
OPTIMIZATION BASED
PREDICTIVE METHODS
FOR LARGE SCALE DATA

PhD Dissertation

Emre ÇİMEN

Eskişehir, 2018

OPTIMIZATION BASED PREDICTIVE METHODS
FOR LARGE SCALE DATA

Emre ÇİMEN

DOCTOR OF PHILOSOPHY DISSERTATION

Graduate School of Sciences
Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Gürkan ÖZTÜRK

Eskişehir

Eskişehir Technical University

Graduate School of Sciences

November, 2018

This dissertation is supported in part by the Scientific Research Projects
commission of Eskişehir Technical University under the doctor of philosophy dis-
sertation grant 1603F122 and by the Scientific Research Projects commission of
Anadolu University under the general purpose grant 1506F499.

FINAL APPROVAL FOR THESIS

This thesis titled “Optimization Based Predictive Methods for Large Scale

Data” has been prepared and submitted by Emre ÇİMEN in partial fullfillment of

the requirements in “Eskişehir Technical University Directive on Graduate Educa-

tion and Examination” for the Degree of Doctor of Philosophy (PhD) in Industrial

Engineering Department has been examined and approved on 02/11/2018.

Committee Members Title Name Surname Signature

Member (Supervisor) : Assoc. Prof. Dr. Gürkan ÖZTÜRK

Member : Prof. Dr. Ayhan DEMİRİZ

Member : Prof. Dr. Hakan ÇEVİKALP

Member : Prof. Dr. Nihal ERGİNEL

Member : Prof. Dr. Refail KASIMBEYLİ

Prof. Dr. Ersin YÜCEL

Director of Graduate School of Sciences

ABSTRACT

OPTIMIZATION BASED PREDICTIVE METHODS
FOR LARGE SCALE DATA

Emre ÇİMEN

Department of Industrial Engineering

Eskişehir Technical University, Graduate School of Sciences, November, 2018

Supervisor: Assoc. Prof. Dr. Gürkan ÖZTÜRK

The prediction has historically been a topic which is of great importance and

will not lose interest in the future. The prediction was made with primitive meth-

ods in the past. However, with the introduction of large scale data to our lives,

primitive methods have left its place to the machine learning algorithms. Predic-

tion methods with machine learning are split into two sub-problems as classification

and regression. In this thesis, three novel machine learning methods have been de-

veloped which target different problems that can work with large scale data. The

proposed methods are mainly based on mathematical programming and optimiza-

tion. The first method is “Incremental Conic Functions (ICF) Algorithm for Large

Scale Classification Problems” which applies an efficient data reduction method to

the data. Furthermore, it does not require to solve a linear programming (LP) prob-

lem in some cases. The second method is “One-Class Polyhedral Conic Functions

(O-PCF) Algorithm for One-Class Classification.” This method can classify data

points and detect outliers when the data is only available from one class. The last

method is developed for “clusterwise linear regression” when the data size is large.

These methods are tested on real-life datasets and compared with the well-known

methods in the literature. It is possible to apply these three methods to real-life

problems because of the short training and test times.

Keywords: Prediction, Machine learning, Optimization, Classification, Regres-

sion.

iii

ÖZET

BÜYÜK ÖLÇEKLİ VERİ İÇİN ENİYİLEME TEMELLİ
TAHMİNLEYİCİ YÖNTEMLER

Emre ÇİMEN

Endüstri Mühendisliği Anabilim Dalı

Eskişehir Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kasım, 2018

Danışman: Doç. Dr. Gürkan ÖZTÜRK

Tahminleme geçmişten beri büyük öneme sahip olan ve gelecekte de güncelliğini

yitirmeyecek bir konudur. Geçmişte ilkel yöntemlerle yapılan tahminleme günümüzde

büyük verinin hayatımıza girmesiyle yerini büyük boyutlu verileri kullanabilen makine

öğrenmesi algoritmalarına bırakmıştır. Makine öğrenmesi ile tahminleme yöntemleri,

sınıflandırma ve regresyon problemleri olarak ikiye ayrılır. Bu tez çalışmasında,

büyük boyutlu veriler ile çalışabilecek farklı problemleri hedef alan üç makine

öğrenmesi yöntemi geliştirilmiştir. Geliştirilen yöntemler matematiksel program-

lama ve eniyileme temellidir. İlk geliştirilen yöntem, veriye etkin eleme yöntemleri

uygulayan “Büyük Boyutlu Sınıflandırma Problemleri çin Arttırımlı Konik Fonksiy-

onlar (AKF)” algoritmasıdır. Ayrıca bu yöntem bazı durumlarda doğrusal program-

lama (DP) problemi çözmeyi gerektirmez. İkinci yöntem, “Tek Sınıf Sınıflandırma

için Tek Sınıf Çokyüzlü Konik Fonksiyonlar (T-ÇKF)” algoritmasıdır. Bu algo-

ritma sadece bir sınıfa ait veri olduğunda bile sınıflandırma yapabilir ve aykırı

noktaları belirleyebilir. Son yöntem, veri boyutu büyük olduğunda “kümeleme

temelli doğrusal regresyon” problemi için geliştirilmiştir. Tüm yöntemler gerçek

hayat veri kümeleri üzerinde test edilmiş ve yazındaki iyi bilinen yöntemler ile

karşılaştırılmıştır. Geliştirilen yöntemlerin eğitim ve test zamanları kısa olduğu

için, bu yöntemleri bir çok gerçek hayat problemine uygulamak mümkündür.

Anahtar Kelimeler: Tehminleme, Makine öğrenmesi, Eniyileme, Sınıflandırma,

Regresyon.

iv

ACKNOWLEDGMENT

First of all, I would like to express my special thanks to my supervisor Assoc.

Prof. Dr. Gürkan ÖZTÜRK for supporting and guiding me during my PhD. His

openness to new ideas and enthusiasm has kept my motivation at the highest level.

Since my undergraduate degree, he does his best to help me to become a better

academician. I would also like to thank my dissertation comitee members Prof. Dr.

Ayhan DEMİRİZ and Prof. Dr. Hakan ÇEVİKALP. This dissertation is presented

thanks to their partipication, feedback and support.

I owe my deep gratitude to Prof. Dr. Adil BAGİROV. He is always a role

model to me. Apart from his great academic guidance, he has accepted me as a

family member during my visit to Federation University Australia for a semester.

We have worked together on large-scale clusterwise linear regression problems in

this dissertation.

I would also like to extend my thanks to Prof. Dr. Ömer Nezih GEREK, not

only for his contribution to the ICF algorithm in this dissertation but also for his

support to my personal and academical development for long years.

Finally, I must express my very profound gratitude to my parents Nermin

and Mecit who strive to raise me through their life, and my beloved wife Simge for

all of her love and being my other half. I felt their presence even when they were

thousands of miles away from me.

Emre ÇİMEN

v

02/11/2018

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES

AND RULES

I hereby truthfully declare that this thesis is an original work prepared by me;

that I have behaved in accordance with the scientific ethical principles and rules

throughout the stages of preparation, data collection, analysis and presentation

of my work; that I have cited the sources of all the data and information that

could be obtained within the scope of this study, and included these sources in

the references section; and that this study has been scanned for plagiarism with

“scientific plagiarism detection program” used by Eskişehir Technical University,

and that “it does not have any plagiarism” whatsoever. I also declare that, if a case

contrary to my declaration is detected in my work at any time, I hereby express my

consent to all the ethical and legal consequences that are involved.

...

Emre ÇİMEN

vi

TABLE OF CONTENTS

Page

TITLE PAGE . i

FINAL APPROVAL FOR THESIS ii

ABSTRACT . iii

ÖZET . iv

ACKNOWLEDGMENTS . v

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES

AND RULES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF ACRONYMS . xii

1. INTRODUCTION 1

2. REVIEW ON DATA ANALYSIS AND MACHINE LEARNING 5

2.1. Predictive Methods . 6

2.1.1. Support vector machines 6

2.1.2. Nearest neighbors . 10

2.1.3. Classification and regression trees 11

2.1.4. Random forest . 12

2.1.5. Artificial neural networks 13

2.1.6. Polyhedral conic functions 14

2.2. Descriptive Methods . 17

2.2.1. k-Means algorithm . 18

2.2.2. Expectation maximization algorithm 19

3. INCREMENTAL CONIC FUNCTIONS ALGORITHM FOR LARGE

SCALE CLASSIFICATION PROBLEMS 21

3.1. Incremental Conic Functions (ICF) Algorithm 23

vii

3.1.1. Review of k-means based polyhedral conic functions

(PCFs) . 23

3.1.2. Proposed algorithm: incremental conic functions (ICF) 23

3.2. Computational Tests . 31

3.3. Conclusions On The ICF . 36

4. O-PCF ALGORITHM FOR ONE-CLASS CLASSIFICATION 38

4.1. Proposed Algorithm: One-Class PCF (O-PCF) 40

4.2. Experimental Results . 46

4.3. Conclusions On The O-PCF . 52

5. AN ALGORITHM FOR CLUSTERWISE LINEAR REGRESSION

IN VERY LARGE DATASETS 54

5.1. Clusterwise Linear Regression Problem and an Incremental

Algorithm for Its Solution . 55

5.2. Reduction Procedures . 58

5.2.1. Reduction of the number of observations 58

5.2.2. Reduction of the number of starting points 59

5.2.3. Reduction of the number of local minimizers of the

auxiliary CLR problem 60

5.3. Numerical Results And Discussions 62

5.3.1. Results for approximating of datasets 64

5.3.2. Prediction results by different algorithms 64

5.4. Conclusions on The Proposed Large Scale CLR Method . . . 68

6. CONCLUSIONS 71

REFERENCES . 73

RESUME . 82

viii

LIST OF FIGURES

Page

Figure 2.1. A linear separable problem in 2-d space [17] 7

Figure 2.2. Getting a non-linear decision boundary 8

Figure 2.3. The effect of the k on decision boundaries [23] 10

Figure 2.4. (a)The tree corresponding to the partition in 2-d space (b) Plot

of the prediction surface [23] 11

Figure 2.5. A random forest with three trees [27] 13

Figure 2.6. (a)Single layer (b) Multilayer neural networks [1] 14

Figure 2.7. Graph and level set of a PCF in the 2-dimensional feature space 15

Figure 2.8. Level sets of conic function for p = 1, 2, 4, 10 and 50, and

wT = [1, 1], cT = [0, 0], γ = 2 16

Figure 2.9. Simulation of the k-Means clustering algorithm [23] 19

Figure 3.1. The flowchart of the ICF Algorithm 25

Figure 3.2. An illustration of splitting and data reduction (Algorithm 3.2)

(a) Three classes with green, purple and yellow labels (b) Selec-

tion of the yellow class as class A and the rest as set B (black

labeled) (c) Splitting class A into two clusters if k = 2 (light and

darker yellow: A1 and A2) (d) Considering the light yellow part

as the selected sub-cluster: A1 (e) Reducing the sub cluster A1

by eliminating central data points and obtaining A1 while also

obtaining the reduced set B The clusters are illustrated as the

horizontal plane in 3D for compatibility with Figure 3.2. and

onwards, where the vertical axes correspond to a dimension to

represent the cone or PCF value 30

Figure 3.3. (a) Solution of a conic function that best separates a sub-cluster

of green-labeled set (b) Combination of two such conic functions,

separately optimized for different sub-clusters of green-labeled set 31

Figure 3.4. Three conic functions (rendered as colored surfaces) obtained

by ICF algorithm are illustrated by top and bottom views (a)–(b) 32

ix

Figure 3.5. Top and bottom views (a)–(b) of the final classifier obtained as

point-wise minimum of the three conic functions in Figure 3.4. 32

Figure 3.6. Training Accuracies, bars with horizontal lines for the proposed,

bars with diagonal lines for the previous k-means PCF 34

Figure 3.7. Test Accuracies, bars with horizontal lines for the proposed,

bars with diagonal lines for the previous k-means PCF 34

Figure 4.1. O-PCF example: (a) Data points (blue corresponds to the target

class); (b) PCF for cluster 1; (c) PCF for cluster 2; (d) PCF

for cluster 3; (e) PCF for cluster 4; (f) Final classifier G(x) . 43

Figure 4.2. Effect of different λ selections on a 1-dimensional PCF 44

Figure 4.3. An illustrative example of the VC dimension of a PCF in 2-d

space (a) The PCF can shatter 9 data points; (b) The PCF can

not shatter 10 data points . 45

Figure 4.4. Comparison of total training times (s) 50

Figure 4.5. Comparison of total test times (s) 50

Figure 4.6. Change of training and test time of the O-PCF according to

different k values . 52

Figure 5.1. Reduction the number of observations: (a) the whole dataset;

(b) the reduced dataset . 59

Figure 5.2. Reduction the number of starting points: (a) the whole dataset

with three linear functions; (b) Removing observations with small

regression errors . 60

Figure 5.3. Comparison of different reduction procedures 64

x

LIST OF TABLES

Page

Table 3.1. Datasets and their corresponding properties 33

Table 3.2. Train and test set accuracy rates, together with combined run-

times . 33

Table 3.3. Time improvements for different datasets 36

Table 4.1. Description of the datasets 48

Table 4.2. Comparison of training times (s) 49

Table 4.3. Comparison of test times (s) 51

Table 4.4. Comparison of F scores on the test datasets 52

Table 5.1. The brief description of test datasets 62

Table 5.2. Results for comparison of different reduction procedures 63

Table 5.3. Comparison of best average regression errors obtained by the

Späth and Proposed algorithms 65

Table 5.4. Training times of prediction algorithms (s) 67

Table 5.5. RMSE results for the training set 67

Table 5.6. MAE results for the training set 68

Table 5.7. R2 results for the training set 68

Table 5.8. RMSE results for the test set 69

Table 5.9. MAE results for the test set 69

Table 5.10. R2 results for the test set . 70

xi

LIST OF NOTATIONS AND ACRONYMS

NOTATIONS

x : scalar

x : vector

X : matrix, data set

〈., .〉 : inner product

|·| or ψ{·} : cardinality of a set

‖·‖ : associated norm

ACRONYMS

ANN : Artificial Neural Networks

CART : Classification And Regression Trees

CF : Conic Functions

CLR : Clusterwise Linear Regression

EM : Expectation Maximization

ICF : Incremental Conic Functions

LP : Linear Programming

MAE : Mean Absolute Error

NN : Nearest Neighbors

O-SVM : One-Class Support Vector Machines

O-PCF : One-Class Polyhedral Conic Functions

PCF : Polyhedral Conic Functions

QP : Quadratic Programming

RBF : Radial Basis Function

RF : Random Forest

RMSE : Root Mean Squared Error

SVDD : Support Vector Domain Description

SVM : Support Vector Machines

xii

1. INTRODUCTION

It is very important to predict a future event or future value to make better

decisions. The prediction should be accurate, timely and reliable to develop right

strategies based on the predictions. Since the beginning of human history, people

have tried to predict the future based on their observations. For example, accurate

predictions relating to weather events, agriculture/harvest, population and army

have provided great advantages to civilizations. The importance of prediction is

exponentially increasing day by day and spreading more rapidly to all areas of life.

Furthermore, nowadays the problem of decision making has become much more

complex.

With the invention of the computer, data structures and sizes have changed.

The field of data science/data analysis/data mining has seen rapid strides over the

past two decades and has been studied extensively [1]. It would not be wrong

to say that the most important components of the data science are mathematics,

statistics and computer science. This area of research has enabled the development

of machine learning algorithms that give computers the ability to predict. These

research areas are very new to the history of mankind from a wide perspective.

No matter how disturbing it is, there is a possibility that the machines will learn

independently from the people, decide and even build their own civilizations.

Apple’s Siri and Face ID, Google’s Duplex and Lens, self driving cars of Volk-

swagen, Uber and Tesla, robots of Boston Dynamics, Amazon’s Go and Prime Air

services can be shown among the products which developed using the cutting edge

technologies in the field of data science and machine learning.

In [2], machine learning is defined as a set of methods that can automatically

detect patterns in data, and then use the uncovered patterns to predict future data,

or to perform other kinds of decision making under uncertainty. The usability,

scalability and computational implementation of machine learning algorithms are

very important for computer scientists [1]. With concepts like the internet of things

(IoT) and Industry 4.0, there are countless data generating sensors in our daily life.

More than that, according to IDC Digital Universe Study [3], the data volumes are

increasing and more data has been created in a past two years than in the entire

1

previous history. More interestingly, there are as many bits of information in the

digital universe as stars in our physical universe. Although computer technology has

been evolving rapidly, conventional machine learning algorithms do not meet the

needs of users when the size of the data is large/big. It is important for algorithms

to solve problems at reasonable times with acceptable accuracies.

There is no single unified and clear definition of big data. It has various defi-

nitions. According to a generally accepted definition, in order to define a dataset as

big data, it should satisfy some of these properties (5Vs of big data): volume, ve-

locity, variety, veracity and value. Large datasets are created in big data problems.

In this dissertation, we have developed methods that can work effectively on large

datasets that can not be effectively solved by the existing methods. These proposed

effective algorithms can be used with parallel programming and distributed com-

puting to solve big data problems. Therefore, the concept of “large data” is used,

avoiding the use of the concept of “big data”.

Solution approaches of machine learning problems are generally based on op-

timization. Although there are a variety of approaches, it is usually attempted to

minimize an error function which is related to the emprical error. In this disser-

tation, three new supervised methods have been developed for classification and

regression problems where the data size is large. All the proposed methods are

mainly based on mathematical programming and optimization. Another common

point of the proposed methods is to use clustering in order to take its advantage

on unevenly distributed data. Thus, the proposed methods can adapt to different

local distributions. Local learning methods try to locally adjust its parameters to

the training set in each area of the input space [4]. Adopting local distributions

is important because real-life problems generally consist of various distributions.

Local learning methods have been applied to various machine learning problems

including feature selection, clustering and classification [5–7].

In Chapter 2., the brief descriptions of data analysis and machine learning

algorithms that mentioned in the next sections are given. Different problem types

are discussed. Preliminaries about some existing methods are also provided.

In Chapter 3., Incremental Conic Functions Algorithm for Large Scale Clas-

sification Problems is provided [8,9]. In this chapter, in order to cope with classifi-

2

cation problems involving large datasets, we propose a new mathematical program-

ming based method by extending the clustering based polyhedral conic functions

approach. Despite the high classification efficiency of polyhedral conic functions,

the realization previously required a nested implementation of k-means and conic

function generation, which has a computational load related to the number of data

points. In the proposed algorithm, an efficient data reduction method is employed to

the k-means phase prior to the conic function generation step. The new method not

only improves the computational efficiency of the successful conic function classifier,

but also helps to avoid model over-fitting by giving fewer (but more representative)

conic functions.

In Chapter 4., One-Class Polyhedral Conic Functions (O-PCF) Algorithm for

One-Class Classification is presented. One-class classification, or outlier detection,

is of great importance when data can be properly obtained from only one target

class. The problem has many applications in various areas when the outlier class,

defined as the complementary set to the target class, is absent. In this chapter,

we develop a novel one-class classification algorithm called the one-class polyhedral

conic functions (O-PCF) algorithm. In this algorithm, the decision boundary for

the target class is defined by PCFs’ level sets. The level set of a PCF is a convex

polyhedron; thus, only convex decision boundaries can be obtained with one PCF.

However, the target class may have a non-convex structure. Thus, the O-PCF

algorithm divides the target class into k clusters and obtains a PCF for each cluster.

O-PCF constructs the final classifier as the minimum of k PCFs to generate non-

convex separating surfaces. The performance of the O-PCF algorithm is presented

in comparison with other methods in the literature. The test results lead us to

conclude that the O-PCF algorithm outperforms the other methods in many cases.

In Chapter 5., the study A Fast Algorithm For Clusterwise Linear Regression

In Very Large Datasets is given. This chapter presents a new algorithm for solving

clusterwise linear regression (CLR) problems in very large datasets. This algorithm

is designed using the nonsmooth optimization model of the CLR problem and an

incremental approach. The incremental approach is used to formulate an auxiliary

CLR problem to find starting points. Results from the previous iterations of the

incremental algorithm are used to develop a procedure to reduce the number of

3

candidate starting points. This procedure consists of two main steps. In the first

step dense areas in the dataset are identified and data points close enough to each

other are removed from the list of possible candidates. In the second step, we

remove points whose regression errors are smaller than some given tolerance. Using

results from the previous iteration of the incremental algorithm, we remove data

points with small regression errors for solving the auxiliary CLR problem. Finally,

all points with small regression errors are not considered for minimizing the overall

fit function with a large number of linear functions. Using the results of numerical

experiments with very large datasets, we demonstrate that the use of these four

procedures allows one to significantly reduce CPU time without any significant loss

of accuracy. The proposed algorithm is tested using, in particular, very large real

world datasets and compared with the mainstream regression algorithms using their

prediction ability.

In Chapter 6., the dissertation is concluded and the future line of related

research is given.

4

2. REVIEW ON DATA ANALYSIS AND MACHINE LEARNING

Data analysis is a term that is responsible for developing models, explanations

and proposing hypotheses. It uses analytical methods and involves a wide range

of processes such as data cleaning, extracting, visualization and modeling. Data

mining is a subset of data analysis which tries to discover hidden information in

a raw data. Data mining is a pipeline which includes the data collection, pre-

processing (cleaning, feature extraction, feature selection etc.) and learning phase.

Machine learning predicts values by using the learned models. It is very closely

related to the data mining and statistics fields. But it differs slightly in terms of its

terminology and emphasis [2].

If one says that the roots of the machine learning depend on least squares

method [10] and the Bayes’ Theorem [11] in the 17th century, it would be true.

After two centuries, Fisher’s discriminant analysis [12] broke fresh ground for clas-

sification area. Discoveries of Markov Chains [13], perceptron [14] and artificial

neural networks, nearest neighbors method [15], random forest algorithm [16], Sup-

port Vector Machines (SVMs) [17] and deep neural networks are the milestones for

machine learning.

Machine learning methods can be divided into two main types:

• Predictive Methods

• Descriptive Methods

Predictive and descriptive methods are also known as supervised and unsu-

pervised learning, respectively. This dissertation is focused on predictive methods.

Although these methods are generally thought as two main types of machine learn-

ing, semi-supervised learning and reinforcement learning are defined as other types.

Additionally, prescriptive methods which are a relatively new area in data analysis

in comparison to predictive and descriptive methods should be mentioned. Pre-

scriptive methods deal with effects of future decisions and update the decisions in

advance. In this way, future outcomes are taken into consideration. Prescriptive

methods has various applications. Decisions related to inventory, production, sup-

ply chain design are some examples that can be optimized by using prescriptive

5

methods.

There are various methods to solve machine learning problems. It is not

possible to cover all methods in detail. Therefore, only a brief description of the

machine learning methods which are used in the following sections, are given.

2.1. Predictive Methods

The aim of such a method is to learn a model which maps its inputs x to

output y. The set used for learning the model is named training set and it consists

of x and y pairs [2]. Hence, it can be said that the training is learning a model by

a machine under supervision of a set (training set) of which outputs are known.

X = {(xi, yi)}, i = 1, . . . , p (2.1)

The set in Equation 2.1 has p observations and xi ∈ Rn. The n values in the

vector x are called features or attributes. With respect to various problem types,

x could correspond to an image, a signal, a text or a DNA series, etc.

The response value be either categorical or real-valued. If yi is a categorical

value from a finite set, the problem is defined as classification. On the other hand, if

yi is a real-value, the problem is defined as regression. In classification, the response

values could be spam/not spam for a spam filter, the name of the person in a face

image, arrhythmic/normal heartbeat for arrhythmia detection, etc. On the other

hand, one can predict the price of a house, future sales of a factory or the volume

of a molecule by a regression model.

2.1.1. Support vector machines

SVMs are introduced by Vapnik [17] for binary classification problems and

this paper [17] has been a pioneer in many types of research in this area. Then, the

original binary classification is extended to multi-class classification and regression

problems. In the simplest version linear SVM, in order to separate classes, decision

boundaries between two classes are defined with a hyperplane. This hyperplane is

obtained by solving an optimization problem.

SVMs are based on a very intuitive expectation. The optimization problem

6

in SVM tries to find a hyperplane by maximizing the separation margin. Thus,

this hyperplane is named as maximum margin hyperplane. Support vectors can be

defined as the data points which would change the maximum margin hyperplane if

removed.

In order to explain the SVM concept, generally, it is started with explaining

the linearly separable case. In Figure 2.1., one can see a linear separable case.

Support vectors which define the maximum margin hyperplane between the two

classes are marked with squares. The linear separating hyperplane is formulated as

in Equation 2.2:

〈w,x〉+ b = 0 (2.2)

Figure 2.1. A linear separable problem in 2-d space [17]

Here, w,x ∈ Rn and w is the vector which corresponds to the normal direction

of the separating hyperplane. x is the data point and b is the bias which determines

the distance of the hyperplane from the origin.

Assume that class labels yi ∈ {+1,−1}, where i = 1, . . . , p in Figure 2.1.

Because the example is linearly separable, all data points xi with yi = +1 should

lie on the positive side of the hyperplane. On the contrary, all data points xi with

yi = −1 should lie on the negative side of the hyperplane. Please see Equation 2.3

and Equation 2.4.

7

〈w,xi〉+ b ≥ 0, ∀i ∈ {yi = +1| 1, . . . , p} (2.3)

〈w,xi〉+ b < 0, ∀i ∈ {yi = −1| 1, . . . p} (2.4)

Linear separability is the very rare case. Therefore, the linear SVM model is

re-formulated as in Equation 2.5. This formulation is called soft margin SVM.

min
1

2
‖w‖+ C

p∑

i=1

ξi (2.5)

subject to

〈w,xi〉+ b ≥ +1− ξi, ∀i ∈ {yi = +1| 1, . . . , p} (2.6)

〈w,xi〉+ b < −1 + ξi, ∀i ∈ {yi = −1| 1, . . . , p} (2.7)

ξi ≥ 0, ∀i ∈ {1, . . . , p} (2.8)

ξi is the violation of each margin constraint by xi. C is a user-defined param-

eter which penalizes the violations. Large values of the C minimizes the training

errors.

In many cases, the linear separation boundary does not satisfy the needs of

the user. For this reason, the need for obtaining non-linear separation boundaries

has arisen. A non-linear decision boundary can be seen from Figure 2.2. In order

to cope with this issue kernel functions are used. A kernel function is defined to be a

real valued function of two arguments, K(xi,xj) ∈ R [2]. K(xi,xj) ≡ φ(xi)
Tφ(xj)

where φ(.) maps the input vector into a higher dimensional space.

Figure 2.2. Getting a non-linear decision boundary

The kernel functions that are used commonly:

• Gaussian radial basis kernel: K(xi,xj) = exp(−‖xi−xj‖2

2σ2)

8

• Polynomial kernel: K(xi,xj) = (xi.xj + c)h

• Sigmoid kernel: K(xi,xj) = tanh(κxi.xj − δ)

It is very important to choose the right parameters of the kernel functions.

This selection has a great impact on the success of the model. In non-linear case,

the primal optimization problem becomes as in Equation 2.9.

min
1

2
‖w‖+ C

p∑

i=1

ξi (2.9)

subject to

〈w, φ(xi)〉+ b ≥ +1− ξi, ∀i ∈ {yi = +1| 1, . . . , p} (2.10)

〈w, φ(xi)〉+ b < −1 + ξi, ∀i ∈ {yi = −1| 1, . . . , p} (2.11)

ξi ≥ 0, ∀i ∈ {1, . . . , p} (2.12)

However, generally the dual form of the SVM problem is solved, due to the

possible high dimensionalty of the vector w. Dual form of the SVM formulation is

given as follows [18]:

min
α

1

2
αTQα− 〈eT , α〉 (2.13)

subject to

〈yT , α〉 = 0 (2.14)

0 ≤ αi ≤ C, ∀i ∈ {1, . . . , p} (2.15)

where e = [1, . . . , 1]T is the vector of ones, Q is an p by p positive semidefinite

matrix, Qij ≡ yiyjK(xi,xj).

The classification formulation is extended by countless researches. However,

some studies that define the various types of SVM have made a great impact. These

studies include Bennett and Demiriz’s semi-supervised SVM [19], Schölkopf’s one-

class SVM [20] and ν-SV regression [21], Tax and Duin’s Support Vector Domain

Description (SVDD) [22].

9

2.1.2. Nearest neighbors

The Nearest Neighbors (NN) algorithm was introduced by Cover and Hart in

1967 [15]. They showed the single NN rule has been shown to be admissibleamong

the class of k -NN rules for the n-sample case for any n. It is simple and useful

for both classification and regression. It is used widely as a benchmark for other

well-known algorithms.

k -NN is an instance-based/lazy algorithm which means the algorithm does not

priorly learn a model before testing. Therefore, this method has two disadvantages.

First, in order to run the algorithm, the training set must held in memory (memory

cost). This creates problems in large datasets. The second disadvantage is that the

test time may be long because the algorithm does not learn a model in advance

(computational cost). Test time is very important in some real-world applications

such as health care, image processing or gesture recognition. The k -NN algorithm

is non-parametric. This means that the algorithm does not make any assumptions

about the distribution of the data.

Figure 2.3. The effect of the k on decision boundaries [23]

In the test case, the distance between the test data point x and all data points

in the training dataset is calculated. Then k points that are nearest to x is selected

from the training data points. Finally, the class label is predicting by using class

probabilities. The voting procedure or weighting depending on distance can be used

10

in order to calculate probabilities.

The selection of the k affects the classification/regression accuracy. While a

small k generates flexible decision boundaries, a large k generates smoother decision

boundaries. Test time will be longer when the k is large. On the other hand, the

algorithm will be more dependent on outliers when the k is small. Please see the

Figure 2.3.

2.1.3. Classification and regression trees

Classification and regression trees (CART) are introduced by Breinman et

al. in 1984 [24]. This model recursively partitions the input space and defines a

different model for each local part of the input space. In other words, the method

splits the feature space into rectangle regions, and then fit a simple model (like a

mean of the region or a linear model) in each one. The major competitor of the

CART is C4.5 [25] which is also a tree-based algorithm [23].

Figure 2.4. (a)The tree corresponding to the partition in 2-d space (b) Plot of the pre-

diction surface [23]

In order to explain the model, a regression problem in 2-d space is considered

11

in Figure 2.4. with two features x1 and x2. One can see that the input space is

split into 5 regions R1, R2, . . . , R5. If the input data point remains in a region Rm,

the corresponding regression model is used to predict the output. Note that the

splits are axis parallel.

The model can be written as in Equation 2.16:

f(x) = E[y|x] =
M∑

m=1

wm(x ∈ Rm) =
M∑

m=1

wmφ(x; vm) (2.16)

where Rm is the m’th region, wm is the mean response of the region, and vm encodes

the choice of the variable to split on, and the threshold value, on the path from the

root to the m’th leaf [2].

2.1.4. Random forest

Random forest method developed by Breinman in 2001 [16]. It is an ensemble

learning algorithm and used for classification and regression tasks. The algorithm

creates multiple decision trees and combines them in order to get a robust final

classifier. The algorithm is a generalization of the bagging method that is applied

to decision trees. The main idea is to reduce the correlation between the different

ensemble components by using randomized decision trees [1]. Random forest algo-

rithm has been used by many researchers and applied various applications including

Microsoft’s Kinect for body pose estimation [2, 26].

If the model is trained with M different trees on different randomly selected

subsets of the data, the ensemble is calculated as in Equation 2.17 [2]:

f(x) =
M∑

m=1

1

M
fm(x) (2.17)

where fm is the prediction of the m’th tree and x is the test data point.

An illustrative example of a random forest can be seen from Figure 2.5. In

this play/do not play classification example, trees A and C votes for yes, and tree

B votes for no. The dominant vote yes, therefore the child can play [27]. It should

be noted that all the features are chosen randomly to create a decision tree.

12

Figure 2.5. A random forest with three trees [27]

2.1.5. Artificial neural networks

The human nervous system consists of billions of cells named neurons. These

specialized cells create a complex network structure. The neurons transmit messages

to the following neuron through the links called synapses. Each neuron contributes

to the decision to be made and training continues throughout life.

Artificial neural networks are one of the well-known machine learning models

to solve classification and regression problems. These models are inspired by the

biological nervous system. The neurons are the computation units which get the

input data from other neurons, make computations, and send them to other neurons

[1]. Basically, the computation function is a weighted sum of different inputs. The

model is learned by updating the weights and the necessary data, external stimulus,

is provided by the training set.

A wide variety of network structures exist. The simplest type is single layer

perceptrons [14] that finds a separating hyperplane in the training data. The per-

ceptron consists of two layers of nodes: input nodes and an output node. However,

complex multilayer networks can be constructed in order to get robust classifier-

s/regressors. Layers between input and output layers are called hidden layers. The

schema of a single layer and a multilayer neural networks can be seen in Figure 2.6.

13

Figure 2.6. (a)Single layer (b) Multilayer neural networks [1]

In order to explain the output function of a perceptron, the decision function

of a binary classification problem is considered in Equation 2.18:

z = sign{
n∑

j=1

wjx
j + b} (2.18)

where w = (w1, . . . , wn) is the weight vector, x = (x1, . . . , xn) is the input vector, b

is the bias and z ∈ {−1,+1} is the output classification label.

The following simplest perceptron case example is given to explain how weights

are updated in Equation 2.19:

wt+1 = wt + η(y − z)x (2.19)

where wt is the weight vector in the t’th iteration, η is the learning rate, y is the

actual output and z is the predicted output. The method starts with a random

w0. Then, the training continues until w converges. In the multilayer case, the

ground-truth outputs of the hidden layers are necessary. However, this information

can not be known in the training. In order to cope with this problem, Rumelhart,

Hinton and Williams presented the backpropagation algorithm in 1986 [28].

2.1.6. Polyhedral conic functions

In this subsection, we briefly describe the notions of PCFs and polyhedral

conic separation. A more detailed description can be found in [29].

Let A and B be given disjoint sets in Rn containing m and p points, respec-

14

tively:

A = {a1, . . . , am}, ai ∈ Rn, i = 1, . . . ,m, (2.20)

B = {b1, . . . ,bp}, bj ∈ Rn, j = 1, . . . , p. (2.21)

PCFs construct a separation function for the sets A and B as following.

Definition 2.1. A function g : Rn → R is called conic function if its graph is a

cone and all its level sets satisfy [29]:

S(α) = {x ∈ Rn : g(x) ≤ α}, (2.22)

for α ∈ R, yielding, so called, convex sets.

Figure 2.7. shows a graph of a PCF and its level set. As shown in Figure 2.7.,

the graph of a PCF is a cone, and its level set is a convex polyhedron.

Figure 2.7. Graph and level set of a PCF in the 2-dimensional feature space

Given w, c ∈ Rn, ξ, γ ∈ R, the general form of conic function g(w,ξ,γ,c): R
n → R is

defined as follows:

g(w,ξ,γ,c)(x) = 〈w, (x− c)〉+ ξ ‖x− c‖p − γ, (2.23)

where ‖x‖p is an lp-norm of the vector x ∈ Rn and g(x) defines a conic function

that can be used for constructing discriminating regions of two arbitrary sets: A

15

Figure 2.8. Level sets of conic function for p = 1, 2, 4, 10 and 50, and wT = [1, 1],

cT = [0, 0], γ = 2

and B. Here, it must be noted that x is a point in the set and c is the Euclidian

center (or selected from Rn with some approaches) (i.e., not the lp center) of the set,

that was already known before the solution of the LP. This center also corresponds

to the lowest (vertex) point of the cone. The degree (p) of lp norm can be varied

to obtain a rich class of convex sets, ranging from 1 to ∞. In Figure 2.8., level

sets (horizontal intersection with the plane z = 0) of various cones are illustrated

for p = 1, 2, 4, 10 and 50 and wT = [1, 1], cT = [0, 0], γ = 2:

Throughout this work, l1-norm is used to define a particular conic shape,

which is the “polyhedral conic shape”:

g(w,ξ,γ,c)(x) = 〈w, (x− c)〉+ ξ ‖x− c‖1 − γ. (2.24)

Using multiple different polyhedral conic functions, it becomes possible to

separate and classify arbitrarily distributed (non-convex) sets A and B. PCF algo-

rithms [29], k-means based PCF algorithm [30] and incremental PCF algorithm [31]

have different center selection and updating strategies. In [29], the center points are

16

randomly selected from the set A and classification was achieved by sequentially

eliminating correctly classified points. In [30], the centers of PCFs are found by

solving k-means algorithm and then a PCF is obtained by solving LP for each clus-

ter. In [29] and [30] an eventual classifier is constructed as the point-wise minimum

of all PCFs, requiring several PCF constructions. In [31], the classifier is obtained

by minimizing a single error function in an incremental manner. In [32], a method

is proposed to optimally estimate the vertex point of a PCF.

2.2. Descriptive Methods

In unsupervised learning, only the features are observed and there are no mea-

surements of the outcome. The aim is to describe how the data are organized or

clustered. The algorithms in this type are sometimes called knowledge discovery

and/or descriptive models. Clustering algorithms and association analysis algo-

rithms are included in this group.

Clustering algorithms split the data into groups containing similar data points.

Various similarity measures can be defined. However, one of the commonly used

one is the sum of the distances of the data points to corresponding cluster centers.

Clustering is in used various areas such as astronomy, e-commerce, biology, customer

segmentation and social network analysis in real-life.

The clustering problem is NP-hard. Therefore, efficient heuristic algorithms,

which converge to local optimum solutions, are used generally. There are three dis-

tinct types of the clustering algorithms: combinatorial algorithms, mixture model-

ing, and mode seeking. Combinatorial algorithms work on data without using any

probability model. Mixture models are described by probability density functions

(pdf). The algorithm fits the model to the data by maximum likelihood or corre-

sponding Bayesian approaches. Mode seekers attempt to estimate distinct modes

of the pdf. [23]. k-Means, mean shift, density-based spatial clustering, expectation-

maximization (EM), hierarchical clustering and self-organizing map are the well-

known clustering algorithms. Since the following sections refer to k-Means and EM,

details about these algorithms are provided in this section.

Association analysis of which purpose is to find joint values of the variables

17

that appear most frequently is among descriptive methods. Association analysis is

a popular tool for commercial data [23]. Market basket analysis is one of the most

frequent applications of this problem. Including the Apriori algorithm, there are

various algorithms for association analysis.

2.2.1. k-Means algorithm

k-Means is one of the famous and one of the simplest clustering algorithm.

MacQueen introduced the k-Means in 1967 [33]. The k refers to the number of

clusters and it must be defined priorly. The algorithm starts with k random centers

from the dataset and then updates the centers to minimize the sum of the distances

from each data point to the center that is closest to it. k-Means algorithm is given

in Algorithm 2.1 where xi is the data point, cj is the j’th cluster center and zi is

the cluster label of i’th data point.

Algorithm 2.1. The k-Means Algorithm:

Step 1: Select k center points randomly from the dataset.

repeat

Step 2: Assign the data points to closest cluster center. zi is the cluster label.

zi = argminj ‖xi − cj‖2 (2.25)

Step 3: Update each cluster center by calculating the mean of the all data points

assigned to it:

cj =
1

Nj

∑

i:zi=j

xi, ∀j ∈ {1, . . . , k} (2.26)

until converged

As stated the k-Means algorithm starts with random centers, which causes

to obtain different local optimal solutions in each run. One way to cope with this

problem is using multi-start method which finds the solution multiple times and

chooses the best solution. Especially in large datasets, it is very hard to obtain

global or near-global solutions with the k-Means algorithm. Nevertheless, the k-

Means is still the most used clustering algorithm.

18

Figure 2.9. Simulation of the k-Means clustering algorithm [23]

2.2.2. Expectation maximization algorithm

Expectation Maximization (EM) algorithm was introduced by Dempster et

al. in 1977 [34]. EM is an iterative algorithm which fits a mixture of Gaussians to

the data.

There are two main steps in the EM: expectation and maximization. The

expectation step assigns membership scores for each data point based on its relative

density under each mixture component, and the maximization step updates the

component density parameters based on the current membership scores [23]. The

EM algorithm starts with a random solution and then converges to a locally optimal

solution.

19

“The EM algorithm models the data by specifying a joint distribution p(xi, zi) =

p(xi|zi)p(zi). zi ∼Multinomial(φ) where φj ≥ 0,
∑k

j=1 φj = 1, φj = p(zi = j) and

xi|zi = j ∼ N(µj,Σj).” [35]. zi’s can take on k numbers.

The EM algorithm is given in Algorithm 2.2.

Algorithm 2.2. The EM Algorithm:

repeat

Step 1: Expectation. Assume that the training set is {x1, . . . ,xm}. zi’s are latent

random variables. For each i, j set:

wij := p(zi = j|xi;φ, µ,Σ) (2.27)

Step 2: Maximization:

φj :=
1

m

m∑

i=1

wij (2.28)

µj :=

∑m
i=1w

i
jxi∑m

i=1w
i
j

(2.29)

Σj :=

∑m
i=1w

i
j(xi − µj)(xi − µj)T∑m

i=1w
i
j

(2.30)

until converged

Unlike k-Means, EM finds the cluster membership probabilities of each data

point. This type of clustering is named soft clustering.

20

3. INCREMENTAL CONIC FUNCTIONS ALGORITHM FOR LARGE

SCALE CLASSIFICATION PROBLEMS

The ever-increasing internet bandwidth together with mass storage has long

required mining, clustering and classification [36], for applications ranging from fin-

ger print or iris recognition based security technologies to detecting spam e-mails,

to gesture or face recognition. These technologies improve innovative aspects of

commercial products or improve the convenience of the provided service. Conse-

quently, researchers have been interested in classification problems for years. The

early research on classification focused mostly on feature extraction and classifier

optimization by means of finding best separating functions/surfaces. Unfortunately,

the ever-increasing data amount enforced researchers to adopt different strategies

to handle the new problem of big data. According to a not-so-new IDC Digital Uni-

verse Study [3] collected data doubles in every two years. Nowadays, it is argued

that the doubling period is also shrinking. Because of this, developed algorithms

must be appropriate to work with large datasets for both in training step (classifier

construction) and test step (application). Any improvement to reduce computation

times by multiple-folds would be welcome.

Naturally, a necessary property of classification algorithms is its classification

accuracy. In that aspect, the developed algorithms are expected to perform well

with respect to standard classifiers such as Bayesian classifiers [37], artificial neural

networks [38], decision trees [39,40], and support vector machines [17].

Starting from 1960’s there has been an interest to classification algorithms

based on mathematical programming. A literature example is by Bennett and

Mangasarian, where a robust approach for linear separation was developed [41]. In

another work, Astorino and Gaudioso used more than one hyper planes to sepa-

rate two sets; which were found with mathematical programming [42]. Max–Min

separation is another related successful approach developed by Bagirov [43]. Sim-

ilarly, Uney and Turkay developed an Integer Programming algorithm to classify

more than one classes with hyper boxes [44]. One of the most famous and com-

monly used classification algorithms is Support Vector Machines (SVMs), which

is based on quadratic programming methods [17]. A survey based on SVMs and

21

its latest improvements can be found in [45]. In [46] non-smoothness in classifica-

tion, in [47] non-linear programming in classification, in [48] margin maximization

based on polyhedral separability, and in [49] ellipsoidal separation for classification

problems were investigated. Finally, classification with truncated l1 distance kernel

was introduced in [50]. This presented work is also considered within the class of

classification algorithms that use LP.

A critical idea that is utilized in this paper is to construct and use Polyhedral

Conic Functions (PCFs), which were first proposed for classification by Gasimov

and Ozturk [29] and the classification method was also named PCF algorithm [36].

The authors then combined the PCF approach with Bagirov’s Max–Min separation

algorithm [51]. Later, clustering based PCF algorithm [30] was developed and

successfully applied to real life problems such as arrhythmia classification [52] and

gesture recognition [53]. An incremental piecewise linear classification algorithm

based on polyhedral conic separation was also introduced in [31].

In this section, the highly accurate clustering based PCF [30] is considered

as a starting point, and the part of the creation of the LP problem, to construct

the classifier, is smartly modified to improve the computational efficiency, which is

expected to enable processing large datasets. The clustering based PCF is a novel

method which outperforms several state-of-the-art classifiers, including SVM [30].

However, in its original version, a linear constraint exists in the LP model for

each additional data point. Consequently, when data size is very large, the model

had too many constraints to be handled. In this section, unnecessary data points

(hence constraints) after the clustering stage are eliminated. The new strategy is

observed to keep the high accuracy of PCFs on datasets from UCI Machine Learning

Repository while reducing computation times and avoiding over-fitting with fewer

conic functions.

The rest of the section is organized as follows. In Subsection 3.1., the pro-

posed algorithm is explained with algorithmic layouts and example illustrations. In

Subsection 3.2., experimental results are given. Finally, conclusions about proposed

method are provided in Subsection 3.3.

22

3.1. Incremental Conic Functions (ICF) Algorithm

3.1.1. Review of k-means based polyhedral conic functions (PCFs)

In the k-means based Polyhedral Conic Function approach [30], the classifiers

are constructed with the simultaneous use of the polyhedral conic separation ap-

proach [29] and the k-means clustering technique. This algorithm applies k-means

algorithm to find centers of PCFs. In order to construct the classifier for a specific

class, the class is first divided into sub-clusters via k-means algorithm. Then, an LP

is solved for each cluster in order to obtain a PCF that separates the cluster from

the other classes. Thus, k PCFs are obtained after this operation. The classifier of

the selected class is obtained as a point-wise minimum of k separate PCFs. These

steps are repeated for each class. If the number of classes is η, the total number

of constructed PCFs is η × k. In the test phase, a data point is applied to each of

these η × k PCFs, and the class ηi is chosen for the PCF function which yields the

minimum function value. In the original form of the polyhedral conic separation

method [29], the number of PCFs to be tested was huge as compared to the lim-

ited (η × k) number of PCFs. Therefore, the use of clustering algorithm allows to

significantly decrease the number of centers and consequently the number of PCFs

which makes the algorithm reasonable for real life applications and helps to avoid

over-fitting problem.

3.1.2. Proposed algorithm: incremental conic functions (ICF)

In this subsection, in order to eliminate drawbacks of k-means based PCF we

propose a new algorithm called Incremental Conic Functions (ICFs). A drawback

of the above k-means based PCF is the need for a-priori determination of “number

of clusters” in the beginning of the algorithm. Another drawback is the need for

knowledge for the size of the LP model because the LP model in k-means based

PCF directly uses all data points as constraints for LP. In k-means based PCF, the

number of LP solving steps is, therefore, (number of classes) × (k). This repetitive

structure is time consuming for large datasets.

The ICF algorithm resolves the problem of “choice of k” because, unlike the

23

previous version in [30], the parameter, k, is determined incrementally within the

algorithm, itself. Overall, it is argued that the use of clustering algorithms allows

us to significantly decrease the number of vertices, which consequently reduces the

number of PCFs to avoid over-fitting problem.

The proposed algorithm also aims to eliminate redundant constraints. In this

elimination process, first of all, radii of data points in set A calculated and used to

find, so called, “purity” of the set A. If the purity of set A is less than a pre-set

threshold (Algorithm 3.2, Step 2), data points in set A are partitioned into two

clusters with k-means algorithm (k = 2). Then radii of these clusters are calculated

and used to find “purity” of the clusters (Algorithm 3.2 , Step 2). Following this,

the average purity is calculated. If this average is greater than a pre-set threshold,

the clustering operations stop. If not, the cluster count (k) is increased by one and

the calculations are repeated. This incremental process can be stopped if the purity

conditions are met at a certain k value, or if the clusters become too small (with

respect to a threshold). Here, the purity term naturally provides an indication of

how well the combination of PCF regions (clusters) cover the data belonging to the

class of interest. If majority of the data within a cluster belongs to the same class,

then the cluster is considered to be pure (induced as the opposite of impurity [54]).

The mathematical definition is as provided in Equation 3.18.

Once the clusters are set (together with their corresponding purities), a pre-

check for all clusters with a desirable level of purity greatly reduces the computation

time. If a cluster is very pure, then, there is no need to solve an LP for PCF

construction. The separating cone can be analytically obtained (in a single step,

given in Algorithm 3.1, Step-3) with the available radius with no further PCF steps.

This situation constitutes a significant achievement of the proposed ICF algorithm.

If a cluster is not pure enough (as opposed to the case in the upper paragraph),

then the LP model must be solved. However, even at this stage, a significant com-

putational improvement (through smart data elimination) is proposed herein. First,

the largest radius inside a cluster is calculated and it is scaled with a parameter

(Algorithm 3.2, Step-3) to get the threshold for data elimination. Then all the data

points of which distance is less than that threshold can be totally omitted from the

LP solver for that cluster. This leaves the LP algorithm to handle only few repre-

24

Algorithm 1 Algorithm 2

Input:
set A, set B, ✏

r = 0

r = r + 1

tr < ✏

Get the CF

Get the PCF
by solving

LP problem

r = k

Output:
Final Classifier

no

yes

yes

no

Set k = 1,
Set parameters
⌧1, ⌧2, ⌧3, ⌧4

Apply k-means
to set A and

get the clusters
Ar, r = 1, . . . , k

r = 0

r = r + 1

Calculate the
purity rates tr
of each cluster

r = k

t̄ =

Pk

r=1
tr

k

t̄ > ⌧3 or
 (Ar) <
 (A)⌧4

k = k + 1

Reduce the sets
Ar and B to

obtain reduced
sets Ār and B̄

A,B

yes

no

yes

no

Ār, B̄, tr,
r = 1, . . . , k

1

Figure 3.1. The flowchart of the ICF Algorithm

25

sentative data samples along the shell of the cluster, while eliminating all obvious

central portions (which do not really contribute to the PCF shape at the end of

LP). The central data elimination step can be visualized in Figure 3.2., where

Figure 3.2.(b) contains all data points for a cluster of the yellow-labeled class,

and Figure 3.2.(e) shows the elimination of central (completely pure) portion of

the cluster for faster LP solving. It must be noted that the constructed PCF (at

the end of an LP) for the yellow cluster in Figure 3.2.(d) and the resulting PCF

for the yellow cluster in Figure 3.2.(e) will be covering the corresponding classes

equally well for both cases.

For multi-class problems, classifiers are obtained for each class by using one-

against-all approach. In that approach, a classifier is obtained for the points belong

to a class (considered as set A) and all the points belonging to other classes con-

sidered as set B. Then, further classifier generation steps are performed for each

class within the previous set B.

The overall ICF construction for generating multiple conic functions through

reduced LPs can be explained as nested calling of two sub-routines, it is called as

Algorithm 3.1 and Algorithm 3.2. The algorithm nesting is briefly explained in

Figure 3.1. and detailed algorithm steps are presented as pseudo-codes below.

Algorithm 3.1.

A = {a1, . . . , am}, ai ∈ Rn, i ∈ I = {1, . . . ,m} (3.1)

B = {b1, . . . ,bp}, bj ∈ Rn, j ∈ J = {1, . . . , p} (3.2)

Define: ψ{·} operator as the number of data points in the corresponding set

(number of rows in the matrix).

Step 0: Choose ε ∈ [0, 1]

Step 1: Apply Algorithm 3.2 using set A and set B. Get the reduced sets as Ar

and B, purity rates of Ar as tr and cluster centroids for each cluster as cr.

Step 2: Finding gr: For each r ∈ {1, . . . , k} repeat this step.

If tr < ε:

Determine gr with parameters (wr, ξr, γr, cr) by solving the corresponding LP prob-

26

lem, LPr (described below). Here, gr corresponds to the polyhedral conic function

for Ar. While solving LPr, use reduced sets Ar and B, centers cr ∈ Rn, r = 1, . . . , k.

The LPr is defined as the following optimization:

min
1

ψ{Ar}

∑

i∈Ir

yi +
1

ψ{B}

∑

j∈J

zj (3.3)

subject to

〈wr(ai − cr)〉+ ξr ‖ai − cr‖1 − γr + 1 ≤ yi, ∀i ∈ Ir (3.4)

−〈wr, (bj − cr)〉 − ξr ‖bj − cr‖1 + γr + 1 ≤ zj, ∀j ∈ J (3.5)

yi > 0, zj > 0 (3.6)

else: Calculate radiusa and radiusb as follows:

radiusa = max
i∈I r
‖ai − cr‖2 (3.7)

radiusb = min
j∈J
‖bj − cr‖2 (3.8)

γr =
radiusa + radiusb

2
(3.9)

to obtain gr function;

gr(x) = ‖x− cr‖2 − γr (3.10)

Please note that Equation 3.10 is the simplified form of the conic functions given

in Equation 2.23. Here; p = 2 denotes that the norm used is l2-norm; w = 0 ∈ Rn

and ξ = 1.

Step 3: Determine the final classifier function as the minimum function surface of

the found grs:

G(x) = min
r=1,...,k

gr(x), (3.11)

where “min” operator renders a combination surface by range-wise combining the

smallest-valued conic functions (grs).

The following set of pseudo-codes explain the nestedly-called Algorithm 3.2,

which processes A and B sets to yield:

• the value for number of clusters: k,

• reduced subsets of A as Ar,

27

• reduced set B with eliminated points as B,

• subset purities as tr, and

• cluster centers as cr;

and significantly reduce the computation time.

Algorithm 3.2.

Step 0: Set k =1 and choose τ1, τ2 ∈ [0,∞], τ3, τ4 ∈ [0, 1].

Step 1:Apply the k-means Algorithm to A. Get clusters Ar, and their centers, cr,

r ∈ {1, . . . , k}

Step 2: Determine the purity rate of each cluster Ar as tr, through the following

calculations:

Ir = {i ∈ I : ai ∈ Ar} (3.12)

J = {j ∈ J : bj ∈ B} (3.13)

radiusa =

∑
i∈Ir ‖ai − cr‖2
ψ{Ar}

(3.14)

radiusb =

∑
j∈J ‖bj − cr‖2

ψ{B}
(3.15)

l = max
i∈Ir
‖ai − cr‖2 (3.16)

B̃ = {b ∈ B : ‖b− cr‖2 < l} (3.17)

tr =
ψ{Ar}

ψ{Ar}+ ψ{B̃}
(3.18)

where tr is the purity of the cluster, r. Let’s define an average purity of these r

clusters as t = 1
k

∑k
i=1 ti. If t > τ3 or ψ{Ar} < ψ{A} × τ4, then go to Step 3.

Otherwise increment k := k + 1 and go to Step 1.

Step 3: Determine the sets Ar and B as follows and pass the all calculation results

to Algorithm 3.1.

Ar = {‖ai − cr‖2 > radiusa × τ1}, ∀i ∈ Ir (3.19)

B = {‖bj − cr‖2 < radiusb × τ2}, ∀j ∈ J (3.20)

Ir = {i ∈ I : ai ∈ Ar} (3.21)

28

J = {j ∈ J : bj ∈ B} (3.22)

With the above algorithm, all data points that have limited or no contribution

for k-means based PCF algorithm are eliminated. Consequently, several redundant

constraints of LP model are eliminated.

Both Algorithm 3.1 and Algorithm 3.2 can be considered as the contribution

of this paper. Starting from Figure 3.2., an illustrative example with three classes,

shown in green, yellow and purple is presented. The one-against-all step starts by

choosing the yellow-labeled class as class-A and combining the other two classes

to another class, labeled in black (Figure 3.2.(b)). Assume that k = 1 does not

satisfy the stopping criteria in Algorithm 3.2, to separate all of yellow points from

all of black points, the algorithm (Step 1 of Algorithm 3.2) makes k = 2 in the

next step, and considers the PCF count to become 2 (illustrated with dark- and

light-yellow in Figure 3.2.(c)). Then, the central (convex-part) data points from

the light-yellow point cloud is eliminated for speed improvement before obtaining a

PCF (gr-1) for this light-yellow set (Figure 3.2.(e)). It must be noted that these

last steps must be repeated for the dark-yellow subset and its corresponding PCF

(gr-2) must be merged with the previous reduced PCF (gr-1) to come up with the

overall PCF of the yellow class (g).

Similar to the steps acting upon the yellow class, the combination of individual

PCFs (or cones) over the green class is illustrated. The iterative k-means clustering

step provides that the total number of clusters for the green class is 3. According

to the illustrative example, the two clusters in the farther side are found to be pure

enough. Therefore, the corresponding conic functions are directly (algebraically)

found (via Algorithm 3.1, Step-2). The algorithm yields two simple cones for the

first part of the disconnected green set (Figure 3.3.). The cone expressions are

quickly determined as simple analytical expressions.

For the third cluster of the green class, the purity level is determined to be

less than the threshold. This necessitates polyhedral conic function construction by

solving LP. After running the necessary algorithms in the LP steps, the eventual

PCF level-set is obtained. Figure 3.4. shows the overall conic functions (from

Figure 3.3.) and the new PCF. Notice that the sides of the classifier correspond-

ing to the third green-labeled cluster do not form a regular cone, but a PCF. By

29

Figure 3.2. An illustration of splitting and data reduction (Algorithm 3.2) (a) Three

classes with green, purple and yellow labels (b) Selection of the yellow class as class A and

the rest as set B (black labeled) (c) Splitting class A into two clusters if k = 2 (light and

darker yellow: A1 and A2) (d) Considering the light yellow part as the selected sub-cluster:

A1 (e) Reducing the sub cluster A1 by eliminating central data points and obtaining A1

while also obtaining the reduced set B The clusters are illustrated as the horizontal plane

in 3D for compatibility with Figure 3.2. and onwards, where the vertical axes correspond

to a dimension to represent the cone or PCF value

30

Figure 3.3. (a) Solution of a conic function that best separates a sub-cluster of green-

labeled set (b) Combination of two such conic functions, separately optimized for different

sub-clusters of green-labeled set

combining this PCF with the previous two cone functions, the final classifier is

achieved. Figure 3.5. shows the final classifier as the point-wise minimum surface

of three functions. For clarity, top and bottom views are presented in Figure 3.4.

and Figure 3.5.

3.2. Computational Tests

In this section, training and test accuracy rates of the ICF are presented

and the ICF is compared with k-means based PCF algorithm. Due to elimination

of certain data points, such comparison is necessary for motivating the proposed

method. The algorithms are implemented using Python 2.7. Linear programming

model is solved with the Gurobi package [55]. Tests are carried out on a computer

with Intel(R) Core(TM) i7 CPU running at 2.5 GHz and 16 GB RAM.

By definition τ1, τ2 ∈ [0,∞], τ3, τ4 ∈ [0, 1]. We choose τ1 = 0.9, τ2 = 1.1,

τ3 = 0.95 and τ4 = 0.05, which were heuristically selected, considering a compro-

mise between speed versus accuracy. The data points for classification problems

are pre-divided to training and test sets as described in their showcase. Properties

of the datasets are given in Table 3.1.. The selection of ε, τ1, τ2, τ3 and τ4 pa-

rameters must be performed according to the following facts: The ε parameter is a

31

Figure 3.4. Three conic functions (rendered as colored surfaces) obtained by ICF algo-

rithm are illustrated by top and bottom views (a)–(b)

Figure 3.5. Top and bottom views (a)–(b) of the final classifier obtained as point-wise

minimum of the three conic functions in Figure 3.4.

32

Table 3.1. Datasets and their corresponding properties

Dataset # of training # of test # of features # of classes

data points data points

Abalone [56] 3133 1044 8 3

Page blocks [57] 4000 1473 10 5

Satellite [58] 2000 4435 36 6

Shuttle [59] 43500 14500 9 7

Cover type [60] 15120 565892 54 7

Table 3.2. Train and test set accuracy rates, together with combined run-times

Dataset Proposed Algorithm-ICF k-means based PCF

Train Test Time (s) k Train Test Time (s)

Abalone 48.80 47.70 16.02 5 48.50 46.7 40.90

Page blocks 89.10 86.08 27.30 3 93.75 81.13 98.00

Satellite 87.40 86.10 181.50 6 87.60 86.10 372.20

Shuttle 93.48 93.47 2671.20 3 96.42 96.50 13038.50

Cover type 61.43 53.60 1242.33 4 67.78 52.45 2972.08

threshold to decide whether an LP is necessary, or not, in the ICF algorithm. High

values for this parameter increases the chance of calling the LP for PCF construc-

tion, while its low values favor for algebraic cone construction (corresponding to

a faster, but possibly lower resolution result). The parameter τ1 defines the ratio

of how much of redundant data are to be eliminated from set A. As τ1 increases,

more data elimination occurs. Similarly, τ2 defines the data elimination ratio for

set B. If more data is eliminated from sets, the operations become faster while

reducing the training accuracy. For example, although choice of τ1 and τ2 as in-

finity is theoretically allowed, it causes a complete loss of accuracy. Therefore, a

practicing engineer/scientist should naturally avoid choices of ill conditioned values

for these parameters. The other two parameters, τ3 and τ4, define thresholds to

increase/decrease number of sub-sets. Details of the sample implementations can

be reached from [8,9].

The retained accuracy (as opposed to the original – and accurate – k-means

based PCF) while the reduced computational time results clearly indicate that the

proposed algorithmic improvements pay. The “k” values in the first column of the

33

Figure 3.6. Training Accuracies, bars with horizontal lines for the proposed, bars with

diagonal lines for the previous k-means PCF

Figure 3.7. Test Accuracies, bars with horizontal lines for the proposed, bars with diag-

onal lines for the previous k-means PCF

34

right part (k-means based PCF) are, in fact, determined using the proposed in-

cremental algorithm (for fair comparison). Therefore, it must also be noted that

the original k-means PCF algorithm does not have a methodological approach for

determining the k value to begin with. Hence our incremental algorithm also pro-

vides another advantage of determining the k value. Finally, it must be noted that

the theoretical computational complexity of the overall ICF algorithm necessarily

depends on the complexity of the LP in Algorithm 3.1, Step 2 (if part). Therefore,

the less the algorithm hits this part, the faster the program runs. The contribution

of this work is, therefore, by reducing the number of times this time-consuming LP

runs.

In Figure 3.6. andFigure 3.7., training and test accuracy rates for five

datasets are given in chart form for comparing the performances of the two meth-

ods. One can see that the data elimination does not adversely affect classification

accuracy. In fact, by eliminating the over-fitting problem, test accuracies occasion-

ally increase. From Table 3.3., the improvement in actual computation times is

clear. In order to average-out the effects of training sample selection in the perfor-

mance, the experiments are repeated 10 times by randomly selecting the training

and testing samples from each dataset, including the recommended training-test

separation by the authors of these datasets. The results presented in Table 3.2.

are the averages of these 10 runs. In this table, it can be observed that the test

accuracies seem not to be adversely affected by the proposed incremental steps

which causes significant time improvement. In fact, in three of the five sets, the

test accuracies increase and in one case it does not change. Since the given run

times correspond to the total durations from test and training phases, and since

the test run times were set to correspond to the same amount of comparisons (in

the new ICF and the previous k-means based PCF), it can be concluded that the

run time reduction is mostly due to the savings from the execution times during the

training phase. Clearly, by fine tuning according to the structure of the datasets,

several state of the art methods can give better results in these available datasets.

For instance, Dozono and Nakakuni reports that a test accuracy of around 60%

could be achieved for the Abalone dataset using FP-SOM [61]. On the other hand,

this work is not intended to produce the highest attainable test accuracies; it only

35

Table 3.3. Time improvements for different datasets

Dataset Abalone Page blocks Satellite Shuttle Cover type

Improvement 60.83% 72.14% 51.24% 79.51% 58.19%

proposes an improvement to the already available PCF approaches.

The time improvements achieved with the ICF algorithm are presented as

percentages in Table 3.3. Percentages are calculated as:

improvement =
timek-means PCF − timeICF

timek-means PCF

(3.23)

3.3. Conclusions On The ICF

In this section, a new optimization based classification method using k-means

clustering algorithm with conic functions is proposed. The conic functions already

constitute a successful classifier for several real-life problems. On the other hand,

they require repeated solutions of LPs, rendering the algorithm questionable for

large datasets. By systematically looking for occasions of LP-avoidance, and fur-

ther eliminating non-representative data points (for the construction of separating

surfaces), the total LP run-time is significantly reduced. The LP-avoidance occurs

whenever a cluster within a class has high purity. Then, a conic function can be

analytically obtained without even solving the LP sub problem. When there is no

possibility of constructing an analytical cone representation, the LP becomes neces-

sary. But, even in that case, our new algorithm further eliminates the central pure

portion of clusters (which do not contribute to the formation of PCF shapes) and

significantly reduces the number of data points to enable LP to be solved faster.

These two time-saving aspects experimentally made the method to run in about 64%

less time than the previous implementation of the k-means based PCF algorithm

(on typical PC configurations). Besides, the proposed method doesn’t require the

a-priori knowledge of number of clusters (k) in the clustering stage, and iteratively

converges to the correct selection of k. The experimental results (Subsection 3.2.)

are in accordance with the expected improvements.

With the above observations, the proposed method is expected to contribute

36

well to the novel k-means based PCF classifier, which is argued to be a plausible

alternative for the big data community [30]. The k-means PCF is a relatively

new method which outperforms the celebrated SVM in several applications [30].

However, its extensive usage of LP was a drawback of the algorithm for larger

datasets. Therefore, the presented time improvement is expected to attract interest

in various classification problems. It remains an interesting problem to pursue an

approach to solve the particular LP without requiring simplex algorithm during

PCF classifier construction to further improve computational speeds.

37

4. O-PCF ALGORITHM FOR ONE-CLASS CLASSIFICATION

Supervised data classification is an important task in data mining and machine

learning. The aim of supervised data classification is to label test data by construct-

ing a function using a classification algorithm based on training data. There are

many classifiers based on statistical methods and optimization approaches. Among

these classifiers, optimization-based classifiers have been shown to be particularly

effective.

The one-class classification problem differs in one essential aspect from the

conventional classification problem. In one-class classification, it is assumed that

information on only one of the classes, the target class, is available. This means

that only example objects from the target class can be used and that no information

about the other class, namely, the class of outlier objects, is present. The decision

boundary between the two classes must be estimated from data corresponding to

only the target (normal, genuine) class. The task is to define a decision boundary

around the target class such as many as possible of the target objects are accepted,

while the chance of accepting outlier objects is minimized [62]. The term one-class

classification originates from Moya [63]. This type of classification is also known as

concept learning [64], outlier/novelty detection [65, 66], anomaly detection [67, 68]

or single-class classification [69]. Although the classifiers are typically trained only

on the target class, there are some classification algorithms that use the poorly

sampled outlier class (the complementary set to the target class) or unlabeled data

in addition to the target class [70]. The problem of building text classifiers using

positive and unlabeled examples is studied and the biased SVM algorithm is pre-

sented in [71]. In [72], Elkan and Noto studied identifying protein records problem

and used only positive and unlabeled data in order to construct the classifier. One-

class classification algorithms offer solutions to important problems. For instance,

for very rare diseases, it can be difficult to obtain patient data; similarly, acquiring

fault information that must be obtained to enable the advance detection of ma-

chine failures can be difficult. Similar difficulties also arise in object recognition,

document classification, spam detection, speaker classification, etc.

Two fundamental studies on one-class classification are “Support Vector Do-

38

main Description” (SVDD) [22] and “Estimating the Support of a High-Dimensional

Distribution” (O-SVM) [20], which represent two different approaches. In [22], Tax

and Duin attempted to separate the target class from all other possible data ob-

jects by constructing a hypersphere with the minimum radius around the target

class. In [20], Schölkopf et al. used a hyperplane that was maximally distant from

the origin to separate the target class. An algorithm called Mapping Convergence

was proposed in [70]. It computes the boundary between the target class and the

negative data by incrementally labeling unlabeled data. Manevitz and Yousef pro-

posed different versions of a support vector machines (SVM) method for one-class

classification in the context of information retrieval [73]. They reported the ac-

curacy of the algorithm on the Reuters dataset. In [74], Zhu et al. presented a

weighted one-class support vector machine to eliminate the sensitivity of one-class

SVM classification to noise. In this algorithm, the weights are determined using a

k-nearest neighbors approach, and lower weights are assigned to noise. They tested

their algorithm on real datasets from the UCI Machine Learning Dataset Reposi-

tory [75] and web problems. Hao incorporated the concept of fuzzy set theory into

one-class SVM classification in [76]. In [68], Erfani et al. addressed the curse of the

dimensionality in anomaly detection. They presented a hybrid model in which deep

belief networks are trained to extract features and a one-class SVM is trained from

the features learned by the deep belief networks. Campbell and Bennett proposed

a simpler kernel method for support estimation based on linear programming (LP)

for novelty detection [66]. They presented test results obtained on medical and fault

detection datasets. Khan and Madden presented a detailed survey in [77].

In this section, a novel one-class classification algorithm, namely, one-class

polyhedral conic functions (O-PCF) is developed. PCFs are the basis of many

multi-class classification algorithms [30,31,51] and PCF-based classifiers have been

applied to many real-life problems, e.g., data reduction [51], arrhythmia classifica-

tion [52], visual object detection [78] and gesture recognition [53]. An investigation

of the use of PCF-based classifiers for one-class classification and the corresponding

novel O-PCF algorithm based on mathematical programming model are our main

contributions.

The remainder of this section is organized as follows. The proposed one-class

39

PCF (O-PCF) algorithm is introduced in Subsection 4.1. The results of experiments

on real datasets are presented in Subsection 4.2. Finally, conclusions about the O-

PCF are provided in Subsection 4.3.

4.1. Proposed Algorithm: One-Class PCF (O-PCF)

In this section of the dissertation, a novel algorithm for the one-class classi-

fication problem using PCFs is developed. Unlike in the binary classification task,

in one-class classification, there are no available data from the outlier class. There-

fore, we have access only to data objects from the target class, set A. Hence, when

constructing a classifier, only the target class can be used for training. When this is

the case, existing methods based on PCFs can not solve the classification problem.

The O-PCF algorithm requires an LP model to be solved in the training phase

for the purpose of finding the best separating function with the parameters w, ξ

and γ. If the target class A is defined as in Equation 4.1, the LP model given in

Equation 4.2 is solved in order to obtain a PCF that separates the target class A

from the outliers.

A = {a1, . . . , am}, ai ∈ Rn, i = 1, . . . ,m. (4.1)

min
∑

i∈I

−(〈w, (ai − c)〉+ ξ
∥∥ai − c

∥∥
1
− γ) + λ

∑

i∈I

zi

s.t.

〈w, (ai − c)〉+ ξ ‖ai − c‖1 − γ ≤ zi ∀i ∈ I

ξ, γ ≥ 1

zi ≥ 0 ∀i ∈ I

(4.2)

where a,w, c ∈ Rn and ξ, γ, z, λ ∈ R. The c is the centroid of the target set A and

is calculated in advance before the solution of the LP (Please note that the model

in Equation 4.2 obtains a PCF for the class A. On the other hand, the O-PCF

algorithm obtains k PCFs for the class A and the centers of these k PCFs are get

from the k-means algorithm.). w, ξ and γ is obtained from the solution of the LP.

In this LP model, the variable zi represents the classification error of data

object ai ∈ A. It takes a non-negative value, as shown in Equation 4.4. The

40

left side of the first constraint in the Equation 4.2 is the g(ai) which is defined in

Equation 4.3. Because any ai is from the target class, it is expected that g(ai) ≤ 0.

That means, ai is classified correctly in the training. In this case, zi takes 0 value

because the objective function tries to minimize the sum of all zi. zi takes a positive

value as misclassification error when g(ai) > 0 which means ai couldn’t be classified

correctly with the related PCF (If the classification algorithm generates more than

one PCF, it may be separated by an another PCF using different center).

g(w,ξ,γ,c)(a
i) = 〈w, (ai − c)〉+ ξ

∥∥ai − c
∥∥

1
− γ (4.3)

zi =

g(ai) if g(ai) > 0

0 if g(ai) ≤ 0

, ∀i ∈ I (4.4)

LP model in Equation 4.2 incorporates two criteria. The first part of the

objective function,
∑

i∈I

−(〈w, (ai − c)〉 + ξ
∥∥ai − c

∥∥
1
− γ), seeks to minimize the

size of the decision boundaries, and the second part, λ
∑

i∈I

zi, seeks to minimize the

training classification error. The resulting objective function allows the decision

boundaries to increase or decrease in size as necessary to achieve both target-class

generalization and outlier-class generalization without requiring the presence of data

from the outlier class in the training set. The parameter λ controls the trade-off

between the classification error and the decision boundary size.

The level set of a PCF is convex; therefore, only convex decision boundaries

can be obtained using a PCF (Please see the convex decision boundary which is

obtained using a PCF from Figure 2.7.). However, in many cases, the target

class is non-convex. For this reason, in the O-PCF algorithm, the target class A is

divided into k clusters in advance using the k-means algorithm. The cluster centers

are obtained as a result of this step as cr where r = {1, 2, ..., k}. Once the clusters

Ar and the centers cr have been obtained, the LP model given in Equation 4.2

is solved for each cluster to obtain the wr, ξr and γr parameters of corresponding

PCFs. From each LP solution, a PCF is obtained; consequently, the number of

PCFs obtained is equal to the number of clusters. Eventually, the final classifier is

obtained as the point-wise minimum of these PCFs, as shown in Equation 4.5.

41

G(x) = min
r=1,...,k

〈wr, (x− cr)〉+ ξr ‖x− cr‖1 − γr (4.5)

The sets A and B are separable if there exist a G(x) such that

G(a) ≤ 0 ∀a ∈ A (4.6)

and

G(b) > 0 ∀b ∈ B (4.7)

Equation 4.5 provides to label any test data point x as target class if the value of

the x is negative in at least a PCF among k PCFs. In other words, in order to

label the x as outlier, the value of the x should be positive in all k PCFs. Please

see Figure 4.1.

The O-PCF algorithm is summarized in Algorithm 4.1.

Algorithm 4.1. The O-PCF Algorithm:

Input: Data points ai ∈ A, λ ∈ [0,∞), k ∈ [1,∞).

Output: The set of PCFs separating the set A from the outliers.

Step 1: (Clustering). Divide the set A into clusters using the k-means algorithm.

Obtain the clusters Ar and their centers cr, r = 1, . . . , k, where:

Ar = {a1, . . . , alr}, ai ∈ Rn, i ∈ Ir = {1, . . . , lr}

Step 2: (Computation of the PCFs).

for r = 1 to k do:

Solve the following LP model to find gr for cluster Ar:

min
∑

i∈Ir

−(〈wr, (a
i − cr)〉+ ξr

∥∥ai − cr
∥∥

1
− γr) + λ

∑

i∈Ir

zi

s.t.

〈wr, (a
i − cr)〉+ ξr ‖ai − cr‖1 − γr ≤ zi, ∀i ∈ Ir

ξ, γ ≥ 1

zi ≥ 0, ∀i ∈ Ir

42

end for

Step 3: (Obtaining the final classifier).

G(x) = min
r=1,...,k

〈wr, (x− cr)〉+ ξr ‖x− cr‖1 − γr

Figure 4.1. O-PCF example: (a) Data points (blue corresponds to the target class); (b)

PCF for cluster 1; (c) PCF for cluster 2; (d) PCF for cluster 3; (e) PCF for cluster 4;

(f) Final classifier G(x)

An illustrative example is given in Figure 4.1. The target and outlier classes

are shown in Figure 4.1. - a. The blue and red data points correspond to the

target and outlier classes, respectively. One can easily see that the target set is

non-convex. In this illustrative example, Algorithm 4.1 is used to find classifiers

with a k-means parameter of k = 4. Only blue data points are used in the training

phase. The PCFs for clusters 1, 2, 3 and 4 are shown in Figure 4.1. - b, c, d and

e, respectively. The final classifier, Figure 4.1. - f, is constructed using Equation

4.5 (Step 3 of Algorithm 4.1) and is the point-wise minimum of the PCFs depicted

in Figure 4.1. - b, c, d and e.

In order to investigate the affect of λ selection, an illustrative example is

created. The target class is shown with black diamond shape and the outlier class

is shown with blue circle shape in 1-d space in Figure 4.2. The y-axis is the

PCF value. The 1-dimensional PCF which is shown with the green dashed line is

obtained by solving the O-PCF model when λ = 2. The PCF which is shown with

43

Figure 4.2. Effect of different λ selections on a 1-dimensional PCF

the red line is obtained when λ = 5. The value of k is set to 1 in this example.

As described in Algorithm 4.1, the negative side of the PCF functions accept data

points as target class. Thus, one can see that larger λ parameter forces O-PCF

model to get wider decision boundary which increases the chance of acceptance of

the data points as target class.

PAC (Probably Approximately Correct) learning theory was introduced by

Valiant in [79]. This theory led to a huge amount of research areas in Compu-

tational Learning Theory (COLT). Valiant’s learnability model was extended to

learning classes of concepts defined by regions in Euclidean space, by Vapnik and

Chervonenkis in [80]. According to Vapnik-Chervonenkis theory, the VC dimen-

sion (Vapnik-Chervonenkis dimension) is a measure of the capacity of classification

functions [81]. The cardinality of the largest set of data points that the classifi-

cation function can shatter is defined as VC dimension. It was shown that the

essential condition for distribution-free learnability is the finiteness of the VC di-

mension in [80]. In [82], Pestov stated that PAC learnability is equivalent to finite

VC dimension for every concept class.

44

Figure 4.3. An illustrative example of the VC dimension of a PCF in 2-d space (a) The

PCF can shatter 9 data points; (b) The PCF can not shatter 10 data points

In [83], it is proven that the VC dimension of polygons formed by intersecting

at most s half-spaces 2s + 1. In [29], Gasimov and Ozturk proved the level set

of a PCF is an intersection of at most 2n half-spaces and therefore is a convex

polyhedron. Thus, it is clear that the VC dimension of a PCF is finite and 2×2n+1.

There is an illustrative example about the VC dimension of a PCF in Figure 4.3.

One can easily see that a PCF has up to 4 sides in 2-d space. There are two

subsets depicted with blue-circle and red-diamond shape. In Figure 4.3.-a, there

are 9 data points in the dataset. Clearly, the PCF can separate blue-circle and red-

diamond subsets. However, when the dataset has 10 points as in Figure 4.3.-b, it

is impossible to separate this combination of subsets with a PCF.

The VC dimension of a PCF is 2 × 2n + 1 in n-dimensional space. However,

the O-PCF algorithm generates k PCFs. Thus, when k is equal to the cardinality

45

of the set A, the O-PCF algorithm can shatter all data points in A. The proof is

provided in [29]. Clearly, the VC dimension of the O-PCF algorithm is infinite.

4.2. Experimental Results

In this section, the performance of the O-PCF algorithm is evaluated in com-

parison with other methods presented in the literature. The O-PCF algorithm is

compared with the O-SVM [20], SVDD [22], the 1-nearest-neighbor method (1-

NN), the Parzen density estimation method and the local Gaussian approximation

method.

The O-PCF algorithm was implemented in Python 2.7. The source code is

provided in [84]. The tests were performed on a computer with a 2.5 GHz Intel(R)

Core(TM) i7 CPU and 16 GB of RAM. The Gurobi package [55] was used to solve

the LP model.

The O-SVM, SVDD, 1-nearest-neighbor, Parzen density estimation and local

Gaussian approximation methods were implemented in MATLAB. The LIBSVM

package [18] was used to solve the O-SVM and the SVDD methods. The Gaussian

RBF kernel was used as kernel function in the O-SVM and the SVDD. The formu-

lations in [85] were used for the 1-nearest-neighbor, Parzen density estimation and

local Gaussian approximation methods.

The experimental results are reported as F value with the best parameters

obtained via grid search. The λ of the O-PCF was chosen from {0.1, 1, 10, 100} and

the number of clusters k was chosen from {1, 3, 5, 10, 15}. The width of the Gaussian

RBF kernel σ was chosen from {0.1× d̄, d̄, 10× d̄}. d̄ is the mean distance between

data points in the training set and was calculated as in the Equation 4.9. The pa-

rameter ν in O-SVM was chosen from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The

cost parameter in SVDD was chosen from {1/n, 2/n, 5/n, 10/n, 0.1, 0.3, 0.5, 0.7, 0.9},

where n is the feature size. The smoothing parameter in the Parzen density estima-

tion was chosen from {0.1, 0.5, 1, 2, 3, 5, 10, 100, 1000}. The threshold parameters

in the 1-nearest-neighbor, Parzen density estimation and local Gaussian approx-

imation were optimized with 25 different values, ranges from minimum value to

maximum value in the prediction scores.

46

A = {a1, . . . , am}, ai ∈ Rn, i ∈ I = {1, . . . ,m} (4.8)

d̄ =
1

m2

m∑

i=1

m∑

j=1

‖ai − aj‖2 (4.9)

In these tests, the O-PCF is compared with other one-class classification al-

gorithms on 14 datasets from the UCI Machine Learning Dataset Repository [75]

and LIBSVM [18]. The properties of the datasets are provided in Table 4.1. The

number of dimensions and the sizes of the training and test sets are given in the

second, third and fourth columns, respectively. If there is no independent identi-

cally distributed (i.i.d.) test set, this is indicated by a dash in the last column.

The numbers in parentheses denote the sizes of each class. To evaluate the perfor-

mance of one-class classifiers, the datasets are reorganized. For each dataset except

Abalone and Wine Quality Red, the largest class in the dataset was considered to

be the target class and the rest are considered outliers. The sample sizes for the

classes are shown in parentheses in the third column. The first class was used as

the target class, and the other was treated as the outlier class in the tests (except

Abalone). The Abalone dataset was reorganized into three one-class classification

problems. In each problem, one class is considered as the target class and the two

others are treated as outliers.

For the four datasets, there is no independent identically distributed (i.i.d.)

test set. Thus, half of the target class was used for training. The remainder of the

target class and the outliers were used for testing. In the Svmguide 1, Satimage

and Web datasets, i.i.d test sets are provided. The target in the training set was

used for training. The other classes in the training set and all of the i.i.d test set

were used for testing.

In the wine quality problem, the goal is to model wine quality and to detect

the few excellent or poor wines. In the Abalone problem, the goal is to predict

the sex of an abalone. Svmguide 1 is an astroparticle application. The Satimage

(Statlog) dataset consists of the multi-spectral values of pixels in a satellite image

and the classification associated with the central pixel in each neighborhood. The

aim is to predict this classification, given the multi-spectral values [75]. In a web

47

Table 4.1. Description of the datasets

Dataset # Dimensions # Training samples # Test samples

Wine Quality Red 11 1599 (681, 918) -

Abalone 8 4177 (1307, 1342, 2649) -

Svmguide 1 4 3098 (2000, 1089) 4000 (2000, 2000)

Satimage 36 4435 (1072, 3363) 2000 (461, 1549)

web-1a 300 2477 (2405,72) 47272 (45865,1407)

web-2a 300 3470 (3363,107) 46279 (44907,1372)

web-3a 300 4912 (4769,143) 44837 (43501,1336)

web-4a 300 7366 (7150,216) 42383 (41120,1263)

web-5a 300 9888 (9607,281) 39861 (38663,1198)

web-6a 300 17188 (16663,525) 32561 (31607,954)

web-7a 300 34692 (23952,740) 25057 (24318,739)

web-8a 300 49749 (48270,1479) 14951 (14497,454)

Skin 3 245057 (194198,50859) -

Covertype 54 581012 (297711,283301) -

problem, the objective is to predict whether a web page belongs to a given category

based on the presence of certain keywords. The skin dataset consists randomly

sampled B, G, R values from face images of various age groups and races. The

task is to predict whether a pixel is a skin or non-skin. The goal of the Covertype

dataset is to predict forest cover type from cartographic variables only.

The F value which is the harmonic mean of precision and recall is chosen as

a performance measure. Precision, recall and F score are defined in Equation 4.10,

Equation 4.11 and Equation 4.12, respectively.

Precision =
tp

tp+ fp
(4.10)

Recall =
tp

tp+ fn
(4.11)

F = 2× precision× recall
precision+ recall

(4.12)

tp, fp and fn respectively correspond to true positive, false positive and false nega-

tive in Equations 4.10 and 4.11. Larger F score achieves better classification in the

48

tests.

Table 4.2. Comparison of training times (s)

Dataset O-PCF O-SVM SVDD

Winequality Red 0.355 0.160 0.027

Abalone FvsIM 0.514 0.034 0.024

Abalone IvsFM 0.578 0.029 0.032

Abalone MvsIF 0.583 0.030 0.024

Svmguide 1 1.992 0.201 0.077

Satimage 3.156 0.103 0.088

web-1a 45.958 1.815 1.628

web-2a 70.033 4.107 3.886

web-3a 90.918 7.278 6.764

web-4a 147.498 49.204 31.769

web-5a 196.736 70.814 65.832

web-6a 415.115 287.771 254.99

web-7a 615.418 872.508 624.698

web-8a 2084.916 3171.187 3041.165

Skin 403.992 176.212 231.228

Covertype 1806.063 5186.955 4975.876

The training times are presented in Table 4.2. Since the 1-nearest-neighbor,

Parzen density estimation and local Gaussian approximation methods are unsuper-

vised methods, only training times of O-PCF, O-SVM and SVDD are presented.

Although training times of O-SVM and SVDD are shorter in small datasets, O-PCF

becomes more advantageous when the problem is larger as in Covertype dataset.

Total required training times of 16 tests are shown in Figure 4.4. Since O-PCF

requires the solution of a linear programming (LP) model rather than a quadratic

programming (QP) model, O-PCF is faster in total.

The test times are presented in Table 4.3. O-PCF, O-SVM and SVDD test

times are much shorter than unsupervised methods because the model is learned

before testing. Total test times of 16 tests are shown in Figure 4.5. The graph is

shown in two parts because the magnitude of supervised and unsupervised methods

are different. Test time of O-PCF and SVDD is shorter than O-SVM.

In order to show the affect of cluster size (k) on training and test time in O-

49

Figure 4.4. Comparison of total training times (s)

Figure 4.5. Comparison of total test times (s)

PCF, Figure 4.6. is presented. In this figure, the times of the Covertype dataset

are presented when λ = 1. O-PCF divides the problem into k smaller problems and

requires to solve k times linear programming (LP) model as described in Algorithm

4.1. According to Figure 4.6., one can clearly see that it takes longer to solve one

large LP than to solve k small LPs. As k increases the training time decreases.

On the contrary, the test time increases linearly as k increases because k PCFs are

calculated for each test point in the O-PCF. The experimental results in terms of

the F values are compared in Table 4.4. The best result in each row is shown in

bold.

On Wine Quality-Red dataset the best performance is obtained with the O-

PCF algorithm. The performances of the other methods are similar. When class F

and M are chosen as the target class in the Abalone dataset, the best performances

50

Table 4.3. Comparison of test times (s)

Dataset O-PCF O-SVM SVDD 1-NN Parzen Local Gauss

Winequality Red 0.134 0.151 0.004 0.047 0.032 0.233

Abalone FvsIM 0.392 0.011 0.004 0.126 0.121 0.424

Abalone IvsFM 0.245 0.023 0.033 0.129 0.129 0.457

Abalone MvsIF 0.350 0.019 0.004 0.131 0.133 0.430

Svmguide 1 0.101 0.151 0.028 0.223 0.210 0.518

Satimage 0.249 0.085 0.080 0.556 0.352 3.540

web-1a 3.528 6.265 0.259 72.984 32.951 2455.471

web-2a 3.805 48.786 29.419 257.139 59.755 2894.671

web-3a 1.659 11.503 0.524 333.735 85.192 6309.65

web-4a 3.208 17.389 0.753 826.464 220.851 4097.988

web-5a 1.248 22.133 0.676 722.307 296.026 3284.168

web-6a 1.339 31.558 0.719 1183.768 443.195 2900.498

web-7a 1.836 37.575 0.705 1376.156 596.847 3707.631

web-8a 1.221 44.988 3.376 1951.342 945.313 2799.602

Skin 17.011 26.482 55.539 104.297 118.818 80.369

Covertype 45.973 490.087 1.286 23936.965 14836.181 15657.101

are achieved by O-PCF. When class I is considered the target class in the Abalone

dataset, the performance of O-SVM is the best. The best performance on the

Svmguide 1 problem is obtained using the O-PCF algorithm. The performance

of the O-SVM is the best on the Satimage dataset but O-PCF, Parzen density

estimation and local Gaussian approximation methods perform poorly. On web

problems web-3a and web-6a, O-PCF achieves the best performance. O-PCF tied

with 1-NN and Parzen density estimation on web-1a and tied with 1-NN, Parzen

density estimation and local Gaussian approximation on web-4a and web-7a. The

performance of the SVDD is the best on web-2a and web-5a. 1-NN achieves the

best performance on web-8a. The best performance on the Skin problem is obtained

using the O-SVM algorithm. O-PCF is superior on the Covertype dataset.

In 8 of the 16 tests, O-PCF outperforms the other methods. In conclusion, it

can be said that the O-PCF algorithm outperforms the other methods in certain

cases and is generally competitive with them.

51

Figure 4.6. Change of training and test time of the O-PCF according to different k values

Table 4.4. Comparison of F scores on the test datasets

Dataset O-PCF O-SVM SVDD 1-NN Parzen Local Gauss

Wine Quality-Red 0.43621 0.41816 0.43603 0.42561 0.42984 0.43312

Abalone FvsIM 0.39358 0.3825 0.33524 0.31834 0.31274 0.31438

Abalone IvsFM 0.43311 0.5570 0.45471 0.3564 0.32128 0.34955

Abalone MvsIF 0.43098 0.40193 0.37012 0.36681 0.36581 0.36618

Svmguide 1 0.92141 0.91626 0.89373 0.7489 0.56425 0.58106

Satimage 0.39731 0.83292 0.83188 0.61268 0.15831 0.15941

web-1a 0.98413 0.93138 0.98165 0.98413 0.98413 0.98411

web-2a 0.98380 0.98472 0.98473 0.98416 0.9838 0.98432

web-3a 0.98337 0.93202 0.9822 0.98336 0.98328 0.98326

web-4a 0.98233 0.93250 0.98214 0.98233 0.98233 0.98233

web-5a 0.98127 0.93031 0.98131 0.98123 0.98123 0.98123

web-6a 0.97715 0.92876 0.97576 0.97714 0.97714 0.97714

web-7a 0.97049 0.92281 0.96621 0.97049 0.97049 0.97049

web-8a 0.93752 0.89586 0.94028 0.98348 0.9375 0.96631

Skin 0.83193 0.88612 0.84504 0.79124 0.79246 0.78996

Covertype 0.43621 0.41816 0.43603 0.42561 0.42984 0.43312

4.3. Conclusions On The O-PCF

In this section, a novel one-class classification algorithm based on PCFs is

developed. The classifier is trained using only data from the target class. In previous

52

research, it has been shown that PCF-based classifiers are competitive with other

well-known algorithms. With one PCF, only a convex set can be separated. Thus, to

obtain non-convex decision boundaries, first the target class is divided into clusters

using the k-means algorithm. Then, a PCF for each cluster is found by solving an

LP model. Finally, the minimum of these PCFs yields the final classifier. Neither

the use of k-means clustering for preprocessing nor the generation of a PCF by

solving an LP model is a novel aspect of this section of the dissertation. Instead,

the investigation of the use of PCF-based classifiers for one-class classification and

the corresponding LP formulation are our contributions to the literature.

Test results obtained using the O-PCF algorithm are presented to compare

the O-PCF with other related methods. The test results lead us to conclude that

the O-PCF algorithm outperforms the other methods in many cases. In addition

to the success of the O-PCF algorithm as seen in the reported tests, it also offers

other advantages; e.g., it requires the solution of a linear programming (LP) model

rather than a quadratic programming (QP) model, and it does not require any

kernel function, as in the case of support vector machines. Furthermore, the classi-

fiers obtained using PCF-based algorithms have very short testing times, which is

important for real-time applications. Based on these observations, the O-PCF al-

gorithm is expected to contribute significantly to the machine learning community.

In future research, it is planned to apply the O-PCF algorithm to real-life problems,

including object detection and healthcare applications.

53

5. AN ALGORITHM FOR CLUSTERWISE LINEAR REGRESSION

IN VERY LARGE DATASETS

Clusterwise linear regression (CLR) is a technique for approximating a data

using more than one linear function. It is based on the combination of two ma-

chine learning techniques: clustering and regression. There are various applications

of CLR problems including applications in market segmentation [86, 87], stock-

exchange [88], benefit segmentation [89] and rainfall prediction [90].

The CLR problems can be modeled using different approaches. Mixture mod-

els [88, 91] and optimization models such as the mixed integer nonlinear program-

ming [92–94], nonsmooth optimization [95] and nonsmooth DC optimization mod-

els [96] are among them. Several algorithms have been developed for solving CLR

problems based on these models. They include the extensions of classical clustering

algorithms such as k-means [97, 98] and EM [91, 99]. Optimization methods have

been extensively applied to solve CLR problems using their different optimization

models [93–96, 100, 101]. Most of these algorithms are not applicable or highly in-

accurate for solving CLR problems in datasets containing hundreds of thousands

and more observations.

CLR is a global optimization problem. It has many local minimizers however

the aim is to get global or near-global minimizers. It is imperative to develop special

procedures for generating starting points when one applies local search methods for

solving such problems. An incremental approach is applied in [95, 96, 100, 101] to

find good starting points. Results of numerical experiments presented in these

papers demonstrate that incremental CLR algorithms are able to find either global

minimizers or solutions with high quality in the sense of overall fit function values.

However, these algorithms are very time-consuming in datasets containing hundreds

of thousands of observations. They might not produce a solution in a reasonable

time.

This section presents an algorithm which is applicable to very large datasets.

It is demonstrated that the use of the incremental approach allows one to signifi-

cantly reduce the computational efforts in nonsmooth optimization based CLR algo-

rithms. The new algorithm is designed using the incremental algorithm introduced

54

in [95] and four procedures for reduction of computational cost. It should be noted

that the similar algorithms can be designed using algorithms from [96, 100, 101] as

they are also based on the incremental approach.

The proposed algorithm is tested using datasets for regression containing from

tens of thousands to millions of observations. We also compare the proposed algo-

rithm with other mainstream regression algorithms in the sense of both accuracy

and prediction performance.

The structure of the section is as follows. The CLR, auxiliary CLR problems

and the incremental algorithm are described in Subsection 5.1. Procedures for re-

ducing computational effort and a new algorithm for large scale CLR problems are

introduced in Subsection 5.2. Computational results are reported in Subsection 5.3.

and Subsection 5.4. concludes the section.

5.1. Clusterwise Linear Regression Problem and an Incremental Algo-

rithm for Its Solution

Let A = {(ai, bi) ∈ Rn ×R : i = 1, . . . ,m} be a given dataset where ai ∈ Rn

is an input and bi ∈ R is an output. For linear regression coefficients (x, y) ∈ Rn×R

and an observation (ai, bi) ∈ A the squared regression error is defined as:

Ei(x, y) =
(
〈x, ai〉+ y − bi

)2
. (5.1)

The notation Eab(x, y) for an observation (a, b) ∈ A is used. Let Aj, j = 1, . . . , k

be clusters such that Aj 6= ∅, j = 1, . . . , k and

Aj
⋂

Ap = ∅, j, p = 1, . . . , k, p 6= j, A =
k⋃

j=1

Aj.

For the dataset A, the CLR aims to find an optimal partition of A in k clusters

and regression coefficients {xj, yj}, j = 1, . . . , k simultaneously within clusters in

order to minimize the overall fit.

Let {xj, yj} be linear regression coefficients computed using only data points

from the cluster Aj, j = 1, . . . , k. We associate a data point with the cluster whose

regression error at this point is smallest. Then the overall fit function is:

fk(x, y) =
m∑

i=1

min
j=1,...,k

Ei(x
j, yj), (5.2)

55

where x = (x1, . . . , xk) ∈ Rk×n and y ∈ Rk. Thus the k-clusterwise linear regression

(k-CLR) problem is formulated as follows:

minimize fk(x,y) subject to x ∈ Rk×n, y ∈ Rk. (5.3)

In general, the objective function fk in this problem is nonsmooth nonconvex.

An auxiliary CLR problem is used to find good starting points for each new lin-

ear function in the incremental algorithm. Given a solution (x1, y1, · · · ,xk−1, yk−1)

to the (k − 1)-CLR problem (5.3), k > 1, denote the regression error of the data

point (a, b) at the (k − 1)-th iteration by

rabk−1 = min
j=1...k−1

Eab(x
j, yj). (5.4)

Then the k-th auxiliary CLR function is:

f̄k(u, v) =
∑

(a,b)∈A

min{rabk−1, Eab(u, v)}, u ∈ Rn, v ∈ R. (5.5)

The problem:

minimize f̄k(u, v) subject to u ∈ Rn, v ∈ R (5.6)

is called the k-th auxiliary CLR problem. This problem has n+ 1 variables.

Using the auxiliary CLR problem the following incremental algorithm is in-

troduced in [95] to solve the CLR problem (5.3) with the given k > 0 number of

linear functions. At each iteration of this algorithm, the Späth algorithm [98] is

applied to solve both the auxiliary problem (5.6) and the CLR problem (5.3).

Algorithm 5.1. Incremental algorithm for solving Problem (5.3):

Initialization: Compute the linear regression function (x1, y1) ∈ Rn × R of the

whole set A. Set l = 1.

Step 1: (Computation of the next linear regression function) Set l = l + 1. Let

(x1, y1, · · · ,xl−1, yl−1) be the solution to the (l−1)-CLR problem. Apply the Späth

algorithm to find a solution (ū, v̄) ∈ Rn×R to the l-th auxiliary CLR problem (5.6).

Step 2: (Refinement of all linear regression functions) Select (x1, y1, · · · ,xl−1, yl−1, ū, v̄)

as a new initial solution, compute their respective clusters and apply the Späth al-

gorithm to solve CLR problem (5.3) for k = l.

Step 3: (Stopping criterion) If l = k, then stop. Otherwise go to Step 1.

56

In Algorithm 5.1, Steps 1 and 2 are the most important steps. In Step 1,

Problem (5.6) is solved to find initial solutions for the l-th linear regression function.

In Step 2, the Späth algorithm starting from the solution found in Step 1 is applied

to solve Problem (5.3) for k = l. The accuracy of Algorithm 5.1 heavily depends on

these two steps, however Step 1 is the most important as it finds starting points.

Problem (5.6) is a global optimization problems and it is imperative to use

many starting points to find its global or near global solutions when one applies a

local method, like the Späth algorithm. A procedure for finding such starting points

is introduced in [95]. At each iteration of the incremental algorithm, this procedure

constructs starting points using results from the previous iteration. Assume that

A1, . . . ,Al−1 are clusters found at the (l− 1)-st iteration (l > 1) of the incremental

algorithm. Then this procedure proceeds as follows.

1. Take the cluster Ap, p = 1, . . . , l−1 and any point (a, b) ∈ Ap. If 〈xj, a〉−yj =

0 then remove the point (a, b) from the list and choose the next point from

Ap.

2. Construct a hyperplane (xab, yab) ∈ Rn × R passing through the point (a, b)

and parallel to the hyperplane (xj, yj).

3. Compute a cluster around the hyperplane (xab, yab) and update this hyper-

plane using points only from this cluster.

4. Construct the collection of l linear functions
[
(x1, y1), . . . , (xl−1, yl−1), (xab, yab)

]

and compute the value fabl of the function (5.2).

5. Repeat steps 1-4 until all data points visited.

6. Compute the minimum value f lmin = min
(a,b)∈A

fabl and for given γ1 > 1 compute

the threshold f lt = γ1f
l
min.

7. Compute the set Slst =
{

(xab, yab) : fabl ≤ f lt
}

.

Now Steps 2 and 3 can be modified as follows.

• Step 2’. (Computation of the next linear regression function). Set l = l + 1.

Let (x1, y1, · · · ,xl−1, yl−1) be the solution to the (l − 1)-CLR problem. Take

57

any (u, v) ∈ Slst and apply the Späth algorithm starting from this point to find

a solution (ū, v̄) ∈ Rn×R to the l-th auxiliary CLR problem (5.6). Repeat it

for each point from the set Slst and compute the set Saux of stationary points

of the problem (5.6).

• Step 3’. (Refinement of all linear regression functions) Select any (ū, v̄) ∈ Saux

and construct (x1, y1, · · · ,xl−1, yl−1, ū, v̄) as an initial solution and apply the

Späth algorithm to solve CLR problem (5.3) for k = l. Repeat this procedure

for all (ū, v̄) ∈ Saux and get the set Slsol of solutions to the CLR problem

(5.3). For any (x, y) ∈ Slsol compute the value f lxy of the function (5.2) and

find f lmin = min
(x,y)∈Sl

sol

f lxy. Find (x̄, ȳ) ∈ Slsol such that f lx̄ȳ = f lmin and accept

as a solution to the CLR problem (5.3) for k = l.

5.2. Reduction Procedures

In this subsection four procedures to reduce the complexity of Algorithm 5.1

are introduced. In order to reduce the complexity of this algorithm the following

approaches are used:

• Scheme 1: Reduction of the number of observations. Identify close points and

remove all of them but one.

• Scheme 2: Reduction of the number of candidate points to be starting solu-

tions for the auxiliary CLR problem.

• Scheme 3: Reduction of the number of local minimizers found by solving the

auxiliary CLR problem.

5.2.1. Reduction of the number of observations

Since observations, which are close to each other, have almost the same con-

tributions to the k-CLR function. Therefore, it is important to define proximity of

observations. We use the following scheme. Compute the centroid (ā, b̄) of the set

A in the (n+ 1)-dimensional space:

ā =
1

m

∑

(a,b)∈A

a, b̄ =
1

m

∑

(a,b)∈A

b (5.7)

58

and define the number

D0 =
1

m

∑

(a,b)∈A

‖(a, b)− (ā, b̄)‖2. (5.8)

Let

ε1 = ε̂1D0 (5.9)

where ε̂1 = 10−4. If the squared Euclidean distance between two points (a1, b1) and

(a2, b2):

‖(a1, b1)− (a2, b2)‖2 ≤ ε1 (5.10)

then one of them is removed from the set A. This procedure removes points which

are already represented in the dataset. This procedure is illustrated in Figure 5.1.

a b

Figure 5.1. Reduction the number of observations: (a) the whole dataset; (b) the reduced

dataset

5.2.2. Reduction of the number of starting points

In large datasets the cardinality of the set Slst in Step 2’ of the modified

Algorithm 5.1 can become very large. In the worst case, this number is equal

to the number of observations in the dataset. However, not all points are good

candidates to be used for calculation of the starting linear functions. Since at the

l-th iteration of the incremental algorithm in the solving of the auxiliary problem

the first l− 1 linear functions are fixed, all observations whose regression errors are

sufficiently small will never change their clusters and linear functions determined

using these points will not significantly reduce the value of the objective function

59

of the CLR problem. Therefore, these points can be removed from the list of points

for computation of the starting linear functions.

The following procedure is proposed to identify such points. Take any cluster

Aj, j = 1, . . . , l − 1 and corresponding regression coefficients (xj, yj) ∈ Rn × R

computed at the (l − 1)-th iteration of the incremental algorithm. For this cluster

compute the following number:

ej =
1

|Aj|
∑

(a,b)∈Aj

Eab(x
j, yj). (5.11)

This number represents the average value of the regression error calculated using

observations from the cluster Aj. A point (a, b) ∈ Aj is included to the set Slst if

Eab(x
j, yj) > ej, otherwise this point is not considered for calculation of starting

linear functions. This procedure is illustrated in Figure 5.2.

a b

Figure 5.2. Reduction the number of starting points: (a) the whole dataset with three

linear functions; (b) Removing observations with small regression errors

5.2.3. Reduction of the number of local minimizers of the auxiliary CLR

problem

In Step 2’ of the modified Algorithm 5.1, one uses the local search Späth

algorithm to solve the auxiliary CLR problem starting from points from the set

Slst. Since any local method applied to solve the auxiliary CLR problem may arrive

to the same or very close (belonging to the same basin of the objective function)

stationary points, it is imperative to identify such stationary points and remove

one of them from the set Saux. We propose the following procedure to identify such

60

stationary points. Define the number

daux = max
{
‖(x1, y1)− (x2, y2)‖ : (x1, y1), (x2, y2) ∈ Saux

}
(5.12)

which is diameter of the set Saux. Then the following tolerance is defined

ε3 = dauxε̄3 (5.13)

where ε̄3 = 10−4.

If ‖(x1, y1) − (x2, y2)‖ ≤ ε3 for (x1, y1), (x2, y2) ∈ Saux then the points which

provides lower value of the auxiliary CLR function are kept and another one is

removed. Using these procedures Algorithm 5.1 is modified as follows.

Algorithm 5.2. Modified incremental algorithm for solving Problem (5.3):

Initialization: Apply Procedure 1 to compute the reduced dataset Ā. Compute

the linear regression function (x1, y1) ∈ Rn ×R for the set Ā. Set l = 1.

Step 1: (Computation of the set of candidate linear functions) Set l = l + 1. Let

(x1, y1, · · · ,xl−1, yl−1) be the solution to the (l − 1)-CLR problem. Compute the

set Slst and apply Procedure 2 to reduce this set.

Step 2: (Computation of the set of starting linear functions) Take any (u, v) ∈ Slst

and apply the Späth algorithm starting from this point to find a solution (ū, v̄) ∈

Rn ×R to the l-th auxiliary CLR problem (5.6). Repeat it for each point from the

set Slst and compute the set Saux of stationary points of the problem (5.6). Apply

Procedure 3 to reduce the set Saux.

Step 3: (Refinement of all linear regression functions) Select any (ū, v̄) ∈ Saux

and construct (x1, y1, · · · ,xl−1, yl−1, ū, v̄) as an initial solution and apply the Späth

algorithm to solve CLR problem (5.3) for k = l. Repeat this procedure for all

(ū, v̄) ∈ Saux and get the set Slsol of solutions to the CLR problem (5.3). For any

(x, y) ∈ Slsol compute the value f lxy of the function (5.2) and find f lmin = min
(x,y)∈Sl

sol

f lxy.

Find (x̄, ȳ) ∈ Slsol such that f lx̄ȳ = f lmin and accept as a solution to the CLR problem

(5.3) for k = l.

Step 4:(Stopping criterion) If l = k, then stop. Otherwise go to Step 2.

61

5.3. Numerical Results And Discussions

In this section, the proposed algorithm using large datasets for regression

is tested. The brief description of the datasets is given in Table 5.1. Detailed

information on these datasets can be found in [102] and also in references given

after names of each dataset.

Table 5.1. The brief description of test datasets

Dataset No. of No. of input

reports attributes

Physicochemical Properties of 45730 9

Protein Tertiary Structure [102]

BlogFeedback [103] 60021 280

Transcoding Time [104] 68784 18

YearPredictionMSD [102] 515345 90

Buzz in social media-Twitter [105] 583250 77

IHEPC1 2075259 8

IHEPC2 2075259 8

IHEPC3 2075259 8

We present results using the proposed Algorithm 5.2 and compare it with the

number of other CLR and regression algorithms: the multi-start Späth algorithm,

the expectation-maximization (EM) CLR algorithm, Artificial Neural Networks

(ANN), SVM for regression and also k-NN for regression algorithms. Algorithm

5.2, as well as the multi-start Späth algorithm, were implemented in Python 2.7.

In order to solve linear regression problems in these algorithms, numpy.linalg.lstsq

function is used which returns least-squares solutions. For all other algorithms,

their R implementations are used. For example, the EM algorithm is applied using

its R implementation Flexmix package and the ANN is applied using its R imple-

mentation “nnet”. We apply the ANN without any hidden layer (ANN0) and with

one hidden layer (ANN-Hid.). We also apply the SVM for regression without any

kernel function (SVM-Lin) and, with the radial basis kernel function (SVM-RBF).

Numerical experiments were carried out on a PC with processor Intel(R) Core(TM)

62

i7 CPU 2.5 GHz and 16 GB RAM.

In order to present results the following notation is used in all tables in this

section:

• k - the number of clusters (or linear regression functions);

• f - the value of the overall fit function fk;

• t - the CPU time (in seconds);

• V0 - the version of the CLR algorithm without any reduction scheme;

• V1, V2, V3 - the versions of the CLR algorithm with Reduction schemes 1,2

and 3, respectively;

• V12, V13, V23 - the versions of the CLR algorithm with Reduction schemes

(1,2), (1,3) and (2,3), respectively;

• V123 - the version of the CLR algorithm with all three reduction schemes.

Results for comparison of different reduction procedures are presented in Ta-

ble 5.2. and this comparison is illustrated in Figure 5.3. We can see that the use of

different reduction procedures does not lead any significant changes in the accuracy

of solutions, however, their use leads to the significant reduction in computational

time.

Table 5.2. Results for comparison of different reduction procedures

Vers. f t f t f t f t

k = 2 k = 3 k = 4 k = 5

V0 214398.17 4766.54 106427.24 9314.25 63121.89 13603.20 41742.91 17937.76

V1 214398.17 10.75 106427.24 22.85 63121.69 34.07 41742.93 43.05

V2 214398.17 1235.84 106427.24 2457.52 63121.89 4192.09 41742.91 6324.80

V3 214398.17 4683.23 106427.24 9291.70 63121.89 13307.43 41742.91 9291.70

V12 214398.17 7.26 106427.24 17.56 63121.89 22.32 41743.60 27.66

V13 214398.17 8.70 106427.24 17.31 63121.69 27.47 41742.93 36.01

V23 214398.17 689.80 106427.24 1504.41 63121.89 2844.80 41742.91 4390.04

V123 214398.17 4.42 106427.24 9.27 63121.89 14.13 41743.60 19.13

63

Figure 5.3. Comparison of different reduction procedures

5.3.1. Results for approximating of datasets

Results for approximating of whole datasets are presented in Table 5.3. In

this table average regression errors are presented. We can see that for the small

number of clusters (k = 2, 3) there is not significant difference in accuracy of these

two algorithms. However, we can observe different picture for larger values of the

number of clusters. The proposed algorithm is more accurate than the multi-start

Späth algorithm.

5.3.2. Prediction results by different algorithms

In this subsection, using different datasets, results on prediction performance

of the proposed algorithm are reported and compared with other algorithms. All

datasets are divided into the training set that consists of 80% of the whole data and

the test set that consists of 20% of the data. We use three performance measures

to compare prediction algorithms: RMSE - the Root Mean Squared Error; MAE -

Mean Absolute Error and R2.

Definitions of these measures follow. Assume that Y1, . . . , Ym, m ≥ 1 are

observed values for some parameter Y and F1, . . . , Fm are their forecast values.

1. The RMSE is defined as

RMSE =

(
1

m

m∑

i=1

(Fi − Yi)2

)1/2

; (5.14)

64

Table 5.3. Comparison of best average regression errors obtained by the Späth and

Proposed algorithms

k Protein Blog Time Year

Späth Proposed Späth Proposed Späth Proposed Späth Proposed

2 4.688 4.688 195.691 199.489 30.532 30.532 26.074 26.074

3 2.327 2.327 77.888 69.498 14.627 14.627 11.610 11.610

4 1.379 1.380 43.526 38.365 8.875 8.874 7.385 7.387

5 0.911 0.913 26.689 20.651 6.006 6.069 4.869 4.866

6 0.649 0.649 16.894 12.614 4.385 4.013 3.514 3.511

7 0.486 0.486 11.664 6.585 3.284 2.919 2.637 2.641

8 0.377 0.377 6.847 4.227 2.420 2.315 2.055 2.054

9 0.306 0.311 5.582 2.833 2.055 1.834 1.755 1.650

10 0.283 0.250 4.738 2.048 1.700 1.489 1.517 1.353

k Twitter IHEPC1 IHEPC2 IHEPC3

Späth Proposed Späth Proposed Späth Proposed Späth Proposed

2 11468.025 11194.811 1.139 1.139 2.870 2.870 2.432 2.432

3 6595.273 5220.787 0.510 0.510 1.352 1.252 0.937 1.429

4 3904.329 3243.687 0.274 0.268 0.741 0.741 0.388 0.373

5 2984.147 2410.823 0.185 0.185 0.517 0.515 0.228 0.255

6 2244.647 1814.970 0.133 0.133 0.346 0.346 0.194 0.140

7 1784.184 1440.526 0.099 0.099 0.257 0.259 0.130 0.090

8 1636.819 1113.243 0.070 0.070 0.214 0.182 0.096 0.070

9 1214.427 893.356 0.054 0.056 0.143 0.143 0.080 0.055

10 1070.827 700.438 0.043 0.045 0.109 0.109 0.061 0.042

2. The MAE is:

MAE =
1

m

m∑

i=1

|Fi − Yi|; (5.15)

3. R2 is defined as:

CE = 1−
[∑m

i=1(Yi − Fi)2

∑m
i=1(Yi − Y)2

]
. (5.16)

Here Y is the mean of observed values.

The small values of the RMSE and the MAE indicates small deviations of

the predictions from actual observations. The R2 can range from −∞ to 1. An

efficiency R2 = 1 means a perfect prediction. An efficiency of 0 indicates that the

65

model predictions are as accurate as the mean of the observed data and an efficiency

−∞ < R2 < 0 occurs when the observed mean is a better predictor than the model.

In CLR, several linear functions are used to approximate data. Therefore, it

is not easy to choose linear functions for prediction. There are different approaches

to use CLR for prediction. Such approaches include calculating of weights of linear

functions using the number of data points in each cluster. Another approach is to

apply k-NN to calculate weights. In [106], the selection of the linear functions for

regression is formulated as a classification problem. Following this paper, we apply

Random Forests [16] classifier for identifying linear functions for a given input data.

The Random Forest classifier generates classification probabilities for this input data

which are used to compute weights of linear functions. For the given input data xi

we have

Yi =
k∑

j=1

pjiY
j
i , (5.17)

where pji is the classification probability of classifying the test point xi as j th cluster

and Y j
i is the prediction value of the xi on the j th linear regression function and

k∑

j=1

pji = 1. (5.18)

Training times for different algorithms are presented in Table 5.4. In this and

subsequent tables “F” indicates that an algorithm fails to solve a problem. We can

see that the proposed algorithm outperforms SVM-RBF algorithm and it requires

comparable CPU time with the ANN-Hidden algorithm (exception is Blog dataset).

Other algorithms require significantly less CPU time than the proposed algorithm.

Results for RMSE, MAE and R2 performance measures on the training are

reported in Table 5.5., Table 5.6. and Table 5.7. These results clearly demon-

strate that the proposed algorithm is the best approximating tool among all algo-

rithms.

Results for RMSE, MAE and R2 performance measures on the test are re-

ported in Table 5.8., Table 5.9. and Table 5.10. We can see that the proposed

algorithm fails to produce any reasonable prediction in two datasets: Blog and

Time. According to RMSE results, the proposed algorithm is the best prediction

algorithm in five out of eight datasets and it is the second best prediction algo-

66

Table 5.4. Training times of prediction algorithms (s)

Dataset ANN0 ANN SVM SVM Reg. EM Prop.

Hidden Lin. RBF Tree

Protein 0.37 38 0.68 2732 0.41 11 71

Blog 93 810 24 72733 3 F 36838

Time 0.89 816 2 2307 0.52 F 306

Year 125 5176 205 F 39 349 10954

Twitter 93 15510 841 F 19 1429 14542

IHEPC1 16 12811 13 F 18 F 4503

IHEPC2 18 6799 13 F 15 F 8673

IHEPC3 17 4820 13 F 14 F 15555

Table 5.5. RMSE results for the training set

Dataset ANN0 ANN SVM SVM Reg. EM Prop.

Hidden Lin. RBF Tree

Protein 5.18 4.55 5.23 3.67 5.39 5.39 0.50

Blog 29.40 27.87 29.40 26.48 25.98 F 1.43

Time 10.47 6.29 11.18 7.20 8.44 F 1.22

Year 9.55 8.82 F F 10.41 9.66 1.16

Twitter 155.10 119.12 161.74 F 211.30 168.00 26.47

IHEPC1 5.29 4.43 5.29 F 4.89 F 0.21

IHEPC2 5.14 4.34 5.14 F 4.71 F 0.33

IHEPC3 6.01 3.96 6.04 F 4.67 F 0.21

rithm in one dataset. According to the MAE performance measure, the proposed

algorithm is the best predictor in four out of eight datasets and it is the second

best in two datasets. Finally, according to R2 performance measure, the proposed

algorithm is the best prediction algorithm in five out of eight and it is the second

best in two datasets.

67

Table 5.6. MAE results for the training set

Dataset ANN0 ANN SVM SVM Reg. EM Prop.

Hidden Lin. RBF Tree

Protein 4.34 3.58 4.38 2.34 4.47 4.67 0.41

Blog 9.04 10.11 9.08 4.48 7.09 F 0.62

Time 6.49 4.05 7.05 3.81 5.14 F 0.79

Year 6.79 6.14 F F 7.61 6.86 0.88

Twitter 45.56 41.72 46.15 F 82.20 49.19 10.29

IHEPC1 2.46 1.38 2.49 F 1.40 F 0.03

IHEPC2 2.25 1.53 2.27 F 1.67 F 0.06

IHEPC3 4.60 2.20 4.64 F 2.67 F 0.08

Table 5.7. R2 results for the training set

Dataset ANN0 ANN SVM SVM Reg. EM Prop.

Hidden Lin. RBF Tree

Protein 0.282 0.446 0.269 0.640 0.223 0.223 0.993

Blog 0.364 0.429 0.364 0.484 0.503 F 0.998

Time 0.577 0.847 0.518 0.800 0.726 F 0.994

Year 0.237 0.349 F F 0.093 0.220 0.989

Twitter 0.936 0.962 0.930 F 0.881 0.925 0.998

IHEPC1 0.253 0.474 0.252 F 0.360 F 0.999

IHEPC2 0.211 0.437 0.211 F 0.337 F 0.998

IHEPC3 0.487 0.777 0.481 F 0.690 F 0.999

5.4. Conclusions on The Proposed Large Scale CLR Method

In this section, a new algorithm for solving the CLR problems in very large

datasets is presented. This algorithm is based on the incremental approach and uses

the Späth algorithm for solving CLR and auxiliary CLR problems at each iteration

of the incremental algorithm. Using the auxiliary CLR problem a procedure is

developed to generate good starting points for solving the CLR problem.

Three different procedures were introduced to reduce the computational cost

68

Table 5.8. RMSE results for the test set

Dataset ANN0 ANN SVM SVM Reg. kNN EM Prop.

Hidden Lin. RBF Tree

Protein 5.20 4.58 5.25 4.09 5.47 5.86 5.42 3.54

Blog 25.45 26.90 25.47 25.45 24.39 24.64 F F

Time F F 12.45 10.20 8.63 7.75 F F

Year 9.41 8.81 F F 10.27 10.49 9.53 9.14

Twitter 128.08 124.98 132.09 F 189.10 134.10 135.54 119.27

IHEPC1 4.61 4.06 4.61 F 4.21 4.47 F 3.91

IHEPC2 4.40 3.85 4.39 F 3.93 4.27 4.68 3.75

IHEPC3 5.88 4.11 5.90 F 4.65 4.79 6.80 3.64

Table 5.9. MAE results for the test set

Dataset ANN0 ANN SVM SVM Reg. kNN EM Prop.

Hidden Lin. RBF Tree

Protein 4.38 3.61 4.41 2.75 4.53 4.85 4.71 2.51

Blog 8.41 7.54 8.45 4.93 6.28 5.72 F F

Time F F 8.44 5.25 5.19 4.59 F F

Year 6.72 6.14 F F 7.54 7.70 6.80 6.50

Twitter 45.01 41.73 46.03 F 82.43 42.79 49.08 42.00

IHEPC1 2.03 1.37 2.07 F 1.03 0.98 F 0.97

IHEPC2 1.88 1.25 1.86 F 1.31 1.32 1.18 1.23

IHEPC3 4.94 2.47 4.57 F 2.75 2.59 4.34 1.90

of solving the CLR and auxiliary CLR problems. Using the first procedure, one

identifies observations which have the same or very similar contributions to the

overall fit function. The second procedure aims to reduce the number of start-

ing points for solving the auxiliary CLR problem by identifying candidate starting

points whose usage will not lead to any significant reduction in the value of the

overall fit function. Finally, the third procedure removes stationary points of the

auxiliary CLR problem which are close to each other keeping only one of them.

The new CLR algorithm is designed using these three procedures. It is im-

69

Table 5.10. R2 results for the test set

Dataset ANN0 ANN SVM SVM Reg. kNN EM Prop.

Hidden Lin. RBF Tree

Protein 0.285 0.446 0.272 0.558 0.210 0.093 0.224 0.669

Blog 0.303 0.222 0.303 0.304 0.361 0.347 F F

Time F F 0.281 0.518 0.655 0.721 F F

Year 0.237 0.331 F F 0.090 0.051 0.217 0.280

Twitter 0.947 0.951 0.945 F 0.888 0.944 0.943 0.955

IHEPC1 0.279 0.440 0.278 F 0.399 0.324 F 0.482

IHEPC2 0.164 0.359 0.168 F 0.334 0.212 0.054 0.393

IHEPC3 0.511 0.761 0.508 F 0.694 0.676 0.346 0.813

plemented in Phyton and tested using datasets for regression containing from tens

of thousands to several millions of observations and from a few to several hundred

input variables. The proposed algorithm was compared with other CLR algorithms

such as the EM and the multi start Späth algorithm using two evaluation met-

rics: accuracy and computational time. This algorithm was compared with some

mainstream regression methods using their prediction performance.

Results of numerical experiments demonstrate that the proposed algorithm in

small datasets used in our experiments is as accurate as other CLR algorithms, how-

ever, it is the only algorithm which can solve CLR problems in very large datasets

in a reasonable time. The comparison with other regression algorithms using pre-

diction performance shows that in very large datasets, the proposed algorithm out-

performs other algorithms. However, this is not the case for small datasets. Based

on numerical results, we can conclude that in very large datasets the proposed al-

gorithm is the only algorithm which is able to solve CLR problems in real-time and

it is the best prediction method in such datasets.

70

6. CONCLUSIONS

In this dissertation, the prediction methods are investigated. Specifically, the

classification problem is adressed in Chapters 3. and 4., the regression problem is

adressed in Chapter 5.. The proposed methods are developed for large-scale data,

and they solve an optimization problem to obtain a solution.

Previous conic functions based algorithms require repeated solutions of LPs

which is not convenient for large data sets. The total training time is significantly

reduced with the ICF algorithm. The ICF algorithm achieves this by using two

approaches. Firstly, it analytically obtains the classifiers without solving the LP

sub problem when a cluster within a class is higly pure. If a cluster is not pure

enough, it eliminates the data points which do not contribute to the classifier.

Thus, the constraints in the LP are reduced by the number of eliminated data

points. Finally, the classifiers obtained for all clusters are combined in order to get

the final classifier. By this way, 64 % less training time is required than the previous

implementation.

In order to solve one class classification problems, a new PCF based algorithm

called one-class polyhedral conic functions algorithm is developed. One-class clas-

sification algorithms are used for detecting outliers/novelties. The O-PCF classifier

which is the combination of k classifiers is trained using only data from the target

class. It is assumed that no information about the outlier class is present. Such

an algorithm can be applied to important real-life problems such as detecting a

very rare disease, detecting a machine failure or detecting an accident priorly. In

some cases, data points belonging to outlier class can be found easily. However,

obtaining enough data points to represent the whole space can be very hard as in

the object image detection problem. One-class classification algorithms can also

be used in these cases. Developed O-PCF algorithm is compared with other well

known one-class classification algorithms in the literature. The O-PCF achieved

best results in the 8 of 16 tests. Moreover, its training and test times are too short

compared to other algorithms.

The new proposed algorithm for CLR problem solves a nonsmooth optimiza-

tion model to get the clusterwise linear regressors. The algorithm is designed for

71

large scale problems. In order to apply the algorithm to large scale data sets, four

acceleration methods are used. The acceleration methods allow one to significantly

reduce CPU time without any significant loss of accuracy. Working with the large

data was not possible in prior versions of this algorithm. Additionally, because

the linear regression equation to be used for prediction can not be accurately de-

termined among k equations, it is very hard to predict a target value by using

clusterwise linear regression. In order to select the correct regression equation, a

classification problem has been solved. The test results show that the developed

algorithm achieves better results in many cases than the other algorithms in the

literature.

It is obvious that the need for better algorithms to solve both classification and

regression problems for many years will not decrease. Concepts such as Industry 4.0,

internet of things, autonomous vehicles and dark factories are not possible without

success in classification and regression area. It is planned to apply these novel

algorithms to various real-life problems. We have already defined the studies about

two promising areas: plant genetics and sales prediction. Besides these application

areas, some theoretical studies are foreseen. The cluster centers and the classifiers

can be found simultaneously in the O-PCF and in the ICF algorithms by solving a

non-smooth and non-convex optimization problem. Furthermore, the development

of new special classification problem solution methods can eliminate the need for

LP solutions. Various norms can be used in order to define the PCFs. The PCF

based algorithms can be used for feature selection. Selecting the correct regression

function is still an open problem in clusterwise linear regression topic. Researchers

who want to study in this area can further focus on these problems.

72

REFERENCES

[1] Aggarwal, C. C. (2015) Data Mining: The Textbook . Springer Publishing

Company, Incorporated.

[2] Murphy, K. P. (2012) Machine Learning: A Probabilistic Perspective. The

MIT Press.

[3] Idc digital universe study. Extracting Value from Chaos, sponsored by EMC,

June 2011.

[4] Bottou, L. and Vapnik, V. (1992) Local learning algorithms. Neural Compu-

tation, 4, 888–900.

[5] Sun, Y., Todorovic, S., and Goodison, S. (2010) Local-learning-based feature

selection for high-dimensional data analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32, 1610–1626.

[6] Wu, M. and Schlkopf, B. (2007) Transductive classification via local learning

regularization. Meila, M. and Shen, X. (eds.), Proceedings of the Eleventh

International Conference on Artificial Intelligence and Statistics , San Juan,

Puerto Rico, 21–24 Mar, vol. 2 of Proceedings of Machine Learning Research,

pp. 628–635, PMLR.

[7] Wu, M. and Schölkopf, B. (2007) A local learning approach for clustering.

Schölkopf, B., Platt, J. C., and Hoffman, T. (eds.), Advances in Neural In-

formation Processing Systems 19 , pp. 1529–1536, MIT Press.

[8] Cimen, E., Ozturk, G., and Gerek, O. N. (2018) Incremental conic functions

algorithm for large scale classification problems. Digital Signal Processing ,

77, 187 – 194, digital Signal Processing - SoftwareX - Joint Special Issue on

Reproducible Research in Signal Processing.

[9] Cimen, E., Ozturk, G., and Gerek, O. N. (2017) ICF: An algorithm for large

scale classification with conic functions. SoftwareX .

[10] Legendre, A. (1805) Nouvelles méthodes pour la détermination des orbites des

comètes . Nineteenth Century Collections Online (NCCO): Science, Technol-

ogy, and Medicine: 1780-1925, F. Didot.

[11] LaPlace, P. S. (1820) Théorie analytique des probabilités . Courcier.

[12] Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems.

73

Annals of Eugenics , 7, 179–188.

[13] Markov, A. (2006) Extension of the law of large numbers to quantities, de-

pending on each other (1906). reprint. Journal lectronique d’Histoire des Prob-

abilits et de la Statistique [electronic only] , 2, Article 10, 12 p., electronic

only–Article 10, 12 p., electronic only.

[14] Rosenblatt, F. (1958) The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review , pp. 65–386.

[15] Cover, T. and Hart, P. (1967) Nearest neighbor pattern classification. IEEE

Transactions on Information Theory , 13, 21–27.

[16] Breiman, L. (2001) Random forests. Machine Learning , 45, 5–32.

[17] Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine Learning ,

20, 273–297.

[18] Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology , 2, 27:1–

27:27.

[19] Bennett, K. P. and Demiriz, A. (1999) Semi-supervised support vector ma-

chines. Proceedings of the 1998 Conference on Advances in Neural Information

Processing Systems II , Cambridge, MA, USA, pp. 368–374, MIT Press.

[20] Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., and Williamson,

R. C. (2001) Estimating the support of a high-dimensional distribution. Neu-

ral Comput., 13, 1443–1471.

[21] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000)

New support vector algorithms. Neural Comput., 12, 1207–1245.

[22] Tax, D. M. and Duin, R. P. (1999) Support vector domain description. Pattern

Recognition Letters , 20, 1191 – 1199.

[23] Hastie, T., Tibshirani, R., and Friedman, J. (2009) Overview of Supervised

Learning , pp. 9–41. Springer New York.

[24] Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984) Classification

and Regression Trees . The Wadsworth and Brooks-Cole statistics-probability

series, Taylor & Francis.

[25] Quinlan, J. R. (1993) C4.5: Programs for Machine Learning . Morgan Kauf-

mann Publishers Inc.

74

[26] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R.,

Kipman, A., and Blake, A. (2011) Real-time human pose recognition in parts

from single depth images. CVPR 2011 , June, pp. 1297–1304.

[27] Fawagreh, K., Gaber, M. M., and Elyan, E. (2014) Random forests: from

early developments to recent advancements. Systems Science & Control En-

gineering , 2, 602–609.

[28] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) Parallel dis-

tributed processing: Explorations in the microstructure of cognition, vol. 1.

chap. Learning Internal Representations by Error Propagation, pp. 318–362,

MIT Press.

[29] Gasimov, R. N. and Ozturk, G. (2006) Separation via polyhedral conic func-

tions. Optimization Methods and Software, 21, 527–540.

[30] Ozturk, G. and Ciftci, M. T. (2015) Clustering based polyhedral conic func-

tions algorithm in classification. Journal of Industrial and Management Op-

timization, 11, 921–932.

[31] Ozturk, G., Bagirov, A. M., and Kasimbeyli, R. (2015) An incremental piece-

wise linear classifier based on polyhedral conic separation. Machine Learning ,

101, 397–413.

[32] Dordinejad, G. G. and evikalp, H. (2017) Cone vertex estimation in polyhedral

conic classifiers. 2017 25th Signal Processing and Communications Applica-

tions Conference (SIU), May, pp. 1–4.

[33] MacQueen, J. (1967) Some methods for classification and analysis of multi-

variate observations. Proceedings of the Fifth Berkeley Symposium on Math-

ematical Statistics and Probability, Volume 1: Statistics , Berkeley, Calif., pp.

281–297, University of California Press.

[34] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical

Society, Series B , 39, 1–38.

[35] Andrew, N. (2017), Mixtures of gaussians and the em algorithm.

[36] Ozturk, G. (2007), A new mathematical programming approach to solve clas-

sification problems.

[37] S., R. and P., N. (1995), Artificial intelligence: A modern approach (2nd ed.).

75

[38] Rosenblatt, F. (1958) The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review , pp. 65–386.

[39] Rastogi, R. and Shim, K. (2000) Public: A decision tree classifier that in-

tegrates building and pruning. Data Mining and Knowledge Discovery , 4,

315–344.

[40] Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000) Rainforest—a frame-

work for fast decision tree construction of large datasets. Data Mining and

Knowledge Discovery , 4, 127–162.

[41] Bennett, K. P. and Mangasarian, O. L. (1992) Robust linear programming dis-

crimination of two linearly inseparable sets. Optimization Methods and Soft-

ware, 1, 23–34.

[42] Astorino, A. and Gaudioso, M. (2002) Polyhedral separability through suc-

cessive lp. Journal of Optimization Theory and Applications , 112, 265–293.

[43] Bagirov, A. M. (2005) Max min separability. Optimization Methods and Soft-

ware, 20, 277–296.

[44] Uney, F. and Turkay, M. (2006) A mixed-integer programming approach to

multi-class data classification problem. European Journal of Operational Re-

search, 173, 910 – 920.

[45] A., P. (2012) Support vector machine - a survey. International Journal of

Emerging Technology and Advanced Engineering , 2, 82 – 85.

[46] Astorino, A., Fuduli, A., and Gorgone, E. (2008) Non-smoothness in classifi-

cation problems. Optimization Methods and Software, 23, 675–688.

[47] Astorino, A., Fuduli, A., and Gaudioso, M. (2016) Nonlinear programming

for classification problems in machine learning. AIP Conference Proceedings ,

1776, 040004.

[48] Astorino, A. and Fuduli, A. (2015) Support vector machine polyhedral sepa-

rability in semisupervised learning. Journal of Optimization Theory and Ap-

plications , 164, 1039–1050.

[49] Astorino, A. and Gaudioso, M. (2005) Ellipsoidal separation for classification

problems. Optimization Methods and Software, 20, 267–276.

[50] Huang, X., Suykens, J. A. K., Wang, S., Hornegger, J., and Maier, A. (2017)

Classification with truncated l1 distance kernel. IEEE Transactions on Neural

76

Networks and Learning Systems , PP, 1–6.

[51] Bagirov, A. M., Ugon, J., Webb, D., Ozturk, G., and Kasimbeyli, R. (2013)

A novel piecewise linear classifier based on polyhedral conic and max–min

separabilities. TOP , 21, 3–24.

[52] Cimen, E. and Ozturk, G. (2016) Arrhythmia classification via k-means based

polyhedral conic functions algorithm. 2016 International Conference on Com-

putational Science and Computational Intelligence, December, pp. 798–802.

[53] Cimen, E. (2013) Gesture Recognition with Polyhedral Conic Functions based

Classifiers . Master’s thesis, Graduate School of Sciences, Anadolu University.

[54] Alpaydn, E. (2010), Introduction to machine learning.

[55] Gurobi Optimization, I. (2016), Gurobi optimizer reference manual.

[56] Abalone dataset. Https://archive.ics.uci.edu/ml/datasets/Abalone.

[57] Page block classification dataset. Https://archive.ics.uci.edu/ml/datasets

/Page+Blocks+Classification.

[58] Statlog (landsat satellite) dataset. Https://archive.ics.uci.edu/ml/datasets

/Statlog+(Landsat+Satellite).

[59] Statlog (shuttle) dataset. Https://archive.ics.uci.edu/ml/datasets /Stat-

log+(Shuttle).

[60] Covertype dataset. Https://archive.ics.uci.edu/ml/datasets/Covertype.

[61] Dozono, H. and Nakakuni, M. (2009) Analysis of Robustness of Pareto Learn-

ing SOM to Variances of Input Vectors , pp. 836–844. Springer Berlin Heidel-

berg.

[62] Tax, D. M. (2001), One-class classification.

[63] Moya, M. M., Koch, M. W., and Hostetler, L. D. (1993) One-class classi-

fier networks for target recognition applications. Tech. rep., Sandia National

Labs., Albuquerque, NM (United States).

[64] Japkowicz, N. (1999) Concept-Learning in the absence of counterexamples: an

autoassociation-based approach to classification. Ph.D. thesis, New Brunswick

Rutgers, The State University of New Jersey.

[65] Zhang, Y., Meratnia, N., and Havinga, P. (2009) Adaptive and online one-

class support vector machine-based outlier detection techniques for wireless

sensor networks. 2009 International Conference on Advanced Information

77

Networking and Applications Workshops , May, pp. 990–995.

[66] Campbell, C. and Bennett, K. P. (2000) A linear programming approach

to novelty detection. Proceedings of the 13th International Conference on

Neural Information Processing Systems , Cambridge, MA, USA, pp. 374–380,

NIPS’00, MIT Press.

[67] Zhang, R., Zhang, S., Muthuraman, S., and Jiang, J. (2007) One class support

vector machine for anomaly detection in the communication network perfor-

mance data. Proceedings of the 5th Conference on Applied Electromagnetics,

Wireless and Optical Communications , Stevens Point, Wisconsin, USA, pp.

31–37, Electroscience’07, World Scientific and Engineering Academy and So-

ciety (WSEAS).

[68] Erfani, S. M., Rajasegarar, S., Karunasekera, S., and Leckie, C. (2016) High-

dimensional and large-scale anomaly detection using a linear one-class {SVM}

with deep learning. Pattern Recognition, 58, 121 – 134.

[69] Yu, H. (2003) Svmc: Single-class classification with support vector machines.

Proceedings of the 18th International Joint Conference on Artificial Intelli-

gence, San Francisco, CA, USA, pp. 567–572, IJCAI’03, Morgan Kaufmann

Publishers Inc.

[70] Yu, H. (2005) Single-class classification with mapping convergence. Machine

Learning , 61, 49–69.

[71] Liu, B., Dai, Y., Li, X., Lee, W. S., and Yu, P. S. (2003) Building text

classifiers using positive and unlabeled examples. Third IEEE International

Conference on Data Mining , pp. 179–186.

[72] Elkan, C. and Noto, K. (2008) Learning classifiers from only positive and

unlabeled data. Proceedings of the 14th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining , New York, NY, USA, pp.

213–220, KDD ’08, ACM.

[73] Manevitz, L. M. and Yousef, M. (2002) One-class svms for document classifi-

cation. J. Mach. Learn. Res., 2, 139–154.

[74] Zhu, F., Yang, J., Gao, C., Xu, S., Ye, N., and Yin, T. (2016) A weighted

one-class support vector machine. Neurocomputing , 189, 1 – 10.

[75] Lichman, M. (2013), UCI machine learning repository.

78

[76] Hao, P.-Y. (2008) Fuzzy one-class support vector machines. Fuzzy Sets and

Systems , 159, 2317 – 2336.

[77] Khan, S. S. and Madden, M. G. (2013) One-class classification: Taxonomy of

study and review of techniques. CoRR, abs/1312.0049.

[78] Cevikalp, H. and Triggs, B. (2017) Polyhedral conic classifiers for visual object

detection and classification. The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July.

[79] Valiant, L. G. (1984) A theory of the learnable. Commun. ACM , 27, 1134–

1142.

[80] Vapnik, V. and Chervonenkis, A. (1971) On the uniform convergence of rel-

ative frequencies of events to their probabilities. Theory of Probability & Its

Applications , 16, 264–280.

[81] Vapnik, V., Levin, E., and Cun, Y. L. (1994) Measuring the vc-dimension of

a learning machine. Neural Computation, 6, 851–876.

[82] Pestov, V. (2011) Pac learnability versus vc dimension: a footnote to a basic

result of statistical learning. CoRR, abs/1104.2097.

[83] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989) Learn-

ability and the vapnik-chervonenkis dimension. J. ACM , 36, 929–965.

[84] (2017), Github: Python 2.7 code for o-pcf algorithm.

Https://github.com/emrecimen/O-PCF-Algorithm.

[85] de Ridder, D., Tax, D., and Duin, R. (1998) An experimental comparison of

one-class classification methods. Proceedings of the 4th Annual Conference of

the Advanced School for Computing and Imaging , Delft.

[86] Andrews, R. L., Brusco, M. J., and Currim, I. S. (2010) Amalgamation of

partitions from multiple segmentation bases: A comparison of non-model-

based and model-based methods. European Journal of Operational Research,

201, 608 – 618.

[87] Boztug, Y. and Reutterer, T. (2008) A combined approach for segment-

specific market basket analysis. European Journal of Operational Research,

187, 294 – 312.

[88] Preda, C. and Saporta, G. (2005) Clusterwise pls regression on a stochastic

process. Computational Statistics & Data Analysis , 49, 99 – 108.

79

[89] Wedel, M. and Kistemaker, C. (1989) Consumer benefit segmentation using

clusterwise linear regression. International Journal of Research in Marketing ,

6, 45 – 59.

[90] Bagirov, A., Mahmood, A., and Barton, A. (2017) Prediction of monthly rain-

fall in victoria, australia: Clusterwise linear regression approach. Atmospheric

Research, 188, 20 – 29.

[91] DeSarbo, W. S. and Cron, W. L. (1988) A maximum likelihood methodology

for clusterwise linear regression. Journal of Classification, 5, 249–282.

[92] Lau, K.-N., Leung, P.-L., and Tse, K.-K. (1999) A mathematical program-

ming approach to clusterwise regression model and its extensions. European

Journal of Operational Research, 116, 640 – 652.

[93] Carbonneau, R. A., Caporossi, G., and Hansen, P. (2011) Globally opti-

mal clusterwise regression by mixed logical-quadratic programming. European

Journal of Operational Research, 212, 213 – 222.

[94] DeSarbo, W. S., Oliver, R. L., and Rangaswamy, A. (1989) A simulated

annealing methodology for clusterwise linear regression. Psychometrika, 54,

707–736.

[95] Bagirov, A. M., Ugon, J., and Mirzayeva, H. (2013) Nonsmooth nonconvex

optimization approach to clusterwise linear regression problems. European

Journal of Operational Research, 229, 132 – 142.

[96] Bagirov, A. and Ugon, J. (2018) Nonsmooth DC programming approach to

clusterwise linear regression: optimality conditions and algorithms. Optimiza-

tion Methods and Software, 33, 194–219.

[97] Späth, H. (1979) Algorithm 39 clusterwise linear regression. Computing , 22,

367–373.

[98] Späth, H. (1982) A fast algorithm for clusterwise linear regression. Computing ,

29, 175–181.

[99] Gaffney, S. and Smyth, P. (1999) Trajectory clustering with mixtures of re-

gression models. Proceedings of the Fifth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining , New York, NY, USA, pp.

63–72, KDD ’99, ACM.

[100] Bagirov, A., Ugon, J., and Mirzayeva, H. (2015) An algorithm for clusterwise

80

linear regression based on smoothing techniques. Optimization Letters , 9,

375–390.

[101] Bagirov, A., Ugon, J., and Mirzayeva, H. (2015) Nonsmooth optimization

algorithm for solving clusterwise linear regression problems. Journal of Opti-

mization Theory and Applications , 164, 755–780.

[102] Newman, C. B. D. and Merz, C. (1998), UCI repository of machine learning

databases.

[103] Buza, K. (2014), Feedback prediction for blogs.

[104] Deneke, T., Haile, H., Lafond, S., and Lilius, J. (2014) Video transcoding time

prediction for proactive load balancing. 2014 IEEE International Conference

on Multimedia and Expo (ICME), July, pp. 1–6.

[105] Kawala, F., Douzal-Chouakria, A., Gaussier, E., and Dimert, E. (2013)

Prédictions d’activité dans les réseaux sociaux en ligne. 4ième conférence sur

les modèles et l’analyse des réseaux : Approches mathématiques et informa-

tiques , France, Oct., p. 16.

[106] Gitman, I., Chen, J., Lei, E., and Dubrawski, A. (2018) Novel prediction

techniques based on clusterwise linear regression. CoRR, abs/1804.10742.

81

RESUME

Name Surname : Emre ÇİMEN

Foreign Language : English

Place of Birth and Year : Eskişehir / 1988

E-Mail : ecimen@eskisehir.edu.tr

Education:

• 2006–2010, Bachelor’s degree, Anadolu University, Electrical and Electronics

Engineering, Eskişehir, Turkey.

• 2017–2011, Bachelor’s degree, Anadolu University, Industrial Engineering,

Eskişehir, Turkey.

• 2011–2013, Master of Science, Anadolu University, Industrial Engineering,

Eskişehir, Turkey.

• 2013–2018, PhD, Eskişehir Technical University, Industrial Engineering, Eskişehir,

Turkey.

Professional Background:

• 2011–2018, Research Assistant, Anadolu University, Industrial Engineering

Department.

• 2013–Present, Research & Development Manager, Incir R&D Ltd.

• 2015, Visiting Researcher, Federation University Australia, School of Science,

Engineering and Information Technology.

• 2018–Present, Research Assistant, Eskisehir Technical University, Industrial

Engineering Department.

Journal Articles and Selected Proceedings:

• Cimen E., Ozturk G., Gerek O.N., (2018). Incremental conic functions algo-

rithm for large scale classification problems. Elsevier: Digital Signal Process-

ing, Special Issue on Reproducible Research in Signal Processing, Vol.77, p.

187-194.

• Cimen E., Ozturk G., Gerek O.N., (2017). ICF: An algorithm for large scale

classification with conic functions. SoftwareX, (In press).

• 2017, Cimen E., Ozturk G., Separation via Weighted-Norm Cones, 4th Con-

ference on Optimization Methods and Software, Havana, Cuba.

• 2016, Cimen E., Ozturk G., Arrhythmia Classification via k-Means based

Polyhedral Conic Functions Algorithm. The 2016 International Conference on

Computational Science and Computational Intelligence, CSCI’16, Las Vegas,

USA.

• 2015, Cimen E., Ozturk G., A PCF based preprocessing for linear SVM. 27th

European Conference on Operational Research, Glasgow, Scotland.

• 2014, Cimen E., Ozturk G., An AHP Model to Design Mobile Applications.

International Symposium of the Analytic Hierarchy Process., Washington

D.C., USA.

• 2013, Cimen E., Ozturk G., Feature Selection for Classification Using Multi-

Objective Optimization. 22nd International Conference on Multiple Criteria

Decision Making, Malaga, Spain.

Awards:

• 2006–2011, 8 Times Honour and 2 Times High Honour Student, Anadolu

University.

Professional Association Memberships:

• Operational Research Society of Turkey (ORST)

