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ÖZET 

BAĞLANTILARI ZAMANLANDIRILMIŞ PETRİ AĞLARI MODELLENMESİ VE 

YASAKLANMIŞ DURUM KONTROLÜ YAKLAŞIMI 

 

Alpaslan YUFKA 

 

Elektrik-Elektronik Mühendisliği Bölümü 

 

Eskişehir Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Nisan 2019 

 

Danışman: Prof. Dr. Aydın AYBAR 

(İkinci Danışman: Doç. Dr. Hanife Apaydın ÖZKAN) 

 

Bu tezde, zamanlandırılmış Petri Ağları için zaman gecikmelerinin bağlantılara 

atandığı yeni bir matematiksel ve grafiksel modelleme yöntemi sunulmuştur. 

Zamanlandırılmış Petri Ağlarında, durumlar belirtilerin akışını zamanla değiştirmektedir. 

Bu zamana bağlı hareket, ateşleme süreçleri sırasında ağın matematiksel ve grafiksel 

değerlendirmesini izlemekte yetersiz kalmaktadır. Önerilen modelde, geçiş halindeki 

belirtilerin izlenmesini sağlayan zaman elemanı olarak adlandırılan bir üçgen gösterimi 

sunulmuştur. Ayrıca, sistemin herhangi bir zamandaki durumu, yerlerdeki belirtilerin 

durumunu bu zamanda gösteren işaretleme vektörü ile geçiş halindeki belirtilerin kalan 

süresini gösteren kalan zaman vektörünü içermektedir. Sistem durumunun işaretleme ve 

kalan zaman vektörleri cinsinden ifade edilmesi, ulaşılabilirlik kümesinin elde edilmesini 

ve zamanlanmış bir ulaşılabilirlik ağacının oluşturulmasını mümkün kılmıştır. Önerilen 

matematiksel model için kontrolör tasarımı da dikkate alınmıştır. Hem kontrol tasarımı 

hem de ulaşılabilirlik kümesinin elde edilmesi için ilgili algoritmalar geliştirilmiş ve 

MATLAB ile benzetimi yapılmıştır. Sonuçlar, üretim, demiryolu ve otomotiv sistemleri 

gibi gerçek zamanlı ve gerçek dünya uygulamaları ile sunulmuştur. Önerilen yaklaşımın 

performansını değerlendirmek için, bu yaklaşım Zamanlandırılmış Petri Ağları için başka 

bir modelleme yöntemi olan Uzatılmış (Streç) Petri Ağları ile karşılaştırılmıştır. 

 

Anahtar Sözcükler:Zaman öğesi, Kalan zaman vektörü, Zamanlandırılmış  

     ulaşılabilirlik grafiği (ağacı), Yasaklı durum denetleyicisi,  

     Otomotiv/üretim/raylı sistemler.  



 

iv 

ABSTRACT 

TIMED-ARC PETRI NETS MODELING AND  

FORBIDDEN STATE CONTROL APPROACH 

 

Alpaslan YUFKA 

 

Department of Electrical-Electronics Engineering 

 

Eskişehir Technical University, Graduate School of Science, April 2019 

 

Supervisor: Prof. Dr. Aydın AYBAR 

(Co-Supervisor: Assoc. Prof. Dr. Hanife Apaydın ÖZKAN) 

 

In this thesis, a new mathematical and graphical modeling method where time 

delays are assigned to arcs is presented for Timed Petri Nets. In Timed Petri Nets, states 

change by the flow of tokens with the time. This time-dependent movement causes an 

inability to track mathematical and graphical evaluation of the net during firing processes. 

In the proposed model, a triangular representation, called time element, that allows 

monitoring of tokens in transitions is introduced. Additionally, the state of the system at 

any time contains the marking vector representing the status of tokens in places and the 

remaining time vector representing the remaining time of tokens in transitions at that time. 

Expressing the state in terms of the marking and remaining time vectors makes it possible 

to obtain the reachability set and generate a timed-reachability tree. The controller design 

is also considered for the proposed mathematical model. Corresponding algorithms are 

developed for the construction of the reachability set and the controller design, and 

simulated with MATLAB. Results are presented through real-time and real-world case 

studies, such as manufacturing, railway, and automotive systems. In order to evaluate the 

performance of the proposed approach, it is compared with Stretched Petri Nets that is 

another modeling method for Timed Petri Nets. 

 

Keywords: Time element, Remaining Time Vector, Timed-reachability graph (tree),  

                     Forbidden state controller, Automotive/manufacturing/railway systems.  



 

v 

ACKNOWLEDGEMENT 

 

First, I would like to thank my dear supervisors Prof. Dr. Aydın AYBAR and Assoc. 

Dr. Hanife Apaydın ÖZKAN for their guidance and patience during this thesis. They were 

more than a supervisor, and they have been always supportive. 

I would like to thank Prof. Dr. Altuğ İFTAR and Asst. Prof. Dr. Nihat ADAR for 

their wise and precious contributions, and the rest of the members of the jury, Prof. Dr. 

Hüseyin AKÇAY, and Prof. Dr. Osman PARLAKTUNA, with respect. 

I’m grateful to my wife, Burcu YUFKA, my mother, Nebahat YUFKA, my father, 

Mustafa YUFKA, my brother, Muhittin YUFKA, my father-in-law, Mehmet ALPAY, 

and mother-in-law, Döndü ALPAY, for their patience and support during my doctorate 

and research. I’m also grateful to my naughty son, Ata Yağız YUFKA because of his 

scribbles on my papers during my research. 

I would like to thank my company, Otokar Automotive and Defense Industry Inc. 

and Koç Holding, for their permissions to maintain my education. I’m very grateful to 

my manager Uğur TURHAN for his patience and permissions during my thesis. 

I would like to appreciate my friends, Bora TARIMTÖRÜ, Gökhan AÇAR, and 

other instructors who contributed to and supported my research. 

The research in this thesis, which is BAP-1610F665, namely ”Dynamic Control 

Approaches for Timed Discrete-Event Systems”, was supported by Anadolu 

University/Eskişehir Technical University. I would like to thank the BAP (Scientific 

Research Projects) Commission for their support. 

 

  



 

vi 

..../..../2019 

 

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES 

 

I hereby truthfully declare that this thesis is an original work prepared by me; that 

I have behaved in accordance with the scientific ethical principles and rules throughout 

the stages of preparation, data collection, analysis and presentation of my work; that I 

have cited the sources of all the data and information that could be obtained within the 

scope of this study, and included these sources in the references section; and that this 

study has been scanned for plagiarism with “scientific plagiarism detection program” 

used by Eskişehir Technical University, and that “it does not have any plagiarism” 

whatsoever. I also declare that, if a case contrary to my declaration is detected in my work 

at any time, I hereby express my consent to all the ethical and legal consequences that are 

involved. 

 

 

................ 

Alpaslan YUFKA 

 

 

  



 

vii 

CONTENTS 

Page 

TITLE PAGE ................................................................................................................... i 

FINAL APPROVAL FOR THESIS .............................................................................. ii 

ÖZET .............................................................................................................................. iii 

ABSTRACT .................................................................................................................... iv 

ACKNOWLEDGEMENT .............................................................................................. v 

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES .. vi 

CONTENTS .................................................................................................................. vii 

LIST OF TABLES ......................................................................................................... ix 

LIST OF FIGURES ........................................................................................................ x 

LIST OF ALGORITHMS ............................................................................................ xii 

SYMBOLS AND ABBREVIATIONS ........................................................................ xiii 

1. INTRODUCTION ....................................................................................................... 1 

2. PETRI NETS ............................................................................................................... 6 

 2.1. Untimed Petri Nets .............................................................................................. 6 

 2.2. Timed Petri Nets .................................................................................................. 8 

 2.3. Stretched Petri Nets .......................................................................................... 12 

3. TIMED-ARC PETRI NETS .................................................................................... 18 

 3.1. Mathematical Model and Definition of Timed-Arc Petri Nets...................... 19 

3.2.  Enabledness and Next State .............................................................................. 24 

3.3.  Behavioral Properties of Timed-Arc Petri Nets ............................................. 33 

4. COMPARISONS ....................................................................................................... 40 

4.1. State-Representations ........................................................................................ 40 

4.2. Computational Complexity and Times ............................................................ 45 

5. CONTROLLER DESIGN ........................................................................................ 47 

5.1. Forbidden State Controller Design for Timed-Arc Petri Nets ....................... 47 

5.2. Controller Examples for Timed-Arc Petri Nets .............................................. 50 

6. MODELING AND DESIGN FOR REAL WORLD SYSTEMS .......................... 55 

 6.1. Manufacturing Systems .................................................................................... 55 

     6.1.1. Modeling manufacturing system using TdAPN ................................... 56 



 

viii 

    6.1.2. Controller-design .................................................................................... 60 

6.2. Railway Systems ................................................................................................. 60 

6.3. Automotive Systems ........................................................................................... 66 

7. ALGORITHMS FOR TIMED-ARC PETRI NETS .............................................. 73 

 7.1. Algorithms to Construct Reachability Set ...................................................... 73 

     7.1.1. Prepare-initials part ............................................................................... 73 

     7.1.2. Main-function part ................................................................................. 74 

  7.2. Algorithms to Construct Forbidden State Controller .................................. 84 

8. CONCLUSION, DISCUSSION AND PROPOSALS ............................................ 89 

8.1. Conclusion ........................................................................................................... 89 

8.2. Discussion ............................................................................................................ 91 

8.3. Proposals ............................................................................................................. 92 

REFERENCES .............................................................................................................. 94 

APPENDICES 

CURRICULUM VITAE 

 

  



 

ix 

LIST OF TABLES 

Page 

Table 3.1. Computing M(k+1) using impulse functions when t1 fires at k= ................ 28 

Table 3.2. Computing R(k+1) using impulse functions when t1 fires at k= ............... 29 

Table 3.3. Reachability set for TdAPN in Figure 3.4.(b) ............................................... 37 

Table 4.1. Comparison for state-representations of TdAPN and Place-Stretched PN ... 44 

Table 6.1. Physical meanings for elements of TdAPN in Figure 6.2.(b) ....................... 57 

Table 6.2. Physical meanings for elements of TdAPN in Figure 6.9 ............................. 69 

 

  



 

x 

LIST OF FIGURES 

Page 

Figure 2.1. Example Petri net .......................................................................................... 6 

Figure 2.2. Reachability tree of Petri Net in Figure 2.1 ................................................... 8 

Figure 2.3. Firing process of t1 for Timed PN with firing durations ............................... 9 

Figure 2.4. Firing process of t1 for Timed PN with holding durations .......................... 10 

Figure 2.5. Firing process of t1 for Timed PN with enabling durations......................... 11 

Figure 2.6. Transition-Stretched PN Equivalent for Timed PN in Figure 2.3 ............... 14 

Figure 2.7. Place-Stretched PN Equivalent for Timed PN in Figure 2.4 ....................... 16 

Figure 3.1. Representations of (a) Timed PN with firing durations and (b) TdAPN .... 21 

Figure 3.2. Representations of the time element ............................................................ 22 

Figure 3.3. Representation of time elements ................................................................. 22 

Figure 3.4. Representation of TdAPN for the original Timed PN ................................. 26 

Figure 3.5. Representation of TdAPN for the original Timed PN in (a) ....................... 30 

Figure 3.6. Another representation of TdAPN with distinct time delays ...................... 31 

Figure 3.7. Example firing process of t1 for TdAPN in Figure 3.6.(b) .......................... 32 

Figure 3.8. Timed-reachability tree for TdAPN in Figure 3.4.(b) ................................. 38 

Figure 4.1. Simple representative example of starting an engine .................................. 40 

Figure 4.2. Another representation of the engine example in Figure 4.1 ...................... 41 

Figure 4.3. Firing process of the transition t1 ................................................................. 43 

Figure 5.1. Timed-reachability tree of TdAPN in Figure 3.4 with the controller .......... 51 

Figure 5.2. Example of TdAPN includes a deadlock state and loop ............................. 51 

Figure 5.3. Timed-reachability tree of TdAPN in Figure 5.2 ........................................ 53 

Figure 5.4. Timed-reachability tree of TdAPN in Figure 5.3 with the controller .......... 54 

Figure 6.1. Representative manufacturing example ...................................................... 55 

Figure 6.2. Model of (a) Transition-Stretched PN [12] and (b)TdAPN ........................ 56 



 

xi 

Figure 6.3. Timed-reachability tree for TdAPN in Figure 6.2.(b) ................................. 59 

Figure 6.4. Blocks and tracking circuits on a railway network ..................................... 61 

Figure 6.5. Block transition between adjacent blocks modeled using TdAPN ............. 62 

Figure 6.6. Place-Stretched PN Equivalent of TdAPN in Figure 6.5 ............................ 63 

Figure 6.7. Timed-reachability tree for TdAPN in Figure 6.5 ....................................... 65 

Figure 6.8. Schedule of tasks and assignment to processors [44] .................................. 67 

Figure 6.9. Model of TdAPN for the cruise control in Figure 6.8 ................................. 67 

Figure 6.10. Transition-Stretched PN Equivalent of TdAPN in Figure 6.9 .................. 68 

Figure 6.11. Timed-reachability tree of TdAPN in Figure 6.9 ...................................... 71 

Figure 7.1. Parts of the software of TdAPN to obtain the reachability set .................... 73 

Figure 7.2. Detailed diagram of Main-Function Part ..................................................... 74 

Figure 7.3. Main algorithm and its sub-algorithms for TdAPN .................................... 77 

Figure 7.4. Forbidden State-Controller Part for the software of TdAPN ...................... 84 

Figure 7.5. Main-controller algorithm and its sub-algorithms for TdAPN .................... 84 

 

  



 

xii 

LIST OF ALGORITHMS 

Page 

Algorithm 7.1. Main algorithm of Main-Function Part ................................................. 77 

Algorithm 7.2. Enabledness sub-algorithm ................................................................... 79 

Algorithm 7.3. Firing process sub-algorithm to check completed firing processes ...... 81 

Algorithm 7.4. Firing process sub-algorithm to add new firing processes .................... 81 

Algorithm 7.5. Next state sub-algorithm to calculate next marking vector ................... 82 

Algorithm 7.6. Next state sub-algorithm to calculate next remaining time vector ........ 83 

Algorithm 7.7. Main-controller algorithm of Forbidden State-Controller Part ............. 85 

Algorithm 7.8. Finding forbidden-states sub-algorithm ................................................ 86 

Algorithm 7.9. Reversibility analysis sub-algorithm ..................................................... 87 

Algorithm 7.10. Finding controller-values sub-algorithm ............................................. 88 

 

  



 

xiii 

SYMBOLS AND ABBREVIATIONS 

𝑩  : The bound vector for the token(s) at places 

𝐵(𝑝)  : The upper limit of available tokens at the place 𝑝 at the vector 𝑩 

𝒞(𝑆, 𝜙) : The controller function for the forbidden state controller 

𝐷  : The time delay matrix for outgoing arcs in TdAPN 

𝐷(𝑝, 𝑡)  : The time delay of an outgoing arc from 𝑡 to 𝑝 in matrix 𝐷 in TdAPN 

𝔇  : The set of time delays in Timed PN 

𝑑𝑡  : The total duration of a firing process 𝑡𝜆 in TdAPN 

𝔡𝑡  : The time delay of the transition 𝑡 in Timed PN, where 𝔡𝑡 ∈ 𝔇 

𝐸(𝐺, 𝑘) : The set of enabled transitions 

𝐸(𝐺,𝑴) : The set of enabled transitions at the marking vector 𝑴 

𝐸̂(𝐺, 𝑘) : The set of sets of simultaneously-enabled transitions 

𝐸̂(𝐺,𝑴) : The set of sets of simultaneously-enabled transitions at the marking  

    vector 𝑴 

𝐹(𝑘)  : The set of all activated firing processes of 𝐺𝐴 at time 𝑘, where 𝐹(𝑘) 

    is 𝐹𝑝𝑟𝑒(𝑘) ∪ 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) 

𝐹𝑝𝑟𝑒(𝑘) : The set of previously activated firing processes of 𝐺𝐴 at time 𝑘 

𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) : The set of newly activated firing processes of 𝐺𝐴 at time 𝑘 

𝐹(𝑆)  : The set of transitions whose firing processes have been previously and  

    currently activated. It is used for the forbidden state controller.  

    𝐹(𝑆) is 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙. 

𝐹𝑝𝑟𝑒(𝑆) : The set of transitions whose firing processes have been previously  

    activated. It is used for the forbidden state controller. 

𝐺  : The tuple of Petri Net (e.g. 𝐺𝐴 for TdAPN, 𝐺𝑈 for untimed PN). 

ℎ𝑝
𝑡   : The symbol of a time element attached to an outgoing arc from 𝑡 to 𝑝,  

    where ℎ𝑝
𝑡 ∈ ∇ 

𝜙  : The set of simultaneously-enabled transitions (it can also be a singleton) 

∇̂  : The expanded set of time elements in TdAPN 

∇  : The set of time elements in TdAPN, ∇⊆ ∇̂ 

𝛁𝑹  : The remaining time vector assigned to time elements in TdAPN 



 

xiv 

𝛁𝑹(𝑘)  : The remaining time vector assigned to time elements at time 𝑘 in TdAPN 

∇𝑅(𝑘, ℎ𝑝
𝑡 ) : The remaining time of flowing tokens at the time element ℎ𝑝

𝑡  at time  

    𝑘 in TdAPN 

𝑘  : Discrete-time variable, where time is discretized into time slots by using  

    an appropriate sampling period 

ℒ̃0  : The set of deadlock states, ℒ̃0 ⊆ ℒ̃ 

ℒ0  : The initial set of undesired states, ℒ0 ⊆ ℒ̂ 

ℒ𝑖  : The 𝑖 'th set of undesired states, which are obtained in the 𝑙'th iteration  

    and leads the system to ℒ̂, ℒ𝑖 ⊆ ℒ̂ 

ℒ̂  : The expanded set of undesired states, ℒ̂ ⊆ 𝑅𝑆(𝐺, 𝑆) 

ℒ̃  : The expanded set of deadlock states, ℒ̃ ⊆ 𝑅𝑆(𝐺, 𝑆) 

𝑅𝑆(𝐺, 𝑆) : The reachability set of 𝐺 from 𝑆 

𝑅𝑅(𝐺, 𝑆0) : The irreversible set of 𝐺, where 𝑅𝑅(𝐺, 𝑆0) ⊂ 𝑅𝑆(𝐺, 𝑆0) 

𝑆  : The state of 𝐺, where 𝑆 = {𝑴,𝛁𝑹 } for TdAPN 

𝑆(𝑘)  : The state of 𝐺 at time 𝑘, where  𝑆(𝑘) = {𝑴(𝑘), 𝛁𝑹(𝑘) } for TdAPN 

𝑆0  : The initial state of 𝐺 at the initial time 𝑘0, i.e., 𝑆(𝑘0) 

𝑡𝜆  : The symbol of a firing process of 𝑡 started at time 𝑘 = 𝜆 in TdAPN 

𝜆  : The starting time-instant of 𝑡𝜆 in TdAPN 

𝜌(𝑆, 𝐹(𝑆)) : The function that gives the next state of 𝑆 according to 𝐹(𝑆) for the  

    forbidden state controller, where 𝐹(𝑆) = 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙 
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SPNs  : Stretched Petri Net(s) 
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1. INTRODUCTION 

Today’s large-scale and complex systems often comprise subsystems which are 

composed of configuration items including many components (systems of systems). All 

of these serve a common purpose and work in conjunction with each other to satisfy the 

current need for automation and data exchange in manufacturing technologies. The 

current industrial revolution, Industry 4.0, is based on connectivity, big data, and event-

based operational technologies. This futuristic innovation includes many large-scale 

systems, and their infrastructure is constructed using the concept of Systems of Systems. 

Moreover, safer and better transportation is another popular issue to develop intelligent 

and autonomous solutions in the field of land, marine, air, and railway systems. Railway 

systems are more interesting than other fields of transportation due to their safety record 

[1, 2]. The growing population requires more technological designs in this century. The 

above systems are sophisticated, large-scale, and event-driven. These can best be 

expressed by sequential events in the course of time. Discrete-Event Systems are used for 

this purpose in order to describe such systems using the occurrence of events [3-6]. The 

state evolution of such systems depends on these occurrences. Petri Nets (PNs) are used 

for, formally and graphically, representing this dependency between events [3-9]. 

PN is a useful methodology to model and verify Discrete-Event Systems; for 

instance, event-driven systems, manufacturing systems, transportation systems, 

automotive systems, etc. [2, 3, 8]. It is also used to analyze such systems so that it allows 

designing a controller for such systems. PN was basically introduced without the notion 

of time as Place/Transition Nets or basic PNs [3-6, 8, 9]. Event-based systems consist of 

activities that include time delays; however, these delays are not expressed using basic 

PNs at first [10]. Thus, a basic PN is insufficient to express the dynamics of time-delayed 

systems. In other words, the dynamics of the system were insufficiently expressed using 

such basic PNs. In such time-delayed systems, the time that is used for transferring the 

dynamics into the model plays an important role [3, 6, 10-14]. The time information is 

associated with places, transitions, arcs, or tokens (as age or clock) of basic PNs  

[4-6, 10-13, 15-21]. In order to specify time delays in the net, Time PNs and Timed PNs 

were developed. Then, the basic PN has been called untimed PNs after the time extension 

of basic PNs was introduced. Time delays are exact (deterministic) in Timed PNs while 

time intervals are used in Time PNs. In this thesis, the deterministic approach is chosen, 

and Timed PN is considered. 
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Timed PN is a useful tool to accurately express timed and dynamic systems whose 

time delays are deterministic. Timed PN is essentially considered in three classes [5, 6]: 

Timed-Transition PNs, where transitions are labeled with time delays; Timed-Place PNs, 

where places are labeled with time delays; and Timed-Arc PNs, where arcs (or tokens 

restricted by arcs) are labeled with time delays. In addition, the methodology of modeling 

in Timed PNs is formed according to the interpretation of time delays, such as enabling 

durations, holding durations, and firing durations [20]. Events in real cases have time 

durations and result in after a certain time is elapsed. In Timed PNs, time delays are 

mostly associated with transitions because transitions represent events [12]. However, 

this approach is insufficient to express distinct outputs, which are related to the same 

event and have different time labels, and it is also inadequate to express dynamic 

operations, such as transportation, motion, etc. These dynamics can be easily represented 

and transferred into the model by associating time delays with arcs using Timed-Arc PNs. 

Furthermore, due to the nature of Timed-Arc PN, arcs that are connected to the same 

transition (event) can be labeled with different time delays while Timed PN, transitions 

are labeled with time delays, have no ability in that way. This thesis presents a new 

mathematical modeling method and a graphical representation for Timed-Arc Petri Nets. 

Many studies have been developed for Timed-Arc PNs [6, 15-20, 22-24]. Timed-

Arc PNs can be thought of as falling into two groups as follows: 

 In the first group, time information is related to arcs and tokens, where tokens 

have age (clock), and time-intervals attached to arcs limit the transition of tokens 

according to the age of tokens [15-19, 23]. Time delays are interpreted as enabling 

durations in this group. The number of applications has been performed using the 

approach in [25-27]. 

 In the second group, time information is related to only arcs. This group consists 

of Timed-Arc PNs, where arcs are only labeled with exact (deterministic) time 

durations [6, 20, 22, 24]. Time delays are interpreted as enabling or enabling and 

holding durations in this group. 

In the first group, Time PN, where arcs are labeled with time delays (durations), 

was firstly introduced by Walter [15], and it was called Time-Arc PNs (namely, Aging 

Token PNs) by Bolognesi et.al. [16]. Time intervals that are bounded by two non-negative 

integers were attached to ingoing arcs in order to restrict tokens who have age (clock). 

The age of the token was incremented by one at each ‘tick’, and the token leaves its input 
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place when it matures. Other studies on Timed-Arc PNs [17-19, 23, 25-27] were based 

on this approach. Time delays in this type of Time-Arc PNs in the first group have been 

interpreted as enabling durations [15-19, 23]. However, the time is elapsed at tokens, 

where arcs with time-intervals are used to restrict the flow of tokens. On the other hand, 

in the second group, deterministic Timed-Arc PN was developed [6, 20, 22, 24], where 

time delays were associated with only ingoing and outgoing arcs in terms of deterministic 

time durations rather than time intervals. Zhu and Denton firstly introduced deterministic 

Timed-Arc PNs, where they assumed that only one enabled transition was allowed to be 

fired at any given time. Next, Bowden developed Timed PN Superclass that is another 

model for deterministic Timed-Arc PNs [20, 24]. In this approach, ingoing and outgoing 

arcs were attached with deterministic time delays, and both enabling and holding 

durations were considered in the model of Timed-Arc PNs [20, 24]. Time delays in this 

type of Time-Arc PNs in the second group have been interpreted as enabling durations or 

both enabling and holding durations. However, in Timed PNs with enabling durations, 

tokens at places before a transition can be used by another active firing process related to 

these tokens. Time delays were not interpreted as firing durations/delays (i.e., time delays 

were not associated with any continuing transition-firing and flowing process in the 

transition) neither in the first group nor in the second group. In this thesis, the proposed 

approach introduces a new mathematical modeling method and a graphical representation 

for the second group of Timed-Arc PNs, where time delays are interpreted as firing 

durations. Yufka et.al. have recently presented this novel model of Timed-Arc PNs  

in [1, 28-31]. 

In Timed PNs, states of the system are defined by the change of tokens in Petri Nets 

and movements (flow) of tokens. These time-dependent movements cause an inability to 

track mathematically and graphically over PNs during the firing process. This causes 

temporary disappearance of tokens in the marking vector during the firing process such 

that tokens in transition (namely flowing tokens) are not observed mathematically and 

graphically [6, 11-14]; in addition, the marking vector does not include any information 

about flowing tokens. The marking vector shows the status information of the system 

using the presence/absence/number of token in the places. In addition, Timed PN shows 

the elapsed time of the firing process of a transition instead of indicating the state. The 

main drawback of Timed PNs is the inability of calculating the next state of Timed PNs 

and mathematically and graphically observing tokens in transition at each state. This 
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property of Timed PNs complicates finding all states that the system is able to reach, and 

designing a forbidden state controller for Timed PNs compared to basic PNs [12, 32]. In 

the proposed model, a triangular representation, called time element, that allows 

monitoring of flowing tokens is defined. The proposed Timed-Arc PN overcomes the 

main drawback of Timed PNs by including time elements and transforms any Timed PN 

into a tripartite structure. The state of the system and the remaining time of the 

work/operations are shown in terms of vectors. The proposed approach makes possible 

to obtain the reachability set and generate a timed-reachability graph (tree) enhanced by 

the time information as long as the marking and remaining time vectors are used to 

express the state of the system. All situations of tokens, i.e., all situations of states can be 

computed by using these vectors. In addition, the controller design is also presented for 

time-delayed systems that are modeled by the proposed mathematical model of Timed-

Arc PNs. Basic behavioral properties of the proposed Timed-Arc PN are defined by using 

the reachability set in order to permit analysis of the proposed approach. A forbidden state 

controller for time-delayed systems is designed using the reachability set and behavioral 

properties of the proposed Timed-Arc PN in order to make the system avoid undesired 

states. Algorithms for constructing the reachability set and constructing a forbidden state 

controller for the proposed Timed-Arc PN are developed and simulated with MATLAB. 

Results are presented through real-time and real-world case studies, such as 

manufacturing, railway, and automotive systems. Furthermore, in order to evaluate the 

performance of the proposed Timed-Arc PN, the proposed methodology is compared with 

Stretched PNs that were developed by Aybar and İftar [11-14, 46, 47] in this thesis. The 

methodology of Stretched PN is a novel model to overcome the same drawback of Timed 

PNs [11-14]. Stretched PN uses the methodology of transition-stretching, namely 

Transition-Stretched PNs [11-14], by adding a pair of place-transition into the timed net, 

or the methodology of place-stretching, namely Place-Stretched PNs [46, 47], by adding 

a pair of transition-place into the timed net; as a result, Stretched PN transforms Timed 

PN into a stretched version of this Timed PN. This makes Timed PN as if it is an 

equivalent untimed PN. Thus, Stretched PN allows analyzing Timed PNs and designing 

a supervisory controller for Timed PNs. 

In this thesis, it is aimed to develop a new mathematical modeling method and 

graphical representation, which represents a new notion and model for Timed PNs. It is 

also aimed to develop control approaches for the proposed Timed-Arc PN based on the 
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reachability set of time-delayed systems. Then, real-world case studies, such as 

manufacturing systems, railway systems, or automotive systems, etc. are modeled and 

controlled by using the proposed approach. 
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2. PETRI NETS 

In this chapter, first of all, basic definitions are presented for basic (untimed) PNs 

[3-8] with an example. Then, the time extension of such basic PNs is introduced as Timed 

PNs [4-6, 11-14, 20, 22, 46-47] in terms of interpretation of time delays with a 

comprehensive study. Next, Stretched PNs [11-14, 46, 47] that offer a stretched net of 

Timed PNs are described in order to compare the proposed methodology in this thesis 

with Stretched PNs. 

 

2.1. Untimed Petri Nets 

PN is a modeling paradigm. PN provides verification and formal modeling for 

Discrete Event Systems. PN is used for modeling and analyzing event-based systems. It 

is also used to design a controller for such systems. Basic PNs are Place/Transition Nets, 

where there is no time delay (duration) in the model of basic PNs; thus, this type of PNs 

is also called untimed PNs in the literature [3-6]. The net of basic PNs is composed of 

places, transitions, and arcs. In the graphical representation of basic PNs, circles show 

places, bars show transitions, and arrows show arcs between places and transitions or vice 

versa. In addition to these elements, tokens are used to denote the status of places, and 

they are shown by filled dots “●”. Moreover, a place that is connected to a transition as a 

premise is called an input place of this transition. Similarly, a place that is connected to a 

transition as a successor is called an output place of this transition. Arcs from places to 

transitions are called ingoing arcs, and arcs from transitions to places are called outgoing 

arcs [5-8]. An example PN with these elements is shown in Figure 2.1. 
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Figure 2.1. Example Petri net  
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A place may denote a condition, a resource, a signal, a buffer, or a datum; and a 

transition may denote an event, a process, a task/job, a logical clause, or a computational 

step [7]. A resource can be a machine, a robot, a person, etc. Arcs are used to construct a 

logical relation between places and transitions. Thus, prerequisites of an event are 

determined by the weights of arcs, and an event happens when all prerequisites are 

satisfied. The adequacy of the prerequisites is determined by tokens at related places. 

Moreover, the state of the system is represented by a marking vector that denotes the 

number of tokens at all places. 

A tuple of an untimed PN is represented by 𝐺𝑈(𝑃, 𝑇, 𝑁, 𝑂,𝑴0). Here, 𝑃 denotes the 

set of places. 𝑇 denotes the set of transitions, where 𝑃 and 𝑇 are disjoint (𝑃 ∩ 𝑇 = ∅).  

An element in the set 𝑃 is denoted by a place 𝑝 ∈ 𝑃, and an element in the set 𝑇 is denoted 

by a transition 𝑡 ∈ 𝑇. 𝑁:𝑃𝑥𝑇 → ℕ denotes the input matrix that specifies weights of 

ingoing arcs. ℕ is the set of natural numbers. If a connection exists from 𝑝 ∈ 𝑃 to 𝑡 ∈ 𝑇, 

then 𝑁(𝑝, 𝑡) ≠ 0. Otherwise, 𝑁(𝑝, 𝑡) is equal to zero. Similarly, 𝑂: 𝑃𝑥𝑇 → ℕ denotes the 

output matrix that specifies weights of outgoing arcs. If a connection exists from 𝑡 ∈ 𝑇 to 

𝑝 ∈ 𝑃, then 𝑂(𝑝, 𝑡) ≠ 0. Otherwise, 𝑂(𝑝, 𝑡) is equal to zero. The state of the system is 

represented by the marking vector 𝑴:𝑃 → ℕ, and the initial marking vector is denoted 

by 𝑴0. 

In 𝐺𝑈, a transition 𝑡 ∈ 𝑇 is enabled at 𝑴 if and only if 𝑀(𝑝) ≥ 𝑁(𝑝, 𝑡) ≥ 1,  

∀𝑝 ∈ 𝑃, where 𝑀(𝑝) represents the number of tokens at 𝑝 ∈ 𝑃. This condition is called 

enabledness (or firing rule). The set of enabled transitions at 𝑴 is represented by 

𝐸(𝐺𝑈,𝑴). For an enabled transition 𝑡 ∈ 𝐸(𝐺𝑈,𝑴) that fires at 𝑴, the new marking vector 

is computed as follows: 

𝑀̂(𝑝) = 𝑀(𝑝) + 𝑂(𝑝, 𝑡) − 𝑁(𝑝, 𝑡) , 𝑝 ∈ 𝑃,   𝑡 ∈ 𝐸(𝐺𝑈,𝑴) (2.1) 

Here, the new marking vector is represented by 𝑴̂: 𝑃 → ℕ, and the number of available 

tokens at the place 𝑝 ∈ 𝑃 at 𝑴̂ is represented by 𝑀̂(𝑝). 

Let us consider the untimed Petri Net shown in Figure 2.1. This untimed PN model 

is described as 𝐺𝑈(𝑃, 𝑇, 𝑁, 𝑂,𝑴0). Here, the set of places is 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. The set 

of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3}. 𝑁 = [

0 1 0
0 1 0
0 0 1
1 0 0

] and 𝑂 = [

0 0 1
1 0 0
0 1 0
0 1 0

] are input and output 

matrices, respectively. The initial marking vector is 𝑴0=[1 1 0 0]' ([.]' represents the 
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transpose of [.]). The set of enabled transitions at 𝑴0 is 𝐸(𝐺𝑈,𝑴0) = {𝑡1}. Reachable 

states from the initial marking 𝑴0 are represented as 𝑅𝑆(𝐺𝑈,𝑴0), which denotes the 

reachability set of 𝐺𝑈. For this example, the reachability set is 𝑅𝑆(𝐺𝑈,𝑴0) =  

{𝑴0=[1 1 0 0]', 𝑴1=[0 0 1 1]', 𝑴2=[1 0 0 1]', 𝑴3=[0 1 1 0]'}. Moreover, relations among 

these states are depicted as shown in Figure 2.2. This figure is generally called 

reachability tree/graph.                  
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Figure 2.2. Reachability tree of Petri Net in Figure 2.1 

 

2.2. Timed Petri Nets 

A basic PN is insufficient to express the dynamics of time-delayed systems. Such 

systems consist of activities that include time delays; however, these delays are not 

expressed using basic PNs [10]. The time is necessary to express in time-delayed systems 

[3, 10]. In order to specify time delays in the net, Time PNs and Timed PNs were 

developed. Time delays are considered as [5, 6, 20]: deterministic durations, where time 

values are exact and selected from a subset of ℕ; stochastic durations, where time values 

are expressed by a probabilistic function; and time intervals, where time durations have 

lower and upper bounds. Time delays are exact (deterministic) in Timed PNs while time 

intervals are used in Time PNs. In this thesis, the deterministic approach is chosen. In 

Timed PNs, time delays are associated with basic components of basic PNs that are 

transitions, places, arcs, and also tokens [5, 6, 10-13, 15-19]. Timed PN is named 

according to the association-type of time delays. If the time is attached to transitions, then 

Timed PN is named Timed-Transition PN. If the time is attached to places, then Timed 

PN is named Timed-Place PN. If the time is attached to arcs, then Timed PN is named 

Timed-Arc PN. This thesis introduces a new mathematical modeling method and a new 

representation for Timed-Arc PNs. 
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The methodology of modeling in Timed PNs is formed according to the 

interpretation of time delays, such as firing durations, holding durations, and enabling 

durations [20]. 

Firing durations relate to transition-firing processes. The time delay is associated 

with transitions. The interpretation of firing durations is illustrated in Figure 2.3 [20]. In 

this figure, the analysis of the Timed PN is given in the time interval [𝑘0, 𝑘a], where the 

discrete time variable is denoted by 𝑘 ∈ ℕ. This time variable is denoted in terms of time 

slots. In this net, 𝑡1 has a time delay of 𝑘a − 𝑘0 = 𝑎 time slots while time delays of 𝑡2 and 

𝑡3 are considered one time slot. The transition 𝑡1 fires at time 𝑘 = 𝑘0. Tokens at places 

𝑝1 and 𝑝2 disappear at time 𝑘 > 𝑘0 while the transition 𝑡1 holds tokens at the time interval 

𝑘 ∈ (𝑘0, 𝑘a) during the firing process as shown in Figure 2.3.(b). This disappearance is 

called flowing token in this thesis. Flowing tokens are not monitored through the marking 

vector. The firing process of the transition 𝑡1 ends at time 𝑘 = 𝑘a, and Tokens appear at 

places 𝑝3 and 𝑝4 at time 𝑘 = 𝑘a as shown in Figure 2.3.(c). 
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Figure 2.3. Firing process of t1 for Timed PN with firing durations 

 

A Timed PN with firing delays, namely Timed-Transition PN, is represented by a 

6-tuple 𝐺𝑇(𝑃, 𝑇, 𝑁, 𝑂,𝔇,𝑴0) [6, 11-13]. The time delay of a transition 𝑡 ∈ 𝑇 is 

represented by 𝔡𝑡 ∈ ℕ ∖ {0} , and the set of time delays is denoted by  

𝔇:= {𝔡𝑡1 , 𝔡𝑡2 , … , 𝔡𝑡𝑛}. 𝑴0 = 𝑴(𝑘0) is the initial marking vector at the initial time 𝑘0. 

The state of 𝐺𝑇 includes the marking vector and the pair of firing transitions and their 

elapsed time. 
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Holding durations relate to firing processes evaluated at output places (places after 

the transition). The time delay can be associated with places, transitions or outgoing arcs. 

Let us consider the case of associating time-delays with places. The interpretation of 

holding durations is illustrated in Figure 2.4 [20]. In this figure, the analysis of the Timed 

PN is given in the time interval [𝑘0, 𝑘a], where 𝑘b < 𝑘a. In this net, 𝑝3 has a holding time 

delay of 𝑘a − 𝑘0 = 𝑎 time slots; and 𝑝4 has a holding time delay of 𝑘b − 𝑘0 = 𝑏 time 

slots while holding time delays of 𝑝1 and 𝑝2 are considered one time slot. The transition 

𝑡1 fires at time 𝑘 = 𝑘0. Tokens at places 𝑝1 and 𝑝2 disappear at time 𝑘 > 𝑘0 while the 

output place 𝑝3 holds the token at the time interval 𝑘 ∈ (𝑘0, 𝑘𝑎) and the output place 𝑝4 

holds the token at the time interval 𝑘 ∈ (𝑘0, 𝑘𝑏) during the firing process as shown in 

Figure 2.4.(b). Tokens held at places 𝑝3 and 𝑝4 are denoted in the marking vector during 

the firing process of 𝑡1; however, these tokens are not available as long as output places 

𝑝3 and 𝑝4 hold these tokens. The firing process of the transition 𝑡1 ends at time 𝑘 = 𝑘a, 

and tokens become available at the place 𝑝3 at time 𝑘 = 𝑘a and at the place 𝑝4 at time 

𝑘 = 𝑘b as shown in Figure 2.4.(c). 
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Figure 2.4. Firing process of t1 for Timed PN with holding durations  
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A Timed PN with holding delays, namely Timed-Place PN, is represented by a  

6-tuple 𝐺𝑃(𝑃, 𝑇, 𝑁, 𝑂, 𝒟, 𝑆0) [6, 46, 47]. Here, 𝒟:𝑃 → ℕ\{0} represents holding time 

delays of places. The time delay of a place 𝑝 ∈ 𝑃 is represented by 𝒟(𝑝) ∈ ℕ ∖ {0} .  

𝑆0 = 𝑆(𝑘0) is the initial state of 𝐺𝑃 at the initial time 𝑘0. The state of 𝐺𝑃 includes the 

marking vector and the pair of tokens (shown by unfilled circles) held in the output place 

during the firing process and the remaining time of tokens to be available. 

Enabling durations relate to firing processes evaluated at input places (places before 

the transition). The time delay can be associated with places, transitions or ingoing arcs. 

Let us consider the case of associating time-delays with transitions. The interpretation of 

enabling durations is illustrated in Figure 2.5 [20]. In this figure, the analysis of the Timed 

PN is given in the time interval [𝑘0, 𝑘a]. In this net, 𝑡1 has an enabling time delay of  

𝑘a − 𝑘0 = 𝑎 time slots while time delays of 𝑡2 and 𝑡3 are considered one time slot. The 

firing process of the transition 𝑡1 starts at time 𝑘 = 𝑘0. Input places 𝑝1 and 𝑝2 hold tokens 

at the time interval 𝑘 ∈ [𝑘0, 𝑘𝑎) during the firing process as shown in Figure 2.5.(b). 

During this time interval, tokens at input places 𝑝1 and 𝑝2 are not removed from these 

places. These tokens are denoted in the marking vector during the firing process; however, 

these tokens may be used for another firing process whose enabling duration is shorter if 

the place 𝑝1 or 𝑝2 were a place in common with another transition. The transition 𝑡1 fires 

at time 𝑘 = 𝑘𝑎 such that the firing process of the transition 𝑡1 also ends at this time. 

Tokens appear at output places 𝑝3 and 𝑝4 at time 𝑘 = 𝑘𝑎 as shown in Figure 2.5.(c). 

 

p1

t2

p3

t1

(a)

t3

p4

p2 p1

t2

p3

t1

(b)

t3

p4

p2 p1

t2

p3

t1

(c)

t3

p4

p2

k0 < k < ka k = ka k = k0

a aa

 

Figure 2.5. Firing process of t1 for Timed PN with enabling durations 
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Figure 2.3, Figure 2.4, and Figure 2.5 show basic examples of Timed PNs, where 

time delays are interpreted as firing, holding and enabling durations. A time-delayed 

system should be modeled using the appropriate interpretation of time delays, such that 

the modeling strategy changes according to this. 

Interpreting time delays as firing durations rather than holding and enabling is more 

realistic and closer to real-world applications and prevents the use of tokens used for a 

firing process from being used by another firing process. In addition, distinct time delays 

are labeled with arc so that distinct operations related to the same event can be easily 

defined. In this thesis, the proposed methodology interprets time delays as firing durations 

and associates time delays with arcs. 

 

2.3. Stretched Petri Nets 

In Timed PNs with firing durations, transitions hold tokens during the firing 

process. Unfortunately, the marking vector alone is insufficient to represent the complete 

state of the system; in addition, the state of such Timed PNs indicates the elapsed time of 

the firing process related to the transition instead of representing the status of flowing 

tokens. In Timed PNs with holding durations, tokens reside in output places [6, 20, 46, 

47]. These tokens become available at the corresponding output place after a certain time 

delay is elapsed. These properties of Timed PNs with firing or holding durations 

complicate the design of a forbidden state controller for Timed PNs compared to untimed 

PNs [12, 32]. For this purpose, Stretched PNs was recently developed by Aybar and İftar 

[11-14, 46, 47]. Stretched PN transforms the structure of Timed PNs into a structure of 

the basic (untimed) PNs in order to analyze Timed PNs and design a supervisory 

controller for Timed PNs. 

Stretched PN is obtained by using two approaches, such as a transition-stretching 

and a place-stretching. For the transition-stretching, a pair of place-transition is added 

into the model of Timed PNs with firing durations for a unit time delay. When the 

methodology of the transition-stretching is used, Stretched PN is called Transition-

Stretched PNs [11-14]. Similarly, for the place-stretching, a pair of transition-place is 

added into the model of Timed PNs with holding durations for a unit time delay. When 

the methodology of the place-stretching is used, Stretched PN is called Place-Stretched 

PNs [46, 47]. 
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A Transition-Stretched PN is defined as a 5-tuple 𝐺𝑇𝑆(𝑃𝑠 , 𝑇𝑠, 𝑁𝑠, 𝑂𝑠,𝑴𝒔𝟎) [11-14], 

and any Timed PN with firing durations is stretched by using the transition-stretching 

procedure defined in [11-14]. Transition-Stretched PN uses discrete time variable 𝑘 and 

unit time delays that are associated with transitions. In 𝐺𝑇𝑆, 𝑃𝑠: = 𝑃 ∪ 𝑃𝑠 denotes the set 

of places after the transition-stretching procedure, where 𝑃𝑠 includes newly generated 

places as 𝑝𝑖
𝑡 ∈ 𝑃𝑠 for 1 ≤ 𝑖 ≤ 𝔡𝑡 − 1. 𝑇𝑠: = 𝑇 ∪ 𝑇𝑠 denotes the set of transitions after the  

transition-stretching procedure, where 𝑇𝑠 includes newly generated transitions as 𝑡𝑖
𝑡 ∈ 𝑇𝑠 

for 1 ≤ 𝑖 ≤ 𝔡𝑡 − 1. 𝑁𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the input matrix. 𝑂𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the output 

matrix. 𝑴𝒔𝟎: 𝑃𝑠 → ℕ is the initial marking vector at the initial time 𝑘0. The state of 𝐺𝑇𝑆 

includes the marking vector after the transition-stretching procedure, and it is obtained 

from the marking vector of the Timed PN with firing durations by using a transformation 

matrix. The state of 𝐺𝑇𝑆 includes the marking vector of the Timed PN with firing 

durations and information of flowing tokens related to the continuing firing process. An 

example of the equivalent Transition-Stretched PN for the Timed PN with firing durations 

in Figure 2.3 is given in Figure 2.6. Let us consider the time delay of 𝑡1 in Figure 2.3 as 

𝑘𝑎 − 𝑘0 = 3 time slots. 
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Figure 2.6. Transition-Stretched PN Equivalent for Timed PN in Figure 2.3  
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Let us consider an example of Transition-Stretched PN in Figure 2.6. The transition 

𝑡1 has a time delay of three time slots. Thus, places 𝑝1
𝑡1, 𝑝2

𝑡1 and transitions 𝑡1
𝑡1, 𝑡2

𝑡1 are 

added in order to stretch the transition 𝑡1. The transition 𝑡1 fires at time 𝑘 = 𝑘0, and the 

transition 𝑡1
𝑡1 immediately fires at time 𝑘 = 𝑘0 + 1. The flow of the token related to the 

firing process of 𝑡1 for the Timed PN with firing durations is observed through places 𝑝1
𝑡1 

and 𝑝2
𝑡1 as shown in Figure 2.6.(b), (c). The firing process related to the transition 𝑡1 ends 

after three time slots are elapsed, and tokens appear in places 𝑝3 and 𝑝4 at time 𝑘0 + 3 as 

shown in Figure 2.6.(d).                   

A Place-Stretched PN is defined as a 5-tuple 𝐺𝑃𝑆(𝑃𝑠, 𝑇𝑠, 𝑁𝑠, 𝑂𝑠,𝑴𝒔𝟎) [46, 47], and 

any Timed PN with holding durations is stretched by using the place-stretching procedure 

defined in [46, 47]. Place-Stretched PN uses discrete time variable 𝑘 and unit time delays 

that are associated with places. In 𝐺𝑃𝑆, 𝑃𝑠: = 𝑃 ∪ 𝑃𝑠 denotes the set of places after the 

place-stretching procedure, where 𝑃𝑠 includes newly generated places as 𝑝𝑖
𝑝 ∈ 𝑃𝑠 for 1 ≤

𝑖 ≤ 𝒟(𝑝) − 1. 𝑇𝑠: = 𝑇 ∪ 𝑇𝑠 denotes the set of transitions after the place-stretching 

procedure, where 𝑇𝑠 includes newly generated transitions as 𝑡𝑖
𝑝 ∈ 𝑇𝑠 for  

1 ≤ 𝑖 ≤ 𝒟(𝑝) − 1. 𝑁𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the input matrix. 𝑂𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the output 

matrix. 𝑴𝒔𝟎: 𝑃𝑠 → ℕ is the initial marking vector at the initial time 𝑘0. The state of 𝐺𝑃𝑆 

includes the marking vector after the place-stretching procedure. The state of 𝐺𝑃𝑆 includes 

the marking vector of the Timed PN with holding durations and information of flowing 

tokens related to the continuing firing process. An example of the equivalent Place-

Stretched PN for the Timed PN with holding durations in Figure 2.4 is given in Figure 

2.7. Let us consider time delays of 𝑝3 and 𝑝4 in Figure 2.4 as 𝑘a − 𝑘0 = 3 time slots and 

𝑘b − 𝑘0 = 2 time slots. 
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Figure 2.7. Place-Stretched PN Equivalent for Timed PN in Figure 2.4 
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Let us consider an example of Place-Stretched PN in Figure 2.7. The place 𝑝3 has 

a time delay of 3 time slots, and the place 𝑝4 has a time delay of 2 time slots. Thus, 

transitions 𝑡1
𝑝3, 𝑡1

𝑝4, 𝑡2
𝑝4 and places 𝑝1

𝑝3, 𝑝1
𝑝4, 𝑝2

𝑝4 are added in order to stretch places 𝑝3 

and 𝑝4. The transition 𝑡1 fires at time 𝑘 = 𝑘0, transitions 𝑡1
𝑝3 and 𝑡1

𝑝4  immediately fire at 

time 𝑘 = 𝑘0 + 1, and the transition 𝑡2
𝑝4 immediately fires at time 𝑘 = 𝑘0 + 2. The flow 

of tokens related to the firing process of 𝑡1 for the Timed PN with holding durations is 

observed through places 𝑝3, 𝑝4, 𝑝1
𝑝3, 𝑝1

𝑝4, 𝑝2
𝑝4 as shown in Figure 2.7.(b)-(d). The firing 

process related to the transition 𝑡1 ends after three time slots are elapsed. In addition, the 

flowing token related to 𝑝3 appears in the place 𝑝1
𝑝3 at time 𝑘 = 𝑘0 + 2, and the flowing 

token related to 𝑝4 appears in the place 𝑝2
𝑝4 at time 𝑘 = 𝑘0 + 3 as shown in Figure 2.6.(d). 

                     

In this thesis, Stretched PNs are used for comparing the proposed Timed-Arc PN 

with Stretched PNs [11-14, 46, 47] in order to evaluate the performance of the proposed 

methodology. Next chapter introduces the proposed Timed-Arc PNs for Timed PNs. 
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3. TIMED-ARC PETRI NETS 

In Timed PN, where time is interpreted as firing durations, transitions hold tokens 

during the firing process. Therefore, tokens are not monitored over the net of Timed PN 

during the firing process. This causes temporary disappearance of tokens in the marking 

vector of Timed PN during the firing process such that tokens in transition are not 

mathematically and graphically observed [6, 11-14]. In addition, the marking vector does 

not include any information about tokens in transition. However, there may be instances 

where it is necessary to monitor and determine the state, besides the marking vector. In 

addition, Timed PN shows the elapsed time of the firing process of a transition instead of 

indicating the state. The main drawback of Timed PN is the inability to calculate the next 

state of Timed PN and to observe tokens in transition, mathematically and graphically, at 

each state. This property of Timed PN complicates finding all states that the system is 

able to reach and designing a forbidden state controller for Timed PNs compared to basic 

Petri Nets [11-14]. 

In order to represent temporal dynamics that become invisible during the firing 

process of such Timed PNs, mathematically and graphically, this thesis presents a new 

model of Timed-Arc PNs. In the proposed Timed-Arc PNs, the next state is formally 

computed using marking and remaining time vectors, which allows computing all 

situations of states. Thus, the reachability set is readily constructed. Based on the 

reachability set, behavioral properties of the proposed Timed-Arc PNs are defined in 

order to permit analysis of the proposed approach. Using the reachability set and 

behavioral properties of the proposed Timed-Arc PNs, a forbidden state controller for 

Timed-Arc Petri Nets is designed so as to make the system avoid undesired states (see, 

Chapter 5). Algorithms for obtaining the reachability set and designing a forbidden state 

controller for Timed-Arc PNs are developed and simulated using MATLAB (see, Chapter 

7). In addition; examples of modeling and designing for real-world systems, such as 

manufacturing, railway, and automotive are carried out using the proposed approach (see, 

Chapter 6). Furthermore, the proposed Timed-Arc PN is a new model for Timed PNs. In 

order to evaluate performance of the proposed model, the methodology of Stretched PNs 

[11-14, 46, 47] is considered. Stretched PN is another type of Timed PNs, which is used 

to overcome the same problem of Timed PNs (see, Chapter 4). The following subsections 

present the proposed method of Timed-Arc PNs. Yufka et.al. have presented this novel 
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type of Timed PNs, where time delays are assigned to arcs and interpreted as firing 

durations, in [1, 28-31]. 

This chapter presents a new mathematical modeling method for Timed-Arc PNs 

with firing durations. The proposed model can also be used for obtaining the reachability 

set of Timed PNs with firing durations. When a Timed PN with firing durations is used 

in examples, this is called the original model of the Timed PN before transforming it into 

the proposed model of the Timed-Arc PN with firing durations. The following sections 

present the mathematical model and the graphical representation of the proposed Timed-

Arc PNs with its behavioral properties. 

 

3.1. Mathematical Model and Definition of Timed-Arc Petri Nets 

The proposed Timed-Arc Petri Net (TdAPN) is defined as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). 

Here; the set of places is represented by 𝑃; the set of transitions is represented by 𝑇; the 

input matrix is denoted by 𝑁; the output matrix is denoted by 𝑂; the time delay matrix is 

denoted by 𝐷; and the initial state of TdAPN is denoted by 𝑆0. 𝐷 and 𝑆0 will be explained 

in detail in the following paragraphs. Time delays in 𝐺𝐴 are considered exact 

(deterministic) and are expressed in terms of time slots (ts). These are associated with arcs 

rather than transitions or places. Time delays are interpreted as the firing durations that is 

related to flowing tokens of a firing process. 

 

Assumption 3.1: Time Delay of the Ingoing Arcs - In TdAPN, an event occurred at the 

present time affects the net at the next time (after one ts is elapsed); therefore, in this 

thesis, time delays for all ingoing arcs are equal to one ts. 

 

Based on Assumption 3.1, if the time delay of an event is considered to be equal to 

𝔡𝑡 ts, then 𝔡𝑡 − 1 ts time delay can be associated with the outgoing arcs in the 

representation of TdAPNs while one ts is assigned to ingoing arcs. Thus, the time delays 

of the outgoing arcs is expressed in terms of time slots and in a matrix form as  

𝐷: 𝑃 × 𝑇 → ℕ, namely the time delay matrix. An element 𝐷(𝑝, 𝑡) of this matrix denotes 

the time delay of an outgoing arc from the transition 𝑡 ∈ 𝑇 to the place 𝑝 ∈ 𝑃. The time 

delay of an outgoing arc is greater than or equal to zero ts. Moreover, the set of input 

places connected to the transition 𝑡 ∈ 𝑇 is represented by ●𝑡 = {𝑝 ∈ 𝑃|𝑁(𝑝, 𝑡) ≠ 0}, and 
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the set of output places connected to the transition 𝑡 ∈ 𝑇 is represented by  

𝑡●= {𝑝 ∈ 𝑃|𝑂(𝑝, 𝑡) ≠ 0}. 

In 𝐺𝐴, time elements are used to describe flowing tokens, and they are attached to 

outgoing arcs. A time element attached to an outgoing arc from the transition 𝑡 ∈ 𝑇 to the 

corresponding place 𝑝 ∈ 𝑡● is denoted by ℎ𝑝
𝑡 . The cardinality of time elements is equal 

to the number of nonzero elements of the time delay matrix 𝐷. Each time element is 

associated with its outgoing arc. All these elements are shown as 

∇:= {ℎ𝑝
𝑡 |𝑂(𝑝, 𝑡) ≥ 1 and 𝐷(𝑝, 𝑡) ≥ 1}, namely the set of time elements. However, some 

outgoing arcs may have zero-time delay even if their weights are greater than one; as a 

result, time elements for zero-time delayed outgoing arcs are not used in the state of 

TdAPN in order to avoid operation confusion. The set ∇ is disjoint from both the set of 

places and transitions. The state of TdAPN is represented by 𝑆(𝑘):= {𝑴(𝑘), 𝛁𝑹(𝑘)}. 

Here, 𝑘 ∈ ℕ represents the discrete time variable that is discretized into time slots (ts) 

using an appropriate sampling period. The status of tokens at places at time 𝑘 is 

represented by the marking vector 𝑴(𝑘): 𝑃 → ℕ, and the status of flowing tokens at time 

elements at time 𝑘 is represented by the remaining time vector 𝛁𝑹(𝑘): ∇→ ℕ in terms of 

time slots. Note that its initial state is indicated as 𝑆(𝑘0):= {𝑴(𝑘0), 𝛁
𝑹(𝑘0)}, i.e., 𝑆0: =

{𝑴0, 𝛁
𝑹0}, where 𝑴(𝑘0) = 𝑴0 and 𝛁𝑹(𝑘0) = 𝛁

𝑹0. In addition, in this thesis, 𝑀(𝑘, 𝑝) ∈

ℕ of 𝑴(𝑘) is used to represent the number of tokens at the place 𝑝 ∈ 𝑃 at time 𝑘, and 

∇𝑅(𝑘, ℎ𝑝
𝑡 ) ∈ ℕ of 𝛁𝑹(𝑘) is used to represent the remaining time of flowing tokens at the 

time element ℎ𝑝
𝑡 ∈ ∇ at time 𝑘. 

On the representation of Timed PN with firing durations, the time delay 𝔡𝑡 is shown 

below the bar of the transition 𝑡 as illustrated in Figure 3.1.(a); in addition, flowing tokens 

are not monitored during the firing process of the transition 𝑡. In TdAPN, 𝛁𝑹(𝑘) is used 

as a mathematical representation for flowing tokens. In order to depict this mathematical 

representation of the time element in the graphical representation of PNs, a triangular-

formed component is introduced in the representation of TdAPNs. Thus, in addition to 

mathematical sense, flowing tokens are monitored over this new component in the 

graphical sense. A time element ℎ𝑝
𝑡  is graphically depicted as in Figure 3.1.(b), which is 

the representation of TdAPN for the representation of Timed PN in Figure 3.1.(a). 
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Figure 3.1. Representations of (a) Timed PN with firing durations and (b) TdAPN 

 

Figure 3.1.(b) explains parts of the time element ℎ𝑝
𝑡  with its external connections 

and gives mathematical entities related to this time element. The time element consists of 

four parts as follows: 

 The right corner with filled indicator indicates the time delay of the outgoing arc 

that is 𝐷(𝑝, 𝑡). A filled triangular indicator is placed at the inner corner of the time 

element ℎ𝑝
𝑡 , so as to prevent any confusion. 

In order to emphasize zero-time delayed time elements, the inside of the time 

element is filled with gray color. This gray-representation is only used for 

indicating the time delay and weight of an outgoing arc, and is not used for 

showing flowing tokens. 

 The left corner without filled indicator indicates the remaining time of flowing 

tokens at the time element ℎ𝑝
𝑡  at time 𝑘 that is ∇𝑅(𝑘, ℎ𝑝

𝑡 ). This remaining time is 

indicated next to the corner as long as ∇𝑅(𝑘, ℎ𝑝
𝑡 ) is greater than zero ts. 

 The dots inside of the triangle indicates flowing tokens (shown as dots in the time 

element ℎ𝑝
𝑡  in Figure 3.1.(b)). Flowing tokens reside in the time element ℎ𝑝

𝑡  as 

long as the remaining time is in the range of time interval as  

1 𝑡𝑠 ≤ ∇𝑅(𝑘, ℎ𝑝
𝑡 ) ≤ 𝐷(𝑝, 𝑡) 𝑡𝑠. The number of flowing tokens is equal to the 

weight of the outgoing arc, i.e., 𝑂(𝑝, 𝑡). 

 The line at the end of the triangle indicates the weight of the outgoing arc that is 

𝑂(𝑝, 𝑡). There is no need to indicate the middle line as long as 𝑂(𝑝, 𝑡) is equal to 

one.   
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Let us consider the time element, such as ℎ𝑝1
𝑡1  attached onto the outgoing arc from 

𝑡1 to 𝑝1. The graphical representation of ℎ𝑝1
𝑡1  is shown in Figure 3.2. 
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Figure 3.2. Representations of the time element 

 

For Figure 3.2.(a)-(c); the time element ℎ𝑝1
𝑡1 ∈ ∇ has a time delay of 𝐷(𝑝1, 𝑡1) = 2 𝑡𝑠 and 

is weighted by 𝑂(𝑝1, 𝑡1) = 2. Figure 3.2.(a) indicates that no flowing token is associated 

with ℎ𝑝1
𝑡1 . However, in Figure 3.2.(b) and (c), two flowing tokens appear in ℎ𝑝1

𝑡1 , due to  

1 𝑡𝑠 ≤ ∇𝑅(𝑘, ℎ𝑝1
𝑡1 ) ≤ 2 𝑡𝑠.                   

Let us consider some variations of graphical representations for time elements, such 

as ℎ𝑝2
𝑡2 , ℎ𝑝3

𝑡3  and a time element attached onto a zero-time delayed outgoing arc. These are 

shown in Figure 3.3. 
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Here in Figure 3.3.(a) and (b), time elements ℎ𝑝2
𝑡2  and ℎ𝑝3

𝑡3  are members of the set ∇ due to 

𝐷(𝑝, 𝑡) ≠ 0 𝑡𝑠. The time element in Figure 3.3.(c) is not considered in the set ∇ and the 

state of 𝐺𝐴 due to 𝑂(𝑝, 𝑡) ≠ 0  and 𝐷(𝑝, 𝑡) = 0 𝑡𝑠. Let us explain these graphical 

representations as follows:  

 For Figure 3.3.(a);the time element ℎ𝑝2
𝑡2 ∈ ∇ has a time delay of 𝐷(𝑝2, 𝑡2) = 1 ts 

and is weighted by 𝑂(𝑝2, 𝑡2) = 3. Three flowing tokens reside in ℎ𝑝2
𝑡2 . These appear 

in the output place 𝑝2 ∈ 𝑡2● after ∇𝑅(𝑘, ℎ𝑝2
𝑡2 ) = 1 𝑡𝑠 is elapsed. 

 For Figure 3.3.(b); similarly, the time element ℎ𝑝3
𝑡3 ∈ ∇ has a time delay of 

𝐷(𝑝3, 𝑡3) = 7 𝑡𝑠 and is weighted by 𝑂(𝑝3, 𝑡3) = 10. Ten flowing tokens reside in 

ℎ𝑝3
𝑡3 . These appear in the output place 𝑝3 ∈ 𝑡3● after ∇𝑅(𝑘, ℎ𝑝3

𝑡3 ) = 2 𝑡𝑠 is elapsed. 

Here, during the time element ℎ𝑝3
𝑡3 , the number of flowing tokens is illustrated as 

a text instead of dots because of the limited area. 

 For Figure 3.3.(c); the time element attached onto a zero-time delayed outgoing 

arc has a zero-time delay as 𝐷(𝑝4, 𝑡4) = 0 𝑡𝑠 and is weighted by 𝑂(𝑝4, 𝑡4)=1. This 

type of time element is only used to indicate the time delay and weight of the 

outgoing arc. It is neutral and not a member of the set ∇; as a result, its status is 

not presented in the remaining time vector 𝛁𝑹(𝑘).              

 

It is important to monitor flowing tokens in Timed PNs because a complete picture 

of reachable states of time-delayed systems is required in many practical systems. The 

proposed graphical representation of TdAPN can transform any original Timed PN into 

a tripartite graph including places, transitions, and time elements. The tripartite structure 

of TdAPN allows the net to start at any state and any initial-time instant. This also allows 

determining all situations of tokens (some of them are stationary at places, and the rest of 

them flow over time elements), which indicates all situations of states for a deterministic 

timed-delay system. A time element physically indicates a continuing operation related 

to an event in practice. 
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3.2. Enabledness and Next State 

This section presents the enabledness rule of TdAPN based on the firing process of 

TdAPN and the computation of the next state of TdAPN.  

In TdAPN, a firing process related to an enabled transition 𝑡 fired at time 𝑘 = 𝜆 is 

represented by 𝑡𝜆. Firing processes are considered in two groups based on their starting 

time as previously activated firing process and newly activated firing process: 

 The set of firing processes of TdAPN activated before time 𝑘 and not finished yet, 

namely previously activated firing process, is represented by  

𝐹𝑝𝑟𝑒(𝑘) ≔ {𝑡𝜆|𝜆 < 𝑘 < 𝜆 + 𝑑𝑡}. 

 The set of firing processes of TdAPN started at time 𝑘 = 𝜆, namely newly 

activated firing process, is represented as 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) ≔ {𝑡𝜆|𝑘 = 𝜆}.  

The set of all activated firing processes, i.e., 𝐹𝑝𝑟𝑒(𝑘) ∪ 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘), of TdAPN at time 

𝑘 is represented by 𝐹(𝑘):= {𝑡𝜆|𝜆 ≤ 𝑘 < 𝜆 + 𝑑𝑡 , 𝑡 ∈ 𝑇}. Here, 𝑑𝑡 ∈ ℕ\{0} is called total 

duration of the firing process 𝑡𝜆 in terms of ts. It is determined by  

𝑑𝑡: = max
𝑝∈𝑡●

{1 + 𝐷(𝑝, 𝑡)}, which is the sum of the maximum time delay among ingoing 

arcs that is one ts and the maximum time delay among outgoing arcs. 

 

Assumption 3.2: Only One Continuing Firing Process Related to the Same Transition - 

In TdAPN, the same transition is allowed to fire once at the same time because a physical 

system, such as a machine, is mostly unavailable while an event related to this system is 

in progress. Thus, in this thesis, it is assumed that the transition 𝑡 is not enabled at time 𝑘 

while its firing process 𝑡𝜆 ∈ 𝐹𝑝𝑟𝑒(𝑘) continues. 

 

In TdAPN, a firing process 𝑡𝜆 is expressed in three parts in terms of starting time-

instant, ending time-instant for an output place 𝑝 ∈ 𝑡● and ending time-instant for the 

firing process 𝑡𝜆 as follows: 

 Starting time-instant is a time instant represented by 𝜆, where the transition 𝑡 fires 

and its firing process begins at time 𝑘 = 𝜆. 

At time 𝑘 = 𝜆; the firing process 𝑡𝜆 is added into the set of newly activated firing 

processes, i.e., 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆) if 𝑑𝑡 is greater than one ts. Otherwise (𝑑𝑡 is equal 
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to one ts), 𝑡𝜆 is not considered in the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) because the time delay of all 

outgoing arcs connected to the transition 𝑡 is equal to zero ts. 

At time 𝑘 = 𝜆 + 1; 𝑁(𝑝, 𝑡) number of tokens leave all input places 𝑝 ∈ ●𝑡, and 

𝑂(𝑝, 𝑡) number of flowing tokens appear in corresponding time elements of the 

set ∇ that are connected to this transition. Otherwise, these tokens directly appear 

in the corresponding output place 𝑝 ∈ 𝑡●. 

 Ending time-instant for an output place 𝑝 ∈ 𝑡● is a time instant that is indicated 

by 𝜆 + (1 + 𝐷(𝑝, 𝑡)). Note that one ts comes from the maximum time delay 

among ingoing arcs. At this time instant; flowing tokens, which transit via the 

time element ℎ𝑝
𝑡 ∈ ∇, finishes their transition, and  𝑂(𝑝, 𝑡) number of flowing 

tokens appear in the output place 𝑝 ∈ 𝑡●. 

 Ending time-instant for the firing process 𝑡𝜆 is a time instant, when the firing 

process 𝑡𝜆 ends completely at time 𝑘 = 𝜆 + 𝑑𝑡; as a result, 𝑡𝜆 is removed from 

𝐹(𝜆 + 𝑑𝑡). 

In TdAPN, a transition 𝑡 ∈ 𝑇 is enabled at time 𝑘 at the marking vector 𝑴(𝑘) if and 

only if 𝑡 satisfies the condition in (3.1) at time 𝑘 = 𝜆, 𝑡𝜆 ∉ 𝐹𝑝𝑟𝑒(𝑘) (see, Assumption 3.2). 

𝑀(𝑘, 𝑝) ≥ 𝑁(𝑝, 𝑡) ≥ 1,      ∀𝑝 ∈ ●𝑡  (3.1) 

The set of enabled transitions at time 𝑘 is denoted by 𝐸(𝐺𝐴, 𝑘). More than one 

transition 𝑡 ∈ 𝐸(𝐺𝐴, 𝑘) can be simultaneously enabled at time 𝑘. A set of transitions 𝜙 ⊆

𝐸(𝐺𝐴, 𝑘) is simultaneously enabled at time 𝑘 at the marking vector 𝑴(𝑘) if and only if 

the following condition is satisfied as: 

𝑀(𝑘, 𝑝) ≥∑

𝑡∈𝜙

𝑁(𝑝, 𝑡), ∀𝑝 ∈ P (3.2) 

Here, the set of simultaneously-enabled transitions, 𝜙, contains more than one transition, 

but it can also contain a single transition. Any set 𝜙, which satisfies the condition in (3.2), 

is added into the set 𝐸̂(𝐺𝐴, 𝑘) ⊂ 2
𝐸(𝐺𝐴,𝑘)\∅ that represents the set of sets of 

simultaneously-enabled transitions at time 𝑘 at the marking vector 𝑴(𝑘). Here, 2{.} 

denotes the power set of {. }. The set 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘) can be selected and simultaneously 

fired at any time 𝑘 as long as it is enabled at time 𝑘 at 𝑴(𝑘). In this thesis, in order to 
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obtain a state in a minimum time, a transition in the selected set 𝜙 fires at time 𝑘 as soon 

as it is enabled at time 𝑘 at 𝑴(𝑘). 

The next state of TdAPN is represented by 𝑆(𝑘 + 1) = {𝑴(𝑘 + 1), 𝛁𝑹(𝑘 + 1)}:  

𝑀(𝑘 + 1, 𝑝) ≔ 𝑀(𝑘, 𝑝)  + ∑

𝑡𝜆∈𝐹(𝑘)

(𝛿[𝑘 − (𝜆 + 𝐷(𝑝, 𝑡))]. 𝑂(𝑝, 𝑡) − 𝛿[𝑘 − 𝜆].𝑁(𝑝, 𝑡)) (3.3) 

∇𝑅(𝑘 + 1, ℎ𝑝
𝑡 ) ≔ ∇𝑅(𝑘, ℎ𝑝

𝑡 ) + ∑

𝑡𝜆∈𝐹(𝑘)

(𝛿[𝑘 − 𝜆]. 𝐷(𝑝, 𝑡) − ∑

𝜆+𝐷(𝑝,𝑡)

𝑙=𝜆+1

𝛿[𝑘 − 𝑙]) 

(3.4) 

, where 𝑀(𝑘 + 1, 𝑝) is the next marking vector at time 𝑘 + 1 for the place 𝑝 ∈ 𝑃, and 

∇𝑅(𝑘 + 1, ℎ𝑝
𝑡 ) is the next remaining time vector at time 𝑘 + 1 for the time element  

ℎ𝑝
𝑡 ∈ ∇. Here in the above equations, 𝛿[𝑘] ∈ {0,1}, 𝑘 ∈ ℕ, denotes the discrete-time unit 

impulse function. When enabled transitions of the set 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘) fire at time 𝑘, firing 

processes of these transitions start at time 𝑘 and are added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘). When 

all newly and previously activated firing processes in the set 𝐹(𝑘) are considered at time 

𝑘, 𝑆(𝑘 + 1) is computed using (3.3) and (3.4). 

The tripartite structure of TdAPN allows the net to start at any state and any initial-

time instant. Using equations (3.3) and (3.4) for computing the next state of TdAPN, it is 

possible to find next state including both next marking and remaining time vectors for 

time 𝑘0 ≠ 0. As a result, it is possible to find all reachable states of TdAPN starting at 

time 𝑘 = 𝑘0 ≠ 0. 
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Figure 3.4. Representation of TdAPN for the original Timed PN  
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Let us consider the original Timed PN in Figure 3.4.(a). The set of places is  

𝑃 = {𝑝1, 𝑝2, 𝑝3}. The set of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3}. Input and output matrices are 

𝑁 = [
1 1 0
0 0 1
0 0 1

] and 𝑂 = [
0 0 2
1 0 0
0 1 0

], respectively. Time delays associated with transitions are 

shown by the set of time delays, i.e., 𝔇 = {𝔡𝑡1 , 𝔡𝑡2 , 𝔡𝑡3}. These time delays are arbitrarily 

chosen as 𝔡𝑡1 = 3 ts, 𝔡𝑡2 = 2 ts and 𝔡𝑡3 = 4 ts for this example.  

Let us convert the original Timed PN in Figure 3.4.(a) into a tripartite graph of TdAPN 

including places, transitions, and time elements. This tripartite structure allows 

monitoring all situations of tokens, especially flowing tokens. We obtain the 

representation of TdAPN for this original Timed PN as shown in Figure 3.4.(b). The tuple 

of TdAPN is defined as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0) including time elements. Here, the time-

delay matrix is expressed as follows: 

𝐷 = [

0 0 𝔡𝑡3 − 1

𝔡𝑡1 − 1 0 0

0 𝔡𝑡2 − 1 0
] = [

0 0 3
2 0 0
0 1 0

]. 

The initial state of TdAPN is 𝑆(𝑘0) = {𝑴(𝑘0), 𝛁
𝑹(𝑘0)} = {[2 0 0]

′, [0 0 0]′}.  

In 𝐺𝐴, the set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡2 , ℎ𝑝1
𝑡3 }, where 𝑂(𝑝, 𝑡) ≠ 0 and 𝐷(𝑝, 𝑡) ≠ 0. 

In 𝑆(𝑘0), 𝛁
𝑹(𝑘0) is a zeros vector, such that there is no previously activated firing process 

𝑡𝜆. This yields 𝐹𝑝𝑟𝑒(𝑘0) = ∅. Using conditions of enabledness in (3.1) and (3.2), the set 

of enabled transitions is determined as 𝐸(𝐺𝐴, 𝑘0) = {𝑡1, 𝑡2}, and the set of sets of 

simultaneously-enabled transitions is determined as 𝐸̂(𝐺𝐴, 𝑘0) = {{𝑡1}, {𝑡2}, {𝑡1, 𝑡2}}. The 

set of simultaneously-enabled transitions can be selected as 𝜙 = {𝑡1}, 𝜙 = {𝑡2} or  

𝜙 = {𝑡1, 𝑡2} starting at time 𝑘 = 𝑘0. It is also possible not to select any 𝜙 at time 𝑘 = 𝑘0; 

therefore, time variable 𝑘 will increase by one ts such that 𝑘 will be equal to 𝑘0 + 1. 

Moreover, 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘0) is an empty set as long as any enabled set in 𝐸̂(𝐺𝐴, 𝑘0) is selected 

at 𝑆(𝑘0). In this thesis, a transition in the selected set 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘0) fires at time 𝑘0 as 

soon as it is enabled at time 𝑘0. If the enabled set {𝑡1} ∈ 𝐸̂(𝐺𝐴, 𝑘0) is selected and fired at 

time 𝑘0, the set of active-firing transitions at 𝑆(𝑘0) is 𝐹(𝑘0) = {𝑡1
𝜆}, where  

𝐹𝑠𝑡𝑎𝑟𝑡(𝑘0) = {𝑡1
𝜆} and 𝜆 = 𝑘0. Similarly, for the set {𝑡2} ∈ 𝐸̂(𝐺𝐴, 𝑘0), the set of active-

firing transitions is 𝐹(𝑘0) = {𝑡2
𝜆}. For the set {𝑡1, 𝑡2} ∈ 𝐸̂(𝐺𝐴, 𝑘0), the set of active-firing 

transitions is 𝐹(𝑘0) = {𝑡1
𝜆, 𝑡2

𝜆}.                    
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Suppose that the transition 𝑡1 ∈ 𝐸̂(𝐺𝐴, 𝜆) is selected to fire at time 𝑘 = 𝜆 such that 

the firing process 𝑡1
𝜆 starts at time 𝜆, and it is added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) = {𝑡1

𝜆}, 

𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆). Let us monitor calculations of discrete-time unit impulse functions and 

state evolutions both in places and time elements for the firing process 𝑡1
𝜆. Time instants 

for the firing process 𝑡1
𝜆 are as follows: 

 The firing time of the transition 𝑡1 is 𝑘 = 𝜆, i.e., the starting time is 𝜆 for the firing 

process 𝑡1
𝜆. 

 The ending time for 𝑝2 ∈ 𝑡1● is 𝜆 + (1 + 𝐷(𝑝2, 𝑡1)) = 𝜆 + 3, where 𝑡1● = {𝑝2} 

and 𝐷(𝑝2, 𝑡1) = 2 𝑡𝑠. This is also the ending time for 𝑡1
𝜆 that is 𝜆 + 𝑑𝑡1= 𝜆 + 3. 

As a result of 𝑡1
𝜆, next marking vectors are computed using (3.3) and discrete-time 

unit impulse functions as given in Table 3.1. The first column denotes the discrete-time 

𝑘. The second column gives the present marking vector 𝑴(𝑘), and its next marking vector 

𝑴(𝑘 + 1) is given in the last column. The third column indicates the activated firing 

process 𝑡1
𝜆 ∈ 𝐹(𝑘). The fourth column represents calculations of discrete-time impulse 

functions for the output side, while the fifth column denotes calculations of discrete-time 

impulse functions for the input side. 

 

Table 3.1. Computing M(k+1) using impulse functions when t1 fires at k= 

𝑘 𝑴(𝑘) 𝐹(𝑘) 
Output Side 

𝛿[𝑘 − (𝜆 + 𝐷(𝑝, 𝑡))]. 𝑂(𝑝, 𝑡) 

Input Side 

−𝛿[𝑘 − 𝜆]. 𝑁(𝑝, 𝑡) 

Next 

Marking 

𝑴(𝑘 + 1) 

- [
2
0
0
] ∅ - - [

2
0
0
] 

𝜆 [
2
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − (𝜆 + 3)]. 0

𝛿[𝑘 − (𝜆 + 3)]. 1

𝛿[𝑘 − (𝜆 + 3)]. 0

] = [
0
0
0
] − [

𝛿[𝑘 − 𝜆]. 1

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = − [
1
0
0
] [

1
0
0
] 

𝜆 + 1 [
1
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − (𝜆 + 3)]. 0

𝛿[𝑘 − (𝜆 + 3)]. 1

𝛿[𝑘 − (𝜆 + 3)]. 0

] = [
0
0
0
] − [

𝛿[𝑘 − 𝜆]. 1

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = − [
0
0
0
] [

1
0
0
] 

𝜆 + 2 [
1
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − (𝜆 + 3)]. 0

𝛿[𝑘 − (𝜆 + 3)]. 1

𝛿[𝑘 − (𝜆 + 3)]. 0

] = [
0
1
0
] − [

𝛿[𝑘 − 𝜆]. 1

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = − [
0
0
0
] [

1
1
0
] 

𝜆 + 3 [
1
1
0
] ∅ - - [

1
1
0
] 
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In addition, as a result of 𝑡1
𝜆, next remaining time vectors are computed using (3.4) 

and discrete-time unit impulse functions as given in Table 3.2. The first column denotes 

the discrete-time 𝑘. The second column gives the present remaining time vector 𝛁𝑹(𝑘) 

and its next remaining time vector 𝛁𝑹(𝑘 + 1) is given in the last column. The third 

column indicates the activated firing process 𝑡1
𝜆 ∈ 𝐹(𝑘). The fourth and fifth columns 

represent calculations of discrete-time impulse functions for the remaining time. 

Remember that this vector is defined as 𝛁𝑹(𝑘): ∇→ ℕ and the set of time elements is  

∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡2 , ℎ𝑝1
𝑡3 }.                    

 

Table 3.2. Computing R(k+1) using impulse functions when t1 fires at k= 

𝑘 𝛁𝑹(𝑘) 𝐹(𝑘) 
Delay Assignment 

𝛿[𝑘 − 𝜆]. 𝐷(𝑝, 𝑡) 

Summation 

−∑ 𝛿[𝑘 − 𝑙]
𝜆+𝐷(𝑝,𝑡)

𝑙=𝜆+1
 

Next 

Remaining 

𝛁𝑹(𝑘 + 1) 

- [
0
0
0
] ∅ - - [

0
0
0
] 

𝜆 [
0
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − 𝜆]. 2

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = [
2
0
0
] −

[
 
 
 
 
 
 ∑ 𝛿[𝑘 − 𝑙]

𝜆+2

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1 ]
 
 
 
 
 
 

= − [
0
0
0
] [

2
0
0
] 

𝜆 + 1 [
2
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − 𝜆]. 2

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = [
0
0
0
] −

[
 
 
 
 
 
 ∑ 𝛿[𝑘 − 𝑙]

𝜆+2

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1 ]
 
 
 
 
 
 

= − [
1
0
0
] [

1
0
0
] 

𝜆 + 2 [
1
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − 𝜆]. 2

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = [
0
0
0
] −

[
 
 
 
 
 
 ∑ 𝛿[𝑘 − 𝑙]

𝜆+2

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1 ]
 
 
 
 
 
 

= − [
1
0
0
] [

0
0
0
] 

𝜆 + 3 [
0
0
0
] {∅} - - [

0
0
0
] 

 

Let us consider another original Timed PN in Figure 3.5.(a). Its representation of 

TdAPN is given in Figure 3.5.(b), where time delays of the original Timed PN are 

arbitrarily chosen as 𝔡𝑡1 = 3 ts and 𝔡𝑡2 = 1 ts.   
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Figure 3.5. Representation of TdAPN for the original Timed PN in (a) 

 

The representation of TdAPN in Figure 3.5.(b) is expressed as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0) 

including time elements. Here, the set of places is 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} and the set of 

transitions is 𝑇 = {𝑡1, 𝑡2}. The input matrix, the output matrix, and the time delay matrix 

are as follows, respectively: 

𝑁 = [

1 0
0 1
0 1
1 0

], 𝑂 = [

0 1
1 0
1 0
1 0

], 𝐷 =

[
 
 
 
 

0 𝔡𝑡2 − 1

𝔡𝑡1 − 1 0

𝔡𝑡1 − 1 0

𝔡𝑡1 − 1 0 ]
 
 
 
 

= [

0 0
2 0
2 0
2 0

]. 

The initial state is 𝑆(𝑘0) = {[0 1 0 1]
′, [0 0 0]′}. For TdAPN in Figure 3.5.(b), The set of 

time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡1 , ℎ𝑝4
𝑡1 }.             

In Timed PNs, the time delay of a transition 𝑡 is represented by 𝔡𝑡 ts as shown in 

Figure 3.5.(a), where 𝔡𝑡 denotes the total duration of an event related to 𝑡. In order to 

associate the time delay 𝔡𝑡 of the original Timed PN with the representation of TdAPN, 

one ts is assigned to all ingoing arcs of the transition 𝑡 (see, Assumption 3.1) and 𝔡𝑡 − 1 

ts is directly assigned to all outgoing arcs of the transition 𝑡 as shown in the representation 

of TdAPN in Figure 3.5.(b). However, TdAPN also allows assigning time delays 

distinctly as long as 𝑑𝑡 of TdAPN is equal to 𝔡𝑡 of the original Timed PN. Time delays 

transferred to events can be differentiated at outgoing arcs of Timed-Arc PNs. This 

representation, where time delays are distinctly assigned to outgoing arcs that are 

connected to the same transition, is shown in Figure 3.6 as an alternative representation 
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of TdAPN. This representation is required in practice when different operations (in this 

case, output places together with corresponding outgoing arcs and time elements) 

connected to the same event (in this case, the transition) have different time delays. 

 

Distinct 

Time-Delay 

Assignment

0 1 2

0

The Original TdAPN Another Representation of TdAPN 

with distinct time-delay assignment

(a) (b)

h
t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

h
t1

p4

2 2 2

0
h

t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

 

Figure 3.6. Another representation of TdAPN with distinct time delays 

 

In order to indicate that time delays are also differently assigned to outgoing arcs 

in TdAPNs, let us change time delays of TdAPN in Figure 3.5.(b) that are distinctly 

assigned to outgoing arcs of the transition 𝑡1. This representation of TdAPN is shown in 

Figure 3.6.(b). Here, 𝐷(𝑝, 𝑡1) has different values for output places 𝑝2 and 𝑝4 of the set 

𝑡1●, and the set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡1 }. Thus, the initial state of TdAPN in 

Figure 3.6.(b) becomes 𝑆(𝑘0) = {[0 1 0 1]
′, [0 0]′}, and the time delay matrix for this 

TdAPN is as follows: 

𝐷 =

[
 
 
 
 

0 𝔡𝑡2 − 1

𝔡𝑡1 − 2 0

𝔡𝑡1 − 1 0

𝔡𝑡1 − 3 0 ]
 
 
 
 

= [

0 0
1 0
2 0
0 0

]. 

The assignment of time delays to arcs instead of transitions allows differentiation of the 

token evolution at each output place 𝑝 ∈ 𝑡1●. Therefore, faster outputs (𝑝2 and 𝑝4 in this 

case) complete their token evolution without waiting for the slowest output (𝑝3 in this 

case). Moreover, it is also possible to set all outgoing arc’s delays so that they are equal 

to a fixed duration of 𝔡𝑡1 − 1 𝑡𝑠, where the condition of 𝔡𝑡1 = 𝑑𝑡1 is satisfied (see, Figure 
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3.6.(a)). However, in this case, different time labels are selected by satisfying the 

condition of 𝑑𝑡1 = 𝔡𝑡1 = 3 𝑡𝑠, where 𝑑𝑡1 = 𝑚𝑎𝑥
𝑝∈𝑡1●

{1 + 𝐷(𝑝, 𝑡1)}.           
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Figure 3.7. Example firing process of t1 for TdAPN in Figure 3.6.(b) 

 

Let us consider another representation of TdAPN in Figure 3.6.(b). This TdAPN is 

shown in Figure 3.7.(a). When the enabled transition 𝑡1 of the set 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘0) fires at 

time 𝑘 = 𝜆,   
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 The firing process 𝑡1
𝜆 ∉ 𝐹𝑝𝑟𝑒(𝜆) related to the transition 𝑡0, where 𝐹𝑝𝑟𝑒(𝜆) = ∅, 

starts at the starting time-instant 𝑘 = 𝜆, during which it is considered to be 

disabled; as a result, the transition 𝑡1 is added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆), where 

𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) = {𝑡1
𝜆} such that 𝐹(𝜆) is equal to 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆). Note that the ending time-

instant for 𝑡1
𝜆 is 𝜆 + 𝑑𝑡1  that is 𝜆 + 3 (see, Figure 3.7.(a)).  

 At time 𝑘 = (λ + 1) + 𝐷(𝑝4, 𝑡1) = 𝜆 + 1, 𝑂(𝑝4, 𝑡1) = 1 number of tokens 

directly appear in 𝑝4 ∈ 𝑡1●. In addition, 𝑂(𝑝2, 𝑡1) = 1 number of tokens reside in 

the time element ℎ𝑝2
𝑡1 . Similarly, 𝑂(𝑝3, 𝑡1) = 1 number of tokens reside in the time 

element ℎ𝑝3
𝑡1 . The firing process 𝑡1

𝜆 continues and it is in 𝐹𝑝𝑟𝑒(𝜆 + 1) ⊆ 𝐹(𝜆 + 1), 

where 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆 + 1) = ∅ and 𝐹𝑝𝑟𝑒(𝜆 + 2) = {𝑡1
𝜆} such that 𝐹(𝜆 + 1) is equal to 

𝐹𝑝𝑟𝑒(𝜆 + 1) (see, Figure 3.7.(b)). 

 At time 𝑘 = (λ + 1) + 𝐷(𝑝2, 𝑡1) = 𝜆 + 2, 𝑂(𝑝2, 𝑡1) = 1 number of flowing 

tokens at ℎ𝑝2
𝑡1  disappear, and these tokens appear in 𝑝2 ∈ 𝑡1●. The firing process 

𝑡1
𝜆 continues and it is in 𝐹𝑝𝑟𝑒(𝜆 + 2) ⊆ 𝐹(𝜆 + 2), where 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆 + 2) = ∅ and 

𝐹𝑝𝑟𝑒(𝜆 + 2) = {𝑡1
𝜆} such that 𝐹(𝜆 + 2) = 𝐹𝑝𝑟𝑒(𝜆 + 2) (see, Figure 3.7.(c)). 

 At time 𝑘 = (𝜆 + 1) + 𝐷(𝑝3, 𝑡1) = 𝜆 + 3, 𝑂(𝑝3, 𝑡1) = 1 number of flowing 

tokens at ℎ𝑝3
𝑡1  disappear, and these tokens appear in 𝑝3 ∈ 𝑡1●. This time instant is 

also the ending time-instant for 𝑡1. Thus, the firing process 𝑡1
𝜆 ends, and the 

transition 𝑡1 can be reconsidered for enabledness rule. 𝑡1
𝜆 is not in 𝐹𝑝𝑟𝑒(𝜆 + 3) ⊆

𝐹(𝜆 + 3) anymore, where 𝐹𝑝𝑟𝑒(𝜆 + 3) = ∅ (see, Figure 3.7.(d)).           

 

3.3. Behavioral Properties of Timed-Arc Petri Nets 

In TdAPN, the state of 𝐺𝐴 at time 𝑘 is previously defined as 𝑆(𝑘) = {𝑴(𝑘), 𝛁𝑹(𝑘)}. 

This notation is used in online computations of states for 𝐺𝐴. The set of all reachable 

states from the initial state 𝑆0, namely reachability set, is denoted by 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 

𝑆1, …} (e.g., see, Table 3.3). Here, each obtained state during computations is represented 

by 𝑆𝑗 ≔ {𝑴𝑗 , 𝛁
𝑹𝒋} without any 𝑘 notation, where 𝑗 = 0,1, … , |𝑅𝑆(𝐺𝐴, 𝑆0)| − 1. In brief, 

the state of 𝐺𝐴 without any 𝑘 notation is represented as 𝑆 = {𝑴, 𝛁𝑹}. For any 𝑆 ∈

𝑅𝑆(𝐺𝐴, 𝑆0), it is possible to find parts, such as 𝑴 = 𝛾1(𝑆) and 𝛁𝑹 = 𝛾2(𝑆). Here, the 

function 𝛾𝑖(𝑆) gives the 𝑖 ‘th part of 𝑆. 
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Assumption 3.3: Reachability set for the bounded TdAPNs - In this thesis, it is assumed 

that all considered PNs are bounded (see, Definition 3.2 for the definition of 

boundedness). 

 

The relation between elements of the set 𝑅𝑆(𝐺𝐴, 𝑆0) can be represented by a graph, 

namely timed-reachability graph/tree. Timed-reachability tree, which is enhanced by the 

time information, depicts the complete dynamic picture of time-delayed systems (see, 

Figure 3.8). Each arrow in the timed-reachability graph indicates one ts (see, Figure 3.8). 

Thus, it is possible to find the minimum time to reach from any state to any state. The 

reachability set is constructed for the given TdAPN during online computations by using 

the algorithms given in Chapter 7. Moreover, note that 𝛁𝑹 = 𝛾2(𝑆) includes the 

remaining-time (duration) information about flowing tokens, which is independent of 

discrete-time notation 𝑘. States in 𝑅𝑆(𝐺𝐴, 𝑆0) are used for offline computations without 

any 𝑘 notation.  

In TdAPN, the set of enabled transitions at 𝛾1(𝑆) is represented by 𝐸(𝐺𝐴, 𝛾1(𝑆)). 

A transition 𝑡 ∈ 𝑇 is enabled at 𝛾1(𝑆) if and only if it satisfies the following condition as: 

𝛾1(𝑆)(𝑝) ≥ 𝑁(𝑝, 𝑡) ≥ 1,      ∀𝑝 ∈ ●𝑡 , 𝑡 ∉ 𝐹𝑝𝑟𝑒(𝑆) (3.5) 

Here, 𝛾1(𝑆)(𝑝) ∈ ℕ (𝑴 = 𝛾1(𝑆)) denotes the number of tokens at the place 𝑝 ∈ 𝑃, and 

𝐹𝑝𝑟𝑒(𝑆) is determined according to the time duration information in 𝛾2(𝑆) and is defined 

as follows: 

𝐹𝑝𝑟𝑒(𝑆) ≔ {𝑡|𝛁𝑹 = 𝛾2(𝑆)(ℎ𝑝
𝑡 ) ≠ 0} (3.6) 

Here, 𝛾2(𝑆)(ℎ𝑝
𝑡 ) ∈ ℕ (𝛁𝑹 = 𝛾2(𝑆)) denotes the remaining time of flowing tokens at the 

time element ℎ𝑝
𝑡 ∈ ∇. 𝐹𝑝𝑟𝑒(𝑆) represents the set of transitions whose firing processes 

activated previously and not finished yet. An analogy between 𝐹𝑝𝑟𝑒(𝑆) and 𝐹𝑝𝑟𝑒(𝑘) can 

be established. While 𝐹𝑝𝑟𝑒(𝑘) is the time-counterpart of 𝐹𝑝𝑟𝑒(𝑆) and contains previously 

activated firing processes 𝑡𝜆, 𝐹𝑝𝑟𝑒(𝑆) shows previously activated transitions for the state 

𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) according to the remaining time information in the remaining-time vector 

𝛁𝑹 = 𝛾2(𝑆). In addition, 𝐸̂(𝐺𝐴, 𝛾1(𝑆)) ⊂ 2𝐸(𝐺𝐴,𝛾1(𝑆))\∅ is used for representing the set 

of sets of simultaneously-enabled transitions at 𝛾1(𝑆). The set of simultaneously enabled 
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transitions satisfies the condition 𝛾1(𝑆)(𝑝) ≥ ∑𝑡∈𝜙 𝑁(𝑝, 𝑡) for all 𝑝 ∈ P, where  

𝜙 ⊆ 𝐸(𝐺𝐴, 𝛾1(𝑆)). This condition is similar to (3.2) without 𝑘 notation. 

In order to permit analysis of the proposed TdAPN, this section presents behavioral 

properties of TdAPN. Behavioral properties of the basic PN, which are boundedness and 

safeness, liveness, deadlock, and reversibility, are adapted to TdAPNs. Moreover, a new 

behavioral property, such as dynamicity, is defined for TdAPNs as given in following 

definitions. 

 

Definition 3.1: Dynamicity - Typically, states of 𝐺𝐴 are divided into two types, such as 

relaxed states and dynamic states. A state 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) is called a relaxed state if 

𝛾2(𝑆) = 𝟎|∇|×1, where 𝟎|∇|×1 represents a |∇| by 1 sized zeros vector. Relaxed states 

preserve their status and do not yield another state in 𝑅𝑆(𝐺𝐴, 𝑆0) until any enabled set 𝜙 ∈

𝐸̂(𝐺𝐴, 𝛾1(𝑆)) is selected (e.g., see, Table 3.3: 𝑆0, 𝑆6, 𝑆9, 𝑆11, 𝑆15, and 𝑆18). On the other 

hand, a state 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) is called a dynamic state if 𝛾2(𝑆) ≠ 𝟎|∇|×1 (e.g., see, Table 

3.3: 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆7, 𝑆8, 𝑆10, 𝑆12, 𝑆13, 𝑆14,  𝑆16, 𝑆17, and 𝑆19). Dynamic states indicate 

that at least one firing process of a transition is active (𝐹𝑝𝑟𝑒(𝑆) ≠ ∅); as a result, an event 

related to this firing process is still in progress. Moreover, they indicate the status and 

existence of flowing tokens. Dynamic states do not preserve its status; in addition, they 

lead the system to another state in 𝑅𝑆(𝐺𝐴, 𝑆0). 

 

Definition 3.2: Boundedness and Safeness – The property of boundedness is defined 

through the marking vector 𝛾1(𝑆) and tokens at places. 𝐺𝐴 is said to be 𝑩 bounded if there 

exists a bound vector 𝑩:𝑃 → ℕ such that: 

𝛾1(𝑆)(𝑝) ≤ 𝐵(𝑝), ∀𝑝 ∈ 𝑃, ∀𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) (3.7) 

Here, 𝐵(𝑝) is the 𝑝 ‘th element of the bound vector 𝑩 and is determined by  

𝐵(𝑝):= max
𝑆∈𝑅𝑆(𝐺𝐴,𝑆0)

{𝛾1(𝑆)(𝑝)}. Moreover, 𝐺𝐴 is said to be safe if 𝑩 = 𝟏|𝑃|×1, where 

𝟏|𝑃|×1 represents a |𝑃| by 1 sized ones vector. 
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Definition 3.3: Liveness - A transition 𝑡 ∈ 𝑇 is said to be live if, for all states  

𝑆𝑗 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), there exists 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆𝑗) such that 𝑡 ∈ 𝜙 while 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)). All 

live transitions are considered in the set 𝑇̂ ⊆ 𝑇. Therefore, 𝐺𝐴 is considered to be 𝑇̂-live 

if 𝑇̂ ⊂ 𝑇, and 𝐺𝐴 is considered to be live if 𝑇̂ = 𝑇, which is 𝑇-live. 

 

Definition 3.4: Deadlock – A dynamic state yields a new state based on time durations 

in its remaining time vector so that dynamic states reach a relaxed state at the end. Thus, 

the deadlock property of 𝐺𝐴 is examined over relaxed states. Any relaxed state 𝑆 ∈

𝑅𝑆(𝐺𝐴, 𝑆0) is considered to be a deadlock state if 𝛾2(𝑆) = 𝟎|∇|×1 and 𝐸̂(𝐺𝐴, 𝛾1(𝑆)) = ∅ 

(e.g., see, Figure 3.8: 𝑆15 and 𝑆18 are deadlock states). Note that 𝐺𝐴 is not live if it has 

any deadlock state. In TdAPN, the set of deadlock states is represented by ℒ̃0 ⊆

𝑅𝑆(𝐺𝐴, 𝑆0) as follows: 

ℒ̃0: = {𝑆 = {𝛾1(𝑆), 𝛾2(𝑆)} | 𝛾2(𝑆) = 𝟎|∇|×1  and  𝐸̂(𝐺𝐴, 𝛾1(𝑆))  = ∅ } (3.8) 

 

Definition 3.5: Reversibility - If the initial state 𝑆0 ∈ 𝑅𝑆(𝐺𝐴, 𝑆) is reachable from all states 

𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), then 𝐺𝐴 is considered as reversible. Note that 𝐺𝐴 is not reversible if it has 

any deadlock state. 

 

Let us analyze behavioral properties of the TdAPN given in Figure 3.4.(b). For this 

TdAPN, the reachability set is obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆19}. 20 states of 

TdAPN in Figure 3.4.(b) are obtained as given in Table 3.3. In this table, the minimum 

time to reach each state 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) from the initial state 𝑆0 is indicated in the first 

column. Remember that a transition in the selected set 𝜙 fires at time 𝑘 as soon as it is 

enabled at time 𝑘 at 𝑴(𝑘); as a result, the minimum time to reach any state 𝑆 from 𝑆0 is 

obtained in terms of ts. 𝑆0 is initially reachable such that the minimum time is considered 

zero ts. The state 𝑆 = {𝑴 = 𝛾1(𝑆), 𝛁
𝑹 = 𝛾2(𝑆)} is indicated in the third column with its 

label 𝑆𝑗 in the second column. The possible set of simultaneously-enabled transitions  

𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)) is indicated in the fourth column. According to the selection of 𝜙, the 

next state is indicated in the last column. 
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Table 3.3. Reachability set for TdAPN in Figure 3.4.(b) 

k 
State-Label State 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) 

The Selected Set of 

Events Next State 

𝑆𝑗 {𝑴 = 𝛾1(𝑆), 𝛁
𝑹 = 𝛾2(𝑆)} 𝜙 ∈ 𝐸̂ (𝐺𝐴, 𝛾1(𝑆𝑗)) 

0 †S0 {[2 0 0]', [0 0 0]'} 

- †S0 

{𝑡1} S1 

{𝑡2} S2 

{𝑡1, 𝑡2} S3 

1 

S1 {[1 0 0]', [2 0 0]'} 
- S4 

{𝑡2} S5 

S2 {[1 0 0]', [0 1 0]'} 
- †S6 

{𝑡1} S7 

S3 {[0 0 0]', [2 1 0]'} - S8 

2 

S4 {[1 0 0]', [1 0 0]'} 
- †S9 

{𝑡2} S10 

S5 {[0 0 0]', [1 1 0]'} - †S11 

†S6 {[1 0 1]', [0 0 0]'} 

- †S6 

{𝑡1} S7 

{𝑡2} S12 

S7 {[0 0 1]', [2 0 0]'} - S8 

3 

S8 {[0 0 1]', [1 0 0]'} - †S11 

†S9 {[1 1 0]', [0 0 0]'} 

- †S9 

{𝑡1} S13 

{𝑡2} S10 

S10 {[0 1 0]', [0 1 0]'} - †S11 

†S11 {[0 1 1]', [0 0 0]'} 
- †S11 

{𝑡3} S14 

S12 {[0 0 1]', [0 1 0]'} - *S15 

4 

S13 {[0 1 0]', [2 0 0]'} - S16 

S14 {[0 0 0]', [0 0 3]'} - S17 

*S15 {[0 0 2]', [0 0 0]'} - *S15 

5 
S16 {[0 1 0]', [1 0 0]'} - *S18 

S17 {[0 0 0]', [0 0 2]'} - S19 

6 
*S18 {[0 2 0]', [0 0 0]'} - *S18 

S19 {[0 0 0]', [0 0 1]'} - †S0 

†
 denotes relaxed states and * denotes relaxed and deadlock states. "-" means that there is no selection of 

𝜙 (𝜙 can be considered as an empty set). 

 

States 𝑆0, 𝑆6, 𝑆9, 𝑆11, 𝑆15, and 𝑆18 are relaxed states, while rest of states are dynamic 

states. These relaxed states are similar to states of its equivalent untimed PN. For dynamic 

states, they have time durations in their remaining time vectors 𝛾2(𝑆) and do not preserve 

their statuses. Dynamic states yield another state in 𝑅𝑆(𝐺𝐴, 𝑆0). For instance; note that, 

although 𝐸̂(𝐺𝐴, 𝛾1(𝑆3)) is an empty set, the state 𝑆3 reaches to the state 𝑆8 after one ts is 
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elapsed. Here, 𝑆3 is a dynamic state that yields 𝑆8, and the status of flowing tokens is 

indicated in 𝛾2(𝑆3). 𝑆8 is also a dynamic state. The boundedness is examined through the 

marking vector 𝛾1(𝑆) and tokens at places. The bound vector is found as  

𝑩 = [2 2 2]′ such that the given TdAPN is not safe due to 𝐵(𝑝) > 1 for places 𝑝1, 𝑝2, 

and 𝑝3. This vector is determined according to the information in 𝑴 = 𝛾1(𝑆) for all  

𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0). States 𝑆15 and 𝑆18 are deadlock states, where the set of deadlocks is  

ℒ̃0 = {𝑆15, 𝑆18}. As a result, the net is not live and is also not reversible due to  

𝑆0 ∉ 𝑅𝑆(𝐺𝐴, 𝑆15) and 𝑆0 ∉ 𝑅𝑆(𝐺𝐴, 𝑆18). Furthermore, the timed-reachability graph, which 

is enhanced by the time information for the given TdAPN in Figure 3.4.(b), is shown in 

Figure 3.8.  
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Figure 3.8. Timed-reachability tree for TdAPN in Figure 3.4.(b) 

 

Figure 3.8 indicates all reachable states and the relation between them. In this 

figure, each arrow has an elapsed one ts time delay, and the choice of enabled transitions 

with regard to the enabled set 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)) is also shown next to the arrows. Using 

this time information, it is possible to find how many time slots required for reaching 
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from any state to any state. For example, the state 𝑆11 is reachable from the initial state 

𝑆0 by the path (𝑆0𝑆3𝑆8𝑆11) of {𝑡1, 𝑡2} after three ts has elapsed. This is the 

minimum time duration to reach 𝑆11. However, it is also reachable using the path 

(𝑆0𝑆1𝑆4𝑆10𝑆11) of {𝑡1, 𝑡2} after four ts has elapsed. Similarly, it is also reachable 

using the path (𝑆0𝑆1𝑆4𝑆9𝑆10𝑆11) of {𝑡1, 𝑡2} after five ts has elapsed. In Figure 

3.8, relaxed states are illustrated by octagonal boxes while dynamic states are illustrated 

in circular boxes; and double octagonal boxes within the red color indicate deadlocks. 

The initial state is indicated in the green color. Remember that when the system is in a 

dynamic state, it means that flowing tokens are in the process of being transmitted. In 

addition, when the system is in a relaxed state, it means that there is no flowing token and 

this relaxed state is identical to that of its equivalent untimed PN.             
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4. COMPARISONS 

The proposed TdAPN is a new model for Timed PNs in order to represent, 

mathematically and graphically, temporal dynamics that become invisible during the 

firing process of Timed PNs with firing delays. In order to evaluate the performance of 

the proposed methodology, Stretched PNs [11-14, 46, 47], such as Transition-Stretched 

PN and Place-Stretched PN, are considered. This chapter presents the performance of the 

proposed TdAPN compared to Transition-Stretched PN [11-14] and Place-Stretched PN 

[46, 47] for the same original Timed PN. The performance is performed via case-studies 

in three ways, such as state-representation, computational complexity and computation 

time. 

The following subsections present comparisons of TdAPN with Stretched PNs in 

terms of state-representation, computational complexity and computational times. 

 

4.1. State-Representations 

In this chapter, a case study of starting an engine and other case studies given in 

Chapter 6 are considered in evaluating the performance of TdAPN compared to Stretched 

PNs. A simple representative sketch of starting the engine is illustrated in Figure 4.1.  

 

The flag of the motor 

ECU is activated.

The vehicle ECU sends pulses for 

3 seconds to start the engine

The engine is on. (Starts)

p3

p2

t1

Start the engine

Stop the engine

t2

The engine stops after 

1 second has elapsed.

The engine is off. (Stops)

p1

h
t1

p3

The flag of the Motor 

ECU shall be on after 

1 second has elapsed.

 

Figure 4.1. Simple representative example of starting an engine  
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In Figure 4.1, the engine is initially off. When a button for starting the engine is 

pressed (event 𝑡1), the Motor Electronic Control Unit (MECU) is activated immediately 

(considered as a flag in 𝑝2), and the Vehicle Electronic Control Unit (VECU) sends pulses 

for three seconds (considered in the time element ℎ𝑝3
𝑡1 ) in order to start the engine. Then, 

the engine starts (considered as 𝑝3) after three seconds have elapsed. When a button for 

stopping the engine is pressed (event 𝑡2), the engine stops after one second has elapsed. 

The Greatest Common Divisor of three and one seconds is one second; as a result, the 

appropriate sampling period can be chosen as one ts is equal to one second that is 1000 

milliseconds. This example is modeled using Timed PN with holding durations, Place-

Stretched PN, and the proposed TdAPN as illustrated in Figure 4.2, respectively. 

 

t1

p2 p3 (3)

p1

t2

The Original Timed PN 

with Holding Durations

• 

t1

p2

p1

t2

The Representation of 

Place-Stretched PN

• 

p
p3

1

t
p3

1

p3

t1

p2 p3

p1

t2

The Representation of 

TdAPN

• 

0

dt2
=1 ts

2
h

t1

p3

0

t
p3

2

p
p3

2

(a) (b) (c)

 

Figure 4.2. Another representation of the engine example in Figure 4.1 

 

Physical meanings of places, transitions and time elements in these models are as 

follows: 

 𝑝1 denotes the off-state of the engine. If a token exists, it means the engine stops. 

 𝑝2 denotes the status of the flag of MECU. If a token exists, it means MECU is 

active. 

 𝑝3 denotes the on-state of the engine. If a token exists, it means the engine runs. 
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 𝑡1 denotes the event of pressing the button to start the engine. 

 𝑡2 denotes the event of pressing the button to stop the engine. 

 The pair of 𝑝1
𝑝3 and 𝑡1

𝑝3 and the pair of 𝑝2
𝑝3 and 𝑡2

𝑝3 are additional elements to 

stretch the place 𝑝2 of the original Timed PN with holding durations in Figure 

4.2.(a). In Place-Stretched PN, the meaning of the place 𝑝3 is transferred to the 

place 𝑝2
𝑝3. 

 ℎ𝑝3
𝑡1  in Figure 4.2.(c) denotes that VECU is sending pulses to start the engine. This 

operation takes two ts. Note that it requires three seconds in Figure 4.1, but the 

assignment of this time delay in TdAPN is equal to one minus of this time delay. 

 

The representation of Place-Stretched PN for Timed PN in Figure 4.2.(a) is given 

in Figure 4.2.(b). However, Stretched PN brings with extra additional elements (𝑝1
𝑝3, 𝑡1

𝑝3, 

𝑝2
𝑝3, 𝑡2

𝑝3) compared to the original Timed PN model. The pair of transition-place is added 

into Place-Stretched PN in Figure 4.2.(b) to represent Timed PN in Figure 4.2.(a). On the 

other hand, the system in Figure 4.1 is modeled using the proposed TdAPN as shown in 

Figure 4.2.(c). In order to represent the time delay of the place 𝑝3 in Figure 4.2.(a), only 

one time element ℎ𝑝3
𝑡1  is used in TdAPN in Figure 4.2. (c). The model of TdAPN in Figure 

4.2.(c) is sufficient to represent the engine-example in Figure 4.1 with a minimal number 

of elements compared to the representation of Stretched PN in Figure 4.2.(b). The time 

element ℎ𝑝3
𝑡1  is a useful element that denotes the model completely and provides 

monitoring the status of the continuing operation related to an event; for this example, the 

physical meaning of ℎ𝑝3
𝑡1  is the continuing operation of sending pulses to the engine for a 

certain time. When the delay is updated from 3 ts to 5 ts (for instance, making the 

resolution better or updating the time delay according to measurements), there is no need 

to add new elements to TdAPNs compared to Stretched PN. The time element ℎ𝑝3
𝑡1  can 

solely represent the time delay of this operation. 

Let us consider representations of Place-Stretched PN in Figure 4.2.(b), and TdAPN 

in Figure 4.2.(c). Suppose that the transition 𝑡1 fires at time 𝑘 = 𝜆 and its firing process 

of 𝑡1 starts. The illustrated comparison of these representations for the firing process of 

𝑡1 is given in Figure 4.3.(a) and (b). 
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Figure 4.3. Firing process of the transition t1 

 

The firing process of 𝑡1 starts at time 𝑘 = 𝜆 and ends at time 𝑘 = 𝜆 + 𝑑𝑡1. During 

the time 𝑘 ∈ (𝜆, 𝜆 + 𝑑𝑡1), flowing tokens are observed in representations of TdAPN and 

Place-Stretched PN. One time element ℎ𝑝3
𝑡1  in the representation of TdAPN is sufficient 

to represent the entire firing process of 𝑡1, while Place-Stretched PN needs additional new 

elements, 𝑝1
𝑝3, 𝑡1

𝑝3,  𝑝2
𝑝3, and 𝑡2

𝑝3 for place-stretching, to represent this. However, 

Stretched PN transforms the original Timed PN into a stretched version of this Timed PN. 

This is a strong feature which makes the Timed PN as if it is an equivalent untimed PN. 

Thus, the representation of Place-Stretched PN is able to represent the state of the system 

and the firing process at each time. On the other hand, the proposed representation of 

TdAPN is also good at representing the firing process of 𝑡1, where TdAPN uses only one 

time element ℎ𝑝3
𝑡1 . Moreover, reachability sets of TdAPN in Figure 4.2.(c), and Place-

Stretched PN in Figure 4.2.(b) are given in Table 4.1. All of them have the same number 

of states (four states). 
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Table 4.1. Comparison for state-representations of TdAPN and Place-Stretched PN 

Time 

k 
State-

Label 

The State of 

TdAPN 

The State of 

Stretched PN 

0 S0 {[1 0 0]', [0]'} [1 0 0 0 0]' 

1 S1
 

{[0 1 0]', [2]'} [0 1 1 0 0]' 

2 S2 {[0 1 0]', [1]'} [0 1 0 1 0]' 

3 S3 {[0 1 1]', [0]'} [0 1 0 0 1]' 

 

In Table 4.1, the state of Place-Stretched PN represents the state of the system 

completely by using a stretched version of the marking vector at time 𝑘. States S0 and S3 

are relaxed states of TdAPN that are equal to the total number of states in the equivalent 

untimed PN. The rest of states show the significance of the time in time-delayed systems. 

For the state-representation, both TdAPN and Stretched PN use a vector form to indicate 

continuing firing processes and flowing tokens. TdAPN uses a fixed number of time 

elements in its vector form while Stretched PN uses newly generated places in its vector 

form, where the length of the vector is changed according to non-unity time delays 

defined in the original Timed PN. For this example, Place-Stretched PN in Figure 4.2.(b) 

uses five elements in its state-representation, such as 𝑝1, 𝑝2, 𝑝3, 𝑝1
𝑝3, and 𝑝2

𝑝3, to represent 

the state of the system completely while TdAPN in Figure 4.2.(c) uses four elements, 

such as 𝑝1, 𝑝2, 𝑝3 for 𝑴(𝑘) and ℎ𝑝3
𝑡1  for 𝛁𝑹(𝑘).               

State-representation comparisons between the proposed TdAPN and Place-

Stretched PN are given under this section. The representation of Transition-Stretched PN 

is also similar to Place-Stretched PN. In conclusion, models of TdAPN and Stretched PN 

for the same original Timed PN have the same number of states (under Assumption 3.2); 

however, their representations are different. Both models use a vector form to represent 

the state of the system completely. Stretched PN includes a stretched version of the 

marking vector together with new additional elements; however, the size of marking 

vector changes according to time delays described in the original Timed PN. On the other 

hand, the model of TdAPN uses an original marking vector of Timed PN and a remaining 

vector that is special to TdAPN. The advantage of TdAPN compared to Stretched PN is 

that the length of the remaining time vector is fixed by the number of time elements in 

the net. All situations of tokens are represented in the state-representations of TdAPN and 

Stretched PN.  
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4.2. Computational Complexity and Times 

The complexity for several classes of PNs was conducted by Jones et.al. in [49]. 

Computational complexity for the construction of the reachability set for classical PNs is 

DSCAPE (exponential) hard [49]. Computational complexity is studied for the developed 

algorithms in this thesis. Using "for" loops in Algorithm 7.1, the computation complexity 

of Algorithm 7.1 is related to the number of elements of the reachability set, and the 

number of sets of places and transitions. This complexity can be related to 𝔐2𝑛𝑛2𝑚 in 

numerical terms. Here, 𝔐 = |𝑅𝑆 (𝐺𝐴, 𝑆0)| is the cardinality of the reachability set;  

𝑚 = |𝑃| is the cardinality of the set of places, and 𝑛 = |𝑇| is the cardinality of the set of 

transitions. Similarly, the complexity of the algorithm for Stretched PN used in this thesis 

can be related to 𝔐2𝑛̅𝑛̅3𝑚̅. This complexity is related to the number of elements of the 

reachability set, and the number of sets of places and transitions after stretching procedure 

in [11-14, 46, 47]. Here, 𝑛̅ = 𝑛 + 𝑛𝑠 = |𝑇𝑠| is the cardinality of the set of transitions, 

where 𝑛𝑠 is the cardinality of the set of newly generated transitions; and  

𝑚̅ = 𝑚 +𝑚𝑠 = |𝑃𝑠| is the cardinality of the set of places, where 𝑚𝑠 is the cardinality of 

the set of newly generated places. Moreover, in order to compare TdAPN with original 

works of Stretched Petri Nets, the complexity of the original algorithm of Transition-

Stretched PN [48] and Place-Stretched PN [32] can also be related to 𝔐. (2𝑛̅ + 𝑛̅2. 𝑚̅) 

and 𝔐2𝑛̅𝑛̅𝑚̅ by using "for" loops in their main algorithms, respectively. 

Let us analyze the complexity of TdAPN for the automotive case-study in Figure 

4.1. For the TdAPN and Place-Stretched PN, the complexities are obtained 192 and 1280, 

respectively, where 𝒟(𝑝3) = 3 ts. For the case-study, using algorithms of TdAPN and 

Place-Stretched PN in MATLAB, the computational times are 1.382 seconds for TdAPN 

(0.046 second for the construction of the net and 1.336 for the construction of the 

reachability set) and 1.860 seconds for Place-Stretched PN (0.075 second for the 

construction of the net and 1.785 for the construction of the reachability set) for the 

automotive case-study in Figure 4.1.                 

Let us analyze the complexity of TdAPN for the manufacturing case-study in Figure 

6.1. For the TdAPN and Transition-Stretched PN, the complexities are obtained 

4.6771*106 and 5.4666*107, respectively, where 𝔡𝑡6 = 10 ts. For the case-study, using 

algorithms of TdAPN and Transition-Stretched PN in MATLAB, the computational times 

are 3.6274 seconds for TdAPN (1.7714 second for the construction of the net and 1.8560 
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for the construction of the reachability set) and 8.3250 seconds for Transition-Stretched 

PN (1.9399 second for the construction of the net and 6.3851 for the construction of the 

reachability set) for the manufacturing case-study in Figure 6.1.             

In this section, the computational complexity of TdAPN and Stretched PNs [32, 48] 

are compared. For the complexity analysis, the construction of the reachability set is 

considered. Their complexities are related to the size of the reachability set and the size 

of sets of places and transitions. In addition, constructing the reachability set is DSCAPE 

(exponential) hard [49]. Results show that the complexity of Stretched PN is increased 

exponentially because of newly created pairs of place-transition/transition-place when the 

time delay of the transition/place increases. On the other hand, the time element is a useful 

element, where the number of elements of the set of time elements is not affected by this 

increase. The complexity of TdAPN is increased by the first order polynomial when the 

time delay of the transition/place increases. Moreover, computational times are measured 

using tic and toc functions of MATLAB. These computational times include the 

construction of the net and the construction of the reachability set. Computational times 

are obtained by a personal computer, which has the following features: 

 The software environment is MATLAB v8.3.0.532 (R2014a) and Windows 7 

Ultimate SP1 64-bit. 

 The hardware environment is 240GB SSD, Core2 Duo 2.10 GHz CPU T6500 64 

bits and 4060 MB DDR2 RAM. 

 

In this thesis, it is not aimed to optimize or improve algorithms of TdAPN given in 

Section 7.1. It is just aimed to construct the reachability set of TdAPN for time-delayed 

systems and to show the usefulness of the time element compared to Stretched PNs. 
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5. CONTROLLER DESIGN 

The controller design is one of the essential topics in PNs. In order to guarantee the 

desired property of PN, such as liveness, deadlock-free, reversibility, and boundedness, 

it is required to control the net. In the control-literature of PNs, two types of controllers 

have been presented, such as behavioral controllers and structural controllers [9, 11-14, 

32-35, 37-41].  

In the method of behavioral-controller design, supervisory controllers for untimed 

and timed PNs have been presented to enforce the system to ensure some basic behavioral 

properties, such as deadlock-free, reversibility, etc. [9, 11-14, 32, 36-40]. Deadlock-free 

is the most desired property among behavioral properties of PNs. After the construction 

of the reachability set, a supervisory controller is designed for enforcing the system to 

behave in a desired manner. This type of controller that prohibits undesired states, namely 

forbidden states, and allows the desired states is called Forbidden State Controller in 

general. A Forbidden State Controller is based on the reachability set of PN, and rules of 

a control policy that are implemented through this set [12]. In this control policy, the 

considered enabled transition(s) is/are disabled by the designed controller, if the 

forbidden state(s) is/are reachable by using this/these transition(s). In addition to the 

method of the behavioral controller, the method of structural-controller design that adds 

new additional places, namely monitor places, into the original net have also been 

presented [33, 34, 41]. This type of controller uses the structural properties of PNs  

[33-35, 41]. 

This chapter presents a Forbidden State Controller for the proposed TdAPN that is 

based on the approach developed in [13] by Aybar et.al. 

 

5.1. Forbidden State Controller Design for Timed-Arc Petri Nets 

Behavioral properties of 𝐺𝐴, such as liveness, deadlock, reversibility, and 

boundedness, are analyzed by using the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0). According to the 

analysis, a supervisory controller that avoids the occurrence of forbidden states can be 

designed.  
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The state of 𝐺𝐴 at time 𝑘 is 𝑆(𝑘) = {𝑴(𝑘), 𝛁𝑹(𝑘)}. After the construction of the 

reachability set 𝑅𝑆(𝐺𝐴, 𝑆0), any state can be represented by 𝑆 = {𝑴,𝛁𝑹} . 𝛁𝑹 includes the 

remaining-time (duration) information about flowing tokens, which is independent of 

discrete-time notation 𝑘. Remember that 𝑆 = {𝛾1(𝑆), 𝛾2(𝑆)}, 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), where the 

marking-vector part of 𝑆 is 𝑴 = 𝛾1(𝑆), and the remaining-time vector part of 𝑆 is  

𝛁𝑹 = 𝛾2(𝑆). 

The next state that is denoted by 𝑆̃ = {𝑴̃, 𝛁̃𝑹} is computed as given in (5.1) and 

(5.2) by using the present state 𝑆 = {𝑴, 𝛁𝑹} and enabled transition(s) in the set 𝜙 ⊆ 𝐹(𝑆), 

where 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)) and 𝐹(𝑆) = 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙 (see, definition (3.6)). 

𝑀̃(𝑝) ≔ 𝛾1(𝑆)(𝑝) + ∑

𝑡∈𝐹(𝑆)

(𝑂(𝑝, 𝑡) − 𝑁(𝑝, 𝑡)) (5.1) 

∇̃𝑅(ℎ𝑝
𝑡 ) ≔ 𝛾2(𝑆)(ℎ𝑝

𝑡 ) +∑

𝑡∈𝜙

𝐷(𝑝, 𝑡) − ∑

𝑡∈𝐹𝑝𝑟𝑒(𝑆) 𝑎𝑛𝑑 𝛾2(𝑆)(ℎ𝑝
𝑡 )>0

1 
(5.2) 

This computation is represented by a function 𝜌(𝑆, 𝐹(𝑆)), i.e., 𝑆̃ = 𝜌(𝑆, 𝐹(𝑆)).  

According to the selection of 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)), while 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), any state 𝑆 

may cause the system to be directed to an undesired state; as a result, starting a choice of 

a certain event at 𝑆 violates a desired behavioral property of 𝐺𝐴. For instance, deadlock-

free is the desired property, and 𝜌(𝑆, 𝐹(𝑆)) leads the system to a deadlock state, where 

𝐹(𝑆) includes an event that must be avoided. When the system enters in such an undesired 

state, there is no chance to avoid the deadlock. When faced with such a situation, the 

system has to be initialized or brought to a known safe state. This will probably result in 

a cost. Therefore, a controller design that avoids forbidden states is an absolute necessity. 

In order to design a Forbidden State Controller for TdAPNs that prevents the system 

from entering into undesired states, first of all, these undesired states should be 

determined. The set of undesired states is represented by ℒ0, where the subscript of zero 

stands for indicating the initial set and ℒ0 ⊂ 𝑅𝑆(𝐺𝐴, 𝑆0). This set is determined by the user 

or by behavioral properties of 𝐺𝐴 that must be enforced. ℒ0 is an initial set such that any 

state 𝑆 may result in an undesired state in ℒ0 by the selection of an event; therefore, the 

set of undesired states ℒ0 is enlarged to an expanded set of undesired states, ℒ̂ ≔ ⋃ ℒ𝑖
𝑛
𝑖=0 , 
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where ℒ𝑖 is defined as in (5.3) [13]. The set of ℒ𝑖 ⊂ ℒ̂ is constructed for 𝑖 = 1,2, … , 𝑛 +

1, where 𝑛 ∈ ℕ is such that ℒ𝑛 ≠ ∅ and ℒ𝑛+1 = ∅ [13]. 

ℒ𝑖 ≔ {𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) |𝜌(𝑆, 𝐹(𝑆)) ∈⋃ ℒ𝑙
𝑖−1

𝑙=0
, ∀𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆))} (5.3) 

States in ℒ̂ lead the system to the undesired domain, such that it must be avoided 

from entering in such states. Thus, the forbidden state controller is able to prohibit and 

disable any enabled transition in 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)), where the next state 𝑆̃ = 𝜌(𝑆, 𝐹(𝑆)) 

is in ℒ̂ after the selection of 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)). For this purpose, the controller has a 

controller function that is represented by 𝒞(𝑆, 𝜙), where it allows an event to be enabled 

by one and to be disabled by zero as defined in (5.4) [13].  

𝒞(𝑆, 𝜙) ≔ {
0 , 𝑖𝑓 𝜌(𝑆, 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙) ∈ ℒ̂ 

1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.4) 

Here, 𝐹(𝑆) = 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙. 

𝒞(𝑆, 𝜙) = 0 means that the controller disables 𝜙 at the state 𝑆. 𝒞(𝑆, 𝜙) = 1 means 

that the controller allows 𝜙 at the state 𝑆. Moreover, if 𝑆0 ∈ ℒ̂, then 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0} 

and ℒ̂ = ℒ0. 

A forbidden state controller for the proposed TdAPN can be designed to avoid any 

undesired state by using the approach in this subsection. This controller will be named 

according to its functionality as follows: 

 If it is desired to make the system avoid deadlock states, then these deadlock states 

are considered as forbidden states and the designed controller is called the 

deadlock avoidance controller.  

 If it is desired to make the system avoid loops or irreversible states, then these 

irreversible states are considered as forbidden states and the designed controller 

is called the reversibility enforcement controller. 
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5.2. Controller Examples for Timed-Arc Petri Nets 

Let us design a forbidden state controller for TdAPN in Figure 3.4.(b), which offers 

a deadlock avoidance controller. Based on the description of the deadlock in Definition 

3.4 and (3.8), the set of undesired states ℒ0 is equal to ℒ̃0 for the deadlock avoidance 

controller. The reachability set of TdAPN in Figure 3.4.(b) is 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, …, 

𝑆19} as given in Table 3.3, and its timed-reachability tree is shown in Figure 3.8. Using 

𝑅𝑆(𝐺𝐴, 𝑆0) and (3.8), the set of undesired states including deadlocks is determined as 

ℒ0 = ℒ̃0 = {𝑆15, 𝑆18}. There are initially two undesired states. The expanded set of 

undesired states, which refers to states that lead the system to ℒ0, is denoted by ℒ̂ =

⋃ ℒ𝑖
𝑛
𝑖=0 , where ℒ𝑖 as defined in (5.3). Using 𝑅𝑆(𝐺𝐴, 𝑆0), ℒ0 and (5.3), sub-sets of ℒ̂ are 

iteratively found as: ℒ0, ℒ1 = {𝑆12, 𝑆16}, ℒ2 = {𝑆13}, ℒ3 = ∅; as a result, the expanded 

set of undesired states, which must be avoided, is found as:  

ℒ̂ = {𝑆12, 𝑆13, 𝑆15, 𝑆16, 𝑆18}. In order to avoid a state 𝑆 ∈ ℒ̂, the controller disables the set 

{𝑡2} ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆6)) at the state 𝑆6, where 𝐹(𝑆6) is equal to 𝐹𝑝𝑟𝑒(𝑆6) ∪ {𝑡2}, and 

𝜌(𝑆6, 𝐹(𝑆6)) gives 𝑆12 ∈ ℒ̂; and the set {𝑡1} ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆9)) at the state 𝑆9, where  

𝐹(𝑆9) is equal to 𝐹𝑝𝑟𝑒(𝑆9) ∪ {𝑡2}, and 𝜌(𝑆9, 𝐹(𝑆9)) gives 𝑆13 ∈ ℒ̂. Values of the 

controller function are determined as follows: 

𝒞(𝑆, 𝜙) = {
0 , 𝑆 = 𝑆6 𝑎𝑛𝑑 𝜙 = {𝑡2}
0 , 𝑆 = 𝑆9 𝑎𝑛𝑑 𝜙 = {𝑡1}
1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

The timed-reachability tree in Figure 3.8 is re-illustrated as in Figure 5.1 to show 

the effect of controller values. The purple color indicates the disabled transitions and 

undesired states that must be avoided; in addition, both straight and dashed lines in the 

purple color represent the path that leads the system into an undesired state. Moreover, 

states in the yellow color represent the states, where certain events must be disabled in 

order to guarantee deadlock-free.                 
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Figure 5.1. Timed-reachability tree of TdAPN in Figure 3.4 with the controller 

 

Let us design a forbidden state controller for TdAPN in Figure 5.2, which offers a 

reversibility enforcement controller. 
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Figure 5.2. Example of TdAPN includes a deadlock state and loop 
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TdAPN in Figure 5.2 is defined as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). Here, the set of places is 

𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} and the set of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}. Input, output and 

time delay matrices are respectively:  

𝑁 = [

1 1 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 0 1

], 𝑂 = [

0 0 2 0 0
1 0 0 0 1
0 1 0 0 0
0 0 0 1 0

], 𝐷 = [

0 0 3 0 0
2 0 0 0 0
0 1 0 0 0
0 0 0 0 0

] . 

The set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡2 , ℎ𝑝1
𝑡3 }, where 𝐷(𝑝, 𝑡) ≠ 0 and 𝑂(𝑝, 𝑡) ≠ 0. 

The state of the TdAPN at the initial time 𝑘0 is  

𝑆(𝑘0) = {[2 0 0 0]
′, [0 0 0]′}. 

The reversibility enforcement controller is used to avoid states, which violate the 

property of reversibility described in Definition 3.5 (Reversibility Property). Remember 

that 𝐺𝐴 is considered as reversible if the initial state 𝑆0 ∈ 𝑅𝑆(𝐺𝐴, 𝑆) is reachable from all 

states 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) according to Definition 3.5. If 𝐺𝐴 does not satisfy this condition, 

then the overall net is considered as irreversible throughout the net. This situation 

generally occurs when the net has any deadlock state or any loop. On the other hand, a 

subset of the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0), where all states in this subset ensure reversibility, 

can be obtained. If the initial state 𝑆0 ∈ 𝑅𝑆(𝐺𝐴, 𝑆) is not reachable from all states 𝑆 ∈

𝑅𝑆(𝐺𝐴, 𝑆0), then a subset of 𝑅𝑆(𝐺𝐴, 𝑆0) is constructed in a set form as 𝑅𝑅(𝐺𝐴, 𝑆0) while 

𝑅𝑅(𝐺𝐴, 𝑆0) ⊂ 𝑅𝑆(𝐺𝐴, 𝑆0). Here, 𝑅𝑅(𝐺𝐴, 𝑆0) represents the irreversible set of 𝐺𝐴. For the 

reversibility enforcement controller, the set of undesired states is  

ℒ0 = 𝑅𝑅(𝐺𝐴, 𝑆0), and ℒ̂ is equal to ℒ0. In order to determine ℒ0, the reversibility analysis 

should be performed for all states in 𝑅𝑆(𝐺𝐴, 𝑆0) such that this analysis also covers states 

in 𝑅𝑅(𝐺𝐴, 𝑆0). 

For TdAPN in Figure 5.2, 27 states of TdAPN are obtained as given in  

Appendix-1. Its reachability set is obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆26}. Moreover, 

the timed-reachability tree for this TdAPN, which indicates all reachable states and the 

relation between them, is shown in Figure 5.3. Descriptions of elements in this figure are 

similar to descriptions for Figure 3.8. 
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Figure 5.3. Timed-reachability tree of TdAPN in Figure 5.2 

 

In order to determine undesired states, including irreversible states, the reversibility 

analysis is performed for all states S in 𝑅𝑆(𝐺𝐴, 𝑆0) and the irreversible set  

𝑅𝑅(𝐺𝐴, 𝑆0) ⊂ 𝑅𝑆(𝐺𝐴, 𝑆0) is obtained as 𝑅𝑅(𝐺𝐴, 𝑆0) = {S12, S13, S15, S19, S20, S21, S23, S24, 

S26}. These states in 𝑅𝑅(𝐺𝐴, 𝑆0) are forbidden states for the reversibility enforcement 

controller. The set of undesired states is ℒ0 = 𝑅𝑅(𝐺𝐴, 𝑆0) such that ℒ0 = {S12, S13, S15, 

S19, S20, S21, S23, S24, S26}, where the expanded set of deadlock states is ℒ̂ = ℒ0. The values 

of the controller function 𝒞(𝑆, 𝜙) are similarly obtained as discussed in the example of 

the deadlock avoidance controller. These are determined as follows (see, Figure 5.4): 

𝒞(𝑆6, {𝑡2}) = 0, 𝒞(𝑆9, {𝑡1}) = 0, 𝒞(𝑆9, {𝑡1, 𝑡4}) = 0, 𝒞(𝑆13, {𝑡4}) = 0, 𝒞(𝑆14, {𝑡1}) = 0, 

𝒞(𝑆14, {𝑡1, 𝑡5}) = 0, 𝒞(𝑆15, {𝑡5}) = 0, 𝒞(𝑆20, {𝑡4}) = 0, 𝒞(𝑆21, {𝑡5}) = 0, 𝒞(𝑆23, {𝑡4}) =

0, 𝒞(𝑆24, {𝑡4}) = 0, 𝒞(𝑆26, {𝑡5}) = 0, where 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝛾1(𝑆)). Otherwise, 𝒞(𝑆, 𝜙) = 1, 

where 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0)\ℒ̂.  
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In order to illustrate the effect of controller values, the timed-reachability tree in 

Figure 5.3 is re-illustrated as in Figure 5.4. Descriptions of colors and shapes are similar 

as given in Figure 5.1. Here in Figure 5.4, states in the yellow color represent the states, 

where certain transitions must be disabled in order to enforce the system reversibility.      
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Figure 5.4. Timed-reachability tree of TdAPN in Figure 5.3 with the controller 
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6. MODELING AND DESIGN FOR REAL WORLD SYSTEMS 

This chapter presents special applications of TdAPN that can be applied on 

manufacturing systems, railway systems and automotive systems as case studies; in 

addition, corresponding results aided by the software of TdAPN are presented  

(see, algorithms in Chapter 7 for the software of the proposed TdAPN). 

 

6.1. Manufacturing Systems 

The current industrial revolution, Industry 4.0, is based on connectivity, big data, 

and event-based operational technologies. This futuristic innovation includes many large 

scale systems, and its infrastructure is constructed using the concept of Systems of 

Systems. Such systems are best described by the occurrence of events. In order to model 

these, PN is a nice modeling paradigm. However, time delays have a significant role in 

such systems. Thus, Timed PN is a useful tool to accurately express them. For this 

purpose, this section includes a practical manufacturing example, studied in [12] as a case 

study, including an industrial robot, a machine, storages that are modeled by TdAPN. The 

system, illustrated in Figure 6.1, comprises a machine; a buffer whose capacity is limited 

to storing a single part; one main store whose storage capacity is limited to two parts; two 

flat pallets to transfer parts; and an industrial robot. Each pallet is able to transport only 

one part in one go.  

 

Machine

Industrial Robot

Pallets

Buffer

Main store

Operator

1 2

 

Figure 6.1. Representative manufacturing example 
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6.1.1. Modeling manufacturing system using TdAPN 

The representation of Transition-Stretched PN for the manufacturing example in 

Figure 6.1, which is the transition-stretched equivalent of Timed PN in [12], is shown in 

Figure 6.2.(a). For Timed PN in [12], the set of time delays is  

𝔇 = {𝔡𝑡1 , 𝔡𝑡2 , 𝔡𝑡3 , 𝔡𝑡4 , 𝔡𝑡5 , 𝔡𝑡6}, where 𝔡𝑡1 = 3 ts, 𝔡𝑡2 = 1 ts, 𝔡𝑡3 = 1 ts, 𝔡𝑡4 = 1 ts,  

𝔡𝑡5 = 2 ts, and 𝔡𝑡6 = 2 ts. This manufacturing example is modeled by the representation 

of TdAPN as illustrated in Figure 6.2.(b). 
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Figure 6.2. Model of (a) Transition-Stretched PN [12] and (b)TdAPN 
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The model of TdAPN in Figure 6.2 is described as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). The input 

matrix 𝑁, the output matrix 𝑂, and the time delay matrix 𝐷 are as follows: 

𝑁 =

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 1 0 1
0 0 0 0 1 0]

 
 
 
 
 
 
 
 
 

 , 𝑂 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 1 1
0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 

, 𝐷 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 1 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 

 . 

The set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝1

𝑡5 , ℎ𝑝8
𝑡5 , ℎ𝑝9

𝑡5 , ℎ𝑝9
𝑡6 , ℎ𝑝10

𝑡6 }, where 𝐷(𝑝, 𝑡) and 

𝑂(𝑝, 𝑡) are not equal to zero. 𝑆0 = {𝑴0, 𝛁
𝑹𝟎} is the initial state of 𝐺𝐴, where  

𝑴0 = [2 0 1 0 0 1 0 0 1 2]′ and 𝛁𝑹𝟎 = [0 0 0 0 0 0]′. Here, Places denote conditions, 

transitions denote events, and time elements denote continuing operations related to the 

events as described in Table 6.1. According to descriptions in this table, 𝑀(𝑘0, 𝑝1)=2 

indicates the availability of two pallets at the initial time. 𝑀(𝑘0, 𝑝3)=1 denotes the 

machine is available. 𝑀(𝑘0, 𝑝6)=1 shows the buffer is available. 𝑀(𝑘0, 𝑝9) = 1 denotes 

the robot is available. And, 𝑀(𝑘0, 𝑝10)=2 shows that there are two unoccupied rooms for 

storage in the main store, where its maximum storage capacity is 2 parts. 𝛁𝑹𝟎 = 𝟎|∇|×1 

indicates that there is currently no dynamic operation (no previously activated firing 

process, so 𝐹𝑝𝑟𝑒(𝑘0) = ∅). 

 

Table 6.1. Physical meanings for elements of TdAPN in Figure 6.2.(b) 

Element Explanation Status 

𝑝1 The number of available pallets.  #T: the number of pallets.  

𝑝2 The operation of the machine.  NT: uncompleted, T: completed. 

𝑝3 The availability of the machine.  NT: unavailable (no), T: available (yes).  

𝑝4 The robot is assigned to unload the machine.  NT: no assignment, T: assigned.  

𝑝5 The fullness of the buffer.  NT: empty, T: full.  

𝑝6 The availability of the buffer.  NT: unavailable, T: available.  

𝑝7 
The robot’s task is transferring the produced part 

to an unoccupied room in the main store.  
NT: no assignment, T: the task is assigned.  

𝑝8 
The number of occupied rooms for storage in the 

main store. 
#T: the number of occupied rooms.  

𝑝9 The robot’s status.  NT: busy, T: free.  

𝑝10 
The number of unoccupied rooms for storage in 

the main store.  
#T: the number of unoccupied rooms.  

NT: No token exists. T: Token exists. #T: The existing number of tokens.  
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Table 6.1. (Continue) Physical meanings for elements of TdAPN in Figure 6.2.(b) 

Element Explanation Status 

𝑡1 Start the machine to produce a part.  

𝑡2 Make the robot unload the produced part.  

𝑡3 Make the robot load the produced part to the buffer.  

𝑡4 Make the robot unload the buffer.  

𝑡5 
Set a pallet free and make the robot transfer the produced part from buffer to an unoccupied 

room of main store.  

𝑡6 Make the robot unload one part from the main store. 

ℎ𝑝2
𝑡1  The machine is producing a part. This operation takes 2 ts.  

ℎ𝑝1
𝑡5  The pallet is going to be free. This operation takes 1 ts. 

ℎ𝑝8
𝑡5  

The robot is transferring the produced part to an unoccupied room of main store. This 

operation takes 1 ts.  

ℎ𝑝9
𝑡5  The robot is going to be available after it transfers the produced part. This operation takes 1 ts.  

ℎ𝑝9
𝑡6  The robot is going to be available after it unloads one part. This operation takes 1 ts.  

ℎ𝑝10
𝑡6  The robot is unloading one part from the main store. This operation takes 1 ts.  

 

Algorithms for TdAPN (Algorithm 7.1) found 75 states of the reachability set 

𝑅𝑆(𝐺𝐴, 𝑆0) for the manufacturing example as given in Appendix-2. Here, the number of 

states of TdAPN is equal to the number of states for representations of Timed PN in [12], 

Transition-Stretched PN in [12], and the equivalent representation of Place-Stretched PN. 

The reachability set was obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆74}. Based on 𝑅𝑆(𝐺𝐴, 𝑆0), 

the net is not live and not reversible due to deadlocks 𝑆20, 𝑆49, 𝑆72, and 𝑆74. The software 

also generated a timed-reachability tree by considering the relation between states in the 

set 𝑅𝑆(𝐺𝐴, 𝑆0) as shown in Figure 6.3. The A3-page (zoomed in) version of Figure 6.3 is 

reachable from Appendix-5. Descriptions of this graph are similar to explanations for 

Figure 3.8. 1.8560 seconds were required to construct 𝑅𝑆(𝐺𝐴, 𝑆0) of TdAPN and 1.7714 

seconds were required for the construction of TdAPN (total is 3.6274 seconds), while 

6.3851 seconds were required to construct the reachability set for the equivalent 

representation of Transition-Stretched PN and 1.9399 seconds were required for the 

construction of Transition-Stretched PN (total is 8.3250 seconds). The construction time 

of the reachability set of TdAPN is shorter than the Transition-Stretched PN. 
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Figure 6.3. Timed-reachability tree for TdAPN in Figure 6.2.(b)  
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6.1.2. Controller-design 

Let us design a forbidden state controller for TdAPN in Figure 6.2.(b), which 

enforces the system to be reversible and deadlock-free. The sub-algorithm 

findExpandedSet (Algorithm 7.8) finds the expanded set of deadlocks as {S20, S49, S64, 

S66, S68, S72, S74}. The net is analyzed by the sub-algorithm findIrreversibleSet  

(Algorithm 7.9) so as to obtain the irreversible set as 𝑅𝑅(𝐺𝐴, 𝑆0) = {S20, S49, S64, S66, S68, 

S72, S74} while the expanded set of deadlocks is a subset of 𝑅R(𝐺𝐴, 𝑆0). The expanded set 

of undesired states is ℒ̂ = 𝑅𝑅(𝐺𝐴, 𝑆0). Using the sub-algorithm controlForbiddenState 

(Algorithm 7.10), values of the controller function are determined as follows: 

𝒞(𝑆, 𝜙) =

{
 
 

 
 
0, 𝑆 = 𝑆64 𝑎𝑛𝑑 𝜙 = {𝑡1}

0, 𝑆 ∈ {𝑆14, 𝑆42, 𝑆71} 𝑎𝑛𝑑 𝜙 = {𝑡2}

0, 𝑆 ∈ {𝑆60, 𝑆61, 𝑆63, 𝑆71} 𝑎𝑛𝑑 𝜙 = {𝑡4}
0, 𝑆 = 𝑆60 𝑎𝑛𝑑 𝜙 = {𝑡1, 𝑡4}
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

 

6.2. Railway Systems 

Safer and better transportation is a popular issue to develop intelligent and 

autonomous solutions in the field of land, marine, air, and railway systems. The growing 

population requires more technological designs in this century. Railway systems are more 

interesting than other fields of transportation due to their safety record [1, 2]. They are 

sophisticated, large-scale, and event-driven. Thus, they comprise subsystems which are 

composed of configuration items including many components (systems of systems). 

There are formal techniques to model and verify Railway Systems in the "Table A.17" of 

EN50128:2011, where a high level of safety is required in railway automation systems 

[25, 42, 43]. One of these techniques is using Petri Nets. 

Since the railway system is concurrent and dynamic, Timed PN is a useful tool 

for railway systems. Therefore, due to distinctly associating time delay onto outgoing arcs 

that are connected to the same transition, Timed-Arc PN is more useful than Timed PN 

in order to represent the dynamics of system activities (e.g. motion, movement, etc.) into 

the model. In Timed-Arc PNs, all situations of the dynamic system are considered at any 

time without loss of information. In this section, a transition of a train between adjacent 

blocks is basically modeled by using TdAPN. This case study has been presented by 

Yufka et.al. in [1]. In railway systems, tracks of the railway network comprises blocks. 
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Each block section includes tracking circuits (TCs) to detect trains. Hence, the railway 

automation becomes aware of the block section whether it is occupied by a train. The 

railway network has block sections and their corresponding TCs. To denote these block 

sections in applications, the set of blocks in a specific route on a track is represented by 

𝑆𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠: = {𝐵𝑙𝑜𝑐𝑘𝑖|𝑖 = 1,2, . . . , 𝔅}, where 𝔅 ∈ ℕ\{0,∞} is the total number of block 

sections on this route. In addition, the set of TCs on its corresponding block section 

𝐵𝑙𝑜𝑐𝑘𝑖 is represented by 𝑆𝑒𝑡𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑠: = {𝑇𝐶𝑖|𝑖 = 1,2, . . . , 𝔅}. Train transitions between 

two adjacent blocks, such as 𝐵𝑙𝑜𝑐𝑘𝑖 and the post block 𝐵𝑙𝑜𝑐𝑘𝑖+1, can be modeled 

considering time delays. 

Let us consider two adjacent blocks as shown in Figure 6.4.(a); for instance, 

𝐵𝑙𝑜𝑐𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is used for the current block 𝐵𝑙𝑜𝑐𝑘𝑖, and 𝐵𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑡 is used for its adjacent 

(post) block 𝐵𝑙𝑜𝑐𝑘𝑖+1. Here, 𝐵𝑙𝑜𝑐𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the 𝑖 'th block, where the train is currently 

on. 𝐵𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑡 is the 𝑖 + 1 'th adjacent block, where the train moves on after the current 

block. This transition between adjacent blocks is sketched as in Figure 6.4.(b). Note that, 

after the train transits from its current block to the post block, this post block becomes a 

current block in the new case. The transition between adjacent blocks and moving in 

blocks cause time delays. These delays are considered exact durations in this study. 
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Figure 6.4. Blocks and tracking circuits on a railway network  
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In Figure 6.4.(b), a tracking circuit related to 𝐵𝑙𝑜𝑐𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is denoted by 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 

and a tracking circuit related to 𝐵𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑡 is denoted by 𝑇𝐶𝑝𝑜𝑠𝑡. When a TC detects a 

train on its corresponding block section, this block is considered as occupied; in addition, 

in the case of not detecting a train, this block is considered as free. Let us model this block 

transition between adjacent block using TdAPN as given in Figure 6.5. 
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Figure 6.5. Block transition between adjacent blocks modeled using TdAPN 

 

The Place-Stretched PN Equivalent of TdAPN in Figure 6.5 is also given in Figure 

6.6. Here in Figure 6.6, there are 5 pair of transitions and places because of time delays. 
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Figure 6.6. Place-Stretched PN Equivalent of TdAPN in Figure 6.5 

 

For TdAPN in Figure 6.5, it is defined by 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). Here, the set of 

places is 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9}, and the set of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3, 

𝑡4, 𝑡5, 𝑡6, 𝑡7}. Input, output and time delay matrices are as follows: 

𝑁 =

[
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 0 0 1 0 0
0 1 1 0 0 0 1]

 
 
 
 
 
 
 
 

 , 𝑂 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 1 0 0 0 0 0
1 0 1 0 0 0 1]

 
 
 
 
 
 
 
 

, 𝐷 =

[
 
 
 
 
 
 
 
 
3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 

. 
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The initial state is 𝑆0 = {𝑴0, 𝛁
𝑹𝟎}, where 𝑴0=[1 0 1 0 0 1 0 0 1]' and 𝛁𝑹𝟎=[0 0]'. 

The set of time elements used in 𝛁𝑹 is ∇= {ℎ𝑝1
𝑡1 , ℎ𝑝2

𝑡2 }. Physical meanings of places, 

transitions and time elements in these models are as follows: 

 𝑝1 denotes that train is at the end of the current block. 

 𝑝2 denotes that train is at the beginning of the post block. 

 𝑝3 and 𝑝4 denote the status of 𝑇𝐶𝑖 (the 𝑖𝑡ℎ block section is occupied and free, 

respectively). 

 𝑝5 denotes that train is completely in the post block (completely means that no 

part of the train is in the current block). 

 𝑝6 and 𝑝7 denote the status of 𝑇𝐶𝑖+1 (the (𝑖 + 1)𝑡ℎ block section is occupied and 

free, respectively). 

 𝑝8 denotes the start of the train’s transition between adjacent blocks. 

 𝑝9 denotes that train is completely in the current block (completely means that no 

part of the train is in the post block). 

 𝑡1 denotes the event of assigning the post block as a new current block. 

 𝑡2 denotes the event to start transition from the current block to its adjacent post 

block. 

 𝑡3 and 𝑡4 are sensory events to detect the train on the 𝑖𝑡ℎ block section whether it 

is occupied or not ,respectively. They are triggered by the sensor of the 𝑇𝐶𝑖. 

 𝑡5 is an event to verify the train’s transition is completed. 

 𝑡6 and 𝑡7 are sensory events to detect the train on the (𝑖 + 1)𝑡ℎ block section 

whether it is occupied or not ,respectively. They are triggered by the sensor of the 

𝑇𝐶𝑖+1. 

 ℎ𝑝1
𝑡1  denotes that train is moving in the current block and it will be at the end of 

the current block after its remaining time is elapsed. This operation takes 3 ts. 

 ℎ𝑝2
𝑡2  denotes that train is transiting from the current block to the post block and it 

will complete its transition after its remaining time is elapsed. This operation takes 

2 ts. 

Here, time elements ℎ𝑝1
𝑡1  and ℎ𝑝2

𝑡2  represent dynamic situations. Time delays for time 

elements were arbitrarily chosen. These can be modified.   
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Algorithms of TdAPN (Algorithm 7.1) found 23 states of the reachability set 

𝑅𝑆(𝐺𝐴, 𝑆0) for the railway system as given in Appendix-3. Here, the number of states of 

TdAPN is equal to the number of states of the equivalent representation of Place-

Stretched PN. The given TdAPN has 10 relaxed states. The reachability set was obtained 

as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆22}. 0.6396 second was required to construct the reachability 

set for TdAPN and 1.3610 seconds were required for the construction of TdAPN (total is 

2.0006 seconds), while 29.9878 seconds were required to construct the reachability set 

for Place-Stretched PN and 2.4923 seconds were required for the construction of Place-

Stretched PN (total is 32.4801 seconds). The construction time of the reachability set of 

TdAPN is shorter than the Place-Stretched PN. In this application, there is no deadlock 

state. The net is live and reversible. Moreover, the software also generated a timed-

reachability tree by considering the relation between states in the set 𝑅𝑆(𝐺𝐴, 𝑆0) as shown 

in Figure 6.7. Descriptions of this timed-reachability tree are similar to explanations for 

Figure 3.8. 

 

 

Figure 6.7. Timed-reachability tree for TdAPN in Figure 6.5  
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6.3. Automotive Systems 

In this subsection, a cruise control system is considered as a case study of an 

automotive application [44, 45], and this is modeled using the proposed TdAPN modeling 

methodology. This system is an optional part of our modern cars today and its improved 

version that is the adaptive cruise control system will be indispensable for futuristic self-

driving (autonomous) cars. This system is an embedded real-time system, and is 

composed of sensors and actuators to keep the speed of the vehicle at a certain (desired) 

speed. This system is activated or deactivated by user inputs via the buttons on the 

steering wheel. It is fact that the engine must be running to activate the system when the 

user presses the activation switch. This system records the speed of the vehicle and 

maintains the desired speed that the user sets up during the active period. This system is 

mostly deactivated when the accelerator pedal, the brake pedal or the button of 

deactivation is pressed. 

The design schema of the cruise control system is given in [44, 45]. The cruise 

control system monitors the user inputs (buttons), the accelerator pedal, the brake pedal, 

the engine’s status and Global Positioning System (GPS), which are called sensor-scan 

processes; it measures the current speed of vehicle from the wheel rotation; it computes 

necessary control values for the speed-adjustment; and based on these computed values, 

it updates related parameters and sends adjusted values (e.g. decrease/increase/maintain 

speed) to throttle actuator. Here, it needs a significant computational time to calculate 

control values and to update parameters [44]. In [44], the cruise control is implemented 

in two processors in parallel to execute operations the above, and the design is realized 

considering time delays of parallel tasks as shown in Figure 6.8; however, this is modeled 

using the basic untimed PN [44]. These operational tasks of the cruise control system is 

modeled by using TdAPN as illustrated in Figure 6.9.  
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Figure 6.8. Schedule of tasks and assignment to processors [44] 
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Figure 6.9. Model of TdAPN for the cruise control in Figure 6.8 

 

The Transition-Stretched PN Equivalent of TdAPN in Figure 6.9  is also given in 

Figure 6.10. Here in this figure, there are 26 pair of places and transitions because of time 

delays. 
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Figure 6.10. Transition-Stretched PN Equivalent of TdAPN in Figure 6.9 

 

Note that time delays are in terms of milliseconds in Figure 6.8. These must be 

discretized using an appropriate sampling period in order to apply the proposed 

deterministic TdAPN. This sampling period can be five ms for one ts as long as all time-

delays in Figure 6.8 are the factor of five; as a result, one ts is considered as five ms. The 

TdAPN model in Figure 6.9 is described by 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). Here, places are in a set 

form as 𝑃 = {𝑝𝑖|𝑖 = 1,2, … ,13}; 𝑇 = {𝑡𝑖|𝑖 = 1,2, … ,11} is the set of transitions; and the 

input matrix 𝑁, output matrix 𝑂, and time delay matrix 𝐷 in terms of ts are as follows: 
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𝑁 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 
 

 , 𝑂 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 
 
 
 
 
 

, 𝐷 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 

 . 

The set of time elements is ∇= {ℎ𝑝3
𝑡1 , ℎ𝑝4

𝑡2 , ℎ𝑝6
𝑡3 , ℎ𝑝5

𝑡4 , ℎ𝑝8
𝑡5 , ℎ𝑝7

𝑡6 , ℎ𝑝9
𝑡7 , ℎ𝑝10

𝑡7 , ℎ𝑝11
𝑡8 , ℎ𝑝12

𝑡9 }, 

where 𝐷(𝑝, 𝑡) ≠ 0 and 𝑂(𝑝, 𝑡) ≠ 0. 𝑆0 = {𝑴0, 𝛁
𝑹𝟎} is the initial state of 𝐺𝐴 at 𝑘0 = 0, 

where 𝑴0=[0 0 0 0 0 0 0 0 0 0 0 0 1]' and 𝛁𝑹𝟎=[0 0 0 0 0 0 0 0 0 0]'. Physical meanings 

for elements of TdAPN in Figure 6.9 are given in Table 6.2. According to this table, 

𝑀(𝑘0, 𝑝13) = 1 indicates that the source is ready to execute parallel tasks. 𝛁𝑹𝟎 = 𝟎|∇|×1 

indicates that there is currently no dynamic operation (𝐹𝑝𝑟𝑒(𝑘0) = ∅)). 

 

Table 6.2. Physical meanings for elements of TdAPN in Figure 6.9 

Element Explanation Status 

𝑝1 
Source for the processor 1 is available. 

(Dummy place) 
NT: unavailable (no), T: available (yes). 

𝑝2 
Source for the processor 2 is available 

(Dummy place) 
NT: unavailable (no), T: available (yes). 

𝑝3 Global Positioning System is monitored. NT: not monitored (no), T: monitored (yes).  

𝑝4 User inputs are monitored. NT: not monitored (no), T: monitored (yes). 

𝑝5 Acceleration is monitored. NT: not monitored (no), T: monitored (yes). 

𝑝6 Brake is monitored. NT: not monitored (no), T: monitored (yes). 

𝑝7 Current speed is measured. NT: not monitored (no), T: monitored (yes). 

𝑝8 Engine is monitored. NT: not monitored (no), T: monitored (yes). 

𝑝9 
Control values for updating parameters are 

computed. 
NT: not computed (no), T: computed (yes). 

𝑝10 
Control values for adjusted speed values are 

computed. 
NT: not computed (no), T: computed (yes). 

𝑝11 Parameters are updated. NT: not updated (no), T: updated (yes). 

𝑝12 Adjusted values are sent. NT: not sent (no), T: sent (yes). 

𝑝13 Source is ready. (Dummy place) NT: not ready (no), T: ready (yes). 

NT: No token exists. T: Token exists. 
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Table 6.2. (Continue) Physical meanings for elements of TdAPN in Figure 6.9 

Element Explanation Status 

𝑡1 Monitor Global Positioning System. 

𝑡2 Monitor user inputs. 

𝑡3 Monitor the brake pedal. 

𝑡4 Monitor the acceleration pedal. 

𝑡5 Monitor the engine. 

𝑡6 Measure the current speed. 

𝑡7 Compute control values. 

𝑡8 Update parameters. 

𝑡9 Send adjusted values. 

𝑡10 Sink (dummy transition). 

𝑡11 Source (dummy transition). 

ℎ𝑝3
𝑡1  Monitoring Global Positioning System. This operation takes 3 ts. 

ℎ𝑝4
𝑡2  Monitoring user inputs from the user interface. This operation takes 1 ts. 

ℎ𝑝6
𝑡3  Monitoring the brake pedal. This operation takes 2 ts. 

ℎ𝑝5
𝑡4  Monitoring the acceleration pedal. This operation takes 2 ts. 

ℎ𝑝8
𝑡5  Monitoring the engine. This operation takes 1 ts. 

ℎ𝑝7
𝑡6  Measuring current speed from the wheel revolution sensor. This operation takes 3 ts. 

ℎ𝑝9
𝑡7  Computing control values for updating parameters. This operation takes 7 ts.  

ℎ𝑝10
𝑡7  Computing control values for sending adjusted speed values. This operation takes 7 ts. 

ℎ𝑝11
𝑡8  Updating parameters. This operation takes 4 ts. 

ℎ𝑝12
𝑡9  Sending adjusted values. This operation takes 3 ts. 

 

Algorithms of TdAPN (Algorithm 7.1) found 134 states of the reachability set 

𝑅𝑆(𝐺𝐴, 𝑆0) for the automotive example shown in Appendix-4, where 21 states of the basic 

(untimed) PN were found in [44]. These are called relaxed states in TdAPN. The 

reachability set was obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆133}. For this example, there is 

no deadlock state. The net is live and reversible. 22.8500 seconds were required to 

construct the reachability set for TdAPN and 1.6696 seconds were required for the 

construction of TdAPN (total is 24.5196 seconds). The software also generated a timed-

reachability tree for the reachability set by considering the relation between states. The 

generated timed-reachability tree, which concerns 𝑅𝑆(𝐺𝐴, 𝑆0), is shown in Figure 6.11. 

Descriptions of the timed-reachability tree are also similar to explanations for Figure 3.8. 

Results show that the design for the cruise control system makes it operate correctly as 

long as its TdAPN model is live and reversible. 
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Figure 6.11. Timed-reachability tree of TdAPN in Figure 6.9  
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Figure 6.11.(Continue) Timed-reachability tree of TdAPN in Figure 6.9 
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7. ALGORITHMS FOR TIMED-ARC PETRI NETS 

This chapter presents algorithms for the proposed TdAPN that construct the 

reachability set 𝑅𝑆(𝐺𝐴, 𝑆0) of 𝐺𝐴 and find values of the forbidden state controller’s 

function based on the set of undesired states, i.e., ℒ0 and 𝑅𝑆(𝐺𝐴, 𝑆0). These are also 

implemented and simulated in the MATLAB; in addition, corresponding results are 

presented. Algorithms of constructing the reachability set for TdAPN have been presented 

in [31] by Yufka et.al. 

 

7.1. Algorithms to Construct Reachability Set 

In this section, algorithms calculating the next state 𝑆(𝑘 + 1) and constructing the 

reachability 𝑅𝑆(𝐺𝐴, 𝑆0) set for TdAPNs are presented. In order to perform these, there are 

two parts in the software of the proposed TdAPN. These are called Prepare-Initials Part 

and Main-Function Part as shown in Figure 7.1. These are explained in the following 

subsections. Prepare-Initials Part is used for preparing initial inputs for Main-Function 

Part, while Main-Function Part is used for constructing 𝑅𝑆(𝐺𝐴, 𝑆0); in addition it also 

constructs the set of deadlock states ℒ̃0 and the set of next states 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0) that 

includes the pair of arguments of the function 𝜌(𝑆, 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙) together with its 

resulting state 𝑆̃, where states 𝑆 and 𝑆̃ are the member of the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0). 

 

User Inputs

GA(P,T,N,O,D,S0)

Main-

Function 

Part

Prepare-

Initials Part

Fpre(k0)

GA(P,T,N,O,D,S0), 


RS (GA, S0)

k0

t●, ●t, p● 

The software of TdAPN

Rnext(GA, S0)

~L0

 

Figure 7.1. Parts of the software of TdAPN to obtain the reachability set 

 

7.1.1. Prepare-initials part 

Prepare-Initials Part is used to prepare initials for Main-Function Part using 

𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), which must be given to Prepare-Initials Part by the user. This part 

is used only at the initial time 𝑘0. Prepare-Initials Part produces the following outputs: 

 TdAPN’s definition that is 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), and the set of time elements ∇, 
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 The set of previously activated firing processes at the initial state 𝑆0 at time 𝑘0 

that is 𝐹𝑝𝑟𝑒(𝑘0), 

 The initial time instant 𝑘0 (𝑘0 is equal to zero as default if 𝐹𝑝𝑟𝑒(𝑘0) is an empty 

set. Otherwise, it means 𝑘0 > 0), 

 For the transition 𝑡 ∈ 𝑇, the set of input places ●𝑡 and the set of output place 𝑡●; 

and for the place the 𝑝 ∈ 𝑃, post set of transitions 𝑝●. 

Then, these outputs of Prepare-Initials Part are used by Main-Function Part as input 

information. 

 

7.1.2. Main-function part 

Main-Function Part is responsible from the state evaluation thus calculating next 

state 𝑆(𝑘 + 1) = {𝑴(𝑘 + 1), 𝛁𝑅(𝑘 + 1)} via discrete-time unit impulse functions as 

given in (3.3) and (3.4); as a result, it generates the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0); in addition, 

ℒ̃0 and 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0). These are outputs of Main-Function Part. 𝑅𝑆(𝐺𝐴, 𝑆0), ℒ̃0 and 

𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0) will be used for the forbidden state controller in the next subsection. The 

detailed diagram of Main-Function Part is given in Figure 7.2. 

 

Main-Function Part

Sevaluated(k) 

is empty?

Increase time 

variable as k + 1 ts

 For all |Sevaluated(k - 1)| determine E(GA, k - 1) of the selected state 

 Sj(k - 1) from Sevaluated(k - 1)

 For all f0 = and fi  E(GA, k - 1), i  1, for the selected state Sj(k - 1) 

from Sevaluated(k - 1)

Increase the state label for 

Snew(k)

Determine F(k - 1) using 

Fj(k - 1) from Sprocess(k - 1) 

and Fstart(k - 1) by fi 

Compute Snew(k) using 

Sj(k - 1) and F(k - 1)

Snew(k) is in 

RS(GA, S0)? 

No

No Yes

GA(P,T,N,O,D,S0), 

, k0, Fpre(k0)

RS(GA, S0)

k0

Sevaluated(k0)={S0}

Sprocess(k0)={F0}

RS (GA, S0)={S0}

Yes

Determine 

Fpre(k) and add 

into Sprocess(k)

Add Snew(k) to 

RS (GA, S0) and 

Sevaluated(k)

Remove Snew(k) 

and decrease the 

state label by 1

t●, ●t, p● 

Rnext(GA, S0)

L0
~

 

Figure 7.2. Detailed diagram of Main-Function Part  
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Here in Figure 7.2, the entities that belong to the initial time 𝑘0 come from Prepare-

Initials Part. The state evolution for 𝑘 > 𝑘0 is realized in Main-Function Part. Here, 𝑘 is 

the discrete time variable, and states in 𝑅𝑆(𝐺𝐴, 𝑆0) are obtained in the minimum time; as 

a result, 𝑘 is stopped to increase by one ts when the last state of 𝑅𝑆(𝐺𝐴, 𝑆0) is reached. 

Moreover, remember that each state in 𝑅𝑆(𝐺𝐴, 𝑆0) is denoted and labeled as 𝑆𝑗 =

{𝛾1(𝑆𝑗) = 𝑴𝑗 , 𝛾2(𝑆𝑗) = 𝛁
𝑹𝒋} where 𝐹(𝑆𝑗) is 𝐹𝑝𝑟𝑒(𝑆𝑗) ∪ 𝜙, while 𝜙 ∈ 𝐸̂ (𝐺𝐴, 𝛾1(𝑆𝑗)). In 

algorithms, 𝐹𝑗 is used for denoting the set 𝐹𝑝𝑟𝑒(𝑆𝑗) related to the state 𝑆𝑗 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0).  

𝐹𝑗 is the set of transitions at state 𝑆𝑗 whose firing processes are previously activated and 

not finished yet. The state of 𝑆𝑗 at time 𝑘 is represented as 𝑆𝑗(𝑘) = {𝑴𝑗(𝑘), 𝛁
𝑹𝒋(𝑘)} and 

the set of 𝐹𝑗 at time 𝑘 is represented as 𝐹𝑗(𝑘) in Main-Function Part; in addition, the set 

of sets of simultaneously-enabled transitions at 𝑴𝑗(𝑘) at time 𝑘 is 𝐸̂(𝐺𝐴, 𝑘). In order to 

perform algorithmic computations, elements of 𝐸̂(𝐺𝐴, 𝑘) are represented with their sub-

indices as 𝜙𝑖 ∈ 𝐸̂(𝐺𝐴, 𝑘), where 𝑖 ∈ 1,2, … , |𝐸̂(𝐺𝐴, 𝑘)|, and 𝜙𝑖 points out the 𝑖 ‘th element 

of 𝐸̂(𝐺𝐴, 𝑘). Here, |{. }| indicates the cardinality of the set {. }. It is also the zero sub-index 

is used for denoting no selection of 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘); thus 𝜙0 stands for an empty set. The 

selected transitions in the set 𝜙 is added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) at time 𝑘 such that 𝐹(𝑘) is 

constructed by 𝐹𝑗(𝑘) ∪ 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) at the state 𝑆𝑗(𝑘) according to the selection of  

𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘). 

In Main-Function Part in Figure 7.2, there is a main while loop, and there is a for-

in-for loop in while loop. At time 𝑘0, initials are 𝑘0, 𝑆(𝑘0) and 𝐹𝑝𝑟𝑒(𝑘0); furthermore, 

there is a counter for the state-label that is initially equal to zero. At each 𝑘, this counter 

is equal to the state-label of the last element in 𝑅𝑆(𝐺𝐴, 𝑆0) that is initially 𝑗 = 0 for 𝑆0. 

For instance; at the beginning, the reachability set is 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0} so that the counter 

for state-label is zero at time 𝑘 = 𝑘0. Moreover, in algorithms, in order to compute the 

next state using information about the present state, states that is not evaluated yet at time 

𝑘 is represented by 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘), namely the set of sets of not yet evaluated states. 

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) includes the set of states at time 𝑘, which will be used for the evaluation 

of the next state. This set is 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘0) = {𝑆0} at time 𝑘0. In addition, 

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 + 1) is constructed by next states of present states in 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘). On 

the other hand, the set of sets of previously firing processes related to states in 

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) at time 𝑘 is represented by 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘). This set is initially 
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𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘0) = {𝐹0}, where 𝐹0 is 𝐹𝑝𝑟𝑒(𝑘0). Subscripts of 𝐹𝑝𝑟𝑒(𝑘) in 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘)is 

suited to indices of 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘). Based on the above information, the following steps 

are iteratively followed in Main-Function Part as: 

 While loop checks the condition whether 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = ∅. If 

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) ≠ ∅, then time variable 𝑘 is increased by one ts, and the code 

enters the outer for loop. If 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = ∅, then 𝑅𝑆(𝐺𝐴, 𝑆0) is obtained. 

 Outer for loop counts all states 𝑆𝑗(𝑘 − 1) ∈ 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1). Note that 𝑘 is 

previously increased by one ts in the while loop. The main evaluated state is 

currently 𝑆𝑗(𝑘 − 1). Then, the code enters inner for loop. In addition, when the 

code leaves outer for loop, 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘), which includes newly created states 

added into 𝑅𝑆(𝐺𝐴, 𝑆0) at time 𝑘, is generated and 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘) is also generated. 

 Inner for Loop counts all 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘 − 1) of 𝑆𝑗(𝑘 − 1). Initially, the counter for 

the state-label is increased by 1 and a temporary new state is created as 𝑆𝑛𝑒𝑤(𝑘). 

𝐹(𝑘 − 1) is generated using previously activated firing processes in  

𝐹𝑗(𝑘 − 1) ∈ 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘 − 1) of 𝑆𝑗(𝑘 − 1) and 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1) by 𝜙; as a result, 

𝐹(𝑘 − 1) is created including 𝐹𝑗(𝑘 − 1) and newly started firing processes of 𝑡 ∈

𝜙 in 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1). The new next state 𝑆𝑛𝑒𝑤(𝑘) is computed by using the function 

of 𝜌 (𝑆𝑗(𝑘 − 1), 𝐹(𝑘 − 1)). Then, the duplication is checked for 𝑆𝑛𝑒𝑤(𝑘) whether 

it is in the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0). If 𝑆𝑛𝑒𝑤(𝑘) ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), then 𝑆𝑛𝑒𝑤(𝑘) is 

deleted and the counter for the state-label is decreased by one. If 𝑆𝑛𝑒𝑤(𝑘) ∉

𝑅𝑆(𝐺𝐴, 𝑆0), then it is added into 𝑅𝑆(𝐺𝐴, 𝑆0) at time 𝑘. It is also that if 𝑆𝑛𝑒𝑤(𝑘) is 

a deadlock state, then it is added into ℒ̃0. Completed firing processes are also 

checked for 𝐹𝑝𝑟𝑒(𝑘) that is 𝐹𝑛𝑒𝑤(𝑘) related to the state 𝑆𝑛𝑒𝑤(𝑘), and 𝐹𝑛𝑒𝑤(𝑘) is 

added into 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘). The pair of arguments of the function 𝜌(𝑆, 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙) 

together with its resulting state 𝑆̃ is added into 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0). 

Main-Function Part has a main algorithm (given in Algorithm 7.1) and sub-

algorithms as given in Figure 7.3. 
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Main-Function Part

 Main Algorithm (Algorithm 7.1)

isEnable (Algorithm 7.2)

checkProcesses (Algorithm 7.3)

addProcesses (Algorithm 7.4)

Fpre(k0)

GA(P,T,N,O,D,S0), 



k0

t●, ●t, p● 

RS(GA, S0)

~L0

Rnext(GA, S0)

Firing Process Sub-Algorithms

Enabledness Sub-Algorithm

getNextMarkingPlace (Algorithm 7.5)

Next-State Sub-Algorithms

getNextRemaining (Algorithm 7.6)

 

Figure 7.3. Main algorithm and its sub-algorithms for TdAPN 

 

Here in main algorithm (Algorithm 7.1), the following sub-algorithms are used as: 

 Enabledness Sub-Algorithm which is isEnable (given in Algorithm 7.2), 

 Firing Process Sub-Algorithms which are checkProcesses (given in  

Algorithm 7.3) and addProcesses (given in Algorithm 7.4), 

 Next State Sub-Algorithms which are getNextMarkingPlace (given in  

Algorithm 7.5) and getNextRemaining (given in Algorithm 7.6), 

o getNextMarkingPlace (Algorithm 7.5) is used to calculate 𝑴(𝑘 + 1) 

according to the selection of 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘) or 𝜙 = ∅. 

o getNextRemaining (Algorithm 7.6) is used to calculate 𝛁𝑅(𝑘 + 1) by 

selecting 𝜙 ∈ 𝐸̂(𝐺𝐴, 𝑘) and ∅. 

 

Algorithm 7.1. Main algorithm of Main-Function Part 

Main-Algorithm ALGORITHM I - main 

Inputs 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), ∇, 𝑘0, 𝐹𝑝𝑟𝑒(𝑘0), ●𝑡, 𝑡●, 𝑝● 

Outputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̃0 

1.  𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘0) = {𝑆0 𝑓𝑜𝑟 𝑆(𝑘0)} 
2.  𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘0) = {𝐹0 𝑓𝑜𝑟 𝐹𝑝𝑟𝑒(𝑘0)} 

3.  𝑅𝑆 (𝐺𝐴, 𝑆0) = 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘0) 
4.  ℒ̃0 = ∅ 
5.  𝑘 = 𝑘0 

6.  while 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) ≠ ∅ do 

7.   :  counter_init_state_label = last element in 𝑅𝑆 (𝐺𝐴, 𝑆0) 
8.   :  counter_state_label = counter_init_state_label 

9.   :  𝑘 = 𝑘 + 1 

10.   :  for 𝑗 = 1 to |𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)| do 

11.   :   :  𝑀𝑗(𝑘 − 1) = 𝛾1([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗) 

12.   :   :  ∇𝑅𝑗(𝑘 − 1) = 𝛾2([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗) 

13.   :   :  𝐹𝑗(𝑘 − 1) = [𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘 − 1)]𝑗 
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Algorithm 7.1. (Continue) Main algorithm of Main-Function Part 

Main-Algorithm ALGORITHM I - Main Algorithm 

Inputs 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), ∇, 𝑘0, 𝐹𝑝𝑟𝑒(𝑘0), ●𝑡, 𝑡●, 𝑝● 

Outputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̃0 

14.   :   :  𝐹𝑝𝑟𝑒(𝑘 − 1) =𝐹𝑗(𝑘 − 1) 

15.   :   :  𝐸̂(𝐺𝐴, 𝑘 − 1) = isEnable(𝑃, 𝑇, 𝑁, 𝑀𝑗(𝑘 − 1), 𝐹𝑝𝑟𝑒(𝑘 − 1),  𝑘 − 1, ●𝑡, 𝑝●) 

16.   :   :  for 𝑖 = 0 to |𝐸̂(𝐺𝐴, 𝑘 − 1)| do 

17.   :   :   :  counter_state_label = counter_state_label + 1 

18.   :   :   :  𝑆𝑛𝑒𝑤 = 𝑆counter_state_label 
19.   :   :   :  if 𝑖 = 0 then 

20.   :   :   :   :  𝜙𝑖 = ∅ 

21.   :   :   :  else 

22.   :   :   :   :  𝜙𝑖 = [𝐸̂(𝐺𝐴, 𝑘 − 1)]𝑖 

23.   :   :   :  end if 

24.   :   :   :  𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1) = addProcesses(𝑇, 𝜙𝑖, 𝑘 − 1) 

25.   :   :   :  𝐹(𝑘 − 1) = 𝐹𝑝𝑟𝑒(𝑘 − 1) + 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1) 

26.   :   :   :  𝑀𝑛𝑒𝑤(𝑘) = getNextMarkingPlace(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑘, 𝑀𝑗(𝑘 − 1), 𝐹(𝑘 − 1)) 

27.   :   :   :  if ∇≠ ∅ then 

28.   :   :   :   :  ∇𝑛𝑒𝑤
𝑅 (𝑘) = getNextRemaining(𝑃, 𝑇, ∇, 𝐷,  𝑘, ∇𝑅𝑗(𝑘 − 1), 𝐹(𝑘 − 1)) 

29.   :   :   :  else 

30.   :   :   :   :  ∇𝑛𝑒𝑤
𝑅 (𝑘) = [ ] ([ ] denotes an empty vector with no dimension) 

31.   :   :   :  end if 

32.   :   :   :  flag_duplication = false 

33.   :   :   :  for 𝑥 = 1 to |𝑅𝑆 (𝐺𝐴, 𝑆0)| do 

34.   :   :   :   :  if [𝑅𝑆 (𝐺𝐴, 𝑆0)]𝑥 = 𝑆𝑛𝑒𝑤(𝑘) then 

35.   :   :   :   :   :  𝑆𝑒𝑡𝑛𝑒𝑥𝑡  ← {([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗, 𝜙𝑖), [𝑅𝑆 (𝐺𝐴, 𝑆0)]𝑥} 

36.   :   :   :   :   :  delete 𝑆𝑛𝑒𝑤(𝑘) 
37.   :   :   :   :   :  flag_duplication = true 

38.   :   :   :   :   :  counter_state_label = counter_state_label – 1 

39.   :   :   :   :   :  break 

40.   :   :   :   :  end if 

41.   :   :   :  end for 

42.   :   :   :  if flag_duplication = true then 

43.   :   :   :   :  continue 

44.   :   :   :  else 

45.   :   :   :   :  𝑅𝑆 (𝐺𝐴, 𝑆0) ← 𝑆𝑛𝑒𝑤(𝑘) 
46.   :   :   :   :  𝐹𝑛𝑒𝑤(𝑘) = checkProcesses(𝑃, 𝑇, 𝐷, 𝐹(𝑘 − 1), 𝑘) 

47.   :   :   :   :  𝐹𝑝𝑟𝑒(𝑘) = 𝐹𝑛𝑒𝑤(𝑘) 

48.   :   :   :   :  𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘) ← 𝐹𝑝𝑟𝑒(𝑘) 

49.   :   :   :   :  if ∇𝑛𝑒𝑤
𝑅 (𝑘) = 0|∇|𝑥1  and 𝐸̂(𝐺𝐴, 𝑘) = ∅ then 

50.   :   :   :   :   :  ℒ̃0 ← 𝑆𝑛𝑒𝑤 

51.   :   :   :   :  end if 

52.   :   :   :   :  𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0) ← {([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗 , 𝜙𝑖), 𝑆𝑛𝑒𝑤(𝑘)} 

53.   :   :   :  end if 

54.   :   :  end for 

55.   :  end for 

56.   :  if counter_init_state_label +1  counter_state_label then 

57.   :   :  𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = {𝑆counter_init_state_label +1: 𝑆counter_state_label} 
58.   :  else 

59.   :   :  𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = ∅ 

60.   :  end if 

61.  end while 
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Enabledness Sub-Algorithm: This sub-algorithm is called and runned under main 

algorithm (Algorithm 7.1) of Main-Function Part. In order to determine the enabled 

transitions at 𝑴(k) at time 𝑘, the sub-algorithm, namely isEnable (Algorithm 7.2), is 

developed using definitions in (3.1) and (3.2). Inputs of this sub-algorithm are 𝑃, 𝑇, 𝑁, 

𝑴(𝑘), 𝐹(𝑘), 𝑘, ●𝑡 and 𝑝●. Its output is the set of sets of simultaneously-enabled transition 

𝐸̂(𝐺𝐴, 𝑘) that also includes transitions in the set of transitions 𝐸(𝐺𝐴, 𝑘). The following 

steps are performed in order as: 

 First of all, the sub-algorithm isEnable (Algorithm 7.2) finds the set of enabled 

transitions that is 𝐸(𝐺𝐴, 𝑘) based on the condition given in (3.1). 

 Then, it checks all combinations (𝐸𝑐𝑜𝑚𝑏𝑠 in the code, which refers to  

𝐸̂(𝐺𝐴, 𝑘) ⊂ 2𝐸(𝐺𝐴,𝑘)\∅) of transitions 𝑡 ∈ 𝐸(𝐺𝐴, 𝑘) in order to determine the set 

of simultaneously-enabled transitions, i.e., 𝜙 ⊆ 𝐸(𝐺𝐴, 𝑘) based on the condition 

given in (3.2). 

 Finally, it constructs the set of sets of simultaneously-enabled transitions, i.e., 

𝐸̂(𝐺𝐴, 𝑘). 

 

Algorithm 7.2. Enabledness sub-algorithm 

Sub-Algorithm ALGORITHM II - isEnable 

Inputs 𝑃, 𝑇, 𝑁, 𝑴(𝑘), 𝐹(𝑘), 𝑘, ●𝑡, 𝑝● 

Outputs 𝐸̂(𝐺𝐴, 𝑘) 

1.  𝐸(𝐺𝐴, 𝑘) = ∅ 

2.  𝐸̂(𝐺𝐴, 𝑘) = ∅ 
3.  𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡

𝜆 ∈ 𝐹(𝑘), 𝜆 ≤ 𝑘} 
4.  for 𝑖 = 1 to |𝑇| do 

5.   :  counter_E = 0 

6.   :  for 𝑗 = 1 to |𝑃| do 

7.   :   :  if [𝑃]𝑗 ∈ ●[𝑇]𝑖 then 

8.   :   :   :  if 𝑁([𝑃]𝑗 , [𝑇]𝑖) ≥ 1 then 

9.   :   :   :   :  if 𝑀([𝑃]𝑗 , 𝑘) ≥ 𝑁([𝑃]𝑗 , [𝑇]𝑖) then 

10.   :   :   :   :   :  counter_E = counter_E+1 

11.   :   :   :   :  end if 

12.   :   :   :  end if 

13.   :   :  end if 

14.   :  end for 

15.   :  if counter_E = |●[𝑇]𝑖| then 

16.   :   :  𝐸(𝐺𝐴, 𝑘) ←  [𝑇]𝑖 
17.   :  end if 

18.  end for 

19.   :  |𝐸𝑐𝑜𝑚𝑏𝑠| = (|𝐸
(𝐺𝐴, 𝑘)|
𝑧

) 

20.  for 𝑧 = 1 to |𝐸(𝐺𝐴, 𝑘)| do 
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Algorithm 7.2. (Continue) Enabledness Sub-Algorithm 

Sub-Algorithm ALGORITHM II - isEnable 

Inputs 𝑃, 𝑇, 𝑁, 𝑴(𝑘), 𝐹(𝑘), 𝑘, ●𝑡, 𝑝● 

Outputs 𝐸̂(𝐺𝐴, 𝑘) 

21.   :  for 𝑦 = 1 to |𝐸𝑐𝑜𝑚𝑏𝑠| do 

22.   :   :  𝑃𝑢𝑛𝑖𝑜𝑛 = ∅ 

23.   :   :  flag_multi = 0 

24.   :   :  for 𝑗 = 1 to |[𝐸𝑐𝑜𝑚𝑏𝑠]𝑦| do 

25.   :   :   :  𝑃𝑢𝑛𝑖𝑜𝑛 ← 𝑃𝑢𝑛𝑖𝑜𝑛 ∪ ●[[𝐸𝑐𝑜𝑚𝑏𝑠]𝑦]𝑗  

26.   :   :  end for 

27.   :   :  for 𝑖 = 1 to |𝑃𝑢𝑛𝑖𝑜𝑛| do 

28.   :   :   :  N_sum = 0 

29.   :   :   :  𝑃𝑢𝑛𝑖𝑜𝑛 ← 𝑃𝑢𝑛𝑖𝑜𝑛 ∪ [[𝐸𝑐𝑜𝑚𝑏𝑠]𝑦]𝑗  

30.   :   :   :  for 𝑥 = 1 to |[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●| do 

31.   :   :   :   :  if [[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●]𝑥 ∈ [𝐸𝑐𝑜𝑚𝑏𝑠]𝑦 then 

32.   :   :   :   :   :  if 𝑁([𝑃𝑢𝑛𝑖𝑜𝑛]𝑖 , [[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●]𝑥) ≥ 1 then 

33.   :   :   :   :   :   :  N_sum += 𝑁([𝑃𝑢𝑛𝑖𝑜𝑛]𝑖 , [[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●]𝑥) 
34.   :   :   :   :   :   :  if 𝑀([𝑃𝑢𝑛𝑖𝑜𝑛]𝑖 , 𝑘) < N_sum then 

35.   :   :   :   :   :   :   :  flag_multi = 1 

36.   :   :   :   :   :   :   :  break 

37.   :   :   :   :   :   :  end if 

38.   :   :   :   :   :  else 

39.   :   :   :   :   :   :  flag_multi = 1 

40.   :   :   :   :   :   :  break 

41.   :   :   :   :   :  end if 

42.   :   :   :   :  end if 

43.   :   :   :  end for 

44.   :   :   :  if flag_multi = 1 then 

45.   :   :   :   :  break 

46.   :   :   :  end if 

47.   :   :  end for 

48.   :   :  if flag_multi = 0 then 

49.   :   :   :  𝐸̂(𝐺𝐴, 𝑘) ←  [𝐸𝑐𝑜𝑚𝑏𝑠]𝑦 

50.   :   :  end if 

51.   :  end for 

52.  end for 

53.  for 𝑖 = 1 to |𝐸̂(𝐺𝐴, 𝑘)| do 

54.   :  for 𝑗 =1 to |[𝐸̂(𝐺𝐴, 𝑘)]𝑗| do 

55.   :   :  if [𝐸̂(𝐺𝐴, 𝑘)]𝑖 ≠ ∅ then 

56.   :   :   :  if [[𝐸̂(𝐺𝐴, 𝑘)]𝑖]𝑗
∈ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒   then 

57.   :   :   :   :  𝐸̂(𝐺𝐴, 𝑘) =  𝐸̂(𝐺𝐴, 𝑘) ∖ [𝐸̂(𝐺𝐴, 𝑘)]𝑖 

58.   :   :   :   :  𝐸(𝐺𝐴, 𝑘) =  𝐸(𝐺𝐴, 𝑘) ∖ [[𝐸̂(𝐺𝐴, 𝑘)]𝑖]𝑗
 

59.   :   :   :   :  break 

60.   :   :   :  end if 

61.   :   :  end if 

62.   :  end for 

63.  end for 
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Firing Process Sub-Algorithms: These sub-algorithms are called and runned under main 

algorithm (Algorithm 7.1) of Main-Function Part. A firing process 𝑡𝜆 ∈ 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆), 

𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆) starts at time 𝑘 = 𝜆 and it is completed at time 𝑘 = 𝜆 + 𝑑𝑡 such that  

𝑡𝜆 ∉ 𝐹𝑝𝑟𝑒(𝜆 + 𝑑𝑡), 𝐹𝑝𝑟𝑒(𝜆 + 𝑑𝑡) ⊆ 𝐹(𝜆 + 𝑑𝑡). In order to check the firing processes  

𝑡𝜆 ∈ 𝐹(𝑘) whether it is completed at time 𝑘 + 1 and in the set 𝐹𝑝𝑟𝑒(𝑘 + 1),  

the sub-algorithm, namely checkProcesses (Algorithm 7.3), is developed. Inputs of this 

sub-algorithm are 𝑃, 𝑇, 𝐷,  𝐹(𝑘 − 1) and 𝑘. Its output is the set of transitions whose firing 

processes continue, i.e., 𝐹𝑝𝑟𝑒(𝑘) ⊆ 𝐹(𝑘). In TdAPN, it is also checked whether a new 

firing process 𝑡𝜆 is to be added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) at time 𝑘 = 𝜆. For this purpose, the 

sub-algorithm, namely addProcesses (Algorithm 7.4), is also developed. Its inputs are 𝑇, 

𝜙 and 𝑘, and its output is the set of transitions whose firing process is newly started at 

time 𝑘, i.e., 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) ⊆ 𝐹(𝑘). 

 

Algorithm 7.3. Firing process sub-algorithm to check completed firing processes 

Sub-Algorithm ALGORITHM III - checkProcesses 

Inputs 𝑃, 𝑇 𝐷, 𝐹(𝑘 − 1), 𝑘 

Outputs 𝐹𝑝𝑟𝑒(𝑘) 

1.  𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡
𝜆 ∈ 𝐹(𝑘 − 1), 𝜆 ≤ 𝑘 − 1} 

2.  for 𝑖 = 1 to |𝑇| do 

3.   :  if [𝑇]𝑖 ∈ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 then 

4.   :  if [𝑇]𝑖 ∈ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 then 

5.   :   :  if 𝑘 = 𝜆[𝑇]𝑖 + max
𝑝∈[𝑇]𝑖•

{𝐷(𝑝, [𝑇]𝑖)} then 

6.   :   :   :  𝐹𝑝𝑟𝑒(𝑘) =  𝐹𝑝𝑟𝑒(𝑘) ∖ ([𝑇]𝑖)
𝜆[𝑇]𝑖  

7.   :   :  end if 

8.   :  end if 

9.  end for 

 

Algorithm 7.4. Firing process sub-algorithm to add new firing processes 

Sub-Algorithm ALGORITHM IV - addProcesses 

Inputs 𝑇, 𝜙, 𝑘 

Outputs 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) 

1.  𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) = ∅ 

2.  𝜆 = 𝑘 

3.  for 𝑗 = 1 to |𝑇| do 

4.   :  if [𝑇]𝑗 ∈ 𝜙 then 

5.   :   :  𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) ←  ([𝑇]𝑗)
𝜆
 

6.   :  end if 

7.  end for 
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Next State Sub-Algorithms: These sub-algorithms are called and runned under main 

algorithm (Algorithm 7.1) of Main-Function Part. First of all, in order to calculate the 

next marking vector 𝑴(𝑘 + 1) as given in (3.3), the sub-algorithm, namely 

getNextMarkingPlace (Algorithm 7.5) is developed. Inputs of this sub-algorithm are 𝑃, 

𝑇, 𝑁, 𝑂, 𝐷, 𝑴(𝑘), 𝐹(𝑘) and 𝑘. Its output is the next marking vector 𝑴(𝑘 + 1). The sub-

algorithm getNextMarkingPlace (Algorithm 7.5) uses discrete-time unit impulse 

functions δ[𝑃]𝒋
𝑁  and δ[𝑃]𝒋

𝑂  to compute 𝑴(k + 1). Here, for the firing process 𝑡𝜆 ∈ 𝐹(𝑘), 

δ[𝑃]𝒋
𝑁  is used for a multiplier for denoting the (𝑝𝑗, 𝑡) 'th element of 𝑁. Similarly, δ[𝑃]𝒋

𝑂  is 

used for a multiplier for denoting the (𝑝𝑗, 𝑡) 'th element of 𝑂. 

 

Algorithm 7.5. Next state sub-algorithm to calculate next marking vector 

Sub-Algorithm ALGORITHM V - getNextMarkingPlace 

Inputs 𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑘, 𝑴(𝑘), 𝐹(𝑘) 

Outputs 𝑴(𝑘 + 1) 

1.  𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡
𝜆 ∈ 𝐹(𝑘), 𝜆 ≤ 𝑘} 

2.  if 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ≠ ∅ then 

3.   :  𝑀𝑠𝑢𝑚 = 0|𝑃|𝑥1 

4.   :  for 𝑖 = 1 to |𝑡𝑎𝑐𝑡𝑖𝑣𝑒| do 

5.   :   :   for 𝑗 = 1 to |𝑃| do 

6.   :   :   :   δ[𝑃]𝑗
𝑁 = δ[𝑃]𝑗

𝑂 = 0 

7.   :   :   :   if 𝑘 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖  then 

8.   :   :   :   :   δ[𝑃]𝑗
𝑁 = 1 

9.   :   :   :   end if 

10.   :   :   :   if 𝑘 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 + 𝐷([𝑃]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) then 

11.   :   :   :   :   δ[𝑃]𝑗
𝑂 = 1 

12.   :   :   :   end if 

13.   :   :   :   [𝑀𝑠𝑢𝑚]𝑗 = [𝑀𝑠𝑢𝑚]𝑗+ δ[𝑃]𝑗
𝑂 * 𝑂([𝑃]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) - δ[𝑃]𝑗

𝑁 * 𝑁([𝑃]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) 

14.   :   :   end for 

15.   :  end for 

16.   :  𝑀(𝑘 + 1) = 𝑀(𝑘) + 𝑀𝑠𝑢𝑚 

17.  else 

18.   :  𝑀(𝑘 + 1) = 𝑀(𝑘) 
19.  end if 

 

Moreover, in order to calculate the next remaining time vector 𝛁𝑅(𝑘 + 1) as given 

in (3.4), the sub-algorithm, namely getNextRemaining (Algorithm 7.6) is developed. 

Inputs of this sub-algorithm are 𝑃, 𝑇, ∇, 𝐷, 𝛁𝑹(𝑘), 𝐹(𝑘) and 𝑘. Its output is the next 

remaining time vector 𝛁𝑹(𝑘 + 1). The sub-algorithm getNextRemaining (Algorithm 7.6) 

uses discrete-time unit impulse function δ[∇]𝒋 and the sum of discrete-time unit impulses 
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to compute 𝛁𝑹(k + 1). Here, δ[∇]𝒋 is used for a multiplier for the (𝑝, 𝑡) 'th element of 𝐷, 

where the 𝑗 'th time element ℎ𝑝
𝑡  in the set ∇, and 𝑝 is the place index of ℎ𝑝

𝑡  while 𝑡 stands 

for the firing process 𝑡𝜆 ∈ 𝐹(𝑘). 

 

Algorithm 7.6. Next state sub-algorithm to calculate next remaining time vector 

Sub-Algorithm ALGORITHM VI - getNextRemaining 

Inputs 𝑃, 𝑇, ∇, 𝐷,  𝑘, 𝛁𝑅(𝑘), 𝐹(𝑘) 

Outputs 𝛁𝑅(𝑘 + 1) 

1.  𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡
𝜆 ∈ 𝐹(𝑘), 𝜆 ≤ 𝑘} 

2.  if 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ≠ ∅ then 

3.   :   ∇𝑅𝑠𝑢𝑚= 0|∇|𝑥1 

4.   :   for 𝑖 = 1 to |𝑡𝑎𝑐𝑡𝑖𝑣𝑒| do 

5.   :    :   for 𝑗 = 1 to |∇| do 

6.   :    :    :   δ[∇]𝑗 = 0 

7.   :    :    :   if 𝑘 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖  then 

8.   :    :    :    :   δ[∇]𝑗 = 1 

9.   :    :    :   end if 

10.   :    :    :   [∇𝑅𝑠𝑢𝑚]𝑗 = [∇𝑅𝑠𝑢𝑚]𝑗 + δ[∇]𝑗 ∗ 𝐷(𝑝 𝑝𝑎𝑟𝑡 𝑜𝑓 [∇]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) 

11.   :    :    :   for 𝑙 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 + 1 to 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 + 𝐷(𝑝 𝑝𝑎𝑟𝑡 𝑜𝑓 [∇]𝑗, [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) then 

12.   :    :    :    :   if 𝑘 = 𝑙 then 

13.   :    :    :    :    :   [∇𝑅𝑠𝑢𝑚]𝑗 = [∇
𝑅
𝑠𝑢𝑚]𝑗 − 1 

14.   :    :    :    :    :   break 

15.   :    :    :    :   end if 

16.   :    :    :   end for 

17.   :    :   end for 

18.   :   end for 

19.   :   ∇𝑅(𝑘 + 1) = ∇𝑅(𝑘) + ∇𝑅𝑠𝑢𝑚 

20.  else 

21.   :   ∇𝑅(𝑘 + 1) = ∇𝑅(𝑘) 
22.  end if 

 

Using sub-algorithms getNextMarkingPlace (Algorithm 7.5) and 

getNextRemaining (Algorithm 7.6), the next state of TdAPN at time 𝑘 + 1 is computed 

as 𝑆(𝑘 + 1) = {𝑴(𝑘 + 1), 𝛁𝑅(𝑘 + 1)}. 
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7.2. Algorithms to Construct Forbidden State Controller 

In this section, algorithms to construct forbidden state controller, which avoid 

undesired states, are developed; as a result, a new part, namely Forbidden State-

Controller Part, is created and integrated to Main-Function Part as shown in Figure 7.4. 

 

User Inputs

GA(P,T,N,O,D,S0)

Main-

Function 

Part

Prepare-

Initials Part

Fpre(k0)

RS (GA,S0)

k0

Forbidden 

State-

Controller 

Part

C 

User Inputs

(L0, controller type)

L

Rnext(GA, S0)

RR (GA,S0)

~L0

t●, ●t, p● 

The software of TdAPN

GA(P,T,N,O,D,S0), 



 

Figure 7.4. Forbidden State-Controller Part for the software of TdAPN 

 

Forbidden State-Controller Part generates the expanded set of undesired states ℒ̂ 

from the set of undesired states ℒ0. Any set of ℒ0 defined by the user or based on the 

desired behavior can be used in the controller. Forbidden State-Controller Part allows 

the user to select the controller type, where the controller can be a deadlock avoidance 

controller, or it can be a reversibility enforcement controller that enforces the system 

reversible and deadlock-free, or it avoids any undesired states defined by the user. 

Forbidden State-Controller Part has a main-controller algorithm (given in 

Algorithm 7.7) and sub-algorithms as given in Figure 7.5. 

 

Forbidden State-Controller Part

 Main-Controller Algorithm (Algorithm 7.7)

findExpandedSet (Algorithm 7.8)

findIrreversibleSet (Algorithm 7.9)

controlForbiddenState (Algorithm 7.10)

L0 , Controller Type 

Rnext(GA, S0)

RR(GA, S0)

~L0

C 

Finding Forbidden-States Sub-Algorithm

RS(GA, S0)

Reversibility Analysis Sub-Algorithm

Finding Controller-Values Sub-Algorithm

LUser Inputs

 

Figure 7.5. Main-controller algorithm and its sub-algorithms for TdAPN  
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Here, inputs of main-controller algorithm (Algorithm 7.7) are the reachability set 

𝑅𝑆(𝐺𝐴, 𝑆0), the set of deadlock states ℒ̃0, the set of next states 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0), and user 

inputs that are any initial set of undesired states ℒ0 and the selection of the controller type 

(forbidding any desired state, deadlock avoidance or reversibility enforcement). Outputs 

of main-controller algorithm (Algorithm 7.7) are the expanded set of undesired states ℒ̂, 

the set of irreversible states 𝑅𝑅(𝐺𝐴, 𝑆0) and values of the controller function 𝒞 according 

the controller type. Moreover, in this algorithm ℒ̃ represents the expanded set of deadlock 

states. 

 

Algorithm 7.7. Main-controller algorithm of Forbidden State-Controller Part 

Main-Algorithm ALGORITHM VII – main-controller 

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), ℒ̃0, 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ0, controller_type 

Outputs ℒ̂, 𝑅𝑅 (𝐺𝐴, 𝑆0), 𝒞 

1.  ℒ̃ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̃0) 

2.  𝑅𝑅 (𝐺𝐴, 𝑆0) = findIrreversibleSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ0) 

3.  ℒ̂ = ∅ 

4.  if controller_type is deadlock avoidance then 

5.   :  ℒ̂ = ℒ̃ 

6.  else if controller_type is enforcing the system reversible and deadlock-free then 

7.   :  ℒ̂ = 𝑅𝑅 (𝐺𝐴, 𝑆0) 
8.  else if controller_type is forbidding any desired states (such as user input) then 

9.   :  ℒ̂ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ0) 

10.  else if controller_type is forbidding any desired states and deadlock avoidance then 

11.   :  ℒ̂ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ0 ∪ ℒ̃0) 

12.  else if controller_type is forbidding any desired states and enforcing the system reversible then 

13.   :  ℒ̂ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ0 ∪ 𝑅𝑅 (𝐺𝐴, 𝑆0)) 

14.  end if 

15.  𝒞 = controlForbiddenState(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̂) 

 

Main-controller algorithm (Algorithm 7.7), The following sub-algorithms are used 

as: 

 Finding Forbidden-States Sub-Algorithm which is findExpandedSet  

(given in Algorithm 7.8), 

 Reversibility Analysis Sub-Algorithm which is findIrreversibleSet  

(given in Algorithm 7.9), 

 Finding Controller-Values Sub-Algorithm which is controlForbiddenState  

(given in Algorithm 7.10).  



 

86 

Finding Forbidden-States Sub-Algorithm: This sub-algorithm is called and runned 

under main-controller algorithm (Algorithm 7.7) of Forbidden State-Controller Part. In 

order to find the expanded set of undesired states, i.e., ℒ̂ from any given initial set of 

undesired states ℒ0, the sub-algorithm, namely findExpandedSet (Algorithm 7.8) is 

developed using (5.3). Inputs of this sub-algorithm are 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0) and ℒ0. 

Its output is the expanded set of undesired states ℒ̂. 

 

Algorithm 7.8. Finding forbidden-states sub-algorithm 

Sub-Algorithm ALGORITHM VIII - findExpandedSet 

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ0 

Outputs ℒ̂ 

1.  ℒ̂ = ℒ0 

2.  𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑆 (𝐺𝐴, 𝑆0) 

3.  𝑖 = 0 

4.  while ℒ𝑖 ≠ ∅ do then 

5.   :  𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑑𝑢𝑚𝑚𝑦 ∖ ℒ𝑖 

6.   :  𝑖 = 𝑖 + 1 

7.   :  ℒ𝑖 = ∅ 

8.   :  for 𝑗 = 1 to |𝑅𝑑𝑢𝑚𝑚𝑦| do 

9.   :   :  𝑇𝑜 = ∅ 

10.   :   :  for 𝑥 = 1 to |𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0)| do 

11.   :   :   :  compare = {(𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜙), 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔} of [𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0)]𝑥 

12.   :   :   :  if [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗 = 𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡  in compare then 

13.   :   :   :   :  𝑇𝑜 ← {(𝜙, 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔)} in compare 

14.   :   :   :  end if 

15.   :   :  end for 

16.   :   :  counter = 0 

17.   :   :  for 𝑦 = 1 to |𝑇𝑜| do 

18.   :   :   :  if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  of [𝑇𝑜]𝑦 ∈ ℒ̂ then 

19.   :   :   :   :  counter = counter + 1 

20.   :   :   :  else if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  of [𝑇𝑜]𝑦 ∉ ℒ̂ and 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  of [𝑇𝑜]𝑦 = [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗  then 

21.   :   :   :   :  counter = counter + 1 

22.   :   :   :  end if 

23.   :   :  end for 

24.   :   :  if counter = |𝑇𝑜| then 

25.   :   :   :  ℒ𝑖 ← [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗 

26.   :   :  end if 

27.   :  end for 

28.   :  ℒ̂ ← ℒ𝑖 
29.  end while 
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Reversibility Analysis Sub-Algorithm: This sub-algorithm is called and runned under 

main-controller algorithm (Algorithm 7.7) of Forbidden State-Controller Part. In order 

to find the set of irreversible states, i.e., 𝑅𝑅 (𝐺𝐴, 𝑆0) whose states violate the reversibility-

property of TdAPN described in Definition 3.5, the sub-algorithm, namely 

findIrreversibleSet (Algorithm 7.9) is developed. Inputs of this sub-algorithm are 

𝑅𝑆 (𝐺, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺, 𝑆0) and ℒ̃0 defined in (3.8). Its output is the set of irreversible states 

𝑅𝑅 (𝐺𝐴, 𝑆0). 

 

Algorithm 7.9. Reversibility analysis sub-algorithm 

Sub-Algorithm ALGORITHM IX - findIrreversibleSet 

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̃0 

Outputs 𝑅𝑅 (𝐺𝐴, 𝑆0) 

1.  ℒ̃ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̃0) 

2.  𝑅𝑅 (𝐺𝐴, 𝑆0) = ℒ̃ 
3.  𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑆 (𝐺𝐴, 𝑆0) ∖ ℒ̃ 

4.  𝑅0 = ℒ̃ 
5.  𝑙 = 0 

6.  while 𝑅𝑙 ≠ ∅ do then 

7.   :  𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑑𝑢𝑚𝑚𝑦 ∖ 𝑅𝑙 

8.   :  𝑙 = 𝑙 + 1 

9.   :  𝑅𝑙 = ∅ 

10.   :  for 𝑗 = 1 to |𝑅𝑑𝑢𝑚𝑚𝑦| do 

11.   :   :  𝑇𝑜 = ∅ 

12.   :   :  for 𝑥 = 1 to |𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0)| do 

13.   :   :   :  compare = {(𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜙), 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔} of [𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0)]𝑥 

14.   :   :   :  if [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗 = 𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡  in compare then 

15.   :   :   :   :  𝑇𝑜 ← {(𝜙, 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔)} in compare 

16.   :   :   :  end if 

17.   :   :  end for 

18.   :   :  for 𝑦 = 1 to |𝑇𝑜| do 

19.   :   :   :  if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  of [𝑇𝑜]𝑦 ∈ 𝑅𝑅 (𝐺𝐴, 𝑆0) then 

20.   :   :   :   :  𝑅𝑙 ← [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗  

21.   :   :   :   :  break 

22.   :   :   :  end if 

23.   :   :  end for 

24.   :  end for 

25.   :  𝑅𝑅 (𝐺𝐴, 𝑆0) ← 𝑅𝑙 
26.  end while 
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Finding Controller-Values Sub-Algorithm: This sub-algorithm is called and runned 

under main-controller algorithm (Algorithm 7.7) of Forbidden State-Controller Part. In 

order to determine values of the controller function 𝒞(𝑆, 𝜙) that is able to disable the 

transition(s) in the set 𝜙 at the state 𝑆 ∈ 𝑅𝑆 (𝐺, 𝑆0), the sub-algorithm, namely 

controlForbiddenState (Algorithm 7.10) is developed using (5.4). Inputs of this sub-

algorithm are 𝑅𝑆 (𝐺, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺, 𝑆0) and ℒ̂. Its output is values of the controller 

function as 𝒞(𝑆, 𝜙) ∈ {0,1}.  

 

Algorithm 7.10. Finding controller-values sub-algorithm 

Sub-Algorithm ALGORITHM X - controlForbiddenState 

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡  (𝐺𝐴, 𝑆0), ℒ̂ 

Outputs 𝒞(𝑆, 𝜙) 

1.  𝒞 = 1 
2.  for 𝑗 = 1 to |𝑅𝑆 (𝐺, 𝑆0)| do 

3.   :  𝑇𝑜 = ∅ 

4.   :  for 𝑥 = 1 to 𝑆𝑛𝑒𝑥𝑡  do 

5.   :   :  compare = {(𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜙), 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔} of [𝑆𝑛𝑒𝑥𝑡]𝑥 

6.   :   :  if [𝑅𝑆 (𝐺, 𝑆0)]𝑗 = 𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 in compare then 

7.   :   :   :  𝑇𝑜 ← {(𝜙, 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔)} in compare 

8.   :   :  end if 

9.   :   :  for 𝑦 = 1 to |𝑇𝑜| do 

10.   :   :   :  if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  of [𝑇𝑜]𝑦 ∈ ℒ̂ then 

11.   :   :   :   :  if 𝜙 of [𝑇𝑜]𝑦 ≠ ∅ then 

12.   :   :   :   :   :  𝒞([𝑅𝑆 (𝐺, 𝑆0)]𝑗 , 𝜙) = 0 

13.   :   :   :   :  end if 

14.   :   :   :  end if 

15.   :   :  end for 

16.   :  end for 

17.  end for 
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8. CONCLUSION, DISCUSSION AND PROPOSALS 

 

8.1. Conclusion 

A novel mathematical modeling method has been presented for Timed PNs, where 

time delays are assigned to arcs. In Timed PNs, system states are defined by the change 

of tokens in PNs and their movements (flow). In the proposed model, a triangular 

representation, called time element, that allows monitoring of tokens in transition, namely 

flowing tokens, has been defined. The proposed Timed-Arc PN overcomes the main 

drawback of Timed PNs by including time elements in the PN. It is important to monitor 

flowing tokens in Timed PNs because a complete picture of states of time-delayed 

systems is required in many practical systems. The proposed triangular graphical 

representation transforms the representation of Timed PN into a tripartite graph including 

places, transitions, and time elements. The tripartite structure of Timed-Arc PNs allows 

the net to start at any state and any initial-time instant. The state of the system and the 

remaining time of the work/operations are shown as a vector. Furthermore, discrete-time 

unit impulse functions are used to compute the marking and the remaining time vectors. 

The former is used for indicating the status of places, while the latter represents the status 

of time elements. Such impulse functions are used to trigger appearances and 

disappearances of tokens at places and at time elements such that the state evolution in 

places and time elements is described in terms of these impulse functions. The use of 

discrete-time unit impulse functions allows for obtaining new states; as a result, the next 

state of the proposed Timed-Arc PN is formally computed using the marking and the 

remaining time vectors with discrete-time unit impulse functions. All situations of tokens, 

i.e., all situations of states can be computed. This makes possible to obtain the reachability 

set and the timed-reachability graph (tree) enhanced by the time information as long as 

the state of the system is expressed by the marking and remaining time vectors of TdAPN. 

In addition, the controller design is also presented for time-delayed systems that is 

modeled by the proposed mathematical model of TdAPNs. Basic behavioral properties 

of the proposed TdAPNs have been defined by using the reachability set in order to permit 

analysis of the proposed approach. Using the reachability set and behavioral properties of 

the proposed Timed-Arc PNs, a forbidden state controller for time-delayed systems has 

been designed in order to make the system avoid undesired states, such as deadlock states, 

and to enforce the reversibility. Algorithms for constructing the reachability set and 
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designing a forbidden state controller for Timed-Arc PNs have been developed and 

simulated using MATLAB. In addition; case studies of modeling and designing for real 

systems, such as manufacturing, railway, and automotive systems, have been carried out 

using the proposed approach. These case studies are not limited to the scope of these 

topics. Timed-Arc PNs can also be applied to autonomous operations or decision 

mechanisms of self-driving cars/autonomous robots, etc. 

The proposed Timed-Arc PN is compared with Timed PNs and Stretched PNs. In 

terms of firing processes, Timed-Arc PN provides the user to observe states 

mathematically and graphically. Timed-Arc PN has a number of time elements according 

to the number of non-zero-time delayed outgoing arcs; in addition, non-zero-time delayed 

time elements are considered in the state of Timed-Arc PNs. The graphical representation 

of Timed-Arc PNs is useful to show temporary disappearance in the representation of 

Timed PNs, and one time element is sufficient to represent corresponding flowing tokens 

while flowing tokens are represented in newly created places in the representation of 

Stretched PNs. These newly created places are generated by a stretching procedure, and 

their numbers are proportional to non-unity time delays defined in the Timed PN before 

stretching. The stretching procedure results in an increase in matrices and the marking 

vector. This drawback of Stretched PNs causes an increase in the computation time for 

constructing the reachability set for Timed PNs. On the contrary, Timed-Arc PN is able 

to represent time delays defined in Timed PNs using only one time element; as a result; 

this feature of the proposed method allows fast computational time to construct the 

reachability set. Computational times to construct the reachability set and to construct 

necessary matrices (e.g. input and output matrices) and sets (e.g. a set of input/output 

places connected to a transition, a set of time elements) are considered as criteria for the 

performance metric. 

The concept of the proposed Timed-Arc PNs is clear and concise. This approach is 

used with unit time, in terms of appropriate time slots, which are readily handled by 

computers in practical applications. Thus, any model constructed using the proposed 

approach could be easily implemented for specific time-delayed systems and related 

algorithms. In the proposed Timed-Arc PNs, exact time durations are used such that 

deterministic time labels attached to outgoing arcs have no time intervals; as a result, the 

use of deterministic time values instead of time intervals can, therefore, provide less 

complexity and serve to decrease the computational time. It also presents fewer 
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difficulties when implementing algorithms. Moreover, in the model, a firing process can 

start at any time. 

The proposed Timed-Arc PN provides an overall model for large-scale and complex 

systems. This novel approach considers the complete dynamic evolution of time-delayed 

systems; as a result, it allows the user to see all situations of states for time-delayed 

systems such that it gives a complete model for time-delayed systems. Therefore, it is 

possible to see the complete picture of the system with deterministic time delays. 

Furthermore, behavioral properties and algorithms for the proposed Timed-Arc PNs have 

been presented. It is a useful feature for Timed PNs because the reachability set for time-

delayed and dynamic systems is completely constructed. Any Timed PN with firing or 

holding durations can be converted into the tripartite structure of Timed-Arc PNs; thus, 

the reachability set of such Timed PNs is obtained using the proposed approach. 

Moreover, the timed-reachability graph (tree) enhanced by the time information is 

generated using the relation between states; as a result, the deterministically time-delayed 

system is depicted in the full dynamic schema. This graph allows pointing out problematic 

states, such as deadlocks, in time-delayed and dynamic systems; thus, it is possible to take 

measures. In this study, in order to avoid such undesired states, a forbidden state controller 

approach is developed for the proposed model. 

In conclusion, the proposed Timed-Arc PN is a useful modeling tool for Timed PNs 

as long as any complicated systems, which include deterministic time delays, can be 

solved by using the proposed model. Obtaining the reachability set of the net is a crucial 

point for solving the system as well as in every modeling approach. The proposed Timed-

Arc PN allows the complete reachability set for a time-delay and dynamic system. Thus, 

this property allows seeing the complete picture of such systems and analyzing the 

behaviors of such systems; as a result, a forbidden state controller for Timed PNs, which 

provides a reversibility enforcement and deadlock avoidance controller, can be developed 

by using this strong feature. Algorithms have shown that the proposed Timed-Arc PN is 

applicable and has given admissible results. 

 

8.2. Discussion 

Each model described in this paper offers a deterministic-timed approach for Timed 

PNs. In real applications, time delays are commonly expressed as time intervals. Using 

time intervals can be more realistic than using fixed durations. However, using time 
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intervals may result in higher complexity to construct the reachability set. Thus, 

deterministic time delays are considered. These time delays can be can be determined by 

considering the most probable time delay of the system, such as the mean value. 

It is the fact that time delays are expressed in terms of seconds in real applications; 

as a result, these delays are discretized into time slots using an appropriate sampling 

period in order to adapt into the model of Timed PNs. This approximation might cause a 

loss of information. The sampling period should be carefully selected. 

 

8.3. Proposals 

Future directions and proposals to develop and improve the proposed Timed-Arc 

PNs are as follows: 

 The controller for the proposed Timed-Arc PNs is based on behavioral properties. 

The structure of this Timed-Arc PNs is very similar to the structure of the basic 

(untimed) PNs; thus, structural properties could be similarly investigated and a 

structural controller can be developed for the proposed Timed-Arc PNs. 

 Time delays of Timed-Arc PNs are deterministic; thus, they are not sensitive to 

any changes in time labels. A method can be developed, where these time labels 

are defined as time intervals or stochastic over time elements. On the other hand, 

Timed-Arc PNs can be extended to an adaptive model that is capable of changing 

its deterministic time-labels according to current conditions. This makes Timed-

Arc PNs more realistic and online model. 

 The proposed Timed-Arc PN does not allow any active transition to fire during 

its firing process. The model may be developed to allow any transition whose 

firing process still continues. This may cause the remaining time vector to become 

a matrix or the set of vectors. On the other hand, an arc-stretching procedure, 

namely Arc-Stretched Petri Nets, can be studied like Transition or Place-Stretched 

PNs. 

 There are different types of arcs, such as enabling, reading, test arcs, etc. These 

can be adapted into the proposed model of Timed-Arc PNs. 

 When constructing the model of Timed-Arc PN, it needs matrices whose elements 

are mostly zero. These matrices are used in computations. In order to improve 

computational time, algorithms for the proposed Timed-Arc PN can be developed 

considering sparse matrices. 
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 Time elements can be structurally used to trigger some events using special arcs 

that should be defined for the proposed Timed-Arc PN. 

 The proposed Timed-Arc PN uses a discrete-time unit impulse function to 

compute the next state. This approach can readily be applied on both deterministic 

Timed PNs with holding or enabling durations and deterministic Timed-Place 

PNs. 

 Today’s trend topics are autonomous and intelligent systems, autonomous and 

unmanned vehicles, self-driving cars, smart automation systems, smart home 

systems, intelligent transportation systems, decision mechanisms for such systems 

etc. Applications/Case studies can be carried out in these fields using the proposed 

Timed-Arc PNs. Timed-Arc PN can be used as a verification tool for such systems 

so as to guarantee functional safety. Timed-Arc PN can be used to model the 

behaviors of such systems. 
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APPENDIX-1 – THE REACHABILITY SET OF TdAPN (NOT REVERSIBLE) 

In this appendix, the reachability set of TdAPN in Figure 5.2 is given in Table A1.1. 

Descriptions of columns in Table A1.1 are similar to explanations for Table 3.3. 

 

Table A1.1. Reachability set for TdAPN in Figure 5.2 

k 
The State of 

TdAPN 
𝜙 Next State k 

The State of 

TdAPN 
𝜙 Next State 

0 †S0 
{[2 0 0 0]', 

[0 0 0]'} 

- †S0 

4 

S13 
{[0 1 0 0]', 

[2 0 0]'} 

- S20 

{𝑡1} S1 {𝑡4} S21 

{𝑡2} S2 

†S14 
{[1 0 0 1]', 

[0 0 0]'} 

- †S14 

{𝑡1, 𝑡2} S3 {𝑡1} S15 

1 

S1 
[1 0 0 0]', 

[2 0 0]'} 

- S4 {𝑡2} S16 

{𝑡2} S5 {𝑡5} 
†S9 

S2 
{[1 0 0 0]', 

[0 1 0]'} 

- †S6 {𝑡1, 𝑡5} S13 

{𝑡1} S7 {𝑡2, 𝑡5} S10 

S3 
{[0 0 0 0]', 

[2 1 0]'} 
- S8 

S15 
{[0 0 0 1]', 

[2 0 0]'} 

- S21 

2 

S4 
{[1 0 0 0]', 

[1 0 0]'} 

- †S9 {𝑡5} S20 

{𝑡2} S10 

S16 
{[0 0 0 1]', 

[0 1 0]'} 

- †S17 

S5 
{[0 0 0 0]', 

[1 1 0]'} 
- †S11 {𝑡5} S11 

†S6 
{[1 0 1 0]', 

[0 0 0]'} 

- †S6 †S17 
{[0 0 1 1]', 

[0 0 0]'} 

- †S17 

{𝑡1} S7 {𝑡5} S11 

{𝑡2} S12 S18 
{[0 0 0 0]', 

[0 0 3]'} 
- S22 

S7 
{[0 0 1 0]', 

[2 0 0]'} 
- S8 *S19 

{[0 0 2 0]', 

[0 0 0]'} 
- *S19 

3 

S8 
{[0 0 1 0]', 

[1 0 0]'} 
- †S11 

5 

S20 
{[0 1 0 0]', 

[1 0 0]'} 

- †S23 

†S9 
{[1 1 0 0]', 

[0 0 0]'} 

- †S9 {𝑡4} 
†S24 

{𝑡1} S13 
S21 

{[0 0 0 1]', 

[1 0 0]'} 

- †S24 

{𝑡2} S10 {𝑡5} 
†S23 

{𝑡4} 
†S14 S22 

{[0 0 0 0]', 

[0 0 2]'} 
- S25 

{𝑡1, 𝑡4} S15 

6 

†S23 
{[0 2 0 0]', 

[0 0 0]'} 

- †S23 

{𝑡2, 𝑡4} S16 {𝑡4} 
†S24 

S10 
{[0 1 0 0]' 

[0 1 0]'} 

- †S11 

†S24 
{[0 1 0 1]', 

[0 0 0]'} 

- †S24 

{𝑡4} 
†S17

 {𝑡4} 
†S26 

†S11 
{[0 1 1 0]', 

[0 0 0]'} 

- †S11 {𝑡5} 
†S23 

{𝑡3} S18 {𝑡4, 𝑡5} 
†S24 

{𝑡4} 
†S17

 S25 
{[0 0 0 0]', 

[0 0 1]'} 
- †S0 

S12 
{[0 0 1 0]', 

[0 1 0]'} 
- *S19

 

†S26 
{[0 0 0 2]', 

[0 0 0]'} 

- †S26 

     {𝑡5} 
†S24

 

†
 denotes relaxed states and * denotes relaxed and deadlock states..  



 

 

APPENDIX-2 – THE REACHABILITY SET OF MANUFACTURING EXAMPLE 

In this appendix, the reachability set of the manufacturing-systems example in 

Figure 6.2 is given in Table A2.1. Descriptions of columns in Table A2.1 are similar to 

explanations for Table 3.3. 

 

Table A2.1. Reachability Set for TdAPN in Figure 6.2 

k The State of TdAPN 𝜙 Next State 

0 †S0 
{[2 0 1 0 0 1 0 0 1 2], 

[0 0 0 0 0 0]'} 

- S0 

{𝑡1} S1 

1 S1 
{[1 0 0 0 0 1 0 0 1 2]', 

[2 0 0 0 0 0]'} 
- S2 

2 S2 
{[1 0 0 0 0 1 0 0 1 2]', 

[1 0 0 0 0 0]'} 
- S3 

3 †S3 
{[1 1 0 0 0 1 0 0 1 2]', 

[0 0 0 0 0 0]'} 

- S3 

{𝑡2} S4 

4 †S4 
{[1 0 1 1 0 1 0 0 0 2]', 

[0 0 0 0 0 0]'} 

- S4 

{𝑡1} S5 

{𝑡3} S6 

{𝑡1, 𝑡3} S7 

5 S5 
{[0 0 0 1 0 1 0 0 0 2]', 

[2 0 0 0 0 0]'} 

- S8 

{𝑡3} S9 

5 †S6 
{[1 0 1 0 1 0 0 0 1 2]', 

[0 0 0 0 0 0]'} 

- S6 

{𝑡1} S7 

{𝑡4} S10 

{𝑡1, 𝑡4} S11 

5 S7 
{[0 0 0 0 1 0 0 0 1 2]', 

[2 0 0 0 0 0]'} 

- S9 

{𝑡4} S12 

6 S8 
{[0 0 0 1 0 1 0 0 0 2]', 

[1 0 0 0 0 0]'} 

- S13 

{𝑡3} S14 

6 S9 
{[0 0 0 0 1 0 0 0 1 2]', 

[1 0 0 0 0 0]'} 

- S14 

{𝑡4} S15 

6 †S10 
{[1 0 1 0 0 1 1 0 0 2]', 

[0 0 0 0 0 0]'} 

- S10 

{𝑡1} S11 

{𝑡5} S16 

{𝑡1, 𝑡5} S17 

6 S11 
{[0 0 0 0 0 1 1 0 0 2]', 

[2 0 0 0 0 0]'} 

- S12 

{𝑡5} S18 

6 S12 
{[0 0 0 0 0 1 1 0 0 2]', 

[1 0 0 0 0 0]'} 

- S15 

{𝑡5} S19 

7 †S13 
{[0 1 0 1 0 1 0 0 0 2]', 

[0 0 0 0 0 0]'} 

- S13 

{𝑡3} S14 

†
 denotes relaxed states and * denotes relaxed and deadlock states.  



 

 

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2  

k The State of TdAPN 𝜙 Next State 

7 †S14 
{[0 1 0 0 1 0 0 0 1 2]', 

[0 0 0 0 0 0]'} 

- S14 

{𝑡2} S20 

{𝑡4} S15 

7 †S15 
{[0 1 0 0 0 1 1 0 0 2]', 

[0 0 0 0 0 0]'} 

- S15 

{𝑡5} S19 

7 S16 
{[1 0 1 0 0 1 0 0 0 1]', 

[0 1 1 1 0 0]'} 

- S21 

{𝑡1} S22 

7 S17 
{[0 0 0 0 0 1 0 0 0 1]', 

[2 1 1 1 0 0]'} 
- S23 

7 S18 
{[0 0 0 0 0 1 0 0 0 1]', 

[1 1 1 1 0 0]'} 
- S24 

7 S19 
{[0 1 0 0 0 1 0 0 0 1]', 

[0 1 1 1 0 0]'} 
- S24 

8 *S20 
{[0 0 1 1 1 0 0 0 0 2]', 

[0 0 0 0 0 0]'} 
- S20 

8 †S21 
{[2 0 1 0 0 1 0 1 1 1]', 

[0 0 0 0 0 0]'} 

- S21 

{𝑡1} S22 

{𝑡6} S25 

{𝑡1, 𝑡6} S26 

8 S22 
{[1 0 0 0 0 1 0 1 1 1]', 

[2 0 0 0 0 0]'} 

- S23 

{𝑡6} S27 

8 S23 
{[1 0 0 0 0 1 0 1 1 1]', 

[1 0 0 0 0 0]'} 

- S24 

{𝑡6} S28 

8 †S24 
{[1 1 0 0 0 1 0 1 1 1]', 

[0 0 0 0 0 0]'} 

- S24 

{𝑡2} S29 

{𝑡6} S28 

9 S25 
{[2 0 1 0 0 1 0 0 0 1]', 

[0 0 0 0 1 1]'} 

- S0 

{𝑡1} S1 

9 S26 
{[1 0 0 0 0 1 0 0 0 1]', 

[2 0 0 0 1 1]'} 
- S2 

9 S27 
{[1 0 0 0 0 1 0 0 0 1]', 

[1 0 0 0 1 1]'} 
- S3 

9 S28 
{[1 1 0 0 0 1 0 0 0 1]', 

[0 0 0 0 1 1]'} 
- S3 

9 †S29 
{[1 0 1 1 0 1 0 1 0 1]', 

[0 0 0 0 0 0]'} 

- S29 

{𝑡1} S30 

{𝑡3} S31 

{𝑡1, 𝑡3} S32 

10 S30 
{[0 0 0 1 0 1 0 1 0 1]', 

[2 0 0 0 0 0]'} 

- S33 

{𝑡3} S34 

†
 denotes relaxed states and * denotes relaxed and deadlock states. 

  



 

 

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2  

k The State of TdAPN 𝜙 Next State 

10 †S31 
{[1 0 1 0 1 0 0 1 1 1]', 

[0 0 0 0 0 0]'} 

- S31 

{𝑡1} S32 

{𝑡4} S35 

{𝑡6} S36 

{𝑡1, 𝑡4} S37 

{𝑡1, 𝑡6} S38 

10 S32 
{[0 0 0 0 1 0 0 1 1 1]', 

[2 0 0 0 0 0]'} 

- S34 

{𝑡4} S39 

{𝑡6} S40 

11 S33 
{[0 0 0 1 0 1 0 1 0 1]', 

[1 0 0 0 0 0]'} 

- S41 

{𝑡3} S42 

11 S34 
{[0 0 0 0 1 0 0 1 1 1]', 

[1 0 0 0 0 0]'} 

- S42 

{𝑡4} S43 

{𝑡6} S44 

11 †S35 
{[1 0 1 0 0 1 1 1 0 1]', 

[0 0 0 0 0 0]'} 

- S35 

{𝑡1} S37 

{𝑡5} S45 

{𝑡1, 𝑡5} S46 

11 S36 
{[1 0 1 0 1 0 0 0 0 1]', 

[0 0 0 0 1 1]'} 

- S6 

{𝑡1} S7 

11 S37 
{[0 0 0 0 0 1 1 1 0 1]', 

[2 0 0 0 0 0]'} 

- S39 

{𝑡5} S47 

11 S38 
{[0 0 0 0 1 0 0 0 0 1]', 

[2 0 0 0 1 1]'} 
- S9 

11 S39 
{[0 0 0 0 0 1 1 1 0 1]', 

[1 0 0 0 0 0]'} 

- S43 

{𝑡5} S48 

11 S40 
{[0 0 0 0 1 0 0 0 0 1]', 

[1 0 0 0 1 1]'} 
- S14 

12 †S41 
{[0 1 0 1 0 1 0 1 0 1]', 

[0 0 0 0 0 0]'} 

- S41 

{𝑡3} S42 

12 †S42 
{[0 1 0 0 1 0 0 1 1 1]', 

[0 0 0 0 0 0]'} 

- S42 

{𝑡2} S49 

{𝑡4} S43 

{𝑡6} S44 

12 †S43 
{[0 1 0 0 0 1 1 1 0 1]', 

[0 0 0 0 0 0]'} 

- S43 

{𝑡5} S48 

12 S44 
{[0 1 0 0 1 0 0 0 0 1]', 

[0 0 0 0 1 1]'} 
- S14 

12 S45 
{[1 0 1 0 0 1 0 1 0 0]', 

[0 1 1 1 0 0]'} 

- S50 

{𝑡1} S51 

12 S46 
{[0 0 0 0 0 1 0 1 0 0]', 

[2 1 1 1 0 0]'} 
- S52 

†
 denotes relaxed states and * denotes relaxed and deadlock states.  

  



 

 

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2  

k The State of TdAPN 𝜙 Next State 

12 S47 
{[0 0 0 0 0 1 0 1 0 0]', 

[1 1 1 1 0 0]'} 
- S53 

12 S48 
{[0 1 0 0 0 1 0 1 0 0]', 

[0 1 1 1 0 0]'} 
- S53 

13 *S49 
{[0 0 1 1 1 0 0 1 0 1]', 

[0 0 0 0 0 0]'} 
- S49 

13 †S50 
{[2 0 1 0 0 1 0 2 1 0]', 

[0 0 0 0 0 0]'} 

- S50 

{𝑡1} S51 

{𝑡6} S54 

{𝑡1, 𝑡6} S55 

13 S51 
{[1 0 0 0 0 1 0 2 1 0]', 

[2 0 0 0 0 0]'} 

- S52 

{𝑡6} S56 

13 S52 
{[1 0 0 0 0 1 0 2 1 0]', 

[1 0 0 0 0 0]'} 

- S53 

{𝑡6} S57 

13 †S53 
{[1 1 0 0 0 1 0 2 1 0]', 

[0 0 0 0 0 0]'} 

- S53 

{𝑡2} S58 

{𝑡6} S57 

14 S54 
{[2 0 1 0 0 1 0 1 0 0]', 

[0 0 0 0 1 1]'} 

- S21 

{𝑡1} S22 

14 S55 
{[1 0 0 0 0 1 0 1 0 0]', 

[2 0 0 0 1 1]'} 
- S23 

14 S56 
{[1 0 0 0 0 1 0 1 0 0]', 

[1 0 0 0 1 1]'} 
- S24 

14 S57 
{[1 1 0 0 0 1 0 1 0 0]', 

[0 0 0 0 1 1]'} 
- S24 

14 †S58 
{[1 0 1 1 0 1 0 2 0 0]', 

[0 0 0 0 0 0]'} 

- S58 

{𝑡1} S59 

{𝑡3} S60 

{𝑡1, 𝑡3} S61 

15 S59 
{[0 0 0 1 0 1 0 2 0 0]', 

[2 0 0 0 0 0]'} 

- S62 

{𝑡3} S63 

15 †S60 
{[1 0 1 0 1 0 0 2 1 0]', 

[0 0 0 0 0 0]'} 

- S60 

{𝑡1} S61 

{𝑡4} S64 

{𝑡6} S65 

{𝑡1, 𝑡4} S66 

{𝑡1, 𝑡6} S67 

15 S61 
{[0 0 0 0 1 0 0 2 1 0]', 

[2 0 0 0 0 0]'} 

- S63 

{𝑡4} S68 

{𝑡6} S69 

16 S62 
{[0 0 0 1 0 1 0 2 0 0]', 

[1 0 0 0 0 0]'} 

- S70 

{𝑡3} S71 

†
 denotes relaxed states and * denotes relaxed and deadlock states.   



 

 

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2  

k The State of TdAPN 𝜙 Next State 

16 S63 
{[0 0 0 0 1 0 0 2 1 0]', 

[1 0 0 0 0 0]'} 

- S71 

{𝑡4} S72 

{𝑡6} S73 

16 †S64 
{[1 0 1 0 0 1 1 2 0 0]', 

[0 0 0 0 0 0]'} 

- S64 

{𝑡1} S66 

16 S65 
{[1 0 1 0 1 0 0 1 0 0]', 

[0 0 0 0 1 1]'} 

- S31 

{𝑡1} S32 

16 S66 
{[0 0 0 0 0 1 1 2 0 0]', 

[2 0 0 0 0 0]'} 
- S68 

16 S67 
{[0 0 0 0 1 0 0 1 0 0]', 

[2 0 0 0 1 1]'} 
- S34 

16 S68 
{[0 0 0 0 0 1 1 2 0 0]', 

[1 0 0 0 0 0]'} 
- S72 

16 S69 
{[0 0 0 0 1 0 0 1 0 0]', 

[1 0 0 0 1 1]'} 
- S42 

17 †S70 
{[0 1 0 1 0 1 0 2 0 0]', 

[0 0 0 0 0 0]'} 

- S70 

{𝑡3} S71 

17 †S71 
{[0 1 0 0 1 0 0 2 1 0]', 

[0 0 0 0 0 0]'} 

- S71 

{𝑡2} S74 

{𝑡4} S72 

{𝑡6} S73 

17 *S72 
{[0 1 0 0 0 1 1 2 0 0]', 

[0 0 0 0 0 0]'} 
- S72 

17 S73 
{[0 1 0 0 1 0 0 1 0 0]', 

[0 0 0 0 1 1]'} 
- S42 

18 *S74 
{[0 0 1 1 1 0 0 2 0 0]', 

[0 0 0 0 0 0]'} 
- S74 

†
 denotes relaxed states and * denotes relaxed and deadlock states.  

 

  



 

 

APPENDIX-3 – THE REACHABILITY SET OF RAILWAY EXAMPLE  

In this appendix, the reachability set of the railway-systems example in Figure 6.5 

is given in Table A3.1. Descriptions of columns in Table A3.1 are similar to explanations 

for Table 3.3. 

 

Table A3.1. Reachability Set for TdAPN in Figure 6.5 

k The State of TdAPN 𝜙 Next State 

0 †S0 
{[1 0 1 0 0 1 0 0 1]', 

[0 0]'} 

- S0 

{𝑡4} S1 

{𝑡7} S2 

{𝑡4, 𝑡7} S3 

1 †S1 
{[1 0 0 1 0 1 0 0 1]', 

[0 0]'} 

- S1 

{𝑡3} S0 

{𝑡3, 𝑡7} S3 

1 †S2 
{[1 0 1 0 0 0 1 0 1]', 

[0 0]'} 

- S2 

{𝑡2} S4 

{𝑡4} S3 

{𝑡6} S0 

{𝑡4, 𝑡6} S1 

1 †S3 
{[1 0 0 1 0 0 1 0 1]', 

[0 0]'} 

- S3 

{𝑡3} S2 

{𝑡6} S1 

{𝑡3, 𝑡6} S0 

2 S4 
{[0 0 1 0 0 0 1 1 0]', 

[0 2]'} 

- S5 

{𝑡4} S6 

{𝑡6} S7 

{𝑡4, 𝑡6} S8 

3 S5 
{[0 0 1 0 0 0 1 1 0]', 

[0 1]'} 

- S9 

{𝑡4} S10 

{𝑡6} S11 

{𝑡4, 𝑡6} S12 

3 S6 
{[0 0 0 1 0 0 1 1 0]', 

[0 1]'} 

- S10 

{𝑡5} S13 

{𝑡6} S12 

{𝑡5, 𝑡6} S14 

3 S7 
{[0 0 1 0 0 1 0 1 0]', 

[0 1]'} 

- S11 

{𝑡4} S12 

4 S8 
{[0 0 0 1 0 1 0 1 0]', 

[0 1]'} 

- S12 

{𝑡5} S14 

4 †S9 
{[0 1 1 0 0 0 1 1 0]', 

[0 0]'} 

- S9 

{𝑡4} S10 

{𝑡6} S11 

{𝑡4, 𝑡6} S12 

†
 denotes relaxed states.   



 

 

Table A3.1. (Continue) Reachability Set for TdAPN in Figure 6.5 

k The State of TdAPN 𝜙 Next State 

4 †S10 
{[0 1 0 1 0 0 1 1 0]', 

[0 0]'} 

- S10 

{𝑡5} S13 

{𝑡6} S12 

{𝑡5, 𝑡6} S14 

4 †S11 
{[0 1 1 0 0 1 0 1 0]', 

[0 0]'} 

- S11 

{𝑡4} S12 

4 †S12 
{[0 1 0 1 0 1 0 1 0]', 

[0 0]'} 

- S12 

{𝑡5} S14 

4 †S13 
{[0 1 0 1 1 0 1 0 0]', 

[0 0]'} 

- S13 

{𝑡6} S14 

4 †S14 
{[0 1 0 1 1 1 0 0 0]', 

[0 0]'} 

- S14 

{𝑡1} S15 

5 S15 
{[0 0 0 1 0 1 0 0 1]', 

[3 0]'} 

- S16 

{𝑡3} S17 

{𝑡7} S18 

6 S16 
{[0 0 0 1 0 1 0 0 1]', 

[2 0]'} 

- S19 

{𝑡3} S20 

{𝑡7} S21 

6 S17 
{[0 0 1 0 0 1 0 0 1]', 

[2 0]'} 

- S20 

{𝑡4} S19 

{𝑡7} S22 

{𝑡4, 𝑡7} S21 

6 S18 
{[0 0 0 1 0 0 1 0 1]', 

[2 0]'} 

- S21 

{𝑡3} S22 

{𝑡6} S19 

{𝑡3, 𝑡6} S20 

7 S19 
{[0 0 0 1 0 1 0 0 1]', 

[1 0]'} 

- S1 

{𝑡3} S0 

{𝑡7} S3 

7 S20 
{[0 0 1 0 0 1 0 0 1]', 

[1 0]'} 

- S0 

{𝑡4} S1 

{𝑡7} S2 

{𝑡4, 𝑡7} S3 

7 S21 
{[0 0 0 1 0 0 1 0 1]', 

[1 0]'} 

- S3 

{𝑡3} S2 

{𝑡6} S1 

{𝑡3, 𝑡6} S0 

7 S22 
{[0 0 1 0 0 0 1 0 1]', 

[1 0]'} 

- S2 

{𝑡4} S3 

{𝑡6} S0 

{𝑡4, 𝑡6} S1 

†
 denotes relaxed states.  

  



 

 

APPENDIX-4 – THE REACHABILITY SET OF AUTOMOTIVE EXAMPLE  

In this appendix, the reachability set of the automotive-systems example in Figure 

6.9 is given in Table A4.1. Descriptions of columns in Table A4.1 are similar to 

explanations for Table 3.3. 

 

Table A4.1. Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

0 †S0 
{[0 0 0 0 0 0 0 0 0 0 0 0 1]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S0 

{𝑡11} S1 

1 †S1 
{[1 1 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S1 

{𝑡1} S2 

{𝑡2} S3 

{𝑡1, 𝑡2} S4 

2 S2 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[3 0 0 0 0 0 0 0 0 0]'} 

- S5 

{𝑡2} S6 

2 S3 
{[1 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 0 0 0 0 0 0 0]'} 

- S7 

{𝑡1} S8 

2 S4 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[3 1 0 0 0 0 0 0 0 0]'} 
- S9 

3 S5 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[2 0 0 0 0 0 0 0 0 0]'} 

- S10 

{𝑡2} S11 

3 S6 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[2 1 0 0 0 0 0 0 0 0]'} 
- S12 

3 †S7 
{[1 0 0 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S7 

{𝑡1} S8 

{𝑡3} S13 

{𝑡1, 𝑡3} S14 

3 S8 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[3 0 0 0 0 0 0 0 0 0]'} 

- S9 

{𝑡3} S15 

3 S9 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[2 0 0 0 0 0 0 0 0 0]'} 

- S12 

{𝑡3} S16 

3 S10 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[1 0 0 0 0 0 0 0 0 0]'} 

- S17 

{𝑡2} S18 

4 S11 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[1 1 0 0 0 0 0 0 0 0]'} 
- S19 

4 S12 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[1 0 0 0 0 0 0 0 0 0]'} 

- S19 

{𝑡3} S20 

4 S13 
{[1 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 0 0 0 0 0 0 0]'} 

- S21 

{𝑡1} S22 

4 S14 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[3 0 2 0 0 0 0 0 0 0]'} 
- S23 

†
 denotes relaxed states. 

  



 

 

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

4 S15 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[2 0 2 0 0 0 0 0 0 0]'} 
- S24 

4 S16 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[1 0 2 0 0 0 0 0 0 0]'} 
- S25 

5 †S17 
{[0 1 1 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S17 

{𝑡2} S18 

{𝑡4} S26 

{𝑡2, 𝑡4} S27 

5 S18 
{[0 0 1 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 0 0 0 0 0 0 0]'} 

- S19 

{𝑡4} S28 

5 †S19 
{[0 0 1 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S19 

{𝑡3} S20 

{𝑡4} S28 

{𝑡3, 𝑡4} S29 

5 S20 
{[0 0 1 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 0 0 0 0 0 0 0]'} 

- S25 

{𝑡3, 𝑡4} S30 

5 S21 
{[1 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 0 0 0 0 0 0 0]'} 

- S31 

{𝑡1} S32 

5 S22 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[3 0 1 0 0 0 0 0 0 0]'} 
- S33 

5 S23 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[2 0 1 0 0 0 0 0 0 0]'} 
- S34 

5 S24 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[1 0 1 0 0 0 0 0 0 0]'} 
- S35 

5 S25 
{[0 0 1 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 0 0 0 0 0 0 0]'} 

- S35 

{𝑡3, 𝑡4} S36 

6 S26 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 2 0 0 0 0 0 0]'} 

- S37 

{𝑡2} S38 

6 S27 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 2 0 0 0 0 0 0]'} 
- S39 

6 S28 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 2 0 0 0 0 0 0]'} 

- S39 

{𝑡3} S40 

6 S29 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 2 0 0 0 0 0 0]'} 
- S41 

6 S30 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 2 0 0 0 0 0 0]'} 
- S42 

6 †S31 
{[1 0 0 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S31 

{𝑡1} S32 

{𝑡5} S43 

{𝑡1, 𝑡5} S44 

6 S32 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[3 0 0 0 0 0 0 0 0 0]'} 

- S33 

{𝑡5} S45 

6 S33 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[2 0 0 0 0 0 0 0 0 0]'} 

- S34 

{𝑡5} S46 

†
 denotes relaxed states.   



 

 

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

6 S34 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[1 0 0 0 0 0 0 0 0 0]'} 

- S35 

{𝑡5} S47 

6 †S35 
{[0 0 1 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S35 

{𝑡4} S36 

{𝑡5} S47 

{𝑡4, 𝑡5} S48 

6 S36 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 2 0 0 0 0 0 0]'} 

- S42 

{𝑡5} S49 

7 S37 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 1 0 0 0 0 0 0]'} 

- S50 

{𝑡2} S51 

7 S38 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 1 0 0 0 0 0 0]'} 
- S52 

7 S39 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 1 0 0 0 0 0 0]'} 

- S52 

{𝑡3} S53 

7 S40 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 1 0 0 0 0 0 0]'} 
- S54 

7 S41 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 1 0 0 0 0 0 0]'} 
- S55 

7 S42 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 1 0 0 0 0 0 0]'} 

- S55 

{𝑡5} S56 

7 S43 
{[1 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 1 0 0 0 0 0]'} 

- S57 

{𝑡1} S58 

7 S44 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[3 0 0 0 1 0 0 0 0 0]'} 
- S59 

7 S45 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[2 0 0 0 1 0 0 0 0 0]'} 
- S60 

7 S46 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[1 0 0 0 1 0 0 0 0 0]'} 
- S61 

7 S47 
{[0 0 1 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 1 0 0 0 0 0]'} 

- S61 

{𝑡4} S62 

7 S48 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 2 1 0 0 0 0 0]'} 
- S63 

7 S49 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 1 1 0 0 0 0 0]'} 
- S64 

8 †S50 
{[0 1 0 0 1 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S50 

{𝑡2} S51 

{𝑡6} S65 

{𝑡2, 𝑡6} S66 

8 S51 
{[0 0 0 0 1 0 0 0 0 0 0 0 0]', 

[0 1 0 0 0 0 0 0 0 0]'} 

- S52 

{𝑡6} S67 

8 †S52 
{[0 0 0 1 1 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S52 

{𝑡3} S53 

{𝑡6} S67 

{𝑡3, 𝑡6} S68 

†
 denotes relaxed states.  



 

 

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

8 S53 
{[0 0 0 0 1 0 0 0 0 0 0 0 0]', 

[0 0 2 0 0 0 0 0 0 0]'} 

- S54 

{𝑡6} S69 

8 S54 
{[0 0 0 0 1 0 0 0 0 0 0 0 0]', 

[0 0 1 0 0 0 0 0 0 0]'} 

- S55 

{𝑡6} S70 

8 †S55 
{[0 0 0 0 1 1 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S55 

{𝑡5} S56 

{𝑡6} S70 

{𝑡5, 𝑡6} S71 

8 S56 
{[0 0 0 0 1 0 0 0 0 0 0 0 0]', 

[0 0 0 0 1 0 0 0 0 0]'} 

- S64 

{𝑡6} S72 

8 †S57 
{[1 0 0 0 0 0 0 1 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S57 

{𝑡1} S58 

8 S58 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[3 0 0 0 0 0 0 0 0 0]'} 
- S59 

8 S59 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[2 0 0 0 0 0 0 0 0 0]'} 
- S60 

8 S60 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[1 0 0 0 0 0 0 0 0 0]'} 
- S61 

8 †S61 
{[0 0 1 0 0 0 0 1 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S61 

{𝑡4} S62 

8 S62 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[0 0 0 2 0 0 0 0 0 0]'} 
- S63 

8 S63 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[0 0 0 1 0 0 0 0 0 0]'} 
- S64 

8 †S64 
{[0 0 0 0 1 0 0 1 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S64 

{𝑡6} S72 

9 S65 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 3 0 0 0 0]'} 

- S73 

{𝑡2} S74 

9 S66 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 0 0 3 0 0 0 0]'} 
- S75 

9 S67 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 3 0 0 0 0]'} 

- S75 

{𝑡3} S76 

9 S68 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 0 0 3 0 0 0 0]'} 
- S77 

9 S69 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 0 0 3 0 0 0 0]'} 
- S78 

9 S70 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 0 0 3 0 0 0 0]'} 

- S78 

{𝑡5} S79 

10 S74 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 0 0 2 0 0 0 0]'} 
- S83 

10 S75 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 2 0 0 0 0]'} 

- S83 

{𝑡3} S84 

10 S76 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 0 0 2 0 0 0 0]'} 
- S85 

†
 denotes relaxed states.  

  



 

 

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

10 S77 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 0 0 2 0 0 0 0]'} 
- S86 

10 S78 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 0 0 2 0 0 0 0]'} 

- S86 

{𝑡5} S87 

10 S79 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 1 2 0 0 0 0]'} 
- S88 

10 S80 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[0 0 0 0 0 2 0 0 0 0]'} 
- S88 

11 S81 
{[0 1 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 1 0 0 0 0]'} 

- S89 

{𝑡2} S90 

11 S82 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 1 0 0 0 1 0 0 0 0]'} 
- S91 

11 S83 
{[0 0 0 1 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 1 0 0 0 0]'} 

- S91 

{𝑡3} S92 

11 S84 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 2 0 0 1 0 0 0 0]'} 
- S93 

11 S85 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 1 0 0 1 0 0 0 0]'} 
- S94 

11 S86 
{[0 0 0 0 0 1 0 0 0 0 0 0 0]', 

[0 0 0 0 0 1 0 0 0 0]'} 

- S94 

{𝑡5} S95 

11 S87 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 1 1 0 0 0 0]'} 
- S96 

11 S88 
{[0 0 0 0 0 0 0 1 0 0 0 0 0]', 

[0 0 0 0 0 1 0 0 0 0]'} 
- S96 

12 †S89 
{[0 1 0 0 0 0 1 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S89 

{𝑡2} S90 

12 S90 
{[0 0 0 0 0 0 1 0 0 0 0 0 0]', 

[0 1 0 0 0 0 0 0 0 0]'} 
- S91 

12 †S91 
{[0 0 0 1 0 0 1 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S91 

{𝑡3} S92 

12 S92 
{[0 0 0 0 0 0 1 0 0 0 0 0 0]', 

[0 0 2 0 0 0 0 0 0 0]'} 
- S93 

12 S93 
{[0 0 0 0 0 0 1 0 0 0 0 0 0]', 

[0 0 1 0 0 0 0 0 0 0]'} 
- S94 

12 †S94 
{[0 0 0 0 0 1 1 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S94 

{𝑡5} S95 

12 S95 
{[0 0 0 0 0 0 1 0 0 0 0 0 0]', 

[0 0 0 0 1 0 0 0 0 0]'} 
- S96 

12 †S96 
{[0 0 0 0 0 0 1 1 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S96 

{𝑡7} S97 

13 S97 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 7 7 0 0]'} 
- S98 

14 S98 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 6 6 0 0]'} 
- S99 

15 S99 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 5 5 0 0]'} 
- S100 

†
 denotes relaxed states. 

  



 

 

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

16 S100 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 4 4 0 0]'} 
- S101 

17 S101 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 3 3 0 0]'} 
- S102 

18 S102 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 2 2 0 0]'} 
- S103 

19 S103 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 1 1 0 0]'} 
- S102 

20 †S104 
{[0 0 0 0 0 0 0 0 1 1 0 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 

- S104 

{𝑡8} S105 

{𝑡9} S106 

{𝑡8, 𝑡9} S107 

21 S105 
{[0 0 0 0 0 0 0 0 0 1 0 0 0]', 

[0 0 0 0 0 0 0 0 4 0]'} 

- S108 

{𝑡9} S109 

21 S106 
{[0 0 0 0 0 0 0 0 1 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 3]'} 

- S110 

{𝑡8} S111 

21 S107 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 4 3]'} 
- S112 

22 S108 
{[0 0 0 0 0 0 0 0 0 1 0 0 0]', 

[0 0 0 0 0 0 0 0 3 0]'} 

- S113 

{𝑡9} S114 

22 S109 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 3 3]'} 
- S115 

22 S110 
{[0 0 0 0 0 0 0 0 1 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 2]'} 
- S116 

{𝑡8} S117 

22 S111 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 4 2]'} 
- S118 

22 S112 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 3 2]'} 
- S119 

23 S113 
{[0 0 0 0 0 0 0 0 0 1 0 0 0]', 

[0 0 0 0 0 0 0 0 2 0]'} 
- S120 

{𝑡9} S121 

23 S114 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 2 3]'} 
- S122 

23 S115 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 2 2]'} 
- S123 

23 S116 
{[0 0 0 0 0 0 0 0 1 0 0 0 0]', 

[0 0 0 0 0 0 0 0 0 1]'} 
- S124 

{𝑡8} S125 

23 S117 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 4 1]'} 
- S126 

23 S118 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 3 1]'} 
- S127 

23 S119 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 2 1]'} 
- S128 

24 S120 
{[0 0 0 0 0 0 0 0 0 1 0 0 0]', 

[0 0 0 0 0 0 0 0 1 0]'} 
- S129 

{𝑡9} S130 

24 S121 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 1 3]'} 
- S131 

†
 denotes relaxed states.  



 

 

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9 

k The State of TdAPN 𝜙 Next State 

24 S122 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 1 2]'} 
- S132 

24 S123 
{[0 0 0 0 0 0 0 0 0 0 0 0 0]', 

[0 0 0 0 0 0 0 0 1 1]'} 
- S133 

24 †S124 
{[0 0 0 0 0 0 0 0 1 0 0 1 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 
- S124 

{𝑡8} S125 

24 S125 
{[0 0 0 0 0 0 0 0 0 0 0 1 0]', 

[0 0 0 0 0 0 0 0 4 0]'} 
- S126 

24 S126 
{[0 0 0 0 0 0 0 0 0 0 0 1 0]', 

[0 0 0 0 0 0 0 0 3 0]'} 
- S127 

24 S127 
{[0 0 0 0 0 0 0 0 0 0 0 1 0]', 

[0 0 0 0 0 0 0 0 2 0]'} 
- S128 

24 S128 
{[0 0 0 0 0 0 0 0 0 0 0 1 0]', 

[0 0 0 0 0 0 0 0 1 0]'} 
- S133 

25 †S129 
{[0 0 0 0 0 0 0 0 0 1 1 0 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 
- S129 

{𝑡9} S130 

25 S130 
{[0 0 0 0 0 0 0 0 0 0 1 0 0]', 

[0 0 0 0 0 0 0 0 0 3]'} 
- S131 

25 S131 
{[0 0 0 0 0 0 0 0 0 0 1 0 0]', 

[0 0 0 0 0 0 0 0 0 2]'} 
- S132 

25 S132 
{0 0 0 0 0 0 0 0 0 0 1 0 0]', 

[0 0 0 0 0 0 0 0 0 1]'} 
- S132 

25 †S133 
{[0 0 0 0 0 0 0 0 0 0 1 1 0]', 

[0 0 0 0 0 0 0 0 0 0]'} 
- S133 

{𝑡10} S0 

†
 denotes relaxed states.  

 

 

 



APPENDIX-5 – THE TIMED-REACHABILITY TREE FOR THE MANUFACTURING EAMPLE

Figure A5.1. Timed-reeachability tree for TdAPN in Figure 6.2

In this appendix, the timed-reachability tree for the manufacturing-systems example in Figure 6.2 is shown in Figure A5.1. Descriptions of this graph are similar to explanations for Figure 3.8.
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