

TIMED-ARC PETRI NETS MODELING AND

FORBIDDEN STATE CONTROL APPROACH

Doctor of Philosophy (Ph.D.) Dissertation

Alpaslan YUFKA

Eskişehir 2019

TIMED-ARC PETRI NETS MODELING AND

FORBIDDEN STATE CONTROL APPROACH

TITLE PAGE

Alpaslan YUFKA

DOCTOR OF PHILOSOPHY (Ph.D.) DISSERTATION

Department of Electrical-Electronics Engineering

Supervisor: Prof. Dr. Aydın AYBAR

(Co-Supervisor: Assoc. Prof. Dr. Hanife Apaydın ÖZKAN)

Eskişehir

Eskişehir Technical University

Graduate School of Science

April 2019

This thesis has been supported under the project number 1610F665, which is

accepted by BAP (Scientific Research Projects) Commission.

FINAL APPROVAL FOR THESIS

 This thesis titled “Timed-Arc Petri Nets Modeling and Forbidden State Control

Approach” has been prepared and submitted by Alpaslan YUFKA in partial fulfillment

of the requirements in “Eskişehir Technical University Directive on Graduate Education

and Examination” for the Degree of Doctor of Philosophy (Ph.D.) in Electrical-

Electronics Engineering Department has been examined and approved on …./…./2019.

Committee Members Title Name Surname Signature

Member (Supervisor) : Prof. Dr. Aydın AYBAR

..
Member : Prof. Dr. Altuğ İFTAR

..
Member : Prof. Dr. Hüseyin AKÇAY

..
Member : Prof. Dr. Osman PARLAKTUNA

..
Member : Assist. Prof. Dr. Nihat ADAR

..

 Prof. Dr. Ersin YÜCEL

Director of Graduate School of Sciences

iii

ÖZET

BAĞLANTILARI ZAMANLANDIRILMIŞ PETRİ AĞLARI MODELLENMESİ VE

YASAKLANMIŞ DURUM KONTROLÜ YAKLAŞIMI

Alpaslan YUFKA

Elektrik-Elektronik Mühendisliği Bölümü

Eskişehir Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Nisan 2019

Danışman: Prof. Dr. Aydın AYBAR

(İkinci Danışman: Doç. Dr. Hanife Apaydın ÖZKAN)

Bu tezde, zamanlandırılmış Petri Ağları için zaman gecikmelerinin bağlantılara

atandığı yeni bir matematiksel ve grafiksel modelleme yöntemi sunulmuştur.

Zamanlandırılmış Petri Ağlarında, durumlar belirtilerin akışını zamanla değiştirmektedir.

Bu zamana bağlı hareket, ateşleme süreçleri sırasında ağın matematiksel ve grafiksel

değerlendirmesini izlemekte yetersiz kalmaktadır. Önerilen modelde, geçiş halindeki

belirtilerin izlenmesini sağlayan zaman elemanı olarak adlandırılan bir üçgen gösterimi

sunulmuştur. Ayrıca, sistemin herhangi bir zamandaki durumu, yerlerdeki belirtilerin

durumunu bu zamanda gösteren işaretleme vektörü ile geçiş halindeki belirtilerin kalan

süresini gösteren kalan zaman vektörünü içermektedir. Sistem durumunun işaretleme ve

kalan zaman vektörleri cinsinden ifade edilmesi, ulaşılabilirlik kümesinin elde edilmesini

ve zamanlanmış bir ulaşılabilirlik ağacının oluşturulmasını mümkün kılmıştır. Önerilen

matematiksel model için kontrolör tasarımı da dikkate alınmıştır. Hem kontrol tasarımı

hem de ulaşılabilirlik kümesinin elde edilmesi için ilgili algoritmalar geliştirilmiş ve

MATLAB ile benzetimi yapılmıştır. Sonuçlar, üretim, demiryolu ve otomotiv sistemleri

gibi gerçek zamanlı ve gerçek dünya uygulamaları ile sunulmuştur. Önerilen yaklaşımın

performansını değerlendirmek için, bu yaklaşım Zamanlandırılmış Petri Ağları için başka

bir modelleme yöntemi olan Uzatılmış (Streç) Petri Ağları ile karşılaştırılmıştır.

Anahtar Sözcükler:Zaman öğesi, Kalan zaman vektörü, Zamanlandırılmış

 ulaşılabilirlik grafiği (ağacı), Yasaklı durum denetleyicisi,

 Otomotiv/üretim/raylı sistemler.

iv

ABSTRACT

TIMED-ARC PETRI NETS MODELING AND

FORBIDDEN STATE CONTROL APPROACH

Alpaslan YUFKA

Department of Electrical-Electronics Engineering

Eskişehir Technical University, Graduate School of Science, April 2019

Supervisor: Prof. Dr. Aydın AYBAR

(Co-Supervisor: Assoc. Prof. Dr. Hanife Apaydın ÖZKAN)

In this thesis, a new mathematical and graphical modeling method where time

delays are assigned to arcs is presented for Timed Petri Nets. In Timed Petri Nets, states

change by the flow of tokens with the time. This time-dependent movement causes an

inability to track mathematical and graphical evaluation of the net during firing processes.

In the proposed model, a triangular representation, called time element, that allows

monitoring of tokens in transitions is introduced. Additionally, the state of the system at

any time contains the marking vector representing the status of tokens in places and the

remaining time vector representing the remaining time of tokens in transitions at that time.

Expressing the state in terms of the marking and remaining time vectors makes it possible

to obtain the reachability set and generate a timed-reachability tree. The controller design

is also considered for the proposed mathematical model. Corresponding algorithms are

developed for the construction of the reachability set and the controller design, and

simulated with MATLAB. Results are presented through real-time and real-world case

studies, such as manufacturing, railway, and automotive systems. In order to evaluate the

performance of the proposed approach, it is compared with Stretched Petri Nets that is

another modeling method for Timed Petri Nets.

Keywords: Time element, Remaining Time Vector, Timed-reachability graph (tree),

 Forbidden state controller, Automotive/manufacturing/railway systems.

v

ACKNOWLEDGEMENT

First, I would like to thank my dear supervisors Prof. Dr. Aydın AYBAR and Assoc.

Dr. Hanife Apaydın ÖZKAN for their guidance and patience during this thesis. They were

more than a supervisor, and they have been always supportive.

I would like to thank Prof. Dr. Altuğ İFTAR and Asst. Prof. Dr. Nihat ADAR for

their wise and precious contributions, and the rest of the members of the jury, Prof. Dr.

Hüseyin AKÇAY, and Prof. Dr. Osman PARLAKTUNA, with respect.

I’m grateful to my wife, Burcu YUFKA, my mother, Nebahat YUFKA, my father,

Mustafa YUFKA, my brother, Muhittin YUFKA, my father-in-law, Mehmet ALPAY,

and mother-in-law, Döndü ALPAY, for their patience and support during my doctorate

and research. I’m also grateful to my naughty son, Ata Yağız YUFKA because of his

scribbles on my papers during my research.

I would like to thank my company, Otokar Automotive and Defense Industry Inc.

and Koç Holding, for their permissions to maintain my education. I’m very grateful to

my manager Uğur TURHAN for his patience and permissions during my thesis.

I would like to appreciate my friends, Bora TARIMTÖRÜ, Gökhan AÇAR, and

other instructors who contributed to and supported my research.

The research in this thesis, which is BAP-1610F665, namely ”Dynamic Control

Approaches for Timed Discrete-Event Systems”, was supported by Anadolu

University/Eskişehir Technical University. I would like to thank the BAP (Scientific

Research Projects) Commission for their support.

vi

..../..../2019

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES

I hereby truthfully declare that this thesis is an original work prepared by me; that

I have behaved in accordance with the scientific ethical principles and rules throughout

the stages of preparation, data collection, analysis and presentation of my work; that I

have cited the sources of all the data and information that could be obtained within the

scope of this study, and included these sources in the references section; and that this

study has been scanned for plagiarism with “scientific plagiarism detection program”

used by Eskişehir Technical University, and that “it does not have any plagiarism”

whatsoever. I also declare that, if a case contrary to my declaration is detected in my work

at any time, I hereby express my consent to all the ethical and legal consequences that are

involved.

................

Alpaslan YUFKA

vii

CONTENTS

Page

TITLE PAGE ... i

FINAL APPROVAL FOR THESIS .. ii

ÖZET .. iii

ABSTRACT .. iv

ACKNOWLEDGEMENT .. v

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES .. vi

CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ALGORITHMS .. xii

SYMBOLS AND ABBREVIATIONS .. xiii

1. INTRODUCTION ... 1

2. PETRI NETS ... 6

 2.1. Untimed Petri Nets .. 6

 2.2. Timed Petri Nets .. 8

 2.3. Stretched Petri Nets .. 12

3. TIMED-ARC PETRI NETS .. 18

 3.1. Mathematical Model and Definition of Timed-Arc Petri Nets...................... 19

3.2. Enabledness and Next State .. 24

3.3. Behavioral Properties of Timed-Arc Petri Nets ... 33

4. COMPARISONS ... 40

4.1. State-Representations .. 40

4.2. Computational Complexity and Times .. 45

5. CONTROLLER DESIGN .. 47

5.1. Forbidden State Controller Design for Timed-Arc Petri Nets 47

5.2. Controller Examples for Timed-Arc Petri Nets .. 50

6. MODELING AND DESIGN FOR REAL WORLD SYSTEMS 55

 6.1. Manufacturing Systems .. 55

 6.1.1. Modeling manufacturing system using TdAPN 56

viii

 6.1.2. Controller-design .. 60

6.2. Railway Systems ... 60

6.3. Automotive Systems ... 66

7. ALGORITHMS FOR TIMED-ARC PETRI NETS .. 73

 7.1. Algorithms to Construct Reachability Set .. 73

 7.1.1. Prepare-initials part ... 73

 7.1.2. Main-function part ... 74

 7.2. Algorithms to Construct Forbidden State Controller 84

8. CONCLUSION, DISCUSSION AND PROPOSALS .. 89

8.1. Conclusion ... 89

8.2. Discussion .. 91

8.3. Proposals ... 92

REFERENCES .. 94

APPENDICES

CURRICULUM VITAE

ix

LIST OF TABLES

Page

Table 3.1. Computing M(k+1) using impulse functions when t1 fires at k= 28

Table 3.2. Computing R(k+1) using impulse functions when t1 fires at k= 29

Table 3.3. Reachability set for TdAPN in Figure 3.4.(b) ... 37

Table 4.1. Comparison for state-representations of TdAPN and Place-Stretched PN ... 44

Table 6.1. Physical meanings for elements of TdAPN in Figure 6.2.(b) 57

Table 6.2. Physical meanings for elements of TdAPN in Figure 6.9 69

x

LIST OF FIGURES

Page

Figure 2.1. Example Petri net .. 6

Figure 2.2. Reachability tree of Petri Net in Figure 2.1 ... 8

Figure 2.3. Firing process of t1 for Timed PN with firing durations 9

Figure 2.4. Firing process of t1 for Timed PN with holding durations 10

Figure 2.5. Firing process of t1 for Timed PN with enabling durations......................... 11

Figure 2.6. Transition-Stretched PN Equivalent for Timed PN in Figure 2.3 14

Figure 2.7. Place-Stretched PN Equivalent for Timed PN in Figure 2.4 16

Figure 3.1. Representations of (a) Timed PN with firing durations and (b) TdAPN 21

Figure 3.2. Representations of the time element .. 22

Figure 3.3. Representation of time elements ... 22

Figure 3.4. Representation of TdAPN for the original Timed PN 26

Figure 3.5. Representation of TdAPN for the original Timed PN in (a) 30

Figure 3.6. Another representation of TdAPN with distinct time delays 31

Figure 3.7. Example firing process of t1 for TdAPN in Figure 3.6.(b) 32

Figure 3.8. Timed-reachability tree for TdAPN in Figure 3.4.(b) 38

Figure 4.1. Simple representative example of starting an engine 40

Figure 4.2. Another representation of the engine example in Figure 4.1 41

Figure 4.3. Firing process of the transition t1 ... 43

Figure 5.1. Timed-reachability tree of TdAPN in Figure 3.4 with the controller 51

Figure 5.2. Example of TdAPN includes a deadlock state and loop 51

Figure 5.3. Timed-reachability tree of TdAPN in Figure 5.2 .. 53

Figure 5.4. Timed-reachability tree of TdAPN in Figure 5.3 with the controller 54

Figure 6.1. Representative manufacturing example .. 55

Figure 6.2. Model of (a) Transition-Stretched PN [12] and (b)TdAPN 56

xi

Figure 6.3. Timed-reachability tree for TdAPN in Figure 6.2.(b) 59

Figure 6.4. Blocks and tracking circuits on a railway network 61

Figure 6.5. Block transition between adjacent blocks modeled using TdAPN 62

Figure 6.6. Place-Stretched PN Equivalent of TdAPN in Figure 6.5 63

Figure 6.7. Timed-reachability tree for TdAPN in Figure 6.5 65

Figure 6.8. Schedule of tasks and assignment to processors [44] 67

Figure 6.9. Model of TdAPN for the cruise control in Figure 6.8 67

Figure 6.10. Transition-Stretched PN Equivalent of TdAPN in Figure 6.9 68

Figure 6.11. Timed-reachability tree of TdAPN in Figure 6.9 71

Figure 7.1. Parts of the software of TdAPN to obtain the reachability set 73

Figure 7.2. Detailed diagram of Main-Function Part ... 74

Figure 7.3. Main algorithm and its sub-algorithms for TdAPN 77

Figure 7.4. Forbidden State-Controller Part for the software of TdAPN 84

Figure 7.5. Main-controller algorithm and its sub-algorithms for TdAPN 84

xii

LIST OF ALGORITHMS

Page

Algorithm 7.1. Main algorithm of Main-Function Part ... 77

Algorithm 7.2. Enabledness sub-algorithm ... 79

Algorithm 7.3. Firing process sub-algorithm to check completed firing processes 81

Algorithm 7.4. Firing process sub-algorithm to add new firing processes 81

Algorithm 7.5. Next state sub-algorithm to calculate next marking vector 82

Algorithm 7.6. Next state sub-algorithm to calculate next remaining time vector 83

Algorithm 7.7. Main-controller algorithm of Forbidden State-Controller Part 85

Algorithm 7.8. Finding forbidden-states sub-algorithm .. 86

Algorithm 7.9. Reversibility analysis sub-algorithm ... 87

Algorithm 7.10. Finding controller-values sub-algorithm ... 88

xiii

SYMBOLS AND ABBREVIATIONS

𝑩 : The bound vector for the token(s) at places

𝐵(𝑝) : The upper limit of available tokens at the place 𝑝 at the vector 𝑩

𝒞(𝑆, 𝜙) : The controller function for the forbidden state controller

𝐷 : The time delay matrix for outgoing arcs in TdAPN

𝐷(𝑝, 𝑡) : The time delay of an outgoing arc from 𝑡 to 𝑝 in matrix 𝐷 in TdAPN

𝔇 : The set of time delays in Timed PN

𝑑𝑡 : The total duration of a firing process 𝑡𝜆 in TdAPN

𝔡𝑡 : The time delay of the transition 𝑡 in Timed PN, where 𝔡𝑡 ∈ 𝔇

𝐸(𝐺, 𝑘) : The set of enabled transitions

𝐸(𝐺,𝑴) : The set of enabled transitions at the marking vector 𝑴

�̂�(𝐺, 𝑘) : The set of sets of simultaneously-enabled transitions

�̂�(𝐺,𝑴) : The set of sets of simultaneously-enabled transitions at the marking

 vector 𝑴

𝐹(𝑘) : The set of all activated firing processes of 𝐺𝐴 at time 𝑘, where 𝐹(𝑘)

 is 𝐹𝑝𝑟𝑒(𝑘) ∪ 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘)

𝐹𝑝𝑟𝑒(𝑘) : The set of previously activated firing processes of 𝐺𝐴 at time 𝑘

𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) : The set of newly activated firing processes of 𝐺𝐴 at time 𝑘

𝐹(𝑆) : The set of transitions whose firing processes have been previously and

 currently activated. It is used for the forbidden state controller.

 𝐹(𝑆) is 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙.

𝐹𝑝𝑟𝑒(𝑆) : The set of transitions whose firing processes have been previously

 activated. It is used for the forbidden state controller.

𝐺 : The tuple of Petri Net (e.g. 𝐺𝐴 for TdAPN, 𝐺𝑈 for untimed PN).

ℎ𝑝
𝑡 : The symbol of a time element attached to an outgoing arc from 𝑡 to 𝑝,

 where ℎ𝑝
𝑡 ∈ ∇

𝜙 : The set of simultaneously-enabled transitions (it can also be a singleton)

∇̂ : The expanded set of time elements in TdAPN

∇ : The set of time elements in TdAPN, ∇⊆ ∇̂

𝛁𝑹 : The remaining time vector assigned to time elements in TdAPN

xiv

𝛁𝑹(𝑘) : The remaining time vector assigned to time elements at time 𝑘 in TdAPN

∇𝑅(𝑘, ℎ𝑝
𝑡) : The remaining time of flowing tokens at the time element ℎ𝑝

𝑡 at time

 𝑘 in TdAPN

𝑘 : Discrete-time variable, where time is discretized into time slots by using

 an appropriate sampling period

ℒ̃0 : The set of deadlock states, ℒ̃0 ⊆ ℒ̃

ℒ0 : The initial set of undesired states, ℒ0 ⊆ ℒ̂

ℒ𝑖 : The 𝑖 'th set of undesired states, which are obtained in the 𝑙'th iteration

 and leads the system to ℒ̂, ℒ𝑖 ⊆ ℒ̂

ℒ̂ : The expanded set of undesired states, ℒ̂ ⊆ 𝑅𝑆(𝐺, 𝑆)

ℒ̃ : The expanded set of deadlock states, ℒ̃ ⊆ 𝑅𝑆(𝐺, 𝑆)

𝑅𝑆(𝐺, 𝑆) : The reachability set of 𝐺 from 𝑆

𝑅𝑅(𝐺, 𝑆0) : The irreversible set of 𝐺, where 𝑅𝑅(𝐺, 𝑆0) ⊂ 𝑅𝑆(𝐺, 𝑆0)

𝑆 : The state of 𝐺, where 𝑆 = {𝑴,𝛁𝑹 } for TdAPN

𝑆(𝑘) : The state of 𝐺 at time 𝑘, where 𝑆(𝑘) = {𝑴(𝑘), 𝛁𝑹(𝑘) } for TdAPN

𝑆0 : The initial state of 𝐺 at the initial time 𝑘0, i.e., 𝑆(𝑘0)

𝑡𝜆 : The symbol of a firing process of 𝑡 started at time 𝑘 = 𝜆 in TdAPN

𝜆 : The starting time-instant of 𝑡𝜆 in TdAPN

𝜌(𝑆, 𝐹(𝑆)) : The function that gives the next state of 𝑆 according to 𝐹(𝑆) for the

 forbidden state controller, where 𝐹(𝑆) = 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙

𝛾1(𝑆) : The function that gives the marking-vector part 𝑴 of S

𝛾2(𝑆) : The function that gives the remaining-time vector part 𝛁𝑹 of S

𝑘0 : The initial time instant

𝑘 + 1 : The next time instant

𝑴 : The marking vector

𝑴(𝑘) : The marking vector at time 𝑘

𝑀(𝑘, 𝑝) : The number of available tokens at the place 𝑝 at time 𝑘 in 𝑴(𝑘)

ℕ : The set of natural numbers

𝑁 : The input matrix (It specifies weights for ingoing arcs.)

𝑁(𝑝, 𝑡) : The weight of an ingoing arc from 𝑝 to 𝑡 in matrix 𝑁

xv

𝑂 : The output matrix (It specifies weights for outgoing arcs.)

𝑂(𝑝, 𝑡) : The weight of an outgoing arc from 𝑡 to 𝑝 in matrix 𝑂

𝑃 : The finite set of places

𝑝● : The post set of transitions connected to the place 𝑝 ∈ 𝑃

𝑇 : The finite set of transitions

𝑡● : The set of output places connected to the transition 𝑡 ∈ 𝑇

●𝑡 : The set of input places connected to the transition 𝑡 ∈ 𝑇

[.]′ : The transpose of [.]

[] : The null vector (an empty vector with no dimension)

|{. }| : The cardinality of {. }

2{.} : The power set of {. }

𝟎|.|×1 : The |. | by 1 sized zeros vector.

𝟏|.|×1 : The |. | by 1 sized ones vector.

∅ or : The empty set

 : The symbol that denotes the end of example in this study.

GPS : Global Positioning System

MATLAB : MATrix LABoratory (the software by MathWorks Inc.)

MECU : Motor Electronic Control Unit

PNs : Petri Net(s)

SPNs : Stretched Petri Net(s)

TC : Tracking circuit (in railway systems)

TdAPNs : Timed-Arc Petri Net(s)

ts : Time slot

VECU : Vehicle Electronic Control Unit

1

1. INTRODUCTION

Today’s large-scale and complex systems often comprise subsystems which are

composed of configuration items including many components (systems of systems). All

of these serve a common purpose and work in conjunction with each other to satisfy the

current need for automation and data exchange in manufacturing technologies. The

current industrial revolution, Industry 4.0, is based on connectivity, big data, and event-

based operational technologies. This futuristic innovation includes many large-scale

systems, and their infrastructure is constructed using the concept of Systems of Systems.

Moreover, safer and better transportation is another popular issue to develop intelligent

and autonomous solutions in the field of land, marine, air, and railway systems. Railway

systems are more interesting than other fields of transportation due to their safety record

[1, 2]. The growing population requires more technological designs in this century. The

above systems are sophisticated, large-scale, and event-driven. These can best be

expressed by sequential events in the course of time. Discrete-Event Systems are used for

this purpose in order to describe such systems using the occurrence of events [3-6]. The

state evolution of such systems depends on these occurrences. Petri Nets (PNs) are used

for, formally and graphically, representing this dependency between events [3-9].

PN is a useful methodology to model and verify Discrete-Event Systems; for

instance, event-driven systems, manufacturing systems, transportation systems,

automotive systems, etc. [2, 3, 8]. It is also used to analyze such systems so that it allows

designing a controller for such systems. PN was basically introduced without the notion

of time as Place/Transition Nets or basic PNs [3-6, 8, 9]. Event-based systems consist of

activities that include time delays; however, these delays are not expressed using basic

PNs at first [10]. Thus, a basic PN is insufficient to express the dynamics of time-delayed

systems. In other words, the dynamics of the system were insufficiently expressed using

such basic PNs. In such time-delayed systems, the time that is used for transferring the

dynamics into the model plays an important role [3, 6, 10-14]. The time information is

associated with places, transitions, arcs, or tokens (as age or clock) of basic PNs

[4-6, 10-13, 15-21]. In order to specify time delays in the net, Time PNs and Timed PNs

were developed. Then, the basic PN has been called untimed PNs after the time extension

of basic PNs was introduced. Time delays are exact (deterministic) in Timed PNs while

time intervals are used in Time PNs. In this thesis, the deterministic approach is chosen,

and Timed PN is considered.

2

Timed PN is a useful tool to accurately express timed and dynamic systems whose

time delays are deterministic. Timed PN is essentially considered in three classes [5, 6]:

Timed-Transition PNs, where transitions are labeled with time delays; Timed-Place PNs,

where places are labeled with time delays; and Timed-Arc PNs, where arcs (or tokens

restricted by arcs) are labeled with time delays. In addition, the methodology of modeling

in Timed PNs is formed according to the interpretation of time delays, such as enabling

durations, holding durations, and firing durations [20]. Events in real cases have time

durations and result in after a certain time is elapsed. In Timed PNs, time delays are

mostly associated with transitions because transitions represent events [12]. However,

this approach is insufficient to express distinct outputs, which are related to the same

event and have different time labels, and it is also inadequate to express dynamic

operations, such as transportation, motion, etc. These dynamics can be easily represented

and transferred into the model by associating time delays with arcs using Timed-Arc PNs.

Furthermore, due to the nature of Timed-Arc PN, arcs that are connected to the same

transition (event) can be labeled with different time delays while Timed PN, transitions

are labeled with time delays, have no ability in that way. This thesis presents a new

mathematical modeling method and a graphical representation for Timed-Arc Petri Nets.

Many studies have been developed for Timed-Arc PNs [6, 15-20, 22-24]. Timed-

Arc PNs can be thought of as falling into two groups as follows:

 In the first group, time information is related to arcs and tokens, where tokens

have age (clock), and time-intervals attached to arcs limit the transition of tokens

according to the age of tokens [15-19, 23]. Time delays are interpreted as enabling

durations in this group. The number of applications has been performed using the

approach in [25-27].

 In the second group, time information is related to only arcs. This group consists

of Timed-Arc PNs, where arcs are only labeled with exact (deterministic) time

durations [6, 20, 22, 24]. Time delays are interpreted as enabling or enabling and

holding durations in this group.

In the first group, Time PN, where arcs are labeled with time delays (durations),

was firstly introduced by Walter [15], and it was called Time-Arc PNs (namely, Aging

Token PNs) by Bolognesi et.al. [16]. Time intervals that are bounded by two non-negative

integers were attached to ingoing arcs in order to restrict tokens who have age (clock).

The age of the token was incremented by one at each ‘tick’, and the token leaves its input

3

place when it matures. Other studies on Timed-Arc PNs [17-19, 23, 25-27] were based

on this approach. Time delays in this type of Time-Arc PNs in the first group have been

interpreted as enabling durations [15-19, 23]. However, the time is elapsed at tokens,

where arcs with time-intervals are used to restrict the flow of tokens. On the other hand,

in the second group, deterministic Timed-Arc PN was developed [6, 20, 22, 24], where

time delays were associated with only ingoing and outgoing arcs in terms of deterministic

time durations rather than time intervals. Zhu and Denton firstly introduced deterministic

Timed-Arc PNs, where they assumed that only one enabled transition was allowed to be

fired at any given time. Next, Bowden developed Timed PN Superclass that is another

model for deterministic Timed-Arc PNs [20, 24]. In this approach, ingoing and outgoing

arcs were attached with deterministic time delays, and both enabling and holding

durations were considered in the model of Timed-Arc PNs [20, 24]. Time delays in this

type of Time-Arc PNs in the second group have been interpreted as enabling durations or

both enabling and holding durations. However, in Timed PNs with enabling durations,

tokens at places before a transition can be used by another active firing process related to

these tokens. Time delays were not interpreted as firing durations/delays (i.e., time delays

were not associated with any continuing transition-firing and flowing process in the

transition) neither in the first group nor in the second group. In this thesis, the proposed

approach introduces a new mathematical modeling method and a graphical representation

for the second group of Timed-Arc PNs, where time delays are interpreted as firing

durations. Yufka et.al. have recently presented this novel model of Timed-Arc PNs

in [1, 28-31].

In Timed PNs, states of the system are defined by the change of tokens in Petri Nets

and movements (flow) of tokens. These time-dependent movements cause an inability to

track mathematically and graphically over PNs during the firing process. This causes

temporary disappearance of tokens in the marking vector during the firing process such

that tokens in transition (namely flowing tokens) are not observed mathematically and

graphically [6, 11-14]; in addition, the marking vector does not include any information

about flowing tokens. The marking vector shows the status information of the system

using the presence/absence/number of token in the places. In addition, Timed PN shows

the elapsed time of the firing process of a transition instead of indicating the state. The

main drawback of Timed PNs is the inability of calculating the next state of Timed PNs

and mathematically and graphically observing tokens in transition at each state. This

4

property of Timed PNs complicates finding all states that the system is able to reach, and

designing a forbidden state controller for Timed PNs compared to basic PNs [12, 32]. In

the proposed model, a triangular representation, called time element, that allows

monitoring of flowing tokens is defined. The proposed Timed-Arc PN overcomes the

main drawback of Timed PNs by including time elements and transforms any Timed PN

into a tripartite structure. The state of the system and the remaining time of the

work/operations are shown in terms of vectors. The proposed approach makes possible

to obtain the reachability set and generate a timed-reachability graph (tree) enhanced by

the time information as long as the marking and remaining time vectors are used to

express the state of the system. All situations of tokens, i.e., all situations of states can be

computed by using these vectors. In addition, the controller design is also presented for

time-delayed systems that are modeled by the proposed mathematical model of Timed-

Arc PNs. Basic behavioral properties of the proposed Timed-Arc PN are defined by using

the reachability set in order to permit analysis of the proposed approach. A forbidden state

controller for time-delayed systems is designed using the reachability set and behavioral

properties of the proposed Timed-Arc PN in order to make the system avoid undesired

states. Algorithms for constructing the reachability set and constructing a forbidden state

controller for the proposed Timed-Arc PN are developed and simulated with MATLAB.

Results are presented through real-time and real-world case studies, such as

manufacturing, railway, and automotive systems. Furthermore, in order to evaluate the

performance of the proposed Timed-Arc PN, the proposed methodology is compared with

Stretched PNs that were developed by Aybar and İftar [11-14, 46, 47] in this thesis. The

methodology of Stretched PN is a novel model to overcome the same drawback of Timed

PNs [11-14]. Stretched PN uses the methodology of transition-stretching, namely

Transition-Stretched PNs [11-14], by adding a pair of place-transition into the timed net,

or the methodology of place-stretching, namely Place-Stretched PNs [46, 47], by adding

a pair of transition-place into the timed net; as a result, Stretched PN transforms Timed

PN into a stretched version of this Timed PN. This makes Timed PN as if it is an

equivalent untimed PN. Thus, Stretched PN allows analyzing Timed PNs and designing

a supervisory controller for Timed PNs.

In this thesis, it is aimed to develop a new mathematical modeling method and

graphical representation, which represents a new notion and model for Timed PNs. It is

also aimed to develop control approaches for the proposed Timed-Arc PN based on the

5

reachability set of time-delayed systems. Then, real-world case studies, such as

manufacturing systems, railway systems, or automotive systems, etc. are modeled and

controlled by using the proposed approach.

6

2. PETRI NETS

In this chapter, first of all, basic definitions are presented for basic (untimed) PNs

[3-8] with an example. Then, the time extension of such basic PNs is introduced as Timed

PNs [4-6, 11-14, 20, 22, 46-47] in terms of interpretation of time delays with a

comprehensive study. Next, Stretched PNs [11-14, 46, 47] that offer a stretched net of

Timed PNs are described in order to compare the proposed methodology in this thesis

with Stretched PNs.

2.1. Untimed Petri Nets

PN is a modeling paradigm. PN provides verification and formal modeling for

Discrete Event Systems. PN is used for modeling and analyzing event-based systems. It

is also used to design a controller for such systems. Basic PNs are Place/Transition Nets,

where there is no time delay (duration) in the model of basic PNs; thus, this type of PNs

is also called untimed PNs in the literature [3-6]. The net of basic PNs is composed of

places, transitions, and arcs. In the graphical representation of basic PNs, circles show

places, bars show transitions, and arrows show arcs between places and transitions or vice

versa. In addition to these elements, tokens are used to denote the status of places, and

they are shown by filled dots “●”. Moreover, a place that is connected to a transition as a

premise is called an input place of this transition. Similarly, a place that is connected to a

transition as a successor is called an output place of this transition. Arcs from places to

transitions are called ingoing arcs, and arcs from transitions to places are called outgoing

arcs [5-8]. An example PN with these elements is shown in Figure 2.1.

p1

t2

p3

t1

t3

p4

p2

1

arc’s weight

(no need to show

when it is 1)

outgoing arc

transition

ingoing arc token

place

Figure 2.1. Example Petri net

7

A place may denote a condition, a resource, a signal, a buffer, or a datum; and a

transition may denote an event, a process, a task/job, a logical clause, or a computational

step [7]. A resource can be a machine, a robot, a person, etc. Arcs are used to construct a

logical relation between places and transitions. Thus, prerequisites of an event are

determined by the weights of arcs, and an event happens when all prerequisites are

satisfied. The adequacy of the prerequisites is determined by tokens at related places.

Moreover, the state of the system is represented by a marking vector that denotes the

number of tokens at all places.

A tuple of an untimed PN is represented by 𝐺𝑈(𝑃, 𝑇, 𝑁, 𝑂,𝑴0). Here, 𝑃 denotes the

set of places. 𝑇 denotes the set of transitions, where 𝑃 and 𝑇 are disjoint (𝑃 ∩ 𝑇 = ∅).

An element in the set 𝑃 is denoted by a place 𝑝 ∈ 𝑃, and an element in the set 𝑇 is denoted

by a transition 𝑡 ∈ 𝑇. 𝑁:𝑃𝑥𝑇 → ℕ denotes the input matrix that specifies weights of

ingoing arcs. ℕ is the set of natural numbers. If a connection exists from 𝑝 ∈ 𝑃 to 𝑡 ∈ 𝑇,

then 𝑁(𝑝, 𝑡) ≠ 0. Otherwise, 𝑁(𝑝, 𝑡) is equal to zero. Similarly, 𝑂: 𝑃𝑥𝑇 → ℕ denotes the

output matrix that specifies weights of outgoing arcs. If a connection exists from 𝑡 ∈ 𝑇 to

𝑝 ∈ 𝑃, then 𝑂(𝑝, 𝑡) ≠ 0. Otherwise, 𝑂(𝑝, 𝑡) is equal to zero. The state of the system is

represented by the marking vector 𝑴:𝑃 → ℕ, and the initial marking vector is denoted

by 𝑴0.

In 𝐺𝑈, a transition 𝑡 ∈ 𝑇 is enabled at 𝑴 if and only if 𝑀(𝑝) ≥ 𝑁(𝑝, 𝑡) ≥ 1,

∀𝑝 ∈ 𝑃, where 𝑀(𝑝) represents the number of tokens at 𝑝 ∈ 𝑃. This condition is called

enabledness (or firing rule). The set of enabled transitions at 𝑴 is represented by

𝐸(𝐺𝑈,𝑴). For an enabled transition 𝑡 ∈ 𝐸(𝐺𝑈,𝑴) that fires at 𝑴, the new marking vector

is computed as follows:

�̂�(𝑝) = 𝑀(𝑝) + 𝑂(𝑝, 𝑡) − 𝑁(𝑝, 𝑡) , 𝑝 ∈ 𝑃, 𝑡 ∈ 𝐸(𝐺𝑈,𝑴) (2.1)

Here, the new marking vector is represented by �̂�: 𝑃 → ℕ, and the number of available

tokens at the place 𝑝 ∈ 𝑃 at �̂� is represented by �̂�(𝑝).

Let us consider the untimed Petri Net shown in Figure 2.1. This untimed PN model

is described as 𝐺𝑈(𝑃, 𝑇, 𝑁, 𝑂,𝑴0). Here, the set of places is 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. The set

of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3}. 𝑁 = [

0 1 0
0 1 0
0 0 1
1 0 0

] and 𝑂 = [

0 0 1
1 0 0
0 1 0
0 1 0

] are input and output

matrices, respectively. The initial marking vector is 𝑴0=[1 1 0 0]' ([.]' represents the

8

transpose of [.]). The set of enabled transitions at 𝑴0 is 𝐸(𝐺𝑈,𝑴0) = {𝑡1}. Reachable

states from the initial marking 𝑴0 are represented as 𝑅𝑆(𝐺𝑈,𝑴0), which denotes the

reachability set of 𝐺𝑈. For this example, the reachability set is 𝑅𝑆(𝐺𝑈,𝑴0) =

{𝑴0=[1 1 0 0]', 𝑴1=[0 0 1 1]', 𝑴2=[1 0 0 1]', 𝑴3=[0 1 1 0]'}. Moreover, relations among

these states are depicted as shown in Figure 2.2. This figure is generally called

reachability tree/graph.

t1

t3

t2

M0

M3

M2

M1

t3

t2

Figure 2.2. Reachability tree of Petri Net in Figure 2.1

2.2. Timed Petri Nets

A basic PN is insufficient to express the dynamics of time-delayed systems. Such

systems consist of activities that include time delays; however, these delays are not

expressed using basic PNs [10]. The time is necessary to express in time-delayed systems

[3, 10]. In order to specify time delays in the net, Time PNs and Timed PNs were

developed. Time delays are considered as [5, 6, 20]: deterministic durations, where time

values are exact and selected from a subset of ℕ; stochastic durations, where time values

are expressed by a probabilistic function; and time intervals, where time durations have

lower and upper bounds. Time delays are exact (deterministic) in Timed PNs while time

intervals are used in Time PNs. In this thesis, the deterministic approach is chosen. In

Timed PNs, time delays are associated with basic components of basic PNs that are

transitions, places, arcs, and also tokens [5, 6, 10-13, 15-19]. Timed PN is named

according to the association-type of time delays. If the time is attached to transitions, then

Timed PN is named Timed-Transition PN. If the time is attached to places, then Timed

PN is named Timed-Place PN. If the time is attached to arcs, then Timed PN is named

Timed-Arc PN. This thesis introduces a new mathematical modeling method and a new

representation for Timed-Arc PNs.

9

The methodology of modeling in Timed PNs is formed according to the

interpretation of time delays, such as firing durations, holding durations, and enabling

durations [20].

Firing durations relate to transition-firing processes. The time delay is associated

with transitions. The interpretation of firing durations is illustrated in Figure 2.3 [20]. In

this figure, the analysis of the Timed PN is given in the time interval [𝑘0, 𝑘a], where the

discrete time variable is denoted by 𝑘 ∈ ℕ. This time variable is denoted in terms of time

slots. In this net, 𝑡1 has a time delay of 𝑘a − 𝑘0 = 𝑎 time slots while time delays of 𝑡2 and

𝑡3 are considered one time slot. The transition 𝑡1 fires at time 𝑘 = 𝑘0. Tokens at places

𝑝1 and 𝑝2 disappear at time 𝑘 > 𝑘0 while the transition 𝑡1 holds tokens at the time interval

𝑘 ∈ (𝑘0, 𝑘a) during the firing process as shown in Figure 2.3.(b). This disappearance is

called flowing token in this thesis. Flowing tokens are not monitored through the marking

vector. The firing process of the transition 𝑡1 ends at time 𝑘 = 𝑘a, and Tokens appear at

places 𝑝3 and 𝑝4 at time 𝑘 = 𝑘a as shown in Figure 2.3.(c).

p1

t2

p3

t1

(a)

t3

p4

p2 p1

t2

p3

t1

(b)

t3

p4

p2 p1

t2

p3

t1

(c)

t3

p4

p2

k0 < k < ka k = ka k = k0

a aa

Figure 2.3. Firing process of t1 for Timed PN with firing durations

A Timed PN with firing delays, namely Timed-Transition PN, is represented by a

6-tuple 𝐺𝑇(𝑃, 𝑇, 𝑁, 𝑂,𝔇,𝑴0) [6, 11-13]. The time delay of a transition 𝑡 ∈ 𝑇 is

represented by 𝔡𝑡 ∈ ℕ ∖ {0} , and the set of time delays is denoted by

𝔇:= {𝔡𝑡1 , 𝔡𝑡2 , … , 𝔡𝑡𝑛}. 𝑴0 = 𝑴(𝑘0) is the initial marking vector at the initial time 𝑘0.

The state of 𝐺𝑇 includes the marking vector and the pair of firing transitions and their

elapsed time.

10

Holding durations relate to firing processes evaluated at output places (places after

the transition). The time delay can be associated with places, transitions or outgoing arcs.

Let us consider the case of associating time-delays with places. The interpretation of

holding durations is illustrated in Figure 2.4 [20]. In this figure, the analysis of the Timed

PN is given in the time interval [𝑘0, 𝑘a], where 𝑘b < 𝑘a. In this net, 𝑝3 has a holding time

delay of 𝑘a − 𝑘0 = 𝑎 time slots; and 𝑝4 has a holding time delay of 𝑘b − 𝑘0 = 𝑏 time

slots while holding time delays of 𝑝1 and 𝑝2 are considered one time slot. The transition

𝑡1 fires at time 𝑘 = 𝑘0. Tokens at places 𝑝1 and 𝑝2 disappear at time 𝑘 > 𝑘0 while the

output place 𝑝3 holds the token at the time interval 𝑘 ∈ (𝑘0, 𝑘𝑎) and the output place 𝑝4

holds the token at the time interval 𝑘 ∈ (𝑘0, 𝑘𝑏) during the firing process as shown in

Figure 2.4.(b). Tokens held at places 𝑝3 and 𝑝4 are denoted in the marking vector during

the firing process of 𝑡1; however, these tokens are not available as long as output places

𝑝3 and 𝑝4 hold these tokens. The firing process of the transition 𝑡1 ends at time 𝑘 = 𝑘a,

and tokens become available at the place 𝑝3 at time 𝑘 = 𝑘a and at the place 𝑝4 at time

𝑘 = 𝑘b as shown in Figure 2.4.(c).

p1

t2

t1

(a)

t3

p2 p1

t2

p3

(a)

t1

(b)

t3

p4

(b)

p2

p1

t2

t1

(c)

t3

p2

k0 < k < kb k = k0

p3

(a)

p4

(b)

p3

(a)

p4

(b)

kb ≤ k < ka
p1

t2

t1

(d)

t3

p2

p3

(a)

p4

(b)

k = ka

Figure 2.4. Firing process of t1 for Timed PN with holding durations

11

A Timed PN with holding delays, namely Timed-Place PN, is represented by a

6-tuple 𝐺𝑃(𝑃, 𝑇, 𝑁, 𝑂, 𝒟, 𝑆0) [6, 46, 47]. Here, 𝒟:𝑃 → ℕ\{0} represents holding time

delays of places. The time delay of a place 𝑝 ∈ 𝑃 is represented by 𝒟(𝑝) ∈ ℕ ∖ {0} .

𝑆0 = 𝑆(𝑘0) is the initial state of 𝐺𝑃 at the initial time 𝑘0. The state of 𝐺𝑃 includes the

marking vector and the pair of tokens (shown by unfilled circles) held in the output place

during the firing process and the remaining time of tokens to be available.

Enabling durations relate to firing processes evaluated at input places (places before

the transition). The time delay can be associated with places, transitions or ingoing arcs.

Let us consider the case of associating time-delays with transitions. The interpretation of

enabling durations is illustrated in Figure 2.5 [20]. In this figure, the analysis of the Timed

PN is given in the time interval [𝑘0, 𝑘a]. In this net, 𝑡1 has an enabling time delay of

𝑘a − 𝑘0 = 𝑎 time slots while time delays of 𝑡2 and 𝑡3 are considered one time slot. The

firing process of the transition 𝑡1 starts at time 𝑘 = 𝑘0. Input places 𝑝1 and 𝑝2 hold tokens

at the time interval 𝑘 ∈ [𝑘0, 𝑘𝑎) during the firing process as shown in Figure 2.5.(b).

During this time interval, tokens at input places 𝑝1 and 𝑝2 are not removed from these

places. These tokens are denoted in the marking vector during the firing process; however,

these tokens may be used for another firing process whose enabling duration is shorter if

the place 𝑝1 or 𝑝2 were a place in common with another transition. The transition 𝑡1 fires

at time 𝑘 = 𝑘𝑎 such that the firing process of the transition 𝑡1 also ends at this time.

Tokens appear at output places 𝑝3 and 𝑝4 at time 𝑘 = 𝑘𝑎 as shown in Figure 2.5.(c).

p1

t2

p3

t1

(a)

t3

p4

p2 p1

t2

p3

t1

(b)

t3

p4

p2 p1

t2

p3

t1

(c)

t3

p4

p2

k0 < k < ka k = ka k = k0

a aa

Figure 2.5. Firing process of t1 for Timed PN with enabling durations

12

Figure 2.3, Figure 2.4, and Figure 2.5 show basic examples of Timed PNs, where

time delays are interpreted as firing, holding and enabling durations. A time-delayed

system should be modeled using the appropriate interpretation of time delays, such that

the modeling strategy changes according to this.

Interpreting time delays as firing durations rather than holding and enabling is more

realistic and closer to real-world applications and prevents the use of tokens used for a

firing process from being used by another firing process. In addition, distinct time delays

are labeled with arc so that distinct operations related to the same event can be easily

defined. In this thesis, the proposed methodology interprets time delays as firing durations

and associates time delays with arcs.

2.3. Stretched Petri Nets

In Timed PNs with firing durations, transitions hold tokens during the firing

process. Unfortunately, the marking vector alone is insufficient to represent the complete

state of the system; in addition, the state of such Timed PNs indicates the elapsed time of

the firing process related to the transition instead of representing the status of flowing

tokens. In Timed PNs with holding durations, tokens reside in output places [6, 20, 46,

47]. These tokens become available at the corresponding output place after a certain time

delay is elapsed. These properties of Timed PNs with firing or holding durations

complicate the design of a forbidden state controller for Timed PNs compared to untimed

PNs [12, 32]. For this purpose, Stretched PNs was recently developed by Aybar and İftar

[11-14, 46, 47]. Stretched PN transforms the structure of Timed PNs into a structure of

the basic (untimed) PNs in order to analyze Timed PNs and design a supervisory

controller for Timed PNs.

Stretched PN is obtained by using two approaches, such as a transition-stretching

and a place-stretching. For the transition-stretching, a pair of place-transition is added

into the model of Timed PNs with firing durations for a unit time delay. When the

methodology of the transition-stretching is used, Stretched PN is called Transition-

Stretched PNs [11-14]. Similarly, for the place-stretching, a pair of transition-place is

added into the model of Timed PNs with holding durations for a unit time delay. When

the methodology of the place-stretching is used, Stretched PN is called Place-Stretched

PNs [46, 47].

13

A Transition-Stretched PN is defined as a 5-tuple 𝐺𝑇𝑆(𝑃𝑠 , 𝑇𝑠, 𝑁𝑠, 𝑂𝑠,𝑴𝒔𝟎) [11-14],

and any Timed PN with firing durations is stretched by using the transition-stretching

procedure defined in [11-14]. Transition-Stretched PN uses discrete time variable 𝑘 and

unit time delays that are associated with transitions. In 𝐺𝑇𝑆, 𝑃𝑠: = 𝑃 ∪ 𝑃𝑠 denotes the set

of places after the transition-stretching procedure, where 𝑃𝑠 includes newly generated

places as 𝑝𝑖
𝑡 ∈ 𝑃𝑠 for 1 ≤ 𝑖 ≤ 𝔡𝑡 − 1. 𝑇𝑠: = 𝑇 ∪ 𝑇𝑠 denotes the set of transitions after the

transition-stretching procedure, where 𝑇𝑠 includes newly generated transitions as 𝑡𝑖
𝑡 ∈ 𝑇𝑠

for 1 ≤ 𝑖 ≤ 𝔡𝑡 − 1. 𝑁𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the input matrix. 𝑂𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the output

matrix. 𝑴𝒔𝟎: 𝑃𝑠 → ℕ is the initial marking vector at the initial time 𝑘0. The state of 𝐺𝑇𝑆

includes the marking vector after the transition-stretching procedure, and it is obtained

from the marking vector of the Timed PN with firing durations by using a transformation

matrix. The state of 𝐺𝑇𝑆 includes the marking vector of the Timed PN with firing

durations and information of flowing tokens related to the continuing firing process. An

example of the equivalent Transition-Stretched PN for the Timed PN with firing durations

in Figure 2.3 is given in Figure 2.6. Let us consider the time delay of 𝑡1 in Figure 2.3 as

𝑘𝑎 − 𝑘0 = 3 time slots.

14

p1

t2

p3

t1

(a)

t3

p4

p2

 k = k0

p
t1

1

t
t1

2

p1

t2

p3

t1

(b)

t3

p4

p2

p
t1

1

 k = k0+1

 k = k0+2
p1

t2

p3

t1

(c)

t3

p4

p2

p
t1

1

t
t1

1

p
t1

2

t
t1

2

p
t1

2

t
t1

2

p
t1

2

t
t1

1

t
t1

1

 k = k0+3
p1

t2

p3

t1

(d)

t3

p4

p2

p
t1

1

t
t1

2

p
t1

2

t
t1

1

Figure 2.6. Transition-Stretched PN Equivalent for Timed PN in Figure 2.3

15

Let us consider an example of Transition-Stretched PN in Figure 2.6. The transition

𝑡1 has a time delay of three time slots. Thus, places 𝑝1
𝑡1, 𝑝2

𝑡1 and transitions 𝑡1
𝑡1, 𝑡2

𝑡1 are

added in order to stretch the transition 𝑡1. The transition 𝑡1 fires at time 𝑘 = 𝑘0, and the

transition 𝑡1
𝑡1 immediately fires at time 𝑘 = 𝑘0 + 1. The flow of the token related to the

firing process of 𝑡1 for the Timed PN with firing durations is observed through places 𝑝1
𝑡1

and 𝑝2
𝑡1 as shown in Figure 2.6.(b), (c). The firing process related to the transition 𝑡1 ends

after three time slots are elapsed, and tokens appear in places 𝑝3 and 𝑝4 at time 𝑘0 + 3 as

shown in Figure 2.6.(d).

A Place-Stretched PN is defined as a 5-tuple 𝐺𝑃𝑆(𝑃𝑠, 𝑇𝑠, 𝑁𝑠, 𝑂𝑠,𝑴𝒔𝟎) [46, 47], and

any Timed PN with holding durations is stretched by using the place-stretching procedure

defined in [46, 47]. Place-Stretched PN uses discrete time variable 𝑘 and unit time delays

that are associated with places. In 𝐺𝑃𝑆, 𝑃𝑠: = 𝑃 ∪ 𝑃𝑠 denotes the set of places after the

place-stretching procedure, where 𝑃𝑠 includes newly generated places as 𝑝𝑖
𝑝 ∈ 𝑃𝑠 for 1 ≤

𝑖 ≤ 𝒟(𝑝) − 1. 𝑇𝑠: = 𝑇 ∪ 𝑇𝑠 denotes the set of transitions after the place-stretching

procedure, where 𝑇𝑠 includes newly generated transitions as 𝑡𝑖
𝑝 ∈ 𝑇𝑠 for

1 ≤ 𝑖 ≤ 𝒟(𝑝) − 1. 𝑁𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the input matrix. 𝑂𝑠: 𝑃𝑠 × 𝑇𝑠 → ℕ is the output

matrix. 𝑴𝒔𝟎: 𝑃𝑠 → ℕ is the initial marking vector at the initial time 𝑘0. The state of 𝐺𝑃𝑆

includes the marking vector after the place-stretching procedure. The state of 𝐺𝑃𝑆 includes

the marking vector of the Timed PN with holding durations and information of flowing

tokens related to the continuing firing process. An example of the equivalent Place-

Stretched PN for the Timed PN with holding durations in Figure 2.4 is given in Figure

2.7. Let us consider time delays of 𝑝3 and 𝑝4 in Figure 2.4 as 𝑘a − 𝑘0 = 3 time slots and

𝑘b − 𝑘0 = 2 time slots.

16

p1

t2

p3

t1

(a)

t3

p4

p2

 k = k0

p
p3

1

t
p3

1
t

p4

1

p
p4

1

t
p4

2

p
p4

2

p1

t2

p3

t1

(b)

t3

p4

p2

 k = k0+1

p
p3

1

t
p3

1
t

p4

1

p
p4

1

t
p4

2

p
p4

2

p1

t2

p3

t1

(c)

t3

p4

p2

 k = k0+2

a

p
p3

1

t
p3

1
t

p4

1

p
p4

1

t
p4

2

p
p4

2

p1

t2

p3

t1

(d)

t3

p4

p2

 k = k0+3

a

p
p3

1

t
p3

1
t

p4

1

p
p4

1

t
p4

2

p
p4

2

Figure 2.7. Place-Stretched PN Equivalent for Timed PN in Figure 2.4

17

Let us consider an example of Place-Stretched PN in Figure 2.7. The place 𝑝3 has

a time delay of 3 time slots, and the place 𝑝4 has a time delay of 2 time slots. Thus,

transitions 𝑡1
𝑝3, 𝑡1

𝑝4, 𝑡2
𝑝4 and places 𝑝1

𝑝3, 𝑝1
𝑝4, 𝑝2

𝑝4 are added in order to stretch places 𝑝3

and 𝑝4. The transition 𝑡1 fires at time 𝑘 = 𝑘0, transitions 𝑡1
𝑝3 and 𝑡1

𝑝4 immediately fire at

time 𝑘 = 𝑘0 + 1, and the transition 𝑡2
𝑝4 immediately fires at time 𝑘 = 𝑘0 + 2. The flow

of tokens related to the firing process of 𝑡1 for the Timed PN with holding durations is

observed through places 𝑝3, 𝑝4, 𝑝1
𝑝3, 𝑝1

𝑝4, 𝑝2
𝑝4 as shown in Figure 2.7.(b)-(d). The firing

process related to the transition 𝑡1 ends after three time slots are elapsed. In addition, the

flowing token related to 𝑝3 appears in the place 𝑝1
𝑝3 at time 𝑘 = 𝑘0 + 2, and the flowing

token related to 𝑝4 appears in the place 𝑝2
𝑝4 at time 𝑘 = 𝑘0 + 3 as shown in Figure 2.6.(d).

In this thesis, Stretched PNs are used for comparing the proposed Timed-Arc PN

with Stretched PNs [11-14, 46, 47] in order to evaluate the performance of the proposed

methodology. Next chapter introduces the proposed Timed-Arc PNs for Timed PNs.

18

3. TIMED-ARC PETRI NETS

In Timed PN, where time is interpreted as firing durations, transitions hold tokens

during the firing process. Therefore, tokens are not monitored over the net of Timed PN

during the firing process. This causes temporary disappearance of tokens in the marking

vector of Timed PN during the firing process such that tokens in transition are not

mathematically and graphically observed [6, 11-14]. In addition, the marking vector does

not include any information about tokens in transition. However, there may be instances

where it is necessary to monitor and determine the state, besides the marking vector. In

addition, Timed PN shows the elapsed time of the firing process of a transition instead of

indicating the state. The main drawback of Timed PN is the inability to calculate the next

state of Timed PN and to observe tokens in transition, mathematically and graphically, at

each state. This property of Timed PN complicates finding all states that the system is

able to reach and designing a forbidden state controller for Timed PNs compared to basic

Petri Nets [11-14].

In order to represent temporal dynamics that become invisible during the firing

process of such Timed PNs, mathematically and graphically, this thesis presents a new

model of Timed-Arc PNs. In the proposed Timed-Arc PNs, the next state is formally

computed using marking and remaining time vectors, which allows computing all

situations of states. Thus, the reachability set is readily constructed. Based on the

reachability set, behavioral properties of the proposed Timed-Arc PNs are defined in

order to permit analysis of the proposed approach. Using the reachability set and

behavioral properties of the proposed Timed-Arc PNs, a forbidden state controller for

Timed-Arc Petri Nets is designed so as to make the system avoid undesired states (see,

Chapter 5). Algorithms for obtaining the reachability set and designing a forbidden state

controller for Timed-Arc PNs are developed and simulated using MATLAB (see, Chapter

7). In addition; examples of modeling and designing for real-world systems, such as

manufacturing, railway, and automotive are carried out using the proposed approach (see,

Chapter 6). Furthermore, the proposed Timed-Arc PN is a new model for Timed PNs. In

order to evaluate performance of the proposed model, the methodology of Stretched PNs

[11-14, 46, 47] is considered. Stretched PN is another type of Timed PNs, which is used

to overcome the same problem of Timed PNs (see, Chapter 4). The following subsections

present the proposed method of Timed-Arc PNs. Yufka et.al. have presented this novel

19

type of Timed PNs, where time delays are assigned to arcs and interpreted as firing

durations, in [1, 28-31].

This chapter presents a new mathematical modeling method for Timed-Arc PNs

with firing durations. The proposed model can also be used for obtaining the reachability

set of Timed PNs with firing durations. When a Timed PN with firing durations is used

in examples, this is called the original model of the Timed PN before transforming it into

the proposed model of the Timed-Arc PN with firing durations. The following sections

present the mathematical model and the graphical representation of the proposed Timed-

Arc PNs with its behavioral properties.

3.1. Mathematical Model and Definition of Timed-Arc Petri Nets

The proposed Timed-Arc Petri Net (TdAPN) is defined as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0).

Here; the set of places is represented by 𝑃; the set of transitions is represented by 𝑇; the

input matrix is denoted by 𝑁; the output matrix is denoted by 𝑂; the time delay matrix is

denoted by 𝐷; and the initial state of TdAPN is denoted by 𝑆0. 𝐷 and 𝑆0 will be explained

in detail in the following paragraphs. Time delays in 𝐺𝐴 are considered exact

(deterministic) and are expressed in terms of time slots (ts). These are associated with arcs

rather than transitions or places. Time delays are interpreted as the firing durations that is

related to flowing tokens of a firing process.

Assumption 3.1: Time Delay of the Ingoing Arcs - In TdAPN, an event occurred at the

present time affects the net at the next time (after one ts is elapsed); therefore, in this

thesis, time delays for all ingoing arcs are equal to one ts.

Based on Assumption 3.1, if the time delay of an event is considered to be equal to

𝔡𝑡 ts, then 𝔡𝑡 − 1 ts time delay can be associated with the outgoing arcs in the

representation of TdAPNs while one ts is assigned to ingoing arcs. Thus, the time delays

of the outgoing arcs is expressed in terms of time slots and in a matrix form as

𝐷: 𝑃 × 𝑇 → ℕ, namely the time delay matrix. An element 𝐷(𝑝, 𝑡) of this matrix denotes

the time delay of an outgoing arc from the transition 𝑡 ∈ 𝑇 to the place 𝑝 ∈ 𝑃. The time

delay of an outgoing arc is greater than or equal to zero ts. Moreover, the set of input

places connected to the transition 𝑡 ∈ 𝑇 is represented by ●𝑡 = {𝑝 ∈ 𝑃|𝑁(𝑝, 𝑡) ≠ 0}, and

20

the set of output places connected to the transition 𝑡 ∈ 𝑇 is represented by

𝑡●= {𝑝 ∈ 𝑃|𝑂(𝑝, 𝑡) ≠ 0}.

In 𝐺𝐴, time elements are used to describe flowing tokens, and they are attached to

outgoing arcs. A time element attached to an outgoing arc from the transition 𝑡 ∈ 𝑇 to the

corresponding place 𝑝 ∈ 𝑡● is denoted by ℎ𝑝
𝑡 . The cardinality of time elements is equal

to the number of nonzero elements of the time delay matrix 𝐷. Each time element is

associated with its outgoing arc. All these elements are shown as

∇:= {ℎ𝑝
𝑡 |𝑂(𝑝, 𝑡) ≥ 1 and 𝐷(𝑝, 𝑡) ≥ 1}, namely the set of time elements. However, some

outgoing arcs may have zero-time delay even if their weights are greater than one; as a

result, time elements for zero-time delayed outgoing arcs are not used in the state of

TdAPN in order to avoid operation confusion. The set ∇ is disjoint from both the set of

places and transitions. The state of TdAPN is represented by 𝑆(𝑘):= {𝑴(𝑘), 𝛁𝑹(𝑘)}.

Here, 𝑘 ∈ ℕ represents the discrete time variable that is discretized into time slots (ts)

using an appropriate sampling period. The status of tokens at places at time 𝑘 is

represented by the marking vector 𝑴(𝑘): 𝑃 → ℕ, and the status of flowing tokens at time

elements at time 𝑘 is represented by the remaining time vector 𝛁𝑹(𝑘): ∇→ ℕ in terms of

time slots. Note that its initial state is indicated as 𝑆(𝑘0):= {𝑴(𝑘0), 𝛁
𝑹(𝑘0)}, i.e., 𝑆0: =

{𝑴0, 𝛁
𝑹0}, where 𝑴(𝑘0) = 𝑴0 and 𝛁𝑹(𝑘0) = 𝛁

𝑹0. In addition, in this thesis, 𝑀(𝑘, 𝑝) ∈

ℕ of 𝑴(𝑘) is used to represent the number of tokens at the place 𝑝 ∈ 𝑃 at time 𝑘, and

∇𝑅(𝑘, ℎ𝑝
𝑡) ∈ ℕ of 𝛁𝑹(𝑘) is used to represent the remaining time of flowing tokens at the

time element ℎ𝑝
𝑡 ∈ ∇ at time 𝑘.

On the representation of Timed PN with firing durations, the time delay 𝔡𝑡 is shown

below the bar of the transition 𝑡 as illustrated in Figure 3.1.(a); in addition, flowing tokens

are not monitored during the firing process of the transition 𝑡. In TdAPN, 𝛁𝑹(𝑘) is used

as a mathematical representation for flowing tokens. In order to depict this mathematical

representation of the time element in the graphical representation of PNs, a triangular-

formed component is introduced in the representation of TdAPNs. Thus, in addition to

mathematical sense, flowing tokens are monitored over this new component in the

graphical sense. A time element ℎ𝑝
𝑡 is graphically depicted as in Figure 3.1.(b), which is

the representation of TdAPN for the representation of Timed PN in Figure 3.1.(a).

21

(a)

p

O(p,t)

t

p

O(p,t)

t

R(k,)hp

t
D(p,t) = dt -1

hp

t

(b)

time element

hp
t connected transition tT

connected place pt●

arc's delay

arc's weight

remaining time of

the flowing tokens

O(p,t) number of

the flowing tokens

dt

at time kat time k

Figure 3.1. Representations of (a) Timed PN with firing durations and (b) TdAPN

Figure 3.1.(b) explains parts of the time element ℎ𝑝
𝑡 with its external connections

and gives mathematical entities related to this time element. The time element consists of

four parts as follows:

 The right corner with filled indicator indicates the time delay of the outgoing arc

that is 𝐷(𝑝, 𝑡). A filled triangular indicator is placed at the inner corner of the time

element ℎ𝑝
𝑡 , so as to prevent any confusion.

In order to emphasize zero-time delayed time elements, the inside of the time

element is filled with gray color. This gray-representation is only used for

indicating the time delay and weight of an outgoing arc, and is not used for

showing flowing tokens.

 The left corner without filled indicator indicates the remaining time of flowing

tokens at the time element ℎ𝑝
𝑡 at time 𝑘 that is ∇𝑅(𝑘, ℎ𝑝

𝑡). This remaining time is

indicated next to the corner as long as ∇𝑅(𝑘, ℎ𝑝
𝑡) is greater than zero ts.

 The dots inside of the triangle indicates flowing tokens (shown as dots in the time

element ℎ𝑝
𝑡 in Figure 3.1.(b)). Flowing tokens reside in the time element ℎ𝑝

𝑡 as

long as the remaining time is in the range of time interval as

1 𝑡𝑠 ≤ ∇𝑅(𝑘, ℎ𝑝
𝑡) ≤ 𝐷(𝑝, 𝑡) 𝑡𝑠. The number of flowing tokens is equal to the

weight of the outgoing arc, i.e., 𝑂(𝑝, 𝑡).

 The line at the end of the triangle indicates the weight of the outgoing arc that is

𝑂(𝑝, 𝑡). There is no need to indicate the middle line as long as 𝑂(𝑝, 𝑡) is equal to

one.

22

Let us consider the time element, such as ℎ𝑝1
𝑡1 attached onto the outgoing arc from

𝑡1 to 𝑝1. The graphical representation of ℎ𝑝1
𝑡1 is shown in Figure 3.2.

(a) (b) (c)

2

22

• • h
t1

p1

t1

p1

2

21

• • h
t1

p1

t1

p1

2

2

h
t1

p1

t1

p1

 k = k0 k = k0+1 k = k0+2

Figure 3.2. Representations of the time element

For Figure 3.2.(a)-(c); the time element ℎ𝑝1
𝑡1 ∈ ∇ has a time delay of 𝐷(𝑝1, 𝑡1) = 2 𝑡𝑠 and

is weighted by 𝑂(𝑝1, 𝑡1) = 2. Figure 3.2.(a) indicates that no flowing token is associated

with ℎ𝑝1
𝑡1 . However, in Figure 3.2.(b) and (c), two flowing tokens appear in ℎ𝑝1

𝑡1 , due to

1 𝑡𝑠 ≤ ∇𝑅(𝑘, ℎ𝑝1
𝑡1) ≤ 2 𝑡𝑠.

Let us consider some variations of graphical representations for time elements, such

as ℎ𝑝2
𝑡2 , ℎ𝑝3

𝑡3 and a time element attached onto a zero-time delayed outgoing arc. These are

shown in Figure 3.3.

(a)

3

11
• • h

t2

p2

t2

p2

• 10

72

h
t3

p3

t3

p3

10
0

t4

p4

(b) (c)

Figure 3.3. Representation of time elements

23

Here in Figure 3.3.(a) and (b), time elements ℎ𝑝2
𝑡2 and ℎ𝑝3

𝑡3 are members of the set ∇ due to

𝐷(𝑝, 𝑡) ≠ 0 𝑡𝑠. The time element in Figure 3.3.(c) is not considered in the set ∇ and the

state of 𝐺𝐴 due to 𝑂(𝑝, 𝑡) ≠ 0 and 𝐷(𝑝, 𝑡) = 0 𝑡𝑠. Let us explain these graphical

representations as follows:

 For Figure 3.3.(a);the time element ℎ𝑝2
𝑡2 ∈ ∇ has a time delay of 𝐷(𝑝2, 𝑡2) = 1 ts

and is weighted by 𝑂(𝑝2, 𝑡2) = 3. Three flowing tokens reside in ℎ𝑝2
𝑡2 . These appear

in the output place 𝑝2 ∈ 𝑡2● after ∇𝑅(𝑘, ℎ𝑝2
𝑡2) = 1 𝑡𝑠 is elapsed.

 For Figure 3.3.(b); similarly, the time element ℎ𝑝3
𝑡3 ∈ ∇ has a time delay of

𝐷(𝑝3, 𝑡3) = 7 𝑡𝑠 and is weighted by 𝑂(𝑝3, 𝑡3) = 10. Ten flowing tokens reside in

ℎ𝑝3
𝑡3 . These appear in the output place 𝑝3 ∈ 𝑡3● after ∇𝑅(𝑘, ℎ𝑝3

𝑡3) = 2 𝑡𝑠 is elapsed.

Here, during the time element ℎ𝑝3
𝑡3 , the number of flowing tokens is illustrated as

a text instead of dots because of the limited area.

 For Figure 3.3.(c); the time element attached onto a zero-time delayed outgoing

arc has a zero-time delay as 𝐷(𝑝4, 𝑡4) = 0 𝑡𝑠 and is weighted by 𝑂(𝑝4, 𝑡4)=1. This

type of time element is only used to indicate the time delay and weight of the

outgoing arc. It is neutral and not a member of the set ∇; as a result, its status is

not presented in the remaining time vector 𝛁𝑹(𝑘).

It is important to monitor flowing tokens in Timed PNs because a complete picture

of reachable states of time-delayed systems is required in many practical systems. The

proposed graphical representation of TdAPN can transform any original Timed PN into

a tripartite graph including places, transitions, and time elements. The tripartite structure

of TdAPN allows the net to start at any state and any initial-time instant. This also allows

determining all situations of tokens (some of them are stationary at places, and the rest of

them flow over time elements), which indicates all situations of states for a deterministic

timed-delay system. A time element physically indicates a continuing operation related

to an event in practice.

24

3.2. Enabledness and Next State

This section presents the enabledness rule of TdAPN based on the firing process of

TdAPN and the computation of the next state of TdAPN.

In TdAPN, a firing process related to an enabled transition 𝑡 fired at time 𝑘 = 𝜆 is

represented by 𝑡𝜆. Firing processes are considered in two groups based on their starting

time as previously activated firing process and newly activated firing process:

 The set of firing processes of TdAPN activated before time 𝑘 and not finished yet,

namely previously activated firing process, is represented by

𝐹𝑝𝑟𝑒(𝑘) ≔ {𝑡𝜆|𝜆 < 𝑘 < 𝜆 + 𝑑𝑡}.

 The set of firing processes of TdAPN started at time 𝑘 = 𝜆, namely newly

activated firing process, is represented as 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) ≔ {𝑡𝜆|𝑘 = 𝜆}.

The set of all activated firing processes, i.e., 𝐹𝑝𝑟𝑒(𝑘) ∪ 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘), of TdAPN at time

𝑘 is represented by 𝐹(𝑘):= {𝑡𝜆|𝜆 ≤ 𝑘 < 𝜆 + 𝑑𝑡 , 𝑡 ∈ 𝑇}. Here, 𝑑𝑡 ∈ ℕ\{0} is called total

duration of the firing process 𝑡𝜆 in terms of ts. It is determined by

𝑑𝑡: = max
𝑝∈𝑡●

{1 + 𝐷(𝑝, 𝑡)}, which is the sum of the maximum time delay among ingoing

arcs that is one ts and the maximum time delay among outgoing arcs.

Assumption 3.2: Only One Continuing Firing Process Related to the Same Transition -

In TdAPN, the same transition is allowed to fire once at the same time because a physical

system, such as a machine, is mostly unavailable while an event related to this system is

in progress. Thus, in this thesis, it is assumed that the transition 𝑡 is not enabled at time 𝑘

while its firing process 𝑡𝜆 ∈ 𝐹𝑝𝑟𝑒(𝑘) continues.

In TdAPN, a firing process 𝑡𝜆 is expressed in three parts in terms of starting time-

instant, ending time-instant for an output place 𝑝 ∈ 𝑡● and ending time-instant for the

firing process 𝑡𝜆 as follows:

 Starting time-instant is a time instant represented by 𝜆, where the transition 𝑡 fires

and its firing process begins at time 𝑘 = 𝜆.

At time 𝑘 = 𝜆; the firing process 𝑡𝜆 is added into the set of newly activated firing

processes, i.e., 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆) if 𝑑𝑡 is greater than one ts. Otherwise (𝑑𝑡 is equal

25

to one ts), 𝑡𝜆 is not considered in the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) because the time delay of all

outgoing arcs connected to the transition 𝑡 is equal to zero ts.

At time 𝑘 = 𝜆 + 1; 𝑁(𝑝, 𝑡) number of tokens leave all input places 𝑝 ∈ ●𝑡, and

𝑂(𝑝, 𝑡) number of flowing tokens appear in corresponding time elements of the

set ∇ that are connected to this transition. Otherwise, these tokens directly appear

in the corresponding output place 𝑝 ∈ 𝑡●.

 Ending time-instant for an output place 𝑝 ∈ 𝑡● is a time instant that is indicated

by 𝜆 + (1 + 𝐷(𝑝, 𝑡)). Note that one ts comes from the maximum time delay

among ingoing arcs. At this time instant; flowing tokens, which transit via the

time element ℎ𝑝
𝑡 ∈ ∇, finishes their transition, and 𝑂(𝑝, 𝑡) number of flowing

tokens appear in the output place 𝑝 ∈ 𝑡●.

 Ending time-instant for the firing process 𝑡𝜆 is a time instant, when the firing

process 𝑡𝜆 ends completely at time 𝑘 = 𝜆 + 𝑑𝑡; as a result, 𝑡𝜆 is removed from

𝐹(𝜆 + 𝑑𝑡).

In TdAPN, a transition 𝑡 ∈ 𝑇 is enabled at time 𝑘 at the marking vector 𝑴(𝑘) if and

only if 𝑡 satisfies the condition in (3.1) at time 𝑘 = 𝜆, 𝑡𝜆 ∉ 𝐹𝑝𝑟𝑒(𝑘) (see, Assumption 3.2).

𝑀(𝑘, 𝑝) ≥ 𝑁(𝑝, 𝑡) ≥ 1, ∀𝑝 ∈ ●𝑡 (3.1)

The set of enabled transitions at time 𝑘 is denoted by 𝐸(𝐺𝐴, 𝑘). More than one

transition 𝑡 ∈ 𝐸(𝐺𝐴, 𝑘) can be simultaneously enabled at time 𝑘. A set of transitions 𝜙 ⊆

𝐸(𝐺𝐴, 𝑘) is simultaneously enabled at time 𝑘 at the marking vector 𝑴(𝑘) if and only if

the following condition is satisfied as:

𝑀(𝑘, 𝑝) ≥∑

𝑡∈𝜙

𝑁(𝑝, 𝑡), ∀𝑝 ∈ P (3.2)

Here, the set of simultaneously-enabled transitions, 𝜙, contains more than one transition,

but it can also contain a single transition. Any set 𝜙, which satisfies the condition in (3.2),

is added into the set �̂�(𝐺𝐴, 𝑘) ⊂ 2
𝐸(𝐺𝐴,𝑘)\∅ that represents the set of sets of

simultaneously-enabled transitions at time 𝑘 at the marking vector 𝑴(𝑘). Here, 2{.}

denotes the power set of {. }. The set 𝜙 ∈ �̂�(𝐺𝐴, 𝑘) can be selected and simultaneously

fired at any time 𝑘 as long as it is enabled at time 𝑘 at 𝑴(𝑘). In this thesis, in order to

26

obtain a state in a minimum time, a transition in the selected set 𝜙 fires at time 𝑘 as soon

as it is enabled at time 𝑘 at 𝑴(𝑘).

The next state of TdAPN is represented by 𝑆(𝑘 + 1) = {𝑴(𝑘 + 1), 𝛁𝑹(𝑘 + 1)}:

𝑀(𝑘 + 1, 𝑝) ≔ 𝑀(𝑘, 𝑝) + ∑

𝑡𝜆∈𝐹(𝑘)

(𝛿[𝑘 − (𝜆 + 𝐷(𝑝, 𝑡))]. 𝑂(𝑝, 𝑡) − 𝛿[𝑘 − 𝜆].𝑁(𝑝, 𝑡)) (3.3)

∇𝑅(𝑘 + 1, ℎ𝑝
𝑡) ≔ ∇𝑅(𝑘, ℎ𝑝

𝑡) + ∑

𝑡𝜆∈𝐹(𝑘)

(𝛿[𝑘 − 𝜆]. 𝐷(𝑝, 𝑡) − ∑

𝜆+𝐷(𝑝,𝑡)

𝑙=𝜆+1

𝛿[𝑘 − 𝑙])

(3.4)

, where 𝑀(𝑘 + 1, 𝑝) is the next marking vector at time 𝑘 + 1 for the place 𝑝 ∈ 𝑃, and

∇𝑅(𝑘 + 1, ℎ𝑝
𝑡) is the next remaining time vector at time 𝑘 + 1 for the time element

ℎ𝑝
𝑡 ∈ ∇. Here in the above equations, 𝛿[𝑘] ∈ {0,1}, 𝑘 ∈ ℕ, denotes the discrete-time unit

impulse function. When enabled transitions of the set 𝜙 ∈ �̂�(𝐺𝐴, 𝑘) fire at time 𝑘, firing

processes of these transitions start at time 𝑘 and are added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘). When

all newly and previously activated firing processes in the set 𝐹(𝑘) are considered at time

𝑘, 𝑆(𝑘 + 1) is computed using (3.3) and (3.4).

The tripartite structure of TdAPN allows the net to start at any state and any initial-

time instant. Using equations (3.3) and (3.4) for computing the next state of TdAPN, it is

possible to find next state including both next marking and remaining time vectors for

time 𝑘0 ≠ 0. As a result, it is possible to find all reachable states of TdAPN starting at

time 𝑘 = 𝑘0 ≠ 0.

t1 t2

2

• •

p2 p3

p1

t3

d -1t1
d -1t2

d -1t3

h
t1

p2
h

t2

p3 h
t3

p1

t1 t2

2

• •

p2 p3

p1

t3

dt1
dt2

dt3

={ , , }dt2
dt1

dt3

The Original Timed PN TdAPN

(a) (b)

Figure 3.4. Representation of TdAPN for the original Timed PN

27

Let us consider the original Timed PN in Figure 3.4.(a). The set of places is

𝑃 = {𝑝1, 𝑝2, 𝑝3}. The set of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3}. Input and output matrices are

𝑁 = [
1 1 0
0 0 1
0 0 1

] and 𝑂 = [
0 0 2
1 0 0
0 1 0

], respectively. Time delays associated with transitions are

shown by the set of time delays, i.e., 𝔇 = {𝔡𝑡1 , 𝔡𝑡2 , 𝔡𝑡3}. These time delays are arbitrarily

chosen as 𝔡𝑡1 = 3 ts, 𝔡𝑡2 = 2 ts and 𝔡𝑡3 = 4 ts for this example.

Let us convert the original Timed PN in Figure 3.4.(a) into a tripartite graph of TdAPN

including places, transitions, and time elements. This tripartite structure allows

monitoring all situations of tokens, especially flowing tokens. We obtain the

representation of TdAPN for this original Timed PN as shown in Figure 3.4.(b). The tuple

of TdAPN is defined as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0) including time elements. Here, the time-

delay matrix is expressed as follows:

𝐷 = [

0 0 𝔡𝑡3 − 1

𝔡𝑡1 − 1 0 0

0 𝔡𝑡2 − 1 0
] = [

0 0 3
2 0 0
0 1 0

].

The initial state of TdAPN is 𝑆(𝑘0) = {𝑴(𝑘0), 𝛁
𝑹(𝑘0)} = {[2 0 0]

′, [0 0 0]′}.

In 𝐺𝐴, the set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡2 , ℎ𝑝1
𝑡3 }, where 𝑂(𝑝, 𝑡) ≠ 0 and 𝐷(𝑝, 𝑡) ≠ 0.

In 𝑆(𝑘0), 𝛁
𝑹(𝑘0) is a zeros vector, such that there is no previously activated firing process

𝑡𝜆. This yields 𝐹𝑝𝑟𝑒(𝑘0) = ∅. Using conditions of enabledness in (3.1) and (3.2), the set

of enabled transitions is determined as 𝐸(𝐺𝐴, 𝑘0) = {𝑡1, 𝑡2}, and the set of sets of

simultaneously-enabled transitions is determined as �̂�(𝐺𝐴, 𝑘0) = {{𝑡1}, {𝑡2}, {𝑡1, 𝑡2}}. The

set of simultaneously-enabled transitions can be selected as 𝜙 = {𝑡1}, 𝜙 = {𝑡2} or

𝜙 = {𝑡1, 𝑡2} starting at time 𝑘 = 𝑘0. It is also possible not to select any 𝜙 at time 𝑘 = 𝑘0;

therefore, time variable 𝑘 will increase by one ts such that 𝑘 will be equal to 𝑘0 + 1.

Moreover, 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘0) is an empty set as long as any enabled set in �̂�(𝐺𝐴, 𝑘0) is selected

at 𝑆(𝑘0). In this thesis, a transition in the selected set 𝜙 ∈ �̂�(𝐺𝐴, 𝑘0) fires at time 𝑘0 as

soon as it is enabled at time 𝑘0. If the enabled set {𝑡1} ∈ �̂�(𝐺𝐴, 𝑘0) is selected and fired at

time 𝑘0, the set of active-firing transitions at 𝑆(𝑘0) is 𝐹(𝑘0) = {𝑡1
𝜆}, where

𝐹𝑠𝑡𝑎𝑟𝑡(𝑘0) = {𝑡1
𝜆} and 𝜆 = 𝑘0. Similarly, for the set {𝑡2} ∈ �̂�(𝐺𝐴, 𝑘0), the set of active-

firing transitions is 𝐹(𝑘0) = {𝑡2
𝜆}. For the set {𝑡1, 𝑡2} ∈ �̂�(𝐺𝐴, 𝑘0), the set of active-firing

transitions is 𝐹(𝑘0) = {𝑡1
𝜆, 𝑡2

𝜆}.

28

Suppose that the transition 𝑡1 ∈ �̂�(𝐺𝐴, 𝜆) is selected to fire at time 𝑘 = 𝜆 such that

the firing process 𝑡1
𝜆 starts at time 𝜆, and it is added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) = {𝑡1

𝜆},

𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆). Let us monitor calculations of discrete-time unit impulse functions and

state evolutions both in places and time elements for the firing process 𝑡1
𝜆. Time instants

for the firing process 𝑡1
𝜆 are as follows:

 The firing time of the transition 𝑡1 is 𝑘 = 𝜆, i.e., the starting time is 𝜆 for the firing

process 𝑡1
𝜆.

 The ending time for 𝑝2 ∈ 𝑡1● is 𝜆 + (1 + 𝐷(𝑝2, 𝑡1)) = 𝜆 + 3, where 𝑡1● = {𝑝2}

and 𝐷(𝑝2, 𝑡1) = 2 𝑡𝑠. This is also the ending time for 𝑡1
𝜆 that is 𝜆 + 𝑑𝑡1= 𝜆 + 3.

As a result of 𝑡1
𝜆, next marking vectors are computed using (3.3) and discrete-time

unit impulse functions as given in Table 3.1. The first column denotes the discrete-time

𝑘. The second column gives the present marking vector 𝑴(𝑘), and its next marking vector

𝑴(𝑘 + 1) is given in the last column. The third column indicates the activated firing

process 𝑡1
𝜆 ∈ 𝐹(𝑘). The fourth column represents calculations of discrete-time impulse

functions for the output side, while the fifth column denotes calculations of discrete-time

impulse functions for the input side.

Table 3.1. Computing M(k+1) using impulse functions when t1 fires at k=

𝑘 𝑴(𝑘) 𝐹(𝑘)
Output Side

𝛿[𝑘 − (𝜆 + 𝐷(𝑝, 𝑡))]. 𝑂(𝑝, 𝑡)

Input Side

−𝛿[𝑘 − 𝜆]. 𝑁(𝑝, 𝑡)

Next

Marking

𝑴(𝑘 + 1)

- [
2
0
0
] ∅ - - [

2
0
0
]

𝜆 [
2
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − (𝜆 + 3)]. 0

𝛿[𝑘 − (𝜆 + 3)]. 1

𝛿[𝑘 − (𝜆 + 3)]. 0

] = [
0
0
0
] − [

𝛿[𝑘 − 𝜆]. 1

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = − [
1
0
0
] [

1
0
0
]

𝜆 + 1 [
1
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − (𝜆 + 3)]. 0

𝛿[𝑘 − (𝜆 + 3)]. 1

𝛿[𝑘 − (𝜆 + 3)]. 0

] = [
0
0
0
] − [

𝛿[𝑘 − 𝜆]. 1

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = − [
0
0
0
] [

1
0
0
]

𝜆 + 2 [
1
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − (𝜆 + 3)]. 0

𝛿[𝑘 − (𝜆 + 3)]. 1

𝛿[𝑘 − (𝜆 + 3)]. 0

] = [
0
1
0
] − [

𝛿[𝑘 − 𝜆]. 1

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = − [
0
0
0
] [

1
1
0
]

𝜆 + 3 [
1
1
0
] ∅ - - [

1
1
0
]

29

In addition, as a result of 𝑡1
𝜆, next remaining time vectors are computed using (3.4)

and discrete-time unit impulse functions as given in Table 3.2. The first column denotes

the discrete-time 𝑘. The second column gives the present remaining time vector 𝛁𝑹(𝑘)

and its next remaining time vector 𝛁𝑹(𝑘 + 1) is given in the last column. The third

column indicates the activated firing process 𝑡1
𝜆 ∈ 𝐹(𝑘). The fourth and fifth columns

represent calculations of discrete-time impulse functions for the remaining time.

Remember that this vector is defined as 𝛁𝑹(𝑘): ∇→ ℕ and the set of time elements is

∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡2 , ℎ𝑝1
𝑡3 }.

Table 3.2. Computing R(k+1) using impulse functions when t1 fires at k=

𝑘 𝛁𝑹(𝑘) 𝐹(𝑘)
Delay Assignment

𝛿[𝑘 − 𝜆]. 𝐷(𝑝, 𝑡)

Summation

−∑ 𝛿[𝑘 − 𝑙]
𝜆+𝐷(𝑝,𝑡)

𝑙=𝜆+1

Next

Remaining

𝛁𝑹(𝑘 + 1)

- [
0
0
0
] ∅ - - [

0
0
0
]

𝜆 [
0
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − 𝜆]. 2

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = [
2
0
0
] −

[

 ∑ 𝛿[𝑘 − 𝑙]

𝜆+2

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1]

= − [
0
0
0
] [

2
0
0
]

𝜆 + 1 [
2
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − 𝜆]. 2

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = [
0
0
0
] −

[

 ∑ 𝛿[𝑘 − 𝑙]

𝜆+2

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1]

= − [
1
0
0
] [

1
0
0
]

𝜆 + 2 [
1
0
0
] {𝑡1

𝜆} [

𝛿[𝑘 − 𝜆]. 2

𝛿[𝑘 − 𝜆]. 0

𝛿[𝑘 − 𝜆]. 0

] = [
0
0
0
] −

[

 ∑ 𝛿[𝑘 − 𝑙]

𝜆+2

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1

∑ 𝛿[𝑘 − 𝑙]
𝜆

𝑙=𝜆+1]

= − [
1
0
0
] [

0
0
0
]

𝜆 + 3 [
0
0
0
] {∅} - - [

0
0
0
]

Let us consider another original Timed PN in Figure 3.5.(a). Its representation of

TdAPN is given in Figure 3.5.(b), where time delays of the original Timed PN are

arbitrarily chosen as 𝔡𝑡1 = 3 ts and 𝔡𝑡2 = 1 ts.

30

t1

p2

p1

p3

t2

p4

dt1

dt2

={3, 1}

h
t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

h
t1

p4

2 2 2

0

The Original Timed PN

(a)

The Representation of TdAPN

after Time-Delay Assignment

(b)

Figure 3.5. Representation of TdAPN for the original Timed PN in (a)

The representation of TdAPN in Figure 3.5.(b) is expressed as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0)

including time elements. Here, the set of places is 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} and the set of

transitions is 𝑇 = {𝑡1, 𝑡2}. The input matrix, the output matrix, and the time delay matrix

are as follows, respectively:

𝑁 = [

1 0
0 1
0 1
1 0

], 𝑂 = [

0 1
1 0
1 0
1 0

], 𝐷 =

[

0 𝔡𝑡2 − 1

𝔡𝑡1 − 1 0

𝔡𝑡1 − 1 0

𝔡𝑡1 − 1 0]

= [

0 0
2 0
2 0
2 0

].

The initial state is 𝑆(𝑘0) = {[0 1 0 1]
′, [0 0 0]′}. For TdAPN in Figure 3.5.(b), The set of

time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡1 , ℎ𝑝4
𝑡1 }.

In Timed PNs, the time delay of a transition 𝑡 is represented by 𝔡𝑡 ts as shown in

Figure 3.5.(a), where 𝔡𝑡 denotes the total duration of an event related to 𝑡. In order to

associate the time delay 𝔡𝑡 of the original Timed PN with the representation of TdAPN,

one ts is assigned to all ingoing arcs of the transition 𝑡 (see, Assumption 3.1) and 𝔡𝑡 − 1

ts is directly assigned to all outgoing arcs of the transition 𝑡 as shown in the representation

of TdAPN in Figure 3.5.(b). However, TdAPN also allows assigning time delays

distinctly as long as 𝑑𝑡 of TdAPN is equal to 𝔡𝑡 of the original Timed PN. Time delays

transferred to events can be differentiated at outgoing arcs of Timed-Arc PNs. This

representation, where time delays are distinctly assigned to outgoing arcs that are

connected to the same transition, is shown in Figure 3.6 as an alternative representation

31

of TdAPN. This representation is required in practice when different operations (in this

case, output places together with corresponding outgoing arcs and time elements)

connected to the same event (in this case, the transition) have different time delays.

Distinct

Time-Delay

Assignment

0 1 2

0

The Original TdAPN Another Representation of TdAPN

with distinct time-delay assignment

(a) (b)

h
t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

h
t1

p4

2 2 2

0
h

t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

Figure 3.6. Another representation of TdAPN with distinct time delays

In order to indicate that time delays are also differently assigned to outgoing arcs

in TdAPNs, let us change time delays of TdAPN in Figure 3.5.(b) that are distinctly

assigned to outgoing arcs of the transition 𝑡1. This representation of TdAPN is shown in

Figure 3.6.(b). Here, 𝐷(𝑝, 𝑡1) has different values for output places 𝑝2 and 𝑝4 of the set

𝑡1●, and the set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡1 }. Thus, the initial state of TdAPN in

Figure 3.6.(b) becomes 𝑆(𝑘0) = {[0 1 0 1]
′, [0 0]′}, and the time delay matrix for this

TdAPN is as follows:

𝐷 =

[

0 𝔡𝑡2 − 1

𝔡𝑡1 − 2 0

𝔡𝑡1 − 1 0

𝔡𝑡1 − 3 0]

= [

0 0
1 0
2 0
0 0

].

The assignment of time delays to arcs instead of transitions allows differentiation of the

token evolution at each output place 𝑝 ∈ 𝑡1●. Therefore, faster outputs (𝑝2 and 𝑝4 in this

case) complete their token evolution without waiting for the slowest output (𝑝3 in this

case). Moreover, it is also possible to set all outgoing arc’s delays so that they are equal

to a fixed duration of 𝔡𝑡1 − 1 𝑡𝑠, where the condition of 𝔡𝑡1 = 𝑑𝑡1 is satisfied (see, Figure

32

3.6.(a)). However, in this case, different time labels are selected by satisfying the

condition of 𝑑𝑡1 = 𝔡𝑡1 = 3 𝑡𝑠, where 𝑑𝑡1 = 𝑚𝑎𝑥
𝑝∈𝑡1●

{1 + 𝐷(𝑝, 𝑡1)}.

1 2

(a) (b)

(c)

0

0

1 20

0

1 2

1 20

0

1 1 20

0

(d)

k= k=(+1)+D(p4,t1) =+1

k=(+1)+D(p2,t1) =+2 k=(+1)+D(p3,t1) = +dt =+3
1

h
t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3
h

t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

h
t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3
h

t1

p2

t1

p2

p1

p3

t2

p4

h
t1

p3

Figure 3.7. Example firing process of t1 for TdAPN in Figure 3.6.(b)

Let us consider another representation of TdAPN in Figure 3.6.(b). This TdAPN is

shown in Figure 3.7.(a). When the enabled transition 𝑡1 of the set 𝜙 ∈ �̂�(𝐺𝐴, 𝑘0) fires at

time 𝑘 = 𝜆,

33

 The firing process 𝑡1
𝜆 ∉ 𝐹𝑝𝑟𝑒(𝜆) related to the transition 𝑡0, where 𝐹𝑝𝑟𝑒(𝜆) = ∅,

starts at the starting time-instant 𝑘 = 𝜆, during which it is considered to be

disabled; as a result, the transition 𝑡1 is added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆), where

𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) = {𝑡1
𝜆} such that 𝐹(𝜆) is equal to 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆). Note that the ending time-

instant for 𝑡1
𝜆 is 𝜆 + 𝑑𝑡1 that is 𝜆 + 3 (see, Figure 3.7.(a)).

 At time 𝑘 = (λ + 1) + 𝐷(𝑝4, 𝑡1) = 𝜆 + 1, 𝑂(𝑝4, 𝑡1) = 1 number of tokens

directly appear in 𝑝4 ∈ 𝑡1●. In addition, 𝑂(𝑝2, 𝑡1) = 1 number of tokens reside in

the time element ℎ𝑝2
𝑡1 . Similarly, 𝑂(𝑝3, 𝑡1) = 1 number of tokens reside in the time

element ℎ𝑝3
𝑡1 . The firing process 𝑡1

𝜆 continues and it is in 𝐹𝑝𝑟𝑒(𝜆 + 1) ⊆ 𝐹(𝜆 + 1),

where 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆 + 1) = ∅ and 𝐹𝑝𝑟𝑒(𝜆 + 2) = {𝑡1
𝜆} such that 𝐹(𝜆 + 1) is equal to

𝐹𝑝𝑟𝑒(𝜆 + 1) (see, Figure 3.7.(b)).

 At time 𝑘 = (λ + 1) + 𝐷(𝑝2, 𝑡1) = 𝜆 + 2, 𝑂(𝑝2, 𝑡1) = 1 number of flowing

tokens at ℎ𝑝2
𝑡1 disappear, and these tokens appear in 𝑝2 ∈ 𝑡1●. The firing process

𝑡1
𝜆 continues and it is in 𝐹𝑝𝑟𝑒(𝜆 + 2) ⊆ 𝐹(𝜆 + 2), where 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆 + 2) = ∅ and

𝐹𝑝𝑟𝑒(𝜆 + 2) = {𝑡1
𝜆} such that 𝐹(𝜆 + 2) = 𝐹𝑝𝑟𝑒(𝜆 + 2) (see, Figure 3.7.(c)).

 At time 𝑘 = (𝜆 + 1) + 𝐷(𝑝3, 𝑡1) = 𝜆 + 3, 𝑂(𝑝3, 𝑡1) = 1 number of flowing

tokens at ℎ𝑝3
𝑡1 disappear, and these tokens appear in 𝑝3 ∈ 𝑡1●. This time instant is

also the ending time-instant for 𝑡1. Thus, the firing process 𝑡1
𝜆 ends, and the

transition 𝑡1 can be reconsidered for enabledness rule. 𝑡1
𝜆 is not in 𝐹𝑝𝑟𝑒(𝜆 + 3) ⊆

𝐹(𝜆 + 3) anymore, where 𝐹𝑝𝑟𝑒(𝜆 + 3) = ∅ (see, Figure 3.7.(d)).

3.3. Behavioral Properties of Timed-Arc Petri Nets

In TdAPN, the state of 𝐺𝐴 at time 𝑘 is previously defined as 𝑆(𝑘) = {𝑴(𝑘), 𝛁𝑹(𝑘)}.

This notation is used in online computations of states for 𝐺𝐴. The set of all reachable

states from the initial state 𝑆0, namely reachability set, is denoted by 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0,

𝑆1, …} (e.g., see, Table 3.3). Here, each obtained state during computations is represented

by 𝑆𝑗 ≔ {𝑴𝑗 , 𝛁
𝑹𝒋} without any 𝑘 notation, where 𝑗 = 0,1, … , |𝑅𝑆(𝐺𝐴, 𝑆0)| − 1. In brief,

the state of 𝐺𝐴 without any 𝑘 notation is represented as 𝑆 = {𝑴, 𝛁𝑹}. For any 𝑆 ∈

𝑅𝑆(𝐺𝐴, 𝑆0), it is possible to find parts, such as 𝑴 = 𝛾1(𝑆) and 𝛁𝑹 = 𝛾2(𝑆). Here, the

function 𝛾𝑖(𝑆) gives the 𝑖 ‘th part of 𝑆.

34

Assumption 3.3: Reachability set for the bounded TdAPNs - In this thesis, it is assumed

that all considered PNs are bounded (see, Definition 3.2 for the definition of

boundedness).

The relation between elements of the set 𝑅𝑆(𝐺𝐴, 𝑆0) can be represented by a graph,

namely timed-reachability graph/tree. Timed-reachability tree, which is enhanced by the

time information, depicts the complete dynamic picture of time-delayed systems (see,

Figure 3.8). Each arrow in the timed-reachability graph indicates one ts (see, Figure 3.8).

Thus, it is possible to find the minimum time to reach from any state to any state. The

reachability set is constructed for the given TdAPN during online computations by using

the algorithms given in Chapter 7. Moreover, note that 𝛁𝑹 = 𝛾2(𝑆) includes the

remaining-time (duration) information about flowing tokens, which is independent of

discrete-time notation 𝑘. States in 𝑅𝑆(𝐺𝐴, 𝑆0) are used for offline computations without

any 𝑘 notation.

In TdAPN, the set of enabled transitions at 𝛾1(𝑆) is represented by 𝐸(𝐺𝐴, 𝛾1(𝑆)).

A transition 𝑡 ∈ 𝑇 is enabled at 𝛾1(𝑆) if and only if it satisfies the following condition as:

𝛾1(𝑆)(𝑝) ≥ 𝑁(𝑝, 𝑡) ≥ 1, ∀𝑝 ∈ ●𝑡 , 𝑡 ∉ 𝐹𝑝𝑟𝑒(𝑆) (3.5)

Here, 𝛾1(𝑆)(𝑝) ∈ ℕ (𝑴 = 𝛾1(𝑆)) denotes the number of tokens at the place 𝑝 ∈ 𝑃, and

𝐹𝑝𝑟𝑒(𝑆) is determined according to the time duration information in 𝛾2(𝑆) and is defined

as follows:

𝐹𝑝𝑟𝑒(𝑆) ≔ {𝑡|𝛁𝑹 = 𝛾2(𝑆)(ℎ𝑝
𝑡) ≠ 0} (3.6)

Here, 𝛾2(𝑆)(ℎ𝑝
𝑡) ∈ ℕ (𝛁𝑹 = 𝛾2(𝑆)) denotes the remaining time of flowing tokens at the

time element ℎ𝑝
𝑡 ∈ ∇. 𝐹𝑝𝑟𝑒(𝑆) represents the set of transitions whose firing processes

activated previously and not finished yet. An analogy between 𝐹𝑝𝑟𝑒(𝑆) and 𝐹𝑝𝑟𝑒(𝑘) can

be established. While 𝐹𝑝𝑟𝑒(𝑘) is the time-counterpart of 𝐹𝑝𝑟𝑒(𝑆) and contains previously

activated firing processes 𝑡𝜆, 𝐹𝑝𝑟𝑒(𝑆) shows previously activated transitions for the state

𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) according to the remaining time information in the remaining-time vector

𝛁𝑹 = 𝛾2(𝑆). In addition, �̂�(𝐺𝐴, 𝛾1(𝑆)) ⊂ 2𝐸(𝐺𝐴,𝛾1(𝑆))\∅ is used for representing the set

of sets of simultaneously-enabled transitions at 𝛾1(𝑆). The set of simultaneously enabled

35

transitions satisfies the condition 𝛾1(𝑆)(𝑝) ≥ ∑𝑡∈𝜙 𝑁(𝑝, 𝑡) for all 𝑝 ∈ P, where

𝜙 ⊆ 𝐸(𝐺𝐴, 𝛾1(𝑆)). This condition is similar to (3.2) without 𝑘 notation.

In order to permit analysis of the proposed TdAPN, this section presents behavioral

properties of TdAPN. Behavioral properties of the basic PN, which are boundedness and

safeness, liveness, deadlock, and reversibility, are adapted to TdAPNs. Moreover, a new

behavioral property, such as dynamicity, is defined for TdAPNs as given in following

definitions.

Definition 3.1: Dynamicity - Typically, states of 𝐺𝐴 are divided into two types, such as

relaxed states and dynamic states. A state 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) is called a relaxed state if

𝛾2(𝑆) = 𝟎|∇|×1, where 𝟎|∇|×1 represents a |∇| by 1 sized zeros vector. Relaxed states

preserve their status and do not yield another state in 𝑅𝑆(𝐺𝐴, 𝑆0) until any enabled set 𝜙 ∈

�̂�(𝐺𝐴, 𝛾1(𝑆)) is selected (e.g., see, Table 3.3: 𝑆0, 𝑆6, 𝑆9, 𝑆11, 𝑆15, and 𝑆18). On the other

hand, a state 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) is called a dynamic state if 𝛾2(𝑆) ≠ 𝟎|∇|×1 (e.g., see, Table

3.3: 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆7, 𝑆8, 𝑆10, 𝑆12, 𝑆13, 𝑆14, 𝑆16, 𝑆17, and 𝑆19). Dynamic states indicate

that at least one firing process of a transition is active (𝐹𝑝𝑟𝑒(𝑆) ≠ ∅); as a result, an event

related to this firing process is still in progress. Moreover, they indicate the status and

existence of flowing tokens. Dynamic states do not preserve its status; in addition, they

lead the system to another state in 𝑅𝑆(𝐺𝐴, 𝑆0).

Definition 3.2: Boundedness and Safeness – The property of boundedness is defined

through the marking vector 𝛾1(𝑆) and tokens at places. 𝐺𝐴 is said to be 𝑩 bounded if there

exists a bound vector 𝑩:𝑃 → ℕ such that:

𝛾1(𝑆)(𝑝) ≤ 𝐵(𝑝), ∀𝑝 ∈ 𝑃, ∀𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) (3.7)

Here, 𝐵(𝑝) is the 𝑝 ‘th element of the bound vector 𝑩 and is determined by

𝐵(𝑝):= max
𝑆∈𝑅𝑆(𝐺𝐴,𝑆0)

{𝛾1(𝑆)(𝑝)}. Moreover, 𝐺𝐴 is said to be safe if 𝑩 = 𝟏|𝑃|×1, where

𝟏|𝑃|×1 represents a |𝑃| by 1 sized ones vector.

36

Definition 3.3: Liveness - A transition 𝑡 ∈ 𝑇 is said to be live if, for all states

𝑆𝑗 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), there exists 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆𝑗) such that 𝑡 ∈ 𝜙 while 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)). All

live transitions are considered in the set �̂� ⊆ 𝑇. Therefore, 𝐺𝐴 is considered to be �̂�-live

if �̂� ⊂ 𝑇, and 𝐺𝐴 is considered to be live if �̂� = 𝑇, which is 𝑇-live.

Definition 3.4: Deadlock – A dynamic state yields a new state based on time durations

in its remaining time vector so that dynamic states reach a relaxed state at the end. Thus,

the deadlock property of 𝐺𝐴 is examined over relaxed states. Any relaxed state 𝑆 ∈

𝑅𝑆(𝐺𝐴, 𝑆0) is considered to be a deadlock state if 𝛾2(𝑆) = 𝟎|∇|×1 and �̂�(𝐺𝐴, 𝛾1(𝑆)) = ∅

(e.g., see, Figure 3.8: 𝑆15 and 𝑆18 are deadlock states). Note that 𝐺𝐴 is not live if it has

any deadlock state. In TdAPN, the set of deadlock states is represented by ℒ̃0 ⊆

𝑅𝑆(𝐺𝐴, 𝑆0) as follows:

ℒ̃0: = {𝑆 = {𝛾1(𝑆), 𝛾2(𝑆)} | 𝛾2(𝑆) = 𝟎|∇|×1 and �̂�(𝐺𝐴, 𝛾1(𝑆)) = ∅ } (3.8)

Definition 3.5: Reversibility - If the initial state 𝑆0 ∈ 𝑅𝑆(𝐺𝐴, 𝑆) is reachable from all states

𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), then 𝐺𝐴 is considered as reversible. Note that 𝐺𝐴 is not reversible if it has

any deadlock state.

Let us analyze behavioral properties of the TdAPN given in Figure 3.4.(b). For this

TdAPN, the reachability set is obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆19}. 20 states of

TdAPN in Figure 3.4.(b) are obtained as given in Table 3.3. In this table, the minimum

time to reach each state 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) from the initial state 𝑆0 is indicated in the first

column. Remember that a transition in the selected set 𝜙 fires at time 𝑘 as soon as it is

enabled at time 𝑘 at 𝑴(𝑘); as a result, the minimum time to reach any state 𝑆 from 𝑆0 is

obtained in terms of ts. 𝑆0 is initially reachable such that the minimum time is considered

zero ts. The state 𝑆 = {𝑴 = 𝛾1(𝑆), 𝛁
𝑹 = 𝛾2(𝑆)} is indicated in the third column with its

label 𝑆𝑗 in the second column. The possible set of simultaneously-enabled transitions

𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)) is indicated in the fourth column. According to the selection of 𝜙, the

next state is indicated in the last column.

37

Table 3.3. Reachability set for TdAPN in Figure 3.4.(b)

k
State-Label State 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0)

The Selected Set of

Events Next State

𝑆𝑗 {𝑴 = 𝛾1(𝑆), 𝛁
𝑹 = 𝛾2(𝑆)} 𝜙 ∈ �̂� (𝐺𝐴, 𝛾1(𝑆𝑗))

0 †S0 {[2 0 0]', [0 0 0]'}

- †S0

{𝑡1} S1

{𝑡2} S2

{𝑡1, 𝑡2} S3

1

S1 {[1 0 0]', [2 0 0]'}
- S4

{𝑡2} S5

S2 {[1 0 0]', [0 1 0]'}
- †S6

{𝑡1} S7

S3 {[0 0 0]', [2 1 0]'} - S8

2

S4 {[1 0 0]', [1 0 0]'}
- †S9

{𝑡2} S10

S5 {[0 0 0]', [1 1 0]'} - †S11

†S6 {[1 0 1]', [0 0 0]'}

- †S6

{𝑡1} S7

{𝑡2} S12

S7 {[0 0 1]', [2 0 0]'} - S8

3

S8 {[0 0 1]', [1 0 0]'} - †S11

†S9 {[1 1 0]', [0 0 0]'}

- †S9

{𝑡1} S13

{𝑡2} S10

S10 {[0 1 0]', [0 1 0]'} - †S11

†S11 {[0 1 1]', [0 0 0]'}
- †S11

{𝑡3} S14

S12 {[0 0 1]', [0 1 0]'} - *S15

4

S13 {[0 1 0]', [2 0 0]'} - S16

S14 {[0 0 0]', [0 0 3]'} - S17

*S15 {[0 0 2]', [0 0 0]'} - *S15

5
S16 {[0 1 0]', [1 0 0]'} - *S18

S17 {[0 0 0]', [0 0 2]'} - S19

6
*S18 {[0 2 0]', [0 0 0]'} - *S18

S19 {[0 0 0]', [0 0 1]'} - †S0

†
 denotes relaxed states and * denotes relaxed and deadlock states. "-" means that there is no selection of

𝜙 (𝜙 can be considered as an empty set).

States 𝑆0, 𝑆6, 𝑆9, 𝑆11, 𝑆15, and 𝑆18 are relaxed states, while rest of states are dynamic

states. These relaxed states are similar to states of its equivalent untimed PN. For dynamic

states, they have time durations in their remaining time vectors 𝛾2(𝑆) and do not preserve

their statuses. Dynamic states yield another state in 𝑅𝑆(𝐺𝐴, 𝑆0). For instance; note that,

although �̂�(𝐺𝐴, 𝛾1(𝑆3)) is an empty set, the state 𝑆3 reaches to the state 𝑆8 after one ts is

38

elapsed. Here, 𝑆3 is a dynamic state that yields 𝑆8, and the status of flowing tokens is

indicated in 𝛾2(𝑆3). 𝑆8 is also a dynamic state. The boundedness is examined through the

marking vector 𝛾1(𝑆) and tokens at places. The bound vector is found as

𝑩 = [2 2 2]′ such that the given TdAPN is not safe due to 𝐵(𝑝) > 1 for places 𝑝1, 𝑝2,

and 𝑝3. This vector is determined according to the information in 𝑴 = 𝛾1(𝑆) for all

𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0). States 𝑆15 and 𝑆18 are deadlock states, where the set of deadlocks is

ℒ̃0 = {𝑆15, 𝑆18}. As a result, the net is not live and is also not reversible due to

𝑆0 ∉ 𝑅𝑆(𝐺𝐴, 𝑆15) and 𝑆0 ∉ 𝑅𝑆(𝐺𝐴, 𝑆18). Furthermore, the timed-reachability graph, which

is enhanced by the time information for the given TdAPN in Figure 3.4.(b), is shown in

Figure 3.8.

t1

t2

S1 t2

S4 t2

t1

t2

S13 S16

S10

S5

S2

t1
S7

t1

t2

S8

t3

S12

S19

S14

S17

S3S0

S6

S9

S11

S18

S15

t1,t2

Figure 3.8. Timed-reachability tree for TdAPN in Figure 3.4.(b)

Figure 3.8 indicates all reachable states and the relation between them. In this

figure, each arrow has an elapsed one ts time delay, and the choice of enabled transitions

with regard to the enabled set 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)) is also shown next to the arrows. Using

this time information, it is possible to find how many time slots required for reaching

39

from any state to any state. For example, the state 𝑆11 is reachable from the initial state

𝑆0 by the path (𝑆0𝑆3𝑆8𝑆11) of {𝑡1, 𝑡2} after three ts has elapsed. This is the

minimum time duration to reach 𝑆11. However, it is also reachable using the path

(𝑆0𝑆1𝑆4𝑆10𝑆11) of {𝑡1, 𝑡2} after four ts has elapsed. Similarly, it is also reachable

using the path (𝑆0𝑆1𝑆4𝑆9𝑆10𝑆11) of {𝑡1, 𝑡2} after five ts has elapsed. In Figure

3.8, relaxed states are illustrated by octagonal boxes while dynamic states are illustrated

in circular boxes; and double octagonal boxes within the red color indicate deadlocks.

The initial state is indicated in the green color. Remember that when the system is in a

dynamic state, it means that flowing tokens are in the process of being transmitted. In

addition, when the system is in a relaxed state, it means that there is no flowing token and

this relaxed state is identical to that of its equivalent untimed PN.

40

4. COMPARISONS

The proposed TdAPN is a new model for Timed PNs in order to represent,

mathematically and graphically, temporal dynamics that become invisible during the

firing process of Timed PNs with firing delays. In order to evaluate the performance of

the proposed methodology, Stretched PNs [11-14, 46, 47], such as Transition-Stretched

PN and Place-Stretched PN, are considered. This chapter presents the performance of the

proposed TdAPN compared to Transition-Stretched PN [11-14] and Place-Stretched PN

[46, 47] for the same original Timed PN. The performance is performed via case-studies

in three ways, such as state-representation, computational complexity and computation

time.

The following subsections present comparisons of TdAPN with Stretched PNs in

terms of state-representation, computational complexity and computational times.

4.1. State-Representations

In this chapter, a case study of starting an engine and other case studies given in

Chapter 6 are considered in evaluating the performance of TdAPN compared to Stretched

PNs. A simple representative sketch of starting the engine is illustrated in Figure 4.1.

The flag of the motor

ECU is activated.

The vehicle ECU sends pulses for

3 seconds to start the engine

The engine is on. (Starts)

p3

p2

t1

Start the engine

Stop the engine

t2

The engine stops after

1 second has elapsed.

The engine is off. (Stops)

p1

h
t1

p3

The flag of the Motor

ECU shall be on after

1 second has elapsed.

Figure 4.1. Simple representative example of starting an engine

41

In Figure 4.1, the engine is initially off. When a button for starting the engine is

pressed (event 𝑡1), the Motor Electronic Control Unit (MECU) is activated immediately

(considered as a flag in 𝑝2), and the Vehicle Electronic Control Unit (VECU) sends pulses

for three seconds (considered in the time element ℎ𝑝3
𝑡1) in order to start the engine. Then,

the engine starts (considered as 𝑝3) after three seconds have elapsed. When a button for

stopping the engine is pressed (event 𝑡2), the engine stops after one second has elapsed.

The Greatest Common Divisor of three and one seconds is one second; as a result, the

appropriate sampling period can be chosen as one ts is equal to one second that is 1000

milliseconds. This example is modeled using Timed PN with holding durations, Place-

Stretched PN, and the proposed TdAPN as illustrated in Figure 4.2, respectively.

t1

p2 p3 (3)

p1

t2

The Original Timed PN

with Holding Durations

•

t1

p2

p1

t2

The Representation of

Place-Stretched PN

•

p
p3

1

t
p3

1

p3

t1

p2 p3

p1

t2

The Representation of

TdAPN

•

0

dt2
=1 ts

2
h

t1

p3

0

t
p3

2

p
p3

2

(a) (b) (c)

Figure 4.2. Another representation of the engine example in Figure 4.1

Physical meanings of places, transitions and time elements in these models are as

follows:

 𝑝1 denotes the off-state of the engine. If a token exists, it means the engine stops.

 𝑝2 denotes the status of the flag of MECU. If a token exists, it means MECU is

active.

 𝑝3 denotes the on-state of the engine. If a token exists, it means the engine runs.

42

 𝑡1 denotes the event of pressing the button to start the engine.

 𝑡2 denotes the event of pressing the button to stop the engine.

 The pair of 𝑝1
𝑝3 and 𝑡1

𝑝3 and the pair of 𝑝2
𝑝3 and 𝑡2

𝑝3 are additional elements to

stretch the place 𝑝2 of the original Timed PN with holding durations in Figure

4.2.(a). In Place-Stretched PN, the meaning of the place 𝑝3 is transferred to the

place 𝑝2
𝑝3.

 ℎ𝑝3
𝑡1 in Figure 4.2.(c) denotes that VECU is sending pulses to start the engine. This

operation takes two ts. Note that it requires three seconds in Figure 4.1, but the

assignment of this time delay in TdAPN is equal to one minus of this time delay.

The representation of Place-Stretched PN for Timed PN in Figure 4.2.(a) is given

in Figure 4.2.(b). However, Stretched PN brings with extra additional elements (𝑝1
𝑝3, 𝑡1

𝑝3,

𝑝2
𝑝3, 𝑡2

𝑝3) compared to the original Timed PN model. The pair of transition-place is added

into Place-Stretched PN in Figure 4.2.(b) to represent Timed PN in Figure 4.2.(a). On the

other hand, the system in Figure 4.1 is modeled using the proposed TdAPN as shown in

Figure 4.2.(c). In order to represent the time delay of the place 𝑝3 in Figure 4.2.(a), only

one time element ℎ𝑝3
𝑡1 is used in TdAPN in Figure 4.2. (c). The model of TdAPN in Figure

4.2.(c) is sufficient to represent the engine-example in Figure 4.1 with a minimal number

of elements compared to the representation of Stretched PN in Figure 4.2.(b). The time

element ℎ𝑝3
𝑡1 is a useful element that denotes the model completely and provides

monitoring the status of the continuing operation related to an event; for this example, the

physical meaning of ℎ𝑝3
𝑡1 is the continuing operation of sending pulses to the engine for a

certain time. When the delay is updated from 3 ts to 5 ts (for instance, making the

resolution better or updating the time delay according to measurements), there is no need

to add new elements to TdAPNs compared to Stretched PN. The time element ℎ𝑝3
𝑡1 can

solely represent the time delay of this operation.

Let us consider representations of Place-Stretched PN in Figure 4.2.(b), and TdAPN

in Figure 4.2.(c). Suppose that the transition 𝑡1 fires at time 𝑘 = 𝜆 and its firing process

of 𝑡1 starts. The illustrated comparison of these representations for the firing process of

𝑡1 is given in Figure 4.3.(a) and (b).

43

(b)

TdAPN

t1

p2 p3

p1

t2

•

0 2
h

t1

p3

0

t1

p2 p3

p1

t2

•
0 2

h
t1

p3

0

t1

p2 p3

p1

t2

•

0 2
h

t1

p3

0

t1

p2 p3

p1

t2

•

0 2
h

t1

p3

0

• •

•
12

(a)
Place-

Stretched

PN

t1

p2

p1

t2

•

p3

t1

p2

p1

t2

•

t1

p2

p1

t2

•

t1

p2

p1

t2

• • •

•

p
p3

1

t
p3

1

t
p3

2

p
p3

2

p3

p
p3

1

t
p3

1

t
p3

2

p
p3

2

p3

p
p3

1

t
p3

1

t
p3

2

p
p3

2

p3

p
p3

1

t
p3

1

t
p3

2

p
p3

2

Figure 4.3. Firing process of the transition t1

The firing process of 𝑡1 starts at time 𝑘 = 𝜆 and ends at time 𝑘 = 𝜆 + 𝑑𝑡1. During

the time 𝑘 ∈ (𝜆, 𝜆 + 𝑑𝑡1), flowing tokens are observed in representations of TdAPN and

Place-Stretched PN. One time element ℎ𝑝3
𝑡1 in the representation of TdAPN is sufficient

to represent the entire firing process of 𝑡1, while Place-Stretched PN needs additional new

elements, 𝑝1
𝑝3, 𝑡1

𝑝3, 𝑝2
𝑝3, and 𝑡2

𝑝3 for place-stretching, to represent this. However,

Stretched PN transforms the original Timed PN into a stretched version of this Timed PN.

This is a strong feature which makes the Timed PN as if it is an equivalent untimed PN.

Thus, the representation of Place-Stretched PN is able to represent the state of the system

and the firing process at each time. On the other hand, the proposed representation of

TdAPN is also good at representing the firing process of 𝑡1, where TdAPN uses only one

time element ℎ𝑝3
𝑡1 . Moreover, reachability sets of TdAPN in Figure 4.2.(c), and Place-

Stretched PN in Figure 4.2.(b) are given in Table 4.1. All of them have the same number

of states (four states).

44

Table 4.1. Comparison for state-representations of TdAPN and Place-Stretched PN

Time

k
State-

Label

The State of

TdAPN

The State of

Stretched PN

0 S0 {[1 0 0]', [0]'} [1 0 0 0 0]'

1 S1

{[0 1 0]', [2]'} [0 1 1 0 0]'

2 S2 {[0 1 0]', [1]'} [0 1 0 1 0]'

3 S3 {[0 1 1]', [0]'} [0 1 0 0 1]'

In Table 4.1, the state of Place-Stretched PN represents the state of the system

completely by using a stretched version of the marking vector at time 𝑘. States S0 and S3

are relaxed states of TdAPN that are equal to the total number of states in the equivalent

untimed PN. The rest of states show the significance of the time in time-delayed systems.

For the state-representation, both TdAPN and Stretched PN use a vector form to indicate

continuing firing processes and flowing tokens. TdAPN uses a fixed number of time

elements in its vector form while Stretched PN uses newly generated places in its vector

form, where the length of the vector is changed according to non-unity time delays

defined in the original Timed PN. For this example, Place-Stretched PN in Figure 4.2.(b)

uses five elements in its state-representation, such as 𝑝1, 𝑝2, 𝑝3, 𝑝1
𝑝3, and 𝑝2

𝑝3, to represent

the state of the system completely while TdAPN in Figure 4.2.(c) uses four elements,

such as 𝑝1, 𝑝2, 𝑝3 for 𝑴(𝑘) and ℎ𝑝3
𝑡1 for 𝛁𝑹(𝑘).

State-representation comparisons between the proposed TdAPN and Place-

Stretched PN are given under this section. The representation of Transition-Stretched PN

is also similar to Place-Stretched PN. In conclusion, models of TdAPN and Stretched PN

for the same original Timed PN have the same number of states (under Assumption 3.2);

however, their representations are different. Both models use a vector form to represent

the state of the system completely. Stretched PN includes a stretched version of the

marking vector together with new additional elements; however, the size of marking

vector changes according to time delays described in the original Timed PN. On the other

hand, the model of TdAPN uses an original marking vector of Timed PN and a remaining

vector that is special to TdAPN. The advantage of TdAPN compared to Stretched PN is

that the length of the remaining time vector is fixed by the number of time elements in

the net. All situations of tokens are represented in the state-representations of TdAPN and

Stretched PN.

45

4.2. Computational Complexity and Times

The complexity for several classes of PNs was conducted by Jones et.al. in [49].

Computational complexity for the construction of the reachability set for classical PNs is

DSCAPE (exponential) hard [49]. Computational complexity is studied for the developed

algorithms in this thesis. Using "for" loops in Algorithm 7.1, the computation complexity

of Algorithm 7.1 is related to the number of elements of the reachability set, and the

number of sets of places and transitions. This complexity can be related to 𝔐2𝑛𝑛2𝑚 in

numerical terms. Here, 𝔐 = |𝑅𝑆 (𝐺𝐴, 𝑆0)| is the cardinality of the reachability set;

𝑚 = |𝑃| is the cardinality of the set of places, and 𝑛 = |𝑇| is the cardinality of the set of

transitions. Similarly, the complexity of the algorithm for Stretched PN used in this thesis

can be related to 𝔐2�̅��̅�3�̅�. This complexity is related to the number of elements of the

reachability set, and the number of sets of places and transitions after stretching procedure

in [11-14, 46, 47]. Here, �̅� = 𝑛 + 𝑛𝑠 = |𝑇𝑠| is the cardinality of the set of transitions,

where 𝑛𝑠 is the cardinality of the set of newly generated transitions; and

�̅� = 𝑚 +𝑚𝑠 = |𝑃𝑠| is the cardinality of the set of places, where 𝑚𝑠 is the cardinality of

the set of newly generated places. Moreover, in order to compare TdAPN with original

works of Stretched Petri Nets, the complexity of the original algorithm of Transition-

Stretched PN [48] and Place-Stretched PN [32] can also be related to 𝔐. (2�̅� + �̅�2. �̅�)

and 𝔐2�̅��̅��̅� by using "for" loops in their main algorithms, respectively.

Let us analyze the complexity of TdAPN for the automotive case-study in Figure

4.1. For the TdAPN and Place-Stretched PN, the complexities are obtained 192 and 1280,

respectively, where 𝒟(𝑝3) = 3 ts. For the case-study, using algorithms of TdAPN and

Place-Stretched PN in MATLAB, the computational times are 1.382 seconds for TdAPN

(0.046 second for the construction of the net and 1.336 for the construction of the

reachability set) and 1.860 seconds for Place-Stretched PN (0.075 second for the

construction of the net and 1.785 for the construction of the reachability set) for the

automotive case-study in Figure 4.1.

Let us analyze the complexity of TdAPN for the manufacturing case-study in Figure

6.1. For the TdAPN and Transition-Stretched PN, the complexities are obtained

4.6771*106 and 5.4666*107, respectively, where 𝔡𝑡6 = 10 ts. For the case-study, using

algorithms of TdAPN and Transition-Stretched PN in MATLAB, the computational times

are 3.6274 seconds for TdAPN (1.7714 second for the construction of the net and 1.8560

46

for the construction of the reachability set) and 8.3250 seconds for Transition-Stretched

PN (1.9399 second for the construction of the net and 6.3851 for the construction of the

reachability set) for the manufacturing case-study in Figure 6.1.

In this section, the computational complexity of TdAPN and Stretched PNs [32, 48]

are compared. For the complexity analysis, the construction of the reachability set is

considered. Their complexities are related to the size of the reachability set and the size

of sets of places and transitions. In addition, constructing the reachability set is DSCAPE

(exponential) hard [49]. Results show that the complexity of Stretched PN is increased

exponentially because of newly created pairs of place-transition/transition-place when the

time delay of the transition/place increases. On the other hand, the time element is a useful

element, where the number of elements of the set of time elements is not affected by this

increase. The complexity of TdAPN is increased by the first order polynomial when the

time delay of the transition/place increases. Moreover, computational times are measured

using tic and toc functions of MATLAB. These computational times include the

construction of the net and the construction of the reachability set. Computational times

are obtained by a personal computer, which has the following features:

 The software environment is MATLAB v8.3.0.532 (R2014a) and Windows 7

Ultimate SP1 64-bit.

 The hardware environment is 240GB SSD, Core2 Duo 2.10 GHz CPU T6500 64

bits and 4060 MB DDR2 RAM.

In this thesis, it is not aimed to optimize or improve algorithms of TdAPN given in

Section 7.1. It is just aimed to construct the reachability set of TdAPN for time-delayed

systems and to show the usefulness of the time element compared to Stretched PNs.

47

5. CONTROLLER DESIGN

The controller design is one of the essential topics in PNs. In order to guarantee the

desired property of PN, such as liveness, deadlock-free, reversibility, and boundedness,

it is required to control the net. In the control-literature of PNs, two types of controllers

have been presented, such as behavioral controllers and structural controllers [9, 11-14,

32-35, 37-41].

In the method of behavioral-controller design, supervisory controllers for untimed

and timed PNs have been presented to enforce the system to ensure some basic behavioral

properties, such as deadlock-free, reversibility, etc. [9, 11-14, 32, 36-40]. Deadlock-free

is the most desired property among behavioral properties of PNs. After the construction

of the reachability set, a supervisory controller is designed for enforcing the system to

behave in a desired manner. This type of controller that prohibits undesired states, namely

forbidden states, and allows the desired states is called Forbidden State Controller in

general. A Forbidden State Controller is based on the reachability set of PN, and rules of

a control policy that are implemented through this set [12]. In this control policy, the

considered enabled transition(s) is/are disabled by the designed controller, if the

forbidden state(s) is/are reachable by using this/these transition(s). In addition to the

method of the behavioral controller, the method of structural-controller design that adds

new additional places, namely monitor places, into the original net have also been

presented [33, 34, 41]. This type of controller uses the structural properties of PNs

[33-35, 41].

This chapter presents a Forbidden State Controller for the proposed TdAPN that is

based on the approach developed in [13] by Aybar et.al.

5.1. Forbidden State Controller Design for Timed-Arc Petri Nets

Behavioral properties of 𝐺𝐴, such as liveness, deadlock, reversibility, and

boundedness, are analyzed by using the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0). According to the

analysis, a supervisory controller that avoids the occurrence of forbidden states can be

designed.

48

The state of 𝐺𝐴 at time 𝑘 is 𝑆(𝑘) = {𝑴(𝑘), 𝛁𝑹(𝑘)}. After the construction of the

reachability set 𝑅𝑆(𝐺𝐴, 𝑆0), any state can be represented by 𝑆 = {𝑴,𝛁𝑹} . 𝛁𝑹 includes the

remaining-time (duration) information about flowing tokens, which is independent of

discrete-time notation 𝑘. Remember that 𝑆 = {𝛾1(𝑆), 𝛾2(𝑆)}, 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), where the

marking-vector part of 𝑆 is 𝑴 = 𝛾1(𝑆), and the remaining-time vector part of 𝑆 is

𝛁𝑹 = 𝛾2(𝑆).

The next state that is denoted by �̃� = {�̃�, �̃�𝑹} is computed as given in (5.1) and

(5.2) by using the present state 𝑆 = {𝑴, 𝛁𝑹} and enabled transition(s) in the set 𝜙 ⊆ 𝐹(𝑆),

where 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)) and 𝐹(𝑆) = 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙 (see, definition (3.6)).

�̃�(𝑝) ≔ 𝛾1(𝑆)(𝑝) + ∑

𝑡∈𝐹(𝑆)

(𝑂(𝑝, 𝑡) − 𝑁(𝑝, 𝑡)) (5.1)

∇̃𝑅(ℎ𝑝
𝑡) ≔ 𝛾2(𝑆)(ℎ𝑝

𝑡) +∑

𝑡∈𝜙

𝐷(𝑝, 𝑡) − ∑

𝑡∈𝐹𝑝𝑟𝑒(𝑆) 𝑎𝑛𝑑 𝛾2(𝑆)(ℎ𝑝
𝑡)>0

1
(5.2)

This computation is represented by a function 𝜌(𝑆, 𝐹(𝑆)), i.e., �̃� = 𝜌(𝑆, 𝐹(𝑆)).

According to the selection of 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)), while 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), any state 𝑆

may cause the system to be directed to an undesired state; as a result, starting a choice of

a certain event at 𝑆 violates a desired behavioral property of 𝐺𝐴. For instance, deadlock-

free is the desired property, and 𝜌(𝑆, 𝐹(𝑆)) leads the system to a deadlock state, where

𝐹(𝑆) includes an event that must be avoided. When the system enters in such an undesired

state, there is no chance to avoid the deadlock. When faced with such a situation, the

system has to be initialized or brought to a known safe state. This will probably result in

a cost. Therefore, a controller design that avoids forbidden states is an absolute necessity.

In order to design a Forbidden State Controller for TdAPNs that prevents the system

from entering into undesired states, first of all, these undesired states should be

determined. The set of undesired states is represented by ℒ0, where the subscript of zero

stands for indicating the initial set and ℒ0 ⊂ 𝑅𝑆(𝐺𝐴, 𝑆0). This set is determined by the user

or by behavioral properties of 𝐺𝐴 that must be enforced. ℒ0 is an initial set such that any

state 𝑆 may result in an undesired state in ℒ0 by the selection of an event; therefore, the

set of undesired states ℒ0 is enlarged to an expanded set of undesired states, ℒ̂ ≔ ⋃ ℒ𝑖
𝑛
𝑖=0 ,

49

where ℒ𝑖 is defined as in (5.3) [13]. The set of ℒ𝑖 ⊂ ℒ̂ is constructed for 𝑖 = 1,2, … , 𝑛 +

1, where 𝑛 ∈ ℕ is such that ℒ𝑛 ≠ ∅ and ℒ𝑛+1 = ∅ [13].

ℒ𝑖 ≔ {𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) |𝜌(𝑆, 𝐹(𝑆)) ∈⋃ ℒ𝑙
𝑖−1

𝑙=0
, ∀𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆))} (5.3)

States in ℒ̂ lead the system to the undesired domain, such that it must be avoided

from entering in such states. Thus, the forbidden state controller is able to prohibit and

disable any enabled transition in 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)), where the next state �̃� = 𝜌(𝑆, 𝐹(𝑆))

is in ℒ̂ after the selection of 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)). For this purpose, the controller has a

controller function that is represented by 𝒞(𝑆, 𝜙), where it allows an event to be enabled

by one and to be disabled by zero as defined in (5.4) [13].

𝒞(𝑆, 𝜙) ≔ {
0 , 𝑖𝑓 𝜌(𝑆, 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙) ∈ ℒ̂

1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.4)

Here, 𝐹(𝑆) = 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙.

𝒞(𝑆, 𝜙) = 0 means that the controller disables 𝜙 at the state 𝑆. 𝒞(𝑆, 𝜙) = 1 means

that the controller allows 𝜙 at the state 𝑆. Moreover, if 𝑆0 ∈ ℒ̂, then 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0}

and ℒ̂ = ℒ0.

A forbidden state controller for the proposed TdAPN can be designed to avoid any

undesired state by using the approach in this subsection. This controller will be named

according to its functionality as follows:

 If it is desired to make the system avoid deadlock states, then these deadlock states

are considered as forbidden states and the designed controller is called the

deadlock avoidance controller.

 If it is desired to make the system avoid loops or irreversible states, then these

irreversible states are considered as forbidden states and the designed controller

is called the reversibility enforcement controller.

50

5.2. Controller Examples for Timed-Arc Petri Nets

Let us design a forbidden state controller for TdAPN in Figure 3.4.(b), which offers

a deadlock avoidance controller. Based on the description of the deadlock in Definition

3.4 and (3.8), the set of undesired states ℒ0 is equal to ℒ̃0 for the deadlock avoidance

controller. The reachability set of TdAPN in Figure 3.4.(b) is 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, …,

𝑆19} as given in Table 3.3, and its timed-reachability tree is shown in Figure 3.8. Using

𝑅𝑆(𝐺𝐴, 𝑆0) and (3.8), the set of undesired states including deadlocks is determined as

ℒ0 = ℒ̃0 = {𝑆15, 𝑆18}. There are initially two undesired states. The expanded set of

undesired states, which refers to states that lead the system to ℒ0, is denoted by ℒ̂ =

⋃ ℒ𝑖
𝑛
𝑖=0 , where ℒ𝑖 as defined in (5.3). Using 𝑅𝑆(𝐺𝐴, 𝑆0), ℒ0 and (5.3), sub-sets of ℒ̂ are

iteratively found as: ℒ0, ℒ1 = {𝑆12, 𝑆16}, ℒ2 = {𝑆13}, ℒ3 = ∅; as a result, the expanded

set of undesired states, which must be avoided, is found as:

ℒ̂ = {𝑆12, 𝑆13, 𝑆15, 𝑆16, 𝑆18}. In order to avoid a state 𝑆 ∈ ℒ̂, the controller disables the set

{𝑡2} ∈ �̂�(𝐺𝐴, 𝛾1(𝑆6)) at the state 𝑆6, where 𝐹(𝑆6) is equal to 𝐹𝑝𝑟𝑒(𝑆6) ∪ {𝑡2}, and

𝜌(𝑆6, 𝐹(𝑆6)) gives 𝑆12 ∈ ℒ̂; and the set {𝑡1} ∈ �̂�(𝐺𝐴, 𝛾1(𝑆9)) at the state 𝑆9, where

𝐹(𝑆9) is equal to 𝐹𝑝𝑟𝑒(𝑆9) ∪ {𝑡2}, and 𝜌(𝑆9, 𝐹(𝑆9)) gives 𝑆13 ∈ ℒ̂. Values of the

controller function are determined as follows:

𝒞(𝑆, 𝜙) = {
0 , 𝑆 = 𝑆6 𝑎𝑛𝑑 𝜙 = {𝑡2}
0 , 𝑆 = 𝑆9 𝑎𝑛𝑑 𝜙 = {𝑡1}
1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 .

The timed-reachability tree in Figure 3.8 is re-illustrated as in Figure 5.1 to show

the effect of controller values. The purple color indicates the disabled transitions and

undesired states that must be avoided; in addition, both straight and dashed lines in the

purple color represent the path that leads the system into an undesired state. Moreover,

states in the yellow color represent the states, where certain events must be disabled in

order to guarantee deadlock-free.

51

t1

t2

S1 t2

S4 t2

t1

t2

S13 S16

S10

S5

S2

t1
S7

t1

t2

S8

t3

S12

S19

S14

S17

S3S0

S6

S9

S11

S18

S15

t1,t2

C (S9,t1)=0

C (S6,t2)=0

Figure 5.1. Timed-reachability tree of TdAPN in Figure 3.4 with the controller

Let us design a forbidden state controller for TdAPN in Figure 5.2, which offers a

reversibility enforcement controller.

t1 t2

2

• •

p2 p3

p1

t3

h
t1

p2
h

t2

p3 h
t3

p1

p4

t5

t40

0
2 1

3

Figure 5.2. Example of TdAPN includes a deadlock state and loop

52

TdAPN in Figure 5.2 is defined as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). Here, the set of places is

𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} and the set of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}. Input, output and

time delay matrices are respectively:

𝑁 = [

1 1 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 0 1

], 𝑂 = [

0 0 2 0 0
1 0 0 0 1
0 1 0 0 0
0 0 0 1 0

], 𝐷 = [

0 0 3 0 0
2 0 0 0 0
0 1 0 0 0
0 0 0 0 0

] .

The set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝3

𝑡2 , ℎ𝑝1
𝑡3 }, where 𝐷(𝑝, 𝑡) ≠ 0 and 𝑂(𝑝, 𝑡) ≠ 0.

The state of the TdAPN at the initial time 𝑘0 is

𝑆(𝑘0) = {[2 0 0 0]
′, [0 0 0]′}.

The reversibility enforcement controller is used to avoid states, which violate the

property of reversibility described in Definition 3.5 (Reversibility Property). Remember

that 𝐺𝐴 is considered as reversible if the initial state 𝑆0 ∈ 𝑅𝑆(𝐺𝐴, 𝑆) is reachable from all

states 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0) according to Definition 3.5. If 𝐺𝐴 does not satisfy this condition,

then the overall net is considered as irreversible throughout the net. This situation

generally occurs when the net has any deadlock state or any loop. On the other hand, a

subset of the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0), where all states in this subset ensure reversibility,

can be obtained. If the initial state 𝑆0 ∈ 𝑅𝑆(𝐺𝐴, 𝑆) is not reachable from all states 𝑆 ∈

𝑅𝑆(𝐺𝐴, 𝑆0), then a subset of 𝑅𝑆(𝐺𝐴, 𝑆0) is constructed in a set form as 𝑅𝑅(𝐺𝐴, 𝑆0) while

𝑅𝑅(𝐺𝐴, 𝑆0) ⊂ 𝑅𝑆(𝐺𝐴, 𝑆0). Here, 𝑅𝑅(𝐺𝐴, 𝑆0) represents the irreversible set of 𝐺𝐴. For the

reversibility enforcement controller, the set of undesired states is

ℒ0 = 𝑅𝑅(𝐺𝐴, 𝑆0), and ℒ̂ is equal to ℒ0. In order to determine ℒ0, the reversibility analysis

should be performed for all states in 𝑅𝑆(𝐺𝐴, 𝑆0) such that this analysis also covers states

in 𝑅𝑅(𝐺𝐴, 𝑆0).

For TdAPN in Figure 5.2, 27 states of TdAPN are obtained as given in

Appendix-1. Its reachability set is obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆26}. Moreover,

the timed-reachability tree for this TdAPN, which indicates all reachable states and the

relation between them, is shown in Figure 5.3. Descriptions of elements in this figure are

similar to descriptions for Figure 3.8.

53

t1

t2

S1 t2

S4 t2

t1

t2

S13 S20

S10

S5

S2

t1
S7

t1

t2

S8 t3

S12

S25

S18

S22

S3S0

S6

S9

S19

t1,t2

t5

S15

t1,t4

S16
t4

t4

S11

S21t4
t1

t2,t4

t2

t5 t1,t5

t2,t5

t5

S17

t5

t5

t4

S24

t4,t5

t4

t5

S26

S23
t4

S14
t5

Irreversible and

Deadlock-Part

Irreversible-Part

Infinite Loop

t4

Figure 5.3. Timed-reachability tree of TdAPN in Figure 5.2

In order to determine undesired states, including irreversible states, the reversibility

analysis is performed for all states S in 𝑅𝑆(𝐺𝐴, 𝑆0) and the irreversible set

𝑅𝑅(𝐺𝐴, 𝑆0) ⊂ 𝑅𝑆(𝐺𝐴, 𝑆0) is obtained as 𝑅𝑅(𝐺𝐴, 𝑆0) = {S12, S13, S15, S19, S20, S21, S23, S24,

S26}. These states in 𝑅𝑅(𝐺𝐴, 𝑆0) are forbidden states for the reversibility enforcement

controller. The set of undesired states is ℒ0 = 𝑅𝑅(𝐺𝐴, 𝑆0) such that ℒ0 = {S12, S13, S15,

S19, S20, S21, S23, S24, S26}, where the expanded set of deadlock states is ℒ̂ = ℒ0. The values

of the controller function 𝒞(𝑆, 𝜙) are similarly obtained as discussed in the example of

the deadlock avoidance controller. These are determined as follows (see, Figure 5.4):

𝒞(𝑆6, {𝑡2}) = 0, 𝒞(𝑆9, {𝑡1}) = 0, 𝒞(𝑆9, {𝑡1, 𝑡4}) = 0, 𝒞(𝑆13, {𝑡4}) = 0, 𝒞(𝑆14, {𝑡1}) = 0,

𝒞(𝑆14, {𝑡1, 𝑡5}) = 0, 𝒞(𝑆15, {𝑡5}) = 0, 𝒞(𝑆20, {𝑡4}) = 0, 𝒞(𝑆21, {𝑡5}) = 0, 𝒞(𝑆23, {𝑡4}) =

0, 𝒞(𝑆24, {𝑡4}) = 0, 𝒞(𝑆26, {𝑡5}) = 0, where 𝜙 ∈ �̂�(𝐺𝐴, 𝛾1(𝑆)). Otherwise, 𝒞(𝑆, 𝜙) = 1,

where 𝑆 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0)\ℒ̂.

54

In order to illustrate the effect of controller values, the timed-reachability tree in

Figure 5.3 is re-illustrated as in Figure 5.4. Descriptions of colors and shapes are similar

as given in Figure 5.1. Here in Figure 5.4, states in the yellow color represent the states,

where certain transitions must be disabled in order to enforce the system reversibility.

t1

t2

S1 t2

S4 t2

t1

t2

S13 S20

S10

S5

S2

t1
S7

t1

t2

S8 t3

S12

S25

S18

S22

S3S0

S6

S9

S19

t1,t2

t5

S15

t1,t4

S16
t4

t4

S11

S21t4
t1

t2,t4

t2

t5 t1,t5

t2,t5

t5

S17

t5

t5

t4

S24

t4,t5

t4

t5

S26

S23
t4

S14
t5

Irreversible and

Deadlock-Part

Irreversible-Part

Infinite Loop

t4

Figure 5.4. Timed-reachability tree of TdAPN in Figure 5.3 with the controller

55

6. MODELING AND DESIGN FOR REAL WORLD SYSTEMS

This chapter presents special applications of TdAPN that can be applied on

manufacturing systems, railway systems and automotive systems as case studies; in

addition, corresponding results aided by the software of TdAPN are presented

(see, algorithms in Chapter 7 for the software of the proposed TdAPN).

6.1. Manufacturing Systems

The current industrial revolution, Industry 4.0, is based on connectivity, big data,

and event-based operational technologies. This futuristic innovation includes many large

scale systems, and its infrastructure is constructed using the concept of Systems of

Systems. Such systems are best described by the occurrence of events. In order to model

these, PN is a nice modeling paradigm. However, time delays have a significant role in

such systems. Thus, Timed PN is a useful tool to accurately express them. For this

purpose, this section includes a practical manufacturing example, studied in [12] as a case

study, including an industrial robot, a machine, storages that are modeled by TdAPN. The

system, illustrated in Figure 6.1, comprises a machine; a buffer whose capacity is limited

to storing a single part; one main store whose storage capacity is limited to two parts; two

flat pallets to transfer parts; and an industrial robot. Each pallet is able to transport only

one part in one go.

Machine

Industrial Robot

Pallets

Buffer

Main store

Operator

1 2

Figure 6.1. Representative manufacturing example

56

6.1.1. Modeling manufacturing system using TdAPN

The representation of Transition-Stretched PN for the manufacturing example in

Figure 6.1, which is the transition-stretched equivalent of Timed PN in [12], is shown in

Figure 6.2.(a). For Timed PN in [12], the set of time delays is

𝔇 = {𝔡𝑡1 , 𝔡𝑡2 , 𝔡𝑡3 , 𝔡𝑡4 , 𝔡𝑡5 , 𝔡𝑡6}, where 𝔡𝑡1 = 3 ts, 𝔡𝑡2 = 1 ts, 𝔡𝑡3 = 1 ts, 𝔡𝑡4 = 1 ts,

𝔡𝑡5 = 2 ts, and 𝔡𝑡6 = 2 ts. This manufacturing example is modeled by the representation

of TdAPN as illustrated in Figure 6.2.(b).

p5

•

• •

p2

t2

p3

p4

t3

t4

p6

p7

p
t5

1

t
t5

1

t5

t6

p10• •

p9

p
t6

1

t
t6

1

p
t1

1

t
t1

1

p
t1

2

t
t2

2

The Representation of Transition-Stretched PN

(a)

p1

t1

t2

p3

p2

p4

t3

t4

p6

p5

•
p9

p7

t5 p8

t6

p10

2
h

t1

p2

0
0

0

0

0

1
h

t6

p10

1

h
t5

p8

1
h

t5

p9

1
h

t6

p9

1
h

t5

p1

The Representation of TdAPN

(b)

0

Figure 6.2. Model of (a) Transition-Stretched PN [12] and (b)TdAPN

57

The model of TdAPN in Figure 6.2 is described as 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). The input

matrix 𝑁, the output matrix 𝑂, and the time delay matrix 𝐷 are as follows:

𝑁 =

[

1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 1 0 1
0 0 0 0 1 0]

 , 𝑂 =

[

0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 1 1
0 0 0 0 0 1]

, 𝐷 =

[

0 0 0 0 1 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1]

 .

The set of time elements is ∇= {ℎ𝑝2
𝑡1 , ℎ𝑝1

𝑡5 , ℎ𝑝8
𝑡5 , ℎ𝑝9

𝑡5 , ℎ𝑝9
𝑡6 , ℎ𝑝10

𝑡6 }, where 𝐷(𝑝, 𝑡) and

𝑂(𝑝, 𝑡) are not equal to zero. 𝑆0 = {𝑴0, 𝛁
𝑹𝟎} is the initial state of 𝐺𝐴, where

𝑴0 = [2 0 1 0 0 1 0 0 1 2]′ and 𝛁𝑹𝟎 = [0 0 0 0 0 0]′. Here, Places denote conditions,

transitions denote events, and time elements denote continuing operations related to the

events as described in Table 6.1. According to descriptions in this table, 𝑀(𝑘0, 𝑝1)=2

indicates the availability of two pallets at the initial time. 𝑀(𝑘0, 𝑝3)=1 denotes the

machine is available. 𝑀(𝑘0, 𝑝6)=1 shows the buffer is available. 𝑀(𝑘0, 𝑝9) = 1 denotes

the robot is available. And, 𝑀(𝑘0, 𝑝10)=2 shows that there are two unoccupied rooms for

storage in the main store, where its maximum storage capacity is 2 parts. 𝛁𝑹𝟎 = 𝟎|∇|×1

indicates that there is currently no dynamic operation (no previously activated firing

process, so 𝐹𝑝𝑟𝑒(𝑘0) = ∅).

Table 6.1. Physical meanings for elements of TdAPN in Figure 6.2.(b)

Element Explanation Status

𝑝1 The number of available pallets. #T: the number of pallets.

𝑝2 The operation of the machine. NT: uncompleted, T: completed.

𝑝3 The availability of the machine. NT: unavailable (no), T: available (yes).

𝑝4 The robot is assigned to unload the machine. NT: no assignment, T: assigned.

𝑝5 The fullness of the buffer. NT: empty, T: full.

𝑝6 The availability of the buffer. NT: unavailable, T: available.

𝑝7
The robot’s task is transferring the produced part

to an unoccupied room in the main store.
NT: no assignment, T: the task is assigned.

𝑝8
The number of occupied rooms for storage in the

main store.
#T: the number of occupied rooms.

𝑝9 The robot’s status. NT: busy, T: free.

𝑝10
The number of unoccupied rooms for storage in

the main store.
#T: the number of unoccupied rooms.

NT: No token exists. T: Token exists. #T: The existing number of tokens.

58

Table 6.1. (Continue) Physical meanings for elements of TdAPN in Figure 6.2.(b)

Element Explanation Status

𝑡1 Start the machine to produce a part.

𝑡2 Make the robot unload the produced part.

𝑡3 Make the robot load the produced part to the buffer.

𝑡4 Make the robot unload the buffer.

𝑡5
Set a pallet free and make the robot transfer the produced part from buffer to an unoccupied

room of main store.

𝑡6 Make the robot unload one part from the main store.

ℎ𝑝2
𝑡1 The machine is producing a part. This operation takes 2 ts.

ℎ𝑝1
𝑡5 The pallet is going to be free. This operation takes 1 ts.

ℎ𝑝8
𝑡5

The robot is transferring the produced part to an unoccupied room of main store. This

operation takes 1 ts.

ℎ𝑝9
𝑡5 The robot is going to be available after it transfers the produced part. This operation takes 1 ts.

ℎ𝑝9
𝑡6 The robot is going to be available after it unloads one part. This operation takes 1 ts.

ℎ𝑝10
𝑡6 The robot is unloading one part from the main store. This operation takes 1 ts.

Algorithms for TdAPN (Algorithm 7.1) found 75 states of the reachability set

𝑅𝑆(𝐺𝐴, 𝑆0) for the manufacturing example as given in Appendix-2. Here, the number of

states of TdAPN is equal to the number of states for representations of Timed PN in [12],

Transition-Stretched PN in [12], and the equivalent representation of Place-Stretched PN.

The reachability set was obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆74}. Based on 𝑅𝑆(𝐺𝐴, 𝑆0),

the net is not live and not reversible due to deadlocks 𝑆20, 𝑆49, 𝑆72, and 𝑆74. The software

also generated a timed-reachability tree by considering the relation between states in the

set 𝑅𝑆(𝐺𝐴, 𝑆0) as shown in Figure 6.3. The A3-page (zoomed in) version of Figure 6.3 is

reachable from Appendix-5. Descriptions of this graph are similar to explanations for

Figure 3.8. 1.8560 seconds were required to construct 𝑅𝑆(𝐺𝐴, 𝑆0) of TdAPN and 1.7714

seconds were required for the construction of TdAPN (total is 3.6274 seconds), while

6.3851 seconds were required to construct the reachability set for the equivalent

representation of Transition-Stretched PN and 1.9399 seconds were required for the

construction of Transition-Stretched PN (total is 8.3250 seconds). The construction time

of the reachability set of TdAPN is shorter than the Transition-Stretched PN.

59

Figure 6.3. Timed-reachability tree for TdAPN in Figure 6.2.(b)

60

6.1.2. Controller-design

Let us design a forbidden state controller for TdAPN in Figure 6.2.(b), which

enforces the system to be reversible and deadlock-free. The sub-algorithm

findExpandedSet (Algorithm 7.8) finds the expanded set of deadlocks as {S20, S49, S64,

S66, S68, S72, S74}. The net is analyzed by the sub-algorithm findIrreversibleSet

(Algorithm 7.9) so as to obtain the irreversible set as 𝑅𝑅(𝐺𝐴, 𝑆0) = {S20, S49, S64, S66, S68,

S72, S74} while the expanded set of deadlocks is a subset of 𝑅R(𝐺𝐴, 𝑆0). The expanded set

of undesired states is ℒ̂ = 𝑅𝑅(𝐺𝐴, 𝑆0). Using the sub-algorithm controlForbiddenState

(Algorithm 7.10), values of the controller function are determined as follows:

𝒞(𝑆, 𝜙) =

{

0, 𝑆 = 𝑆64 𝑎𝑛𝑑 𝜙 = {𝑡1}

0, 𝑆 ∈ {𝑆14, 𝑆42, 𝑆71} 𝑎𝑛𝑑 𝜙 = {𝑡2}

0, 𝑆 ∈ {𝑆60, 𝑆61, 𝑆63, 𝑆71} 𝑎𝑛𝑑 𝜙 = {𝑡4}
0, 𝑆 = 𝑆60 𝑎𝑛𝑑 𝜙 = {𝑡1, 𝑡4}
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 .

6.2. Railway Systems

Safer and better transportation is a popular issue to develop intelligent and

autonomous solutions in the field of land, marine, air, and railway systems. The growing

population requires more technological designs in this century. Railway systems are more

interesting than other fields of transportation due to their safety record [1, 2]. They are

sophisticated, large-scale, and event-driven. Thus, they comprise subsystems which are

composed of configuration items including many components (systems of systems).

There are formal techniques to model and verify Railway Systems in the "Table A.17" of

EN50128:2011, where a high level of safety is required in railway automation systems

[25, 42, 43]. One of these techniques is using Petri Nets.

Since the railway system is concurrent and dynamic, Timed PN is a useful tool

for railway systems. Therefore, due to distinctly associating time delay onto outgoing arcs

that are connected to the same transition, Timed-Arc PN is more useful than Timed PN

in order to represent the dynamics of system activities (e.g. motion, movement, etc.) into

the model. In Timed-Arc PNs, all situations of the dynamic system are considered at any

time without loss of information. In this section, a transition of a train between adjacent

blocks is basically modeled by using TdAPN. This case study has been presented by

Yufka et.al. in [1]. In railway systems, tracks of the railway network comprises blocks.

61

Each block section includes tracking circuits (TCs) to detect trains. Hence, the railway

automation becomes aware of the block section whether it is occupied by a train. The

railway network has block sections and their corresponding TCs. To denote these block

sections in applications, the set of blocks in a specific route on a track is represented by

𝑆𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠: = {𝐵𝑙𝑜𝑐𝑘𝑖|𝑖 = 1,2, . . . , 𝔅}, where 𝔅 ∈ ℕ\{0,∞} is the total number of block

sections on this route. In addition, the set of TCs on its corresponding block section

𝐵𝑙𝑜𝑐𝑘𝑖 is represented by 𝑆𝑒𝑡𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑠: = {𝑇𝐶𝑖|𝑖 = 1,2, . . . , 𝔅}. Train transitions between

two adjacent blocks, such as 𝐵𝑙𝑜𝑐𝑘𝑖 and the post block 𝐵𝑙𝑜𝑐𝑘𝑖+1, can be modeled

considering time delays.

Let us consider two adjacent blocks as shown in Figure 6.4.(a); for instance,

𝐵𝑙𝑜𝑐𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is used for the current block 𝐵𝑙𝑜𝑐𝑘𝑖, and 𝐵𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑡 is used for its adjacent

(post) block 𝐵𝑙𝑜𝑐𝑘𝑖+1. Here, 𝐵𝑙𝑜𝑐𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the 𝑖 'th block, where the train is currently

on. 𝐵𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑡 is the 𝑖 + 1 'th adjacent block, where the train moves on after the current

block. This transition between adjacent blocks is sketched as in Figure 6.4.(b). Note that,

after the train transits from its current block to the post block, this post block becomes a

current block in the new case. The transition between adjacent blocks and moving in

blocks cause time delays. These delays are considered exact durations in this study.

Blocki
TCi TCi+1

Blocki+2
TCi+2

Main

Line

Blocki+3
TCi+3

Blocki+1

Train

Current Block Post Block

Blockcurrent

TCcurrent

Main

Line

Train

p4 (Free)
p3 (Occupied)

p1 p2

TCpost p7 (Free)
p6 (Occupied)

Blockpost

p9 p5

p8

Block sections and tracking circuits

Transition between two adjacent blocks

(a)

(b)

Figure 6.4. Blocks and tracking circuits on a railway network

62

In Figure 6.4.(b), a tracking circuit related to 𝐵𝑙𝑜𝑐𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is denoted by 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡,

and a tracking circuit related to 𝐵𝑙𝑜𝑐𝑘𝑝𝑜𝑠𝑡 is denoted by 𝑇𝐶𝑝𝑜𝑠𝑡. When a TC detects a

train on its corresponding block section, this block is considered as occupied; in addition,

in the case of not detecting a train, this block is considered as free. Let us model this block

transition between adjacent block using TdAPN as given in Figure 6.5.

0
•

t7p7

0

p1

•

t2
0

0
p8

0

p2

2

p3

0

0t5

p4

h
t2

p2

p9

•

t4

•

0
p5

p6

0 t1

t6
0

3

h
t1

p1

t3
0

0

0

Figure 6.5. Block transition between adjacent blocks modeled using TdAPN

The Place-Stretched PN Equivalent of TdAPN in Figure 6.5 is also given in Figure

6.6. Here in Figure 6.6, there are 5 pair of transitions and places because of time delays.

63

•

t7p7

•

t2

p8

p2

p3
t5

p4

p9

•

t4

•

p5

p6

t1

t6

t3

t
p2

1
p

p2

1
t

p2

2
p

p2

2

p1t
p1

1
p

p1

1t
p1

2
p

p1

2t
p1

3

p
p1

3

Figure 6.6. Place-Stretched PN Equivalent of TdAPN in Figure 6.5

For TdAPN in Figure 6.5, it is defined by 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). Here, the set of

places is 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9}, and the set of transitions is 𝑇 = {𝑡1, 𝑡2, 𝑡3,

𝑡4, 𝑡5, 𝑡6, 𝑡7}. Input, output and time delay matrices are as follows:

𝑁 =

[

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 0 0 1 0 0
0 1 1 0 0 0 1]

 , 𝑂 =

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 1 0 0 0 0 0
1 0 1 0 0 0 1]

, 𝐷 =

[

3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

.

64

The initial state is 𝑆0 = {𝑴0, 𝛁
𝑹𝟎}, where 𝑴0=[1 0 1 0 0 1 0 0 1]' and 𝛁𝑹𝟎=[0 0]'.

The set of time elements used in 𝛁𝑹 is ∇= {ℎ𝑝1
𝑡1 , ℎ𝑝2

𝑡2 }. Physical meanings of places,

transitions and time elements in these models are as follows:

 𝑝1 denotes that train is at the end of the current block.

 𝑝2 denotes that train is at the beginning of the post block.

 𝑝3 and 𝑝4 denote the status of 𝑇𝐶𝑖 (the 𝑖𝑡ℎ block section is occupied and free,

respectively).

 𝑝5 denotes that train is completely in the post block (completely means that no

part of the train is in the current block).

 𝑝6 and 𝑝7 denote the status of 𝑇𝐶𝑖+1 (the (𝑖 + 1)𝑡ℎ block section is occupied and

free, respectively).

 𝑝8 denotes the start of the train’s transition between adjacent blocks.

 𝑝9 denotes that train is completely in the current block (completely means that no

part of the train is in the post block).

 𝑡1 denotes the event of assigning the post block as a new current block.

 𝑡2 denotes the event to start transition from the current block to its adjacent post

block.

 𝑡3 and 𝑡4 are sensory events to detect the train on the 𝑖𝑡ℎ block section whether it

is occupied or not ,respectively. They are triggered by the sensor of the 𝑇𝐶𝑖.

 𝑡5 is an event to verify the train’s transition is completed.

 𝑡6 and 𝑡7 are sensory events to detect the train on the (𝑖 + 1)𝑡ℎ block section

whether it is occupied or not ,respectively. They are triggered by the sensor of the

𝑇𝐶𝑖+1.

 ℎ𝑝1
𝑡1 denotes that train is moving in the current block and it will be at the end of

the current block after its remaining time is elapsed. This operation takes 3 ts.

 ℎ𝑝2
𝑡2 denotes that train is transiting from the current block to the post block and it

will complete its transition after its remaining time is elapsed. This operation takes

2 ts.

Here, time elements ℎ𝑝1
𝑡1 and ℎ𝑝2

𝑡2 represent dynamic situations. Time delays for time

elements were arbitrarily chosen. These can be modified.

65

Algorithms of TdAPN (Algorithm 7.1) found 23 states of the reachability set

𝑅𝑆(𝐺𝐴, 𝑆0) for the railway system as given in Appendix-3. Here, the number of states of

TdAPN is equal to the number of states of the equivalent representation of Place-

Stretched PN. The given TdAPN has 10 relaxed states. The reachability set was obtained

as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆22}. 0.6396 second was required to construct the reachability

set for TdAPN and 1.3610 seconds were required for the construction of TdAPN (total is

2.0006 seconds), while 29.9878 seconds were required to construct the reachability set

for Place-Stretched PN and 2.4923 seconds were required for the construction of Place-

Stretched PN (total is 32.4801 seconds). The construction time of the reachability set of

TdAPN is shorter than the Place-Stretched PN. In this application, there is no deadlock

state. The net is live and reversible. Moreover, the software also generated a timed-

reachability tree by considering the relation between states in the set 𝑅𝑆(𝐺𝐴, 𝑆0) as shown

in Figure 6.7. Descriptions of this timed-reachability tree are similar to explanations for

Figure 3.8.

Figure 6.7. Timed-reachability tree for TdAPN in Figure 6.5

66

6.3. Automotive Systems

In this subsection, a cruise control system is considered as a case study of an

automotive application [44, 45], and this is modeled using the proposed TdAPN modeling

methodology. This system is an optional part of our modern cars today and its improved

version that is the adaptive cruise control system will be indispensable for futuristic self-

driving (autonomous) cars. This system is an embedded real-time system, and is

composed of sensors and actuators to keep the speed of the vehicle at a certain (desired)

speed. This system is activated or deactivated by user inputs via the buttons on the

steering wheel. It is fact that the engine must be running to activate the system when the

user presses the activation switch. This system records the speed of the vehicle and

maintains the desired speed that the user sets up during the active period. This system is

mostly deactivated when the accelerator pedal, the brake pedal or the button of

deactivation is pressed.

The design schema of the cruise control system is given in [44, 45]. The cruise

control system monitors the user inputs (buttons), the accelerator pedal, the brake pedal,

the engine’s status and Global Positioning System (GPS), which are called sensor-scan

processes; it measures the current speed of vehicle from the wheel rotation; it computes

necessary control values for the speed-adjustment; and based on these computed values,

it updates related parameters and sends adjusted values (e.g. decrease/increase/maintain

speed) to throttle actuator. Here, it needs a significant computational time to calculate

control values and to update parameters [44]. In [44], the cruise control is implemented

in two processors in parallel to execute operations the above, and the design is realized

considering time delays of parallel tasks as shown in Figure 6.8; however, this is modeled

using the basic untimed PN [44]. These operational tasks of the cruise control system is

modeled by using TdAPN as illustrated in Figure 6.9.

67

Monitoring

User Inputs

From User

Interface

()h
t2

p4

Monitoring

the Brake

Pedal from

Brake Sensor

()h
t3

p6

10 ms 15 ms

Monitoring

Engine from

Engine

Sensor

()

10 ms

h
t5

p8

Monitoring Global

Positioning System

()

20 ms

h
t1

p3

Monitoring the

Acceleration Pedal

from Acceleration

Sensor

()

15 ms

h
t4

p5

Monitored

()p4

Monitored

()p6

Monitored

()p8

Monitored

()p3

Monitored

()p5

Measure Current

Speed from the Wheel

Revolution Sensor

()

20 ms

h
t6

p7

Measured

()p7

Computing control

values for updating

parameters and sending

adjusted values

(,)

40 ms

h
t7

p9
h

t7

p10

p9 p10

Updating parameters

()h
t8

p11

25 ms

Updated

()p11

IDLE

60 ms

Computed

(,)

2nd Synchronization

Sending the

adjusted values

()

(t7)

20 ms

h
t9

p12

Sent

()p11
P

ro
ce

ss
o
r

2
P

ro
ce

ss
o
r

1

0 ms 120 ms

Figure 6.8. Schedule of tasks and assignment to processors [44]

p1

• t11

p2

3

h
t1

p3

t1

t2

1

h
t2

p4

p3

p4

t4

t3

2

h
t4

p5

2

h
t3

p6

p5

p6

3

h
t6

p7

1

h
t5

p8

t6

t5

p7

p8

t7

7
h

t7

p10

7
h

t7

p9

p9

p10

3

4

p12

p11

h
t9

p12

h
t8

p11

t9

t8

t10

0

p13

00

Figure 6.9. Model of TdAPN for the cruise control in Figure 6.8

The Transition-Stretched PN Equivalent of TdAPN in Figure 6.9 is also given in

Figure 6.10. Here in this figure, there are 26 pair of places and transitions because of time

delays.

68

p1

•

t11

p2

t1

t2

p3

p4

t4

t3

p5

p6

t6

p7p8

t7

p13

p
t1

1 t
t1

1

p
t1

2 t
t1

2

p
t1

3 t
t1

3

p
t4

1 t
t4

1

p
t4

2 t
t4

2

p
t6

1

t
t6

1

t
t6

2

p
t6

2

t
t6

3

p
t6

3

p
t2

1 t
t2

1

p
t3

1 t
t3

1

p
t3

2 t
t3

2

t
t6

2

p
t6

2

t10

p11

p
t8

4

t
t8

3

t
t8

2

p
t8

3

t
t8

1

p
t8

2

t
t8

4

p
t8

1

p12

p
t9

3

t
t9

3

t
t9

2

p
t9

2

t
t9

1

p
t9

1

t8

p
t7

1

t
t1

1

t9

p10

p9

p
t7

2

t
t1

2

p
t7

3

t
t1

3

p
t7

4t
t1

4

p
t7

5t
t1

5

p
t7

6t
t1

6

p
t7

7

t
t7

7

Figure 6.10. Transition-Stretched PN Equivalent of TdAPN in Figure 6.9

Note that time delays are in terms of milliseconds in Figure 6.8. These must be

discretized using an appropriate sampling period in order to apply the proposed

deterministic TdAPN. This sampling period can be five ms for one ts as long as all time-

delays in Figure 6.8 are the factor of five; as a result, one ts is considered as five ms. The

TdAPN model in Figure 6.9 is described by 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0). Here, places are in a set

form as 𝑃 = {𝑝𝑖|𝑖 = 1,2, … ,13}; 𝑇 = {𝑡𝑖|𝑖 = 1,2, … ,11} is the set of transitions; and the

input matrix 𝑁, output matrix 𝑂, and time delay matrix 𝐷 in terms of ts are as follows:

69

𝑁 =

[

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1]

 , 𝑂 =

[

0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0]

, 𝐷 =

[

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 0]

 .

The set of time elements is ∇= {ℎ𝑝3
𝑡1 , ℎ𝑝4

𝑡2 , ℎ𝑝6
𝑡3 , ℎ𝑝5

𝑡4 , ℎ𝑝8
𝑡5 , ℎ𝑝7

𝑡6 , ℎ𝑝9
𝑡7 , ℎ𝑝10

𝑡7 , ℎ𝑝11
𝑡8 , ℎ𝑝12

𝑡9 },

where 𝐷(𝑝, 𝑡) ≠ 0 and 𝑂(𝑝, 𝑡) ≠ 0. 𝑆0 = {𝑴0, 𝛁
𝑹𝟎} is the initial state of 𝐺𝐴 at 𝑘0 = 0,

where 𝑴0=[0 0 0 0 0 0 0 0 0 0 0 0 1]' and 𝛁𝑹𝟎=[0 0 0 0 0 0 0 0 0 0]'. Physical meanings

for elements of TdAPN in Figure 6.9 are given in Table 6.2. According to this table,

𝑀(𝑘0, 𝑝13) = 1 indicates that the source is ready to execute parallel tasks. 𝛁𝑹𝟎 = 𝟎|∇|×1

indicates that there is currently no dynamic operation (𝐹𝑝𝑟𝑒(𝑘0) = ∅)).

Table 6.2. Physical meanings for elements of TdAPN in Figure 6.9

Element Explanation Status

𝑝1
Source for the processor 1 is available.

(Dummy place)
NT: unavailable (no), T: available (yes).

𝑝2
Source for the processor 2 is available

(Dummy place)
NT: unavailable (no), T: available (yes).

𝑝3 Global Positioning System is monitored. NT: not monitored (no), T: monitored (yes).

𝑝4 User inputs are monitored. NT: not monitored (no), T: monitored (yes).

𝑝5 Acceleration is monitored. NT: not monitored (no), T: monitored (yes).

𝑝6 Brake is monitored. NT: not monitored (no), T: monitored (yes).

𝑝7 Current speed is measured. NT: not monitored (no), T: monitored (yes).

𝑝8 Engine is monitored. NT: not monitored (no), T: monitored (yes).

𝑝9
Control values for updating parameters are

computed.
NT: not computed (no), T: computed (yes).

𝑝10
Control values for adjusted speed values are

computed.
NT: not computed (no), T: computed (yes).

𝑝11 Parameters are updated. NT: not updated (no), T: updated (yes).

𝑝12 Adjusted values are sent. NT: not sent (no), T: sent (yes).

𝑝13 Source is ready. (Dummy place) NT: not ready (no), T: ready (yes).

NT: No token exists. T: Token exists.

70

Table 6.2. (Continue) Physical meanings for elements of TdAPN in Figure 6.9

Element Explanation Status

𝑡1 Monitor Global Positioning System.

𝑡2 Monitor user inputs.

𝑡3 Monitor the brake pedal.

𝑡4 Monitor the acceleration pedal.

𝑡5 Monitor the engine.

𝑡6 Measure the current speed.

𝑡7 Compute control values.

𝑡8 Update parameters.

𝑡9 Send adjusted values.

𝑡10 Sink (dummy transition).

𝑡11 Source (dummy transition).

ℎ𝑝3
𝑡1 Monitoring Global Positioning System. This operation takes 3 ts.

ℎ𝑝4
𝑡2 Monitoring user inputs from the user interface. This operation takes 1 ts.

ℎ𝑝6
𝑡3 Monitoring the brake pedal. This operation takes 2 ts.

ℎ𝑝5
𝑡4 Monitoring the acceleration pedal. This operation takes 2 ts.

ℎ𝑝8
𝑡5 Monitoring the engine. This operation takes 1 ts.

ℎ𝑝7
𝑡6 Measuring current speed from the wheel revolution sensor. This operation takes 3 ts.

ℎ𝑝9
𝑡7 Computing control values for updating parameters. This operation takes 7 ts.

ℎ𝑝10
𝑡7 Computing control values for sending adjusted speed values. This operation takes 7 ts.

ℎ𝑝11
𝑡8 Updating parameters. This operation takes 4 ts.

ℎ𝑝12
𝑡9 Sending adjusted values. This operation takes 3 ts.

Algorithms of TdAPN (Algorithm 7.1) found 134 states of the reachability set

𝑅𝑆(𝐺𝐴, 𝑆0) for the automotive example shown in Appendix-4, where 21 states of the basic

(untimed) PN were found in [44]. These are called relaxed states in TdAPN. The

reachability set was obtained as 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0, 𝑆1, … , 𝑆133}. For this example, there is

no deadlock state. The net is live and reversible. 22.8500 seconds were required to

construct the reachability set for TdAPN and 1.6696 seconds were required for the

construction of TdAPN (total is 24.5196 seconds). The software also generated a timed-

reachability tree for the reachability set by considering the relation between states. The

generated timed-reachability tree, which concerns 𝑅𝑆(𝐺𝐴, 𝑆0), is shown in Figure 6.11.

Descriptions of the timed-reachability tree are also similar to explanations for Figure 3.8.

Results show that the design for the cruise control system makes it operate correctly as

long as its TdAPN model is live and reversible.

71

Figure 6.11. Timed-reachability tree of TdAPN in Figure 6.9

72

Figure 6.11.(Continue) Timed-reachability tree of TdAPN in Figure 6.9

t_10

73

7. ALGORITHMS FOR TIMED-ARC PETRI NETS

This chapter presents algorithms for the proposed TdAPN that construct the

reachability set 𝑅𝑆(𝐺𝐴, 𝑆0) of 𝐺𝐴 and find values of the forbidden state controller’s

function based on the set of undesired states, i.e., ℒ0 and 𝑅𝑆(𝐺𝐴, 𝑆0). These are also

implemented and simulated in the MATLAB; in addition, corresponding results are

presented. Algorithms of constructing the reachability set for TdAPN have been presented

in [31] by Yufka et.al.

7.1. Algorithms to Construct Reachability Set

In this section, algorithms calculating the next state 𝑆(𝑘 + 1) and constructing the

reachability 𝑅𝑆(𝐺𝐴, 𝑆0) set for TdAPNs are presented. In order to perform these, there are

two parts in the software of the proposed TdAPN. These are called Prepare-Initials Part

and Main-Function Part as shown in Figure 7.1. These are explained in the following

subsections. Prepare-Initials Part is used for preparing initial inputs for Main-Function

Part, while Main-Function Part is used for constructing 𝑅𝑆(𝐺𝐴, 𝑆0); in addition it also

constructs the set of deadlock states ℒ̃0 and the set of next states 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0) that

includes the pair of arguments of the function 𝜌(𝑆, 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙) together with its

resulting state �̃�, where states 𝑆 and �̃� are the member of the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0).

User Inputs

GA(P,T,N,O,D,S0)

Main-

Function

Part

Prepare-

Initials Part

Fpre(k0)

GA(P,T,N,O,D,S0),

RS (GA, S0)

k0

t●, ●t, p●

The software of TdAPN

Rnext(GA, S0)

~L0

Figure 7.1. Parts of the software of TdAPN to obtain the reachability set

7.1.1. Prepare-initials part

Prepare-Initials Part is used to prepare initials for Main-Function Part using

𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), which must be given to Prepare-Initials Part by the user. This part

is used only at the initial time 𝑘0. Prepare-Initials Part produces the following outputs:

 TdAPN’s definition that is 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), and the set of time elements ∇,

74

 The set of previously activated firing processes at the initial state 𝑆0 at time 𝑘0

that is 𝐹𝑝𝑟𝑒(𝑘0),

 The initial time instant 𝑘0 (𝑘0 is equal to zero as default if 𝐹𝑝𝑟𝑒(𝑘0) is an empty

set. Otherwise, it means 𝑘0 > 0),

 For the transition 𝑡 ∈ 𝑇, the set of input places ●𝑡 and the set of output place 𝑡●;

and for the place the 𝑝 ∈ 𝑃, post set of transitions 𝑝●.

Then, these outputs of Prepare-Initials Part are used by Main-Function Part as input

information.

7.1.2. Main-function part

Main-Function Part is responsible from the state evaluation thus calculating next

state 𝑆(𝑘 + 1) = {𝑴(𝑘 + 1), 𝛁𝑅(𝑘 + 1)} via discrete-time unit impulse functions as

given in (3.3) and (3.4); as a result, it generates the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0); in addition,

ℒ̃0 and 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0). These are outputs of Main-Function Part. 𝑅𝑆(𝐺𝐴, 𝑆0), ℒ̃0 and

𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0) will be used for the forbidden state controller in the next subsection. The

detailed diagram of Main-Function Part is given in Figure 7.2.

Main-Function Part

Sevaluated(k)

is empty?

Increase time

variable as k + 1 ts

 For all |Sevaluated(k - 1)| determine E(GA, k - 1) of the selected state

 Sj(k - 1) from Sevaluated(k - 1)

 For all f0 = and fi E(GA, k - 1), i 1, for the selected state Sj(k - 1)

from Sevaluated(k - 1)

Increase the state label for

Snew(k)

Determine F(k - 1) using

Fj(k - 1) from Sprocess(k - 1)

and Fstart(k - 1) by fi

Compute Snew(k) using

Sj(k - 1) and F(k - 1)

Snew(k) is in

RS(GA, S0)?

No

No Yes

GA(P,T,N,O,D,S0),

, k0, Fpre(k0)

RS(GA, S0)

k0

Sevaluated(k0)={S0}

Sprocess(k0)={F0}

RS (GA, S0)={S0}

Yes

Determine

Fpre(k) and add

into Sprocess(k)

Add Snew(k) to

RS (GA, S0) and

Sevaluated(k)

Remove Snew(k)

and decrease the

state label by 1

t●, ●t, p●

Rnext(GA, S0)

L0
~

Figure 7.2. Detailed diagram of Main-Function Part

75

Here in Figure 7.2, the entities that belong to the initial time 𝑘0 come from Prepare-

Initials Part. The state evolution for 𝑘 > 𝑘0 is realized in Main-Function Part. Here, 𝑘 is

the discrete time variable, and states in 𝑅𝑆(𝐺𝐴, 𝑆0) are obtained in the minimum time; as

a result, 𝑘 is stopped to increase by one ts when the last state of 𝑅𝑆(𝐺𝐴, 𝑆0) is reached.

Moreover, remember that each state in 𝑅𝑆(𝐺𝐴, 𝑆0) is denoted and labeled as 𝑆𝑗 =

{𝛾1(𝑆𝑗) = 𝑴𝑗 , 𝛾2(𝑆𝑗) = 𝛁
𝑹𝒋} where 𝐹(𝑆𝑗) is 𝐹𝑝𝑟𝑒(𝑆𝑗) ∪ 𝜙, while 𝜙 ∈ �̂� (𝐺𝐴, 𝛾1(𝑆𝑗)). In

algorithms, 𝐹𝑗 is used for denoting the set 𝐹𝑝𝑟𝑒(𝑆𝑗) related to the state 𝑆𝑗 ∈ 𝑅𝑆(𝐺𝐴, 𝑆0).

𝐹𝑗 is the set of transitions at state 𝑆𝑗 whose firing processes are previously activated and

not finished yet. The state of 𝑆𝑗 at time 𝑘 is represented as 𝑆𝑗(𝑘) = {𝑴𝑗(𝑘), 𝛁
𝑹𝒋(𝑘)} and

the set of 𝐹𝑗 at time 𝑘 is represented as 𝐹𝑗(𝑘) in Main-Function Part; in addition, the set

of sets of simultaneously-enabled transitions at 𝑴𝑗(𝑘) at time 𝑘 is �̂�(𝐺𝐴, 𝑘). In order to

perform algorithmic computations, elements of �̂�(𝐺𝐴, 𝑘) are represented with their sub-

indices as 𝜙𝑖 ∈ �̂�(𝐺𝐴, 𝑘), where 𝑖 ∈ 1,2, … , |�̂�(𝐺𝐴, 𝑘)|, and 𝜙𝑖 points out the 𝑖 ‘th element

of �̂�(𝐺𝐴, 𝑘). Here, |{. }| indicates the cardinality of the set {. }. It is also the zero sub-index

is used for denoting no selection of 𝜙 ∈ �̂�(𝐺𝐴, 𝑘); thus 𝜙0 stands for an empty set. The

selected transitions in the set 𝜙 is added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) at time 𝑘 such that 𝐹(𝑘) is

constructed by 𝐹𝑗(𝑘) ∪ 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) at the state 𝑆𝑗(𝑘) according to the selection of

𝜙 ∈ �̂�(𝐺𝐴, 𝑘).

In Main-Function Part in Figure 7.2, there is a main while loop, and there is a for-

in-for loop in while loop. At time 𝑘0, initials are 𝑘0, 𝑆(𝑘0) and 𝐹𝑝𝑟𝑒(𝑘0); furthermore,

there is a counter for the state-label that is initially equal to zero. At each 𝑘, this counter

is equal to the state-label of the last element in 𝑅𝑆(𝐺𝐴, 𝑆0) that is initially 𝑗 = 0 for 𝑆0.

For instance; at the beginning, the reachability set is 𝑅𝑆(𝐺𝐴, 𝑆0) = {𝑆0} so that the counter

for state-label is zero at time 𝑘 = 𝑘0. Moreover, in algorithms, in order to compute the

next state using information about the present state, states that is not evaluated yet at time

𝑘 is represented by 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘), namely the set of sets of not yet evaluated states.

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) includes the set of states at time 𝑘, which will be used for the evaluation

of the next state. This set is 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘0) = {𝑆0} at time 𝑘0. In addition,

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 + 1) is constructed by next states of present states in 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘). On

the other hand, the set of sets of previously firing processes related to states in

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) at time 𝑘 is represented by 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘). This set is initially

76

𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘0) = {𝐹0}, where 𝐹0 is 𝐹𝑝𝑟𝑒(𝑘0). Subscripts of 𝐹𝑝𝑟𝑒(𝑘) in 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘)is

suited to indices of 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘). Based on the above information, the following steps

are iteratively followed in Main-Function Part as:

 While loop checks the condition whether 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = ∅. If

𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) ≠ ∅, then time variable 𝑘 is increased by one ts, and the code

enters the outer for loop. If 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = ∅, then 𝑅𝑆(𝐺𝐴, 𝑆0) is obtained.

 Outer for loop counts all states 𝑆𝑗(𝑘 − 1) ∈ 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1). Note that 𝑘 is

previously increased by one ts in the while loop. The main evaluated state is

currently 𝑆𝑗(𝑘 − 1). Then, the code enters inner for loop. In addition, when the

code leaves outer for loop, 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘), which includes newly created states

added into 𝑅𝑆(𝐺𝐴, 𝑆0) at time 𝑘, is generated and 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘) is also generated.

 Inner for Loop counts all 𝜙 ∈ �̂�(𝐺𝐴, 𝑘 − 1) of 𝑆𝑗(𝑘 − 1). Initially, the counter for

the state-label is increased by 1 and a temporary new state is created as 𝑆𝑛𝑒𝑤(𝑘).

𝐹(𝑘 − 1) is generated using previously activated firing processes in

𝐹𝑗(𝑘 − 1) ∈ 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘 − 1) of 𝑆𝑗(𝑘 − 1) and 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1) by 𝜙; as a result,

𝐹(𝑘 − 1) is created including 𝐹𝑗(𝑘 − 1) and newly started firing processes of 𝑡 ∈

𝜙 in 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1). The new next state 𝑆𝑛𝑒𝑤(𝑘) is computed by using the function

of 𝜌 (𝑆𝑗(𝑘 − 1), 𝐹(𝑘 − 1)). Then, the duplication is checked for 𝑆𝑛𝑒𝑤(𝑘) whether

it is in the reachability set 𝑅𝑆(𝐺𝐴, 𝑆0). If 𝑆𝑛𝑒𝑤(𝑘) ∈ 𝑅𝑆(𝐺𝐴, 𝑆0), then 𝑆𝑛𝑒𝑤(𝑘) is

deleted and the counter for the state-label is decreased by one. If 𝑆𝑛𝑒𝑤(𝑘) ∉

𝑅𝑆(𝐺𝐴, 𝑆0), then it is added into 𝑅𝑆(𝐺𝐴, 𝑆0) at time 𝑘. It is also that if 𝑆𝑛𝑒𝑤(𝑘) is

a deadlock state, then it is added into ℒ̃0. Completed firing processes are also

checked for 𝐹𝑝𝑟𝑒(𝑘) that is 𝐹𝑛𝑒𝑤(𝑘) related to the state 𝑆𝑛𝑒𝑤(𝑘), and 𝐹𝑛𝑒𝑤(𝑘) is

added into 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘). The pair of arguments of the function 𝜌(𝑆, 𝐹𝑝𝑟𝑒(𝑆) ∪ 𝜙)

together with its resulting state �̃� is added into 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0).

Main-Function Part has a main algorithm (given in Algorithm 7.1) and sub-

algorithms as given in Figure 7.3.

77

Main-Function Part

 Main Algorithm (Algorithm 7.1)

isEnable (Algorithm 7.2)

checkProcesses (Algorithm 7.3)

addProcesses (Algorithm 7.4)

Fpre(k0)

GA(P,T,N,O,D,S0),

k0

t●, ●t, p●

RS(GA, S0)

~L0

Rnext(GA, S0)

Firing Process Sub-Algorithms

Enabledness Sub-Algorithm

getNextMarkingPlace (Algorithm 7.5)

Next-State Sub-Algorithms

getNextRemaining (Algorithm 7.6)

Figure 7.3. Main algorithm and its sub-algorithms for TdAPN

Here in main algorithm (Algorithm 7.1), the following sub-algorithms are used as:

 Enabledness Sub-Algorithm which is isEnable (given in Algorithm 7.2),

 Firing Process Sub-Algorithms which are checkProcesses (given in

Algorithm 7.3) and addProcesses (given in Algorithm 7.4),

 Next State Sub-Algorithms which are getNextMarkingPlace (given in

Algorithm 7.5) and getNextRemaining (given in Algorithm 7.6),

o getNextMarkingPlace (Algorithm 7.5) is used to calculate 𝑴(𝑘 + 1)

according to the selection of 𝜙 ∈ �̂�(𝐺𝐴, 𝑘) or 𝜙 = ∅.

o getNextRemaining (Algorithm 7.6) is used to calculate 𝛁𝑅(𝑘 + 1) by

selecting 𝜙 ∈ �̂�(𝐺𝐴, 𝑘) and ∅.

Algorithm 7.1. Main algorithm of Main-Function Part

Main-Algorithm ALGORITHM I - main

Inputs 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), ∇, 𝑘0, 𝐹𝑝𝑟𝑒(𝑘0), ●𝑡, 𝑡●, 𝑝●

Outputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̃0

1. 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘0) = {𝑆0 𝑓𝑜𝑟 𝑆(𝑘0)}
2. 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘0) = {𝐹0 𝑓𝑜𝑟 𝐹𝑝𝑟𝑒(𝑘0)}

3. 𝑅𝑆 (𝐺𝐴, 𝑆0) = 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘0)
4. ℒ̃0 = ∅
5. 𝑘 = 𝑘0

6. while 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) ≠ ∅ do

7. : counter_init_state_label = last element in 𝑅𝑆 (𝐺𝐴, 𝑆0)
8. : counter_state_label = counter_init_state_label

9. : 𝑘 = 𝑘 + 1

10. : for 𝑗 = 1 to |𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)| do

11. : : 𝑀𝑗(𝑘 − 1) = 𝛾1([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗)

12. : : ∇𝑅𝑗(𝑘 − 1) = 𝛾2([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗)

13. : : 𝐹𝑗(𝑘 − 1) = [𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘 − 1)]𝑗

78

Algorithm 7.1. (Continue) Main algorithm of Main-Function Part

Main-Algorithm ALGORITHM I - Main Algorithm

Inputs 𝐺𝐴(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑆0), ∇, 𝑘0, 𝐹𝑝𝑟𝑒(𝑘0), ●𝑡, 𝑡●, 𝑝●

Outputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̃0

14. : : 𝐹𝑝𝑟𝑒(𝑘 − 1) =𝐹𝑗(𝑘 − 1)

15. : : �̂�(𝐺𝐴, 𝑘 − 1) = isEnable(𝑃, 𝑇, 𝑁, 𝑀𝑗(𝑘 − 1), 𝐹𝑝𝑟𝑒(𝑘 − 1), 𝑘 − 1, ●𝑡, 𝑝●)

16. : : for 𝑖 = 0 to |�̂�(𝐺𝐴, 𝑘 − 1)| do

17. : : : counter_state_label = counter_state_label + 1

18. : : : 𝑆𝑛𝑒𝑤 = 𝑆counter_state_label
19. : : : if 𝑖 = 0 then

20. : : : : 𝜙𝑖 = ∅

21. : : : else

22. : : : : 𝜙𝑖 = [�̂�(𝐺𝐴, 𝑘 − 1)]𝑖

23. : : : end if

24. : : : 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1) = addProcesses(𝑇, 𝜙𝑖, 𝑘 − 1)

25. : : : 𝐹(𝑘 − 1) = 𝐹𝑝𝑟𝑒(𝑘 − 1) + 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘 − 1)

26. : : : 𝑀𝑛𝑒𝑤(𝑘) = getNextMarkingPlace(𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑘, 𝑀𝑗(𝑘 − 1), 𝐹(𝑘 − 1))

27. : : : if ∇≠ ∅ then

28. : : : : ∇𝑛𝑒𝑤
𝑅 (𝑘) = getNextRemaining(𝑃, 𝑇, ∇, 𝐷, 𝑘, ∇𝑅𝑗(𝑘 − 1), 𝐹(𝑘 − 1))

29. : : : else

30. : : : : ∇𝑛𝑒𝑤
𝑅 (𝑘) = [] ([] denotes an empty vector with no dimension)

31. : : : end if

32. : : : flag_duplication = false

33. : : : for 𝑥 = 1 to |𝑅𝑆 (𝐺𝐴, 𝑆0)| do

34. : : : : if [𝑅𝑆 (𝐺𝐴, 𝑆0)]𝑥 = 𝑆𝑛𝑒𝑤(𝑘) then

35. : : : : : 𝑆𝑒𝑡𝑛𝑒𝑥𝑡 ← {([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗, 𝜙𝑖), [𝑅𝑆 (𝐺𝐴, 𝑆0)]𝑥}

36. : : : : : delete 𝑆𝑛𝑒𝑤(𝑘)
37. : : : : : flag_duplication = true

38. : : : : : counter_state_label = counter_state_label – 1

39. : : : : : break

40. : : : : end if

41. : : : end for

42. : : : if flag_duplication = true then

43. : : : : continue

44. : : : else

45. : : : : 𝑅𝑆 (𝐺𝐴, 𝑆0) ← 𝑆𝑛𝑒𝑤(𝑘)
46. : : : : 𝐹𝑛𝑒𝑤(𝑘) = checkProcesses(𝑃, 𝑇, 𝐷, 𝐹(𝑘 − 1), 𝑘)

47. : : : : 𝐹𝑝𝑟𝑒(𝑘) = 𝐹𝑛𝑒𝑤(𝑘)

48. : : : : 𝑆𝑒𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑘) ← 𝐹𝑝𝑟𝑒(𝑘)

49. : : : : if ∇𝑛𝑒𝑤
𝑅 (𝑘) = 0|∇|𝑥1 and �̂�(𝐺𝐴, 𝑘) = ∅ then

50. : : : : : ℒ̃0 ← 𝑆𝑛𝑒𝑤

51. : : : : end if

52. : : : : 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0) ← {([𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘 − 1)]𝑗 , 𝜙𝑖), 𝑆𝑛𝑒𝑤(𝑘)}

53. : : : end if

54. : : end for

55. : end for

56. : if counter_init_state_label +1 counter_state_label then

57. : : 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = {𝑆counter_init_state_label +1: 𝑆counter_state_label}
58. : else

59. : : 𝑆𝑒𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑(𝑘) = ∅

60. : end if

61. end while

79

Enabledness Sub-Algorithm: This sub-algorithm is called and runned under main

algorithm (Algorithm 7.1) of Main-Function Part. In order to determine the enabled

transitions at 𝑴(k) at time 𝑘, the sub-algorithm, namely isEnable (Algorithm 7.2), is

developed using definitions in (3.1) and (3.2). Inputs of this sub-algorithm are 𝑃, 𝑇, 𝑁,

𝑴(𝑘), 𝐹(𝑘), 𝑘, ●𝑡 and 𝑝●. Its output is the set of sets of simultaneously-enabled transition

�̂�(𝐺𝐴, 𝑘) that also includes transitions in the set of transitions 𝐸(𝐺𝐴, 𝑘). The following

steps are performed in order as:

 First of all, the sub-algorithm isEnable (Algorithm 7.2) finds the set of enabled

transitions that is 𝐸(𝐺𝐴, 𝑘) based on the condition given in (3.1).

 Then, it checks all combinations (𝐸𝑐𝑜𝑚𝑏𝑠 in the code, which refers to

�̂�(𝐺𝐴, 𝑘) ⊂ 2𝐸(𝐺𝐴,𝑘)\∅) of transitions 𝑡 ∈ 𝐸(𝐺𝐴, 𝑘) in order to determine the set

of simultaneously-enabled transitions, i.e., 𝜙 ⊆ 𝐸(𝐺𝐴, 𝑘) based on the condition

given in (3.2).

 Finally, it constructs the set of sets of simultaneously-enabled transitions, i.e.,

�̂�(𝐺𝐴, 𝑘).

Algorithm 7.2. Enabledness sub-algorithm

Sub-Algorithm ALGORITHM II - isEnable

Inputs 𝑃, 𝑇, 𝑁, 𝑴(𝑘), 𝐹(𝑘), 𝑘, ●𝑡, 𝑝●

Outputs �̂�(𝐺𝐴, 𝑘)

1. 𝐸(𝐺𝐴, 𝑘) = ∅

2. �̂�(𝐺𝐴, 𝑘) = ∅
3. 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡

𝜆 ∈ 𝐹(𝑘), 𝜆 ≤ 𝑘}
4. for 𝑖 = 1 to |𝑇| do

5. : counter_E = 0

6. : for 𝑗 = 1 to |𝑃| do

7. : : if [𝑃]𝑗 ∈ ●[𝑇]𝑖 then

8. : : : if 𝑁([𝑃]𝑗 , [𝑇]𝑖) ≥ 1 then

9. : : : : if 𝑀([𝑃]𝑗 , 𝑘) ≥ 𝑁([𝑃]𝑗 , [𝑇]𝑖) then

10. : : : : : counter_E = counter_E+1

11. : : : : end if

12. : : : end if

13. : : end if

14. : end for

15. : if counter_E = |●[𝑇]𝑖| then

16. : : 𝐸(𝐺𝐴, 𝑘) ← [𝑇]𝑖
17. : end if

18. end for

19. : |𝐸𝑐𝑜𝑚𝑏𝑠| = (|𝐸
(𝐺𝐴, 𝑘)|
𝑧

)

20. for 𝑧 = 1 to |𝐸(𝐺𝐴, 𝑘)| do

80

Algorithm 7.2. (Continue) Enabledness Sub-Algorithm

Sub-Algorithm ALGORITHM II - isEnable

Inputs 𝑃, 𝑇, 𝑁, 𝑴(𝑘), 𝐹(𝑘), 𝑘, ●𝑡, 𝑝●

Outputs �̂�(𝐺𝐴, 𝑘)

21. : for 𝑦 = 1 to |𝐸𝑐𝑜𝑚𝑏𝑠| do

22. : : 𝑃𝑢𝑛𝑖𝑜𝑛 = ∅

23. : : flag_multi = 0

24. : : for 𝑗 = 1 to |[𝐸𝑐𝑜𝑚𝑏𝑠]𝑦| do

25. : : : 𝑃𝑢𝑛𝑖𝑜𝑛 ← 𝑃𝑢𝑛𝑖𝑜𝑛 ∪ ●[[𝐸𝑐𝑜𝑚𝑏𝑠]𝑦]𝑗

26. : : end for

27. : : for 𝑖 = 1 to |𝑃𝑢𝑛𝑖𝑜𝑛| do

28. : : : N_sum = 0

29. : : : 𝑃𝑢𝑛𝑖𝑜𝑛 ← 𝑃𝑢𝑛𝑖𝑜𝑛 ∪ [[𝐸𝑐𝑜𝑚𝑏𝑠]𝑦]𝑗

30. : : : for 𝑥 = 1 to |[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●| do

31. : : : : if [[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●]𝑥 ∈ [𝐸𝑐𝑜𝑚𝑏𝑠]𝑦 then

32. : : : : : if 𝑁([𝑃𝑢𝑛𝑖𝑜𝑛]𝑖 , [[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●]𝑥) ≥ 1 then

33. : : : : : : N_sum += 𝑁([𝑃𝑢𝑛𝑖𝑜𝑛]𝑖 , [[𝑃𝑢𝑛𝑖𝑜𝑛]𝑖●]𝑥)
34. : : : : : : if 𝑀([𝑃𝑢𝑛𝑖𝑜𝑛]𝑖 , 𝑘) < N_sum then

35. : : : : : : : flag_multi = 1

36. : : : : : : : break

37. : : : : : : end if

38. : : : : : else

39. : : : : : : flag_multi = 1

40. : : : : : : break

41. : : : : : end if

42. : : : : end if

43. : : : end for

44. : : : if flag_multi = 1 then

45. : : : : break

46. : : : end if

47. : : end for

48. : : if flag_multi = 0 then

49. : : : �̂�(𝐺𝐴, 𝑘) ← [𝐸𝑐𝑜𝑚𝑏𝑠]𝑦

50. : : end if

51. : end for

52. end for

53. for 𝑖 = 1 to |�̂�(𝐺𝐴, 𝑘)| do

54. : for 𝑗 =1 to |[�̂�(𝐺𝐴, 𝑘)]𝑗| do

55. : : if [�̂�(𝐺𝐴, 𝑘)]𝑖 ≠ ∅ then

56. : : : if [[�̂�(𝐺𝐴, 𝑘)]𝑖]𝑗
∈ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 then

57. : : : : �̂�(𝐺𝐴, 𝑘) = �̂�(𝐺𝐴, 𝑘) ∖ [�̂�(𝐺𝐴, 𝑘)]𝑖

58. : : : : 𝐸(𝐺𝐴, 𝑘) = 𝐸(𝐺𝐴, 𝑘) ∖ [[�̂�(𝐺𝐴, 𝑘)]𝑖]𝑗

59. : : : : break

60. : : : end if

61. : : end if

62. : end for

63. end for

81

Firing Process Sub-Algorithms: These sub-algorithms are called and runned under main

algorithm (Algorithm 7.1) of Main-Function Part. A firing process 𝑡𝜆 ∈ 𝐹𝑠𝑡𝑎𝑟𝑡(𝜆),

𝐹𝑠𝑡𝑎𝑟𝑡(𝜆) ⊆ 𝐹(𝜆) starts at time 𝑘 = 𝜆 and it is completed at time 𝑘 = 𝜆 + 𝑑𝑡 such that

𝑡𝜆 ∉ 𝐹𝑝𝑟𝑒(𝜆 + 𝑑𝑡), 𝐹𝑝𝑟𝑒(𝜆 + 𝑑𝑡) ⊆ 𝐹(𝜆 + 𝑑𝑡). In order to check the firing processes

𝑡𝜆 ∈ 𝐹(𝑘) whether it is completed at time 𝑘 + 1 and in the set 𝐹𝑝𝑟𝑒(𝑘 + 1),

the sub-algorithm, namely checkProcesses (Algorithm 7.3), is developed. Inputs of this

sub-algorithm are 𝑃, 𝑇, 𝐷, 𝐹(𝑘 − 1) and 𝑘. Its output is the set of transitions whose firing

processes continue, i.e., 𝐹𝑝𝑟𝑒(𝑘) ⊆ 𝐹(𝑘). In TdAPN, it is also checked whether a new

firing process 𝑡𝜆 is to be added into the set 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) at time 𝑘 = 𝜆. For this purpose, the

sub-algorithm, namely addProcesses (Algorithm 7.4), is also developed. Its inputs are 𝑇,

𝜙 and 𝑘, and its output is the set of transitions whose firing process is newly started at

time 𝑘, i.e., 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) ⊆ 𝐹(𝑘).

Algorithm 7.3. Firing process sub-algorithm to check completed firing processes

Sub-Algorithm ALGORITHM III - checkProcesses

Inputs 𝑃, 𝑇 𝐷, 𝐹(𝑘 − 1), 𝑘

Outputs 𝐹𝑝𝑟𝑒(𝑘)

1. 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡
𝜆 ∈ 𝐹(𝑘 − 1), 𝜆 ≤ 𝑘 − 1}

2. for 𝑖 = 1 to |𝑇| do

3. : if [𝑇]𝑖 ∈ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 then

4. : if [𝑇]𝑖 ∈ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 then

5. : : if 𝑘 = 𝜆[𝑇]𝑖 + max
𝑝∈[𝑇]𝑖•

{𝐷(𝑝, [𝑇]𝑖)} then

6. : : : 𝐹𝑝𝑟𝑒(𝑘) = 𝐹𝑝𝑟𝑒(𝑘) ∖ ([𝑇]𝑖)
𝜆[𝑇]𝑖

7. : : end if

8. : end if

9. end for

Algorithm 7.4. Firing process sub-algorithm to add new firing processes

Sub-Algorithm ALGORITHM IV - addProcesses

Inputs 𝑇, 𝜙, 𝑘

Outputs 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘)

1. 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) = ∅

2. 𝜆 = 𝑘

3. for 𝑗 = 1 to |𝑇| do

4. : if [𝑇]𝑗 ∈ 𝜙 then

5. : : 𝐹𝑠𝑡𝑎𝑟𝑡(𝑘) ← ([𝑇]𝑗)
𝜆

6. : end if

7. end for

82

Next State Sub-Algorithms: These sub-algorithms are called and runned under main

algorithm (Algorithm 7.1) of Main-Function Part. First of all, in order to calculate the

next marking vector 𝑴(𝑘 + 1) as given in (3.3), the sub-algorithm, namely

getNextMarkingPlace (Algorithm 7.5) is developed. Inputs of this sub-algorithm are 𝑃,

𝑇, 𝑁, 𝑂, 𝐷, 𝑴(𝑘), 𝐹(𝑘) and 𝑘. Its output is the next marking vector 𝑴(𝑘 + 1). The sub-

algorithm getNextMarkingPlace (Algorithm 7.5) uses discrete-time unit impulse

functions δ[𝑃]𝒋
𝑁 and δ[𝑃]𝒋

𝑂 to compute 𝑴(k + 1). Here, for the firing process 𝑡𝜆 ∈ 𝐹(𝑘),

δ[𝑃]𝒋
𝑁 is used for a multiplier for denoting the (𝑝𝑗, 𝑡) 'th element of 𝑁. Similarly, δ[𝑃]𝒋

𝑂 is

used for a multiplier for denoting the (𝑝𝑗, 𝑡) 'th element of 𝑂.

Algorithm 7.5. Next state sub-algorithm to calculate next marking vector

Sub-Algorithm ALGORITHM V - getNextMarkingPlace

Inputs 𝑃, 𝑇, 𝑁, 𝑂, 𝐷, 𝑘, 𝑴(𝑘), 𝐹(𝑘)

Outputs 𝑴(𝑘 + 1)

1. 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡
𝜆 ∈ 𝐹(𝑘), 𝜆 ≤ 𝑘}

2. if 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ≠ ∅ then

3. : 𝑀𝑠𝑢𝑚 = 0|𝑃|𝑥1

4. : for 𝑖 = 1 to |𝑡𝑎𝑐𝑡𝑖𝑣𝑒| do

5. : : for 𝑗 = 1 to |𝑃| do

6. : : : δ[𝑃]𝑗
𝑁 = δ[𝑃]𝑗

𝑂 = 0

7. : : : if 𝑘 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 then

8. : : : : δ[𝑃]𝑗
𝑁 = 1

9. : : : end if

10. : : : if 𝑘 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 + 𝐷([𝑃]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) then

11. : : : : δ[𝑃]𝑗
𝑂 = 1

12. : : : end if

13. : : : [𝑀𝑠𝑢𝑚]𝑗 = [𝑀𝑠𝑢𝑚]𝑗+ δ[𝑃]𝑗
𝑂 * 𝑂([𝑃]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) - δ[𝑃]𝑗

𝑁 * 𝑁([𝑃]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖)

14. : : end for

15. : end for

16. : 𝑀(𝑘 + 1) = 𝑀(𝑘) + 𝑀𝑠𝑢𝑚

17. else

18. : 𝑀(𝑘 + 1) = 𝑀(𝑘)
19. end if

Moreover, in order to calculate the next remaining time vector 𝛁𝑅(𝑘 + 1) as given

in (3.4), the sub-algorithm, namely getNextRemaining (Algorithm 7.6) is developed.

Inputs of this sub-algorithm are 𝑃, 𝑇, ∇, 𝐷, 𝛁𝑹(𝑘), 𝐹(𝑘) and 𝑘. Its output is the next

remaining time vector 𝛁𝑹(𝑘 + 1). The sub-algorithm getNextRemaining (Algorithm 7.6)

uses discrete-time unit impulse function δ[∇]𝒋 and the sum of discrete-time unit impulses

83

to compute 𝛁𝑹(k + 1). Here, δ[∇]𝒋 is used for a multiplier for the (𝑝, 𝑡) 'th element of 𝐷,

where the 𝑗 'th time element ℎ𝑝
𝑡 in the set ∇, and 𝑝 is the place index of ℎ𝑝

𝑡 while 𝑡 stands

for the firing process 𝑡𝜆 ∈ 𝐹(𝑘).

Algorithm 7.6. Next state sub-algorithm to calculate next remaining time vector

Sub-Algorithm ALGORITHM VI - getNextRemaining

Inputs 𝑃, 𝑇, ∇, 𝐷, 𝑘, 𝛁𝑅(𝑘), 𝐹(𝑘)

Outputs 𝛁𝑅(𝑘 + 1)

1. 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑡|𝑡
𝜆 ∈ 𝐹(𝑘), 𝜆 ≤ 𝑘}

2. if 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ≠ ∅ then

3. : ∇𝑅𝑠𝑢𝑚= 0|∇|𝑥1

4. : for 𝑖 = 1 to |𝑡𝑎𝑐𝑡𝑖𝑣𝑒| do

5. : : for 𝑗 = 1 to |∇| do

6. : : : δ[∇]𝑗 = 0

7. : : : if 𝑘 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 then

8. : : : : δ[∇]𝑗 = 1

9. : : : end if

10. : : : [∇𝑅𝑠𝑢𝑚]𝑗 = [∇𝑅𝑠𝑢𝑚]𝑗 + δ[∇]𝑗 ∗ 𝐷(𝑝 𝑝𝑎𝑟𝑡 𝑜𝑓 [∇]𝑗 , [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖)

11. : : : for 𝑙 = 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 + 1 to 𝜆[𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖 + 𝐷(𝑝 𝑝𝑎𝑟𝑡 𝑜𝑓 [∇]𝑗, [𝑡𝑎𝑐𝑡𝑖𝑣𝑒]𝑖) then

12. : : : : if 𝑘 = 𝑙 then

13. : : : : : [∇𝑅𝑠𝑢𝑚]𝑗 = [∇
𝑅
𝑠𝑢𝑚]𝑗 − 1

14. : : : : : break

15. : : : : end if

16. : : : end for

17. : : end for

18. : end for

19. : ∇𝑅(𝑘 + 1) = ∇𝑅(𝑘) + ∇𝑅𝑠𝑢𝑚

20. else

21. : ∇𝑅(𝑘 + 1) = ∇𝑅(𝑘)
22. end if

Using sub-algorithms getNextMarkingPlace (Algorithm 7.5) and

getNextRemaining (Algorithm 7.6), the next state of TdAPN at time 𝑘 + 1 is computed

as 𝑆(𝑘 + 1) = {𝑴(𝑘 + 1), 𝛁𝑅(𝑘 + 1)}.

84

7.2. Algorithms to Construct Forbidden State Controller

In this section, algorithms to construct forbidden state controller, which avoid

undesired states, are developed; as a result, a new part, namely Forbidden State-

Controller Part, is created and integrated to Main-Function Part as shown in Figure 7.4.

User Inputs

GA(P,T,N,O,D,S0)

Main-

Function

Part

Prepare-

Initials Part

Fpre(k0)

RS (GA,S0)

k0

Forbidden

State-

Controller

Part

C

User Inputs

(L0, controller type)

L

Rnext(GA, S0)

RR (GA,S0)

~L0

t●, ●t, p●

The software of TdAPN

GA(P,T,N,O,D,S0),

Figure 7.4. Forbidden State-Controller Part for the software of TdAPN

Forbidden State-Controller Part generates the expanded set of undesired states ℒ̂

from the set of undesired states ℒ0. Any set of ℒ0 defined by the user or based on the

desired behavior can be used in the controller. Forbidden State-Controller Part allows

the user to select the controller type, where the controller can be a deadlock avoidance

controller, or it can be a reversibility enforcement controller that enforces the system

reversible and deadlock-free, or it avoids any undesired states defined by the user.

Forbidden State-Controller Part has a main-controller algorithm (given in

Algorithm 7.7) and sub-algorithms as given in Figure 7.5.

Forbidden State-Controller Part

 Main-Controller Algorithm (Algorithm 7.7)

findExpandedSet (Algorithm 7.8)

findIrreversibleSet (Algorithm 7.9)

controlForbiddenState (Algorithm 7.10)

L0 , Controller Type

Rnext(GA, S0)

RR(GA, S0)

~L0

C

Finding Forbidden-States Sub-Algorithm

RS(GA, S0)

Reversibility Analysis Sub-Algorithm

Finding Controller-Values Sub-Algorithm

LUser Inputs

Figure 7.5. Main-controller algorithm and its sub-algorithms for TdAPN

85

Here, inputs of main-controller algorithm (Algorithm 7.7) are the reachability set

𝑅𝑆(𝐺𝐴, 𝑆0), the set of deadlock states ℒ̃0, the set of next states 𝑅𝑛𝑒𝑥𝑡(𝐺𝐴, 𝑆0), and user

inputs that are any initial set of undesired states ℒ0 and the selection of the controller type

(forbidding any desired state, deadlock avoidance or reversibility enforcement). Outputs

of main-controller algorithm (Algorithm 7.7) are the expanded set of undesired states ℒ̂,

the set of irreversible states 𝑅𝑅(𝐺𝐴, 𝑆0) and values of the controller function 𝒞 according

the controller type. Moreover, in this algorithm ℒ̃ represents the expanded set of deadlock

states.

Algorithm 7.7. Main-controller algorithm of Forbidden State-Controller Part

Main-Algorithm ALGORITHM VII – main-controller

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), ℒ̃0, 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ0, controller_type

Outputs ℒ̂, 𝑅𝑅 (𝐺𝐴, 𝑆0), 𝒞

1. ℒ̃ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̃0)

2. 𝑅𝑅 (𝐺𝐴, 𝑆0) = findIrreversibleSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ0)

3. ℒ̂ = ∅

4. if controller_type is deadlock avoidance then

5. : ℒ̂ = ℒ̃

6. else if controller_type is enforcing the system reversible and deadlock-free then

7. : ℒ̂ = 𝑅𝑅 (𝐺𝐴, 𝑆0)
8. else if controller_type is forbidding any desired states (such as user input) then

9. : ℒ̂ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ0)

10. else if controller_type is forbidding any desired states and deadlock avoidance then

11. : ℒ̂ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ0 ∪ ℒ̃0)

12. else if controller_type is forbidding any desired states and enforcing the system reversible then

13. : ℒ̂ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ0 ∪ 𝑅𝑅 (𝐺𝐴, 𝑆0))

14. end if

15. 𝒞 = controlForbiddenState(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̂)

Main-controller algorithm (Algorithm 7.7), The following sub-algorithms are used

as:

 Finding Forbidden-States Sub-Algorithm which is findExpandedSet

(given in Algorithm 7.8),

 Reversibility Analysis Sub-Algorithm which is findIrreversibleSet

(given in Algorithm 7.9),

 Finding Controller-Values Sub-Algorithm which is controlForbiddenState

(given in Algorithm 7.10).

86

Finding Forbidden-States Sub-Algorithm: This sub-algorithm is called and runned

under main-controller algorithm (Algorithm 7.7) of Forbidden State-Controller Part. In

order to find the expanded set of undesired states, i.e., ℒ̂ from any given initial set of

undesired states ℒ0, the sub-algorithm, namely findExpandedSet (Algorithm 7.8) is

developed using (5.3). Inputs of this sub-algorithm are 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0) and ℒ0.

Its output is the expanded set of undesired states ℒ̂.

Algorithm 7.8. Finding forbidden-states sub-algorithm

Sub-Algorithm ALGORITHM VIII - findExpandedSet

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ0

Outputs ℒ̂

1. ℒ̂ = ℒ0

2. 𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑆 (𝐺𝐴, 𝑆0)

3. 𝑖 = 0

4. while ℒ𝑖 ≠ ∅ do then

5. : 𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑑𝑢𝑚𝑚𝑦 ∖ ℒ𝑖

6. : 𝑖 = 𝑖 + 1

7. : ℒ𝑖 = ∅

8. : for 𝑗 = 1 to |𝑅𝑑𝑢𝑚𝑚𝑦| do

9. : : 𝑇𝑜 = ∅

10. : : for 𝑥 = 1 to |𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0)| do

11. : : : compare = {(𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜙), 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔} of [𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0)]𝑥

12. : : : if [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗 = 𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 in compare then

13. : : : : 𝑇𝑜 ← {(𝜙, 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔)} in compare

14. : : : end if

15. : : end for

16. : : counter = 0

17. : : for 𝑦 = 1 to |𝑇𝑜| do

18. : : : if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 of [𝑇𝑜]𝑦 ∈ ℒ̂ then

19. : : : : counter = counter + 1

20. : : : else if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 of [𝑇𝑜]𝑦 ∉ ℒ̂ and 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 of [𝑇𝑜]𝑦 = [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗 then

21. : : : : counter = counter + 1

22. : : : end if

23. : : end for

24. : : if counter = |𝑇𝑜| then

25. : : : ℒ𝑖 ← [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗

26. : : end if

27. : end for

28. : ℒ̂ ← ℒ𝑖
29. end while

87

Reversibility Analysis Sub-Algorithm: This sub-algorithm is called and runned under

main-controller algorithm (Algorithm 7.7) of Forbidden State-Controller Part. In order

to find the set of irreversible states, i.e., 𝑅𝑅 (𝐺𝐴, 𝑆0) whose states violate the reversibility-

property of TdAPN described in Definition 3.5, the sub-algorithm, namely

findIrreversibleSet (Algorithm 7.9) is developed. Inputs of this sub-algorithm are

𝑅𝑆 (𝐺, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺, 𝑆0) and ℒ̃0 defined in (3.8). Its output is the set of irreversible states

𝑅𝑅 (𝐺𝐴, 𝑆0).

Algorithm 7.9. Reversibility analysis sub-algorithm

Sub-Algorithm ALGORITHM IX - findIrreversibleSet

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̃0

Outputs 𝑅𝑅 (𝐺𝐴, 𝑆0)

1. ℒ̃ = findExpandedSet(𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̃0)

2. 𝑅𝑅 (𝐺𝐴, 𝑆0) = ℒ̃
3. 𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑆 (𝐺𝐴, 𝑆0) ∖ ℒ̃

4. 𝑅0 = ℒ̃
5. 𝑙 = 0

6. while 𝑅𝑙 ≠ ∅ do then

7. : 𝑅𝑑𝑢𝑚𝑚𝑦 = 𝑅𝑑𝑢𝑚𝑚𝑦 ∖ 𝑅𝑙

8. : 𝑙 = 𝑙 + 1

9. : 𝑅𝑙 = ∅

10. : for 𝑗 = 1 to |𝑅𝑑𝑢𝑚𝑚𝑦| do

11. : : 𝑇𝑜 = ∅

12. : : for 𝑥 = 1 to |𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0)| do

13. : : : compare = {(𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜙), 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔} of [𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0)]𝑥

14. : : : if [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗 = 𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 in compare then

15. : : : : 𝑇𝑜 ← {(𝜙, 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔)} in compare

16. : : : end if

17. : : end for

18. : : for 𝑦 = 1 to |𝑇𝑜| do

19. : : : if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 of [𝑇𝑜]𝑦 ∈ 𝑅𝑅 (𝐺𝐴, 𝑆0) then

20. : : : : 𝑅𝑙 ← [𝑅𝑑𝑢𝑚𝑚𝑦]𝑗

21. : : : : break

22. : : : end if

23. : : end for

24. : end for

25. : 𝑅𝑅 (𝐺𝐴, 𝑆0) ← 𝑅𝑙
26. end while

88

Finding Controller-Values Sub-Algorithm: This sub-algorithm is called and runned

under main-controller algorithm (Algorithm 7.7) of Forbidden State-Controller Part. In

order to determine values of the controller function 𝒞(𝑆, 𝜙) that is able to disable the

transition(s) in the set 𝜙 at the state 𝑆 ∈ 𝑅𝑆 (𝐺, 𝑆0), the sub-algorithm, namely

controlForbiddenState (Algorithm 7.10) is developed using (5.4). Inputs of this sub-

algorithm are 𝑅𝑆 (𝐺, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺, 𝑆0) and ℒ̂. Its output is values of the controller

function as 𝒞(𝑆, 𝜙) ∈ {0,1}.

Algorithm 7.10. Finding controller-values sub-algorithm

Sub-Algorithm ALGORITHM X - controlForbiddenState

Inputs 𝑅𝑆 (𝐺𝐴, 𝑆0), 𝑅𝑛𝑒𝑥𝑡 (𝐺𝐴, 𝑆0), ℒ̂

Outputs 𝒞(𝑆, 𝜙)

1. 𝒞 = 1
2. for 𝑗 = 1 to |𝑅𝑆 (𝐺, 𝑆0)| do

3. : 𝑇𝑜 = ∅

4. : for 𝑥 = 1 to 𝑆𝑛𝑒𝑥𝑡 do

5. : : compare = {(𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜙), 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔} of [𝑆𝑛𝑒𝑥𝑡]𝑥

6. : : if [𝑅𝑆 (𝐺, 𝑆0)]𝑗 = 𝑆𝑝𝑟𝑒𝑠𝑒𝑛𝑡 in compare then

7. : : : 𝑇𝑜 ← {(𝜙, 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔)} in compare

8. : : end if

9. : : for 𝑦 = 1 to |𝑇𝑜| do

10. : : : if 𝑆𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 of [𝑇𝑜]𝑦 ∈ ℒ̂ then

11. : : : : if 𝜙 of [𝑇𝑜]𝑦 ≠ ∅ then

12. : : : : : 𝒞([𝑅𝑆 (𝐺, 𝑆0)]𝑗 , 𝜙) = 0

13. : : : : end if

14. : : : end if

15. : : end for

16. : end for

17. end for

89

8. CONCLUSION, DISCUSSION AND PROPOSALS

8.1. Conclusion

A novel mathematical modeling method has been presented for Timed PNs, where

time delays are assigned to arcs. In Timed PNs, system states are defined by the change

of tokens in PNs and their movements (flow). In the proposed model, a triangular

representation, called time element, that allows monitoring of tokens in transition, namely

flowing tokens, has been defined. The proposed Timed-Arc PN overcomes the main

drawback of Timed PNs by including time elements in the PN. It is important to monitor

flowing tokens in Timed PNs because a complete picture of states of time-delayed

systems is required in many practical systems. The proposed triangular graphical

representation transforms the representation of Timed PN into a tripartite graph including

places, transitions, and time elements. The tripartite structure of Timed-Arc PNs allows

the net to start at any state and any initial-time instant. The state of the system and the

remaining time of the work/operations are shown as a vector. Furthermore, discrete-time

unit impulse functions are used to compute the marking and the remaining time vectors.

The former is used for indicating the status of places, while the latter represents the status

of time elements. Such impulse functions are used to trigger appearances and

disappearances of tokens at places and at time elements such that the state evolution in

places and time elements is described in terms of these impulse functions. The use of

discrete-time unit impulse functions allows for obtaining new states; as a result, the next

state of the proposed Timed-Arc PN is formally computed using the marking and the

remaining time vectors with discrete-time unit impulse functions. All situations of tokens,

i.e., all situations of states can be computed. This makes possible to obtain the reachability

set and the timed-reachability graph (tree) enhanced by the time information as long as

the state of the system is expressed by the marking and remaining time vectors of TdAPN.

In addition, the controller design is also presented for time-delayed systems that is

modeled by the proposed mathematical model of TdAPNs. Basic behavioral properties

of the proposed TdAPNs have been defined by using the reachability set in order to permit

analysis of the proposed approach. Using the reachability set and behavioral properties of

the proposed Timed-Arc PNs, a forbidden state controller for time-delayed systems has

been designed in order to make the system avoid undesired states, such as deadlock states,

and to enforce the reversibility. Algorithms for constructing the reachability set and

90

designing a forbidden state controller for Timed-Arc PNs have been developed and

simulated using MATLAB. In addition; case studies of modeling and designing for real

systems, such as manufacturing, railway, and automotive systems, have been carried out

using the proposed approach. These case studies are not limited to the scope of these

topics. Timed-Arc PNs can also be applied to autonomous operations or decision

mechanisms of self-driving cars/autonomous robots, etc.

The proposed Timed-Arc PN is compared with Timed PNs and Stretched PNs. In

terms of firing processes, Timed-Arc PN provides the user to observe states

mathematically and graphically. Timed-Arc PN has a number of time elements according

to the number of non-zero-time delayed outgoing arcs; in addition, non-zero-time delayed

time elements are considered in the state of Timed-Arc PNs. The graphical representation

of Timed-Arc PNs is useful to show temporary disappearance in the representation of

Timed PNs, and one time element is sufficient to represent corresponding flowing tokens

while flowing tokens are represented in newly created places in the representation of

Stretched PNs. These newly created places are generated by a stretching procedure, and

their numbers are proportional to non-unity time delays defined in the Timed PN before

stretching. The stretching procedure results in an increase in matrices and the marking

vector. This drawback of Stretched PNs causes an increase in the computation time for

constructing the reachability set for Timed PNs. On the contrary, Timed-Arc PN is able

to represent time delays defined in Timed PNs using only one time element; as a result;

this feature of the proposed method allows fast computational time to construct the

reachability set. Computational times to construct the reachability set and to construct

necessary matrices (e.g. input and output matrices) and sets (e.g. a set of input/output

places connected to a transition, a set of time elements) are considered as criteria for the

performance metric.

The concept of the proposed Timed-Arc PNs is clear and concise. This approach is

used with unit time, in terms of appropriate time slots, which are readily handled by

computers in practical applications. Thus, any model constructed using the proposed

approach could be easily implemented for specific time-delayed systems and related

algorithms. In the proposed Timed-Arc PNs, exact time durations are used such that

deterministic time labels attached to outgoing arcs have no time intervals; as a result, the

use of deterministic time values instead of time intervals can, therefore, provide less

complexity and serve to decrease the computational time. It also presents fewer

91

difficulties when implementing algorithms. Moreover, in the model, a firing process can

start at any time.

The proposed Timed-Arc PN provides an overall model for large-scale and complex

systems. This novel approach considers the complete dynamic evolution of time-delayed

systems; as a result, it allows the user to see all situations of states for time-delayed

systems such that it gives a complete model for time-delayed systems. Therefore, it is

possible to see the complete picture of the system with deterministic time delays.

Furthermore, behavioral properties and algorithms for the proposed Timed-Arc PNs have

been presented. It is a useful feature for Timed PNs because the reachability set for time-

delayed and dynamic systems is completely constructed. Any Timed PN with firing or

holding durations can be converted into the tripartite structure of Timed-Arc PNs; thus,

the reachability set of such Timed PNs is obtained using the proposed approach.

Moreover, the timed-reachability graph (tree) enhanced by the time information is

generated using the relation between states; as a result, the deterministically time-delayed

system is depicted in the full dynamic schema. This graph allows pointing out problematic

states, such as deadlocks, in time-delayed and dynamic systems; thus, it is possible to take

measures. In this study, in order to avoid such undesired states, a forbidden state controller

approach is developed for the proposed model.

In conclusion, the proposed Timed-Arc PN is a useful modeling tool for Timed PNs

as long as any complicated systems, which include deterministic time delays, can be

solved by using the proposed model. Obtaining the reachability set of the net is a crucial

point for solving the system as well as in every modeling approach. The proposed Timed-

Arc PN allows the complete reachability set for a time-delay and dynamic system. Thus,

this property allows seeing the complete picture of such systems and analyzing the

behaviors of such systems; as a result, a forbidden state controller for Timed PNs, which

provides a reversibility enforcement and deadlock avoidance controller, can be developed

by using this strong feature. Algorithms have shown that the proposed Timed-Arc PN is

applicable and has given admissible results.

8.2. Discussion

Each model described in this paper offers a deterministic-timed approach for Timed

PNs. In real applications, time delays are commonly expressed as time intervals. Using

time intervals can be more realistic than using fixed durations. However, using time

92

intervals may result in higher complexity to construct the reachability set. Thus,

deterministic time delays are considered. These time delays can be can be determined by

considering the most probable time delay of the system, such as the mean value.

It is the fact that time delays are expressed in terms of seconds in real applications;

as a result, these delays are discretized into time slots using an appropriate sampling

period in order to adapt into the model of Timed PNs. This approximation might cause a

loss of information. The sampling period should be carefully selected.

8.3. Proposals

Future directions and proposals to develop and improve the proposed Timed-Arc

PNs are as follows:

 The controller for the proposed Timed-Arc PNs is based on behavioral properties.

The structure of this Timed-Arc PNs is very similar to the structure of the basic

(untimed) PNs; thus, structural properties could be similarly investigated and a

structural controller can be developed for the proposed Timed-Arc PNs.

 Time delays of Timed-Arc PNs are deterministic; thus, they are not sensitive to

any changes in time labels. A method can be developed, where these time labels

are defined as time intervals or stochastic over time elements. On the other hand,

Timed-Arc PNs can be extended to an adaptive model that is capable of changing

its deterministic time-labels according to current conditions. This makes Timed-

Arc PNs more realistic and online model.

 The proposed Timed-Arc PN does not allow any active transition to fire during

its firing process. The model may be developed to allow any transition whose

firing process still continues. This may cause the remaining time vector to become

a matrix or the set of vectors. On the other hand, an arc-stretching procedure,

namely Arc-Stretched Petri Nets, can be studied like Transition or Place-Stretched

PNs.

 There are different types of arcs, such as enabling, reading, test arcs, etc. These

can be adapted into the proposed model of Timed-Arc PNs.

 When constructing the model of Timed-Arc PN, it needs matrices whose elements

are mostly zero. These matrices are used in computations. In order to improve

computational time, algorithms for the proposed Timed-Arc PN can be developed

considering sparse matrices.

93

 Time elements can be structurally used to trigger some events using special arcs

that should be defined for the proposed Timed-Arc PN.

 The proposed Timed-Arc PN uses a discrete-time unit impulse function to

compute the next state. This approach can readily be applied on both deterministic

Timed PNs with holding or enabling durations and deterministic Timed-Place

PNs.

 Today’s trend topics are autonomous and intelligent systems, autonomous and

unmanned vehicles, self-driving cars, smart automation systems, smart home

systems, intelligent transportation systems, decision mechanisms for such systems

etc. Applications/Case studies can be carried out in these fields using the proposed

Timed-Arc PNs. Timed-Arc PN can be used as a verification tool for such systems

so as to guarantee functional safety. Timed-Arc PN can be used to model the

behaviors of such systems.

94

REFERENCES

[1] Yufka, A., Özkan, H.A. and Aybar, A. (2018). Modeling Basic Components of

Railway Systems Using Timed Arc Petri Nets. Proceeding 5th International

Conference on Control, Decision and Information Technologies, Thessaloniki,

Greece, Apr. 10-13, 2018, CODIT’18. pp. 427-432. IEEE.

[2] Giua A. and Seatzu C. (2008). Modeling and Supervisory Control of Railway

Networks Using Petri Nets. IEEE Transactions on Automation Science and

Engineering, 5(3), pp. 431-445.

[3] Proth, J.M. and Xie, X. (1996). Petri Nets: a Tool for Design and Management of

Manufacturing Systems. Wiley.

[4] Zuberek, W.M. (2000). Timed Petri nets in modeling and analysis of cluster tools,

IEEE Transactions on Robotics and Automation, 17(5), 562- 575.

[5] Cassandras, C. G. and Lafortune, S. (2008). Introduction to Discrete Event Systems,

Second Edition. New York: Springer US.

[6] Wang, J. (1998). Time Petri Nets, Theory and Application. Kluwer Academic.

[7] Murata, T. (1989). Petri Nets - Properties, Analysis and Applications. Proceedings

of the IEEE, 77(4), 541 – 580.

[8] Zhou, M. and DiCesare, F. (1993). Petri net Synthesis for Discrete Event Control

of Manufacturing Systems. Massachusetts: Kluwer Academic.

[9] Aybar, A. and İftar, A. (2010). Decentralized supervisory controller design to avoid

deadlock in Petri nets. International Journal of Control, 76(13), 1285-1295.

[10] Zuberek, WM. (1991). Timed Petri nets - definitions, properties, and applications.

Microelectronics and Reliability. 31(4), 627-644.

[11] Aybar, A. and İftar, A. (2012). Supervisory controller design to enforce some basic

properties in timed-transition Petri nets using stretching. Nonlinear Analysis:

Hybrid Systems. 6, 712-729.

[12] Aybar, A. and İftar, A. (2008). Deadlock Avoidance Controller Design for Timed

Petri Nets Using Stretching. IEEE Systems Journal, 2(2), 178-188.

[13] Aybar, A. and İftar, A. (2006). Supervisory Controller Design for Timed Petri Nets.

Proceeding 1st International Conference on System of Systems Engineering, Los

Angeles, CA, USA, Apr. 24-26, 2006, SoSE’06. 9641, pp. 59-64. IEEE.

95

[14] Aybar, A. and ˙İftar, A. (2009). Supervisory Controller Design to Enforce Some

Basic Properties in Timed Petri Nets. Proceeding 13th IFAC International

Symposium on Information Control Problems in Manufacturing, Moscow, Russia,

June 3-5, 2009, INCOM’09. pp. 940-945.

[15] Bernd Walter, W. (1983). Timed Petri-Nets for Modelling and Analyzing Protocols

with Real-Time Characteristics. Proceeding 3rd IFIP International Workshop on

Protocol Specification, Testing, and Verification, Ruschlikon, Switzerland, May 31

- June 2, 1983. pp. 149-159. North-Holland.

[16] Bolognesi, T., Lucidi, F. and Trigila, S. (1990). From Timed Petri Nets to Timed

LOTOS. Proceeding 10th International Symposium on Protocol Specification,

Testing and Verification, Ottawa, Canada, June 12-15, 1990, IFIP X. pp. 395-408.

[17] Hanisch, H.M. (1993). Analysis of Place/Transition Nets with Timed-Arcs and its

Application to Batch Process Control. Proceeding 14th International Conference on

Application and Theory of Petri Nets, Chicago, Illinois, USA, June 21-25, 1993,

ICATPN'93. 691, pp. 282-299.

[18] Abdulla, P. A. and Nyl´en, A. (2001). Timed Petri nets and BQOs. Proceeding 22nd

International Conference on Application and Theory of Petri Nets, Newcastle upon

Tyne, UK, June 25-29, 2001, ICATPN’01. 2075, pp. 53-70. Springer.

[19] Jacobsen, L., Jacobsen, M., Møller, M.H. and Srba, J. (2011). Verification of

Timed-Arc Petri Nets. Proceeding 37th International Conference on Current Trends

in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, Jan. 22-

28, 2011, SOFSEM’11. 6543, pp. 46-72. Springer.

[20] Bowden, F.D.J. (2000). A brief survey and synthesis of the roles of time in Petri

nets. Mathematical and Computer Modelling. 31, 55-68.

[21] Freedman, P. (1991). Time, Petri nets, and robotics. IEEE Transactions on Robotics

and Automation. 7(4), 417-433.

[22] Zhu, J. and Denton, R. (1988). Timed Petri Nets and their Application to

Communication Protocol Specification. Proceeding 21st International Conference

on Century Military Communications - What's Possible?' Military

Communications, San Diego, CA, USA, Oct. 23-26, 1988, MILCOM’88. 1, pp.

195-199. IEEE.

96

[23] Nielsen, M., Sassone, V. and Srba, J. (2001). Towards a Notion of Distributed Time

for Petri Nets (Extended Abstract). Proceeding 22nd International Conference on

Applications and Theory of Petri Nets, Newcastle upon Tyne, U.K, June 25–29,

2001, ICATPN’01, 2075, pp. 23-31.

[24] Bowden, F.D.J. (2001) The modelling and analysis of command and control

decision processes using extended time petri nets. Doctor of Philosophy

Dissertation. Adelaide, Australia: The University of Adelaide, Faculty of

Mathematical and Computer Sciences.

[25] Sener, I., Kaymakci, O.T., Ustoglu I. and Cansever, G. (2016). Specification and

formal verification of safety properties in a point automation system. Turkish

Journal of Electrical Engineering and Computer Sciences. 24, 1384-1396.

[26] Sieverding, S., Ellen, C. and Battram, P. (2013). Sequence Diagram Test Case

Specification and Virtual Integration Analysis using Timed-Arc Petri Nets.

Proceeding 10 𝑡ℎ International Workshop on Formal Engineering approaches to

Software Components and Architectures, Rome, Italy, March 23, 2013, FESCA’13.

108, pp. 17-31.

[27] Jensen, P.G., Larsen, K.G. and Srba, J. (2016). Real-Time Strategy Synthesis for

Timed-Arc Petri Net Games via Discretization, Proceeding 23 𝑟𝑑 International

Symposium on Model Checking Software, Eindhoven, The Netherlands, April 7-8,

2016, SPIN’16. 9641, pp. 129-146.

[28] Yufka, A., Özkan, H.A. and Aybar, A. (2016). A Formal Method and Novel

Graphical Representation for Deterministic Timed-Arc Petri Nets. Proceeding

National Conference on “Otomatik Kontrol Ulusal Toplantisi”, Eskişehir, Turkey,

Sep. 29 – Dec. 01, 2016, TOK’16. pp. 209-213.

[29] Yufka, A., Özkan, H.A. and Aybar, A. (2017). Timed Arc Petri Nets: The Time-

Element Approach. Proceeding 10th International Conference on Electrical and

Electronics Engineering, Bursa, Turkey, Nov. 30 – Dec. 2, 2017, ELECO’17. pp.

794-798. IEEE.

[30] Yufka, A., Özkan, H.A. and Aybar, A. (2018). Timed Arc Petri Nets: The Impulsive

Approach. Proceeding 5th International Conference on Control, Decision and

97

Information Technologies, Thessaloniki, Greece, Apr. 10-13, 2018, CODIT’18. pp.

409-414. IEEE.

[31] Yufka, A., Özkan, H.A. and Aybar, A. (2019). Reachability Set Algorithms for

Timed-Arc Petri Nets. Proceeding 395th International Conference on Electrical and

Electronics Engineering, Barcelona, Spain, Feb. 11-12, 2019, ICEEE’19.

(Accepted)

[32] Aybar, A. and ˙İftar, A. (2012). Supervisory controller design for timed-place Petri

nets. Kybernetika, 48, 1114-1135.

[33] Chu, F. and Xie, X.L. (1997). Deadlock analysis of Petri nets using siphons and

mathematical programming. IEEE Transactions on Robotics and Automation.

13(6), pp. 793-804.

[34] Hou, YF., Li, ZW., Al-Ahmari, A.M., El-Tamimi, AA.M. and Nasr, E.A. (2014).

Extended Elementary Siphons and Their Application to Liveness-Enforcement of

Generalized Petri Nets. Asian Journal of Control. 16(6), pp. 1789–1810.

[35] Cabasino, M.P., Affiliated, A.G. and Seatzu, C. (2013). Structural Analysis of Petri

Nets. M.P.Cabasino, A.G. Affiliated and C. Seatzu (Ed.), in Control of Discrete-

Event Systems - Automata and Petri Net Perspectives (433, pp. 213-233). London:

Springer-Verlag.

[36] Ramadge, P. J. G. and Wonham, W. M. (1989). The control of discrete event

systems. Proceedings of the IEEE. 77(1), pp. 81-98.

[37] Aybar, A. and ˙İftar, A. (2013). Supervisory Controller Design to Enforce Basic

Properties in Timed-Place Petri Nets. Proceeding 6th IFAC International

Conference on Management and Control of Production and Logistics, Fortaleza,

Brazil, Sep. 11-13, 2013, MCPL’13. pp. 486-492.

[38] Aybar, A. and İftar, A. (2003). Controller design to enforce boundedness, liveness,

and reversibility in Petri nets. Proceeding 7th IFAC International Workshop on

Intelligent Manufacturing Systems, Budapest, Hungary, Apr. 6-8, 2003, IMS’03.

pp. 199 - 204.

[39] Aybar, A. and İftar, A. (2003). Decentralized controller design to enforce

boundedness, liveness, and reversibility in Petri nets. Proceeding European Control

Conference, Cambridge, UK, Sep. 1-4, 2003, ECC’03. pp. 1681-1686. IEEE.

98

[40] Aybar, A. and İftar, A. (2005). Centralized and decentralized supervisory controller

design to enforce boundedness, liveness, and reversibility in Petri nets.

International Journal of Control. 78(8), pp. 537–553.

[41] Li, ZW and Zhou, MC. (2004). Elementary siphons of Petri nets and their

application to deadlock prevention in flexible manufacturing systems. IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

34(1), pp. 38 - 51.

[42] Durmus, M.S., Takai, S. and Soylemez, M.T. (2014). Fault Diagnosis in Fixed-

Block Railway Signaling Systems: A Discrete Event Systems Approach. IEEJ

Transactions on Electrical and Electronic Engineering. 9, pp. 523-531.

[43] Comite Europeen de Normalisation Electrotechnique. (2011). EN50128:2011 -

Railway applications - Communication, Signaling and Processing Systems -

Software for Railway Control and Protection Systems.

[44] Staines, A.S. (2009). Modeling and Analysis of Real Time Control Systems: A

Cruise Control System Case Study. Recent Advances in Technologies, pp. 561-576.

[45] Kramer, J. and Magee, J. (1997). Exposing the Skeleton in the Coordination Closet.

Proceeding 2nd International Conference on Coordination Languages and Models,

Berlin, Germany, Sep. 1–3, 1997, COORDINATION’97. 1282, pp. 18-31.

[46] Aybar, A. and İftar, A. (2009). Representation of the State of Timed-Place Petri

Nets Using Stretching. Proceeding 4th International IFAC Workshop on Discrete-

Event System Design, Gandia, Spain, Oct. 6–8, 2009. 42(21), pp. 72-77. Elsevier.

[47] Aybar, A. and İftar, A. (2013). Supervisory Controller Design to Enforce Basic

Properties in Timed-Place Petri Nets. Proceeding 6th International IFAC

Conference on Management and Control of Production and Logistics, Fortaleza,

Brazil, Sep. 11–13, 2013. 46(24), pp. 486-492. Elsevier.

[48] Aybar, A. and İftar, A. (2012). Supervisory controller design to enforce some basic

properties in timed-transition Petri nets using stretching. Nonlinear Analysis:

Hybrid Systems. 6, pp. 712-729.

[49] Jones, N.D., Landweber, L.H. and Lien, Y.E. (1977). Complexity of Some

Problems in Petri Nets. Theoretical Computer Science. 4, pp. 277-299.

APPENDIX-1 – THE REACHABILITY SET OF TdAPN (NOT REVERSIBLE)

In this appendix, the reachability set of TdAPN in Figure 5.2 is given in Table A1.1.

Descriptions of columns in Table A1.1 are similar to explanations for Table 3.3.

Table A1.1. Reachability set for TdAPN in Figure 5.2

k
The State of

TdAPN
𝜙 Next State k

The State of

TdAPN
𝜙 Next State

0 †S0
{[2 0 0 0]',

[0 0 0]'}

- †S0

4

S13
{[0 1 0 0]',

[2 0 0]'}

- S20

{𝑡1} S1 {𝑡4} S21

{𝑡2} S2

†S14
{[1 0 0 1]',

[0 0 0]'}

- †S14

{𝑡1, 𝑡2} S3 {𝑡1} S15

1

S1
[1 0 0 0]',

[2 0 0]'}

- S4 {𝑡2} S16

{𝑡2} S5 {𝑡5}
†S9

S2
{[1 0 0 0]',

[0 1 0]'}

- †S6 {𝑡1, 𝑡5} S13

{𝑡1} S7 {𝑡2, 𝑡5} S10

S3
{[0 0 0 0]',

[2 1 0]'}
- S8

S15
{[0 0 0 1]',

[2 0 0]'}

- S21

2

S4
{[1 0 0 0]',

[1 0 0]'}

- †S9 {𝑡5} S20

{𝑡2} S10

S16
{[0 0 0 1]',

[0 1 0]'}

- †S17

S5
{[0 0 0 0]',

[1 1 0]'}
- †S11 {𝑡5} S11

†S6
{[1 0 1 0]',

[0 0 0]'}

- †S6 †S17
{[0 0 1 1]',

[0 0 0]'}

- †S17

{𝑡1} S7 {𝑡5} S11

{𝑡2} S12 S18
{[0 0 0 0]',

[0 0 3]'}
- S22

S7
{[0 0 1 0]',

[2 0 0]'}
- S8 *S19

{[0 0 2 0]',

[0 0 0]'}
- *S19

3

S8
{[0 0 1 0]',

[1 0 0]'}
- †S11

5

S20
{[0 1 0 0]',

[1 0 0]'}

- †S23

†S9
{[1 1 0 0]',

[0 0 0]'}

- †S9 {𝑡4}
†S24

{𝑡1} S13
S21

{[0 0 0 1]',

[1 0 0]'}

- †S24

{𝑡2} S10 {𝑡5}
†S23

{𝑡4}
†S14 S22

{[0 0 0 0]',

[0 0 2]'}
- S25

{𝑡1, 𝑡4} S15

6

†S23
{[0 2 0 0]',

[0 0 0]'}

- †S23

{𝑡2, 𝑡4} S16 {𝑡4}
†S24

S10
{[0 1 0 0]'

[0 1 0]'}

- †S11

†S24
{[0 1 0 1]',

[0 0 0]'}

- †S24

{𝑡4}
†S17

 {𝑡4}
†S26

†S11
{[0 1 1 0]',

[0 0 0]'}

- †S11 {𝑡5}
†S23

{𝑡3} S18 {𝑡4, 𝑡5}
†S24

{𝑡4}
†S17

 S25
{[0 0 0 0]',

[0 0 1]'}
- †S0

S12
{[0 0 1 0]',

[0 1 0]'}
- *S19

†S26
{[0 0 0 2]',

[0 0 0]'}

- †S26

 {𝑡5}
†S24

†
 denotes relaxed states and * denotes relaxed and deadlock states..

APPENDIX-2 – THE REACHABILITY SET OF MANUFACTURING EXAMPLE

In this appendix, the reachability set of the manufacturing-systems example in

Figure 6.2 is given in Table A2.1. Descriptions of columns in Table A2.1 are similar to

explanations for Table 3.3.

Table A2.1. Reachability Set for TdAPN in Figure 6.2

k The State of TdAPN 𝜙 Next State

0 †S0
{[2 0 1 0 0 1 0 0 1 2],

[0 0 0 0 0 0]'}

- S0

{𝑡1} S1

1 S1
{[1 0 0 0 0 1 0 0 1 2]',

[2 0 0 0 0 0]'}
- S2

2 S2
{[1 0 0 0 0 1 0 0 1 2]',

[1 0 0 0 0 0]'}
- S3

3 †S3
{[1 1 0 0 0 1 0 0 1 2]',

[0 0 0 0 0 0]'}

- S3

{𝑡2} S4

4 †S4
{[1 0 1 1 0 1 0 0 0 2]',

[0 0 0 0 0 0]'}

- S4

{𝑡1} S5

{𝑡3} S6

{𝑡1, 𝑡3} S7

5 S5
{[0 0 0 1 0 1 0 0 0 2]',

[2 0 0 0 0 0]'}

- S8

{𝑡3} S9

5 †S6
{[1 0 1 0 1 0 0 0 1 2]',

[0 0 0 0 0 0]'}

- S6

{𝑡1} S7

{𝑡4} S10

{𝑡1, 𝑡4} S11

5 S7
{[0 0 0 0 1 0 0 0 1 2]',

[2 0 0 0 0 0]'}

- S9

{𝑡4} S12

6 S8
{[0 0 0 1 0 1 0 0 0 2]',

[1 0 0 0 0 0]'}

- S13

{𝑡3} S14

6 S9
{[0 0 0 0 1 0 0 0 1 2]',

[1 0 0 0 0 0]'}

- S14

{𝑡4} S15

6 †S10
{[1 0 1 0 0 1 1 0 0 2]',

[0 0 0 0 0 0]'}

- S10

{𝑡1} S11

{𝑡5} S16

{𝑡1, 𝑡5} S17

6 S11
{[0 0 0 0 0 1 1 0 0 2]',

[2 0 0 0 0 0]'}

- S12

{𝑡5} S18

6 S12
{[0 0 0 0 0 1 1 0 0 2]',

[1 0 0 0 0 0]'}

- S15

{𝑡5} S19

7 †S13
{[0 1 0 1 0 1 0 0 0 2]',

[0 0 0 0 0 0]'}

- S13

{𝑡3} S14

†
 denotes relaxed states and * denotes relaxed and deadlock states.

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2

k The State of TdAPN 𝜙 Next State

7 †S14
{[0 1 0 0 1 0 0 0 1 2]',

[0 0 0 0 0 0]'}

- S14

{𝑡2} S20

{𝑡4} S15

7 †S15
{[0 1 0 0 0 1 1 0 0 2]',

[0 0 0 0 0 0]'}

- S15

{𝑡5} S19

7 S16
{[1 0 1 0 0 1 0 0 0 1]',

[0 1 1 1 0 0]'}

- S21

{𝑡1} S22

7 S17
{[0 0 0 0 0 1 0 0 0 1]',

[2 1 1 1 0 0]'}
- S23

7 S18
{[0 0 0 0 0 1 0 0 0 1]',

[1 1 1 1 0 0]'}
- S24

7 S19
{[0 1 0 0 0 1 0 0 0 1]',

[0 1 1 1 0 0]'}
- S24

8 *S20
{[0 0 1 1 1 0 0 0 0 2]',

[0 0 0 0 0 0]'}
- S20

8 †S21
{[2 0 1 0 0 1 0 1 1 1]',

[0 0 0 0 0 0]'}

- S21

{𝑡1} S22

{𝑡6} S25

{𝑡1, 𝑡6} S26

8 S22
{[1 0 0 0 0 1 0 1 1 1]',

[2 0 0 0 0 0]'}

- S23

{𝑡6} S27

8 S23
{[1 0 0 0 0 1 0 1 1 1]',

[1 0 0 0 0 0]'}

- S24

{𝑡6} S28

8 †S24
{[1 1 0 0 0 1 0 1 1 1]',

[0 0 0 0 0 0]'}

- S24

{𝑡2} S29

{𝑡6} S28

9 S25
{[2 0 1 0 0 1 0 0 0 1]',

[0 0 0 0 1 1]'}

- S0

{𝑡1} S1

9 S26
{[1 0 0 0 0 1 0 0 0 1]',

[2 0 0 0 1 1]'}
- S2

9 S27
{[1 0 0 0 0 1 0 0 0 1]',

[1 0 0 0 1 1]'}
- S3

9 S28
{[1 1 0 0 0 1 0 0 0 1]',

[0 0 0 0 1 1]'}
- S3

9 †S29
{[1 0 1 1 0 1 0 1 0 1]',

[0 0 0 0 0 0]'}

- S29

{𝑡1} S30

{𝑡3} S31

{𝑡1, 𝑡3} S32

10 S30
{[0 0 0 1 0 1 0 1 0 1]',

[2 0 0 0 0 0]'}

- S33

{𝑡3} S34

†
 denotes relaxed states and * denotes relaxed and deadlock states.

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2

k The State of TdAPN 𝜙 Next State

10 †S31
{[1 0 1 0 1 0 0 1 1 1]',

[0 0 0 0 0 0]'}

- S31

{𝑡1} S32

{𝑡4} S35

{𝑡6} S36

{𝑡1, 𝑡4} S37

{𝑡1, 𝑡6} S38

10 S32
{[0 0 0 0 1 0 0 1 1 1]',

[2 0 0 0 0 0]'}

- S34

{𝑡4} S39

{𝑡6} S40

11 S33
{[0 0 0 1 0 1 0 1 0 1]',

[1 0 0 0 0 0]'}

- S41

{𝑡3} S42

11 S34
{[0 0 0 0 1 0 0 1 1 1]',

[1 0 0 0 0 0]'}

- S42

{𝑡4} S43

{𝑡6} S44

11 †S35
{[1 0 1 0 0 1 1 1 0 1]',

[0 0 0 0 0 0]'}

- S35

{𝑡1} S37

{𝑡5} S45

{𝑡1, 𝑡5} S46

11 S36
{[1 0 1 0 1 0 0 0 0 1]',

[0 0 0 0 1 1]'}

- S6

{𝑡1} S7

11 S37
{[0 0 0 0 0 1 1 1 0 1]',

[2 0 0 0 0 0]'}

- S39

{𝑡5} S47

11 S38
{[0 0 0 0 1 0 0 0 0 1]',

[2 0 0 0 1 1]'}
- S9

11 S39
{[0 0 0 0 0 1 1 1 0 1]',

[1 0 0 0 0 0]'}

- S43

{𝑡5} S48

11 S40
{[0 0 0 0 1 0 0 0 0 1]',

[1 0 0 0 1 1]'}
- S14

12 †S41
{[0 1 0 1 0 1 0 1 0 1]',

[0 0 0 0 0 0]'}

- S41

{𝑡3} S42

12 †S42
{[0 1 0 0 1 0 0 1 1 1]',

[0 0 0 0 0 0]'}

- S42

{𝑡2} S49

{𝑡4} S43

{𝑡6} S44

12 †S43
{[0 1 0 0 0 1 1 1 0 1]',

[0 0 0 0 0 0]'}

- S43

{𝑡5} S48

12 S44
{[0 1 0 0 1 0 0 0 0 1]',

[0 0 0 0 1 1]'}
- S14

12 S45
{[1 0 1 0 0 1 0 1 0 0]',

[0 1 1 1 0 0]'}

- S50

{𝑡1} S51

12 S46
{[0 0 0 0 0 1 0 1 0 0]',

[2 1 1 1 0 0]'}
- S52

†
 denotes relaxed states and * denotes relaxed and deadlock states.

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2

k The State of TdAPN 𝜙 Next State

12 S47
{[0 0 0 0 0 1 0 1 0 0]',

[1 1 1 1 0 0]'}
- S53

12 S48
{[0 1 0 0 0 1 0 1 0 0]',

[0 1 1 1 0 0]'}
- S53

13 *S49
{[0 0 1 1 1 0 0 1 0 1]',

[0 0 0 0 0 0]'}
- S49

13 †S50
{[2 0 1 0 0 1 0 2 1 0]',

[0 0 0 0 0 0]'}

- S50

{𝑡1} S51

{𝑡6} S54

{𝑡1, 𝑡6} S55

13 S51
{[1 0 0 0 0 1 0 2 1 0]',

[2 0 0 0 0 0]'}

- S52

{𝑡6} S56

13 S52
{[1 0 0 0 0 1 0 2 1 0]',

[1 0 0 0 0 0]'}

- S53

{𝑡6} S57

13 †S53
{[1 1 0 0 0 1 0 2 1 0]',

[0 0 0 0 0 0]'}

- S53

{𝑡2} S58

{𝑡6} S57

14 S54
{[2 0 1 0 0 1 0 1 0 0]',

[0 0 0 0 1 1]'}

- S21

{𝑡1} S22

14 S55
{[1 0 0 0 0 1 0 1 0 0]',

[2 0 0 0 1 1]'}
- S23

14 S56
{[1 0 0 0 0 1 0 1 0 0]',

[1 0 0 0 1 1]'}
- S24

14 S57
{[1 1 0 0 0 1 0 1 0 0]',

[0 0 0 0 1 1]'}
- S24

14 †S58
{[1 0 1 1 0 1 0 2 0 0]',

[0 0 0 0 0 0]'}

- S58

{𝑡1} S59

{𝑡3} S60

{𝑡1, 𝑡3} S61

15 S59
{[0 0 0 1 0 1 0 2 0 0]',

[2 0 0 0 0 0]'}

- S62

{𝑡3} S63

15 †S60
{[1 0 1 0 1 0 0 2 1 0]',

[0 0 0 0 0 0]'}

- S60

{𝑡1} S61

{𝑡4} S64

{𝑡6} S65

{𝑡1, 𝑡4} S66

{𝑡1, 𝑡6} S67

15 S61
{[0 0 0 0 1 0 0 2 1 0]',

[2 0 0 0 0 0]'}

- S63

{𝑡4} S68

{𝑡6} S69

16 S62
{[0 0 0 1 0 1 0 2 0 0]',

[1 0 0 0 0 0]'}

- S70

{𝑡3} S71

†
 denotes relaxed states and * denotes relaxed and deadlock states.

Table A2.1. (Continue) Reachability Set for TdAPN in Figure 6.2

k The State of TdAPN 𝜙 Next State

16 S63
{[0 0 0 0 1 0 0 2 1 0]',

[1 0 0 0 0 0]'}

- S71

{𝑡4} S72

{𝑡6} S73

16 †S64
{[1 0 1 0 0 1 1 2 0 0]',

[0 0 0 0 0 0]'}

- S64

{𝑡1} S66

16 S65
{[1 0 1 0 1 0 0 1 0 0]',

[0 0 0 0 1 1]'}

- S31

{𝑡1} S32

16 S66
{[0 0 0 0 0 1 1 2 0 0]',

[2 0 0 0 0 0]'}
- S68

16 S67
{[0 0 0 0 1 0 0 1 0 0]',

[2 0 0 0 1 1]'}
- S34

16 S68
{[0 0 0 0 0 1 1 2 0 0]',

[1 0 0 0 0 0]'}
- S72

16 S69
{[0 0 0 0 1 0 0 1 0 0]',

[1 0 0 0 1 1]'}
- S42

17 †S70
{[0 1 0 1 0 1 0 2 0 0]',

[0 0 0 0 0 0]'}

- S70

{𝑡3} S71

17 †S71
{[0 1 0 0 1 0 0 2 1 0]',

[0 0 0 0 0 0]'}

- S71

{𝑡2} S74

{𝑡4} S72

{𝑡6} S73

17 *S72
{[0 1 0 0 0 1 1 2 0 0]',

[0 0 0 0 0 0]'}
- S72

17 S73
{[0 1 0 0 1 0 0 1 0 0]',

[0 0 0 0 1 1]'}
- S42

18 *S74
{[0 0 1 1 1 0 0 2 0 0]',

[0 0 0 0 0 0]'}
- S74

†
 denotes relaxed states and * denotes relaxed and deadlock states.

APPENDIX-3 – THE REACHABILITY SET OF RAILWAY EXAMPLE

In this appendix, the reachability set of the railway-systems example in Figure 6.5

is given in Table A3.1. Descriptions of columns in Table A3.1 are similar to explanations

for Table 3.3.

Table A3.1. Reachability Set for TdAPN in Figure 6.5

k The State of TdAPN 𝜙 Next State

0 †S0
{[1 0 1 0 0 1 0 0 1]',

[0 0]'}

- S0

{𝑡4} S1

{𝑡7} S2

{𝑡4, 𝑡7} S3

1 †S1
{[1 0 0 1 0 1 0 0 1]',

[0 0]'}

- S1

{𝑡3} S0

{𝑡3, 𝑡7} S3

1 †S2
{[1 0 1 0 0 0 1 0 1]',

[0 0]'}

- S2

{𝑡2} S4

{𝑡4} S3

{𝑡6} S0

{𝑡4, 𝑡6} S1

1 †S3
{[1 0 0 1 0 0 1 0 1]',

[0 0]'}

- S3

{𝑡3} S2

{𝑡6} S1

{𝑡3, 𝑡6} S0

2 S4
{[0 0 1 0 0 0 1 1 0]',

[0 2]'}

- S5

{𝑡4} S6

{𝑡6} S7

{𝑡4, 𝑡6} S8

3 S5
{[0 0 1 0 0 0 1 1 0]',

[0 1]'}

- S9

{𝑡4} S10

{𝑡6} S11

{𝑡4, 𝑡6} S12

3 S6
{[0 0 0 1 0 0 1 1 0]',

[0 1]'}

- S10

{𝑡5} S13

{𝑡6} S12

{𝑡5, 𝑡6} S14

3 S7
{[0 0 1 0 0 1 0 1 0]',

[0 1]'}

- S11

{𝑡4} S12

4 S8
{[0 0 0 1 0 1 0 1 0]',

[0 1]'}

- S12

{𝑡5} S14

4 †S9
{[0 1 1 0 0 0 1 1 0]',

[0 0]'}

- S9

{𝑡4} S10

{𝑡6} S11

{𝑡4, 𝑡6} S12

†
 denotes relaxed states.

Table A3.1. (Continue) Reachability Set for TdAPN in Figure 6.5

k The State of TdAPN 𝜙 Next State

4 †S10
{[0 1 0 1 0 0 1 1 0]',

[0 0]'}

- S10

{𝑡5} S13

{𝑡6} S12

{𝑡5, 𝑡6} S14

4 †S11
{[0 1 1 0 0 1 0 1 0]',

[0 0]'}

- S11

{𝑡4} S12

4 †S12
{[0 1 0 1 0 1 0 1 0]',

[0 0]'}

- S12

{𝑡5} S14

4 †S13
{[0 1 0 1 1 0 1 0 0]',

[0 0]'}

- S13

{𝑡6} S14

4 †S14
{[0 1 0 1 1 1 0 0 0]',

[0 0]'}

- S14

{𝑡1} S15

5 S15
{[0 0 0 1 0 1 0 0 1]',

[3 0]'}

- S16

{𝑡3} S17

{𝑡7} S18

6 S16
{[0 0 0 1 0 1 0 0 1]',

[2 0]'}

- S19

{𝑡3} S20

{𝑡7} S21

6 S17
{[0 0 1 0 0 1 0 0 1]',

[2 0]'}

- S20

{𝑡4} S19

{𝑡7} S22

{𝑡4, 𝑡7} S21

6 S18
{[0 0 0 1 0 0 1 0 1]',

[2 0]'}

- S21

{𝑡3} S22

{𝑡6} S19

{𝑡3, 𝑡6} S20

7 S19
{[0 0 0 1 0 1 0 0 1]',

[1 0]'}

- S1

{𝑡3} S0

{𝑡7} S3

7 S20
{[0 0 1 0 0 1 0 0 1]',

[1 0]'}

- S0

{𝑡4} S1

{𝑡7} S2

{𝑡4, 𝑡7} S3

7 S21
{[0 0 0 1 0 0 1 0 1]',

[1 0]'}

- S3

{𝑡3} S2

{𝑡6} S1

{𝑡3, 𝑡6} S0

7 S22
{[0 0 1 0 0 0 1 0 1]',

[1 0]'}

- S2

{𝑡4} S3

{𝑡6} S0

{𝑡4, 𝑡6} S1

†
 denotes relaxed states.

APPENDIX-4 – THE REACHABILITY SET OF AUTOMOTIVE EXAMPLE

In this appendix, the reachability set of the automotive-systems example in Figure

6.9 is given in Table A4.1. Descriptions of columns in Table A4.1 are similar to

explanations for Table 3.3.

Table A4.1. Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

0 †S0
{[0 0 0 0 0 0 0 0 0 0 0 0 1]',

[0 0 0 0 0 0 0 0 0 0]'}

- S0

{𝑡11} S1

1 †S1
{[1 1 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S1

{𝑡1} S2

{𝑡2} S3

{𝑡1, 𝑡2} S4

2 S2
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[3 0 0 0 0 0 0 0 0 0]'}

- S5

{𝑡2} S6

2 S3
{[1 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 0 0 0 0 0 0 0]'}

- S7

{𝑡1} S8

2 S4
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[3 1 0 0 0 0 0 0 0 0]'}
- S9

3 S5
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[2 0 0 0 0 0 0 0 0 0]'}

- S10

{𝑡2} S11

3 S6
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[2 1 0 0 0 0 0 0 0 0]'}
- S12

3 †S7
{[1 0 0 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S7

{𝑡1} S8

{𝑡3} S13

{𝑡1, 𝑡3} S14

3 S8
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[3 0 0 0 0 0 0 0 0 0]'}

- S9

{𝑡3} S15

3 S9
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[2 0 0 0 0 0 0 0 0 0]'}

- S12

{𝑡3} S16

3 S10
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[1 0 0 0 0 0 0 0 0 0]'}

- S17

{𝑡2} S18

4 S11
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[1 1 0 0 0 0 0 0 0 0]'}
- S19

4 S12
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[1 0 0 0 0 0 0 0 0 0]'}

- S19

{𝑡3} S20

4 S13
{[1 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 0 0 0 0 0 0 0]'}

- S21

{𝑡1} S22

4 S14
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[3 0 2 0 0 0 0 0 0 0]'}
- S23

†
 denotes relaxed states.

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

4 S15
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[2 0 2 0 0 0 0 0 0 0]'}
- S24

4 S16
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[1 0 2 0 0 0 0 0 0 0]'}
- S25

5 †S17
{[0 1 1 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S17

{𝑡2} S18

{𝑡4} S26

{𝑡2, 𝑡4} S27

5 S18
{[0 0 1 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 0 0 0 0 0 0 0]'}

- S19

{𝑡4} S28

5 †S19
{[0 0 1 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S19

{𝑡3} S20

{𝑡4} S28

{𝑡3, 𝑡4} S29

5 S20
{[0 0 1 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 0 0 0 0 0 0 0]'}

- S25

{𝑡3, 𝑡4} S30

5 S21
{[1 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 0 0 0 0 0 0 0]'}

- S31

{𝑡1} S32

5 S22
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[3 0 1 0 0 0 0 0 0 0]'}
- S33

5 S23
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[2 0 1 0 0 0 0 0 0 0]'}
- S34

5 S24
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[1 0 1 0 0 0 0 0 0 0]'}
- S35

5 S25
{[0 0 1 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 0 0 0 0 0 0 0]'}

- S35

{𝑡3, 𝑡4} S36

6 S26
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 2 0 0 0 0 0 0]'}

- S37

{𝑡2} S38

6 S27
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 2 0 0 0 0 0 0]'}
- S39

6 S28
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 2 0 0 0 0 0 0]'}

- S39

{𝑡3} S40

6 S29
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 2 0 0 0 0 0 0]'}
- S41

6 S30
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 2 0 0 0 0 0 0]'}
- S42

6 †S31
{[1 0 0 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S31

{𝑡1} S32

{𝑡5} S43

{𝑡1, 𝑡5} S44

6 S32
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[3 0 0 0 0 0 0 0 0 0]'}

- S33

{𝑡5} S45

6 S33
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[2 0 0 0 0 0 0 0 0 0]'}

- S34

{𝑡5} S46

†
 denotes relaxed states.

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

6 S34
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[1 0 0 0 0 0 0 0 0 0]'}

- S35

{𝑡5} S47

6 †S35
{[0 0 1 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S35

{𝑡4} S36

{𝑡5} S47

{𝑡4, 𝑡5} S48

6 S36
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 2 0 0 0 0 0 0]'}

- S42

{𝑡5} S49

7 S37
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 1 0 0 0 0 0 0]'}

- S50

{𝑡2} S51

7 S38
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 1 0 0 0 0 0 0]'}
- S52

7 S39
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 1 0 0 0 0 0 0]'}

- S52

{𝑡3} S53

7 S40
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 1 0 0 0 0 0 0]'}
- S54

7 S41
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 1 0 0 0 0 0 0]'}
- S55

7 S42
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 1 0 0 0 0 0 0]'}

- S55

{𝑡5} S56

7 S43
{[1 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 1 0 0 0 0 0]'}

- S57

{𝑡1} S58

7 S44
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[3 0 0 0 1 0 0 0 0 0]'}
- S59

7 S45
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[2 0 0 0 1 0 0 0 0 0]'}
- S60

7 S46
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[1 0 0 0 1 0 0 0 0 0]'}
- S61

7 S47
{[0 0 1 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 1 0 0 0 0 0]'}

- S61

{𝑡4} S62

7 S48
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 2 1 0 0 0 0 0]'}
- S63

7 S49
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 1 1 0 0 0 0 0]'}
- S64

8 †S50
{[0 1 0 0 1 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S50

{𝑡2} S51

{𝑡6} S65

{𝑡2, 𝑡6} S66

8 S51
{[0 0 0 0 1 0 0 0 0 0 0 0 0]',

[0 1 0 0 0 0 0 0 0 0]'}

- S52

{𝑡6} S67

8 †S52
{[0 0 0 1 1 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S52

{𝑡3} S53

{𝑡6} S67

{𝑡3, 𝑡6} S68

†
 denotes relaxed states.

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

8 S53
{[0 0 0 0 1 0 0 0 0 0 0 0 0]',

[0 0 2 0 0 0 0 0 0 0]'}

- S54

{𝑡6} S69

8 S54
{[0 0 0 0 1 0 0 0 0 0 0 0 0]',

[0 0 1 0 0 0 0 0 0 0]'}

- S55

{𝑡6} S70

8 †S55
{[0 0 0 0 1 1 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S55

{𝑡5} S56

{𝑡6} S70

{𝑡5, 𝑡6} S71

8 S56
{[0 0 0 0 1 0 0 0 0 0 0 0 0]',

[0 0 0 0 1 0 0 0 0 0]'}

- S64

{𝑡6} S72

8 †S57
{[1 0 0 0 0 0 0 1 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S57

{𝑡1} S58

8 S58
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[3 0 0 0 0 0 0 0 0 0]'}
- S59

8 S59
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[2 0 0 0 0 0 0 0 0 0]'}
- S60

8 S60
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[1 0 0 0 0 0 0 0 0 0]'}
- S61

8 †S61
{[0 0 1 0 0 0 0 1 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S61

{𝑡4} S62

8 S62
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[0 0 0 2 0 0 0 0 0 0]'}
- S63

8 S63
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[0 0 0 1 0 0 0 0 0 0]'}
- S64

8 †S64
{[0 0 0 0 1 0 0 1 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S64

{𝑡6} S72

9 S65
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 3 0 0 0 0]'}

- S73

{𝑡2} S74

9 S66
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 0 0 3 0 0 0 0]'}
- S75

9 S67
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 3 0 0 0 0]'}

- S75

{𝑡3} S76

9 S68
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 0 0 3 0 0 0 0]'}
- S77

9 S69
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 0 0 3 0 0 0 0]'}
- S78

9 S70
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 0 0 3 0 0 0 0]'}

- S78

{𝑡5} S79

10 S74
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 0 0 2 0 0 0 0]'}
- S83

10 S75
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 2 0 0 0 0]'}

- S83

{𝑡3} S84

10 S76
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 0 0 2 0 0 0 0]'}
- S85

†
 denotes relaxed states.

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

10 S77
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 0 0 2 0 0 0 0]'}
- S86

10 S78
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 0 0 2 0 0 0 0]'}

- S86

{𝑡5} S87

10 S79
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 1 2 0 0 0 0]'}
- S88

10 S80
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[0 0 0 0 0 2 0 0 0 0]'}
- S88

11 S81
{[0 1 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 1 0 0 0 0]'}

- S89

{𝑡2} S90

11 S82
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 1 0 0 0 1 0 0 0 0]'}
- S91

11 S83
{[0 0 0 1 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 1 0 0 0 0]'}

- S91

{𝑡3} S92

11 S84
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 2 0 0 1 0 0 0 0]'}
- S93

11 S85
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 1 0 0 1 0 0 0 0]'}
- S94

11 S86
{[0 0 0 0 0 1 0 0 0 0 0 0 0]',

[0 0 0 0 0 1 0 0 0 0]'}

- S94

{𝑡5} S95

11 S87
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 1 1 0 0 0 0]'}
- S96

11 S88
{[0 0 0 0 0 0 0 1 0 0 0 0 0]',

[0 0 0 0 0 1 0 0 0 0]'}
- S96

12 †S89
{[0 1 0 0 0 0 1 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S89

{𝑡2} S90

12 S90
{[0 0 0 0 0 0 1 0 0 0 0 0 0]',

[0 1 0 0 0 0 0 0 0 0]'}
- S91

12 †S91
{[0 0 0 1 0 0 1 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S91

{𝑡3} S92

12 S92
{[0 0 0 0 0 0 1 0 0 0 0 0 0]',

[0 0 2 0 0 0 0 0 0 0]'}
- S93

12 S93
{[0 0 0 0 0 0 1 0 0 0 0 0 0]',

[0 0 1 0 0 0 0 0 0 0]'}
- S94

12 †S94
{[0 0 0 0 0 1 1 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S94

{𝑡5} S95

12 S95
{[0 0 0 0 0 0 1 0 0 0 0 0 0]',

[0 0 0 0 1 0 0 0 0 0]'}
- S96

12 †S96
{[0 0 0 0 0 0 1 1 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S96

{𝑡7} S97

13 S97
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 7 7 0 0]'}
- S98

14 S98
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 6 6 0 0]'}
- S99

15 S99
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 5 5 0 0]'}
- S100

†
 denotes relaxed states.

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

16 S100
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 4 4 0 0]'}
- S101

17 S101
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 3 3 0 0]'}
- S102

18 S102
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 2 2 0 0]'}
- S103

19 S103
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 1 1 0 0]'}
- S102

20 †S104
{[0 0 0 0 0 0 0 0 1 1 0 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}

- S104

{𝑡8} S105

{𝑡9} S106

{𝑡8, 𝑡9} S107

21 S105
{[0 0 0 0 0 0 0 0 0 1 0 0 0]',

[0 0 0 0 0 0 0 0 4 0]'}

- S108

{𝑡9} S109

21 S106
{[0 0 0 0 0 0 0 0 1 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 3]'}

- S110

{𝑡8} S111

21 S107
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 4 3]'}
- S112

22 S108
{[0 0 0 0 0 0 0 0 0 1 0 0 0]',

[0 0 0 0 0 0 0 0 3 0]'}

- S113

{𝑡9} S114

22 S109
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 3 3]'}
- S115

22 S110
{[0 0 0 0 0 0 0 0 1 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 2]'}
- S116

{𝑡8} S117

22 S111
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 4 2]'}
- S118

22 S112
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 3 2]'}
- S119

23 S113
{[0 0 0 0 0 0 0 0 0 1 0 0 0]',

[0 0 0 0 0 0 0 0 2 0]'}
- S120

{𝑡9} S121

23 S114
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 2 3]'}
- S122

23 S115
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 2 2]'}
- S123

23 S116
{[0 0 0 0 0 0 0 0 1 0 0 0 0]',

[0 0 0 0 0 0 0 0 0 1]'}
- S124

{𝑡8} S125

23 S117
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 4 1]'}
- S126

23 S118
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 3 1]'}
- S127

23 S119
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 2 1]'}
- S128

24 S120
{[0 0 0 0 0 0 0 0 0 1 0 0 0]',

[0 0 0 0 0 0 0 0 1 0]'}
- S129

{𝑡9} S130

24 S121
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 1 3]'}
- S131

†
 denotes relaxed states.

Table A4.1. (Continue) Reachability Set for TdAPN in Figure 6.9

k The State of TdAPN 𝜙 Next State

24 S122
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 1 2]'}
- S132

24 S123
{[0 0 0 0 0 0 0 0 0 0 0 0 0]',

[0 0 0 0 0 0 0 0 1 1]'}
- S133

24 †S124
{[0 0 0 0 0 0 0 0 1 0 0 1 0]',

[0 0 0 0 0 0 0 0 0 0]'}
- S124

{𝑡8} S125

24 S125
{[0 0 0 0 0 0 0 0 0 0 0 1 0]',

[0 0 0 0 0 0 0 0 4 0]'}
- S126

24 S126
{[0 0 0 0 0 0 0 0 0 0 0 1 0]',

[0 0 0 0 0 0 0 0 3 0]'}
- S127

24 S127
{[0 0 0 0 0 0 0 0 0 0 0 1 0]',

[0 0 0 0 0 0 0 0 2 0]'}
- S128

24 S128
{[0 0 0 0 0 0 0 0 0 0 0 1 0]',

[0 0 0 0 0 0 0 0 1 0]'}
- S133

25 †S129
{[0 0 0 0 0 0 0 0 0 1 1 0 0]',

[0 0 0 0 0 0 0 0 0 0]'}
- S129

{𝑡9} S130

25 S130
{[0 0 0 0 0 0 0 0 0 0 1 0 0]',

[0 0 0 0 0 0 0 0 0 3]'}
- S131

25 S131
{[0 0 0 0 0 0 0 0 0 0 1 0 0]',

[0 0 0 0 0 0 0 0 0 2]'}
- S132

25 S132
{0 0 0 0 0 0 0 0 0 0 1 0 0]',

[0 0 0 0 0 0 0 0 0 1]'}
- S132

25 †S133
{[0 0 0 0 0 0 0 0 0 0 1 1 0]',

[0 0 0 0 0 0 0 0 0 0]'}
- S133

{𝑡10} S0

†
 denotes relaxed states.

APPENDIX-5 – THE TIMED-REACHABILITY TREE FOR THE MANUFACTURING EAMPLE

Figure A5.1. Timed-reeachability tree for TdAPN in Figure 6.2

In this appendix, the timed-reachability tree for the manufacturing-systems example in Figure 6.2 is shown in Figure A5.1. Descriptions of this graph are similar to explanations for Figure 3.8.

CURRICULUM VITAE

Name Surname : Alpaslan YUFKA

Foreign Language : English (Advanced, YÖKDİL 03/2018: 81.25),

 Romanian (Beginner), German (Beginner)

Birth Place and Year : İzmir, Turkey / 1984

E-Mail : ayufka@gmail.com (alternatively, alpaslan.yufka@gmail.com)

Education

 2019, Eskişehir Technical University, Natural Science, Department of Electrical-

Electronics Engineering, Electrical-Electronics Engineering (Ph.D., English),

Eskişehir, Turkey, GPA: 3.86/4.

 2018, UDACITY, Nanodegree of “Intro to Self-Driving Cars”, (Online) USA.

https://graduation.udacity.com/confirm/Z3CPSFC4

 2015, Anadolu University, The Faculty of Business Administration, Business

Administration (B.B.A.), Eskişehir, Turkey, GPA: 2.70/4.

 2010, Eskişehir Osmangazi University, Natural Science, Department of

Electrical-Electronics Engineering, Electrical-Electronics Engineering (M.Sc.),

Eskişehir, Turkey, GPA: 3.50/4.

 2009, Eskişehir Osmangazi University, The Faculty of Engineering and

Architecture Administration, Department of Electrical-Electronics Engineering,

Electrical-Electronics Engineering (B.Sc., English), Eskişehir, Turkey, GPA:

3.62/4.

 2008, Technical University of Cluj Napoca, Computer Science and Automation

(ERASMUS, English & Romanian), Cluj Napoca, Romania, GPA: 3.33/4.

 2002, İzmir Nevvar Salih İşgören High School, Foreign Language Aided Science

(English), İzmir, Turkey, GPA: 4.19/5.

https://graduation.udacity.com/confirm/Z3CPSFC4

Job Experience

 2016 - Present, Otokar Automotive and Defense Industry Inc., Turkey (KOC

Holding), Sakarya, Turkey

o (Military Vehicles R&D) Specialist Engineer – Electronic Mission-

Equipment Systems

o (Military Vehicles R&D) Specialist Engineer – Electrical-Electronics

System

 System Engineering and Integration of Military Electronic Mission

Equipment Systems for Military Armored Vehicles (Cobra, Cobra

II, Arma, Tulpar)

 Concept Studies on Military Self-Driving Cars, Military

Autonomous and Unmanned Ground Vehicles

 Electrical and Electronic Subsystem Architecture and Interfaces

 Requirement Management

 Benchmarking and selection of electronic mission equipments

from different suppliers

 System/Subsystem Validation and Verification, Test Planning

 System/Subsystem Design Documentation

 Technical Consultancy to Project Side

 2011 - 2016, Otokar Automotive and Defense Industry Inc., Turkey (KOC

Holding), Sakarya, Turkey

o (S.S.B. ALTAY Main Battle Tank R&D) Electrical-Electronics System

Engineer

 System Engineering and Integration of Military Electronic Mission

Equipment Systems for ALTAY

 System Engineering Steps of SRR, SSR, PDR, CDR and TRR

 System/Subsystem Qualification Steps of SSQT and SQT

 Military Standards: MIL-STD-810, 461, 464, 498, 1275D, 1472,

1521, STANAG 4579, 4347

 System/Subsystem Validation and Verification, Test Planning

 Electrical and Electronic Subsystem Architecture and Interfaces

 Requirement Management

 System/Subsystem Design Documentation

 2008 - 2010, Eskişehir Osmangazi University Artificial Intelligence and Robotics

Laboratory, Eskişehir, Turkey

o Laboratory Assistant and Researcher

 Research Engineer at TUBITAK: 107E064's project that is namely

Mobile Robot Route Planning for Complete Coverage of Dynamic

Indoor Environments.

 Research Engineer at Thesis, which is Motion Planning and

Control Scheme for Cooperative Transportation by Multiple

Mobile Robots.

 Path Planning, Indoor Localization,

 Robot Motion Planning and Control Systems on

Autonomous Mobile Robots,

 Software development in C/C++ Object Oriented

Programming and MATLAB,

 Background in Artificial Intelligence and Computer Vision

 2007, Eskişehir TUSAŞ Engine Industries Inc. (TEI), Eskişehir, Turkey

o Engineer-Intern at the Department of Electronics Maintenance

Publications Related to This Thesis

Published papers are as follows:

 Yufka, A., Özkan, H.A. and Aybar, A. (2016). A Formal Method and Novel

Graphical Representation for Deterministic Timed-Arc Petri Nets. Proceeding

National Conference on “Otomatik Kontrol Ulusal Toplantisi”, Eskişehir,

Turkey, Sep. 29 – Dec. 01, 2016, TOK’16. pp. 209-213.

 Yufka, A., Özkan, H.A. and Aybar, A. (2017). Timed Arc Petri Nets: The Time-

Element Approach. Proceeding 10th International Conference on Electrical and

Electronics Engineering, Bursa, Turkey, Nov. 30 – Dec. 2, 2017, ELECO’17. pp.

794-798. IEEE.

 Yufka, A., Özkan, H.A. and Aybar, A. (2018). Timed Arc Petri Nets: The

Impulsive Approach. Proceeding 5th International Conference on Control,

Decision and Information Technologies, Thessaloniki, Greece, Apr. 10-13, 2018,

CODIT’18. pp. 409-414. IEEE.

 Yufka, A., Özkan, H.A. and Aybar, A. (2018). Modeling Basic Components of

Railway Systems Using Timed Arc Petri Nets. Proceeding 5th International

Conference on Control, Decision and Information Technologies, Thessaloniki,

Greece, Apr. 10-13, 2018, CODIT’18. pp. 427-432. IEEE.

 Yufka, A., Özkan, H.A. and Aybar, A. (2019). Reachability Set Algorithms for

Timed-Arc Petri Nets. Proceeding 395th International Conference on Electrical

and Electronics Engineering, Barcelona, Spain, Feb. 11-12, 2019, ICEEE’19.

(Presented)

Publications in the preparation/submission stage are as follows:

 Yufka, A., Özkan, H.A. and Aybar, A. (2019). “A Mathematical Model of Timed-

Arc Petri Nets Using Time Elements”.

 Yufka, A., Özkan, H.A. and Aybar, A. (2019). “Forbidden State Controller for

Timed-Arc Petri Nets”.

Other Publications

Technical Reports

1. (2011-2017)(Classified) Some technical data packages (TDP) of T.R. M.S.B.

Undersecretariat for Defence Industries (S.S.M.) ALTAY (Turkish National

Main Battle Tank) Project for some specific electrical/electronic subsystems

 Benchmarks

 Request for Information (RFI)

 System/Subsystem Specification Documents (SSS, SGÖ)

 System/Subsystem Software Specification Documents (YGÖ)

 System/Subsystem Design Description Documents (SSDD, STT)

 System/Subsystem Interface Control Documents (ICD, AKD)

 System/Subsystem Validation Procedures (KMTP)

 System/Subsystem Validation Records and Reports

 System/Subsystem Failure Analysis Documents (HAR)

 System/Subsystem Engineering Change Proposals (ECP, MDT)

 TTRD/System/Subsystem Requirement Change Proposals

 Minutes of Meeting (MoM)

2. (2009) Yazıcı A., Parlaktuna O., Kapanoğlu M., Özkan M., Sipahioğlu A.,

Kirlik G. ve Yufka A. “Mobile Robot Route Planning for Complete Coverage

of Dynamic Indoor Environments”, The Final Report of The Scientific and

Technical Research Council of Turkey (TUBITAK), Nov., Eskişehir, Project

107E064.

Journal Papers

1. (2018) A. Yufka, H.A. Özkan and A. Aybar, “BUG-0, 1, 2 Algoritmalari ve

Petri Ağı Modelleri”, Anadolu University Journal of Science and Technology

B- Theoritical Sciences, vol. 6(2), pp. 129-139, October 2018, DOI:

10.20290/aubtdb.421865.

2. (2015) A. Yufka and M. Ozkan, “Formation-based control scheme for

cooperative transportation by multiple mobile robots”, International Journal

of Advanced Robotic Systems, vol. 12:120(9), pp. 1-15, September 2015,

ISSN: 1729-8806.

3. (2010) Ozkan M., Kirlik G., Parlaktuna O., Yufka A., and Yazici A. “Fault-

Tolerant Control Architecture for Multi-Robot Sensor-Based Coverage”,

International Journal of Advanced Robotic Systems, Special issue on Robotics

for Risky Interventions and Environmental Surveillance, vol. 7 (1), pp. 67-74,

ISSN 1729-8806.

Conference Papers

1. (2019) A. Yufka, H.A. Özkan and A. Aybar, “Reachability Set Algorithms

for Timed-Arc Petri Nets”. Proceeding 395th International Conference on

Electrical and Electronics Engineering, Feb. 11-12, 2019, Barcelona, Spain.

(Presented and in Publish)

2. (2018) A. Yufka, H.A. Özkan and A. Aybar, “Modeling Basic Components of

Railway Systems Using Timed Arc Petri Nets”, Proceeding of the 5th Int. Conf.

on Control, Decision and Information Technologies, April 10-13,

Thessaloniki, Greece, pp. 427-432. IEEE.

3. (2018) A. Yufka, H.A. Özkan and A. Aybar, “Timed Arc Petri Nets: A Novel

Representation”, Proceeding of the 5th Int. Conf. on Control, Decision and

Information Technologies, April 10-13, Thessaloniki, Greece, pp. 409-414.

IEEE.

4. (2017) A. Yufka, H.A. Özkan and A. Aybar, “Timed Arc Petri Nets: The

Time-Element Approach”, Proceeding of the 10th International Conf. on

Electrical and Electronics Engineering, pp. 794-798, 30 Nov.- 2 Dec., Bursa,

Turkey, pp. 794-798. IEEE.

5. (2016) A. Yufka, H.A. Özkan and A. Aybar, “A Formal Method and Novel

Graphical Representation for Deterministic Timed-Arc Petri Nets”,

Proceeding of the National Conf. on Otomatik Kontrol Ulusal Toplantısı, pp.

209- 213, 29 Sep.- 1 Dec., Eskisehir, Turkey. ISBN: 978-605-9975-13-1.

6. (2015) A. Yufka and A. Aybar, “Line estimation for a line-following mobile

robot”, Proceeding of the 9th International Conf. on Electrical and Electronics

Engineering, pp. 890-893, 26 – 28 Nov., Bursa, Turkey. ISBN: 978-1-4673-

7912-0. IEEE.

7. (2014) M.S. Özdemir and A. Yufka, “Application of MCDM Methods for a

Group of Nonholonomic Mobile Robots to Determine the Best Route and the

Most Suitable Robot”, Proceeding of the 13th International Symposium on the

Analytic Hierarchy Process, pp. 183 - 185, 28 June, Washington, USA. ISBN:

978-1-888603-30-9.

8. (2013) A. Yufka and A. Aybar, “BUG algorithm analysis using Petri net”,

Proceeding of the 8th International Conf. on Electrical and Electronics

Engineering, pp. 507 - 511, 28 - 30 Nov, Bursa, Turkey. ISBN: 978-1-4799-

2888-0. IEEE.

9. (2010) Yufka A., Ozkan M., and Parlaktuna O. “Formation-Based

Cooperative Transportation by a Group of Non-holonomic Mobile Robots”,

Proceeding of the 2010 IEEE International Conf. on Systems Man and

Cybernetics, pp. 3300-3307, 10 – 13 Oct., Istanbul, Turkey. ISBN: 978-1-

4244-6586-6. IEEE. (that it was a finalist for the: "IEEE International

Conference on Systems, Man, and Cybernetics Best Student Paper Award" at

SMC'10)

10. (2010) Gurler N., Cevher F.Y., Yufka A., and Parlaktuna O. “Direct-Motion

Parallel Parking for a Vehicle with and without a Trailer”, Proceeding of the

International Symposium on INnovations in Intelligent SysTems and

Applications, pp. 108-112, 21-24 June, Kayseri, Turkey. ISBN 978-975-6478-

58-5.

11. (2010) Yufka A. and Yazici A. (2010). “An Intelligent PID Tuning Method

for an Autonomous Mobile Robot”, Proceeding of the International Workshop

on Unmanned Vehicles, pp. 130-133, 10-12 June, Istanbul, Turkey.

12. (2010) Yufka A. and Ozkan M. “Cooperative Transportation by Multiple

Autonomous Non-holonomic Mobile Robots”, Proceeding of the International

Workshop on Unmanned Vehicles, pp. 134-139, 10-12 June, Istanbul, Turkey.

13. (2010) Altintasi C., Biberoglu M., Yufka A., and Parlaktuna O. “Direct-

Motion Diagonal and Perpendicular Parking for a Vehicle with and without

a Trailer”, Proceeding of the 1st International Symposium on Computing in

Science & Engineering, pp. 559-563, 3-5 June, Aydın, Turkey. ISBN 978-

605-61394-1-3.

14. (2010) Yufka A. and Ozkan M. “Formation-Based Cooperative

Transportation by a Group of Non-Holonomic Forklift-Type Mobile Robots”,

Proceeding of the 1st International Symposium on Computing in Science &

Engineering, pp. 131, 3-5 June, Aydın, Turkey. ISBN 978-605-61394-0-6.

15. (2010) Yufka A., Özkan M., ve Parlaktuna O. “Formation-Based Cooperative

Transportation by Multiple Mobile Robots”, Proceeding of the National Conf.

on Otomatik Kontrol Ulusal Toplantısı, pp. 520-525, vol. PeB2-3, 21-23 Sep.,

Gebze, Kocaeli.

16. (2009) Yufka A., Yazıcı A., and Parlaktuna O. “A Smooth Path Generation

Approach for Sensor-based Coverage Path Planning”, Proceeding of the 6th

International Conf. on Electrical and Electronics Engineering, pp. 375-379,

vol. 2, 5-8 Nov., Bursa, Turkey. ISBN 978-9944-89-820-1. IEEE.

17. (2009) Yufka A. and Parlaktuna O. "Performance Comparison of the BUG's

Algorithms for Mobile Robots", Proceeding of the International Symposium

on INnovations in Intelligent Systems and Applications, pp. 416-421, 29 June

– 1 July, Trabzon, Turkey. ISBN 978-975-6983-58-4.

18. (2009) Yufka A. and Parlaktuna O. "Performance Comparison of the BUG

Algorithms for Mobile Robots", Proceeding of the 5th International

Symposium on Advanced Technologies, pp. 61-65, 13-15 May, Karabuk,

Turkey. ISBN 978-605-60681-0-2.

19. (2008) Dobrucalı O., Yufka A., Kaleci B., Özkan M., Parlaktuna O. “Multi-

Camera Localization System for Mobile Robots”, Proceeding of the 5th

National Symposium on Electrical-Electronics and Computer Engineering,

pp. 402-406, vol. Elektrik-Kontrol, 26-30 Nov., Bursa, Turkey. ISBN 978-

9944-89-637-5.

20. (2008) Yufka A., Dobrucalı O., Kaleci B., Özkan M., Parlaktuna O. “Image-

Based Localization System for Mobile Robots”, Proceeding of the National

Conf. on Otomatik Kontrol Ulusal Toplantısı, pp. 47-51, vol. 1, 13-15 Nov.,

İstanbul, Turkey.

Dissertations

1. (2019) Yufka A. “Timed-Arc Petri Nets Modeling and Forbidden State

Control Approach”, Dissertation of the Doctor of Philosophy Program on

Electrical-Electronics Engineering, Institute of Natural Sciences, Eskişehir

Technical University, Eskisehir, Turkey.

2. (2010) Yufka A. “Motion Planning and Control Scheme for Cooperative

Transportation by Multiple Mobile Robots”, Dissertation of the Master of

Science Program on Electrical-Electronics Engineering, No: 0078929 (TEZ

3901 2010 k.1), YÖK Ref No: 372574, Institute of Natural Sciences, Eskişehir

Osmangazi University, Eskisehir, Turkey.

3. (2008) Yufka A. “Indoor Localization System for Mobile Robots”, Synthesis

and Design Project of the Bachelor of Science Program on Electrical-

Electronics Engineering, Faculty of Engineering and Architecture, Eskişehir

Osmangazi University, Eskisehir, Turkey.

Honors and Awards

 2017, 5-years service-award at Otokar Automotive and Defense Ind. Inc.

 2010, Finalist for the: "IEEE International Conference on Systems, Man, and

Cybernetics Best Student Paper Award"

 2009, The Scientific and Technical Research Council of Turkey (TUBITAK)

Research Scholarship for The Scientific Robotics Project

 2008, High Honor Student at University

 2007, European Commission – Education & Training Scholarship for The

ERASMUS Programme

 2007, High Honor Student at University

 1999, Honor Student at High School

 1997, Honor Student at Secondary School

Organizations

 2017–2018, IEEE Power Electronics Society (ID:92439534)

 2017–2018, IEEE Control Systems Society (ID:92439534)

 2015–2018, IEEE Robotics and Automation Society (ID:92439534)

 2015–2018, The Institute of Electrical and Electronics Engineers (IEEE)

(ID:92439534)

 2013–continue, OTOKAR Robotics Society (Founder and President)

 2011–2012, International Council on Systems Engineering (INCOSE) (ID:32068)

Google Scholar Statistics

Last access: on the 04th April of 2019

	FRONT PAGE
	FINAL APPROVAL FOR THESIS
	ÖZET
	ABSTRACT
	ACKNOWLEDGEMENT
	STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	SYMBOLS AND ABBREVIATIONS
	1. INTRODUCTION
	2. PETRI NETS
	3. TIMED-ARC PETRI NETS
	4. COMPARISONS
	5. CONTROLLER DESIGN
	6. MODELING AND DESIGN FOR REAL WORLD SYSTEMS
	7. ALGORITHMS FOR TIMED-ARC PETRI NETS
	8. CONCLUSION, DISCUSSION AND PROPOSALS
	REFERENCES
	APPENDIX-1 – THE REACHABILITY SET OF TdAPN (NOT REVERSIBLE)
	APPENDIX-2 – THE REACHABILITY SET OF MANUFACTURING EXAMPLE
	APPENDIX-3 – THE REACHABILITY SET OF RAILWAY EXAMPLE
	APPENDIX-4 – THE REACHABILITY SET OF AUTOMOTIVE EXAMPLE
	APPENDIX-5 – THE TIMED-REACHABILITY TREE FOR THE MANUFACTURING EAMPLE
	CURRICULUM VITAE

