayar donanım ve yazılımındaki gelişmelerle beraber oldukça popüler bir hale gelmiştir. Geliştirilen programlar sayesinde kimyasal yapılar ve reaksiyonlar, moleküllerin birçok özelliği teorik olarak incelenebilmektedir. Bu özelliklerden bazıları; moleküler enerjiler ve yapılar, bağ ve reaksiyon enerjileri, termodinamik özellikler, moleküler orbitaller, atomik yükler ve elektrostatik potansiyeller, titreşim frekansları, IR, Raman ve NMR spektrumları, polarizebilite ve hiperpolarizebiliteler, elektronik geçişler ve iyonlaşma potansiyeli şeklindedir [60, 61].

Hesaplama tekniklerini kullanarak bir molekül üzerinde çalışmanın ilk adımı bir geometri optimizasyonu yapmaktır. Geometri optimizasyonları, moleküler sistemlerin denge yapılarını önceden bildirmek için klasik olarak potansiyel enerji yüzeyi üzerinde minimum bir yer bulmak için gerçekleştirilir. Bu sistemlerin geçiş yapılarını bulmak için de kullanılabilirler. Bir molekülün geometrisi fiziksel ve kimyasal özelliklerinin çoğunu belirler. Ayrıca bir molekülün enerjisinin yapısıyla değiştiğini de biliyoruz. Bu nedenle moleküler bir yapının en kararlı durumuna karşılık gelen en düşük enerjili yapısını bulmak için yapılan geometri optimizasyonu, hesaplama yöntemleri için oldukça önemlidir [60].

Potansiyel enerji yüzeyleri (PES) hesaplamalı kimyada merkezi bir kavramdır. Bir PES, bir molekülün (veya moleküllerin bir topluluğu) enerjisi ve onun geometrisi arasındaki matematiksel veya grafiksel ilişkidir. Potansiyel enerji yüzeyleri, bir moleküler sistemin enerjisinin yapısındaki küçük değişikliklerle beraber nasıl değiştiğini gösterir.

Moleküllerin özelliklerini hesaplamada Moleküler Mekanik veya Elektronik Yapı Yöntemleri (Kuantum Mekanik Yöntemler) kullanılmaktadır. Elektronik yapı yöntemleri de;

- Yarı deneysel yöntemler
- Ab-initio yöntemler
- Yoğunluk Fonksiyoneli Teorisi (DFT)

olmak üzere üçe ayrılır.

2.8.1. Moleküler mekanik yöntemler

Moleküler mekanik yöntemde, bir moleküler sistemin en düşük enerjili geometrisini bulmak için klasik fizik yasaları kullanılmaktadır. Bunun için bir molekülün bağlarının yaylarla ve atomlarının kürelerle tanımlandığı bir modelleme yapılır. Enerji için matematiksel ifadenin formu ve bunun parametreleri bir kuvvet alanı oluşturur ve bu yöntemlere çoğu zaman kuvvet alanı yöntemleri de denilir. Moleküler mekanik hesaplamalarda, moleküler sistemdeki elektron etkileşmeleri hesaba katılmaz ve sadece çekirdek etkileşmeleri esas alınır. Elektronların etkileri dolaylı olarak kuvvet alanlarında parametre olarak yer alır [61].

Moleküler mekanik yöntemlerin avantajı, moleküler sistemdeki elektron etkileşmelerini hesaba dahil etmediği için hesaplama sürelerinin hızlı olmasıdır. Dezavantajı ise elektronik etkileşmelerin ağırlıkta olduğu kimyasal problemlerle ilgili hesaplamaları içermemesi ve bu parametreler için ab-initio yöntemlere veya deneysel verilere ihtiyaç duymasıdır [60].

Biyomoleküller üzerindeki hesaplamalar moleküler mekanik yöntemlerin çok önemli bir uygulamasıdır ve bu yöntemlerin yardımıyla farmakoloji endüstrisi yeni ilaçlar tasarlamaktadır. Örneğin, QSAR (kantitatif yapı-etki ilişkileri) ile biyolojik aktivite ve moleküler özellikler arasında tutarlı bir ilişki bulmaya çalışılarak, ideal ilaç etken maddesi olabilecek yeni bileşiklerin tasarlanması veya geliştirilmesi sağlanır. MM1, MM2, Amber, Hyperchem, Quanta, Charmm, Alchemy ve Opls gibi programlar moleküler mekanik yöntemler kullanan programlardan bazılarıdır [62].

2.8.2. Elektronik yapı yöntemleri

Kuantum mekanik yöntemler, klasik fizik yasaları yerine kuantum mekaniğini kullanırlar ve ilk olarak 1920'li yılların sonlarında Schrödinger denkleminin ortaya çıkmasıyla beraber gelişmeye başlamıştır. Bu yöntemler molekülleri çekirdek ve elektronların toplamı olarak ele alır ve moleküle ait enerji ve diğer parametreleri Schrödinger denkleminin çözümüyle elde eder.

Schrödinger denkleminin tam çözümü tek elektronlu bir sistem olan hidrojen atomu dışındaki diğer tüm sistemler için mümkün değildir. Çözüm için bazı matematiksel yaklaşımlar kullanılır ve elektronik yapı yöntemlerinde hesaplama süreleri moleküler mekanik yöntemlere göre daha uzundur. Kuantum mekanik modeller bu yaklaşımların varlığında maliyet ve güvenilirlik açısından farklılıklar göstererek geniş bir yelpazeye yayılırlar [63].

Schrödinger denkleminin çok çekirdekli bir sistem için en genelleştirilmiş hali,

$$\widehat{H}\psi = E\psi \tag{2.12}$$

şeklindedir. Burada \hat{H} , Hamiltoniyen operatörü olup toplam enerji operatörüdür. E, sabit bir değer olup Hamiltoniyen operatörünün öz değeridir. ψ dalga fonksiyonu ise Hamiltoniyen operatörünün öz fonksiyonudur.

N sayıda elektron ve M sayıda çekirdek içeren bir sisteme ait toplam enerjiyi veren Hamiltoniyen operatörü,

$$\widehat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$
(2.13)

şeklindedir. Burada; Z çekirdek yükü, M_A A çekirdeğinin kütlesi, R_{AB} A ve B çekirdekleri arasındaki uzaklık, r_{ij} i ve j elektronları arasındaki uzaklıktır. İlk iki terim sırasıyla elektron ve çekirdeklerin kinetik enerjisini, geriye kalan üç terim ise Hamiltoniyen operatörünün potansiyel enerji kısmını temsil eder. Bu terimler, elektron-elektron ve çekirdek-çekirdek etkileşimlerinden dolayı itici bir potansiyeli ve elektron-çekirdek arasındaki çekici elektrostatik potansiyeli ifade eder [64].

Moleküler sistemler için Schrödinger denklemini basitleştirmenin bir yolu çekirdeklerin hareket etmediğini varsaymaktır. Çekirdeğin kütlesinden dolayı hareketinin elektronların hareketine göre çok daha yavaş olmasından dolayı bu varsayım yapılarak ihmal edilebilir. Bu yaklaşım *Born-Oppenheimer yaklaşımı* olarak bilinir ve Hamiltoniyen ifadesindeki terimler,

$$\widehat{H}_{elektronik} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
(2.14)

şeklinde elektronik Schrödinger denklemindeki Hamiltoniyen ifadesine indirgenir [63].

2.8.2.1. Yarı deneysel yöntemler

Yarı deneysel yöntemlerde kuantum mekaniğinin yanı sıra deneysel çalışmalardan elde edilen bazı parametreler ve çok sayıda yaklaşımlar kullanılmaktadır. Bu yaklaşımlarla beraber çok sayıda terim hesaba katılmaz ve Schrödinger denklemi yaklaşık olarak çözülür. Hesaplamalarda kullanılan deneysel parametreler incelenen moleküler sistem için uygun olduğunda bu yöntemler ile yapılan hesaplamalarda iyi sonuçlar elde etmek mümkündür.

Yarı deneysel yöntemlerde, Hartree Fock hesaplamasına benzer bir yapı oluşturulur. Genellikle çekirdek elektronları hesaba dahil edilmez ve minimum bir baz seti kullanılır. Ayrıca iki elektronlu integrallerin bazıları ihmal edilir. Hesaba katılmayan bu terimler yerine ab-initio hesaplardan ya da deneysel parametrelerden elde edilen veriler kullanılır. [60, 65]

Bu yöntemlerde hesaplama süreleri ab-initio yöntemlere oranla daha kısadır ve büyük moleküllü sistemlerde iyi sonuçlar verdiği için yaygın olarak kullanılmaktadır. Abinitio hesaplama metotlarının yetersiz kaldığı biyomoleküller üzerinde yapılacak hesaplamalarda, deney verileri ile uyumlu ve oldukça hızlı hesaplamalar gerçekleştirebilmeleri nedeniyle avantajlıdır.

Kullanılan yarı deneysel modellerden bazıları; NDO (Neglect of Differential Overlap), CNDO (Complete Neglect of Differential Overlap), MNDO (Modified Neglect of the Diatomic Overlap), AM1 (Austin Model 1), PM3 (Parametric Method 3), ZDO (Zero Differential Overlap), vb. şeklindedir [60].

2.8.2.2. Ab-initio yöntemler

Ab-initio yöntemi moleküler mekanik ve yarı deneysel yöntemlerden farklı olarak hesaplamalarında temel fizik sabitlerini kullanarak deneysel parametrelere ihtiyaç duymaz ve tamamen kuantum mekaniği ilkelerinden yararlanır. Schrödinger denklemini çözmek için de varyasyon yaklaşıklığı kullanılır.

En yaygın olarak kullanılan ab-initio yöntem merkezi alan yaklaşımını temel alan Hartree-Fock hesaplama yöntemidir. Çok elektronlu bir sistemde moleküler orbital hesaplamalarındaki elektron-elektron itme enerjisinin varlığı işlemleri zorlaştırmaktadır. Bu yaklaşımda her bir elektron kendisi dışında kalan diğer elektron ve çekirdeğin oluşturduğu ortalama küresel potansiyel alanda hareket eder [66]. Yani elektron-elektron itmesinden kaynaklanan Coulomb itme potansiyel terimi ortalama bir değer olarak integralle hesaba katılır. Ancak bu itme etkileşimini açıkça ifade etmez sadece ortalama etkisini verir. Bu varyasyonel bir yaklaşım olduğundan, hesaplanan yaklaşık enerjilerin tümü gerçek enerji değerine eşit veya daha fazladır [65].

Yöntemin avantajlarından biri, çok elektronlu Schrödinger denklemini, tek elektronlu daha basit denklemlere dönüştürmesidir. Hartree-Fock hesaplamalarındaki sınırlamalardan biri ise elektron-elektron etkileşmelerini göz ardı etmesidir.

2.8.2.3. Yoğunluk fonksiyonel teorisi (DFT)

Ab-initio ve yarı deneysel metotlar bir moleküler dalga fonksiyonun ve moleküler orbital enerjileri hesaplar, yani dalga fonksiyonu yöntemini temsil ederler. Yoğunluk fonksiyonel teorisi ise dalga fonksiyonuna bağlı değildir, onun yerine $\rho(x,y,z)$ ile temsil edilen elektron yoğunluk fonksiyonu veya elektron olasılığı yoğunluk fonksiyonuna bağlıdır. Bu birim başına bir olasılıktır ve x, y, z koordinatlarındaki bir nokta üzerinde yoğunlaşmış bir dxdydz hacim elemanındaki elektron bulma olasılığını tanımlar [61]. Hohenberg ve Kohn (1964) tarafından ortaya konulan yoğunluk fonksiyonel teorisinin temelinde, çok elektronlu bir sistemin enerjisinin taban durum özelliklerini belirlemek için elektron yoğunluğu temel değişken olarak kabul edilir [67]. Bir elektron sisteminin toplam taban durumu enerjisi, elektronik yoğunluğun bir fonksiyonu olarak yazılabilir. Yani enerji E, elektron yoğunluğunun $\rho(r)$ tek bir fonksiyonelidir. Bu teorinin pratik bir uygulaması 1965 yılında Kohn ve Sham tarafından geliştirilmiştir. Kohn-Sham denklemleri zamandan bağımsız Schrödinger denkleminin benzer bir formudur. Bu denklemler, etkin bir potansiyel içinde hareket eden bağımsız parçacıkları açıkladığı için çok elektronlu sistemin tam olarak açıklanmasına olanak verirler.

Günümüzde kullanılan DFT metotları molekülün elektronik enerjisini birkaç terimin toplamı olarak,

$$E = E_T + E_V + E_J + E_{XC}$$
(2.15)

şeklinde ifade eder. Burada; E_T elektronların hareketinden ortaya çıkan kinetik enerjiyi, E_V çekirdek-elektron çekimlerini ve çekirdek çiftlerinin itmesine ait potansiyel enerjiyi, E_J elektron-elektron itmesini, E_{XC} geriye kalan diğer elektron-elektron etkileşimlerini temsil eder. E_{XC} terimi kısaca değişim-korelasyon terimi olarak adlandırılır ve genellikle "değişim" ve "korelasyon" olarak

$$E_{XC}(\rho) = E_X(\rho) + E_C(\rho) \tag{2.16}$$

şeklinde iki kısma ayrılır [68]. İlk üç terimin toplamı elektron dağılımının klasik enerjisini verirken, son terim elektron spinini açıklayan kuantum mekaniksel değiş-tokuş enerjisini ve elektronların ortak hareketlerinden kaynaklanan dinamik korelasyon enerjisini temsil eder.

DFT yöntemleri ile çok fazla atom içeren moleküller üzerine yapılan hesaplamaların ab-initio yöntemlerine kıyasla daha hızlı olması ve elde edilen sonuçların deneysel verilerle uyumunun daha iyi olmasının sonucunda son yıllarda oldukça popüler olmuştur. DFT yöntemini çekici kılan en önemli özelliği ise hesaplamalarına elektron korelasyonunu dahil etmiş olmasıdır.

DFT modellerinin değiş-tokuş ve korelasyon enerjilerinin hesaplamasında Hartree-Fock teorisinden daha üstün olması ancak kinetik enerji hesabının HF teorisinde daha iyi sonuçlar vermesi nedeniyle tam enerji ifadesini elde edebilmek için HF ve DFT değişim terimlerinin karışımından oluşan hibrit fonksiyonelleri kullanılmaktadır. Son yıllarda oldukça popüler olan bu hibrit modellerle; toplam enerji, bağ uzunlukları, iyonizasyon enerjileri vb. çoğu büyüklükler saf modellerden daha iyi hesaplanmaktadır. Bu hibrit modellerden en iyi sonuçları veren ve yaygın olarak kullanılan B3LYP modeli, Becke'nin 1993 yılında tasarladığı 3 parametreli hibrit fonksiyonunun BLYP'ye dahil etmesi ile oluşturduğu bir DFT hesaplama modelidir [69].

2.8.3. Baz Setleri

Baz setleri, teorik hesaplama ya da modelleme için kullanılan bir moleküler sistemin orbitallerinin matematiksel bir tanımlamasıdır. Moleküler orbitallerin oluşturulması için molekülü oluşturan atomlara ait atomik orbitaller temel fonksiyonlarla tanımlanarak baz setleri oluşturulur. Moleküler orbital hesaplamaları için Slater tipi orbital (STO) ya da Gaussian tipi orbital (GTO) kullanılır.

Hidrojen atomu ve diğer tek elektronlu iyon atomlar için Schrödinger eşitliğinin çözümüyle elde edilen fonksiyonlar kullanarak oluşturulan Slater tipi orbitaller küresel simetrik bir elektron dağılımını gösterirler. Çekirdeğe yakın ve uzak bölgelerde gerçek dalga fonksiyonu özelliği göstermesi nedeniyle özellikle atomların ve küçük lineer moleküllerin fiziksel özelliklerinin belirlenmesinde Slater tipi orbitaller tercih edilmektedir. Daha fazla atom içeren moleküllerin çok merkezli integrallerinin hesaplamalarında STO'lar verimli bir şekilde kullanılamamaktadır [60]. İlk olarak 1950 yılında yapılan bir çalışmada Slater tipi orbitallere alternatif olarak Gaussian tipi orbitaller kullanılmıştır. Günümüzde de hesaplama programlarının çoğu Gaussian tipi orbitallere uygun olarak düzenlenmektedir [70].

Minimal baz setleri; Kullanılan baz setleri arasındaki en küçük baz setleri minimal baz setleri olarak adlandırılır. En yaygın kullanılan minimal baz setleri, John Pople ve grubu tarafından tasarlanan STO-nG baz setleridir. GTO'ların lineer kombinasyonu kullanılarak elde edilen basit fonksiyonlardır ve burada n kullanılan GTO sayısını ifade etmektedir. En yaygın kullanılan minimal baz seti STO-3G baz setidir [60].

Yarılmış valans baz setleri; Toplam fonksiyonu daha doğru ve güvenilir hale getirmek için baz setlerinin genişletilmesiyle oluşmuştur. Bu baz setlerinin oluşumunda, bir atomun iç kabuk orbitalleri bir temel fonksiyon ile valans orbitalleri ise iki temel fonksiyonla tanımlanır. Örneğin, 6-31G temel setinde, iç kabuk fonksiyonları 6 tane Gaussian fonksiyonundan oluşurken, değerlik fonksiyonları ise 1 GTO ve 3 GTO'dan oluşur [71].

Polarize baz setleri; Molekül içindeki çekirdeklerin diğer çekirdeklerin etrafındaki polarize elektron yoğunluğunu bozmasından dolayı (özellikle bağlanma bölgesinde) polarize fonksiyonlar yardımıyla her bir atomun taban seviyesine uygun açısal momentuma sahip olan orbitaller eklenerek daha esnek moleküler orbitaller oluşturulur. Polarizasyon fonksiyonları; C, N, O gibi atomlara d orbitalleri, hidrojen atomuna p orbitalleri, geçiş metallerine ise f orbitalleri eklenmesiyle temel setlere katılarak oluşturulur. Yaygın olarak kullanılan polarize setlerden 6-31G(d) (veya 6-31G* ile gösterilen) baz seti, tüm hidrojen harici atomlar için d tipi fonksiyonunun eklenmesini; 6-31G(d,p) (veya 6-31G**) baz seti ise hidrojen atomuna p-tipi fonksiyonla birlikte ağır atomlara d-tipi fonksiyon eklenmesini ifade eder [72].

Difüze baz setleri; Difüze fonksiyonların kullanıldığı baz setleri, anyonlar ve negatif yüklü sistemler, uyarılmış durumdaki sistemler ve düşük iyonizasyon potansiyeline sahip sistemler gibi genellikle elektronların çekirdekten uzak olduğu sistemlerin daha iyi tanımlanabilmesi için kullanılırlar. Herhangi bir baz setine difüzyon fonksiyonu eklenmişse bu "+" işaretiyle gösterilir. Hidrojen dışındaki ağır atomlar için "+" işareti, hem ağır atomlar hem hidrojen atomları için "++" işaretinin eklenmesiyle

temsil edilir. Örneğin, 6-31+G(d) baz seti ağır atomlara difüze fonksiyonların eklendiğini ifade ederken, 6-31++G(d,p) baz seti ise hem ağır atomlara hem de hidrojen atomlarına difüze fonksiyonların eklendiğini ifade etmektedir [73].

3. TEORİK-DENEYSEL ÇALIŞMA

Bu bölümde hedef molekül olarak ele aldığımız tiyofen-2-karbaldehit (T2C) molekülü ve bu molekülün halojen değişkenli 9 türev molekülünün titreşim işaretlemeleri ve frekansları için yapılan teorik hesaplamalar, deneysel incelemeler ve kullanılan cihazlar hakkında bilgiler verilmektedir.

3.1. Teorik Çalışma

Çalışmada incelediğimiz T2C ve halojen değişkenli türev molekülleri için, öncelikle konformasyon durumlarını ve molekül yapılarının sahip olduğu nokta gruplarını belirledikten sonra üç farklı ortam (gaz, polar ve apolar çözücüler) için teorik hesaplamaları gerçekleştirildi. Tüm hesaplamalar, yoğunluk fonksiyonel teorisi (DFT, Density Functional Theory) yöntemlerinden B3LYP [69] yöntemi kullanılarak 6-31++G(d,p) baz seti ile yapıldı.

T2C ve üç seri altında incelediğimiz türev moleküleri için cis ve trans konformasyon durumları ele alındı. Ayrıca molekülün simetri yapısı incelenerek C₁ ve C_s nokta gruplarının her ikisi için de tüm hesaplamalar gerçekleştirildi. Çözücü ortamı için polar çözücü olarak metanol kullanılırken apolar çözücü olarak da benzen kullanıldı. İncelenen bu 10 molekül için toplamda 120 tane optimizasyon hesabı gerçekleştirilmiş olundu.

Gerçekleştirilen tüm hesaplamalar MSI GE72 6QF-052XTR dizüstü bilgisayar kullanılarak yapılmıştır. Titreşim hesaplamaları için Gaussian 09.A1 [74], titreşim işaretlemeleri ve teorik titreşim spektrumları için GaussView 5.0.8 [75] programları kullanılmıştır. Ayrıca molekülün her bir normal titreşim modu için iç koordinatlarının göreli katkılarını gösteren ve böylece her bir modun karakterini sayısal olarak belirlemeyi sağlayan potansiyel enerji dağılım yüzdeliklerinin hesaplamaları VEDA4 (Vibrational Energy Distribution Analysis) [76] programı ile gerçekleştirilmiştir. Gaussian 09.A1 programında yer alan polarize süreklilik modeli geometriler, serbest enerjiler ve titreşim enerjileri için kullanılmıştır [77].

Ayrıca teorik hesaplamalar sonucu elde edilen Raman aktivite değerleri,

$$I_{i} = \frac{f(\overline{v_{o}} - \overline{v_{l}})^{4} S_{i}}{\overline{v_{l}} \left[1 - exp\left(-\frac{hc\overline{v_{l}}}{kT} \right) \right]}$$
(3.1)

formülüne göre bağıl Raman şiddetlerine dönüştürülmüştür. Burada; $\overline{v_0}$ lazerin dalga sayısı, $\overline{v_i}$ normal titreşim modunun dalga sayısı, S_i normal titreşim modunun Raman aktivitesi, f tüm pik şiddetleri için uygun normalizasyon sabiti (10⁻¹⁴), h Planck sabiti, k Boltzmann sabiti, c ışık hızı ve T sıcaklıktır [78].

Teorik hesaplamalar yapılırken moleküllerin simetri yapısı göz önünde bulundurularak hem C₁ hem de C_s nokta grubu için hesaplamaları gerçekleştirilmiştir. Bir molekül E (özdeşlik operatörü) dışında herhangi bir simetri elemanına sahip değilse molekülün sahip olduğu nokta grubu C₁'dir. Molekül hem E simetri elemanına hem de σ düzlem simetrisine sahip ise molekülün sahip olduğu nokta grubu C_s olur. σ simetri elemanında bir düzlemdeki yansımadan bahsedilir [79]. Bundan dolayı optimizasyon hesaplamalarımızı her iki nokta grubu için de gerçekleştirdik ve ortam farklılıklarında molekül yapılarındaki kararlılığın nokta grubuna bağlı olarak değiştiğini gözlemledik. Moleküllerdeki konformasyon çalışması için molekülün karbaldehit kısmındaki konformasyon durumları incelenmiştir. Bu konformasyonlar Şekil 3.1'de gösterildiği gibi karbaldehite ait olan CO-CH gruplarının dönmesiyle oluşturulan cis ve trans konformasyonlarıdır [14].

Şekil 3.1. Tiyofen-2-karbaldehit molekülünün konformasyon durumları

Geometri optimizasyonu sırasında molekül yapısında meydana gelen değişiklikler (molekülün konformasyonu) ve mevcut geometriye karşılık gelen molekülün toplam enerjisi, o molekülün "Potansiyel Enerji Yüzeyi" (Potential energy Surface, PES)'ni oluşturur. Optimizasyon yapılmadan önce oluşturulan molekül geometrisi dengede olmayan bir yapıdır. Geometri optimizasyonu, bu yapının geometrik parametrelerini (bağ uzunlukları, bağ ve dihedral açıları vb.) değiştirerek moleküler sistemin enerjisini minimum hale getirecek şekilde matematiksel bir prosedürün uygulanmasıdır. Kararlı bir moleküler konformasyon potansiyel enerjinin moleküler parametrelere karşı çizilen potansiyel enerji grafiğinde bir minimuma karşılık gelir [80,81].

Tiyofen-2-karbaldehit molekülüne ait yapılan potansiyel enerji yüzeyi taraması Şekil 3.2'de verilmektedir. Potansiyel enerji yüzeyi taraması (PES-Scan) için Austin Model 1 (AM1) kullanılarak, molekülde konformasyonu belirleyen C2-C1-C6-O7 dihedral açısı belirlenip 180°'lik açıda taratılmıştır.

Şekil 3.2. Tiyofen-2-karbaldehit molekülünün potansiyel enerji yüzeyi taraması

Şekil 3.2' de de görüldüğü gibi molekül trans konformasyonu durumunda en kararlı yapıya sahiptir. Konformasyon analizi için B3LYP yöntemi ve 6-31++G(d,p) baz setinde yapılan hesaplamalar sonucunda da incelenen tüm moleküllerin, C₁ ve C_s nokta grupları ve çözücü ortamları da dahil olmak üzere hepsinde <u>trans</u> durumunun en kararlı yapı olduğu gözlenmiştir.

3.2. Deneysel Çalışma

T2C ve türev moleküllerinin infrared spektrumları Anadolu Üniversitesi Fen Fakültesi Fizik Bölümü, FT-IR ve Raman Spektroskopi laboratuvarında bulunan IFS 66v/S Spektrometresi ile 2 cm⁻¹ çözünürlükle 4000-400 cm⁻¹ ve 400-30 cm⁻¹ bölgelerinde alınmıştır. Raman spektrumları ise Anadolu Üniversitesi Fen Fakültesi Fizik Bölümü, FT-IR ve Raman Spektroskopi laboratuvarında bulunan Senterra Dispersif Raman Mikroskop ile 3 cm⁻¹ çözünürlükle 4000-50 cm⁻¹ bölgesinde alınmıştır.

3.3. Kullanılan Teknik ve Cihazlar

İnfrared soğurma ve Raman saçılma spektroskopileri farklı tekniklere dayandığından spektrumlarını ölçmek için çok farklı teçhizat gerektirir. İnfrared spektroskopisinde bir örnek içinden geçen IR kaynağı görüntüsü detektöre yansıtılırken, Raman spektroskopisinde görüntülenen odaklanmış lazer demetidir. Her iki durumda da yayılan ışık toplanır ve bir dalga boyu sınıflama aygıtına odaklanır. Dispersif cihazlarda kullanılan monokromotörler ve Fourier dönüşümlü cihazlarda kullanılan interferometreler iki farklı temel cihazdır. İlk zamanlarda IR ve Raman spektrumları dispersif cihazlarla ölçülürken günümüzde çoğunlukla interferometrelere dayalı olan FT (Fourier dönüşümlü) spektrometreler kullanılmaktadır. Raman cihazlarında hem interferometrelere dayalı spektrometreler hem de çok kanallı dedektörler kullanılır [53]. Burada FT-IR ve Raman spektrometreleri ile ilgili ve kullanılan teknik ve cihazlar hakkında bilgiler verilmektedir.

3.3.1. FT-IR spektrometresi

Fourier dönüşümlü infrared (FT-IR) spektroskopisi matematiksel Fourier dönüşümü yöntemi ile ışığın infrared şiddetine karşı dalga sayısını ölçen bir kimyasal analitik yöntemdir. FT-IR spektrometresinin çalışma prensibinde; bir kaynaktan yayılan infrared ışını, ışığı modüle eden bir interferometreye yönlendirilir. Daha sonra bu ışık numune bölgesinden geçtikten sonra dedektöre odaklanır ve dedektör tarafından bir sinyal ölçülür. Optik yol farkına karşı ışık şiddetini gösteren bu sinyale interferogram denir [82].

FT-IR spektroskopisinde bir interferogram elde etmek için iki ışın arasındaki girişim ilkesinden yararlanılır. İki ışın arasındaki optik yolun değişiminin fonksiyonu

olarak bir sinyal elde edilir. Uzaklık ve frekans ise matematiksel Fourier dönüşümü metodu ile karşılıklı olarak birbirine dönüştürülebilirler [45].

Fourier transformu, infrared spektrometresinde ışığın her dalga boyunun şiddetini değiştirmek için interferometre olarak Michelson interferometresi kullanılır. Michelson interferometresi Şekil 3.3' de gösterildiği gibi dört ana kısımdan oluşur. İlk kısım bir infrared ışık kaynağıdır, ikinci kısım sabit ayna, üçüncü kısım hareketli ayna ve dördüncü kısım dedektördür.

Şekil 3.3. Michelson interferometresinin optik diyagramı [53]

Düzeneğin ortasına yerleştirilmiş yarı geçirgen bir yüzey olan ışın bölücü, infrared ışık kaynağından gelen ışığı eşit iki demete ayırır. İdeal bir ışın bölücü gelen ışığın yarısını yansıtır kalan yarısını da geçirir. Böylece farklı iki optik yol oluşur. Işın bölücü tarafından geçirilen ışın sabit aynaya, yansıtılan ışın ise hareketli aynaya gider. Sabit ve hareketli aynalardan yansıyan ışın demetleri ışın bölücüde tekrar birleşir ve numuneyle etkileşmek üzere interferometreyi terk ederek dedektöre ulaşır [83].

Eğer ışın bölücünün merkezinden sabit aynaya olan uzaklık, ışın bölücünün hareketli aynaya olan uzaklığına eşit ise aynalardan yansıyarak örneğe ulaşan iki ışın demeti de eşit mesafede yol alır. Bu durum sıfır yol farkı olarak bilinir ve bu durumda dedektör sinyalinin şiddeti maksimum olur. Hareketli ayna hareket ettirildiği zaman bu eşitlik bozulur ve oluşan yol farkına "optik yol farkı" adı verilir [53]. Optik yol farkı δ ile gösterilir. Optik yol farkı kaynaktan gelen ışığın dalga boyunun tam katlarına eşitse yani,

$$\delta = n\lambda$$
 $n = 0, 1, 2, 3, ...$ (3.2)

ise yapıcı girişim meydana gelir ve sinyal kuvvetlenir. Eğer optik yol farkı kaynaktan gelen ışığın dalga boyunun tek katlarına eşitse yani,

$$\delta = (n+1/2) \lambda$$
 $n = 0, 1, 2, 3, ...$ (3.3)

ise yıkıcı girişim oluşur ve sinyal yok olur.

FT-IR spektrometreler, maddelerin infrared spektrumlarının alınmasında hız ve hassaslıklarından dolayı dispersif cihazlara göre daha üstün özellik gösterirler. Bu cihazlarda daha az optik eleman kullanılması sonucunda dedektöre ulaşan ışınların şiddeti dispersif cihazlara oranla daha büyüktür ve daha şiddetli sinyal gözlenebilmektedir. Ayrıca numunedeki bütün elementlerin sinyallerinin dedektöre aynı zamanda gelmesi ve tüm frekansların aynı anda ölçülmesiyle spektrumun tümünün çok kısa bir süre içinde alınması sağlanır.

Şekil 3.4'de bu çalışmadaki numunelerin infrared spektrumlarını almak için kullanılan IFS 66v/S spektrometre cihazı görülmektedir. IFS 66v/S hareket kabiliyeti yüksek, uzak-IR (FIR)'dan yakın UV' ye kadar geniş spektral bölgesi olan vakumlu bir FT-IR spektrometredir.

Şekil 3.4. FT-IR IFS 66v/S spektrometresi

3.3.2. Raman spektrometresi

Raman spektrometreleri, dispersif Raman ve Fourier dönüşümlü Raman olmak üzere iki teknikten birine dayanmaktadır. Her iki tekniğinde kendine özgü avantajları vardır ve belirli analiz türleri için idealdir. Raman spektroskopisi cihazları, ışın kaynağı, numune ışınlama sistemi ve ışık toplama optiği, dalga boyu seçicileri ve dedektör olmak üzere başlıca dört kısımdan oluşur [84].

Raman spektrometreleri için ışın kaynağı olarak lazerler kullanılır. Lazerlerin kullanılmasının nedeni; şiddetli, monokromatik, polarize ve uyumlu ışık kaynakları olmasıdır. Dispersif Raman spektrometrelerinde genellikle dalga boyu 750 nm 'den daha küçük lazerler kullanılırken Fourier dönüşümlü Raman spektrometrelerinde dalga boyu daha büyük lazerler kullanılır. Bunun nedeni kullanılan dedektörlerin sinyal/gürültü oranı ve belirli spektral aralıklarda farklı dedektörlerin duyarlılığı ile ilgilidir. Raman spektrometreleri için kullanılan dedektörler, dispersif cihazlar için tek kanallı ve çok kanallı şeklinde ayrılırken, Fourier dönüşümlü cihazlarda yarı iletken dedektörler (çoğunlukla Si, InGaAs ve Ge) kullanılmaktadır [85].

Raman saçılması ölçümlerinde, numunelerin hazırlanması infrared spektroskopisine göre daha basittir, çünkü ölçülen dalga boyu farkları iki "görünür" frekanstadır. Bu nedenle pencereler, mercekler ve diğer optik malzemeler için kullanımı kolay olan cam malzemeler kullanılır. Son yıllarda geliştirilen cihazlarda numune ışınlama ve saçılan ışınları toplamak için optik mikroskoplar kullanılmaktadır. Bu optik mikroskoplar, kullanılan objektifler sayesinde numunenin çok küçük bir alanından Raman spektrumunun alınmasını sağlamaktadır.

Şekil 3.5. Raman spektrometre ve mikroskobu [86]

Dalga boyu seçicileri birçok kategoriye ayrılabilir. En basiti, yapıcı girişim oluşturabilmek için iki düz optik yüzeye sahip olan ve filtrenin kalınlığının iki katına uygun olan dalga boyu aralığını geçiren bir girişim filtresidir. Girişim filtreleri tek dalga boyu için üretilmiştir. İstenen dalga boylarının seçilebildiği girişim filtreleri de mevcuttur, ancak bunların spektral çözünürlükleri Raman spektrumu için çok düşüktür. Şekil 3.5'te Raman spektrometre ve mikroskobunun basit bir şeması verilmektedir.

Bu spektrometrede bir numune UV, görünür ve yakın IR aralıklarında bir lazer ışını ile normal bir şekilde aydınlatılır. Dağılan ışık bir mercekle toplanır ve numunenin Raman spektrumunu elde etmek için filtre veya spektrofotometre yoluyla gönderilir [84]. Spektrum gözlemlemek için, Raman saçılmasındaki ışını tek tek dalga boylarına ayırmak gerekir. Bunun için sinyali farklı dalga boylarında ayıran, bir dağıtıcı (grating) kullanılır. Bu dağıtıcı, ışını CCD (Charge Coupled Device) dedektöre yöneltir ve sinyal burada görüntülenir.

Şekil 3.6. Senterra dispersif Raman mikroskop

Dispersif Raman mikroskobu küçük numunelerin analizleri için idealdir. Ayrıca görünür bölge dalga boylarında çalıştığı için elde edilen Raman sinyalleri çok daha güçlü ve hassastır. Şekil 3.6'da bu çalışmada ele alınan numunelerin Raman spektrumlarını almak için kullanılan Senterra dispersif Raman mikroskop cihazı görülmektedir. Senterra

dispersif Raman mikroskobu, dispersif Raman teknolojisinin hassaslığını ve Fourier dönüşümlü Raman spektroskopisinin ise doğru dalga boyu özelliğini birleştirir.

3.3.3. Katı ve sıvıların infrared ve Raman spektrumlarının alınması

Katı haldeki numunelerin infrared spektrumlarını almak için kullanılan farklı yöntemler vardır. Bu yöntemler; süspansiyon haline getirme yöntemi (mull yöntemi), alkali halojenür disk hazırlama yöntemi ve film haline getirme yöntemidir.

Süspansiyon haline getirme yönteminde, katı numune uygun bir sıvı ortamda dağıtılır ve dağıtma ortamı olarak genellikle sıvı parafin kullanılır. En yaygın kullanılan sıvı parafin nujol yağıdır. Süspansiyon haline getirme yöntemiyle numune hazırlamak için toz halinde az miktardaki numune (yaklaşık 2-3 mg) agat havanda bir iki damla nujol yağı içinde homojen bir karışım elde edilinceye kadar karıştırılır. Elde edilen bu karışım bir potasyum bromür (KBr) pencere üzerine sürülür ve ikinci potasyum bromür pencere bunun üzerine kapatılarak karışımın iki pencere arasında homojen bir şekilde yayılması sağlanır. Daha sonra bu pencereler numune tutucu yardımıyla spektrometreye yerleştirilerek spektrum alınır.

Alkali halojenür disk hazırlama yönteminde, 0,5-1 mg katı toz halindeki numune yaklaşık 100 mg kuru alkali halojenür ile karıştırılır. Bu karışım uygun bir kalıp içine yerleştirilerek pres yardımıyla kalıba yaklaşık 10000-15000 psi'lik basınç uygulanır ve karışım saydam geçirgen bir disk haline getirilerek spektrumu alınır. Alkali halojenür disk hazırlama yönteminde alkali metal halojenür olarak en çok potasyum bromür (KBr) kullanılır. Bunun nedeni potasyum bromürün orta infrared bölgesinde geçirgen olması ve infrared ışınını soğurmamasıdır. Bu çalışmada kullanılan katı numunelerin infrared spektrumları KBr kullanılarak disk haline getirme yöntemi ile alınmıştır.

Film haline getirme yönteminde, katı numune uygun bir çözücüde çözülür ve uygun pencereler kullanılarak elde edilen çözeltinin spektrumu alınır. Kullanılan çözeltinin seçimi önemlidir. Homojen bir film oluşabilmesi için hem numunenin çözülebileceği hem de düşük kaynama noktasına sahip olan bir çözücü seçilmelidir. Aynı zamanda çözelti hazırlanırken kullanılan çözücünün spektrumu alınacak numune ile etkileşmemesine ve çalışılan bölgede soğurma yapmamasına dikkat edilmelidir. Çözelti düz cam veya metal bir yüzey üzerine damlatılır ve kalınlığı aynı olacak şekilde yüzey üzerinde dağıtılır. Hazırlanan çözelti infrared spektrumunu almak için kullanılacak pencereler üzerine de damlatılabilir. Daha sonra çözücü etüv içerisinde buharlaştırılır ve kuruduktan sonra film yüzey üzerinden çıkartılarak spektrumu alınmak üzere cihaza yerleştirilir [83, 87].

Numune hazırlamada Raman spektroskopinin infrared spektroskopisine göre temel üstünlüğü, suyun zayıf bir Raman saçıcısı, fakat kuvvetli bir IR absorplayıcısı olma özelliğinden kaynaklanır. Böylece sulu çözeltiler, IR ile değil Raman spektroskopisiyle kolaylıkla incelenebilir. Katı ve sıvı numunelerin Raman spektrumları bir cam lamel üzerine konularak kolaylıkla alınabilir. Bu çalışmadaki katı ve sıvı numunelerin spektrumları, herhangi bir ön işlem yapılmadan cam lamelin üzerine konularak Senterra Dispersif Raman Mikroskobu ile alınmıştır.

4. TEORİK-DENEYSEL SONUÇLAR ve TARTIŞMA

Bu bölümde öncelikle çalışmada ele alınan tiyofen-2-karbaldehit (T2C) molekülü ve bu molekülün halojen değişkenli 9 türev molekülünün moleküler konformasyon ve geometrik parametreleri üzerine yapılan hesaplama sonuçları incelenecektir. Daha sonra polar ve apolar çözücülerle alınan FT-IR ve Raman spektrumlarıyla teorik hesaplamalar sonucunda elde edilen titreşim spektrumları deneysel ve teorik olarak incelenerek titreşim frekansları üzerindeki halojen etkisi (F, Cl ve Br) tartışılacaktır.

4.1. Geometrik Yapı ve Parametrelerin İncelenmesi

T2C molekülünün ve bu molekülün halojen değişkenli 9 türev moleküllerinin, hem gaz fazında hem de farklı çözücüler içerisindeki optimizasyon hesaplamaları, yoğunluk fonksiyonel teorisi hibrit yöntemlerinden B3LYP ile 6-31++G(d,p) baz seti kullanılarak gerçekleştirilmiştir. Çalışmada hedef molekül olarak ele alınan T2C molekülünün halojen değişkenli türev moleküllerin geometrik yapıları Şekil 4.1, 4.2 ve 4.3'de gösterildiği gibidir.

Şekil 4.1. Birinci seriye ait moleküller

Şekil 4.2. İkinci seriye ait moleküller

Şekil 4.3. Üçüncü seriye ait moleküller

Moleküllerin geometrisindeki küçük değişiklikler titreşim frekanslarında önemli değişiklikler meydana getirdiği için geometrik yapının belirlenmesi oldukça önemlidir. Molekülün her bir konformasyonunun mol kesri aşağıdaki formüller yardımıyla hesaplanabilir.

$$a \stackrel{K_T}{\leftarrow} b$$

$$K_T = \frac{N_a}{N_b} \qquad ; \qquad N_a + N_b = 1$$
(4.1)

şeklinde yazılabilir. Burada K_T , a ve b formları arasındaki konformasyon denge sabiti, N_a ve N_b ise a ve b konformasyonlarının mol kesridir. Bu denklemler düzenlendiğinde ikili bir sistem için her bir bileşenin mol kesirleri bulunabilir.

$$N_a = \frac{1}{1+K_T}$$
; $N_b = \frac{K_T}{1+K_T}$ (4.2)

Burada ; $K_T = e^{-\delta \Delta G/RT}$, $R = 1,987 \times 10^{-3} \ kcal/mol. K$ ve T = 298K şeklindedir [88].

İncelenen moleküllerin C_1 ve C_s nokta grupları ve cis ve trans konformasyon formları için; gaz fazında, benzen ve metanol çözücüleri içerisinde optimize edilmiş durumlarına ait Gibbs serbest enerjileri, göreli kararlılıkları ve yüzdelik dağılımları Çizelge 4.1, 4.2 ve 4.3'de verilmiştir.

Malalril	Nolsto ambu	Vonformossion	ΔG	δΔG	Yüzdelik
Molekui	Nokia grudu	Kontormasyon	(Hartree)	(kcal/mol)	Dağılım (%)
	C1		-666,386139	1,14	13
тэс	C_s	CIS	-666,302150	53,84	0
12C	C_1		-666,387956	0	87
	C_s	trans	-666,303965	52,70	0
	C_1		-765,652742	1,64	6
T 1	C_s	C1S	-765,540320	72,19	0
FI	C_1	4	-765,655356	0	94
	C_s	trans	-765,542956	70,53	0
	C_1		-1126,013716	1,43	8
011	C_s	C1S	-1125,901269	71,99	0
CII	C_1		-1126,015999	0	92
	C_s	trans	-1125,903525	70,58	0
	C_1		-3239,936159	1,38	9
D 1	C_s	C1S	-3237,434975	1570,90	0
Brl	C_1		-3239,938361	0	91
	Cs	trans	-3237,437088	1569,57	0
	C ₁		-765,657154	0,97	16
52	Cs	C1S	-765,544863	71,43	0
F2	\mathbf{C}_1		-765,658694	0	84
	Cs	trans	-765,546482	70,41	0
	C ₁		-1126,016427	1,18	12
010	C_s	C1S	-1125,903974	71,75	0
CI2	\mathbf{C}_1		-1126,018313	0	88
	C_s	trans	-1125,905889	70,55	0
	C_1	•	-3239,938632	1,23	11
D A	C_s	C1S	-3237,438121	1570,32	0
Br2	C_1		-3239,940588	0	89
	C_s	trans	-3237,440137	1569,06	0
	C_1		-765,654315	2,71	0
Ε2	C_s	CIS	-765,542072	73,14	0
F3	C_1	4	-765,658631	0	100
	C_s	trans	-765,546488	70,37	0
	C_1		-1126,012992	2,81	0
012	C_s	C1S	-1125,900474	73,42	0
CI3	C_1		-1126,017470	0	100
	Cs	trans	-1125,905070	70,53	0
	C ₁	•	-3239,934934	2,83	0
D 2	C _s	C1S	-3237,434371	1571.96	0
Br3	$\tilde{\mathbf{C}_1}$		-3239,939442	0	100
	Cs	trans	-3237,438937	1569,09	0

Çizelge 4.1. Gaz fazındaki moleküllerin enerji değerleri

Malalaül	Nalzta amilia	Vanfammaanan	ΔG	δΔG	Yüzdelik
woiekui	Nokia grudu	Konformasyon	(Hartree)	(kcal/mol)	Dağılım (%)
	C_1		-666,389579	1,26	6
TOC	C_s	CIS	-666,389569	1,27	5
12C	C_1	4	-666,391571	0,01	44
	C_s	trans	-666,391590	0	45
	C_1		-765,656156	1,72	3
F 1	C_s	CIS	-765,656130	1,74	2
ГI	\mathbf{C}_1	trong	-765,658868	0,02	47
	C_s	trans	-765,658902	0	48
	C_1	-i	-1126,016992	1,46	4
C11	C_s	CIS	-1126,016852	1,55	3
CII	\mathbf{C}_1	44040	-1126,019315	0,04	46
	C_s	trans	-1126,019322	0	47
	C_1		-3239,939497	1,47	4
D -1	C_s	CIS	-3239,939372	1,55	3
Brl	C_1		-3239,941844	0	50
	Cs	trans	-3239,941697	0,09	43
	C ₁		-765,660772	1,05	8
Γ0	C_s	C1S	-765,660723	1,08	7
F2	\mathbf{C}_1		-765,662355	0,05	40
	Cs	trans	-765,662442	0	45
	C ₁		-1126,019840	1,24	6
CID	Cs	CIS	-1126,019806	1,27	5
CI2	C_1	4	-1126,021824	0	47
	C_s	trans	-1126,021737	0,05	42
	C_1		-3239,942083	1,25	6
D1	C_s	CIS	-3239,942051	1,27	5
Br2	C_1	4.00.00	-3239,944076	0	46
	C_s	trans	-3239,944016	0,04	43
	C_1		-765,658532	2,33	0
E 2	C_s	CIS	-765,658573	2,31	0
F3	\mathbf{C}_1	4.00.00	-765,662236	0,01	49
	C_s	trans	-765,662252	0	51
	C_1		-1126,016852	2,50	0
012	C_s	CIS	-1126,016837	2,51	0
C13	C_1	,	-1126,020829	0	51
	C_s	trans	-1126,020825	0,003	49
	C_1		-3239,938659	2,64	0
D 2	Cs	C1S	-3239,938728	2,60	0
Br3	$\mathbf{C}_{1}^{\mathbf{U}}$		-3239,942818	0,03	49
	C_s	trans	-3239,942865	0	51

Çizelge 4.2. Benzen çözücüsündeki moleküllerin enerji değerleri

Malalisi	Nolite amply	Vonformaavan	ΔG	δΔG	Yüzdelik
WIOIEKUI	Nokta grubu	Komormasyon	(Hartree)	(kcal/mol)	Dağılım (%)
	C_1	.	-666,393802	1,47	4
тас	C_s	CIS	-666,393798	1,48	4
12C	C_1	,	-666,396084	0,04	44
	C_s	trans	-666,396153	0	48
	C ₁		-765,660213	1,90	2
D1	C_s	C18	-765,660195	1,92	2
FI	C_1		-765,663247	0	49
	C_s	trans	-765,663197	0,03	47
	C1		-1126,020819	1,67	3
011	C_s	CIS	-1126,020716	1,74	2
CII	C_1		-1126,023432	0,03	46
	C_s	trans	-1126,023485	0	49
	C ₁		-3239,943381	1,63	4
D 1	C_{s}	C1S	-3239,943325	1,67	2
Brl	C_1		-3239,945980	0	49
	Cs	trans	-3239,945914	0,04	45
	C ₁		-765,665019	1,15	7
50	Cs	C1S	-765,664969	1,18	6
F2	C_1		-765,666855	0	44
	Cs	trans	-765,666853	0,001	43
	C ₁		-1126,023988	1,31	5
010	Cs	C1S	-1126,023939	1,34	4
CI2	C_1		-1126.026069	0	47
	C_s	trans	-1126,026019	0,03	44
	C ₁		-3239,946238	1,34	5
	Cs	C1S	-3239,946217	1.36	4
Br2	C_1		-3239,948378	0	46
	Cs	trans	-3239,948350	0,02	45
	C ₁		-765,664018	1.66	3
52	C_s	C1S	-765,664043	1,64	4
F3	C_1		-765,666651	0.003	46
	C_s	trans	-765,666656	0	47
	<u>C1</u>		-1126.021821	1.94	2
	C_s	C1S	-1126,021805	1,95	1
CI3	C_1		-1126,024908	0	49
	Ċ	trans	-1126,024904	0.003	48
	<u>C1</u>		-3239,943635	2.10	1
	C.	cis	-3239,943706	2.06	$\overline{2}$
Br3	\mathbf{C}_{1}		-3239,946962	0.02	48
	\mathbf{C}_{s}	trans	-3239,946987	0	49

Çizelge 4.3. Metanol çözücüsündeki moleküllerin enerji değerleri

Çalışmada incelenen moleküllerin minimum enerjili yapısını elde etmek için yapılan potansiyel enerji yüzeyi taraması sonucunda trans konformasyonu durumunda en kararlı yapıya sahip olduğunu görmüştük. B3LYP yöntemi ve 6-31++G(d,p) baz setinde yapılan hesaplamalar sonucunda da incelenen tüm moleküllerin, C₁ ve C_s nokta grupları ve çözücü ortamları da dahil olmak üzere hepsinde <u>trans</u> durumunun en kararlı yapı olduğu sonucuna ulaşılmıştır.

Moleküllerin kararlı durumlarının enerji değerleri gaz ortamında en yüksek iken çözücü ortamında ise benzen çözücüsü içindeki değerleri metanol çözücüsüne göre daha yüksektir. Yani moleküller ortamın polarlığının artmasıyla daha kararlı bir yapıya ulaşmaktadırlar. Halojen değişkenli serileri incelediğimizde molekülde halojen atomunun olduğu konuma bağlı olarak molekülün simetrisinde değişiklik olduğu görülmektedir. Yani bazı durumlarda halojenin etkisi molekülün simetrisinin düzlemsel olmasına engel olmaktadır. Örneğin, T2C hedef molekülü ve diğer tüm halojen değişkenli türev moleküllerin geometrik yapılarının gaz fazında iken C₁ nokta grubunda daha kararlı bir yapıda olduğu ancak çözücü içerisinde iken nokta grubunun değişiklik gösterdiği görülmektedir. T2C molekülü için çözücünün polar ve apolarlığına bağlı olmaksızın nokta grubu değiştirdiği ve C₈ nokta grubunda daha kararlı bir yapı sergilediği görülmektedir. Benzer durum C11, F3 ve Br3 molekülleri için de geçerlidir. Bu da molekülün simetrisinin ortamın polarlığının artmasıyla daha düzlemsel bir yapıda olma isteği sonucunu ortaya çıkarmaktadır.

Hem gaz fazında hem de çözücü içerisinde ortamdan etkilenmeyen ve C_1 nokta grubunda kararlı yapı gösteren moleküller ise Cl2, Cl3, Br1 ve Br2 türev molekülleridir. Ortamın polarlığına göre simetri değiştiren moleküller ise flor halojenine ait türev moleküllerdir. Birinci ve ikinci seriye ait flor halojenli moleküllerin gaz fazı ile polar ortam içerisinde aynı simetriye sahip oldukları (C_1) apolar çözücü içerisinde simetri değiştirdikleri (C_s) görülmektedir.

Moleküllerin gaz fazında ve çözücü içersinde sahip oldukları dipol moment değerleri Çizelge 4.4'te verilmektedir. Dipol moment değerlerinin gaz fazına göre çözücü içerisinde daha yüksek çıkması beklenir. Literatüre göre dipol moment değeri ortamın dielektrik sabitinin artmasıyla artmaktadır [89] bu durum Çizelge 4.4'te açıkça görülmektedir.

Molekül	Gaz	Benzen	Metanol
T2C	4,1216	4,7722	5,6281
F1	3,7007	4,2870	5,0905
Cl1	3,7017	4,2896	5,0907
Br1	3,7173	4,3090	5,1177
F2	2,1876	2,5789	3,1209
Cl2	2,2811	2,6631	3,1826
Br2	2,3754	2,7630	3,2962
F3	4,0111	4,6621	5,5017
C13	3,7951	4,4154	5,2173
Br3	3,7503	4,3638	5,1630

Çizelge 4.4. Farklı ortamlarda T2C ve türev moleküllerinin dipol moment (Debye) değerleri

T2C ve türev moleküllerinin her üç seri için de ortamın polarlığı arttıkça dipol moment değerlerinin arttığı gözlenmektedir. Ayrıca moleküller ayrı ayrı ortamlar için incelendiğinde; birinci ve ikinci seriye ait moleküllerde elektronegatiflik derecesinin azalması ile dipol moment değerleri artarken üçüncü seriye ait moleküllerde azaldığı görülmektedir. Yani üçüncü serideki halojenlerin sahip olduğu konumdan dolayı elektronegatifliği (elektron alma eğilimi) yüksek olan atomların dipol momentinin daha yüksek olmasına neden olduğu görülmektedir.

B3LYP yöntemi ile 6-31++G(d,p) baz setinde farklı ortamlar için hesaplanarak elde edilen bazı optimize geometrik parametreler (bağ uzunlukları, bağ ve dihedral açıları) Çizelge 4.5 ile 4.13 arasında listelenmiştir.

Bağ Uzunluğu (Å)	T2C	F1	Cl1	Br1		50		70	
C1-C2	1,379	1,377	1,378	1,378		, "		T	
C1-S5	1,745	1,754	1,749	1,748				50	
C1-C6	1,457	1,454	1,456	1,457		ar	-	10	
C3-C4	1,372	1,365	1,371	1,372					
C4-S5	1,724	1,732	1,734	1,732		30	20		
C4-[X]	1,080	1,332	1,727	1,886		9H	вн		
C6-O7	1,214	1,214	1,214	1,213	12				
Bağ Açısı (°)	T2C	F1	Cl1	Br1	Dihedral Açı (°)	T2C	F1	Cl1	Br1
C2-C1-S5	111,21	111,77	111,52	111,44	S5-C1-C2-C3	0,006	-0,002	-0,008	-0,003
C2-C1-C6	126,79	127,16	127,03	126,98	С6-С1-С2-Н8	0,051	0,007	0,001	0,003
S5-C1-C6	121,99	121,07	121,45	121,59	C2-C1-S5-C4	-0,016	0,003	0,007	0,003
C2-C3-C4	112,13	110,32	111,34	111,43	C6-C1-S5-C4	179,96	-179,99	-179,98	-179,99
С2-С3-Н9	124,35	125,97	125,19	124,97	C2-C1-C6-O7	-179,99	179,98	-179,98	-179,99
С4-С3-Н9	123,52	123,71	123,46	123,61	С2-С1-С6-Н10	-0,003	-0,022	0,019	0,007
C3-C4-S5	112,69	115,03	113,53	113,40	S5-C1-C6-O7	0,029	-0,024	0,01	0,000
C3-C4-[X]	127,65	125,89	126,10	125,98	C2-C3-C4-S5	-0,024	0,003	0,001	0,001
S5-C4-[X]	119,66	119,08	120,38	120,62	C2-C3-C4-[X]	-179,95	-179,99	180,00	180,00
C1-C6-O7	125,33	125,24	125,19	125,20	H9-C3-C4-[X]	0,066	0,011	-0,005	-0,003

Çizelge 4.5. Gaz halindeki T2C ve birinci seri moleküllerinin geometrik parametreleri

Çizelge 4.6. Gaz halindeki T2C ve ikinci seri moleküllerinin geometrik parametreleri

Bağ Uzunluğu (Å)	T2C	F2	Cl2	Br2		55	n	60	
C1-C2	1,379	1,377	1,376	1,376				T	
C1-S5	1,745	1,745	1,744	1,744	94 40		10	60	
C1-C6	1,457	1,460	1,460	1,460		II.	T	10H	
C3-C4	1,372	1,366	1,370	1,369		3C	20		
C4-S5	1,724	1,725	1,724	1,725	/				
C3-[X]	1,082	1,346	1,744	1,902			BH		
C6-O7	1,214	1,212	1,212	1,212	•				
Bağ Açısı (°)	T2C	F2	Cl2	Br2	Dihedral Açı (°)	T2C	F2	Cl2	Br2
C2-C1-S5	111,21	111,81	111,68	111,69	S5-C1-C2-C3	0,006	-0,026	-0,034	0,009
C2-C1-C6	126,79	126,80	126,81	126,75	С6-С1-С2-Н8	0,051	0,012	0,038	-0,040
S5-C1-C6	121,99	121,39	121,51	121,56	C2-C1-S5-C4	-0,017	0,020	0,030	-0,006
C2-C3-C4	112,13	114,65	113,52	113,49	C6-C1-S5-C4	179,96	-179,99	-179,99	-179,9
C1-C2-H8	122,70	124,52	123,96	123,80	C2-C1-C6-O7	-179,99	179,99	179,97	179,5
С3-С2-Н8	124,27	124,20	124,10	124,23	С2-С1-С6-Н10	-0,003	-0,015	-0,043	-0,050
C3-C4-S5	112,69	110,98	111,72	111,74	S5-C1-C6-O7	0,029	0,001	-0,005	-0,064
C4-C3-[X]	123,52	123,17	123,45	123,42	C2-C3-C4-S5	-0,024	-0,003	0,001	0,003
C2-C3-[X]	124,35	122,18	123,02	123,09	C1-C2-C3-[X]	179,99	-179,98	-179,97	-179,99
C1-C6-O7	125,33	124,85	124,82	124,83	H8-C2-C3-[X]	-0,031	-0,012	-0,014	0,041

Bağ Uzunluğu (Å)	T2C	F3	Cl3	Br3	_	55		70)
C1-C2	1,379	1,378	1,381	1,380					
C1-S5	1,745	1,747	1,746	1,747	94 40)	10	- DE	
C1-C6	1,457	1,456	1,459	1,460			T	10-	
C3-C4	1,372	1,370	1,369	1,369		зс — —	20		
C4-S5	1,724	1,725	1,723	1,723					
C2-[X]	1,083	1,342	1,742	1,901	BH				
C6-O7	1,214	1,215	1,215	1,214			118		
Bağ Açısı (°)	T2C	F3	Cl3	Br3	Dihedral Açı (°)	T2C	F3	Cl3	Br3
C2-C1-S5	111,21	109,41	110,07	110,09	S5-C1-C2-C3	0,006	-0,010	-0,006	0,026
C2-C1-C6	126,79	128,21	129,26	129,64	C6-C1-C2-[X]	0,051	0,001	-0,002	-0,031
S5-C1-C6	121,99	122,38	120,66	120,27	C2-C1-S5-C4	-0,017	0,008	0,003	-0,015
C2-C3-C4	112,13	110,51	111,33	111,38	C6-C1-S5-C4	179,96	-179,99	179,99	-179,99
C1-C2-[X]	122,70	122,68	124,03	124,34	C2-C1-C6-O7	-179,99	179,96	179,98	179,98
C3-C2-[X]	124,27	121,86	121,72	121,44	С2-С1-С6-Н10	-0,003	-0,043	-0,020	-0,023
C3-C4-S5	112,69	113,26	113,00	112,96	S5-C1-C6-O7	0,029	-0,039	0,001	-0,050
С4-С3-Н8	123,52	125,38	124,80	124,62	C2-C3-C4-S5	-0,024	-0,001	-0,005	0,014
С2-С3-Н8	124,35	124,11	123,88	123,99	С1-С2-С3-Н8	179,99	-179,99	180,00	180,00
C1-C6-O7	125,33	124,32	124,03	124,01	H8-C3-C2-[X]	-0,031	-0,003	0,013	0,027

Çizelge 4.7. Gaz halindeki T2C ve <u>üçüncü seri</u> moleküllerinin geometrik parametreleri

Çizelge 4.8. Benzen çözücüsündeki T2C ve birinci seri moleküllerinin geometrik parametreleri

Bağ Uzunluğu (Å)	T2C	F1	Cl1	Br1		55		70	
C1-C2	1,380	1,378	1,378	1,379		, "			
C1-S5	1,746	1,756	1,750	1,749			15	60	
C1-C6	1,453	1,450	1,453	1,453	3		~		ен
C3-C4	1,372	1,365	1,372	1,372					
C4-S5	1,724	1,732	1,734	1,732		30	20		
C4-[X]	1,080	1,332	1,727	1,886	9+	6	вн		
C6-O7	1,218	1,218	1,217	1,217					
Bağ Açısı (°)	T2C	F1	Cl1	Br1	Dihedral Açı(°)	T2C	F1	Cl1	Br1
C2-C1-S5	111,17	111,77	111,50	111,43	S5-C1-C2-C3	0,000	0,000	0,000	-0,004
C2-C1-C6	126,60	126,91	126,93	126,73	С6-С1-С2-Н8	0,000	0,000	0,000	0,007
S5-C1-C6	122,24	121,32	121,58	121,83	C2-C1-S5-C4	0,000	0,000	0,000	0,003
C2-C3-C4	112,18	110,30	111,35	111,43	C6-C1-S5-C4	180,00	180,00	180,00	180,00
С2-С3-Н9	124,33	125,95	125,11	124,89	C2-C1-C6-O7	180,00	180,00	180,00	-180,00
C4-C3-H9	123,49	123,75	123,54	123,68	C2-C1-C6-H10	0,000	0,000	0,000	0,003
C3-C4-S5	112,69	115,12	113,57	113,45	S5-C1-C6-O7	0,000	0,000	0,000	0,007
C3-C4-[X]	127,75	125,86	126,09	126,00	C2-C3-C4-S5	0,000	0,000	0,000	-0,000
S5-C4-[X]	119,56	119,02	120,33	120,56	C2-C3-C4-[X]	180,00	180,00	180,00	180,00
C1-C6-O7	125,41	125,34	125,19	125,26	H9-C3-C4-[X]	0,000	0,000	0,000	-0,003

Bağ Uzunluğu (Å)	T2C	F2	Cl2	Br2		55	6	70	
C1-C2	1,380	1,378	1,377	1,377				T	
C1-S5	1,746	1,746	1,745	1,745	9H 4C		10	60	
C1-C6	1,453	1,457	1,457	1,457	-		\mathcal{T}	10H)
C3-C4	1,373	1,367	1,370	1,370		30	20		
C4-S5	1,724	1,724	1,723	1,724	/				
C3-[X]	1,082	1,348	1,746	1,903			вн		
C6-O7	1,218	1,216	1,216	1,216					
Bağ Açısı (°)	T2C	F2	Cl2	Br2	Dihedral Açı (°)	T2C	F2	Cl2	Br2
C2-C1-S5	111,17	111,81	111,67	111,67	S5-C1-C2-C3	0,000	0,000	-0,027	0,000
C2-C1-C6	126,60	126,61	126,55	126,55	С6-С1-С2-Н8	0,000	0,000	0,028	-0,004
S5-C1-C6	122,24	121,58	121,78	121,78	C2-C1-S5-C4	0,000	0,000	0,022	0,000
C2-C3-C4	112,18	114,82	113,66	113,62	C6-C1-S5-C4	180,00	180,00	-179,99	-180,00
С1-С2-Н8	122,72	124,50	123,92	123,75	C2-C1-C6-O7	180,00	180,00	-179,98	-180,00
С3-С2-Н8	124,25	124,33	124,23	124,37	C2-C1-C6-H10	0,000	0,000	-0,036	0,001
C3-C4-S5	112,69	110,91	111,65	111,69	S5-C1-C6-O7	0,000	0,000	0,040	-0,000
C4-C3-[X]	123,49	123,03	123,37	123,32	C2-C3-C4-S5	0,000	0,000	-0,002	0,000
C2-C3-[X]	124,33	122,15	122,97	123,07	C1-C2-C3-[X]	180,00	180,00	-179,97	-180,00
C1-C6-O7	125,41	124,87	124,86	124,87	H8-C2-C3-[X]	0,000	0,000	-0,011	0,004

Çizelge 4.9. Benzen çözücüsündeki T2C ve ikinci seri moleküllerinin geometrik parametreleri

Çizelge 4.10. Benzen çözücüsündeki T2C ve <u>üçüncü seri</u> moleküllerinin geometrik parametreleri

Bağ Uzunluğu (Å)	T2C	F3	Cl3	Br3	_	55		70)
C1-C2	1,380	1,379	1,382	1,381					
C1-S5	1,746	1,748	1,747	1,749	40		10		
C1-C6	1,453	1,452	1,455	1,456				10	
C3-C4	1,373	1,370	1,369	1,369		зс — —	20		
C4-S5	1,724	1,725	1,722	1,722					
C2-[X]	1,083	1,343	1,742	1,902	SH				
C6-O7	1,218	1,218	1,218	1,218					
Bağ Açısı (°)	T2C	F3	Cl3	Br3	Dihedral Açı (°)	T2C	F3	Cl3	Br3
C2-C1-S5	111,17	109,31	110,00	110,02	S5-C1-C2-C3	0,000	0,000	-0,010	0,000
C2-C1-C6	126,60	128,00	129,05	129,47	C6-C1-C2-[X]	0,000	0,000	-0,005	0,000
S5-C1-C6	122,24	122,69	120,95	120,51	C2-C1-S5-C4	0,000	0,000	0,005	0,000
C2-C3-C4	112,18	110,48	111,32	111,35	C6-C1-S5-C4	180,00	180,00	179,99	180,00
C1-C2-[X]	122,72	122,56	123,98	124,20	C2-C1-C6-O7	180,00	180,00	-179,99	180,00
C3-C2-[X]	124,25	121,90	121,73	121,53	C2-C1-C6-H10	0,000	0,000	0,004	0,000
C3-C4-S5	112,69	113,30	113,02	113,01	S5-C1-C6-O7	0,000	0,000	0,032	0,000
С4-С3-Н8	123,49	125,31	124,70	124,55	C2-C3-C4-S5	0,000	0,000	-0,008	0,000
С2-С3-Н8	124,33	124,21	123,98	124,09	С1-С2-С3-Н8	180,00	180,00	-179,99	180,00
C1-C6-O7	125,41	124,47	124,18	124,15	H8-C3-C2-[X]	0,000	0,000	0,019	0,000

Bağ Uzunluğu (Å)	T2C	F1	Cl1	Br1		58		70	
C1-C2	1,381	1,379	1,379	1,379				T	
C1-S5	1,748	1,757	1,751	1,751	118			60	
C1-C6	1,449	1,446	1,448	1,449		40	7	10	н
C3-C4	1,373	1,365	1,372	1,373					
C4-S5	1,724	1,732	1,734	1,733		30	20		
C4-[X]	1,080	1,333	1,727	1,886		9H	вн		
C6-O7	1,223	1,223	1,222	1,222					
Bağ Açısı (°)	T2C	F1	Cl1	Br1	Dihedral Açı (°)	T2C	F1	Cl1	Br1
C2-C1-S5	111,13	111,74	111,50	111,42	S5-C1-C2-C3	-0,008	-0,007	0,002	0,001
C2-C1-C6	126,46	126,81	126,69	126,63	С6-С1-С2-Н8	0,027	0,001	-0,003	-0,003
S5-C1-C6	122,41	121,44	121,81	121,95	C2-C1-S5-C4	0,005	0,008	-0,001	-0,001
C2-C3-C4	112,27	110,31	111,37	111,47	C6-C1-S5-C4	-179,98	-179,99	-180,00	-180,00
С2-С3-Н9	124,31	125,85	125,01	124,77	C2-C1-C6-O7	180,00	-179,97	-180,00	-180,00
С4-С3-Н9	123,42	123,84	123,62	123,76	С2-С1-С6-Н10	-0,040	0,015	0,001	0,000
C3-C4-S5	112,68	115,19	113,62	113,47	S5-C1-C6-O7	-0,025	0,020	0,001	0,001
C3-C4-[X]	127,82	125,86	126,09	126,02	C2-C3-C4-S5	-0,002	0,004	0,000	0,000
S5-C4-[X]	119,50	118,95	120,29	120,50	C2-C3-C4-[X]	-179,97	-179,99	-180,00	-180,00
C1-C6-O7	125,35	125,27	125,17	125,18	H9-C3-C4-[X]	0,044	-0,004	0,001	0,001

Çizelge 4.11. Metanol çözücüsündeki T2C ve birinci seri moleküllerinin geometrik parametreleri

Çizelge 4.12. Metanol çözücüsündeki T2C ve ikinci seri moleküllerinin geometrik parametreleri

Bağ Uzunluğu (Å)	T2C	F2	Cl2	Br2		55	61	70	
C1-C2	1,381	1,379	1,378	1,378				T	
C1-S5	1,748	1,748	1,747	1,747	9H 40		10	60	
C1-C6	1,449	1,453	1,453	1,453		M.	T	10H	
C3-C4	1,373	1,367	1,370	1,370		30	20	•	
C4-S5	1,724	1,723	1,722	1,723	/				
C3-[X]	1,081	1,350	1,747	1,905			BH		
C6-O7	1,223	1,220	1,220	1,220					
Bağ Açısı (°)	T2C	F2	Cl2	Br2	Dihedral Açı (°)	T2C	F2	Cl2	Br2
C2-C1-S5	111,13	111,79	111,67	111,67	S5-C1-C2-C3	-0,008	-0,017	-0,019	-0,032
C2-C1-C6	126,46	126,44	126,39	126,36	С6-С1-С2-Н8	0,027	0,016	0,014	0,010
S5-C1-C6	122,41	121,77	121,94	121,98	C2-C1-S5-C4	0,005	0,010	0,016	0,023
C2-C3-C4	112,27	115,00	113,84	113,77	C6-C1-S5-C4	-179,98	-180,00	-180,00	-179,99
С1-С2-Н8	122,73	124,47	123,89	123,70	C2-C1-C6-O7	-180,00	-180,00	-179,99	-179,98
С3-С2-Н8	124,27	124,48	124,37	124,53	С2-С1-С6-Н10	-0,040	-0,021	-0,036	-0,036
C3-C4-S5	112,68	110,84	111,58	111,62	S5-C1-C6-O7	-0,025	0,014	0,024	0,036

Bağ Açısı (°) T2C	F2	Cl2	Br2	Dihedral Açı (°)	T2C	F2	Cl2	Br2
C4-C3-[X]	123,42	122,89	123,23	123,19	C2-C3-C4-S5	-0,002	-0,01	-0,000	-0,008
C2-C3-[X]	124,31	122,11	122,93	123,04	C1-C2-C3-[X]	179,99	- 179,99	- 179,98	- 179,98
C1-C6-O7	125,35	124,80	124,79	124,81	H8-C2-C3-[X]	-0,063	-0,011	-0,001	-0,004

Çizelge 4.12. (Devam) Metanol çözücüsündeki T2C ve ikinci seri moleküllerinin geometrik parametreleri

Çizelge 4.13. Metanol çözücüsündeki T2C ve <u>üçüncü seri</u> moleküllerinin geometrik parametreleri

Bağ Uzunluğu (Å)	T2C	F3	Cl3	Br3		55		70	
C1-C2	1,381	1,380	1,384	1,383					
C1-S5	1,748	1,749	1,748	1,749	9H 4C)	10		
C1-C6	1,449	1,447	1,450	1,451			T	10H	
C3-C4	1,373	1,370	1,370	1,370		зс — —	20		
C4-S5	1,724	1,724	1,722	1,721					
C2-[X]	1,083	1,343	1,742	1,901	SH				
C6-O7	1,223	1,223	1,222	1,222					
Bağ Açısı (°)	T2C	F3	Cl3	Br3	Dihedral Açı (°)	T2C	F3	Cl3	Br3
C2-C1-S5	111,13	109,23	109,91	109,94	S5-C1-C2-C3	-0,008	-0,010	-0,013	-0,021
C2-C1-C6	126,46	127,73	128,86	129,24	C6-C1-C2-[X]	0,027	0,000	-0,004	0,007
S5-C1-C6	122,41	123,03	121,23	120,81	C2-C1-S5-C4	0,005	0,003	0,006	0,015
C2-C3-C4	112,27	110,48	111,35	111,43	C6-C1-S5-C4	-179,98	-180,00	179,99	-179,99
C1-C2-[X]	122,73	122,47	123,94	124,29	C2-C1-C6-O7	180,00	-179,99	-179,99	179,98
C3-C2-[X]	124,27	121,94	121,75	121,47	С2-С1-С6-Н10	-0,040	0,011	0,001	-0,031
C3-C4-S5	112,68	113,33	113,03	112,99	S5-C1-C6-O7	-0,025	0,013	0,034	-0,013
C4-C3-H8	123,42	125,16	124,54	124,34	C2-C3-C4-S5	-0,002	-0,010	-0,009	-0,004
С2-С3-Н8	124,31	124,35	124,11	124,24	С1-С2-С3-Н8	179,99	-179,98	-179,99	180,00
C1-C6-O7	125,35	124,63	124,32	124,29	H8-C3-C2-[X]	-0,063	0,008	0,024	-0,020

Elde edilen optimize parametreler özellikle halojen atomlarının bağlı olduğu konumlar için incelendiğinde, C-X bağ uzunluğunun tüm serilerde H atomu yerine halojen atomlarının bağlanmasıyla beraber arttığı görülmektedir. Bu bağ uzunluğunun değeri elektronegatifliği F ve Cl atomuna göre daha düşük olan Br atomunun bağlanmasıyla en fazla değerine ulaşmıştır. Örneğin; gaz fazı için T2C molekülün 1.080 Å değerine sahip C-X (X burada H atomu) bağ uzunluğu, birinci seride F, Cl ve Br halojenlerinin bağlanmasıyla sırasıyla 1.332 Å, 1.727 Å ve 1.886 Å olmuştur. Ayrıca, farklı ortamlar için incelendiğinde birinci ve üçüncü serideki moleküllerde C-X bağ uzunluğunun değerinde önemli bir değişiklik olmazken ikinci seride değerlerin ortamın polarlığının artmasıyla beraber arttığı görülmektedir. Örneğin Br2 molekülünün gaz

fazındaki bağ uzunluğu değeri 1.902 Å iken benzen ve metanol çözücülerinde sırasıyla 1.903 Å ve 1.905 Å olmaktadır.

C-S bağı ve C=O bağ uzunluklarının değerleri ise ortamın değişmesiyle beraber gaz fazındayken en düşük değerinde, benzen ve metanol çözücüsü içerisindeyken ise sırasıyla değerlerinin arttığı görülmektedir. Karbonil bağı için bu değerler F1 molekülünde gaz fazında 1.214 Å, benzende 1.218 Å ve metanolde 1.223 Å olurken, F2 molekülünde sırasıyla; 1.212 Å, 1.216 Å ve 1.220 Å iken F3 molekülünde ise bu değerler 1.215 Å, 1.218 Å ve 1.223 Å olmaktadır.

Bağ açılarını inceleyecek olursak; tüm ortamlar için birinci seride halojen atomunun bağlı olduğu S-C-X bağ açısının değeri, T2C molekülünde H atomu yerine F atomunun gelmesiyle azalırken, Cl ve Br atomlarının bağlanmasıyla artmaktadır. Birinci serideki moleküllerin farklı ortamlardaki değerleri incelendiğinde ise S-C-X bağ açısının değeri metanol ortamındayken en düşük gaz fazındayken ise en yüksek değerinde olduğu görülmektedir. Üçüncü serideki C1-C2-X bağ açısının değeri, yine T2C molekülünde H atomu yerine F atomunun gelmesiyle azalırken, Cl ve Br atomlarının bağlanmasıyla artmaktadır. Örneğin; gaz fazında T2C molekülünün C1-C2-X bağ açısının değeri 122.70° iken F3, Cl3 ve Br3 moleküllerinde sırasıyla 122.68°, 124.03° ve 124.34° olmaktadır.

Karbonil bağının bulunduğu C-C-O bağ açısının değeri birinci ve ikinci serilerde benzen ortamında en fazla olurken üçüncü seride ise metanol ortamında daha fazladır. Ayrıca üçüncü seride moleküle bağlı olan halojen atomunun elektronegatiflik derecesinin düşmesiyle beraber C-C-O bağ açısının değeri azalırken ikinci ve üçüncü seride bu oran Br halojeninin bağlı olduğu moleküllerde değişiklik göstermektedir.

4.2. Titreşim Frekanslarının İncelenmesi

T2C ve türev moleküllerinin gaz fazı ve çözücü ortamındaki titreşim frekans değerleri yoğunluk fonksiyonel teorisine ait B3LYP yönteminde 6-31++G(d,p) baz seti ile teorik olarak elde edilmiştir. Elde edilen bu değerler ile FT-IR ve Raman spektrometreleriyle alınan deneysel spektrumlardaki frekans değerleri karşılaştırılarak ortaya çıkan uyum ve/veya farklılıklar tartışılacaktır.

T2C ve türev molekülleri 11 tane atoma sahiptir ve dolayısıyla bu moleküllerin 3N-6 titreşim serbestlik derecesine göre toplam 27 titreşim modu vardır. Moleküllerin trans konformasyon durumuna ait titreşim modlarının işaretlemeleri ve her bir titreşim moduna karşılık gelen potansiyel enerji dağılım yüzdeleri VEDA4 [76] programı kullanılarak elde edilmiştir. Deneysel olarak elde edilen ve teorik olarak hesaplanan titreşim frekans ve şiddetleri, titreşim işaretlemeleri, potansiyel enerji dağılım yüzdelikleriyle birlikte Çizelge 4.14-4.23'te, FT-IR ve Raman spektrumları ise Şekil 4.4-4.12'de listelenmiştir. Çözücü ortamına ait titreşim işaretlemeleri ve spektrumları ise Ek-1 kısmında yer alan Çizelge E1.1-E1.20 ve Şekil E2.1-E2.18'de verilmektedir.

Teorik hesaplamalar sonucu elde edilen tüm titreşim frekans değerleri harmonik yaklaşıklıkla elde edilmiştir. Bu hesaplamalarda titreşim hareketlerindeki anharmoniklik etkinin göz ardı edilmesi nedeniyle teorik olarak hesaplanan frekans değerleri deneysel olarak ölçülen frekans değerlerinden daha büyük çıkmaktadır. Teorik ve deneysel bu frekans değerlerinin uyumu için birçok skalalama yöntemi geliştirilmiştir. Standart veya çift skala faktörü, en küçük kareler yöntemi veya SQM (Scaled Quantum Mechanical) metodu gibi yöntemler kullanılarak elde edilen düzeltme çarpanları ile frekanslar yeniden düzenlenir [90-95]. Bu çalışmada B3LYP/6-31++G(d,p) baz seti ile elde edilen harmonik frekans değerlerinin skalalama işlemi hem çift skala yöntemi hem de SPESCA [96] programı aracılığıyla ağırlıklı lineer regresyon yöntemi kullanılarak gerçekleştirilmiştir. Ayrıca teorik hesaplamalarda frekansların Raman şiddetleri, Raman saçılma aktivitesi olarak verildiğinden deneysel Raman şiddeti ile uyum içinde olmamaktadır. Bu nedenle hesaplanan Raman aktiviteleri daha önce verilen (3.1) denklemi kullanılarak bağıl Raman şiddetlerine dönüştürülmüştür.

M. 1	İşaretlemeler (VEDA4)	Dene	ysel B3LYP / 6-31++G(d,p)						
Mod —	P.E.D. (≥10 %)	IR	Raman	ν^{a}	ν^{b}	ν^{c}	I_{IR}	I _R	
ν_1	vCH(90)	3105 vw	3104 m	3238	3093	3132	0,42	5,47	
v_2	vCH(84)	3090 vw	3088 vw	3211	3067	3106	2,78	4,57	
ν_3	vCH(90)	3020 vw	3017 vw	3196	3052	3091	2,43	2,77	
v_4	vCH(100)	2790 vw	2791 vw	2900	2770	2802	104,48	8,86	
ν_5	vOC(89)	1673 vs	1672 s	1745	1705	1673	390,34	32,57	
ν_6	$vCC(67) + \delta HCC(13)$	1519 w	1520 vw	1559	1524	1492	18,68	2,30	
v_7	$vCC(67) + \delta HCC(10)$	1419 vs	1417 vs	1456	1423	1391	70,81	54,65	
ν_8	δ HCC(74) + ν CC(10)	1391 w	1389 s	1417	1385	1353	2,39	5,04	
v 9	$vCC(12) + \delta HCS(61)$	1355 vw	1356 s	1364	1333	1301	1,23	14,82	
v_{10}	δ HCC(56) + vCC(11)	1235 m	-	1246	1217	1185	1,90	2,62	
\mathbf{v}_{11}	$vCC(52) + \delta CCC(23)$	1214 vs	1214 w	1227	1199	1167	93,65	4,39	
v_{12}	δHCC(73)	1082 vw	1080 w	1106	1081	1049	2,12	10,61	
v_{13}	$\delta HCS(11) + \delta HCC(19) + vCC(15)$	1047 m	1045 vw	1067	1043	1010	27,79	3,22	
ν_{14}	τHCCC(86)	996 vw	999 vw	1009	986	954	0,04	3,41	
v 15	τHCCH(96)	918 vw	<	928	907	875	0,37	1,10	
ν_{16}	$\delta CCS(63) + \nu SC(22)$	864 w	862 w	872	852	820	5,74	8,29	
ν_{17}	τHCCH(92)	848 vw	-	850	831	799	8,20	0,40	
ν_{18}	$\delta CCS(18) + \nu SC(49)$	757 m	754 w	760	742	711	23,02	5,99	
ν_{19}	τHCCC(95)	730 s	-	734	717	685	76,18	0,40	
ν_{20}	$\delta CCO(71) + \nu CC(11)$	665 s	663 m	677	662	630	10,69	48,52	
ν_{21}	vSC(68)	584 vw	581 w	656	641	609	26,05	39,73	
v_{22}	τCCCC(94)	566 vw	565 w	575	562	530	1,38	1,72	
V 23	γCCSC(93)	469 w	-	475	465	432	6,64	5,43	
ν_{24}	$\delta CCC(55) + \nu CC(31)$	-	450 w	455	444	234	0,00	14,28	
v_{25}	$\tau CSCC(88)$	264 vs	273 vw	272	266	140	9,58	3,91	
v_{26}	δCCS(90)	179 vs	-	176	172	96	6,59	8,56	
v_{27}	τCCCC(94)	143 s	126 s	130	127	93	2,74	29,75	

Çizelge 4.14. T2C molekülünün gaz fazındaki titreşim işaretlemeleri

 ν^a : Skalalanmamış frekanslar, ν^b :1800 cm^{-1} üzeri 0.955 ile 1800 cm^{-1} altı 0.977 ile skalalanmış frekanslar, ν^c :Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

	İşaretlemeler (VEDA4)	Dene	eysel	B3LYP / 6-31++G(d,p)						
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R		
ν_1	vCH(95)	3115 vw	-	3231	3086	3133	0,86	5,47		
ν_2	vCH(95)	3075 vw	-	3201	3057	3103	1,58	2,86		
ν_3	vCH(100)	2815 w	2866 vw	2901	2770	2814	97,06	9,22		
ν_4	vOC(89)	1677 vs	1676 m	1742	1702	1695	390,27	34,00		
ν_5	$vCC(69) + \delta HCC(14)$	1553 s	1551 w	1590	1553	1548	32,46	0,22		
ν_6	$vCC(69) + \delta HCC(10)$	1463 vs	1469 s	1502	1467	1463	380,54	54,32		
v_7	δHCO(76)	1383 m	1385 m	1410	1377	1374	11,68	5,45		
ν_8	$vCC(57) + \delta HCC(18)$	-	1324 m	1353	1322	1319	5,18	8,92		
v 9	$vCC(14) + \delta HCC(49)$	1231 m	1210 vw	1234	1206	1204	19,06	0,90		
v_{10}	$\delta HCC(14) + \nu CC(47)$		1221 vw	1229	1201	1199	36,24	8,18		
v_{11}	$\delta HCC(10) + \nu FC(61)$	1198 vs	1171 m	1209	1181	1180	97,62	9,53		
v_{12}	$vCC(24) + \delta HCC(56)$	1035 s	1043 s	1054	1030	1030	56,85	2,04		
v ₁₃	τHCCC(90)	/	942 vs	1004	981	982	0,32	3,41		
ν_{14}	τHCCH(89)	892 vw	889 w	892	872	874	0,02	1,06		
V15	τHCCC(94)	797 m		805	786	789	54,11	0,53		
v_{16}	δCCO(80)	749 vw	741 s	759	741	745	2,88	12,57		
ν_{17}	$vSC(69) + \delta CSC(11)$	720 w	722 vs	723	706	710	7,46	40,68		
ν_{18}	vSC(82)	661 m	653 s	651	636	641	26,24	38,80		
ν_{19}	$vCC(13) + \delta CCS(65)$	609 s	609 m	618	604	609	33,21	28,49		
v_{20}	τCCCC(86)	540 vw	554 s	565	552	558	0,06	5,61		
v_{21}	γFCSC(97)	496 m	488 w	499	487	494	10,83	7,18		
v_{22}	$vSC(14) + \delta CSC(68)$	429 w	427 vw	433	423	431	7,15	54,33		
V23	δFCS(78)	-	362 w	364	355	364	1,99	1,46		
v_{24}	τHCCS(96)	-	317 m	348	340	349	6,90	15,86		
v_{25}	τCCCO(89)	-	208 vw	212	207	217	3,60	22,14		
v_{26}	δCCS(84)	-	166 vw	157	154	164	6,99	12,71		
v_{27}	τHCCC(83)	-	-	111	108	120	2,47	0,53		

Çizelge 4.15. F1 molekülünün gaz fazındaki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar,

 v^{b} :1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

	İşaretlemeler (VEDA4)	Dene	eysel	B3LYP / 6-31++G(d,p)						
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	v ^c	I _{IR}	I _R		
ν_1	vCH(94)	3099 w	_	3226	3081	3092	0,22	4,84		
ν_2	vCH(94)	3038 vw	-	3198	3054	3066	1,79	3,23		
v_3	vCH(100)	2788 w	2763 vw	2903	2772	2784	104,37	10,47		
v_4	vOC(89)	1670 vs	1669 w	1743	1702	1674	427,17	44,71		
ν_5	vCC(62)	1527 m	1532 vw	1566	1530	1505	10,72	4,79		
ν_6	$\nu CC(70) + \delta HCC(11)$	1424 vs	1427 vs	1457	1424	1401	250,44	97,77		
v_7	δHCO(78)	1380 s	1382 m	1407	1375	1353	8,47	15,02		
ν_8	$vCC(15) + \delta HCC(29) + vClC(30)$	1308 w	1307 s	1333	1303	1283	7,31	18,13		
ν9	δ HCC(64) + ν CC(13)	1226 vs	1210 vw	1229	1201	1183	19,07	3,99		
v_{10}	δ HCC(31) + vCC(43)	1203 vs	1165 m	1224	1196	1178	79,38	3,89		
v_{11}	$vClC(12) + \delta HCC(49)$	1067 w	1064 vs	1081	1056	1041	8,86	9,48		
ν_{12}	$vClC(52) + \delta HCC(13)$	1007 vs	961 vs	1008	985	971	77,79	5,39		
ν_{13}	τHCCC(88)		945 vs	1005	982	968	0,33	3,63		
ν_{14}	τHCCH(88)	889 vw	871 vw	901	881	870	0,09	1,11		
v_{15}	τHCCC(96)	803 vs	798 w	807	788	779	44,54	0,30		
ν_{16}	$vClC(13) + \delta HCC(70)$	748 m	752 m	754	736	728	10,34	4,36		
ν_{17}	$vClC(34) + \delta CCO(51)$	668 s	684 m	689	673	666	0,82	59,05		
ν_{18}	vSC(82)	631 vw	626 m	654	639	632	24,37	34,98		
ν_{19}	τCCCC(78)	-	563 s	574	561	556	0,01	0,68		
v_{20}	δ HCC(16) + ν ClC(48)	531 m	533 m	534	522	518	13,73	28,66		
v_{21}	γCCSC(91)	479 s	476 vw	486	475	472	14,09	2,68		
v_{22}	$vClC(42) + \delta CCO(14) + \delta HCC(22)$	373 vw	393 s	377	369	368	7,89	68,64		
v ₂₃	τHCCC(90)	314 w	319 m	324	316	317	3,19	15,26		
ν_{24}	δSCCl(88)	269 m	263 w	275	269	271	2,58	32,46		
v_{25}	τCCCO(84)	193 vw	186 w	183	179	183	6,08	17,10		
v_{26}	δCCS(79)	145 w	-	142	139	144	6,07	36,52		
v_{27}	γCCSC(93)	-	-	100	98	103	1,09	0,96		

Çizelge 4.16. Cl1 molekülünün gaz fazındaki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar,

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

M. 1	İşaretlemeler (VEDA4)	Dene	eysel]	B3LYP	/ 6-31-	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(94)	3096 vw	3095 w	3225	3080	3084	0,08	4,51
v_2	vCH(94)	2834 vw	2926 m	3197	3053	3057	1,78	3,52
ν_3	vCH(100)	2778 vw	2782 w	2903	2772	2777	107,12	11,18
v_4	vOC(90)	1669 vs	1663 s	1743	1703	1672	446,28	48,46
ν_5	$vCC(61) + \delta HCC(17)$	1524 w	1523 w	1563	1527	1501	16,76	6,86
ν_6	$vCC(64) + \delta CCC(18)$	1417 vs	1415 vs	1450	1416	1393	230,11	108,47
v_7	δHCO(76)	1392 w	1378 s	1406	1374	1351	11,42	22,31
ν_8	$vCC(30) + \delta CCC(27) + vBrC(14)$	1304 vw	1303 m	1328	1298	1277	5,55	20,85
V 9	$vCC(15) + \delta HCC(58)$	1222 m	1218 w	1228	1200	1182	11,71	4,93
v_{10}	$\delta CCC(10) + \delta HCC(16) + \nu CC(50)$	1203 m	1.1	1223	1195	1177	91,16	3,64
v_{11}	δHCC(56)	1056 w	1055 m	1076	1051	1037	19,59	14,28
v_{12}	τHCCS(94)	977 m	976 vw	1005	982	969	0,26	3,99
v ₁₃	$\delta CCC(25) + \nu SC(50)$		/	976	953	942	49,61	4,96
ν_{14}	τHCCH(91)	894 vw		902	881	871	0,04	1,51
v_{15}	τHCCBr(92)	802 m	806 vw	807	788	781	42,42	0,28
ν_{16}	$\delta CCC(62) + vSC(21)$	749 w	747 w	752	735	728	14,53	3,21
ν_{17}	$\delta CSC(59) + \nu BrC(18) + \nu SC(11)$	666 m	675 m	683	668	663	0,62	65,21
v_{18}	vSC(80)	613 vw	611 vw	653	638	635	25,01	35,03
v_{19}	τCCCC(90)	557 vw	559 vw	566	553	551	0,07	1,61
v_{20}	$\delta CCC(10) + \nu BrC(52)$	498 vw	497 w	501	489	489	4,73	32,61
v_{21}	$\tau HCCS(89)$	474 w	469 vw	479	468	469	14,92	3,52
v_{22}	τHCCS(90)	313 s	-	311	304	308	2,76	14,48
v ₂₃	δ HCC(11) + δ CCC(14) + ν BrC(57)	298 s	298 w	297	291	296	5,29	87,13
v_{24}	δSCBr(91)	236 vs	235 w	242	236	242	4,02	18,18
v_{25}	τCSCBr(96)	183 m	179 w	171	168	176	6,79	26,29
v_{26}	δCCS(77)	137 m	112 s	128	125	134	4,77	52,22
v_{27}	τCCCO(94)	94 vw	-	92	90	100	0,54	5,92

Çizelge 4.17. Br1 molekülünün gaz fazındaki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar,

 v^{b} :1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.
M. 1	İşaretlemeler (VEDA4)	Dei	neysel	B3LYP / 6-31++G(d,p)				
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	I _{IR}	I _R	
ν_1	vCH(99)	-	-	3255	3108	5,88	3,80	
ν_2	vCH(99)	-	-	3217	3072	0,14	3,41	
ν_3	vCH(100)	-	-	2909	2779	96,43	8,76	
v_4	vOC(90)	-	-	1749	1709	356,57	33,44	
ν_5	$\delta HCC(14) + \nu CC(64)$	-	-	1590	1553	71,89	1,82	
ν_6	$vCC(67) + \delta HCO(13)$	-	-	1475	1441	142,95	49,60	
v_7	$vCC(65) + \delta HCO(10)$	-	-	1433	1400	25,16	27,81	
ν_8	$vCC(21) + \delta HCO(68)$	-	-	1384	1352	42,76	7,32	
ν9	$vCC(45) + \delta CCF(18)$	-	-	1233	1204	106,69	0,87	
ν_{10}	δHCS(73)	-	-	1190	1162	44,19	4,73	
v_{11}	$vCC(28) + \delta HCC(52)$		<u> </u>	1138	1111	14,27	7,16	
v_{12}	τHCCS(94)	-	/ - /	1007	984	0,04	3,24	
v_{13}	$\delta CSC(18) + \nu FC(66)$	-		987	964	41,84	7,59	
ν_{14}	vSC(70)			869	849	17,10	4,79	
v_{15}	τHCCF(91)	-	_ - /	848	828	30,56	0,55	
ν_{16}	τHCCC(93)	-	- /	760	743	26,14	1,14	
ν_{17}	$\delta CCO(74) + \nu SC(10)$	-		738	721	27,77	18,48	
ν_{18}	vSC(69)	_		656	641	33,63	34,62	
ν_{19}	τHCCC(96)	-	-	607	593	12,88	0,97	
v_{20}	$\delta CSC(60) + \nu FC(16) + \nu SC(13)$	-	-	543	530	5,18	52,68	
v_{21}	τHCCS(87)	-	-	489	478	4,23	7,40	
v_{22}	$vCC(14) + \delta CCF(66)$	-	-	472	462	1,16	22,48	
v ₂₃	δCCF(71)	-	-	357	349	0,16	55,03	
ν_{24}	$\tau FCCS(94)$	-	-	285	279	0,76	68,30	
v_{25}	$\tau HCCS(92)$	-	-	263	257	8,00	20,57	
v_{26}	δCCS(87)	-	-	162	158	9,26	7,14	
ν_{27}	τCCCO(93)	-	-	111	108	6,57	45,14	

Çizelge 4.18. F2 molekülünün gaz fazındaki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar, v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar, v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

Mad	İşaretlemeler (VEDA4)	Deneysel			B3	LYP /	6-31++G	i(d,p)
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(99)	3107 m	-	3250	3104	3107	4,75	3,19
ν_2	vCH(100)	3092 m	-	3216	3071	3075	0,25	2,70
ν_3	vCH(100)	-	2829 s	2911	2780	2783	92,79	8,42
v_4	vOC(90)	1674 vs	1671 s	1749	1709	1672	387,19	37,36
ν_5	$vCC(64) + \delta HCS(13)$	1519 m	1519 w	1559	1523	1489	15,28	5,27
ν_6	$vCC(61) + \delta HCO(15)$	1414 vs	1415 vs	1448	1414	1383	81,91	45,54
v_7	$vCC(23) + \delta HCO(57)$	1386 m	1378 vs	1404	1372	1342	3,86	31,58
ν_8	$\delta \text{HCO}(14) + \delta \text{HCS}(18) + \nu \text{CC}(42)$	1322 m	1338 w	1353	1322	1293	29,10	3,54
V 9	$vCC(46) + \delta HCC(12) + vSC(11) + \delta CCC(15)$	1224 vs	1219 vw	1229	1201	1174	84,37	0,63
v_{10}	δHCC(68)	1169 vs	1170 m	1190	1163	1137	85,27	7,97
\mathbf{v}_{11}	$vCC(36) + \delta HCS(58)$	1134 w	1084 w	1102	1077	1053	3,32	7,62
v_{12}	τHCCS(93)	994 vw	952 vw	1008	984	962	0,06	3,43
ν_{13}	$\delta CCS(62) + \nu ClC(14)$	891 m	892 w	898	877	857	30,62	9,17
ν_{14}	τHCCC(87)	849 s	852 vw	854	834	815	21,18	1,23
ν_{15}	vSC(81)	818 w	822 vw	844	825	806	27,36	1,58
ν_{16}	τHCCCl(96)	768 w	756 vw	768	751	733	24,22	0,66
ν_{17}	δ HCC(70) + vSC(12)	716 m	717 s	723	706	689	24,56	21,31
ν_{18}	vCC(12) + vSC(66)	664 vs	665 m	657	642	627	34,78	33,28
ν_{19}	τCCCC(91)	586 vs	580 vw	594	580	567	11,71	2,45
ν_{20}	$\tau CSCC(87)$	480 vw	474 vw	486	475	464	2,88	3,61
ν_{21}	$vCC(13) + vClC(16) + \delta CCC(54)$	438 vw	436 vw	475	464	453	0,32	10,92
v_{22}	$\delta CCS(15) + \nu ClC(58)$	395 m	397 s	395	386	376	2,84	154,69
v ₂₃	δCCCl(80)	275 vs	277 m	275	269	262	1,45	130,67
ν_{24}	τHCCC(97)	231 vs	234 m	270	263	256	6,65	17,24
v_{25}	τHCCS(92)	227 vs	-	226	220	214	3,03	6,59
v_{26}	δCCS(87)	153 m	157 w	149	145	140	7,98	6,51
ν_{27}	τHCCS(93)	95 vw	-	100	97	94	5,67	47,86

Çizelge 4.19. Cl2 molekülünün gaz fazındaki titreşim işaretlemeleri

 ν^a : Skalalanmamış frekanslar, ν^b :1800 cm^{-1} üzeri 0.955 ile 1800 cm^{-1} altı 0.977 ile skalalanmış frekanslar, ν^c :Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

	İşaretlemeler (VEDA4)	Den	eysel		B3LY	P / 6-31	++G(d,p))
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(99)	3098 m	-	3251	3105	3091	4,94	2,92
ν_2	vCH(100)	3088 m	3089 w	3216	3071	3058	0,54	2,42
ν_3	vCH(100)	2769 w	2767 vw	2911	2780	2770	91,63	8,30
ν_4	vOC(90)	1668 vs	1654 vs	1749	1709	1671	400,75	38,55
ν_5	$vCC(66) + \delta HCC(14)$	1511 s	1512 w	1551	1515	1484	12,46	7,60
ν_6	$vCC(54) + \delta HCO(19)$	1409 vs	1411 m	1442	1409	1382	70,85	41,06
v_7	$vCC(22) + \delta HCO(59)$	1377 vs	1381 vs	1402	1370	1343	5,32	33,91
ν_8	νCC(46) + δHCO(10) + δHCC(24)	1319 vs	1326 vw	1346	1315	1291	20,76	2,28
V 9	$vCC(49) + \delta HCC(16) + \delta CCC(14)$	1225 vs	÷.	1229	1201	1180	80,49	0,33
v_{10}	$\nu CC(22) + \delta HCC(69)$	1163 vs	1178 vw	1190	1163	1143	96,84	8,09
ν_{11}	$vCC(35) + \delta HCC(56)$	1080 s	1083 vw	1100	1075	1058	4,91	7,96
v_{12}	τHCCS(93)	983 s	-	1007	984	970	0,06	3,67
v ₁₃	$\delta CCC(61) + \nu BrC(15)$	876 vs	875 w	884	864	854	22,51	13,85
ν_{14}	τHCCC(84)	843 vs		855	835	826	19,75	1,53
v 15	vSC(70) + vBrC(13)	824 s	823 vw	823	804	796	27,71	2,17
ν_{16}	τHCCBr(93)	784 vs	784 vw	774	756	750	23,65	0,34
ν_{17}	$\delta CSC(71) + \nu SC(13)$	705 vs	712 w	715	698	694	23,85	21,92
ν_{18}	$vCC(11) + \delta CSC(14) + vSC(67)$	664 vs	669 w	657	642	639	35,42	34,14
ν_{19}	τCCCC(88)	579 vs	-	584	570	570	11,11	1,68
ν_{20}	$\tau HCCS(83)$	462 vw	464 w	480	469	472	2,46	4,13
ν_{21}	$vCC(10) + \delta CCC(70)$	-	-	466	455	459	0,13	11,07
v_{22}	$\delta CCC(15) + \nu SC(15) + \nu BrC(55)$	-	299 w	295	288	297	1,10	281,16
v_{23}	$\tau CSCC(83)$	-	248 w	268	262	272	7,27	20,52
ν_{24}	δCCBr(80)	-	230 w	243	237	248	3,18	20,43
v_{25}	τCCCO(91)	-	-	206	201	213	3,25	11,22
v_{26}	δCCS(84)	-	117 m	136	133	147	6,41	10,94
v_{27}	τCCCO(80)	-	91 w	93	91	106	5,05	64,82

Çizelge 4.20. Br2 molekülünün gaz fazındaki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar,

 v^{b} :1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

	İşaretlemeler (VEDA4)	Den	eysel		B3LYP	/ 6-31+	+G(d,p)	
Mod —	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(99)	3113 m	3108 w	3244	3098	3111	1,47	5,36
ν_2	vCH(100)	2983 vw	-	3224	3078	3091	0,15	3,45
ν_3	vCH(100)	2835 w	-	2941	2809	2819	68,52	7,64
v_4	vOC(89)	1665 vs	1663 vs	1738	1698	1662	369,61	31,30
ν_5	vCC(74)	1549 vs	1549 w	1581	1545	1512	112,97	4,91
ν_6	$vCC(59) + \delta CCF(11)$	1441 vs	1442 vs	1475	1441	1409	156,84	47,12
ν ₇	$vCC(52) + \delta HCO(13)$	1406 s	1405 w	1432	1400	1369	38,13	4,61
ν_8	δНСО(67)	1373 s	1374 vs	1395	1363	1333	24,02	20,73
ν9	$\nu FC(15) + \delta HCC(68)$	1258 vs	1259 vw	1269	1240	1212	59,84	1,45
v_{10}	$vCC(56) + \delta CCF(15)$	1205 vs	1204 vw	1207	1179	1152	66,82	5,46
v_{11}	δHCC(73)	1086 vw	1087 m	1105	1080	1054	0,79	6,94
v_{12}	$vFC(38) + vSC(14) + \delta HCC(18)$	1014 vs	1013 vw	1021	997	973	63,51	3,63
ν_{13}	γCCOH(96)	941 vw	983 vw	1007	984	960	0,20	2,65
ν_{14}	τHCCH(95)	886 vw	864 vw	889	868	846	2,09	0,41
ν_{15}	$\delta CSC(14) + \nu SC(76)$	839 vw	838 vw	839	820	799	5,82	4,62
ν_{16}	τHCSC(94)	741 vs	740 vw	745	728	708	55,15	0,37
ν_{17}	$\delta CSC(55) + \nu SC(17)$	699 s	698 m	703	687	667	11,13	41,50
v_{18}	$vSC(49) + \delta HCC(26)$	667 vs	666 w	665	650	631	33,89	23,37
ν_{19}	$\tau HCSC(95)$	642 w	640 vw	647	632	614	7,45	2,95
ν_{20}	$\nu FC(21) + \delta HCC(43)$	590 s	590 m	594	580	563	17,74	29,41
v_{21}	$vSC(14) + \delta CCF(71)$	492 vw	491 vw	493	482	466	1,95	30,80
v_{22}	τCSCC(91)	472 vw	-	476	465	450	2,83	7,55
V23	$vCC(12) + \delta CCF(69)$	-	331 vw	329	322	308	0,03	47,82
v_{24}	$\tau HCCS(92)$	-	-	301	294	281	4,26	1,52
v_{25}	τHCCC(89)	-	219 w	211	206	195	10,28	27,75
v_{26}	δHCC(90)	-	169 vw	156	153	142	7,39	10,63
v_{27}	τCCCO(93)	-	109 vs	128	125	115	1,31	21,57

Çizelge 4.21. F3 molekülünün gaz fazındaki titreşim işaretlemeleri

 ν^a : Skalalanmamış frekanslar, ν^b :1800 cm^{-1} üzeri 0.955 ile 1800 cm^{-1} altı 0.977 ile skalalanmış frekanslar, ν^c :Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P / 6-31-	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(99)	3108 vw	-	3243	3097	3101	0,58	5,71
v_2	vCH(100)	3093 vw	-	3222	3077	3081	0,60	2,76
ν_3	vCH(100)	2824 vw	-	2954	2821	2825	51,94	5,02
v_4	vOC(89)	1668 vs	1665 s	1736	1696	1659	366,60	32,90
ν_5	vCC(72)	1505 m	1506 vw	1542	1506	1473	55,57	3,70
ν_6	$vCC(53) + \delta HCC(11)$	1421 vs	1421 vs	1459	1425	1394	89,95	50,18
ν_7	δ HCC(60) + vCC(21)	1376 m	1376 m	1402	1370	1339	25,83	10,41
ν_8	$\nu CC(26) + \delta HCO(51)$	1349 w	1350 s	1375	1343	1313	21,77	13,37
V 9	$vClC(15) + \delta CCC(11) + vCC(60)$	1221 s	1220 vw	1217	1189	1162	96,18	6,25
v ₁₀	δ HCC(12) + δ HCO(29) + ν CC(44)	1169 w	1168 m	1185	1157	1131	23,34	8,52
v_{11}	$vCC(10) + \delta HCC(74)$	1082 vw	1079 m	1109	1084	1059	0,22	6,70
v_{12}	γCCOH(98)	-	986 w	1008	985	962	0,10	2,38
v ₁₃	δ HCC(10) + vClC(52) + δ CCC(11)	909 m	909 w	915	894	873	57,35	4,47
ν_{14}	τHCCH(95)	851 vw	878 vw	897	877	856	1,20	0,41
V15	vSC(77)	825 vw	800 vw	820	802	783	6,59	3,28
ν_{16}	τHCSC(95)	740 m	724cvw	743	726	709	51,16	0,04
ν_{17}	$vClC(36) + \delta CCC(40)$	690 w	691 s	695	679	663	5,75	50,53
ν_{18}	δHCC(59)	665 m	666 m	663	648	632	36,51	19,62
ν_{19}	τCCCCl(91)	617 vw	617 w	632	617	602	5,30	2,15
ν_{20}	δCCC(63)	502 vw	503 m	501	490	477	5,87	34,48
v_{21}	γCCSC(96)	470 vw	462 vw	475	464	452	2,16	4,25
v_{22}	$vClC(39) + \delta CCC(14) + \delta CCCl(11)$	418 vw	416 s	415	406	395	5,40	84,76
V 23	τHCCS(97)	269 vs	263 m	273	267	259	9,29	9,36
v_{24}	δCCCl(71)	261 vs	232 w	263	257	249	2,14	15,38
v_{25}	τCCCCl(94)	163 m	167 w	171	167	161	4,41	20,97
v_{26}	δCCS(89)	152 vw	-	158	155	149	5,50	23,86
v_{27}	γCCSC(90)	130 vw	-	129	126	121	1,79	21,17

Çizelge 4.22. Cl3 molekülünün gaz fazındaki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar,

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

	İşaretlemeler (VEDA4)	Dene	eysel	B3LYP / 6-31++G(d,p)						
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R		
ν_1	vCH(99)	3105 vw	3105 m	3242	3096	3097	0,38	5,93		
v_2	vCH(99)	3089 vw	3088 w	3221	3076	3078	0,79	2,50		
v_3	vCH(100)	2817 vw	2822 vw	2954	2821	2822	47,51	4,23		
v_4	vOC(91)	1666 vs	1661 s	1737	1697	1657	369,99	32,53		
ν_5	vCC(79)	1498 m	1497 w	1534	1499	1463	47,25	4,18		
ν_6	vCC(56)	1417 vs	1416 vs	1456	1422	1388	85,70	48,70		
v_7	δHCO(60)+ νCC(16)	1372 m	1371 s	1399	1367	1333	25,04	12,63		
ν_8	$vCC(25) + \delta HCC(57)$	1343 m	1342 s	1371	1339	1306	15,88	10,26		
v 9	$vCC(53) + \delta CCO(20)$	1214 s	1213 w	1210	1182	1153	95,72	12,36		
v_{10}	δ HCO(19) + δ HCC(13) + ν CC(45)	1161 w	1159 w	1176	1149	1120	17,04	6,33		
ν_{11}	δHCC(77)	1086 vw	1085 w	1109	1084	1056	0,14	6,75		
v_{12}	τHCCS(96)	-	992 vw	1008	985	959	0,11	2,01		
v ₁₃	τHCCH(98)	888 s	888 vw	899	879	855	1,25	0,40		
ν_{14}	$\delta CCC(65) + vSC(13)$		853 vw	895	875	851	49,62	4,34		
v 15	$\delta HCC(10) + vSC(78)$	813 vw	813 vw	808	789	768	8,00	3,85		
ν_{16}	τHCCH(97)	738 m	-	741	724	703	50,64	0,01		
ν_{17}	δ HCC(18) + δ CCC(17) + ν SC(39)	686 w	685 vs	691	675	656	3,82	55,61		
ν_{18}	δ HCC(43) + vSC(31)	664 s	663 m	662	647	628	35,55	19,98		
ν_{19}	γBrCCC(88)	607 vw	605 vw	615	601	583	3,93	1,78		
v_{20}	$vCC(23) + \delta CCO(51)$	484 vw	485 w	485	474	459	3,62	29,77		
v_{21}	τCSCC(91)	468 vw	468 vw	473	462	447	1,92	4,99		
v_{22}	vBrC(69)	317 vs	317 s	317	310	298	3,89	157,87		
v ₂₃	$\tau OCCS(95)$	261 m	-	265	259	248	10,68	7,95		
v_{24}	δCCS(83)	235 vs	235 w	235	230	219	4,08	11,95		
v_{25}	$\tau CCCBr(89)$	-	-	155	152	143	3,47	33,84		
v_{26}	δCCBr(88)	144 s	143 vs	142	138	130	3,60	33,69		
v_{27}	τCCCO(88)	-	110 s	128	125	117	1,37	19,89		

Çizelge 4.23. Br3 molekülünün gaz fazındaki titreşim işaretlemeleri

 ν^a : Skalalanmamış frekanslar, ν^b :1800 cm^{-1} üzeri 0.955 ile 1800 cm^{-1} altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

v, gerilme titreşimi; δ , açı bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi; v, çok; s, güçlü; m, orta; w, zayıf.

CH Titreşimleri;

FT-IR ve Raman spektrumlarının yüksek dalga sayılı bölgesinde aromatik tiyofen halkasına ait CH gerilme titreşimlerinin pikleri gözlenmektedir. T2C molekülü için bu pikler; FT-IR spektrumunda sırasıyla 3105 cm⁻¹, 3090 cm⁻¹ ve 3020 cm⁻¹'de gözlenirken, Raman spektrumunda ise 3104 cm⁻¹, 3088 cm⁻¹ ve 3017 cm⁻¹'de gözlenmektedir. Teorik olarak elde edilen skalalı frekanslarda ise sırasıyla 3093 cm⁻¹, 3067 cm⁻¹ ve 3052 cm⁻¹ olarak hesaplanmıştır. Tiyofen halkasına ait elde edilen CH pikleri literatürdeki değerlerle uyum içindedir [97]. T2C molekülünün karbaldehit kısmına ait CH gerilme titreşimi ise deneysel olarak 2790 cm⁻¹ (IR) ve 2791 cm⁻¹ (R) şeklinde elde edilirken teorik değeri ise 2770 cm⁻¹'dir. Yüksek dalga sayılı bu bölgede deneysel ve teorik değerler arasında görülen bu farklılıklar anharmoniklik etkisi ile açıklanabilir. Ayrıca teorik hesaplamalar gaz ortamında tek bir molekül için yapılırken deneysel ortamda molekül içi ve moleküller arası etkileşimlerin var olması da bu farklılıkların oluşmasında etkilidir.

Türev moleküllerin tiyofen halkasındaki CH pikleri ise halojenlerin elektronegatiflik derecelerine ve bağlı oldukları konumlara göre değişiklik göstermektedir. Örneğin; birinci serideki konuma F halojen atomunun bağlanmasıyla FT-IR spektrumunda 3090 cm⁻¹ ve 3020 cm⁻¹'de gelen pikler, 3115 cm⁻¹ ve 3075 cm⁻¹'de gelmektedir. Benzer şekilde Cl ve Br atomlarının bağlanmasıyla CH piklerinde bir artış söz konusudur. Bu artış elektronegatifliği en yüksek olan F atomunda daha fazladır. Deneysel olarak elde edilen bu değerler hesaplanan teorik titreşim frekanslarıyla da desteklenmektedir.

<u>C=O Titreşimleri;</u>

Karbonil gerilme titreşimi, spektrumlardaki en karakteristik titreşim piki olmakla beraber güçlü bir band şeklinde gözlenmektedir. Teorik ve deneysel olarak elde edilen karbonil gerilme titreşimleri literatürde gözlenmesi gereken değer aralığındadır [98, 99].

T2C molekülünün gaz fazı için C=O gerilme titreşimi; 1705 cm⁻¹ olarak hesaplanırken, bu mod deneysel olarak FT-IR spektrumunda 1673 cm⁻¹ ve Raman spektrumunda 1672 cm⁻¹ şeklinde güçlü bir band olarak gözlenmektedir. Birinci seri türev moleküllerinin FT-IR spektrumundaki karbonil gerilmeleri, F1 molekülü için 1677 cm⁻¹, Cl1 molekülü için 1670 cm⁻¹, Br1 molekülü için ise 1669 cm⁻¹ şeklindedir. Birinci seri için teorik olarak hesaplanan karbonil gerilmeleri ise sırasıyla 1702 cm⁻¹, 1702 cm⁻¹ ve 1703 cm⁻¹'dir. İkinci serideki moleküllerde Cl2 ve Br2 için bu değerler FT-IR spektrumunda 1674 cm⁻¹ ve 1668 cm⁻¹'de güçlü bir band olarak gözlenirken, teorik frekans değerleri her iki molekül için de 1709 cm⁻¹ şeklindedir. Üçüncü seri moleküllerde ise F3, Cl3 ve Br3 için sırasıyla 1665 cm⁻¹, 1668 cm⁻¹ ve 1666 cm⁻¹ olarak gözlenen IR titreşim frekansları, teorik olarak sırasıyla 1698 cm⁻¹, 1696 cm⁻¹ ve 1697 cm⁻¹ şeklinde hesaplanmıştır. Karbonil gerilme titreşimleri için deneysel ve teorik değerler arasında görülen bu kaymalar moleküller içi/arası hidrojen bağlarından kaynaklı olabilmektedir.

CS Titreșimleri;

Aromatik tiyofen halkasına ait iki CS gerilme titreşim modu, T2C molekülünün FT-IR spektrumunda 757 cm⁻¹ ve 584 cm⁻¹'de Raman spektrumunda ise 754 cm⁻¹ ve 581 cm⁻¹'de gözlenirken teorik hesaplamalarda bu değerler 742 cm⁻¹ ve 641 cm⁻¹ olmaktadır. Halojen türevli moleküllerde ise CS gerilme titreşim frekanslarının FT-IR spektrumundaki değerleri; F1 molekülü için 720 cm⁻¹ ve 661 cm⁻¹, Cl1 molekülü için 631 cm⁻¹, Br1 molekülü için 749 cm⁻¹ ve 613 cm⁻¹ şeklindedir. F2 molekülüne ait deneysel değer elde edilemezken Cl2 molekülünde 818 cm⁻¹ ve 664 cm⁻¹, Br2 molekünde 824 cm⁻¹ ve 664 cm⁻¹'de görülmektedir. F3, Cl3 ve Br3 moleküllerinde ise sırasıyla 839 cm⁻¹ ve 667 cm⁻¹, 825 cm⁻¹ ve 665 cm⁻¹, 813 cm⁻¹ ve 664 cm⁻¹ olarak elde edilmiştir. Çizelge 4.4-4.12 incelendiğinde CS gerilme titreşimine ait bu değerlerin teorik frekans değerleri ile uyum içinde olduğu ve literatürde gözlenmesi gereken değer aralığında olduğu görülmektedir [100, 101].

$\underline{C-X}$ (X = F, Cl, Br) Titreşimleri;

Halojen atomlarının yüksek elektronegatifliği yakınında bulunan grup frekansları üzerinde bir etki meydana getirir. Halojen türevli moleküllerin CX (X= F, Cl ve Br) gerilme titreşim modları spektrumların farklı bölgelerinde literatürdeki gözlenmesi gereken değer aralıklarına uygun bir şekilde elde edilmiştir [102-104]. Çalışmada incelenen flor halojenli türev moleküllerinin CF gerilme titreşim frekans değerleri, F1 molekülü için 1198 cm⁻¹ (IR) ve 1171 cm⁻¹ (R), F3 molekülü için 1014 cm⁻¹ (IR) ve 1013 cm⁻¹ (R) güçlü bir band şeklindedir. Skala edilmiş teorik titreşim modları ise F1 için 1181 cm⁻¹, F2 molekülü için 964 cm⁻¹ ve F3 molekülü için 997 cm⁻¹ olarak hesaplanmıştır. Klor halojenli moleküllerde ise CCl gerilme titreşim modu, Cl1 molekülünde 531 cm⁻¹ (IR) ve 533 cm⁻¹ (R), Cl2 molekülünde 395 cm⁻¹ (IR) ve 397 cm⁻¹ (R), Cl3 molekülünde 418 cm⁻ ¹ (IR) ve 416 cm⁻¹ (R) olarak gözlenmektedir. Teorik değerleri ise 522 cm⁻¹, 386 cm⁻¹ ve 406 cm⁻¹ olarak hesaplanmıştır. Brom halojenli moleküllerde CBr gerilme titreşim modlarının değerleri, Br1 için 498 cm⁻¹ (IR) ve 497 cm⁻¹ (R)'de, Br2 molekülü için IR spektrumunda band gözlenmezken Raman spektrumunda 299 cm⁻¹ ve Br3 molekülü için IR ve Raman spektrumunda 317 cm⁻¹ olarak gözlenmektedir. CBr gerilme titreşimine ait skalalanmış teorik değerler ise sırasıyla 489 cm⁻¹, 288 cm⁻¹ ve 310 cm⁻¹ olarak hesaplanmıştır.

Elde edilen bu verilerden görüldüğü gibi ikinci seriye ait halojenli moleküllerin CX (X: F, Cl ve Br) gerilme titreşim modları birinci ve üçüncü serideki moleküllere göre daha düşük frekans değerindedirler. Bunun nedeni serilerdeki halojen atomlarının bulundukları konumdan kaynaklı olabilir. Örneğin, birinci seride üzerinde ortaklanmamış elektron çifti bulunduran S atomu ile elektronegatif halojen atomları arasındaki bağ elektronlarının ortaklaşılmasıyla elektron yoğunluğunu arttıran pozitif bir indüktif etki söz konusu olabilir.

<u>Diğer Titreşimler;</u>

T2C molekülünün tiyofen halkasının CC gerilme titreşim modları teorik olarak 1524 cm⁻¹ ve 1423 cm⁻¹ de elde edilirken, deneysel olarak 1519 cm⁻¹ (IR) , 1520 cm⁻¹ (R) ve 1419 cm⁻¹ (IR) 1417 cm⁻¹ (R)'de güçlü bir band şeklinde gözlenmektedir. Çizelge 4.4-4.12'de de görüldüğü gibi türev moleküllere ait tiyofen halkasının CC gerilme titreşim modları ise T2C molekülüne göre daha yüksek frekans değerindedirler. Spektrumların 1500 cm⁻¹ ve 1000 cm⁻¹ aralığı bölgesinde genellikle halka gerilme titreşimlerinin yanı sıra CCC, HCS veya HCC açı bükülme titreşim modları baskın iken, düşük dalga sayılı bölgede HCCC, HCCH, CCCC ve CSCC torsiyon titreşim modlarıyla beraber SC gerilme ve CCS açı bükülme titreşimleri de yer almaktadır. Benzer durumlar teorik hesaplamalarda da gözlenmektedir.

Şekil 4.4. T2C molekülünün FT-IR ve Raman spektrumu

Şekil 4.5. F1 molekülünün FT-IR ve Raman spektrumu

Şekil 4.6. Cl1 molekülünün FT-IR ve Raman spektrumu

Şekil 4.7. Br1 molekülünün FT-IR ve Raman spektrumu

Şekil 4.8. Cl2 molekülünün FT-IR ve Raman spektrumu

Şekil 4.9. Br2 molekülünün FT-IR ve Raman spektrumu

Şekil 4.10. F3 molekülünün FT-IR ve Raman spektrumu

Şekil 4.11. Cl3 molekülünün FT-IR ve Raman spektrumu

Şekil 4.12. Br3 molekülünün FT-IR ve Raman spektrumu

Çizelge 4.14-4.23'te verilen deneysel FT-IR titreşim frekansları ile teorik olarak gaz fazında hesaplanmış skalalı frekanslar arasındaki uyum ya da farklılıkları incelemek için Şekil 4.13-4.16'da verilen korelasyon grafikleri çizilmiştir. Deneysel ve teorik titreşim frekansları arasındaki korelasyon değerleri; T2C molekülü için 0.99953, F1 0.99969, Cl1 0.99978, Br1 0.99758, Cl2 0.99942, Br2 0.99964, F3 0.9989, Cl3 0.99976 ve Br3 için 0.99981 olarak elde edilmiştir. Elde edilen bu korelasyon değerleri, T2C ve türev moleküllerinin deneysel ve teorik titreşim frekansları arasında bir uyum olduğunu ve B3LYP yöntemi ve 6-31++G(d,p) baz setinin titreşim frekansları için güvenilir sonuçlar verdiğini göstermektedir.

Şekil 4.13. T2C molekülünün IR titreşim frekansları için korelasyon grafiği

Şekil 4.14. Birinci seri moleküllerinin IR titreşim frekansları için korelasyon grafikleri

Şekil 4.15. İkinci seri moleküllerinin IR titreşim frekansları için korelasyon grafikleri

Şekil 4.16. Üçüncü seri moleküllerinin IR titreşim frekansları için korelasyon grafikleri

4.3. Homo Lumo Sınır Orbitalleri

Moleküllerin HOMO (en yüksek enerjili dolu molekül orbitali) ve LUMO (en düşük enerjili boş molekül orbitali) sınır orbitalleri kimyasal reaksiyonların açıklanmasında önemli bir rol oynarlar. HOMO elektron verebilme, LUMO ise elektron alabilme kabiliyeti olduğundan elektronik geçişler HOMO'dan LUMO'ya olarak tanımlanır. HOMO ve LUMO sınır orbitalleri arasındaki enerji farkı olarak tanımlanan E_{gap} değeri, bir molekülün diğer moleküllerle etkileşimini, elektron alma ya da verme yatkınlığını yani elektriksel iletkenliğini belirler. Çalışmada ele aldığımız T2C ve türev moleküllerinin, gaz fazı için yapılan hesaplamalar sonucunda elde edilen sınır moleküler orbitallerinin atomik yerleşimleri ve enerjileri Şekil 4.17-4.20'de gösterilmektedir.

Şekil 4.17. T2C molekülünün HOMO ve LUMO sınır orbitalleri

T2C molekülü için HOMO sınır orbital enerjisi -8.46 eV, LUMO sınır orbital enerjisi -5.16 eV olarak hesaplanmıştır. Bu iki orbital arasındaki enerji farkı E_{gap} ise 3.3 eV'tur. Birinci seriye ait molekülleri incelediğimizde, F1 molekülü için E_{gap} değeri 3.11 eV olurken C11 ve Br1 molekülleri için 2.65 eV ve 3.2 eV olmaktadır. İkinci seriye ait F2, C12 ve Br2 molekülleri için E_{gap} değerleri sırasıyla; 2.81 eV, 2.42 eV ve 3.1 eV olarak elde edilmiştir. Üçüncü seriye ait F3, C13 ve Br3 molekülleri için E_{gap} değerleri ise sırasıyla; 3.03 eV, 2.61 eV ve 3.09 eV'tur. Serilerin E_{gap} enerji farkı değerleri, Br halojenli moleküllerinde en yüksek olurken C1 halojenli moleküllerde en düşük değerindedir.

Şekil 4.18. Birinci seri moleküllerinin HOMO ve LUMO sınır orbitalleri

Şekil 4.19. İkinci seri moleküllerinin HOMO ve LUMO sınır orbitalleri

Şekil 4.20. Üçüncü seri moleküllerinin HOMO ve LUMO sınır orbitalleri

4.4. Çözücü ve Halojen Etkisi

Çalışmada incelenen moleküller için gaz fazında yapılan hesaplamaların haricinde çözücü etkisini incelemek amacıyla polar ve polar olmayan çözücülerle de hesaplamaları yapılmıştır. Bu hesaplamalarla ve deneysel olarak FT-IR ve Raman spektrumlarından elde edilen verilerle titreşim frekanslarının üzerindeki çözücü etkisi incelenmiştir. Çözücü etkisinin teorik hesaplamaları için klasik PCM (Polarize Continuum model) kullanılmıştır. Bu yöntem çözünen molekül için bir moleküler yüzey tanımlar ve çözücü ile etkileşimini hesaplar [105, 106].

Apolar çözücü olarak benzen ve polar çözücü olarak kullanılan metanol içerisindeki titreşim frekans işaretlemeleri ve spektrumları Ek-1 ve Ek-2 kısmında yer alan Çizelge E1.1-E1.20 ve Şekil E2.1-E2.18'de yer almaktadır. Moleküllerin metanol çözücüsünde alınan spektrumları incelendiğinde, metanole ait 3345-3422 cm⁻¹ aralığında çok güçlü bir OH pikinin, 2833 cm⁻¹, 2945 cm⁻¹ ve 1450 cm⁻¹'de güçlü CH piklerinin ve 1030 cm⁻¹ civarında da güçlü bir C-O pikinin geldiğini görmekteyiz. Benzen çözücüsüne ait piklerin

ise 3091 cm⁻¹, 3036 cm⁻¹,1960 cm⁻¹, 1815 cm⁻¹, 1479 cm⁻¹, 1036 cm⁻¹ ve 673 cm⁻¹'de geldiğini görürüz. Bu çözücülerin varlığında alınan T2C ve türev moleküllerinin titreşim frekanslarında katı fazda alınan spektrumlara göre bir takım farklılıkların olduğu tespit edilmiştir.

T2C molekülünün çözücü içerisinde elde edilen FT-IR ve Raman spektrumlarının yüksek dalga sayılı bölgesinde, çözücülerin kendi pikleri dışında aromatik tiyofen halkasına ait CH gerilme titreşimlerinin pikleri gözlenmektedir. Bu pikler benzen için FT-IR spektrumunda; 3090 cm⁻¹, 3071 cm⁻¹ ve 3035 cm⁻¹'de olurken Raman spektrumunda 3104 cm⁻¹ ve 3061 cm⁻¹ olmaktadır. Teorik değerleri ise sırasıyla 3095 cm⁻¹, 3070 cm⁻¹ ve 3055 cm⁻¹'dir. Metanol için FT-IR spektrumunda 3105 cm⁻¹ ve 3089 cm⁻¹'da, Raman spektrumunda ise sadece 3105 cm⁻¹'de tiyofen halkasına ait CH gerilme titreşimleri gözlenmektedir. Teorik değerleri ise sırasıyla 3095 cm⁻¹'da, Raman spektrumunda ise sadece 3105 cm⁻¹'de tiyofen halkasına ait CH gerilme titreşimleri

Karbonil gerilme titreşimleri, T2C molekülü için benzen çözücüsünde 1675 cm⁻¹ (IR) ve 1671 cm⁻¹ (R), metanol çözücüsü içerisinde 1668 cm⁻¹ (IR) ve 1659 cm⁻¹ (R)'de güçlü bir band şeklindedirler. Teorik olarak karbonil gerilme titreşim frekansı, benzen için 1682 cm⁻¹ metanol için ise 1652 cm⁻¹'dir.

Birinci seri türev moleküllerinin benzen çözücüsü için FT-IR spektrumundaki karbonil gerilmeleri, F1 molekülü için 1680 cm⁻¹, Cl1 molekülü için 1677 cm⁻¹, Br1 molekülü için ise 1674 cm⁻¹ şeklindedir. Birinci seri için teorik olarak hesaplanan karbonil gerilmeleri ise sırasıyla 1680 cm⁻¹, 1681 cm⁻¹ ve 1681 cm⁻¹'dir. Metanol çözücüsü içerisindeki karbonil gerilmeleri ise F1 molekülü için 1679 cm⁻¹, Cl1 molekülü için 1676 cm⁻¹, Br1 molekülü için ise 1669 cm⁻¹ olarak FT-IR spektrumunda gözlenirken, teorik değerleri sırasıyla 1651 cm⁻¹, 1651 cm⁻¹ ve 1652 cm⁻¹ şeklindedir.

İkinci seri moleküllerinin benzen çözücüsündeki karbonil gerilmeleri; Cl2 ve Br2 için FT-IR spektrumunda 1679 cm⁻¹ ve 1681 cm⁻¹'de güçlü bir band olarak gözlenirken, teorik frekans değerleri her iki molekül için de 1689 cm⁻¹ şeklindedir. Metanol çözücüsü içerisindeki karbonil gerilmeleri ise Cl2 ve Br2 için 1678 cm⁻¹ ve 1679 cm⁻¹'dir. Teorik frekans değerleri iki molekül için de 1661 cm⁻¹ olarak hesaplanmıştır. Üçüncü seri moleküllerinin benzen ve metanol çözücüleri içerisindeki karbonil gerilmeleri; F3, Cl3 ve Br3 için sırasıyla; 1670 cm⁻¹, 1674 cm⁻¹ ve 1671 cm⁻¹ şeklinde gözlenmiştir. Karbonil gerilme titreşim frekanslarının teorik değerleri ise F3, Cl3 ve Br3 için; benzende 1677 cm⁻¹, metanolde sırasıyla 1649 cm⁻¹, 1649 cm⁻¹ ve 1650 cm⁻¹ olarak elde edilmiştir. Karbonil gerilme titreşim frekansının metanol çözücüsündeki değerlerinin benzen çözücüsüne göre daha düşük olduğu sonucu elde edilmiştir. Bu durum teorik olarak hesaplanan değerlerle de sağlanmaktadır. Ortamın polarlığının artmasıyla yapının içerisindeki elektron dağılımı değiştiğinden titreşim frekanslarında kaymalar meydana gelmektedir. Titreşim frekanslarının çözücünün dielektrik sabitine bağlı olduğu ve bu sabitin artmasıyla karbonil titreşim frekanslarının azaldığı daha önce yapılan çalışmalarda da incelenmiştir [21, 89]. Bu frekans kaymaları, hidrojen ve halojen bağlarının ve yüksek dielektrik sabite sahip olan çözücü içerisindeki oksijen atomları üzerindeki pozitif karakterin artmasıyla açıklanabilir [20].

Karbonil gerilme titreşimlerinin teorik frekansları incelendiğinde, gaz fazında elde edilen değerlerin çözücü ortamında elde edilen değerlerden daha yüksek olduğu görülmektedir. Ortam sıralaması yapılacak olunursa sırasıyla en büyük değerleri gaz, benzen ve metanol şeklindedir. Ancak deneysel olarak elde edilen verilerde bu sıralamanın değiştiği, gaz fazındaki karbonil gerilme titreşimlerinin çözücü ortamına göre daha düşük frekansta olduğu görülmektedir. Moleküllerin çözücü içerisindeki karbonil gerilme titreşim frekansları hem deneysel hem de teorik olarak benzen çözücüsünde en yüksek değerine sahiptirler. Yani dielektrik ortamın varlığının titreşim frekansları üzerindeki etkisi açıkça görülmektedir.

Çizelge E1.1-E1.20'de verilen benzen ve metanol çözücüleri içindeki deneysel FT-IR titreşim frekansları ile teorik olarak hesaplanmış skalalı frekanslar kullanılarak korelasyon değerleri elde edilmiştir. Bu değerler; benzen çözücüsü içindeki T2C molekülü için 0.99985, F1 0.99957, Cl1 0.99966, Br1 0.99964, Cl2 0.99986, Br2 0.99991, F3 0.99972, Cl3 0.99984 ve Br3 için 0.99983 olarak elde edilmiştir. Metanol çözücüsü içindeki T2C molekülü için 0.99949, F1 0.99973, Cl1 0.99973, Br1 0.99984, Cl2 0.99986, Br2 0.99986, F3 0.99990, Cl3 0.99984 ve Br3 için 0.99985 olarak elde edilmiştir.

Elde edilen bu korelasyon değerleri ile benzen ve metanol çözücüleri içerisindeki T2C ve türev moleküllerinin deneysel ve teorik titreşim frekansları arasında iyi bir uyum olduğu sonucuna ulaşılmıştır.

5. SONUÇLAR

Bu çalışmada hedef molekül olarak seçtiğimiz tiyofen-2-karbaldehit molekülünün ve onun halojen değişkenli türev moleküllerinin konformasyonları ve titreşim spektrumları üzerine, halojen (F, Cl ve Br) ve çözücü (polar ve apolar) etkisini başarılı bir şekilde deneysel ve teorik olarak inceledik. Üç seri altında incelediğimiz toplam on molekülün teorik hesaplamalarını kuantum kimyasal hesaplamalar yardımıyla gerçekleştirdik ve deneysel verilerini FT-IR ve Raman spektroskopilerini kullanarak elde ettik. Elde edilen bu sonuçları şu şekilde özetleyebiliriz:

1. Yoğunluk fonksiyonel teorisine ait B3LYP yöntemi ve 6-31++G(d,p) baz seti ile gaz fazı ve çözücü ortamları için gerçekleştirilen hesaplamalarda, tüm moleküllerin trans konformasyon durumunda daha kararlı yapıda olduğu sonucuna ulaşılmıştır. Bu sonuç yapılan potansiyel enerji yüzeyi taraması ile de desteklenmiştir. Konformasyon durumunun benzen ve metanol çözücü ortamlarında da değişmemesi, konformasyon enerji bariyerinin çözücüden bağımsız olduğunu göstermektedir.

2. T2C ve türev moleküllerinin çözücü ortamında yapılan hesaplamaları sonucunda elde edilen geometrik yapı parametrelerinde değişiklikler olduğu tespit edilmiştir. T2C molekülünde bulunan hidrojen atomlarının yerine halojen atomlarının bağlanması ile elde edilen türev moleküllerde C-X bağ uzunluğunun değerinin elektronegatifliği F ve Cl atomuna göre daha düşük olan Br atomunda en fazla olduğu gözlenmiştir. C-S ve C=O bağ uzunluklarının ise ortamın değişmesiyle beraber gaz fazındayken en düşük değerinde, benzen ve metanol çözücüsü içerisindeyken ise sırasıyla değerlerinin arttığı görülmektedir.

3. İncelenen moleküllerin dipol moment değerlerinin ortamın polarlığının artmasıyla beraber arttığı görülmüştür. Birinci ve ikinci seri konumundaki moleküllerin halojen atomlarının elektronegatiflik derecesinin azalması ile dipol moment değerlerinin arttığının ancak üçüncü seri konumunda tam tersi durumun olduğu gözlenmiştir.

4. Moleküllerin titreşim frekanslarının, halojenlerin elektronegatiflik derecelerine, ortamın polarlığına ve bağlı oldukları konumlara göre birtakım değişiklikler gösterdiği tespit edilmiştir. Karbonil gerilme titreşimlerinin gaz fazındaki teorik frekansları, çözücü ortamında elde edilen değerlerden daha yüksek olduğu (gaz > benzen > metanol) görülmektedir. Ancak deneysel olarak elde edilen verilerde bu sıralamanın değiştiği, gaz fazındaki karbonil gerilme titreşimlerinin çözücü ortamına göre daha düşük frekansta olduğu görülmektedir. Moleküllerin çözücü içerisindeki karbonil gerilme titreşim

frekansları hem deneysel hem de teorik olarak benzen çözücüsünde en yüksek değerine sahiptirler. Yani dielektrik ortamın varlığının titreşim frekansları üzerindeki etkisi açıkça görülmektedir.

5. Teorik ve deneysel FT-IR titreşim frekanslarının elde edilen korelasyon değerleri ile uyum içinde olduğu gözlenmiştir. Bu değerler; gaz fazındaki T2C molekülü için 0.99953, F1 0.99969, Cl1 0.99978, Br1 0.99758, Cl2 0.99942, Br2 0.99964, F3 0.9989, Cl3 0.99976 ve Br3 için 0.99981 olarak elde edilmiştir. Benzen çözücüsü içindeki T2C molekülü için 0.99985, F1 0.99957, Cl1 0.99966, Br1 0.99964, Cl2 0.99986, Br2 0.99991, F3 0.99972, Cl3 0.99984 ve Br3 için 0.99983 olarak elde edilmiştir. Metanol çözücüsü içindeki T2C molekülü için 0.99986, F3 0.99949, F1 0.99973, Cl1 0.99973, Br1 0.99984, Cl2 0.99986, Br2 0.99986, F3 0.99990, Cl3 0.99984 ve Br3 için 0.99985 olarak elde edilmiştir.

6. Elde edilen bu korelasyon değerleri, T2C ve türev moleküllerinin deneysel ve teorik titreşim frekansları arasında bir uyum olduğunu ve B3LYP yöntemi ve 6-31++G(d,p) baz setinin titreşim frekansları için güvenilir sonuçlar verdiğini göstermektedir.

7. Moleküllerin gaz fazı için yapılan hesaplamalar sonucunda elde edilen HOMO ve LUMO sınır moleküler orbitallerinin atomik yerleşimleri ve enerjileri hesaplanıp, halojenlerin elektronegatifliğinin E_{gap} değerlerinin üzerindeki etkisi incelenmiştir.

KAYNAKÇA

- [1] Joule J.A. (2015). Topics in heterocyclic chemistry, Thiophenes. *Springer*, 39, 1-6.
- [2] Mishra R., Jha K.K., Kumar S. and Tomer I. (2011). Synthesis, properties and biological activity of thiophene: A review. *Der Pharma Chemica*, 3 (4):38-54.
- [3] Dalvie D.K., Kalgutkar A.S., Khojasteh-Bakht S.C., Obach R.S. and O'Donnell J.P. (2002). Biotransformation reactions of five-membered aromatic heterocyclic rings. *Chemical Research in Toxicology*, 15, (3).
- [4] Szkurlat A., Palys B., Mieczkowski J. and Skompska M. (2003). Electrosynthesis and spectroelectrochemical characterization of poly(3,4dimethoxy-thiophene), poly(3,4-dipropyloxythiophene) and poly(3,4dioctyloxythiophene) film. *Electrochimica Acta*, 48, 3665-3676.
- [5] Ferraris J.P., Eissa M.M., Brotherston I.D., Loveday D.C. and Moxey A.A. (1998). Preparation and electrochemical evaluation of poly (3-phenylthiophene) derivatives: potential materials for electrochemical capacitors¹. *Journal of Electroanalytical Chemistry*, 459, 57–69.
- [6] Xu J., Shi G., Chen F., Wang F., Zhang J. and Hong X. (2003). Poly(3-Chlorothiophene) films prepared by the direct electrochemical oxidation of 3-chlorothiophene in mixed electrolytes of boron trifluoride diethyl etherate and sulfuric acid. *Journal of Applied Polymer Science*, 87, 502–509.
- [7] Güneş S., Neugebauer H. and Sarıçiftçi N.S. (2007). Conjugated polymer based organic solar cells. *Chemical Reviews*, 107 (4), 1324-1338.
- [8] Friend R.H., Gymer R.W., Holmes A.B., Burroughes J.H., Marks R.N., Taliani C., Bradley D.D.C., Dos Santos D.A., Bredas J.L., Lögdlund M. and Salaneck W.R. (1999). Electroluminescence in conjugated polymers. *Nature*, 397, 121-128.
- [9] Kim D.M., Yoon J.H., Won M.S. and Shim Y.B. (2012). Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell. *Electrochimica Acta*, 67, 201–207.
- [10] Lai C., Guo W., Tang X., Zhang G., Pan Q. and Pei M. (2011). Cross-linking conducting polythiophene with yellow-green light-emitting properties and good thermal stability via free radical polymerization and electropolymerization. *Synthetic Metals*, 161, 1886–1891.
- [11] Kao J. and Radom L. (1979). Conformations, stabilities, and charge distributions in 2- and 3-monosubstituted thiophenes. an ab initio molecular orbital study. *Journal of the American Chemical Society*, 101 (2), 311-318.

- [12] Lunazzi L. and Placucci G. (1984). Conformational studies by dynamic nuclear magnetic resonance. Interconversion barriers between syn- and anti-conformers of isomeric thiophenecarbaldehydes. J. Chem. Soc. Perkin Trans, 819-822.
- **[13]** Braathen G.O., Kveseth K., Nielsen C.J. and Hagen K. (1986). Molecular structure and conformational equilibrium of gaseous thiophene-2-aldehyde as studied by electron diffraction and microwave, infrared, raman and matrix isolation spectroscopy. *Journal of Molecular Structure*, 145, 45-68.
- [14] Concistre M., Luca G.D., Longeri M., Pileio G. and Emsley J.W. (2005). The structure and conformations of 2-thiophenecarboxaldehyde obtained from partially averaged dipolar couplings. *Chem. Phys. Chem.*, 6, 1483–1491.
- [15] Fleming G. D., Koch R. and Vallete M.M.C. (2006). Theoretical study of the syn and anti thiophene-2-aldehyde conformers using density functional theory and normal coordinate analysis. *Spectrochimica Acta Part A*, 65, 935–945.
- [16] Antón V., Muñoz-Embid J., Artigas H., Artal M. and Lafuente C. (2017). Thermophysical properties of oxygenated thiophene derivatives: Experimental data and modelling. *J. Chem. Thermodynamics*, 113, 330–339.
- [17] Lee M., Shin M. and Lee H. (2013). Coverage dependent variation of the adsorption structure of 2-thiophenecarboxaldehyde on the $Ge(100)-2\times 1$ reconstructed surface. *Molecules*, 18, 10301-10311.
- [18] Jamali M.R., Assadi Y., Shemirani F. and Salavati-Niasari M. (2007). Application of thiophene-2-carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination. *Talanta*, 71, 1524–1529.
- [19] Kumar S., Dutta P.K. and Sen P. (2010). Preparation and characterization of optical property of crosslinkable film of chitosan with 2-thiophenecarboxaldehyde. *Carbohydrate Polymers*, 80, 563–569.
- [20] Güneş E., Parlak C. and Şenyel M. (2017). Dft/Tddft investigation on the electronic structures and spectral characteristics of C_5H_3XOS (X = H, F, Cl or Br), *Journal of Structural Chemistry*, 58 (4), 684-693.
- [21] Parlak C. and Alver Ö. (2016). Carbonyl stretching vibrations of 5-halogen-2thiophenecarboxaldehydes: KBM, AN, SWAIN and LSER parameters, *Pamukkale Univ Müh. Bilim Derg.*, 22 (7), 609-612.
- [22] Rehan M. and Younus H. (2006). Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies. *International Journal of Biological Macromolecules*, 38, 289–295.
- [23] Schuquel I.T.A., Custodio R., Oliveira P.R. and Rittner R. (2003). Theoretical investigation of the conformational behaviour of 3-monosubstituted 2-methylpropenes. *Journal of Molecular Structure*, (*Theochem*), 637, 43–54.

- [24] Mahalakshmi G. and Balachandran V. (2014). FT-IR, FT-Raman and DFT study of 3,3'-bis (trifluoromethyl) benzophenone and its biological activity with other halogen (Cl, Br) atoms. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 124, 328–340.
- [25] Schuquel I.T.A., Pontes R.M., Freitas M.P. and Rittner R. (2011). Theoretical and infrared spectroscopy study of the conformational preferences for some 3-monosubstituted-2-methylpropenes. *Spectrochimica Acta Part A*, 81, 135–139.
- [26] Targema M., Obi-Egbedi N.O. and Adeoye M.D. (2013). Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives. *Computational and Theoretical Chemistry*, 1012, 47–53.
- [27] Ji X., Li Y., Zheng J. and Liu Q. (2011). Solvent effects of ethyl methacrylate characterized by FTIR. *Materials Chemistry and Physics*, 130, 1151–1155.
- [28] Jovic B., Nikolic A. and Petrovic S. (2013). FTIR spectroscopic study of hydrogen bonding and solvent induced frequency shifts of N-tert-butylacetamide. *Journal of Molecular Structure*, 1044, 140–143.
- [29] Stolov A.A., Herrebout W.A. and van der Veken B.J. (1999). Solvent effect on vibrational frequencies: cryosolution experiments and density functional calculations. *Journal of Molecular Structure*, 480–481, 499–503.
- [30] Zakerhamidi M.S., Ahmadi-Kandjani S., Moghadam M., Ortyl E. and Kucharski S. (2012). Solvatochromism effects on the dipole moments and photo-physical behavior of some azo sulfonamide dyes. *Spectrochimica Acta Part A*, 85, 105–110.
- [31] Metrangolo P. and Resnati G. (2008). Halogen Bonding fundamentals and applications. *Springer*, 126.
- [32] Metrangolo P. and Resnati G. (2001). Halogen bonding: A paradigm in supramolecular chemistry. *Chem. Eur. J.*, 7 (12), 2511-2519.
- [33] Imakubo T., Tajima N., Shirahata T., Miyake A., Sawa H., Nakamura T., Ohnuki H., Tamura M., Kato R., Izumi M., Nishio Y. and Kajita K. (2003). Crystal design of organic conductors using the iodine bond. *Synthetic Metals*, 135-136, 601-602.
- [34] Kato R., Imakubo T., Yamamoto H., Maeda R., Fujiwara M., Yamaura J.I. and Sawa H. (2002). An application of supramolecular chemistry to molecular conductors. *Mol. Cryst. Liq. Cryst.*, 380, 61-68.
- [35] Voth A.R., Hays F.A. and Ho P.S. (2007). Directing macromolecular conformation through halogen bonds. *Pnas*, 104, 6188-6193.
- [36] Hardegger L.A., Kuhn B., Spinnler B., Anselm L., Ecabert R., Stihle M., Gsell B., Thoma R., Diez J., Benz J., Plancher J.M., Hartmann G., Banner D.W., Haap W. and Diederich F. (2011). Systematic investigation of halogen bonding in protein– ligand interactions. *Angew. Chem. Int. Ed.*, 50, 314–318.

- [37] Chatwal G.R. and Anand S.K. (2009). Spectroscopy (atomic and molecular). *Himalaya Publishing House*.
- [38] Skoog D.A, Holler F.J and Nieman T.A. (1998). Enstrümental Analizin İlkeleri (Çev: Kılıç E., Köseoğlu F. ve Yılmaz H.), *Bilim yayıncılık.*
- [39] Chang R. (1971). *Basic principles of spectroscopy*. USA: McGraw-Hill.
- [40] Svanberg S. (2004). Atomic and molecular spectroscopy. Germany: Springer.
- [41] Banwell C.B. and McCash E.M. (1994). Fundamentals of molecular spectroscopy. New-Delhi: McGraw-Hill.
- [42] Bağlayan Ö. (2017). Bazı piperazin türevleri ve metal komplekslerinin spektroskopik özelliklerinin deneysel ve teorik olarak incelenmesi. Doktora Tezi, Eskişehir, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü.
- [43] Gündüz T. (1999). *İnstrümental Analiz*. 1999, Ankara, Gazi Kitabevi.
- [44] Yurdakul Ş. (2010). Spektroskopi ve grup teorisinin temelleri ders notları. Ankara, Gazi Kitabevi.
- [45] Stuart B. (2004). Infrared spectroscopy: fundamentals and applications, analytical techniques in the science. John Wiley&Sons.
- [46] Colthup N.B., Daly L.H. and Wiberley S.E. (1990). *Introduction to infrared and Raman spectroscopy*. USA: Academic Press.
- [47] Lewis I.R. and Edwards H.G.M. (2001). *Handbook of Raman spectroscopy*. New York: CRC Press
- [48] Nakamoto K. (1997). *Infrared spectra of inorganic and coordination compounds*. John Wiley&Sons.
- [49] Woodward L.A. (1972). *Introduction to the theory of molecular vibrations and vibrational spectroscopy*. London: Oxford University Press.
- [50] Gardiner D.J. and Graves P.R. (1989). *Practical Raman Spectroscopy*. Springer-Verlag Berlin Heidelberg.
- [51] Ferraro J.R., Nakamato K. and Brown C.W. (2003). *Introductory Raman Spectroscopy*, USA: Elsevier Science.
- [52] Theophanides T. (2012). Infrared spectroscopy-materials science, engineering and technology. InTech.
- [53] Larkin P.J. (2011). Infrared and Raman spectroscopy, principles and spectral interpretation. Elsevier Inc.

- [54] Schrader B. (1995). *Infrared and Raman spectroscopy, method and applications*. Weinheim.
- [55] Morse P.M. (1929). The diatomic molecules according to wave mechanics. II. vibrational levels. *Physical Review*.
- [56] Va'vra J. (2014). Molecular excitations: a new way to detect Dark Matter, *Physics Letters B*, 736, 169–173.
- [57] Gans P. (1971). *Vibrating molecules*. London: Chapman and Hall Ltd.
- [58] Cotton F.A. (1989). *Chemical Applications of Group Theory*.
- [59] Hollas J.M. (2002). *Basic atomic and molecular spectroscopy*, The Royal Society of Chemistry.
- [60] Ramachandran K.I., Deepa G. and Namboori K. (2008). Computational chemistry and molecular modeling, principles and applications. Springer-Verlag Berlin Heidelberg.
- [61] Lewas E. (2004). Computational chemistry introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers.
- [62] Foresman J.B. and Frisch A. (1996). *Exploring chemistry with electronic structure methods*. Pittsburgh: Gaussian Inc.
- [63] Hehre W.J. (2003). A guide to molecular mechanics and quantum chemical calculations, Wavefunction Inc.
- [64] Koch W. and Holthausen M.C. (2001). A chemist's guide to density functional theory, second edition. Wiley-VCH.
- [65] Young D.C. (2001). Computational chemistry, a practical guide for applying techniques to real-world problems. John Wiley & Sons, Inc.
- [66] Cramer J.C. (2004). *Essentials of computational chemistry*. England: John Wiley & Sons.
- [67] Parr R.G. and Yang W. (1989). *Density functional theory of atoms and molecules*. Oxford, New York.
- [68] Erdem S.S. (2006). *Hesapsal organik kimya ders notları*, Marmara Üniversitesi.
- [69] Becke A.D. (1993). Density-Functional thermochemistry, III. The role of exact Exchange. J. Chem. Phys., 98, 5648.
- [70] Boys S.F. (1950). Electronic wave functions I. a general method of calculation for the stationary states of any molecular system. *Proc. R. Soc. Lond. A*, 200, 542-554.

- [71] Ditchfield R., Hehre W.J. and Pople J.A. (1971). Self-consistent molecular-orbital methods. IX. an extended gaussian-type basis for molecular-orbital studies of organic molecules. *The Journal Of Chemical Physics*, 54, 724-728.
- [72] Liu B. and McLean A.D. (1973). Accurate calculation of the attractive interaction of two ground state helium atoms. *The Journal Of Chemical Physics*, 59, 4557-4558.
- [73] Standard J.M. (2015). *Basis sets for molecular orbital calculations, lecture notes.*
- [74] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Peterson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich, S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. (2009). *Gaussian 09, Revision A.1*, Gaussian Inc., Wallingford CT.
- [75] Dennington R.D., Keith T.A. and Millam J.M. (2008). *GaussView 5.0.8*, Gaussian Inc.
- [76] Jamróz M.H. (2004). Vibrational energy distribution analysis: VEDA 4 program. Warsaw.
- [77] Miertus S., Scrocco E. and Tomasi J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. *Chem. Phys.* 55, 117–129.
- [78] Keresztury G., Holly S., Besenyei G., Varga J., Vang A. and Durig J.R. (1993). Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,Ndimethylthiocarbamate. *Spectrochimica Acta Part A: Molecular Spectroscopy*, 49, 2007-2026.
- [79] Vincent A. (1977). *Molecular symmetry and group theory, a programmed introduction to chemical applications*. John Wiley&Sons.
- [80] Jensen F. (1999). *Introduction to computational chemistry*. NewYork: John Wiley and Sons Inc.
- [81] Lewars E.G. (2011). Introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers.

- [82] Christian G.D. (2004). *Principles of spectroscopy, analytical chemistry*, John Wiley and Sons Inc.
- [83] Smith B.C. (1996). Fundamentals of fourier transform infrared spectroscopy, USA: CRC Press.
- [84] Princeton Instruments. *Raman Spectroscopy Basics, Application Notes*. https://www.princetoninstruments.com/spectroscopy/Raman
- [85] Vandenabeele P. (2013). *Practical Raman spectroscopy, an introduction*. John Wiley and Sons Inc.
- [86] Smith E. and Dent G. (2005). *Modern Raman spectroscopy, a practical approach*. John Wiley and Sons Inc.
- [87] Stuart B., George W.O. and McIntyre P.S. (1996). *Modern infrared spectroscopy*, England: John Wiley and Sons Inc.
- [88] Alver Ö. and Parlak C. (2010). Vibrational spectroscopic investigation and conformational analysis of 1-cyclohexylpiperazine. *Journal of Molecular Structure*, 975, 85-92.
- [89] Tursun M. and Parlak C. (2015). Conformation stability, halogen and solvent effects on C=O stretching of 4-chloro-3-halogenobenzaldehydes. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectrocopy*, 141, 58-63.
- [90] Merrick J.P., Moran D. and Radom L. (2007). An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A, 111, 11683-11700.
- [91] Csaszar P. and Csaszar A. (1986). Scaled quantum mechanical (sqm) ab initio force field and vibrational spectra of maleimide (1h-pyrrole-2,5-dione). *Journal of Molecular Structure (Theochem)*, 136, 323-337.
- [92] Halls M.D., Velkovski J. and Schlegel H.B. (2001). Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. *Theoretical Chemistry Accounts*, 105, 413-421.
- **[93]** Matsuura H. and Yoshida H. (2006). *Calculation of vibrational frequencies by hartree–fock-based and density functional theory, handbook of vibrational spectroscopy.* John Wiley & Sons.
- [94] Scott A.P. and Radom L. (1996). Harmonic vibrational frequencies: an evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. *J. Phys. Chem.*, 100, 16502-16513.
- [95] Panchenko Y.N. (1996). Scaling Of Quantum-Mechanical Molecular Force Fields, *Russian Chemical Bulletin*, 45, 4, 800-807.
- [96] Jamroz M.H. (2002). SPESCA Program, Warsaw, ICRI.
- [97] Balachandran V., Janaki A. and Nataraj A. (2014). Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectrocopy*, 118, 321-330.
- [98] Kumar C.S.C., Fun H.K., Parlak C., Ryhman L., Ramasami P., Tursun M. Chandraju S. and Quah C.K. (2014). Synthesis, molecular structure, FT-IR, Raman, XRD and theoretical investigations of (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one. Spectrochimica Acta Part A: Molecular and Biomolecular Spectrocopy, 132, 174-182.
- [99] Arjunan V., Kalaivani M., Ravindran P. and Mohan S. (2011). Structural, vibrational and quantum chemical investigations on 5-chloro-2-hydroxybenzamide and 5-chloro-2-hydroxybenzoic acid. *Spectrochimica Acta Part A*, 79, 1886-1895.
- [100] Kumar C.S.C., Parlak C., Fun H.K., Tursun M., Keşan G. Chandraju S. and Quah C.K. (2014). Experimental and theoretical FT-IR, Raman and XRD study of 2-acetyl-5-chlorothiophene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectrocopy, 127, 67-73.
- [101] Socrates G. (2001). Infrared and Raman characteristic group frequencies tables and charts, third edition. John Wiley & Sons.
- [102] Coates J. (2000). Interpretation of infrared spectra, a practical approach. Chichester: John Wiley & Sons Ltd.
- [103] Varsanyi G. (1974). Assignments of vibrational spectra of seven hundred benzene derivates, New York, Wiley.
- [104] Morzyk-Ociepa B., Dysz K., Turowska-Tyrk I. and Michalsa D. (2015). X-ray crystal structure, vibrational spectra and DFT calculations of 3-chloro-7-azaindole: A case of dual N–H…N hydrogen bonds in dimers. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectrocopy*, 136, 405-415.
- [105] Miertus S., Scrocco E. and Tomasi J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. *Chemical Physics*, 55 (1), 117-129.
- [106] Miertus S. and Tomasi J. (1982). Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. *Chemical Physics*, 65 (2), 239-245.

EK-1

MOLEKÜLLERİN BENZEN VE METANOL ÇÖZÜCÜLERİ İÇERİSİNDEKİ TİTREŞİM İŞARETLEMELERİ

M. 1	İşaretlemeler (VEDA4)	Den	eysel		B3LY	P / 6-31	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(90)	3090 s	3104 w	3241	3095	3095	0,70	7,82
ν_2	vCH(82)	3071 m	3061 m	3215	3070	3070	2,89	6,72
v_3	vCH(99)	3035 s	-	3199	3055	3055	2,28	4,24
v_4	vCH(100)	2789 m	2789 vw	2918	2787	2791	115,82	12,58
v_5	vOC(88)	1675 vs	1671 s	1722	1682	1664	582,13	63,80
ν_6	$vCC(69) + \delta HCC(10)$	1520 s	1516 w	1558	1522	1510	28,34	4,57
v_7	vCC(62)	1419 vs	1418 vs	1454	1421	1412	107,37	99,45
ν_8	δ HCC(76) + ν CC(11)	1391 m	1389 m	1417	1384	1377	6,61	12,07
v 9	$vCC(17) + \delta HCS(64)$	1355 m	1337 m	1363	1331	1326	3,50	28,91
v_{10}	δHCC(60)	1234 s	1213 w	1246	1217	1216	2,84	4,88
v_{11}	$vCC(58) + \delta CSC(20)$	1214 vs	1175 w	1231	1203	1202	127,61	7,40
ν_{12}	$vCC(14) + \delta HCC(76)$	1081 w	1081 w	1105	1080	1083	2,98	17,23
v_{13}	δ HCC(18) + ν CC(33)	1047 vs	1045 vw	1066	1042	1046	41,57	6,94
ν_{14}	τHCCC(94)	991 vw	991 vs	1012	988	995	0,06	3,85
v_{15}	τHCCH(97)	-	-	935	913	923	0,33	1,47
v_{16}	$\delta CCS(64) + \nu SC(25)$	864 m	862 w	871	851	863	8,62	12,71
ν_{17}	$\tau HCCS(91)$	816 w	814 vw	856	837	849	8,18	1,17
v_{18}	$\delta CCS(18) + \nu SC(53) + \delta CCO(11)$	758 s	755 w	757	740	756	31,62	10,96
v_{19}	γCCSH(95)	730 vs	-	739	722	738	92,39	2,04
v_{20}	$vSC(14) + \delta CCO(70)$	665 vs	668 s	676	661	679	14,81	83,68
v_{21}	vSC(79)	-	605 w	653	638	658	35,08	56,73
v_{22}	$\tau CCCS(93)$	565 w	579 vw	574	561	583	2,02	2,89
v ₂₃	τHCCS(95)	469 m	450 w	474	463	489	8,45	7,49
v_{24}	$vCC(26) + \delta CSC(57)$	-	424 vw	455	445	471	0,00	58,18
v_{25}	τHCCS(93)	-	272 vw	271	265	297	12,48	5,07
v_{26}	δCCS(90)	-	181 vw	176	172	208	8,85	13,97
v_{27}	τCCCO(89)	-	101 vw	129	126	164	3,51	40,86

Çizelge E1.1. T2C molekülünün benzen içerisindeki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar,

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

 I_{IR} ve I_R : Hesaplanan IR ve Raman şiddetleri.

N 1	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P / 6-31	++G(d,p)
Mod	P.E.D. (≥10%)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(95)	3091 vs	-	3233	3087	3113	1,46	7,95
ν_2	vCH(95)	3071 s	3064 vw	3203	3059	3084	0,91	4,51
ν_3	vCH(100)	2811 w	-	2921	2790	2815	109,58	12,61
v_4	vOC(87)	1680 vs	1680 vw	1720	1680	1667	569,10	64,83
ν_5	$vCC(68) + \delta HCC(17)$	1554 s	1534 vw	1587	1551	1540	35,56	0,28
ν_6	vCC(70)	1468 vs	1468 w	1493	1459	1450	527,26	106,67
v_7	δHCO(74)	1381 w	1384 vw	1408	1376	1369	26,49	15,89
ν_8	$\delta HCC(23) + \nu CC(49)$	1348 vw	1350 vw	1352	1321	1315	8,52	16,63
v 9	$vCC(58) + \delta FCS(10)$	1229 m	-	1235	1207	1203	61,32	6,22
v_{10}	$vCC(15) + \delta HCC(67)$		1210 vw	1231	1202	1199	19,76	8,04
v_{11}	vFC(69)	1198 vs	1178 w	1202	1174	1172	124,31	15,47
v_{12}	δ HCC(61) + vCC(25)	1035 vs	-	1053	1028	1029	84,53	5,29
v_{13}	τHCCC(86)	991 vw	994 vs	1008	985	986	0,50	3,84
ν_{14}	τHCCH(85)	851 vw	850 vw	898	877	881	0,00	1,32
v_{15}	τHCCC(96)	795 m	805 vw	807	788	794	63,62	1,67
v_{16}	$vFC(10) + \delta CCC(74)$	749 w	750 vw	757	740	746	3,31	22,98
ν_{17}	vSC(73)	720 w	722 vw	721	705	712	11,08	63,43
ν_{18}	vSC(71) + vCC(13)	677 vs	663 vw	648	633	643	31,10	54,46
ν_{19}	$\delta CCS(70)$	609 s	609 w	617	603	613	49,39	50,93
v_{20}	τCCCC(88)	540 vw	539 vw	564	551	562	0,11	9,66
v_{21}	$\tau HCCS(94)$	496 w	499 vw	498	486	499	13,80	10,71
v_{22}	δFCS(68)	428 w	420 w	433	423	437	9,13	71,47
V ₂₃	δFCS(78)	-	-	363	355	370	2,65	2,50
v_{24}	τCSCF(92)	-	310 vw	348	340	355	8,64	6,60
v_{25}	τCCCO(94)	-	224 vw	210	205	223	4,63	29,99
v_{26}	δCCS(86)	-	-	156	153	172	9,25	22,60
v ₂₇	τCCCO(95)	-	-	110	107	127	3,15	0,54

Çizelge E1.2. F1 molekülünün benzen içerisindeki titreşim işaretlemeleri

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

N 1	İşaretlemeler (VEDA4)	Den	eysel		B3LY	P / 6-3	1++G(d,j	p)
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(94)	3090 vs	-	3228	3083	3102	0,23	7,29
v_2	vCH(94)	3071 s	3061 vw	3202	3058	3077	1,51	4,95
v_3	vCH(100)	2787 w	-	2922	2790	2812	113,04	15,06
v_4	vOC(88)	1677 vs	1678 w	1720	1681	1676	628,82	89,77
ν_5	$vCC(65) + \delta HCC(23)$	1528 m	1536 vw	1565	1529	1530	17,44	9,06
ν_6	$vCC(54) + \delta HCO(22)$	1425 vs	1427 w	1453	1420	1424	354,23	189,41
v_7	δHCO(77)	1379 w	1382 vw	1408	1375	1381	23,86	40,97
ν_8	$vCC(43) + \delta HCO(37)$	1309 w	1280 vw	1333	1302	1310	14,97	37,21
V 9	$vCC(29) + \delta HCC(14) + \delta CCO(17) + vClC(12)$	1224 s	-	1232	1203	1214	42,47	7,39
v_{10}	$vCC(16) + \delta HCC(51)$	1203 s	1179 w	1227	1199	1210	90,91	6,39
v_{11}	$vCC(45) + \delta HCO(37)$	1067 w	1069 w	1081	1056	1072	14,98	20,90
v_{12}	τHCCC(84)		-	1009	986	1004	0,51	4,16
v_{13}	vClC(61)	1007 vs	952 w	1005	982	1000	108,66	13,66
ν_{14}	τHCCH(95)	851 w	867 vw	908	888	909	0,16	1,42
v_{15}	τHCCCl(96)	801 s	789 vw	809	791	815	52,62	1,25
v_{16}	δ HCC(67) + δ CCS(11)	749 m	738 vw	751	734	760	14,38	8,31
ν_{17}	$\delta CCO(14) + \delta CCS(56) + \nu CC(13)$	679 vs	683 w	688	672	700	1,48	98,44
ν_{18}	vSC(81)	610 vw	607 w	652	637	667	31,50	52,93
ν_{19}	τCCCC(90)	-	558 w	574	560	592	0,01	1,56
v_{20}	$\delta \text{CCO}(13) + \delta \text{CCS}(10) + \nu \text{ClC}(51)$	530 m	-	535	522	555	20,54	50,20
v_{21}	γClCSC(86)	479 m	-	486	475	509	17,57	3,53
v_{22}	$\delta \text{CCO}(39) + \nu \text{ClC}(15) + \nu \text{CC}(11)$	-	378 vw	377	368	406	10,92	78,18
v ₂₃	τHCCS(83)	-	-	326	319	358	4,42	18,00
v_{24}	δSCCl(88)	-	268 vw	275	269	310	3,56	9,01
v_{25}	τCCCO(84)	-	-	184	180	224	7,51	22,96
v_{26}	δCCS(80)	-	-	142	139	184	8,13	57,55
v_{27}	τCCCO(88)	-	-	100	97	144	1,40	1,29

Çizelge E1.3. Cl1 molekülünün benzen içerisindeki titreşim işaretlemeleri

 ν^a : Skalalanmamış frekanslar, ν^b :1800 cm^{-1} üzeri 0.955 ile 1800 cm^{-1} altı 0.977 ile skalalanmış frekanslar, ν^c :Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

	İşaretlemeler (VEDA4)	Den	eysel		B3LY	P / 6-31	++G(d,p))
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(95)	3090 s	-	3228	3082	3076	0,05	6,72
v_2	vCH(95)	3071 s	3063 vw	3198	3054	3047	1,90	5,59
ν_3	vCH(99)	2778 s	-	2919	2787	2784	116,41	15,83
v_4	vOC(89)	1674 vs	1673 m	1721	1681	1651	662,17	98,72
ν_5	$vCC(62) + \delta HCC(16)$	1525 s	1526 vw	1561	1525	1500	25,78	12,89
ν_6	vCC(63)	1416 vs	1418 s	1446	1412	1391	334,81	217,51
v_7	δHCO(72)	1392 s	1380 m	1401	1369	1349	23,72	55,29
ν_8	$\nu CC(51) + \delta HCC(22)$	1304 m	1306 w	1327	1297	1279	11,81	43,47
V 9	$\delta CCC(39) + \nu CC(42)$	1222 vs	1222 vw	1228	1200	1185	71,06	10,13
v_{10}	$vCC(32) + \delta HCC(51)$	1202 vs	1205 vw	1226	1198	1039	70,05	7,09
v_{11}	$\nu CC(16) + \delta HCC(54)$	1056 s	1057 vw	1073	1049	976	29,56	29,47
v_{12}	τHCCS(94)	- /		1007	984	944	0,42	4,59
v ₁₃	δ HCC(10) + δ CCC(18) + ν SC(56)	977 vs	-	973	951	787	69,75	11,99
ν_{14}	τHCCH(89)	851 vw	853 vw	905	884	733	0,00	1,98
v 15	τHCCBr(93)	801 vs	807 vw	807	788	669	50,71	1,25
ν_{16}	$\delta CCC(58) + \nu SC(17)$	749 vs	751 vw	749	732	640	20,06	6,56
ν_{17}	$\delta CCO(57) + vSC(14)$		678 m	682	666	558	1,15	111,22
ν_{18}	vSC(81)	612 vw	609 w	651	636	497	31,52	49,35
ν_{19}	τCCCC(91)	557 vw	-	564	551	477	0,15	3,08
v_{20}	$\delta CCC(36) + \nu BrC(20) + \nu CC(10)$	497 m	498 vw	500	489	315	7,53	57,63
v ₂₁	$\tau HCCS(92)$	474 vs	-	478	467	305	18,90	4,84
v_{22}	τHCCS(92)	-	300 w	307	300	252	3,28	19,64
v ₂₃	$\delta CCC(10) + \delta CCO(16) + \nu BrC(56)$	-	-	297	290	183	7,17	86,40
v_{24}	δSCBr(90)	-	238 vw	241	235	144	5,18	38,38
v_{25}	τCCCO(90)	-	185 vw	168	164	110	8,64	37,11
v_{26}	δCCS(79)	-	-	126	123	132	6,33	84,16
v_{27}	τCCCO(95)	-	-	91	89	90	0,71	9,86

Çizelge E1.4. Br1 molekülünün benzen içerisindeki titreşim işaretlemeleri

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

	İşaretlemeler (VEDA4)	De	neysel	E	B3LYP/	6-31++G(d	l,p)
Mod	P.E.D. (≥ 10 %)	IR	Raman	ν^{α}	ν^{β}	I _{IR}	I _R
ν_1	vCH(99)	-	-	3255	3108	8,76	5,42
ν_2	vCH(99)	-	-	3221	3076	0,37	5,02
ν_3	vCH(100)	-	-	2929	2797	103,49	12,68
ν_4	vOC(88)	-	-	1728	1689	518,26	63,89
ν_5	$vCC(67) + \delta HCC(14)$	-	-	1586	1549	84,20	3,27
ν_6	$vCC(59) + \delta HCO(14)$	-	-	1471	1437	189,83	95,65
v_7	$vCC(62) + \delta HCO(10)$	-	-	1431	1398	28,74	49,30
ν_8	$vCC(12) + \delta HCO(66)$	-	-	1382	1350	67,72	16,69
v 9	$vCC(46) + \delta CCC(27)$	-	-	1233	1205	144,10	2,12
v_{10}	δHCS(75)	-	-	1189	1162	63,35	9,22
v_{11}	$vCC(35) + \delta HCC(53)$	-	-	1138	1111	19,10	11,51
v_{12}	τHCCS(94)	-	-	1010	986	0,05	3,63
v_{13}	$vCC(68) + \delta CCC(18)$	-	-	983	960	61,99	10,87
ν_{14}	vSC(68)	-	-	869	849	25,40	6,98
v_{15}	τHCCF(88)	-	-	849	829	35,36	1,16
v_{16}	τHCCF(92)	-	-	766	748	31,45	2,86
ν_{17}	δCCO(77)	-	-	736	719	39,84	34,75
ν_{18}	vSC(78)	-	-	653	638	43,77	48,72
ν_{19}	γFCCC(96)	-	-	605	591	15,53	2,01
v_{20}	$vCC(15) + vSC(13) + \delta CCC(59)$	-	-	542	530	6,73	81,64
v_{21}	τHCCS(81)	-	-	488	476	5,69	11,26
v_{22}	$vCC(15) + \delta CCC(62)$	-	-	472	461	1,65	30,62
V23	δCCO(70)	-	-	358	349	0,19	79,01
v_{24}	τFCCS(89)	-	-	284	278	0,98	114,63
v_{25}	τHCCS(89)	-	-	259	253	10,16	21,58
v_{26}	δCCO(91)	-	-	161	157	12,13	13,58
v_{27}	τCCCC(93)	-	-	108	106	8,59	69,58

Çizelge E1.5. F2 molekülünün benzen içerisindeki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar, v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar, v^c:Spesca ile skalalanmış frekanslar. I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

M. 1	İşaretlemeler (VEDA4)	Dene	ysel		B3LY	P/6-31	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I_R
ν_1	vCH(99)	3090 vs	-	3251	3105	3119	6,80	4,58
ν_2	vCH(100)	3071 s	3062 w	3221	3076	3090	0,36	3,97
ν_3	vCH(100)	2810 w	-	2931	2799	2813	99,00	12,15
ν_4	vOC(90)	1679 vs	1680 w	1728	1689	1661	567,47	72,04
ν_5	$vCC(58) + \delta HCS(16)$	1520 m	-	1557	1521	1497	21,46	9,51
ν_6	$vCC(66) + \delta HCO(11)$	1414 vs	1415 w	1445	1412	1389	112,51	84,27
v_7	$vCC(28) + \delta HCO(54)$	1389 m	1377 w	1402	1370	1348	7,46	65,35
ν_8	δ HCO(14) + ν CC(47) + δ HCS(19)	1335 m	-	1353	1322	1301	40,88	6,74
v 9	$vCC(43) + \delta HCC(15) + \delta CCC(17)$	1223 vs	-	1230	1202	1184	120,54	1,63
ν_{10}	δHCC(70)	1168 vs	1177 w	1191	1164	1146	110,98	14,87
v_{11}	$vCC(32) + \delta HCS(55)$	1084 vw	/	1102	1077	1061	5,20	13,11
v_{12}	γССОН(94)	991 w	993 vs	1010	987	973	0,12	4,02
ν_{13}	$\delta CCS(66) + \nu ClC(19)$	891 s	893 vw	895	875	863	41,23	12,98
ν_{14}	τHCCC(90)	849 s	849 vw	857	838	826	24,62	2,54
v_{15}	vSC(74) + vClC(11)	818 w		841	822	811	40,92	3,71
ν_{16}	τHCCCl(94)	773 m	-	773	755	746	29,14	2,13
ν_{17}	$\delta CCO(65) + \nu SC(16)$	716 m	716 vw	721	704	696	36,08	39,87
ν_{18}	$vCC(10) + \delta CCO(13) + vSC(64)$		663 vw	654	639	632	44,91	48,85
ν_{19}	τHCCC(89)	585 s	607 w	593	579	573	14,66	3,20
v_{20}	$\tau CSCC(83)$	479 w	-	486	475	471	3,80	4,91
v_{21}	$vCC(12) + \delta CCC(58)$	458 vw	-	474	463	459	0,37	17,35
v_{22}	$\delta CCS(17) + \nu ClC(55)$	-	395 w	394	385	383	3,99	65,05
v ₂₃	δCCCl(83)	-	275 vw	275	269	269	1,92	34,35
ν_{24}	τCSCC(88)	-	-	267	261	261	8,52	25,63
v_{25}	τSCCCl(89)	-	231 vw	224	219	220	3,88	83,66
v_{26}	δCCS(89)	-	-	149	145	148	10,47	10,95
v_{27}	τCCCO(96)	-	-	99	97	100	7,41	72,27

Çizelge E1.6. Cl2 molekülünün benzen içerisindeki titreşim işaretlemeleri

	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P / 6-31	++G(d,p))
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I_{IR}	I _R
v1	vCH(99)	3090 vs	3106 w	3252	3105	3109	7,25	4,34
v_2	vCH(99)	3071 s	3061 s	3218	3073	3077	1,03	4,02
ν_3	vCH(100)	2801 m	-	2930	2798	2802	101,40	11,62
ν_4	vOC(89)	1681 vs	1673 m	1728	1689	1654	587,47	74,00
ν_5	$vCC(59) + \delta HCS(17)$	1512 s	1511 w	1550	1514	1483	18,23	13,65
ν_6	$vCC(62) + \delta HCC(19)$	1408 vs	1408 m	1441	1408	1379	94,91	71,42
v_7	$vCC(36) + \delta HCC(41)$	1381 s	1377 s	1402	1370	1343	12,94	75,10
ν_8	$vCC(32) + \delta HCC(16) + \delta HCS(15)$	1316 s	-	1346	1315	1289	29,70	4,44
V 9	$vCC(38) + \delta HCC(22) + \delta CCC(15)$	1222 vs	-	1231	1202	1179	111,82	0,60
v_{10}	$vCC(13) + \delta HCC(61)$	1172 vs	1174 w	1192	1165	1142	131,39	16,56
v_{11}	$vCC(35) + \delta HCS(55)$	1080 m	1078 w	1101	1076	1055	7,15	13,49
v_{12}	τHCCS(94)	991 w	991 vs	1012	989	970	0,07	4,30
v_{13}	$\delta CCC(62) + \nu BrC(17)$	876 s	874 vw	882	862	846	30,93	21,98
ν_{14}	γCCCH(86)	845 s	/	863	843	828	22,69	2,79
v_{15}	$\delta \text{CCC}(12) + \nu \text{SC}(63) + \nu \text{BrC}(13)$	825 vs	824 vw	820	802	787	40,17	5,14
ν_{16}	τHCCBr(97)	771 s	-	779	761	747	29,14	1,25
ν_{17}	δCCO(75)	709 s	707 w	713	697	684	33,61	42,03
ν_{18}	vSC(81)	663 vs	661 w	655	640	629	46,39	49,17
ν_{19}	$\gamma BrCCC(92)$	579 vs	-	583	570	560	13,66	2,37
v_{20}	$\gamma CCSC(86)$	478 m	-	479	468	461	3,30	6,26
v_{21}	$vCC(15) + \delta CCC(67)$	458 vw	-	466	455	448	0,11	16,62
v_{22}	$\delta \text{CCC}(12) + \nu \text{SC}(14) + \nu \text{BrC}(57)$	-	296 w	294	287	284	1,55	77,99
v ₂₃	$\tau CSCC(88)$	-	-	273	266	263	10,43	26,71
v_{24}	δCCBr(82)	-	242 vw	242	237	234	4,15	29,96
v ₂₅	τSCCBr(80)	-	211 vw	207	202	200	3,40	17,54
v_{26}	δCCC(85)	-	-	135	132	132	8,49	17,24
v_{27}	τCCCO(79)	-	106 s	92	89	90	6,70	103,21

Çizelge E1.7. Br2 molekülünün benzen içerisindeki titreşim işaretlemeleri

M. 1	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P / 6-31	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(100)	3091 vs	-	3246	3100	3113	2,93	7,61
ν_2	vCH(100)	3071 s	3063 w	3226	3081	3094	0,22	5,08
ν_3	vCH(100)	2834 w	-	2954	2821	2834	78,41	10,85
ν_4	vOC(88)	1670 vs	1672 m	1716	1677	1653	543,44	59,79
ν_5	vCC(77)	1549 vs	1550 vw	1576	1540	1518	159,31	9,86
ν_6	$vCC(62) + \delta CSC(12)$	1441 vs	1443 w	1472	1438	1420	222,08	85,12
v_7	δ HCO(13) + vCC(63)	1406 m	1407 vw	1431	1398	1380	46,04	4,28
ν_8	δ HCO(66) + vCC(13)	1373 m	1374 w	1395	1363	1346	44,18	46,47
v 9	δ HCC(63) + vCC(18)	1256 s	-	1268	1239	1225	89,58	3,07
v_{10}	δ HCC(13) + vCC(55) + δ CCF(10)	1203 m	1179 w	1211	1183	1170	84,89	9,47
v_{11}	δHCC(75)	1085 vw	1086 vw	1104	1079	1068	1,22	11,89
ν_{12}	$\delta CCC(17) + \nu FC(40)$	1014 s	994 vs	1017	994	985	91,45	5,96
ν_{13}	τHCCS(94)	969 vw	-	1010	987	979	0,26	3,04
ν_{14}	τHCCH(95)	879 vw	848 vw	894	874	868	2,41	0,73
ν_{15}	$\delta HCS(52) + \nu SC(19) + \nu FC(16)$	840 w	805 vw	838	819	814	8,99	6,37
ν_{16}	τHCSC(96)	738 m	-	749	732	729	66,73	0,60
ν_{17}	$\delta HCS(24) + \nu SC(47) + \nu FC(18)$	674 vs	699 w	702	686	685	14,70	65,23
ν_{18}	$\frac{\delta \text{CCC}(15) + \delta \text{HCS}(10) +}{\nu \text{SC}(16) + \nu \text{FC}(47)}$	641 w	668 vw	663	648	647	44,42	36,10
ν_{19}	τHCCC(90)	608 vw	608 w	649	634	634	7,89	6,41
v_{20}	$\delta CCC(59) + \nu FC(28)$	588 m	-	594	580	581	25,14	44,37
ν_{21}	$\delta CSC(71) + \nu CC(12)$	492 w	492 vw	494	482	486	2,69	46,64
v_{22}	$\tau CSCC(93)$	473 w	-	475	464	468	3,45	10,63
V23	$\nu FC(10) + \delta CCF(73)$	-	333 vw	330	323	329	0,05	66,96
ν_{24}	$\tau HCCS(85)$	-	-	302	295	302	5,73	3,83
v_{25}	τCCCO(89)	-	223 vw	213	208	218	12,87	39,71
v_{26}	δCCO(91)	-	189 vw	158	154	165	9,86	18,23
v_{27}	τCCCC(93)	-	-	129	126	137	1,39	29,88

Çizelge E1.8. F3 molekülünün benzen içerisindeki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar, v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar, v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

M . 1	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P / 6-31	++G(d,p))
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(99)	3090 vs	-	3245	3099	3088	1,44	8,18
ν_2	vCH(99)	3071 s	3063 w	3224	3079	3068	0,82	4,28
ν_3	vCH(100)	2822 vs	-	2966	2832	2825	62,23	7,65
ν_4	vOC(89)	1674 vs	1674 w	1716	1677	1646	544,82	64,42
v_5	vCC(79)	1506 m	-	1539	1503	1478	82,55	7,92
ν_6	$vCC(49) + \delta HCS(11) + \delta HCC(13)$	1420 s	1422 w	1457	1423	1401	132,96	88,07
v_7	δ HCO(64) + vCC(19)	1375 m	1375 vw	1402	1370	1350	47,35	25,48
ν_8	$vCC(30) + \delta HCS(56)$	1350 m	1351 vw	1374	1342	1323	32,01	28,83
v 9	$vCC(34) + \delta CCO(39)$	1220 s	-	1221	1193	1178	132,51	12,40
v_{10}	δ HCO(16) + δ HCS(22) + vCC(42)	1169 m	1176 w	1186	1158	1145	32,10	16,13
v_{11}	δHCC(78)	1083 vw	1086 vw	1109	1084	1073	0,32	11,81
ν_{12}	τHCCC(77)	991 vw	993 vs	1011	988	981	0,13	3,00
v_{13}	$\delta CCC(62) + \nu ClC(10)$	908 m		912	891	887	81,86	8,48
ν_{14}	τHCSC(95)	890 vw	893 vw	903	882	878	1,29	0,67
v_{15}	vSC(83)	774 vw	774 vw	819	800	799	10,15	5,47
ν_{16}	τHCSC(95)	738 m	741 vw	749	731	733	62,26	0,36
ν_{17}	$vCC(17) + \delta CCC(19) + vSC(39)$	679 vs	690 vw	694	678	682	7,98	84,10
ν_{18}	$\delta CCO(54) + vSC(20)$		663 vw	661	645	650	49,27	31,71
ν_{19}	τCCCCl(84)	617 w	608 w	633	618	624	5,57	4,42
ν_{20}	$vCC(35) + \delta CCO(32)$	501 w	-	502	490	500	8,56	48,41
v_{21}	$\tau CCCS(86)$	470 w	471 vw	474	463	474	2,75	6,22
v_{22}	$\delta CCO(22) + \nu ClC(60)$	418 w	415 w	415	406	419	7,72	121,05
V ₂₃	τ HCCC(11) + τ OCCS(84)	-	264 vw	274	268	286	11,85	14,04
ν_{24}	δCCCl(89)	-	247 vw	264	258	276	2,85	22,55
v_{25}	τCCCCl(86)	-	-	172	168	189	5,64	34,09
v_{26}	δCCS(89)	-	-	158	155	176	7,48	40,66
v_{27}	τCCCC(87)	-	-	128	125	148	2,09	30,25

Çizelge E1.9. Cl3 molekülünün benzen içerisindeki titreşim işaretlemeleri

N 1	İşaretlemeler (VEDA4)	Den	eysel		B3LY	P/6-31	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(90)	3090 vs	3105 vw	3243	3097	3109	0,85	8,52
v_2	vCH(91)	3071 s	3061 s	3224	3079	3091	1,23	3,74
ν_3	vCH(100)	2845 vs	2830 vw	2967	2834	2845	57,36	6,59
v_4	vOC(90)	1671 vs	1670 w	1716	1677	1648	548,78	63,64
ν_5	vCC(77)	1499 m	1498 vw	1532	1496	1471	72,53	9,08
ν_6	$vCC(57) + \delta HCC(25)$	1417 vs	1416 w	1453	1419	1395	129,08	86,90
v_7	δHCO(67)	1372 m	1370 w	1398	1366	1343	44,58	29,13
ν_8	δ HCC(58) + vCC(17)	1344 m	1343 w	1369	1337	1315	23,69	23,68
V 9	$vCC(67) + \delta CCC(14)$	1213 s	1209 vw	1214	1186	1167	129,48	24,35
v_{10}	δ HCO(16) + δ HCC(16) + ν CC(46)	1161 w	1176 w	1175	1148	1130	26,32	12,97
v_{11}	δHCC(71)	1086 vw	1084 vw	1108	1083	1066	0,16	11,38
v ₁₂	τHCCS(92)	991 vw	991 vs	1011	988	973	0,13	2,70
v ₁₃	τHCCH(94)	889 vs	<u> </u>	903	883	870	1,47	0,63
ν_{14}	$\delta CCO(59) + vSC(17)$	851 vw	849 vw	893	872	859	71,39	8,17
v ₁₅	$vSC(78) + \delta CCO(10)$	774 vw		805	787	776	12,12	6,60
ν_{16}	τHCCC(92)	736 m		744	727	717	61,31	0,46
ν_{17}	$\delta CCO(23) + vSC(54)$	678 vs	684 vw	690	675	666	5,34	94,31
ν_{18}	$vSC(11) + \delta CCO(46) + vBrC(11)$		663 vw	659	644	635	48,01	31,19
ν_{19}	$\tau CCCC(92)$	607 w	605 w	616	602	594	4,29	4,06
v_{20}	δCCC(56)	483 vw	480 vw	485	474	470	5,34	42,25
v_{21}	$\tau CSCC(91)$	469 w	-	472	461	457	2,45	7,87
v_{22}	vBrC(66)	-	315 vw	316	309	307	5,55	48,88
V23	$\tau OCCS(88)$	-	-	266	259	259	13,75	12,07
v_{24}	δCCBr(85)	-	232 vw	235	230	230	5,53	18,47
v_{25}	γBrCCC(79)	-	-	155	151	153	4,43	53,78
v_{26}	δCCC(94)	-	-	140	136	139	4,99	53,46
v_{27}	τCCCC(88)	-	101 m	126	124	126	1,51	31,53

Çizelge E1.10. Br3 molekülünün benzen içerisindeki titreşim işaretlemeleri

M. 1	İşaretlemeler (VEDA4)	Den	eysel		B3LY	ZP / 6-31	++G(d,p)	
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(90)	3105 w	3105 w	3243	3097	3085	1,11	11,58
ν_2	vCH(82)	3089 w	-	3218	3073	3061	3,08	10,64
ν_3	vCH(99)	-	-	3202	3058	3046	2,15	6,71
v_4	vCH(100)	2792 w	2833 w	2943	2811	2802	129,89	18,57
ν_5	vOC(85)	1668 vs	1659 s	1690	1652	1630	903,73	134,28
ν_6	vCC(69)	1520 m	1518 vw	1555	1519	1493	44,95	9,53
v_7	$vCC(49) + \delta HCS(32)$	1420 vs	1418 vs	1451	1417	1394	168,16	190,72
ν_8	δHCO(70)	1392 s	1390 m	1414	1382	1360	23,10	37,64
v 9	$vCC(21) + \delta HCS(63)$	1356 m	1337 m	1360	1329	1309	10,20	64,69
ν_{10}	$\delta HCC(62) + \nu SC(10)$	1236 s	-	1245	1216	1200	5,24	10,21
v_{11}	vCC(59)	1215 vs	1212 w	1236	1207	1191	181,30	12,96
v_{12}	$vCC(11) + \delta HCS(70)$	1083 w	1082 w	1103	1078	1067	4,33	29,35
ν_{13}	$vCC(30) + \delta HCC(37)$	1032 vs	1033 w	1064	1039	1029	65,38	18,29
ν_{14}	τHCCS(93)	-	988 vw	1017	994	985	0,09	3,99
v_{15}	τHCCH(96)	918 vw	914 vw	941	920	914	0,37	2,29
ν_{16}	$\delta HCC(60) + \nu SC(19)$	864 m	863 w	870	850	846	13,79	20,82
ν_{17}	τHCCC(93)	818 w	-	863	844	841	9,07	3,96
ν_{18}	δ HCC(32) + vSC(50)	758 s	754 w	754	736	737	45,49	23,19
ν_{19}	τHCCC(97)	734 s	-	741	724	725	118,77	8,69
ν_{20}	$\delta CSC(72) + \nu SC(11)$	666 vs	668 s	674	659	662	21,65	157,37
v_{21}	vSC(63)	585 w	-	649	634	639	48,21	86,06
v_{22}	τCCCC(96)	566 w	567 vw	572	559	566	3,32	5,64
V23	τCSCC(93)	470 m	452 w	472	461	471	12,27	10,83
ν_{24}	$\delta HCC(27) + \nu CC(42)$	-	425 vw	456	445	456	0,01	86,01
v_{25}	τCSCC(96)	-	-	273	266	283	17,96	45,19
v_{26}	δCCS(91)	-	-	175	171	191	12,07	24,10
ν_{27}	τCCCO(93)	-	-	129	126	148	4,64	55,52

Çizelge E1.11. T2C molekülünün metanol içerisindeki titreşim işaretlemeleri

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P/6-31	++G(d,p))
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(95)	-	-	3235	3089	3164	2,32	12,52
ν_2	vCH(95)	-	-	3208	3063	3138	0,83	7,04
ν_3	vCH(100)	2832 vs	2835 m	2944	2812	2881	113,65	19,28
ν_4	vOC(86)	1679 s	1679 w	1689	1651	1658	852,53	130,16
ν_5	$vCC(67) + \delta HCC(11)$	1554 w	1527 m	1584	1548	1556	41,48	0,82
ν_6	vCC(75)	1466 vs	1466 s	1482	1448	1456	751,06	227,47
v_7	$\delta \text{HCO}(59) + \delta \text{HCC}(11)$	1386 m	1382 w	1407	1375	1384	68,40	48,78
ν_8	δHCC(70)	1319 vw	1333 w	1351	1320	1329	18,82	34,33
v 9	$\delta \text{HCO}(13) + \nu \text{CC}(55) + \nu \text{SC}(10)$	1231 vw	1210 w	1239	1211	1220	104,35	14,33
v_{10}	$\nu CC(19) + \delta HCC(62)$	1200 m		1232	1204	1213	15,47	9,39
v_{11}	vSC(72)	1178 w	1161 w	1193	1166	1175	172,68	24,02
v_{12}	$\delta HCO(17) + \delta HCC(49)$	1030 vs	1036 vs	1053	1029	1038	127,72	16,56
v_{13}	τHCCS(93)		993 w	1012	989	999	0,71	4,45
ν_{14}	τHCCH(93)	906 vw		908	887	897	0,09	1,94
v_{15}	τHCCF(98)	802 w	805 s	810	791	801	80,49	5,47
ν_{16}	δCCC(76)	749 vw	752 w	755	738	748	4,58	40,37
ν_{17}	vSC(63)	712 vw	720 m	720	704	714	17,03	105,72
ν_{18}	vSC(80)	662 m	-	646	631	642	39,96	92,04
ν_{19}	δCCS(73)	611 m	604 w	615	601	612	75,07	101,50
v_{20}	γFCSC(91)	570 vw	555 w	565	552	563	0,15	20,27
v_{21}	γFCSC(94)	497 w	472 w	498	486	497	18,90	16,80
v_{22}	δCCC(66)	429 vw	417 s	432	423	434	13,36	95,26
v ₂₃	δFCS(82)	-	-	364	356	367	3,17	6,59
v_{24}	$\tau HCCS(87)$	-	339 vw	350	342	354	13,19	47,15
v_{25}	τCCCO(84)	-	206 vw	213	208	219	6,54	39,68
v_{26}	δCCS(80)	-	-	156	152	164	13,05	35,71
v_{27}	τCCCO(82)	-	-	109	106	118	4,17	7,37

Çizelge E1.12. F1 molekülünün metanol içerisindeki titreşim işaretlemeleri

	İşaretlemeler (VEDA4)	Den	eysel	B3LYP / 6-31++G(d,p)					
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R	
ν_1	vCH(93)	3102 vw	-	3231	3085	3125	0,41	11,89	
ν_2	vCH(93)	-	-	3207	3062	3102	1,32	7,78	
ν_3	vCH(100)	2831 vs	2835 m	2948	2815	2853	123,69	22,22	
v_4	vOC(86)	1676 vs	1678 w	1690	1651	1644	960,84	191,39	
ν_5	$vCC(68) + \delta HCC(14)$	1540 vw	1545 vw	1563	1528	1522	29,13	18,34	
ν_6	$\delta CCS(11) + \nu CC(57)$	1425 vs	1427 m	1447	1414	1411	509,45	385,82	
v_7	δHCO(71)	1382 w	1380 w	1405	1373	1370	70,62	131,29	
ν_8	$vCC(53) + \delta HCC(18)$	1309 w	1310 w	1331	1300	1299	30,93	84,84	
ν9	vCC(61)	1225 m	-	1234	1205	1205	135,70	14,80	
ν_{10}	δ HCC(72) + ν CC(15)	1205 m	1208 vw	1229	1201	1201	54,94	11,41	
v_{11}	$vCC(30) + \delta HCC(51)$	1096 m	1080 vw	1079	1054	1056	23,85	45,18	
ν_{12}	τHCCC(88)	- /		1015	991	995	0,72	4,47	
ν_{13}	$vClC(56) + \delta CCC(16)$	976 m	970 vw	1000	977	981	157,73	39,31	
ν_{14}	τHCCH(95)	906 vw	912 vw	917	896	901	0,21	2,08	
ν_{15}	τHCCC(95)	807 m	796 vw	813	794	801	67,40	5,10	
ν_{16}	$vClC(11) + \delta CCC(65)$	749 w	751 vw	749	732	739	20,07	18,12	
ν_{17}	$vCC(12) + \delta CSC(43) + vClC(20)$	669 m	675 vw	686	670	679	2,73	177,78	
ν_{18}	vSC(73)	618 w	605 vw	649	634	643	40,81	86,49	
ν_{19}	τCCCC(83)	-	550 vw	573	560	570	0,05	4,39	
ν_{20}	$\delta CSC(18) + \nu ClC(60)$	531 w	529 vw	534	522	533	31,80	101,54	
v_{21}	$\tau CSCC(88)$	481 w	459 vw	484	473	485	24,44	5,35	
ν_{22}	$\delta CCS(48) + \nu ClC(14)$	-	355 vw	376	367	380	16,02	74,53	
v_{23}	$\tau HCCS(87)$	-	-	328	321	335	6,88	27,83	
ν_{24}	δSCCl(87)	-	272 vw	275	269	284	4,46	91,46	
v_{25}	τCCCO(88)	-	182 vw	185	181	197	10,17	29,75	
v_{26}	δCCO(89)	-	-	142	139	156	11,48	94,21	
ν_{27}	τCCCO(89)	-	-	99	96	114	1,93	1,31	

Çizelge E1.13. Cl1 molekülünün metanol içerisindeki titreşim işaretlemeleri

	İşaretlemeler (VEDA4)	Dene	Deneysel B				B3LYP / 6-31++G(d,p)				
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R			
ν_1	vCH(94)	3096 w	-	3230	3085	3115	0,11	11,39			
ν_2	vCH(94)	-	-	3205	3060	3090	1,35	8,76			
ν_3	vCH(100)	2831 vs	2835 w	2947	2814	2839	128,71	23,40			
ν_4	vOC(86)	1669 vs	1670 s	1691	1652	1616	1009	214,25			
ν_5	$vCC(74) + \delta HCC(14)$	1525 s	1527 w	1559	1523	1488	42,34	25,72			
ν_6	$vCC(42) + \delta HCC(12) + \delta HCO(12)$	1417 vs	1418 vs	1441	1408	1338	470,12	420,95			
v_7	$vCC(11) + \delta HCO(67)$	1379 s	1381 s	1405	1373	1261	87,46	190,84			
ν_8	$vCC(62) + \delta HCC(17)$	1304 m	1305 m	1326	1295	1170	26,34	99,78			
v 9	$\delta CCO(26) + \nu CC(55)$	1223 s	-	1232	1204	1166	131,25	17,23			
v_{10}	$vCC(15) + \delta HCC(62)$	1204 s	1208 vw	1228	1200	1016	67,68	13,99			
v_{11}	$vCC(32) + \delta HCC(58)$	1056 vs	1058 w	1074	1050	956	49,00	72,22			
ν_{12}	τHCCS(93)	978 s	977 vw	1013	989	914	0,58	4,97			
v_{13}	$\frac{\delta \text{HCC}(10) + \delta \text{CCS}(29) +}{\delta \text{CCC}(13) + \nu \text{BrC}(40)}$	/	904 vw	970	947	861	99,45	34,64			
ν_{14}	τHCCH(89)	879 vw		916	895	761	0,02	2,93			
v_{15}	τHCCS(93)	804 vs		813	794	697	65,36	5,26			
ν_{16}	$\delta CCC(67) + \nu SC(15)$	749 s	749 vw	747	730	632	28,01	15,19			
ν_{17}	$\delta CCS(23) + \nu SC(43)$	667 vs	677 s	680	664	602	2,17	208,88			
ν_{18}	vSC(69) + vCC(11)	-	614 vw	649	634	519	42,13	80,71			
ν_{19}	τCCCC(91)	558 vw	558 vw	564	551	458	0,22	7,48			
v_{20}	$vCC(11) + \delta CCO(45) + vSC(20)$	498 w	499 w	502	490	434	11,89	107,86			
v_{21}	τHCCS(91)	475 s	-	477	466	272	26,41	7,71			
v_{22}	τHCCS(92)	-	301 w	310	303	258	5,47	30,37			
v ₂₃	$\delta CCS(34) + \nu BrC(42)$	-	269 vw	296	290	205	10,77	72,39			
v_{24}	δSCBr(87)	-	236 vw	242	236	135	6,87	60,64			
v_{25}	τCCCO(97)	-	-	170	166	94	11,69	49,90			
v_{26}	δCCS(84)	-	-	128	125	58	8,72	133,81			
v_{27}	τCCCO(95)	-	-	91	88	95	0,96	14,90			

Çizelge E1.14. Br1 molekülünün metanol içerisindeki titreşim işaretlemeleri

v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

 I_{IR} ve I_R : Hesaplanan IR ve Raman şiddetleri.

	İşaretlemeler (VEDA4)	Der	neysel	E	B3LYP/	B3LYP / 6-31++G(d,p)					
Mod -	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	I _{IR}	I _R				
ν_1	vCH(99)	-	-	3256	3110	12,59	8,09				
v_2	vCH(99)	-	-	3223	3078	1,19	8,35				
ν_3	vCH(100)	-	-	2957	2824	118,20	18,46				
v_4	vOC(87)	-	-	1701	1661	782,28	130,23				
v_5	$vCC(59) + \delta HCC(14)$	-	-	1581	1545	103,71	6,55				
ν_6	$vCC(64) + \delta HCO(16)$	-	-	1467	1434	254,10	190,02				
ν7	$vCC(58) + \delta HCO(12)$	-	-	1429	1396	25,35	104,22				
ν_8	$vCC(28) + \delta HCO(60)$	-	-	1382	1351	122,39	38,91				
V 9	$vCC(54) + \delta CCF(19)$	-	-	1235	1206	198,89	4,44				
ν_{10}	δHCC(76)	-	-	1191	1164	97,29	22,55				
ν_{11}	$vCC(24) + \delta HCC(56)$	-	-	1139	1112	24,64	19,04				
v_{12}	τHCCS(96)	-	-	1016	993	0,09	4,06				
V13	$\nu FC(64) + \delta CCC(21)$	-	-	979	956	95,95	16,17				
ν_{14}	$vSC(71) + \delta CCC(11)$	-	-	868	848	39,29	12,64				
v_{15}	$\tau HCCF(92)$	-	-	857	837	42,13	3,02				
v_{16}	τHCCC(94)	-	-	770	752	42,35	9,19				
v_{17}	δCCO(80)	-	-	734	718	57,39	76,78				
ν_{18}	vCC(10) + vSC(72)	-	-	651	636	60,17	76,43				
v_{19}	τHCCC(93)	-	-	604	590	19,90	4,75				
v_{20}	$\nu FC(15) + \nu SC(14) + \delta CCC(58)$	-	-	541	529	8,70	134,71				
V21	$\gamma CCSC(85)$	-	-	487	476	8,60	19,33				
v_{22}	$vCC(13) + \delta CCF(61)$	-	-	472	461	2,50	41,95				
V23	$vSC(10) + \delta CCO(65)$	-	-	358	350	0,24	115,50				
v_{24}	τFCCS(93)	-	-	284	277	1,49	191,94				
v_{25}	τCCCO(87)	-	-	264	258	15,04	25,78				
v_{26}	δCCS(84)	-	-	161	157	16,98	23,14				
v_{27}	τCCCC(97)	-	-	109	107	11,31	100,52				

Çizelge E1.15. F2 molekülünün metanol içerisindeki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar, v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar, v^c:Spesca ile skalalanmış frekanslar. I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

M. 1	İşaretlemeler (VEDA4)	Den	eysel	B3LYP / 6-31++G(d,p)					
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R	
ν_1	vCH(99)	3111 vw	-	3252	3106	3115	9,73	7,16	
ν_2	vCH(99)	3088 w	-	3224	3079	3088	0,64	7,03	
ν_3	vCH(100)	2832 vs	2836 m	2956	2823	2834	111,89	17,91	
ν_4	vOC(86)	1678 vs	1679 s	1700	1661	1643	862,15	148,61	
ν_5	$\nu CC(59) + \delta HCC(14)$	1521 m	1522 w	1555	1519	1505	31,90	18,50	
ν_6	$vCC(55) + \delta HCO(19)$	1415 vs	1417 s	1443	1410	1399	146,87	146,51	
v_7	$vCC(22) + \delta HCO(55)$	1388 s	1379 vs	1403	1371	1362	26,89	166,38	
ν_8	δ HCO(10) + vCC(45) + δ HCC(25)	1337 m	1342 vw	1352	1321	1313	61,16	14,85	
v 9	$\nu CC(52) + \delta HCC(11) + \delta CCC(13)$	1225 s	1208 vw	1233	1204	1200	168,69	3,05	
v_{10}	δHCC(68)	1171 s	1172 w	1193	1166	1162	157,03	34,85	
v_{11}	$\nu CC(22) + \delta HCC(58)$	1116 m	1090 w	1104	1079	1078	7,32	23,62	
v_{12}	τHCCS(93)	-	973 vw	1016	993	995	0,17	4,41	
v_{13}	$\delta CCS(61) + \nu ClC(21)$	892 m	893 w	893	872	878	56,07	19,96	
ν_{14}	τCCCC(86)	851 s	844 vw	863	844	850	30,71	5,82	
v_{15}	vSC(77)	819 w	823 vw	839	820	826	63,32	10,76	
ν_{16}	τHCCCl(93)	768 w	785 vw	779	761	770	38,79	7,62	
ν_{17}	$\delta CCO(70) + \nu SC(11)$	717 m	718 m	719	702	713	51,45	87,77	
ν_{18}	$\delta CCO(15) + \nu SC(74)$	664 s	666 w	652	637	649	60,79	77,47	
ν_{19}	τHCCC(80)	587 m	581 vw	592	578	592	19,84	4,57	
v_{20}	τCSCC(89)	481 w	469 vw	485	474	491	6,04	6,77	
v_{21}	δCCC(62)	-	452 vw	475	464	481	0,44	26,80	
v_{22}	$\delta CCS(15) + \nu ClC(49)$	-	397 s	394	385	404	5,86	329,74	
v ₂₃	δCCCl(84)	-	279 w	276	269	292	2,61	286,45	
v_{24}	$\gamma CCSC(80)$	-	232 w	269	263	286	13,10	44,24	
v ₂₅	τ SCCCl(80)	-	-	225	220	244	4,45	16,36	
V26	δCCS(88)	-	-	149	146	172	14,40	15,49	
v_{27}	τCCCO(84)	-	-	98	96	124	10,24	118,29	

Çizelge E1.16. Cl2 molekülünün metanol içerisindeki titreşim işaretlemeleri

 v^{b} :1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar,

v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

	İşaretlemeler (VEDA4)	Deneysel			B3LYP / 6-31++G(d,p)				
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R	
ν_1	vCH(99)	3114 vw	3111 vw	3253	3107	3115	10,26	6,89	
ν_2	vCH(99)	3084 vw	3090 vw	3221	3076	3085	1,40	7,00	
ν_3	vCH(100)	2831 vs	2834 vs	2955	2822	2832	114,02	17,38	
ν_4	vOC(87)	1679 vs	1671 s	1700	1661	1651	892,20	152,67	
ν_5	vCC(71)	1512 w	1512 w	1548	1513	1496	29,43	26,74	
ν_6	$vCC(46) + \delta HCC(13) + \delta HCS(20)$	1410 s	1409 m	1440	1406	1393	120,19	118,11	
ν_7	$vCC(31) + \delta HCC(21) + \delta HCS(22)$	1382 m	1377 vs	1403	1371	1359	40,22	190,33	
ν_8	$vCC(45) + \delta HCC(42)$	1319 w	1321 vw	1346	1315	1304	43,54	9,38	
v 9	$vCC(44) + \delta HCC(16) + vSC(11) + \delta CCC(12)$	1224 m	-	1234	1205	1198	154,70	1,28	
v_{10}	$vCC(11) + \delta HCC(65)$	1177 w	1172 w	1195	1168	1161	187,93	37,43	
v_{11}	$vCC(38) + \delta HCS(47)$	1115 m	1079 vw	1103	1077	1073	10,45	26,63	
v_{12}	$\tau HCCS(95)$	-	-	1016	992	991	0,13	4,88	
ν_{13}	$\delta CCS(55) + \nu BrC(17)$	877 w	876 w	881	860	862	42,59	38,43	
ν_{14}	τHCCC(85)	848 vw	826 vw	868	848	851	28,98	6,03	
v_{15}	$\delta CCS(14) + \nu SC(65) + \nu BrC(13)$	812 vw		817	798	802	59,90	12,01	
ν_{16}	τHCCBr(96)	/	-	784	766	770	39,45	4,81	
ν_{17}	$vCC(11) + \delta HCC(70)$	710 m	708 m	711	695	701	47,84	90,19	
ν_{18}	$\delta HCC(12) + vSC(75)$	664 s	664 w	653	638	646	63,21	78,07	
ν_{19}	τCCCC(92)	581 m	584 vw	582	569	578	19,29	3,44	
v_{20}	γCCSC(80)	479 vw	-	479	468	481	5,16	10,90	
ν_{21}	δCCC(67)	457 vw	458 vw	467	457	469	0,12	23,40	
v_{22}	$\delta CCS(13) + \nu SC(14) + \nu BrC(56)$	-	296 m	293	287	305	2,26	609,97	
v ₂₃	$\tau CSCC(90)$	-	-	271	265	283	14,76	47,19	
v_{24}	δCCBr(82)	-	243 w	243	237	257	5,79	46,68	
v_{25}	τ SCCBr(86)	-	212 w	206	201	222	4,52	28,51	
v_{26}	δCCC(91)	-	110 s	136	133	155	11,52	22,27	
v_{27}	τCCCO(78)	-	62 m	91	89	113	9,31	170,59	

Çizelge E1.17. Br2 molekülünün metanol içerisindeki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar, v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar, v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

M. 1	İşaretlemeler (VEDA4)	Den	eysel	B3LYP / 6-31++G(d,p)					
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R	
ν_1	vCH(100)	3113 vw	-	3248	3102	3099	5,40	11,40	
v_2	vCH(100)	3081 vw	-	3229	3083	3080	0,37	7,90	
ν_3	vCH(100)	2832 vs	2836 m	2969	2835	2836	94,32	16,28	
v_4	vOC(87)	1670 vs	1670 s	1688	1649	1633	824,48	121,44	
ν_5	vCC(77)	1550 s	1549 w	1570	1534	1522	249,86	22,17	
ν_6	$vCC(56) + \delta HCO(10)$	1443 vs	1446 s	1468	1435	1427	328,12	167,05	
v_7	δ HCC(16) + δ HCO(13) + ν CC(49)	1408 s	1408 w	1429	1397	1390	63,99	3,79	
ν_8	$vCC(27) + \delta HCO(62)$	1375 m	1376 s	1392	1360	1355	86,78	110,43	
v 9	δ HCC(33) + δ CCF(13) + ν CC(27)	1260 m	1262 vw	1269	1240	1239	137,43	6,91	
\mathbf{v}_{10}	δ HCC(32) + vCC(50)	1205 m	1204 vw	1216	1188	1190	111,14	17,70	
v_{11}	$vCC(10) + \delta HCC(73)$	1115 m	1089 w	1102	1077	1083	1,79	22,87	
v_{12}	τHCCS(98)	-	957 vw	1014	990	1000	140,87	10,81	
v_{13}	$\delta \text{HCC}(10) + \delta \text{CCF}(22) + \nu \text{FC}(47)$			1014	990	893	0,37	3,40	
ν_{14}	τHCCH(95)	892 vw	882 vw	900	879	833	2,53	1,73	
v_{15}	$\delta HCS(49) + \nu SC(33)$	839 vw	840 vw	836	817	755	14,87	10,99	
v_{16}	τHCCC(96)	749 w	-	753	735	706	87,32	2,11	
ν_{17}	$\delta HCS(23) + \nu SC(57)$	699 w	700 m	701	685	668	20,84	116,04	
ν_{18}	$\delta CCF(12) + \delta HCS(10) + vSC(55)$	668 m	668 w	660	645	659	59,21	60,88	
v_{19}	τHCCC(86)	644 w	-	651	636	606	8,84	14,50	
v_{20}	$\delta CCF(50) + \nu FC(33)$	590 w	591 w	594	580	511	36,96	73,48	
v_{21}	$\delta CCF(67) + \nu SC(12)$	493 vw	495 w	494	482	493	3,82	71,18	
v_{22}	$\tau HCCS(90)$	473 vw	465 vw	474	463	359	5,02	16,82	
v ₂₃	δCCC(68)	-	331 w	331	323	332	0,07	98,04	
ν_{24}	τCCCC(92)	-	290 vw	302	295	249	8,55	8,12	
v_{25}	τCCCO(93)	-	223 w	214	209	196	17,26	61,38	
v_{26}	δCCF(92)	-	-	158	154	168	13,53	30,19	
v_{27}	τCCCO(91)	-	-	128	125	95	1,72	40,42	

Çizelge E1.18. F3 molekülünün metanol içerisindeki titreşim işaretlemeleri

v^a: Skalalanmamış frekanslar, v^b:1800 cm⁻¹ üzeri 0.955 ile 1800 cm⁻¹ altı 0.977 ile skalalanmış frekanslar, v^c:Spesca ile skalalanmış frekanslar.

I_{IR} ve I_R: Hesaplanan IR ve Raman şiddetleri.

	İşaretlemeler (VEDA4)	Dene	eysel		B3LY	P/6-3	l++G(d,p)
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I _{IR}	I _R
ν_1	vCH(100)	3111 vw	-	3248	3102	3111	2,78	12,15
ν_2	vCH(100)	3081 vw	-	3227	3082	3091	1,09	7,02
ν_3	vCH(100)	2832 vs	2835 m	2980	2846	2857	78,69	12,56
v_4	vOC(89)	1674 s	1674 w	1688	1649	1634	843,20	136,30
ν_5	vCC(66)	1506 m	1503 vw	1535	1499	1488	132,39	18,27
ν_6	$vCC(70) + \delta HCO(13) + \delta HCC(10)$	1422 s	1422 w	1454	1420	1411	201,16	164,31
ν_7	δ HCC(61) + vCC(18)	1378 m	1370 w	1402	1370	1362	98,32	70,41
ν_8	δ HCO(56) + vCC(11)	1350 vw	1350 w	1371	1340	1334	53,32	71,21
v 9	$vCC(41) + \delta CCC(21) + vClC(20)$	1222 m	1202 w	1226	1198	1195	189,14	27,04
v_{10}	$vCC(47) + \delta HCC(19) + \delta HCO(10)$	1170 w	1169 w	1186	1158	1157	48,68	36,44
v_{11}	$vCC(13) + \delta HCC(78)$	1116 m	1110 vw	1108	1082	1084	0,44	21,87
ν_{12}	τ HCCC(79) + τ HCCS(14)		971 vw	1015	992	996	0,20	3,63
ν_{13}	$\delta \text{HCS}(61) + \nu \text{SC}(11) + \nu \text{CC}(13)$	910 w	911 vw	909	888	896	122,98	19,65
ν_{14}	τHCSC(92)	896 w	/ - /	908	887	808	1,62	1,75
v_{15}	$\delta CCO(10) + vSC(71)$	826 vw	825 vw	817	798	747	17,01	12,05
ν_{16}	τHCCC(88)	748 w	747 vw	752	735	692	81,51	2,72
ν_{17}	$\delta HCS(23) + \nu SC(54)$	690 w	689 vw	694	678	658	12,02	155,21
ν_{18}	$\delta CCO(46) + \nu ClC(22)$	667 m	666 vw	658	643	636	68,35	53,17
ν_{19}	γClCCC(79)	619 w	621 vw	634	620	511	6,23	10,55
v_{20}	$\delta CCC(15) + \nu CC(52)$	501 vw	499 vw	503	491	483	12,67	74,57
v_{21}	$\tau CCCS(84)$	473 vw	471 vw	473	462	428	4,06	10,35
v_{22}	$\delta CCC(31) + \nu ClC(44)$	418 w	417 vw	415	405	296	11,38	185,79
v ₂₃	τ HCCC(11) + τ HCCS(80)	-	262 vw	276	269	285	16,96	21,81
ν_{24}	δCCCl(86)	-	-	265	259	199	3,91	32,99
v_{25}	$\tau CCCCl(85)$	-	-	174	170	185	7,66	54,51
v_{26}	δCCCl(95)	-	-	158	155	157	10,50	62,52
ν_{27}	τCCCC(83)	-	-	129	126	95	2,48	42,45

Çizelge E1.19. Cl3 molekülünün metanol içerisindeki titreşim işaretlemeleri

	İşaretlemeler (VEDA4)	Dene	eysel		B3LYP / 6-31++G(d,p)				
Mod	P.E.D. (≥10 %)	IR	Raman	ν^{α}	ν^{β}	ν^{c}	I_{IR}	I _R	
ν_1	vCH(99)	3107 vw	3111 w	3246	3100	3106	1,95	12,92	
v_2	vCH(99)	3087 vw	-	3227	3082	3088	1,80	6,20	
ν_3	vCH(100)	2831 vs	2834 vs	2981	2847	2853	72,97	11,49	
ν_4	vOC(89)	1671 vs	1666 s	1689	1650	1622	851,40	137,33	
ν_5	vCC(71)	1498 s	1499 w	1528	1493	1469	118,70	21,69	
ν_6	$\nu CC(46) + \delta HCC(21)$	1418 vs	1418 s	1450	1417	1394	199,51	167,02	
v_7	δHCO(62)	1373 s	1373 s	1397	1364	1344	93,25	78,32	
ν_8	$\nu CC(22) + \delta HCC(47)$	1345 m	1344 m	1366	1335	1315	40,19	59,22	
v 9	vCC(60)	1215 s	1213 w	1219	1191	1175	183,84	50,88	
v_{10}	$\delta HCC(40) + \nu CC(19) + \nu BrC(20)$	1162 w	1161 w	1175	1148	1132	43,30	31,94	
v_{11}	$vCC(15) + \delta HCS(76)$	1115 m	1087 w	1107	1081	1067	0,17	21,54	
v_{12}	τHCCC(88)	-		1014	990	979	0,20	3,42	
v 13	τHCCH(94)		-	908	887	878	1,93	1,39	
ν_{14}	δCCC(63)	890 s	891 vw	890	870	861	107,70	18,33	
v 15	vSC(65)	816 w	813 vw	803	785	778	19,26	15,12	
ν_{16}	τHCCS(95)	753 m	-	748	730	725	80,72	3,37	
ν_{17}	$\delta \text{CCO}(13) + \delta \text{CCC}(11) + \nu \text{SC}(59)$	687 m	686 m	690	674	670	8,41	179,63	
ν_{18}	$\delta CCO(46) + \nu SC(26)$	665 s	664 w	656	641	638	67,81	54,28	
ν_{19}	$\tau CCCBr(85)$	610 m	-	617	603	600	4,80	10,20	
ν_{20}	δ HCO(12) + δ HCC(11) + ν CC(46)	484 vw	484 w	487	475	476	7,91	61,19	
v_{21}	$\tau HCCS(87)$	471 w	-	470	459	461	3,82	13,75	
v_{22}	$\delta \text{HCC}(17) + \nu \text{BrC}(52)$	-	317 m	315	308	313	8,42	331,57	
v ₂₃	τHCCS(90)	-	-	266	259	266	19,50	25,23	
ν_{24}	δCCBr(84)	-	236 vw	236	231	237	7,69	27,74	
v_{25}	τCCCO(90)	-	-	154	150	159	6,45	92,37	
V26	δCCBr(89)	-	-	140	137	146	6,89	84,45	
v_{27}	τCCCBr(98)	-	110 m	126	123	132	1,74	48,10	

Çizelge E1.20. Br3 molekülünün metanol içerisindeki titreşim işaretlemeleri

Şekil E2.1. T2C molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.2. F1 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.3. Cl1 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.4. Br1 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.5. Cl2 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.6. Br2 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.7. F3 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.8. Cl3 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.9. Br3 molekülünün benzen içerisindeki FT-IR ve Raman spektrumu

Şekil E2.10. T2C molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.11. F1 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.12. Cl1 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.13. Br1 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.14. Cl2 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.15. Br2 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.16. F3 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.17. Cl3 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

Şekil E2.18. Br3 molekülünün metanol içerisindeki FT-IR ve Raman spektrumu

ÖZGEÇMİŞ

Adı Soyadı : Esma GÜNEŞ KAYA

Yabancı Dil : İngilizce

Doğum Yeri ve Yılı : Malatya / 1988

E-Posta : esma_gunes@anadolu.edu.tr

Eğitim ve Mesleki Geçmişi:

- 2006-2010, Dumlupınar Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Lisans.
- 2010-2012, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Yüksek Lisans.
- 2012-2018, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Doktora.

Yayınlar ve Bilimsel Faaliyetler:

Uluslararası Hakemli Dergilerde Yayınlanan Makaleler

- Kaya M.F., Bağlayan Ö., Kaya E.G., Alver Ö. (2017). Infrared, Raman and density functional characterization and structural study of 2-Nitro-2-phenyl-propane-1,3-diol. *Journal of Molecular Structure*, 1149, 257-264.
- Güneş E., Parlak C., Şenyel M. (2017). DFT/TDDFT investigation on electronic structures and spectral characteristics of C₅H₃XOS (X=H, F, Cl or Br). *Journal of Structural Chemistry*, 4, 719-728.
- Bağlayan Ö., Kaya M.F., Güneş E., Şenyel M. (2016). Vibrational spectra, DFT calculations, conformational stabilities and assignments of the fundamentals of the 1-butylpiperazine. *Journal of Molecular Structure*, 1122, 324-330.
- Güneş E., Parlak C. (2011). DFT, FT-Raman and FT-IR investigations of 5-Methoxysalicylic acid. *Spectrochimica Acta A*, 82, 504-512.

<u>Uluslararası Bilimsel Toplantılarda Sunulan ve Bildiri Kitabında (Proceeding) Basılan</u> <u>Bildiriler</u>

- Güneş E., Parlak C., Şenyel M. (2017). Theoretical and experimental vibrational spectroscopic study of 3X-thiophene-2-carbaldehyde [X=F, Cl or Br]. Ancon-International Congress on Chemistry and Materials Science, October 5-7, Ankara, Turkey.
- Güneş E., Parlak C., Şenyel M. (2016). Conformational analysis and temperature effect to structure of 1-methyl-4-phenylpyridinium (mpp+) by density functional Theory. 2nd International Turkic World Conference on Chemical Sciences and Technologies, October 26-30, Skopje, Macedonia.
- Bağlayan Ö., Güneş E., Kaya M.F., Parlak C., Şenyel M. (2016). Conformation stability, halogen and solvent effects on C=O stretching of 4-halogenothiophene-2-carbaldehyde. 2nd International Turkic World Conference on Chemical Sciences and Technologies, October 26-30, Skopje, Macedonia.
- Bağlayan Ö., Güneş E., Kaya M.F., Şenyel M. (2016). Conformation stability, halogen and solvent effects on C=O stretching of 3-halogenothiophene-2carbaldehyde. *Turkish Physical Society 32nd International Physics Congress*, September 6-9, Bodrum, Turkey.
- Güneş E., Parlak C., Şenyel M. (2015). DFT, FT-IR and Raman investigation of 4-phenylbutylamine. 16th International Conference on Density Functional Theory and Its Applications, 31 August-4 September, Debrecen, Hungary.
- Güneş E., Bağlayan Ö., Parlak C., Şenyel M. (2015). Halogen effect investigations on molecular structure of 5X-thiophene-2-carbaldehyde (X = H, F, Cl, Br or I). 9th International Physics Conference of the Balkan Physical Union (BPU-9), Istanbul University, August 24-27, Istanbul, Turkey.
- Şenyel M., Parlak C., Güneş E. (2015). Conformational, vibrational and electronic properties of C₅H₃XOS (X = H, F, Cl or Br): Halogen and solvent effects. *International Symposium on Molecular Spectroscopy*, June 22-26, Illinois, ABD.
- Şenyel M., Parlak C., Güneş E., Bağlayan Ö. (2014). DFT, FT-Raman and FT-IR Investigations of 5-Methoxysalicylic Acid. 2nd. Annual International Conference on Chemistry, Chemical Engineering and Chemical Process, February 3-4, Singapur.

 Bağlayan Ö., Güneş E., Kaya M.F., Parlak C., Şenyel M. (2013). DFT, FT-IR and Raman investigations of 1-butylpiperazine. XIIth International Conference on Molecular Spectroscopy, September 8–12, Kraków – Poland.

Ulusal Bilimsel Toplantılarda Sunulan Bildiri Kitabında Basılan Bildiriler

- Güneş E., Parlak C., Şenyel M. (2016). 3-halojenotiyofen-2-karbaldehit moleküllerinin yapı ve titreşim parametrelerinin DFT metodu ile incelenmesi. *Adım Fizik Günleri V*, Eskişehir Osmangazi Üniversitesi, Fizik Bölümü, 21-23 Nisan, Eskişehir.
- Güneş E., Parlak C., Şenyel M. (2015). 5-florotiyofen-2-karbaldehit molekülünün konformasyonel ve titreşim özellikleri üzerine halojen ve çözücü etkisi. *Adım Fizik Günleri IV*, Dumlupınar Üniversitesi, Fizik Bölümü, 28-29 Mayıs, Kütahya.
- Güneş E., Parlak C. (2012). 2-Hidroksi-5-Metoksibenzoik asitin yapısının titreşim spektroskopisi ile deneysel ve teorik olarak incelenmesi. *Adım Fizik Günleri II*, Pamukkale Üniversitesi, Fizik Bölümü, 26–28 Nisan, Denizli.

Projeler

- Şenyel M. (Proje Yürütücüsü), Güneş E. (2017). Belirli bir bölgenin elektromanyetik ve gürültü kirliliğinin belirlenmesi. Yayın ve Araştırma Teşvik Projeleri, Anadolu Üniversitesi.
- Şenyel M. (Proje Yürütücüsü), Güneş E. (2016). Yoğunluk fonksiyonel teorisi ile 1-metil-4-fenilpiridinyum (MPP+) molekülünün yapısının analizi. Yayın ve Araştırma Teşvik Projeleri, Anadolu Üniversitesi.
- Şenyel M. (Proje Yürütücüsü), Güneş E. (2015). 4-Fenilbütilamin molekülünün yapısının deneysel ve teorik olarak titreşim spektroskopisi ile incelenmesi. Yayın ve Araştırma Teşvik Projeleri, Anadolu Üniversitesi.