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ABSTRACT

Circular cylindrical element with strip pressure in radial direction has widely applications
in engineering such as bearings, gears, pulleys and shrink fit. In these machine elements,
small permanent deformations occur under the working loads. Determination of elasto-
plastic deformations, siress components and residual stresses after removal of loads
would make possible the utilization of ultimate level of material capacity.

In the study, elasto-plastic stresses and residual stresses in the isotropic circular cylinder
with the strip pressure in radial direction are investigated by the finite element method.

As the stress-strain relationship of the material is nonlinear after the yielding point, in the
non-linear region successive incremental loading are carried out, the material is assumed
linear, and for each incremental that material behaves linearly. Namely, successive linear
analysis carried out for non-linear behavior.

In the investigation, because of the symmetry with respect to geometry, support
condition and material properties of the problem, the problem is analyzed by four nodes
isoparametric rectangular ring shape finite elements. Finite element mesh generation is
carried out on computer automatically. General purpose computer program is used to
solve the problem.

" In the solution, it is assumed that deformations are small. Solid and hallow sectional
cylinders with ratios inner diameter to outer diameter are considered. Stress and strain
components are determined for different band pressures. And in the remowval of the band
pressure residual stresses are calculated. The magnitude of the residual stress can be
obtained by superposition of the stresses due to loading and unloading. Values of the
band pressure initiating plastic deformation are determined for different diameters by
using von-Mises criterion.

Distributions of stress components (equivalent, tangential, radial, axial and shear stress)
and residual stress components are plotied along the lbngitudinal axis on the outer and
inner surfaces of the circular cylinder. Deformed shape and displacement of the model
are given on the longitudinal section in the circular cylinders. Variations of stress contour
components are presented on the longitudinal section along the circular cylinder for
different diameter.

Key words: Elasto-plastic stresses analysis, finite element method, axisymmetric finite
element, residual stresses, band pressure, circular cylindrical element, plastic deformation.
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OZET

Cevresi boyunca band basincina maruz dairesel silindirikk elemaniar miihendislik
uygulamalarinda yaygin kullanim alani bulmaktadir (rulman, kasnak ve digsh makina
elemanlarinin siki gegme ile baglanmasinda oldugu gibi). Bu form birlestirmelerde,
silindirik elemanlar Gzerinde, biiyiik olmayan kalici gekil degisiklikleri meydana gelir.
Makina elemanlariin bu bolgelerindeki, elasto-plastik sekil degigikliklerinin, gerilme
bilegenlerinin ve band basincinin kaldiriimsiyle olusan artik gerilmelerin 6nceden belirlen-
mesi, malzemenin mukavemetinden maksimum seviyede faydalaniimasina imkan saglar.

Bu galisgmada, ¢evresi boyunca band basinct etkisine maruz, izotrop malzemeye sahip
dairesel silindirik (dolu ve simetri ekseni boyunca bosgaltilmig) elemanlarda meynada gelen
elasto-plastik gerilmeler ve artik gerilmeler sonlu elemanlar metodu ile incelendi.

Akma noktasindan sonra malzemenin gerilme-zorlanma iligkisi non-lineer oldugundan,
kiigiik artinmlarla ardigtk yiikleme yapilmis ve her bir aralikta malzemenin lineer
davrandig: kabul edilmigtir. Diger bir ifade ile nonlineer analizde ¢ok tekrarlt lineer analiz
yapilmstir. Sonlu eleman modeli, geometri, sinir sartlari ve yiikleme simetrisinden dolay:
izoparametrik dort dugimlii dértgen halka elemanlardan olugturulmustur. Sistemin sonlu
sayida elamana bolimlenmesi bilgisayarda otomatik olarak yapilmigtir.

- Coziimde, gekil degisimlerinin kiigiik oldugu durumlar incelenmistir. Coziimler, dolu ve
farkli oranlarda i¢i bosaltilmus silindirier igin yapimugtir. Farkli band basinci degerlerinde
meydana gelen zorlanma ve gerilme bilegenleri degerleri hesaplanmigtir. Bununla birlikte,
silindire etki eden band basincinin kaldirilmast halinde silindirde meydana gelen artik
gerilmeler hesaplanmugtir. Plastik sekil degigimini baglatan band basinct degerleri von-
Mises akma kritert esas alinarak belirlenmis ve grafik olarak sunulmustur..

Elasto-plastik gerilme analizi sonucunda, farkli band basinci etkisinde dairesel silindirlerin
i¢ ve di§ yizeylerinde hesaplanan gerilme bilegenlerinin (egdeger, tegetsel, radyal, eksenel
ve kayma) ve arttk gerilme bilegenlerinin degi$imleri4 simetri ekseni boyunca grafikler
halinde gosterildi. Modelin sekil degistirmis formu ve modeli olusturan sonlu elemaniarn
yerdegistirmeleri kesit izerinde gosterildi. Elasto-plastik gerilme bilesenlerinin dagilimliar
ve band basincin artirtlmasi ile plastik defomasyonun derinlesmesi silindirin boylamasina
kesiti Gizerinde farkh renklerle gdsterildi.

Anahtar sozclikler: Elasto-plastik gerilme analizi, sonlu elemanlar metodu, plastik sekil
degisimi, eksenel simetrik eleman, artik gerilmeler, band basinci, silindirik eleman.
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CHAPTER ONE

INTRODUCTION

A circular cylinder with a band of pressure is encountered on a routine basis. For
instance, pressure vessels, roller bearing, assembly of shrink fits etc. In these elements,
small permanent deformations occur under the working loads. Determination of elasto-
plastic deformations, stress components and residual stresses after removal of loads
would make possible the utilization of ultimate level of material capacity. In the study,
elasto-plastic stresses and residual stresses in the isotropic circular cylinder with the strip
pressure in radial direction are investigated by the finite element method

Shrink fits are found frequently in mechanical engineering. The importance of shrink fits
rests on the fact that they are capable of transmitting high moments at low production
coast. To better utilize hub material, plastic deformation is admitted in many cases. A
generalization of Kollmann’s work for linear strain-hardening materials has been given
by Gamer and Lance [1]. Furthermore, it has been shown that hub material with an
arbitrary nonlinear hardening law can be taken into account without excessive numerical
calculations[2].

As the stress-strain relationship of the material is nonlinear after the yielding point, in the
non-linear region successive incremental loading are carried out, the material is assumed,
" and for each incremental that material behaves linearly. Namely, successive linear
analysis carried out for non-linear behavior. In the investigation, because of the
symmetry with respect to geometry, support condition and material properties of the
problem, the problem is analyzed by four nodes axisymmetric isoparametric finite
elements. Finite element mesh generation is carried out on computer automatically.

Various computational procedures have been used with success for a limited range of
elasto-plastic problems utilizing the finite element approach. Two main formulation
appear. In the first, during an increment of loading, the increase of plastic strain is
computed and treated as an imitial strain for which the elastic siress distribution is
adjusted [3,4]. This approach manifestly fails if ideal plasticity is postulated or if the
degree of hardening is small. The second approach is that in which the stress-strain
relationship in every load increment is adjusted to take into account plastic deformation.
The work of Pope [5] Swedlow [6] Marcal and King [7], Reyes and Deere [8] and
Popov and others [9] falls into this category. With a properly specified elasto-plastic



matrix this incremental elasticity approach can successfully treat ideal as well as
hardening plasticity.

Ergatoudis, Irons and Zienkiewicz have investigated the theory of new family of
isoparametric elements for use in two dimensional situations[10]. Clough has developed
an approximate numerical analysis procedure which is capable of solving the shells of
arbitrary shape, boundary conditions and loading[11].

Owen and Salonen have present numerical solutions to three-dimensional elasto-plastic
problems illustrating the applicability of isoparametric elements and the other of
computation times involved[12].

Elasto-plastic analysis of two-dimensional stress system -plane stress, plane stress and
axisymmetrically loaded body of revaluation- has carried out for isotropic materials by
finite element method. Studies have been made on the development of the plastic zone,
the load-displacement relationship, and the stress and strain distribution during continued
loading and residual stresses have been examined[13,14].

In the solution, it is assume that deformations are small. Solid cylinder and hallow
sectional cylinders with ratios inner diameter to outer diameter are considered. Stress and
strain components are determined for different band pressures. And in the removal of the
band pressure residual stresses are calculated values of the band pressure initiating plastic
deformation are determined by using criteria of Von-Mises.

Meguid and Klair present elasto-plastic finite element analyses of the simultaneous
indentations of a bounded solid[15].

Distributions of stresses components (equivalent, tangential, radial, axial and shear
stresses) and residual stresses components are plotted along the cylinder length on the
outer surface of cylinder and inner surface of cylinder. Variation of stresses components
are presented along the circular cylinder on the cross sectional area as stress contour map
legend for different diameter.

In this study, circular cylinder under band pressure is solved by finite element method in
elastic region and elasto-plastic region.

In elastic region, M.V. Barton solve this problem by means of fourier series [16]. An
analysis of an elastic collar shrunk onto a long elastic shaft is given by H. Okubo[17].
When a short collar is shrunk on a much longer shaft the simple shrink-fit formula are
not accurate but, is valid when collar and shaft are of equal lengths. A much better
approximation is obtained by considering the problem indicated in figure 1.1 of a long
cylinder with a uniform normal pressure P acting on the band ABCD of the surface. The
required solution can evidently be obtained by superposing the effects of the two pressure
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distribution indicated in figure 1.1. The basic problem is therefore that of pressure P/2 on
the lower half of the cylindrical surface and -P/2 on the upper half, the length of the
cylinder being nfinite..

Barton obtained a different method of using Fourier series. From these curves results can
be obtamed for the problem of figure 1.1 by superposition.

| Z

P2 P2

P2 P2

Figure 1.1 A long cylinder with a uniformed normal pressure P

When the width of band pressure is equal to the radius of the cylinder the tangential
stress G at the surface and at the middle of the pressure band reaches a value about 10
per cent higher than the applied pressure, and is, of course, compressive. The axial stress
o, in the surface just outside the pressure band reaches a tensile value of about 45 per
cent of the applied pressure. The shear stress 1., attains a greatest value, equal to 31.8
per cent of the applied pressure, at the edges of the pressure band AB and CD in figure
1.1 and just below the surface. When the pressure is applied all over the curved surface
- of the cylinder, of any length, we have simply compressive 6, and cg equal to the
applied pressure, and o, and 7., zero. Solutions have been obtained in a similar manner
for a band of pressure in a hole in an infinite solid, and for a band of pressure near one
and of a cylinder.

In the study, elasto-plastic stresses and residual stresses in the isotropic circular cylinder
with the strip pressure in radial direction are investigated by the finite element method. In
the solution, ANSYS program is a general-purpose computer program for finite element
analysis was used. The ANSYS program is a general-purpose program, meaning that you
can use it for almost any type of finite element analysis in virtually any industry -
automobiles, aerospace, railways, machinery, electronics, electromagnetic, sporting
goods, power generation, power transmission, and biomechanics to mentioned just a
few. General purpose also refers to the fact that the program can be used in all disciplines
of engineering -structural, mechanical, electrical, electromagnetic, electronic, thermal,
fluid, and biomedical. The ANSYS program is also used as an educational tool in
universities and other academic institutions{18,26].



In the second chapter, we recall some fundamental concepts needed in the development
of the finite element method. Equation of equilibrium, stress-strain relation, strain-
displacement relation and some axial symmetric formulation that we interest in that deal
with are given.

In the third chapter, a brief overview of the finite element method, historical background
and its concept is presented. These are generation of the finite element mesh, the
isoparametric elements, shape functions, obtaining the element properties, assembly of
the element properties, solving the system equations, calculating of the stresses from the
strain.

In the fourth chapter, we developed what are popularly called isoparametric elements
and apply them to stress analysis. These elements have proved effective on a wide variety
of two dimensional problems in engineering.

In the fifth chapter, some basic concepts of theory of plasticity, total stress-strain
relations, Prandl-Reuse relation, Levy-Mises relation, empirical equation for stress-strain
curve, yield surface, calculation of the elasto-plastic stress, residual stress for isotropic
material and some important failure criteria for isotropic material are given.

In the sixth chapter, we present that what causes nonlinear behavior, types of the
nonlinear behavior, nonlinear solution technique, newton-raphson iteration.

In the seventh chapter, definition of the circular cylinder with a band of pressure, finite
element model, boundary condition and load condition of the finite element, deformed
shape of the finite element model are illustrated in figures. Material properties and
- dimension of the model are defined. Distribution of elasto-plastic and residual stresses
distribution for different diameter of the circular cylinders are shown in figures for
different band pressure. Components of contour elasto-plastic stresses are plotted from
the obtained results.

In the eighth chapter, results and conclusions have been presented.
In the appendix A, press and shrink fits condition is presented

In the appendix B, circular solid and hallow cylinder under uniform pressure have been
formulated.

In the appendix C, computer program is presented in detail. Basic main procedure is
presented; input geometric form of the model, select element type, definition of the
material properties, generation of the mesh, considering the boundary conditions, loading
that is external force, solving the problem, obtaining results (displacements, strains,
stresses etc.), and plotting results (deformed shape, stresses contour etc.).
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CHAPTER TWO

BASIC CONCEPTS OF CONTINUUM SYSTEM

2.1. INTRODUCTION

In this chapter, we recall some fundamental concepts needed in the development of the
finite element method. Equations of equilibrum, stress-strain relation, strain-
displacement relation and some axial symmetric formulation that we interest in that deal
with are given.

2.2. EQUATION OF EQUILIBRIUM

The solution of many elasticity problems, especially for bodies of circular cylinder form,
are conveniently formulated in terms of cylindrical coordinates r, 8, z. Let us consider
equilibrium condition on the figure 2.1 in the direction r, 0, z.

Figure 2.1. Plane differential element in cylindrical coordinate



Total force must be zero for equilibrium in the r, 6, z direction.
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Figure 2.2. Deformation of the elemental volume in the cylindrical coordinate



In the cylindrical coordinate, strain-displacement relation are given
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2.4. STRESS-STRAIN RELATIONSHIP

For linear elastic materials, the stress-strain come from the generalized Hook’s law. For
isotropic materials, the two materials properties are Young’s modulus (modulus of

elasticity) E, Poisson’s ratio v, and shear modules G = . In the cylindrical

2(1+v)
coordinate that can be written as;
1
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From the above equation we can get stress components as following form;
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2.5. AXISYMMETRIC ANALYSIS (SOLIDS OF REVOLUTION)

A solid of revolution is generated by the revolving a plane figure about an axis, and it
most easily described in cylindrical coordinates r, 0, and z figure 2.3. The geometry is
axially symmetric, and if material properties and loads also axially symmetric the
problem is mathematically two-dimensional. That is, if geometry, support condition,
loads, and material property matrix are all independent of 8, and if the material either
is isotropic or has 6 as a principal material direction, then static displacements and
stresses are independent of O: Circumferantial displacement v is zero, material points
have only u (radial) and w (axial) displacement components, and the nonzero stresses
are those shown in figure 2.3.

Figure 2.3. Axially symmetric solid isometric view

r | G,
Figure 2.4. Stresses produced by axially symmetric loading



Considering the elemental volume, the potential energy can be written in the form

1 2n 2n 2%
H:E"; J.AcTerdA e -} u'frdAdo - J.O ILuTTrdl de - ZufPi (2.1)

where r dl dO is the elemental surface area, and the point load P; represent a line load
distributed around a circle,

u=lu,w]", f=[r.5]", T=[1.T]", P=[P. P] (2

where f is the body force, T is the surface traction force, u is the displacement and
unit volume for axially symmetric element.

dV=rdb dzdz=rdb dA

All variables in the integrals are independent of 6. Thus, equation (2.1) can be written
as

1
M=2n [—2—_’;0% rdA - jAqur dA - LuTT r dl) - ulP, 2.3)
We can write the relationship between strains € and displacements u as
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The stress vector 1s correspondingly defined as

o:[cr,cz, T, Cp ]T (2.6)



The stresses-strains relations are given in the usual form.

c=De 2.7

where D is (4x4) symmetric material matrix in which E is modulus of elasticity and v
is the Poisson’s ratio.
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CHAPTER THREE

FINITE ELEMENT METHOD
3.1. INTRODUCTION

The finite element method is a very powerful and elegant technique that is numerical
procedure for analyzing structure and continua. This technique has rapidly become a
popular method for the computer solution of complex problems in engineering.

The finite element method originated as a method of stress analysis. Today finite
elements are also used to analyze problem of heat transfer, fluid flow, lubrication,
electric and magnetic fields, and many others. Finite element calculation are performed
on personal computers, mainframe and all size in between. Result are rarely exact.
However, errors are decreased by processing more equation, and results accurate
enough for engineering purposes are obtainable at reasonable cost.

With this method the structure is divided into a network of small elements connected to
each other at node points. Each element is of simple geometry and therefore is much
easter to analyze than the actual structure. In essence, we approximate a complicated
solution by a model that consists of piecewise-continuos simple solution.

Method was originally developed for two dimensional (plane stress) situation. A three
dimensional structure causes orders of magnitude increase in the number of simultaneous
equation; but by using high order elements and faster computers these problems are
being handied by the finite element method. Figure 3.1 Shows some of the element types
available for finite element analysis. These are triangle element, quadrilateral element,
axial symmetric triangle or quadratic element, tetrahedron element, hexahedral element,
shell element etc.

An important ingredient in a finite element analysis is the behavior of the individual
elements. A few good elements may produce better resuits than many poorer elements.
We can see that several element types are possible by considering Figure 3.2. Function ¢,
which might represent any of several physical quantities, varies smoothly in the actual
structure. A finite element model typical yields a piecewise- smooth representation of ¢.
Within each element ¢ is a smooth function that is usually

11
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Figure 3.1. Some common elements used in the finite element method analysis

represented by a single polynomial. For the polynomial three node triangle, the bilinear
function

@ =a; + ax + ay 3.1
is appropriate, where the a; are constants.

How can the user decide which element to use? Unfortunately, the answer is not simple.
An element that is good in one problem (such as magnetic fields) may poor in another
- (such as stress analysis). Even in specific problem area, an element behave well or badly,
depending on the particular geometry, loading and boundary conditions. A competent
user of finite element must be familiar with how various elements behave under various
conditions.

We may now venture some definition. The finite element method is a method of
piecewise approximation ¢ in which the approximating function ¢ is formed by
connecting simple functions, each defined over a small region (element). A finite element
is a region in space in which a function ¢ is interpolated from nodal values of ¢ on the
boundary of the region in such a way that interelement continuity of ¢ tends to be
maintained in the assemblage.

12



Figure 3.2. A function ¢=¢(x,y) that varies smoothly over a rectangular region in the

xy plane, and typical elements that might be used to approximate it.

A finite element analysis typically involves the following step

Divide the structure or continuum into finite elements.

Formulate the properties each element. In stress analysis, this means
determining nodal loads associated with all element deformation states that are
allowed.

Assemble elements to obtain the finite element model of the structure

Apply the known loads: nodal forces and/or moments in stress analysis.

In stress analysis, specify how the structure is supported. This step involves setting
several nodal displacement to known values (which often are zero).

Solve simultaneous linear algebraic equations to determine nodal degree of freedom
(d.o.f) nodal displacements in stress analysis.

" ¢ In stress analysis, calculate element strains from the nodal d.o.f and the element

displacement field interpolation, and finally calculate stresses from strains. Output
interpolation programs, called postprosesor, help the user sort the output and display
it in graphical form figure 3.3.

The power of the finite element method resides principally in its versatility. The method

can be applied to various physical problems. The body analyzed can have arbitrary shape,

loads, and support conditions. The mesh can mix elements of different types, shapes and
physical properties. This great versatibility is contained within a single computer

program. User prepared input data controls the selections of problem type, geometry,

boundary condition, element selection, and so on.

An other atiractive feature of finite elements is the close physical resemblance between
the actual structure and its finite element model. The model is not simply an abstraction.

This seems especially true in structural mechanics, and may account for the finite element
method having its origins there.
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Figure 3.3. Finite element mesh and computed deformation and stresses in a portion of a
bearing house.

The finite element method also has disadvantages. A specific numerical resuit is found for
a specific problem. A finite element analysis provides no closed form solution that
permits analytical study of the effects of chancing various parameters. A computer, a
reliable program, and intelligent use are essential. A general purpose program has
extensive documentation, which can not be ignored. Experience and good engineering
judgment are needed in order to define a good model. Many input data are required and
voluminous output must be stored and understood.

3.2. GENERATION OF FINITE ELEMENT MESH

The first step in a finite element analysis is to select the type of the elements and the
_ corresponding finite element mesh. There are no fixed rules on how to make decisions.
Clearly, for a given type of element the accuracy increases with decreasing element and,
in general, one will use small elements in regions where the unknown function-stress,
say- varies rapidly. This means that a sound physical understanding of the problem
considered is of fundamental importance for a realistic analysis. However, the decision
on element types and size 1s more delicate then that. Every analysis involves the use
resources, whether they are measured in terms of money or manpower, and even though
we aim at an accurate analysis, we do not want it to be more accurate than required. For
some problems, we are interest in detailed information on the behavior even in local
regions, while for others we only want to obtain a rather general and crude indication of
the overall response. As engineers we must therefore use our judgment in order to obtain
that optimum choice for element type and element mesh which balances the requirement
of reliable results whit that of course effectiveness.

All finite elements are based on rather simple polynomial interpolations of the unknown
function within the element. For a given type of element this means that the smaller the

elements, the greater the accuracy. However, it also implies that any dimension of an
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element should be kept as small as possible, i.e. it is not only the size, but also the form of
the element which is importance. As an example, assume that quadrilateral shown in
figure 3.4.a is to divided into two triangular elements.

@ (b) (©)

Figure 3.4. a- Quadrilateral element b- inferior decision c- desirable division

It is obvious that the division in figure 3.4.c is better than 3.4.b, since largest dimension
of the element figure 3.4.c is smaller than that given by 3.4.b. The Ratio between the
largest and smallest dimension of an element is called the aspect ratio and in a good finite
element mesh, the aspect ratio is as close as possible to unity.

Figure 3.5. Mesh refinement for the finite element analysis

In order to obtain an efficient solution scheme, we want to use few elements in regions
where unknown function varies slowly, but many elements in regions where it varies
rapidly. Two possibilities, which allow for such a mesh refinement and which fulfill the
continuity requirement are illustrated figure 3.5 for the three-node triangular element.
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3.3. ISOPARAMETRIC ELEMENTS

The isoparametric formulation makes it possible to generate that are non rectangular and
have curved sides. These shapes have obvious uses in grading a mesh from coarse to
fine, in modeling curved boundaries. The isoparametric family includes elements for
plane, solid, plate, and shell problems. There are also special elements for fracture
mechanics and element for nonstructural problems.

In formulating isoparametric elements, natural coordinate systems must be used (systems
£,mand £n,C in figure 3.6). Displacements are expressed in terms of natural coordinates,
but must be differentiated with respect to global coordinates x, y and z.

The term isoparametric means same parametric. In other words, the degree of
interpolation on coordinates are the same on displacements.

(a) (b) (e)
' Figure 3.6. Some of the 1soparametric elements. a- Quadratic plane element. b- Cubic
plane element. c- A degraded cubic element. The left and lower sides can be joined to

linear and quadratic elements. d- Quadratic solid element with some linear edges. e- A
quadratic plane triangle.

3.4. INTERPOLATION FUNCTIONS

The functions used to represent the behavior of field variable within an element are called
interpolation function, shape function or approximation functions. Although it is
conceivable that many types of functions could serve as interpolation functions, only
polynomials have received widespread use. The reason is that relatively easy to
manipulate mathematically, in other words, they can be integrated or differentiated
without difficulty.
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3.4.1. Interpolation Function of Rectangular Elements

Interpolation function have been developed for one, two, and three dimensional
elements. Here only two dimensional interpolation function will be shown for a
rectangular element.

The basic 1deas can be illustrated by a simple example in two dimensions. Suppose that
we wish to construct a rectangular element with nodes positioned at the corners of the
element . If we assign one value of interpolation function to each node, the element then
has four degrees of freedom, and we may select as an interpolation model a four term
polynomial such as

¢ =ap + ax + a3y T axy (3.2)

3.4 2. Natural and Global Coordinates

A natural coordinate system that relies on the element geometry for its definition and
whose coordinates range between zero and unity within the element is known as a local
coordinate system.

The basic purpose of the natural coordinate system is to be described the location of the
point inside an element in terms of coordinates associated with the node of the element.
It will become evident that the natural coordinates are functions of the global Cartesian
coordinate system in which the element is defined.

An
L1 a, 1) (%4, ya)
O —0 (XSa Y3y 3
3 4 4
Y
(1, y1) 2
1] 2
(/ C X (x2: y?-)
('la '1) (1> '1)
a) Natural coordinates b) Global coordinates

Figure 3.7. Mapping into four-node isoparametric quadrilateral element
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Consider a mapping of the one region into another region in figure 3.7. A square
region in the n,&-coordinate system is bounded by the lines n=t1 and &=*1. This
region is termed mapped domain. We want to map this region into another region
defined in the x,y-coordinate system. The region in the x,y-plane is called global
domain.

x=[x@En); v=yEn) (3.3)

for every point given by its n,£-coordinate system in the parent domain, there exists a
corresponding point given by its x,y-coordinates in the global domain.

It is evident that if the general form of the region in the global domain could be used
as a conforming element, we have achieved the objective mentioned above.

3.5. OBTAINING THE ELEMENT PROPERTIES

For the one element, the force-displacement equations are written as
{F}* = K" {U}* G.4)

where {F}° is a column vector of the nodal forces of the element e, [K]® is the
stiffness matrix of the element, and {U}° is nodal displacement vector.

3.6. ASSEMBLY OF THE DISCRETE SYSTEM
The complete force displacement equations for discretized elastic solid are assembled
from the sets of equations. The system equations have the same form as the element

equations except that they are expanded in dimension to include all nodes Hence
discretized system has n nodes, the system equations become

{F} =IK] {U} (3.5
where {F}and {U} are 20n*1 column vector of the nodal forces, 2n*1 column vector

of the nodal displacement respectively, and [K] is 2n*2n stiffness matrix for the entire
system.
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3.7. BOUNDARY CONDITION

The equation of the system resulting from eq (3.5) can be solved once the prescribed
support displacements have been substituted.

The process of specifying the boundary conditions and the procedure for modification
for specified displacements is tied to the method adopted to store global arrays, e.g.,
stiffness and mass matrices. In our computer program only those coefficients whitin a
non-zero profile in the global arrays are stored.

Clearly, without substitutions of a minimum number of prescribed displacements to
present rigid body movements of the structure, it is impossible to solve this system,
because the displacements can not be uniquely determined by the forces.

The non-zero nodal forces or displacements associated with each degree of freedom
must be specified. In our program these are both stored in the array {F} and the
destination between load and displacements is made by comparing the corresponding
value of the boundary restrained condition for each degree of freedom. This physically
obvious fact will mathematically be interpreted in the matrix [K] being singular, i.e.,
the prescription of appropriate displacements after the assembly by deleting
appropriate rows and columns of the various matrices.

3.8. OBTAINING THE ELEMENT DISPLACEMENT

. After the stiffness matrix [K] and the force vector {F} are obtained and all the
boundary conditions are inserted, the equations of the system can be solved for the
unknown displacements.

The Gauss elimination methods has been used in the equations of the system. A very
important aspect in the computer implementation of the Gauss solution procedure 1s
that a minimum solution time should be used. In addition, the high speed storage
requirement should be as small as possible avoid the use of the back-up storage.
However, for large system it will nevertheless be necessary to use back-up storage,
and for this reason it should also be possible to modify the solution algorithm for
effective out of core solution.

3.9. DETERMINATION OF THE STRESSES
Stress {o} in an element can be calculated when its nodal d.o.f {q} are known. We

can write from the basic relation between stress and strain, and displacement to find
the stress any point of the element.
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{o} = [D][B] {U} (3.6)

where [D] elasticity (material) matrix element, [B] is the transformation matrix
between strain and displacement, {U} displacement vector.

This relation gives the stresses at any point of the element, in practice, the element
stresses are only calculated and printed at some specific points. These may be the
center of the element, the nodal point locations or numerical integration points used in
the evaluation of the element stiffness matrix.

Another observation in the stress calculation 1s that the stresses some point in an
element can be significantly more accurate when compared whit the exact solution
than at other points. In particular, it has been observed that the stress may be
considerably more accurate at the Gauss integration points than at the nodal points of
element.

The objective in practice is usually to obtain best stress predictions possible once the
nodal point displacements have been evaluated for this purpose, if the difference
between the element boundary stress is not too large, it may be appropriate to simple
average them. In an alternate approach, the stresses are only calculated within the
elements and then interpolation procedure is employed to predict the stresses at the
element boundaries or other desired points.
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CHAPTER FOUR

STIFFNESS MATRIX DERIVATION OF THE
QUADRILATERAL ELEMENT

4.1. INTRODUCTION

In this chapter, we developed what are popularly called isoparametric elements and apply
them to stress analysis. These elements have proved effective on a wide variety of two
and three dimensional problems in engineering. We present the two-dimensional four
node quadrilateral in detail. We can view the isoparametric family of elements in a
unified manner due to the simple and versatile manner in which shape functions can be
derived, followed by the generation of the element stiffness matrix using numerical
integration.

A very important phase of a finite element analysis is the calculation of the finite element
matrices. In most practical analysis, the use of isoparametric finite element more
effective. The principal idea of the isoparametric finite element formulation is to achieve
the relationship between the element displacements at any point and the element nodal
point displacements directly through the use of interpolation functions.

4.2. TWO DIMENSIONAL ISOPARAMETRIC ELEMENTS

Figure 4.1 Axisymmetric four node quadrilateral element in the r,z-coordinates

21



The two-dimensional region defined by the revolving area is divided into fectangular
elements. Though each element is completely represented by the area in the r,z-plane, it
is ring-shaped solid of revolution obtained by revolving by the rectangle about the z axis.
A typical element is shown in figure 4.1.

Figure 4.2 Four node quadrilateral element in the r,z-coordinate

Consider the general quadrilateral element shown in figure 4.2. The local nodes are
numbered as 1,2,3,4 a counterclockwise fashion as shown, and (r;, z;) are the coordinates
of node i. The vector

T
qa=[a, G O 9 95 96 955 G (4.1)

" denotes the element displacement vector. The displacement of an interior P located at
(r,z) is represented as

u= [u(r, z), w(r, z)]T 4.2)
M
1L, 1) T (1,1
3O {’)4
©,0) =
1 2
O —0O
(-1> '1) (la —1)

Figure 4.3. Four node quadrilateral element natural &, n-coordinates
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4.3. SHAPE FUNCTIONS FOR FOUR NODE QUADRILATERAL ELEMENT

The master element is defined in & n coordinates (natural coordinates), and is square
shaped. The element consists of four node all of which are located on the boundary
figure 4.4. The lagrange shape functions N;, where 1=1,2,3,4 are defined such that N; is
equal to unity at node 1 and is zero at other nodes. In particularly, we refer to the master
element shown in figure 4.4 consider the definition of N; -Ng:

N;=1 at node 1
N;=1 at node 1 and 0 at other nodes
Thus, N has to vanish along the lines &=+1, n=+1and E+n=—- 1n figure 4.3.

N, =C(1-8)(1-n)(1+&+n)

1
Atnode 1, N, =1, £E=n=-1 Thus, C= 4 We thus have

N, =—%(1—£)(1+n)(1+&+n)

1

N, = - (1+8(1-n)(1-n+g) 43)

N, =~ (1+8(1+n)(1-7)

N, = —%(I—E)(Hn)(l%—n)

Now, we express the displacement field with in the element in terms of the nodal values.
Thus, U=[u, w]  represents the displacement components of a point located at (&, 7),
and q, dimension (8x1), is the element displacement vector, then

i, =4

iz=4 .
u= ) Nu, , w=Nw, (4.4)
iy =t

i =1

u= qul +N,q; + Nyqs + Noq,

4.5
w=N,q, + N,q, + N;q, + N,q,
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which can be written in the matrix form as

u=Nq (4.6)

where

IN, 0 N, 0 N, 0 N, 0]
N=| 4.7)
0 N, 6 N, 0 N, 0 N,

in the isoparametric formulation, we use the same shape function N; to also express the
coordinates of a point whitin the element in terms of nodal coordinates. Thus

i =4 i =4
r= ZNiri , YA ZNiZi (4.8)
=1 =1
or
r=N,1, +N,1, +N,1, +N, 1,
(4.9)

z=N,z, +N,z, +N,z, +N,z,

Subsequently, we will need to express the derivatives of a function (r, z) coordinates in
terms of its derivatives in (€, 1) coordinates. A function =f{r, z) in view of eqs(4.9) can

be considered to be an implicit function of € and 1 as
f=[rE&mn, zEmn]or
u=ulrEn), 2E )
(4.10)
w=w[rE ), zE ]

fu N, ou 'gION,
a Soat 0w Moz

@.11)
@_ i,=4 . _Q}V;_—inzll - ;
a St oz Ha
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Consider for instance the set of local coordinates (€, 1) and a corresponding set of global
coordinates (r, z). By the usual rule of partial differentiation we can write instance (€, n)
derivatives as

Using the chain rule of differentiation, we have

6N_5N0r ON; 0z 6Ni_8Ni_6£+8Ni§§ 412
8E;M6r<7& 628?, o &z on oz on (4.12)
which can be written in matrix form as
N o azffoN,) (N,
| _1oe &Y or L_ ) or
N, ["|or @49& TN, @19
on Lﬁ'n 8nJ 0z 0z
where J 1s the Jacobian matrix
[& 2]
1= % 22\ (4.14)
on )
In view of equation(4.5) and equation(4.9), we have
R R e A (R R (e LA (B BT (B Wz, +(1+1)z, +(1+1)z, | s
T4 (-9, +(1-91, +(1+O, +(+5r, —(1-9z, +(1- E)zz+(l+@z3 +(1+8z, _\(' )
3 7,1 il
i EA @19
Inverting J we can write
N [
& :J_lig%i (4.17)
oz on



We can obtain J ™' in the following form

-l 1
o1 on _(')'r\_ 1 lijzz T
d ~de”|_@ _a_r_lhdetJ S PR “.18)
% )
where
or 0z oOr oz
det]J Zégé—a—éﬁé‘g (4.19)

Introducing the above transformation relationship into the strain-displacement relations
equation

4.4. ELEMENT STIFFNESS MATRIX

The stiffness matrix for the quadrilateral element can be derived from the strain energy in
the body, given by

u- %GTadVZZteJ; %O'Te dA (4.20)

where t. thickness of element e. The strain-displacement relations are

u
o) | &
gzjsz:i(&lazaij “.21)
v G
s
Cor
aul [ 2u)
ar 1 Tn I &
ou :detIL]m 5, Jou (4.22.2)
3 o
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smilarly

(ow) ow
or :L{ T ol 4.22.b
1@} detJ ”le Ju ?W_ ( o )
oz on
Equations(4.21)and (4.22.a and 4.22.b) yield
K
o
ou
on
e= A" (4.23)
o
ow
on
u
. T J
where A is given by
i J22 J 12 |
detlJ detJ 0 4
0 0 _ J 21 J 11 0
A= det] ~ det] (4.24)
_ J21 JH J22 . j'12 0
det] det]  det) det]
0 0 0 0 1]
Now, from the interpolation equations we have
12 b= Gq (4.25)

~ e PIPRITIPRIR

-



[ 1-n) 0 =) 0 + 0 (141 0
(19 0  (+y 0 a+y 0 (1-H 0
0 (- O i-n 0 Um0 426
0 {U-H 0 {q+H 0  a+H 0 1-5
(1-8(1-n) 0 (1+&(1-n) 0 1+8(1+m 0 (1-51+n) 0
r r r

L r

N

Equation (4.23 and 4.25) now yield

g =Bq 4.27)
where
[ &N ]
b i o
or
N,
Y A
B= él;\L ?.Ii = AG (4.28)
oz or
N;
—=3 0
- T =

The relation € = Bqis the desired result. The strain in the element is expressed in terms of

its nodal displecement. The stress is now given by

c=DBq=De (4.29)
where D is an material matrix. The strain energy in equation(4.20) becomes
U, =271 qT[ZTC_‘: [ BTDB detJ d¢ dn]q = 2. 5q9"k%q (4.30)
The quantity inside the parentheses is the element stiffness matrix,
e i T
k* =2f [ B'DB detJ dt dn (4.31)
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4.5. OBTAINING THE FORCE VECTOR

In the finite element solution, the forces that acts the elements are carried to the nodal
points of the elements. Constant traction force T=[T, T,]", a force per unit area, is
applied on edge 2-3 of the quadrilateral element. Along this edge, we have £=1. If we
use in equation (4.3) this becomes Ny=N,=0, No=(1-1)/2 , N3=(1+n)/2. Note that the
shape functions are linear functions along the edges. Consequently, from the potential,
the element traction load vector is readily given by

t,4
=20 0T T, T T, 0 o]’ (4.32)

Where /53 length of the edge 2-3. For varying distributed loads, we may express T, and
T, in terms of values nodes 2 and 3 using shape functions.. Numerical integration can be
used in this case. '

4.6. NUMERICAL INTEGRATION

The stiffness matrix equation and the force equations can be calculated by integration. It
is very difficult to obtain these integrations by the analytical method. So the numerical
integration is used to calculate the stiffness matrix and the forces.

In equation 4.31, quantities B and J in the above integral are involved functions of £ and
n, and so the integration has to be performed numerically. In this study, the gauss

numerical integration is chosen.

Consider the problem of numerically evaluating a one-dimensional integral of the form

1=]"1(g) de (4.33)

The gaussian quadrature approach for evaluating I is given below. This method has
proved most useful in finite element work. Extension to integrals in two and three
dimensions follow readily. Consider the n-point approximation

1=["08) de = w,f{e, )+ w, e, b o, 5, (4.34)

where wi, W, ... W, are the weights and &;, &,, ... &, are the sampling points or gauss
points. The idea behind Gausian quadrature is to select the n Gauss points and n weights

such that Eq. 4.34 provides an exacts answer for polynomials f{€) of as large a degree as
possible.
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CHAPTER FIVE

ELASTO-PLASTIC FINITE ELEMENT ANALYSIS FOR
ISOTROPIC MATERIAL

5.1. INTRODUCTION

The theory of plasticity deals with the behavior of materials at strains where Hook’s law
is no longer valid. A number of aspect of plastic deformation makes the mathematical
formulation of a theory of plasticity more difficult than the description of the behavior of
an elastic solid. For example, plastic deformation is not reversible process like elastic
deformation. Elastic deformation depends only on the initial and final states of stress and
strain, while the plastic strain depends on the loading path by which the final state is
achieved.

Moreover, in the plastic deformation there is no easily measured constant relating stress
to strain as with Young’s modulus for elastic deformation. Also several aspects of real
material behavior such as plastic anisotropy etc. can not be treated easily by plastic
theory. Nevertheless, the theory of plasticity has been one of the most active areas of
continuum mechanics and considerable has been made in developing a theory which can
_ solve important engineering theory.

The theory of plasticity is concerned with a number of different type of problems. From
the viewpoint of design, plasticity is concerned with predicting the maximum load which
can be applied to a body without causing excessive yielding. The yield criterion must be
expressed in terms of stress in such a way that it is valid for all state of stress. The
designer is also concerned with plastic deformation in problems where the body
purposely stressed beyond the yield stress into the plastic region. For example, plasticity
must be considered in designing for processes such as autofrettage, shrink fitting, and the
overspending of rotor disks. The consideration of small plastic strains allows economies
in building construction through the use of the theory of limit design.

Plastic behavior of solid is characterized by a non-unique stress-strain relationship.

Indeed, one defination of plasticity may be presence of irrecoverable strains on load
removal.
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5.2. MATERIAL PROPERTIES
5.2.1. Flow Curve

A true stress- strain is frequently called flow curve because it gives true stress required to
cause the metal flow plastically to any given strain. The simplest and most common
experiment, as well as the most important, is the standard tensile test. The mechanical
properties of materials used in engineering are determined by tests performed on small
cylindrical test specimen. The standard tensile test is used to obtain a variety of
characteristics and strengths that are used in design. The specimen is then mounted in
test machine and slowly loaded in tension while the load and strain are observed. At the
conclusion, results are plotted as a stress-strain diagram figure 5.1.

Stress

0‘# True\%’//

 Strain
o s

A €y Eu gr ©

Figure 5.1 Engineering and true stress-strain diagram

In this diagram, initially the relation between stress and strain is essentially linear. This
linear part of the curve extends up to the point P, which is called the proportional limit.
Point E is called the elastic limit. No permanent set will be observable in the specimen if
the load is removed at this point. Between P and E the diagram is not perfectly straight
line, even though the specimen is elastic. Thus Hook’s law, which states that stress is
proportional to strain, applies only up to proportional limit.

During the tension test, many materials reach a point at which the strain begins to
increase very rapidly without a corresponding increase in stress. This point Y is called the
yield point. Not all material have an obvious yield point. For this reason, yield strength
oy is often defined by an offset method. Such a yield strength corresponds to a definite
or stated amount of permanent set, usually 0.2 or 0.5 percent of original gauge length.
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The ultimate or tensile strength oy corresponds to point U and is the maximum stress
reached on the stress-strain diagram. Some materials exhibit a downward trend after the
maximum stress is reached. These fracture at point F on the diagram. Others, such as
some of the cast trons and high strength steels, fracture while the stress-strain locus is still
rising.

The most important characteristic of the true stress-strain diagram figure 5.1 is that the
true stress increasing all the way to fracture. Since the cross-sectional area of the
specimen is decreasing with load. This means that the load and cross sectional area must
be measured simultaneously during the test. If the specimen has necked, especially care
must be taken to measure the area smallest part. In plotting the true stress-stain diagram
it is customary to use a term called true strain or logarithmic strain. True strain is the sum
of the incremental elongation divided by the current length of the filament,

o
E:fT:InI‘—:ln(e-#l) (5.1)
o 0

4.2.2. Plastic Deformation

The best current explanation of relationships between stress and strain is by Datsko.! He
describes the plastic region of the true stress-true strain diagram by the equation

o=Ke, (5.2)

where, ¢ true stress, K strain-strengthening coefficient or strength coefficient, gp true
plastic strain, n strain-strengthening exponent.

Consider stress-strain diagram of figure 5.2. Here a material has been stressed beyond the
yield strength at Y to some point I, in the plastic region, and the load removed. At this
point the material has a permanent plastic deformation g,. If the load corresponding to
point I is now reapplied, the material is elastically deformed by the amount &.. Thus at
point I the total unit strain consists of the two components &.and g, and is given

e=g, t+g, (5.3)

This material can be unloaded and reloaded any number of times from and to point I, and
it is found that the action always occurs along the straight line which is approximately
paraliel to the initial elastic line OY.

! Joseph Datsko, “Solid Materials,” Chap.7 in Joseph E. Singhley and Charles R.Mischke (eds.),
Standard Handbook of Machine Design, McGraw-Hill, New York, 1986. See also Joseph Datsko, “New
fook at Material Strength,” Machine Design, vol 58, no.3, Feb. 6, 1986 , pp. 81-85.
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0 & Ii €,—s Unit strain, €
e

Figure 5.2. Stress-strain diagram showing unloading and reloading

5.2.3. Empirical Equations for Stress-Strain Curves

It is sometimes useful to represent the stress strain-curve of a given material by an
equation obtained empirically by fitting the experimental data. One of the first such

empirical equation was proposed by Ludwik. It has the form

- n
o=¢, +Kg,

A frequently used form, due to Ramberg and Osgood, is

ge=¢, +€,

where g, the yield strain, o, the yield stress, E the elastic modulus,
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5.3. FAILURE THEORIES

When a part is loaded so that the stress state is uniaxial, then the stress and strength can
be compared directly to determine to degree of safety, or to learn whether the part will
fail. The method is simple because there is only one value of stress and there is only one
value strength, be it yield strength, ultimate strength, shear strength.

The problem becomes more complicated when the stress state is biaxial or triaxial. In
such cases there are a multitude of stresses, but still one significant strength. So how the
we learn whether the part 1s safe or not, and if so, how safe? A number of failure theories
have been proposed to help answer this question. Now we shall present name of some
theories and we shall give more information about distortion energy (or von Mises)
theory.

Maximum normal stress theory or Rankine theory

Maximum normal strain theory or Saint Venant’s theory

Maximum shear stress theory or Teresca criterion

Distortion energy theory or shear energy theory, octahedral shear stress theory, von
Mises-Hencky theory

Maximum strain energy theory or Beltrami’s energy theory

*  Mobhr theory of yielding

* Internal friction theory or Coulomb criterion

% % % %

*

5.3.1. Distortion Energy Theory  (von Mises Energy Theory)

We will discuss von Mises yield criterion that is used to solve our problem. Briefly, the
* distortion energy theory assumes that yielding begins when the distortion energy equals
the distortion energy at yield in simple tension.

(@) ®)

Figure 5.3. Yield surface three and two-dimensional space
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It is convenient, when using this theory to work with an equivalent stress, c., defined as
the value of uniaxial tensile stress that would produce the same level of distortion energy
hence according to the theory, as the actual stresses involved. In terms of the existing
principal stresses , the equation for equivalent stresses is

12

Ge :_\g_z_[(cl "02>2+(Gz_03)2+(63_61)2] (5.6)

For the biaxial case this reduces

1
G, = (0"2 +c,” —0'102)4 (5.7)

Once the equivalent stress is obtained, this is compared with the yield strength from
standard tensile test. If 6. exceeds G, yielding is predicted. The strain energy of distortion
per unit volume for a body subjected to a triaxial state of stress is given

U, = Té%[(cx ~GY)2 +(Gy _02)2 +(Gx _GZ)Z +6(TXY2 +T"12 +Tyzz)] G-8)

in the case principal stress

U, :1_21@;[(0‘ —02)2 +(<52 —03)2 +((53 —01)2] 5.9

In simple tension,

1 :
U, =g6002 (5.10)
When these two equation are equal
i 1 2 2 2
G TG (cl~02) +(<52 —0'3) +(G3—0,) ] (5.11)
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G, 3*;‘[(01 "62)2 +(Gz ”0'3)2 +(63 ‘01)2] (5.12)

for the biaxial case 53-0

s’ -o0,+0, =0, (5.13)
This equation defines as an ellipse, called von Mises ellipse in the 6, o> plane as shown in
figure 5.3.b. For the three dimension, equation plots as a cylinder surfaces in the 61 6, G3
space as shown in figure 5.3.a
Experiments have shown that the distortion energy theory is in the better agreement with
data from the yielding of the bodies under combined stress than any of the other theories.

In general, the distortion energy theory is recommended for defining yielding of ductile
materials.

5.4. SOME BASIC CONCEPTS OF PLASTICITY

5.4.1 Yield Surface and Normality

It 1s quite generally postulated as experimental fact, that yielding can occur only if the
stress {o} satisfy the general yield criterion

F(o, K)=0 (5.14)

0y -t

—0y

Figure 5.4. Yield surface and normality criterion in two dimensional stress space
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In this vectorial notation is used for stress components and K is a hardening parameter.
This yield condition can be visualized as a surface in n-dimensional hyper space of stress
with the position of the surface dependent on the instantaneous value of the parameter K.

The relationship that have been developed for yield criteria and can be represented
geometrically by a cylinder oriented at equal angles to the G, 05, 03 axes. A state of stress
which gives a point inside of the cylinder represent elastic behavior. Yielding begins
when the state of stress reaches the surface of cylinder, which is called the yield surface.
The radius of the cylinder is stress deviator. Plastic deformation occurs we can consider
that the yield surface expands outward, maintaining its geometric shape.

The yield surface shown in figure 5.3.a is a circular cylinder if it's represent the von
Mises’ yield criterion. If a plane is passed through this surface parallel to the o, axis, it
intersects on the 61 o3 plane as an ellipse figure 5.3.b

The normality rule also is useful in constructing experimental yield loci. Figure 5.4 shows
that total strain vector de is normal to the yield locus.

5.4.2. Plastic Stress-Strain Relation

In the plastic region the strains in general are not uniquely determined by the stresses but
depend on the entire history of loading. Therefore, in plasticity it is necessary to
determine the differentials or increments of plastic strain throughout the loading path and
then obtain the total strain by mntegration or summation.

. For the particular class of loading paths in which all the stresses increase in the same
ratio, proportional loading,

22 (5.15)

the plastic strains are independent of the loading path and depend only on the final state
of stress. ‘

There are two general categories of plastic stress strain relationship. Incremental or flow
theories relate the stresses to the plastic strain increments. Deformation or total strain
theories relate the stresses to the plastic strain. Deformation theory simplifies the solution
of plasticity problems, but the plastic strains in general cannot be considered independent
of loading path.
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5.4.2.1. Levy-Mises Equations

The relationship between stress and strain for an ideal plastic solid, where the elastic
strains are negligible, are called flow rules or the Levy-Mises equations. If we consider
yielding under uniaxial tension, then 6,20, ©,=0;=0 and 6,=61/3 Only the deviatoric

stresses cause yielding

from which we find
o, =-20, =-20,
from the condition of constancy of volume in plastic deformation

de, = -2de, = -2de,
so that

(5.16.3)

(5.16.b)

(5.17.a)

(5.17.b)

(5.18)

These equations express the fact that at any instant of deformation the ratio of the plastic
strain increments to the current deviatoric stresses is constant. This equations can be

written in terms of actual stresses.
= zdk{ol Ho, +a, ]
To evaluate d\ we utilize the effective strain

d& = 2d\G
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The Levy-Mises equations then become

de

de, = = c, -3 (5, +03)]
de

de, =—|o, —1(o, +6,)] (5.21)
de

de; = %—__[03 -z(c, +o, )]

4.4.2 2. Prandtl-Reuss Equation

The Levy-Mises equations can only be applied to problems of large plastic deformation
because they neglect elastic strains. To treat the important, but more difficult problems in
the elastic-plastic region it is necessary to consider both elastic and plastic component of
strain.

The total strain increment is the sum of an elastic strain increment de° and a plastic strain
increment de”.

de; = de;° +de,’ (5.22)

Where, elastic strain increment is given by

. 1+v_ . 1+2vdo,
de” = B doy + 3

8, (5.23)

the plastic strain increment is given by the Levy-Mises equations which can be written

3 dg o N
d8ijp = _2"1‘6“06 (5 24)

Thus, the stress, strain relations for an elastic-plastic solid are gtven by

I+uv, . 1+2vdo, 3de .
dgij ::‘—E—d(i'ij + E —‘}:‘— ij+§%:0ij (525)
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5.5. SOLUTION OF PLASTICITY PROBLEM

The Levy-Mises and Prandtl-Reuss equations provide relation between the increments of
plastic strain and siresses. The basic problem is to calculate next increment of plastic
strain for a given state of stress when the loads are increased incrementaily. If all of the
increments of strain are known, then the total plastic strain is simple determined by
summation. To do this we have available a set of plastic stress-strain relationships, either
above equation, a yield criterion, and a basic relationship for the flow behavior of the
matenial in terms of a true stress-strain curve. In addition, a complete solution also must
satisfy the equation of equilibrium, the strain-displacement relations, and the boundary
conditions. Finite element analysis should make plasticity analysis of engineering
problems more commonplace by means of digital computer.

5.6. RESIDUAL STRESS FOR ISOTROPIC MATERIAL

The stress that remains in a structural member upon removal of external loads is called
residual stress. This type of stress is always attributable to nonuniform plastic
deformation. Residual stresses generally arise when conditions in the outer layer of a
material differ from those internally. The presence of residual stress may be harmful or,
if properly controlled, may result in substantial benefit.

The magnitude and distribution of residual stresses can be obtained by superposition of
the stresses due to loading and the reverse, or rebound, stresses due to unioading. (The
strains corresponding to the latter are the reverse, or rebound, strains). The reverse stress
pattern is assumed to be fully elastic and hence can be obtained by using Hook’s law.

It is probably true to say that all engineering components contain stresses before being
subjected to service loading conditions owing to the history of the material prior such
service. These stresses, produced as a result of mechanical working of the material, heat
treatment, chemical treatment, joining procedure, etc., are termed residual stresses and
they can have a very significant effect on the fatigue life of the components. These
residual stresses are locked into the component in the absence of external loading and
represent a datum stress over which the service load stresses are subsequently
superimposed. If, by fortune or design, the residual stresses are of opposite sign to the
service stresses then part of the service ioad goes to reduce the residual stress to zero
before the combined stress can again rise towards any likely failure value; such residual
stresses are thus extremely beneficial to the strength of the component and significantly
higher fatigue strengths can result. If, however the residual stresses are of the same sign
as the applied stress, €.g. both tensile, then a smalier service load is required to produce
failure than would have been the case for a component with a zero stress level initially;
the strength and fatigue life in this case is thus reduced. Thus, both magnitude and sign of
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the residual stresses are important to fatigue life considerations, and method these
quantities are introduced below.

Whilst engineers have been aware of residual stresses for many years it is only recently
that substantial efforts have been made to investigate their magnitudes and distribution
with depth in components and hence their influence on performance and service life.
This is probably due to the conservatism of old design procedures which generally
incorporated sufficiently large safety factors to mask the effects of residual stresses on
component integrity. However with current drives for economy of manufacture coupled
with enhanced product safety and reliability, design procedure have become far more
stringent and residual stress effects can no longer be ignored. Principally, the designer
consider the effect of residual stress on structural or component failure but there is also
need for detailed consideration of distortion and stability factors which are also closely
related to residual stress levels.
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CHAPTER SIX

NONLINEAR STRUCTURAL ANALYSIS TECHNIQUE
6.1. INTRODUCTION

When a force (F) is applied to structural system, that system will displace some
corresponding amount (u). The predictability of relationship between F and u allows
engineers to calculate the response of structures to given sets of loads. In many
engineering applications, the relationship between F and u can be described by the linear
equation known as Hook’s Law:

F=Ku 6.1

In this equation, the proportionality constant K represents the structural system. As long
as a structure’s stiffhess remains constant, that structure is said to be linear, because its
behavior can be analyzed using linear equations. Many engineering structural systems are
designed to remain linear (or linearly so) whitin their normal range of service loads.
Standard linear equation solvers are developed to enable engineers to analyze complex
linear structures. However, there are significant classes of engineering applications for
which the relationship between force and displacement is not constant. A plot of F versus

"u for such systems are not a straight line; hence, such systems are said to be nonlinear.
The behavior of such systems can not be represented directly with a set of linear
equations.

F=Ku F = Ku
Figure 6.1 Linear and nonlinear response
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6.2. WHAT CAUSES OF NONLINEAR BEHAVIOR?

There are many potentials causes of nonlinear behavior. We can group them into three
main categories. In many structural systems, different kinds of nonlinearities can be
acting simultaneously. For example, in the forging operation shown in figure 6.2. The
work piece will experience contact (change status), plasticity (material nonlinearity), and
large deformations (geometric nonlinearity), all at the same time.

Die Mgotion

1 __Die

Workpiece
/ ®

Figure 6.2 Different kinds of nonlinearities can be acting simultaneously
all at the same time

6.2.1. Changing Status

Many common structural features exhibit nonlinear behavior that is status-dependent. For
example, a tension only cable is either slack or taut; a roller support is either in contact or
not in contact; permafrost is either frozen or thawed.

6.2.2. Geometric Nonlinearities

If a structure experiences large deformation, its changing geometric configuration can
cause the structure to respond nonlinearly. An example would be the fishing rod shown
in figure 6.3. Under light lateral loads, the road tip is extremely flexible (low lateral
stiffness). As lateral load increases, the road deflects so much that the moment arm
decreases appreciable, causing the road tip to exhibit increasing stiffness at higher load.
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uTIP

Figure 6.3 A fishing rod demonstrates geometric nonlinearity

6.2.3. Material Nonlinearities

Nonlinear stress-strain relationships are a common cause of nonlinear structural behavior.
Many factors can influence a material’s stress-strain properties, including load history (as
in elasto-plastic response), environmental condition (such a temperature), and the
amount of time that a load is applied (as in creep response). Elastic material such rubbers
can also behave nonlinearly like figure 6.4.

stress
stress

strain strain
Steel Rubber
Figure 6.4. Material nonlinearity steel and rubber

Most common engineering materials exhibit a linear stress-strain relationship up to a
stress level known as the proportional limit. Beyond this limit, the stress-strain
relationship will become nonlinear, but will not necessarily become inelastic. Plastic
behavior, characterized by nonrecoverable strain begins when stresses exceed the
material’s yield point. Because there is a usually little different between the yield point

and the proportional limit, our computer program assumes that these two points are
coincident in plastic analysis.
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Plasticity is a nonconservative, path-dependent phenomenon. In other words, the
sequence in which loads are applied and in which plastic responses occur affects the final
solution result. Because of the plastic response, we apply loads as a series of small
incremental load steps

6.3. BASIC NONLINEAR SOLUTION TECHNIQUE
6.3.1 .Nonlinear analysis with a linear solver

A nonlinear system cannot be analyzed directly with a linear equation solver. However, it
can be analyzed by using a series of linear approximation, with corrections.

Each linear approximation requires a separate pass, or iteration, through the program’s
linear equation solver. Each new iteration is about as expensive as a single linear analysis
solution.

Special techniques are required to keep track of information generated during each
iteration (information such a displacement, plastic strains, etc.), As well as to calculate
the corrections necessary to derive the iterative analysis to a converged solution. The
iterative process that is used to solve, correct, and re-solve a nonlinear analysis is called
the Newton-Raphson method. Each iteration generated in this process is known as a
Newton-Raphson iteration, or an equilibrium iteration.

F
Ferp
P |
1
T
pr 15
— i u
\w—vvlw :
Au, Au,

Figure 6.5. Working the Newton-Raphson iteration method
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6.3.2. Newton-Raphson Procedure

The finite element discretize process yields a set of simultaneous equations:
[K}{U} = {F*} (6.2)

where

{K*]: coefficient matrix

{u}: vector of unknown DOF(degree of freedom) values
[F*]: vector of applied loads

If the coefficient matrix [K] is itself a function of the unknown DOF values (or their
derivatives) then equation (1.1) is a nonlinear equation. The Newton-Raphson is a
iterative process of solving the nonlinear equations and can be written as:

[K"[{Au} = {F=r} - {F~} (6.3)

where

[K™: the tangent stiffness matrix

{Au}: the displacement increment

{F*}: the applied load vector

{F"}: the Newton-Raphson restoring force (the loads generated by the current
element stresses)

({F*"}-{F"}) is called the residual.

" For the full Newton-Raphson method, the program updates the tangent stiffness matrix

(IK™]) and the residual ({F*™}-{F"™}) at each iteration, and then re-solves the equation

given above.

1. Assume {uo}. {u.} is usually the converged solution from the previous step. On the
first step {u,}={0}. '

2. Compute the updated tangent matrix [K;'] and restoring load {F™} from
configuration {ui}.

3. Calculate {Au;}from equation (6.2)

4. Add {Au;}to {u;} in order to obtain the next approximation.

5. Repeat steps 2 to 4 until convergence is obtained.

Convergence is achieved once ({F*}-{F"}) is less than a convergence criterion that
you set. In physical terms, if {F*"}does not equal {F™}, the system is not equilibrium.
Once the amount of disequilibrium becomes acceptable small, the solution is considered
to be converged.
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That can be shown how the Newton-Raphson method works from the following force
deflection graph for a one degree of freedom (DOF) system in figure 6.5.

In this schematic, the first iteration vields a displacement Auj(using the initial elastic
stiffness and the applied load F*"). The nonlinear response yields a force value F™; for
this displacement. The second iteration yields Au, (using the updated tangent matrix and
the residual load). Subsequent iterations quickly drive the analysis to a converged
solution.
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CHAPTER SEVEN

ELASTO-PLASTIC STRESSES IN A CIRCULAR CYLINDER
WITH A BAND OF PRESSURE

7.1. CONSTRUCTION OF THE THEORETICAL MODEL

7.1.1. Definition of the Problem

The general arrangement of the circular cylinder with a band of pressure investigated is
shown in figure 7.1. Circular cylinder with a band of pressure has symmetry with respect
to loading condition, geometric properties, and material properties. On account of the
symmetry only quarter of the circular cylinder, which is shaded, was analysed as
indicated in figure 7.1

Figure 7.1. A Circular cylinder with a hole under band pressure

2b : outer diameter of the cylinder
2a : inner diameter of the cylinder
2¢ : width of the band pressure
2L : Length of the cylinder
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Boundary condition Center of cylinder Symmetry axis

Figure 7.2. Finite element model and boundary condition of the quarter of
circular solid (without hole) cylinder subjected to band pressure

7.1.2. Finite Element Model and Boundary Condition

Elasto-plastic stresses in the circular cylinder without hole subjected to band pressure are
investigated for isotropic material. Band pressure acts as an uniform loading. The
horizontal displacements are zero in the y-direction. These are boundary conditions and
are shown as simple support in figure 7.2. In the solution, two dimensional isoparametric
rectangular ring shape elements are used. Finite element models of the quarter of the
- circular cylinder ( solid or with a hole) consists of 300 elements.

7.1.3. Matenal Properties of the Circular Cylinder
In the solution of the problem, the material is selected as isotropic and steel. Mechanical

properties of selected material is given in table 7.1.

Table 7.1. Material properties of the circular cylinder

Elasticity modulus E=200000 MPa
Tangent modulus E=3000 MPa
Poisson’s ratio v=0.3
Yield point of material 6y=200 MPa
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7.2. ELASTO-PLASTIC ANALYSIS IN THE CIRCULAR SOLID CYL]NDER
SUBJECTED TO BAND PRESSURE

Circular solid cylinder dimension are given in table 7.2. External band pressure 1s loaded
on the surface of solid cylinder mn the radial direction. Band pressure is loaded
incrementally as small step. Beyond the yield point or around the yield point different
band pressures are loaded on the circular solid cylinder. This pressure magnitude is given
in table 7.3.

Table 7.2. Dimension of the finite element model of the circular solid cylinder

Inner radius of cylinder a=0 mm

Outer radius of cylinder b=20 mm

Width of band pressure ¢=20 mm
Length of cylinder L=60 mm

Table 7.3. Band pressure which are loaded on the solid cylinder surface
Band Pressure P

P=170 MPa, P=200 MPa, P=220 MPa, P=240 MPa

Deformed shape of the circular solid cylinder of the finite element method under band
pressure is obtained in the postprocessing section of computer program by means of plot
display command.

Band Pressure Undeformed shape

VHHHHH

Boundary condition Symmetry axis

Figure 7.3. Defomed shape of the finite element model quarter of the
circular solid cylinder subjected to band pressure
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Stress components (tangential stress o, radial stress o,, axial stress G,, equivalent stress
Oeq, €lasto-plastic stress G, and shear stress 1,,) and strain components (tangential strain
go, radial strain €, axial strain €,, equivalent strain €., total elasto-plastic strain ey and
shear strain y.,) are obtained from the computer by means of finite element method at
each node.

For band pressure P=220 MPa, all of the stresses components are shown as contour
legend with different color on cross section of the circular solid cylinder in figures 7.4-
7.8. And also vector plot of displacement on the longitudinal section of the circular solid
cylinder subjected to band pressure for P=220 MPa is shown in figure 7.9. Moreover,
elasto-plastic equivalent stress contour on the longitudinal section of the circular solid
cylinder subjected to band pressure respectively, P=180 MPa, P=200 MPa, P=220 MPa,
P=240 MPa are shown as contour legend with different color on longitudinal section of
the circular solid cylinder in figure 7.10. When band pressure is equal to 176 MPa
yielding begins in the circular solid cylinder. When pressure increases elasto-plastic
region getting deeper and deeper.

In the circular solid cylinder, we have investigated all region and especially critical local
region (surface of cylinder and center of cylinder). Therefore, distributions of the stresses
components are plotted center and outer surface of the circular cylinder for different
band pressure in figures. The stress components (tangential stress oy, radial stress o,
axial stress o, and shear stress 1) distributions through the length of the circular solid
cylinder under band pressure respectively, P=170 MPa, P=200 MPa, P=220 MPa along
outer surface and symmetry axis of cylinder are shown on the same graph in figure 7.11-
7.16. Variations of the elasto-plastic stress over the yielding stress through the length of
the circular solid cylinder subjected to different band pressure along outer surface and
symmetry axis of the cylinder are ploted in figure 7.17-7.18. Variations of the equivalent
stress through the length of the circular solid cylinder under different band pressure along
outer surface and symmetry axis of the cylinder are shown in figure 7.19-7.20.
Variations of the tangential and axial stress through the length of the circular solid
" cylinder under different band pressure along outer surface and symmetry axis of the
cylinder are shown in figure 7.21-7.24.

Vanations of the total equivalent strain and tangential strain through the length of the
circular solid cylinder under different band pressure along outer surface and symmetry
axis of the cylinder are ploted 7.25-7.28.

Varations of the tangential residual and equivalent stress through the length of the

circular solid cylinder under different band pressure along outer surface and symmetry
axis of the cylinder are shown in figure 7.29-7.32

51



-232.835
-285 .

Figure 7.4. Radial stress contour on the longitudinal section of the
circular solid cylinder subjected to band pressure P=220 MPa
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Figure 7.5. Tangential stress contour on the longitudinal section of
the circular solid cylinder subjected to band pressure P=220 MPa

Figure 7.6. Axial stress contour on the longitudinal section of the
circular solid cylinder subjected to band pressure P=220 MPa
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Figure 7.7. Shear stress contour on the longitudinal section of the
circular solid cylinder subjected to band pressure P=220 MPa

Figure 7.8. Equivalent stress contour on the longitudinal section of
the circular solid cylinder subjected to band pressure P=220 MPa

(2]

ELEINICT ]

28 00008
[
{5

o

Figure 7.9. Vector plot of displacement on the longitudinal section of
the circular solid cylinder subjected to band pressure P=220 MPa
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Figure 7.11. The stress components distributions through the length of the circuiar solid
cylinder under band pressure P=170 MPa at r=b (along outer surface of cylinder)
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Figure 7.12. The stress components distributions through the length of the circular solid
cylinder under band pressure P=170 MPa at r=0 ( along symmetry axis of the cylinder)
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Figure 7.13. The stress components distributions through the length of the circular solid
cylinder under band pressure P=200 MPa at r=b (along outer surface of the cylinder)
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Figure 7.14. The stress components distributions through the length of the circular solid
cylinder under band pressure P=200 MPa at r=0 (along symmetry axis of the cylinder)
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Figure 7.15. The stress components distributions through the length of the circular solid
cylinder under band pressure P=220 MPa at r=b (along outer surface of the cylinder)
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Figure 7.16. The stress components distributions through the length of the circular solid
cylinder under band pressure P=220 MPa at r=0 (along symmetry axis of the cylinder)
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Elasto-Plastic stress [MPa]
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Figure 7.17. Variations of the elasto-plastic stress through the length of the circular solid
cylinder under different band pressure at r=b (along outer surface of the cylinder)
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Figure 7.18. Variations of the elasto-plastic stress through the length of the circular solid
cylinder under different band pressure at r=0 (along symmetry axis of the cylinder)
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Figure 7.19. Variations of the equivalent stress through the length of the circular solid

cylinder under different band pressure at r=b (along outer surface of the cylinder)
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Figure 7.20. Variations of the equivalent stress through the length of the circular solid

cylinder under different band pressue at =0 (along symmetry axis of the cylinder)
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Tangential stress [MPa]
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Figure 7.21. Variations of the tangential stress through the length of the circular solid
cylinder under different band pressure at r=b (along outer surface of the cylinder)
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Figure 7.22. Variations of the tangential stress through the length of the circular solid
cylinder under different band pressure at r=0 (along symmetry axis of the cylinder)
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Axial(longitudinal) stress [MPa]
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Figure 7.23. Variations of the axial stress through the length of the circular solid cylinder
under different band pressure at r=b (along outer surface of the cylinder)
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Figure 7.24. Variations of the axial stress through the length of the circular solid cylinder
under different band pressure at r=0 (along symmetry axis of the cylinder)
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Figure 7.25. Variations of the equivalent strain through the length of the circular solid
cylinder under different band pressure at r=b (along outer surface of the cylinder)
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Figure 7.26. Variations of the equivalent strain through the length of the circular solid
cylinder under different band pressure at r=0 (along symmetry axis of the cylinder)
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Tangential strain [ ]
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Figure 7.27. Variations of the tangential strain through the length of the circular  solid
cylinder under different band pressure at =b (along outer surface of the cylinder)
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Figure 7.28. Variations of the tangential strain through the length of the circular solid
cylinder under different band pressure at r=0 (along symmetry axis of the cylinder)
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Equivalent residual stress [MPa)
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Figure 7.29. Variations of the equivalent residual stress through the length of the circular
solid cylinder under different band pressure at r=b (along outer surface of the cylinder)
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Figure 7.30. Variations of the equivalent residual stress through the length of the circular
solid cylinder under different band pressure at =0 (along symmetry axis of the cylinder)
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Tangential residual stress [MPa]
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Figure 7.31. Variations of the tangential residual stress through the length of the circular
solid cylinder under different band pressure at r=b (along outer surface of the cylinder)

Tangentiai residual stress [MPa]
75 -

L IR '\\
f+ﬁ&£#;tl§
|

\

L) g%
gL %fi
50|
7511
-100 Pt e |
0 5 10 15 20 25 30 35 40 45 50 55 60

Cylinder length [mm]

= P=200 MPa +P=210 MPa % P=220 MPa

Figure 7.32. Variations of the tangential residual stress through the length of the circular
solid cylinder under different band pressure at r=0 (along symmetry axis of the cylinder)
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7.3. ELASTO-PLASTIC ANALYSIS IN THE CIRCULAR CYLINDER WITH HOLE
SUBJECTED TO BAND PRESSURE

Elasto-plastic stresses in the circular cylinder with hole subjected to band pressure are
investigated for different diameters that are shown in the table 7.4. In the solution of the
problem, the material is selected as isotropic. Mechanical properties of selected material
are given in table 7.2.

ircular cylinder with a hole subjected to band pressure

it

Band pressure act as a uniform loading. The horizontal displacements are zero in the -

direction. These are boundary conditions that are shown as simple support in figure
7.38)

Tk
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; l ) _J;,Z
Symmetry axis

Figure 7.33 Finite element model and boundary codition of the quarter of
cylinder with a hole under band pressure
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Circular cylinders with a hole dimensions are given in table 7.2. External band pressure is
loaded on the surface of the cylinder in the radial direction. Band pressure is loaded
incrementally as small step. Beyond the yield point or around the yield point different
band pressure are loaded on the circular cylinder with a hole. This pressure magnitude is
given in table 7.5.

Table 7.5. Magmtude of band pressure which are acted on the

Band Pressure

W\l’ ¢ \]/ d/ I \. ' Outer s\urface

T |

\’1 '\\t
Inner surface

T
. .

\
!
%

Boundary condition

\
Symmetry axis

Figure 7.34 Deformed shape of the finite element model of the quarter
of the circular cylinder with a hole subjected to band pressure

Deformed shape of the circular cylinder with a hole subjected to band pressure for inner
radius a=10 mm and outer radius b=20 mm are given in figure 7.34. Stress components
are obtained from the computer by means of finite element method at each node.

All of the stress components are shown as contour legend with different color on
longitudinal section of the circular cylinder with a hole (a=5mm, a=10 mm, a=15 mm,
a=18 mm) in figures. For different hole vector plot of displacement on the longitudinal
section of the circular cylinder with a hole are shown in figures. Moreover, elasto-plastic
equivalent stress contour on the longitudinal section of the circular cylinder with a hole
for different band pressure are shown as contour legend with different color in figures for
different hole.
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Figure 7.35. Radial stress contour on the longitudinal section of the circular
cylinder with a hole (a=5mm) subjected to band pressure P=200 MPa

Figure 7.36. Tangential stress contour on the longitudinal section of the circular
cylinder with a hole (a=5mm) subjected to band pressure P=200 MPa

Figure 7.37. Axial stress contour on the longitudinal section of the circular
cylinder with a hole (a=5mm) subjected to band pressure P=200 MPa
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Figure 7.38. Shear stress contour on the longitudina section of the circular

cylinder with a hole (a=5mm) subjected to band pressure P=200 MPa
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Figure 7.39. Equivalent stress contour on the longitudinal section of the circular
cylinder with a hole (a=5mm) subjected to band pressure P=200 MPa
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Figure 7.40. Vector plot of displacement on the longitudinal section of the circular
cylinder with a hole (a=5mm) subjected to band pressure P=200 MPa
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Figure 7.41. Elasto-plastic equivalent stress contour on the longitudinal
section ofthe circular cylinder with a hole (a=5mm) subjected to band

pressure respectively, P=125 MPa, P:
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Figure 7.42. The stress distributions through the length of the circular cylinder with a
hole (a=5mm) under band pressure P=100 MPa at a=0.25b along the outer surface
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Figure 7.43. The stress distributions through the length of the circular cylinder with a
hole (a=5mm) under band pressure P=100 MPa at a=0.25b along the inner surface
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Figure 7.44. The stress distributions through the length of the circular cylinder with a
hole (a=5Smm) under band pressure P=100 MPa at a=0.25b along the outer surface
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Figure 7.45. The stress distributions through the length of the circular cylinder with a
hole (a=5mm) under band pressure P=150 MPa at a=0.25b along inner surface
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Figure 7.46. The stress distributions through the length of the circular cylinder with a
hole (a=5mm) under band pressure P=180 MPa at a=0.25b along the outer surface
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Figure 7.47. The stress distributions through the length of the circular cylinder with a
hole (a=Smm) under band pressure P=180 MPa at a=0.25b along the inner surface
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Figure 7.48. Variations of the elasto-plastic stress through the length of the circular
cylinder with a hole (a=5mm) under different band pressure along the inner surface
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Figure 7.49. Variations of the equivalent stress through the length of the circular
cylinder with a hole (a=Smm) under different band pressure along the inner surface
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Figure 7.50. Variations of the tangential stress through the length of the circular cylinder
with a hole (a=Smm) under different band pressure along the inner surface
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Figure 7.51. Variations of the axial stress through the length of the circular cylinder with
a hole (a=Smm) under different band pressure along the inner surface
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Figure 7.52. Variations of the equivalent residual stress through the length of the circular
cylinder with a hole (a=5Smm) under different band pressure along the inner surface
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Tagure 7.53. Variations of the tangential residual stress through the length of the circular
cylinder with a hole (a=5mm) under different band pressure along the inner surface
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Figure 7.54. Variations of the total equivalent strain through the length of the circular

cylinder with a hole (a=5mm) under different band pressure along the inner surface
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Figure 7.55. Variations of the tangential strain through the length of the circular

cylinder with a hole (a=Smm) under different band pressure along the inner surface
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Figure 7.56. Radial stress contour on the longitudinal section of the circular
cylinder with a hole (a=10mm) subjected to band pressure P=130 MPa
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Figure 7.57. tangential stress contour on the longitudinal section of the circular
cylinder with a hole (a=10mm) subjected to band pressure P=130 MPa
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Figure 7.58. Axial stresses contour on the longitudinal section of the circular
cylinder with a hole (a=10mm) subjected to band pressure P=130 MPa



Figure 7.59. Shear stress contour on the longitudinal section of the circular
cylinder with a hole (a=10mm) subjected to band pressure P=130 MPa
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Figure 7.60. Equivalent stress contour on the longitudinal section of the circular
cylinder with a hole (a=10mm) subjected to band pressure P=130 MPa
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Figure 7.61. Vector plot of displacement on the longitudinal section of the circular
cylinder with a hole (a=10mm) subjected to band pressure P=130 MPa
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Figure 7.62. Elasto-plastic equivalent stress contour on thf: longitudinal
section of the circular cylinder with a hole (a=10mm) subjected to band

pressure respectively P=100 MPa, P=110 MPa, P=120 MPa, P:

130 MPa
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Figure 7.63. The stress distributions through the length of the circular cylinder with a
hole (a=10mm) under band pressure P=80 MPa at r=0.5b along the outer surface
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Figure 7.64. The stress distributions through the length of the circular cylinder with a
hole (a=10mm) under band pressure P=80 MPa at 1=0.5b along the inner surface
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Figure 7.65. The stress distributions through the length of the circular cylinder with a
hole (a=10mm) under band pressure P=110 MPa at a=0.5b along the outer surface
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Figure 7.66. The stress distributions through the length of the circular cylinder with a
hole (a=10mm) under band pressure P=110 MPa at a=0.5b along the inner surface
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Figure 7.67. The stress distributions through the length of the circular cylinder with a
hole (a=10mm) under band pressure P=130 MPa at a=0.5b along the outer surface
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Figure 7.68. The stress distributions through the length of the circular cylinder with a
hole (a=10mm) under band pressure P=130 MPa at a=0.5b along the inner surface
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Figure 7.69. Variations of the elasto-plastic stress through the length of the circular
cylinder with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.70. Variations of the equivalent stress through the length of the circular cylinder
with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.71. Variations of the tangential stress through the length of the circular cylinder
with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.72. Variations of the axial stress through the iength of the circular cylinder with
a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.73. Variations of the equivalent residual stress through the length of the circular
cylinder with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.74. Variations of the tangential residual stress through the length of the circular
cylinder with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.75. Variations of the tangential strain through the length of the circular cylinder
with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.76. Variations of the total equivalent strain through the iength of the circular
cylinder with a hole (a=10mm) under different band pressure along the inner surface
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Figure 7.77. Radial stress contour on the longitudinal section of the circular

cylinder with a hole (a=15mm) subjected to band pressure P=60 MPa
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Figure 7.78. Tangential stress contour on the longitudinal section of the circular

cylinder with a hole (a=15mm) subjected to band pressure P=60 MPa

P

Figure 7.79. Axial stress contour on the longitudinal section of the circular
cylinder with a hole (a=15mm) subjected to band pressure P=60 MPa
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Figure 7.80. Shear stress contour on the longitudinal section of the circular
cylinder with a hole (a=15mm) subjected to band pressure P=60 MPa

Figure 7.81. Equivalent stress contour on the longitudinal section of the circular
cylinder with a hole (a=15mm) subjected to band pressure P=60 MPa
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Figure 7.82. Vector plot of displacement on the longitudinal section of the circular
cylinder with a hole (a=15mm) subjected to band pressure P=60 MPa



Figure 7.83. Elasto-plastic equivalent stress contour on the longitudinal
section of the circular cylinder with a hole (a=15mm) subjected to band
pressure respectively, P=45 MPa, P=50 MPa, P=55 MPa, P=60 MPa
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Figure 7.84. The stress distributions through the length of the circular cylinder with a
hole (a=15mm) under band pressure P=45 MPa at a=0.75b along the outer surface
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Figure 7.85. The stress distributions through the length of the circular ylinder with a
hole (a=15mm) under band pressure P=45 MPa at a=0.75b along the inner surface
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Figure 7.86. The stress distributions through the length of the circular cylinder with a
hole (a=15mm) under band pressure P=55 MPa at a=0.75b along the outer surface
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Figure 7.87. The stress distributions through the length of the circular cylinder with a
hole (a=15mm) under band pressure P=55 MPa at a=0.75b along the inner surface
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Figure 7.88. The stress distributions through the length of the circular cylinder with a
hole (a=15mm) under band pressure P=60 MPa at a=0.75b along the outer surface
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Figure 7.89. The stress distributions through the iength of the circular cylinder with a
hole (a=15mm) under band pressure P=60 MPa at a=0.75b along the inner surface
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Figure 7.90. Variations of the elasto-plastic stress through the length of the circular

cylinder with a hole (a=15mm) under
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Figure 7.91. Variations of the equivalent stress through the length of the circular cylinder
with a hole (a=15mm) under different band pressure along the inner surface
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Figure 7.92. Variations of the tangential stress through the length of the circular cylinder
with a hole (a=15mm) under different band pressure along the inner surface
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Figure 7.93. Variations of the axial stress through the length of the circular cylinder with
a hole (a=15mm) under different band pressure along the inner surface
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Figure 7.94. Variations of the equivalent residual stress through the length of the circular
cylinder with a hole (a=15mm) under different band pressure along the inner surface

Tangential residual stress [MPa]
120 ¢ - S

90 4
60 |-
30

0

0 § 10 15 20 25 30 35 40 45 50 55 60
Cylinder length [mm]

*P=45 MPa +P=50 MPa % P=55 MPa ® P=60 MPa

Figure 7.95. Variations of the tangential residual stress through the length of the circular
cylinder with a hole (a=15mm) under different band pressure along the inner surface
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Figure 7.96. Variations of the total equivalent strain through the length of the circular
cylinder with a hole (a=15mm) under different band pressure along the inner surface
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Figure 7.97. Variations total tangential strain of the through the length of the circular
cylinder with a hole (a=15mm) under different band pressure along the inner surface
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Figure 7.98. Radial stress contour on the longitudinal section of the circular

cylinder with a hole (a=18mm) subjected to band pressure P=23 MPa
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Figure 7.99. T angential stress contour on the longitudinal section of the circular

cylinder with a hole (a=18mm) subjected to band pressure P=23 MPa
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Figure 7.100. Axial stress contour on the longitudinal section of the circular

cylinder with a hole (a=18mm) subjected to band pressure P=23 MPa
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Figure 7.101. Shear stress contour on the longitudinal section of the circular
cylinder with a hole (a=18mm) subjected to band pressure P=23 MPa
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Figure 7.102. Equivalent stress contour on the longitudinal section of the circular
cylinder with a hole (a=18mm) subjected to band pressure P=23 MPa
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Figure 7.103. Vector plot of displacement on the longitudinal section of the circular
cylinder with a hole (a=18mm) subjected to band pressure P=23 MPa
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Figure 7.104. Elasto-plastic equivalent stress contour on the longitudinal
section of the circular cylinder with a hole (a=18mm) subjected to band
pressure respectively, P=20 MPa, P=21 MPa, P=22 MPa, P=23 MPa
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Figure 7.105. The stress distributions through the length of the circular cylinder with a
hole (a=18mm) under band pressure P=19 MPa at a=0.9b along the outer surface
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Figure 7.106. The stress distributions through the length of the circular cylinder with a
hole (a=18mm) under band pressure P=19 MPa at a=0.9b along the inner surface
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Figure 7.107. The stress distributions through the length of the circular cylinder with a
hole (a=18mm) under band pressure P=21 MPa at a=0.9b along the outer surface
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Figure 7.108. The stress distributions through the length of the circular cylinder with a
hole (a=18mm) under band pressure P=21 MPa at a=0.9b along the inner surface
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Figure 7.109. The stress distributions through the length of the circular cylinder with a
hole (a=18mm) under band pressure P=23 MPa at a=0.9b along the outer surface
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Figure 7.110. The stress distributions through the length of the circular cylinder with a
hole (a=18mm) under band pressure P=23 MPa at a=0.9b along the inner surface
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Figure 7.111. Variations of the elasto-plastic stress through the length of the cylinder
with a hole (a=18mm) under different band pressure along the inner surface
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Figure 7.112. Variations of the equivalent stress through the length of the cylinder with
a hole (a=18mm) under different band pressure along the inner surface
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Figure 7.113. Variations of the tangential stress through the length of the cylinder with a
hole (a=18mm) under different band pressure along the inner surface
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Figure 7.114. Variations of the axial stress through the length of the cylinder with a hole
(a=18mm) under different band pressure along the inner surface
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Figure 7.115. Variations of the equivalent residual stress through the length of the
cylinder with a hole (a=18mm) under different band pressure along the inner surface
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Figure 7.116. Variations of the tangential residual stress through the length of the
cylinder with a hole (a=18mm) under different band pressure along the inner surface
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Figure 7.117. Variations of the total equivalent strains through the length of the cylinder
with a hole (a=18mm) under different band pressure along inner surface
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Figure 7.118. Variations of the tangential strains through the length of the cylinder
with a hole (a=18mm) under different band pressure along the inner surface
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In the circular cylinder with a hole, we have investigated all region and especially critical
local region (surface of cylinder and center of cylinder). Therefore, distributions of the
stress components are plotted inner and outer surface of the circular cylinder for different
band pressure in figures. The stress components (tangential stress Go, radial stress o,
axial stress o, and shear stress 1.,) distributions through the length of the circular with a
hole cylinder under band pressure along outer surface and inner surface of cylinder are
shown on the same graph in figures. Variations of the elasto-plastic stress over the
yielding stress through the length of the circular cylinder with a hole subjected to
different band pressure along outer and inner surface of the cylinder are plotted in
figures. Variations of the equivalent stress through the length of the circular cylinder with
a hole under different band pressure along outer and inner surface of the cylinder are
shown in figures. Variations of the tangential and axial stress through the length of the
circular cylinder with a hole under different band pressure along outer and inner surface
of the cylinder are shown in figures.

Variations of the total equivalent and tangential strain through the length of the circular
solid cylinder under different band pressure along outer and inner surface of the cylinder
are plotted in figures.

Variations of the tangential and equivalent residual stress through the length of the
circular cylinder with a hole under different band pressure along outer and inner surface
of the cylinder are shown in figures.

7.4. BAND PRESSURE TO START YIELDING IN THE CIRCULAR CYLINDER
SOLID AND WITH A HOLE

In solid cylinder, yielding begins at the symmetry axis for band pressure P=176 MPa. In
the hallow section cylinders, yielding begin on the inner surface for different band
pressure which are given in the table 7.4. For different ratios a/b where a is inner

- diameter and b is outer diameter are investigated band pressure magnitude to begin
yielding. Considered outer diameter b=20mm, and inner diameter are a=0=solid. a=Imm,
a=2mm, a=5Smm, a=10mm, a=15mm a=18mm.

Table 7.6 Band pressure that to begin yielding for different diameter ratio inner diameter
to outer diameter

solid
a/b 0 0.025 0.1 0.25 0.5 0.75 0.9
Band :
Pressure 176 155 119 100 76 45 19.25
MPa

Variation of the band pressure to start yielding in the circular cylinder with a hole for
different ratios inner diameter to outer diameter in figure 7.119.
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Figure 7.119. Variation of the band pressure to start yielding in the circular cylinder
with a hole for different ratios inner diameter to outer diameter

7.5 ELASTO-PLASTIC ANALYSIS IN THE CIRCULAR SOLID AND HALLOW
CYLINDER SUBJECTED TO DIFFERENT WIDTH BAND PRESSURE

In the circular solid and hallow cylinder, stress components are investigated for different
. band width.

In the solid cylinder, variations of the elasto-plastic stress distribution and stress
components are investigated under band pressure P=220 MPa for different band width
that are c=10mm, ¢=20mm, ¢=30mm and c=40mm. Variations of the elasto-plastic stress
distributions are shown as contour legend with different color on longitudinal section of
the circular solid cylinder in figure 7.120. Distributions of the stress components (elasto-
plastic, equivalent, tangential and axial) are plotted in the symmetry axis of the cylinder
in figure 7.121-7.124.

In the hallow cylinder that is dimensions a=10mm and b=20mm, variations of the elasto-
plastic stress distribution and stress components are investigated under band pressure
P=130 MPa for different band width that are c¢=10mm, ¢=20mm, c=30mm and c=40mm.
Variations of the elasto-plastic stress distributions are shown as contour legend with
different color on longitudinal section of the circular hallow cylinder in figure 7.125.
Distributions of the stress components (elasto-plastic, equivalent, tangential and axial) are
plotted in the inner surface axis of the cylinder in figure 7.126-7.129.
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Figure 7.121. Variations of the elasto-plastic stress trough the length of the circular solid

cylinder under band pressure P=220 MPa for different band width along symmetry axis
of the cylinder
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Figure 7.122. Variations of the equivalent stress through the length of the circular solid
cylinder under band pressure P=220 MPa for different band width along symmetry axis
of the cylinder
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Figure 7.123. Variations of the tangential stress through the length of the circular solid
cylinder under band pressure P=220 MPa for different band width along symmetry axis
of the cylinder
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Figure 7.124. Variations of the axial stress through the length of the circular solid

cylinder under band pressure P=220 MPa for different band width along symmetry axis
of the cylinder

112



I 10 0 ey
VN0 0171
O NN i
OEE i oI i0d 30
AEDE0OHI006
00 00 (4 00 09 (05 03 0

AN o8

poascor
wene

ARrOnHTON
BnREEROOW
GODE el eI
(4 0000 0 00 0 09T (3 &

(LI

OO0 10 M N o
0% o O 0= w13
FoOn-olne
QIO - -0 0
O e (eI
00300 100 03 00T N O

HOLO 0 )
FENOOTNON
P VO TN e
BN A0
e b A T]
300 00 60 09 0908 8 0

Figure 7.125. Elasto-plastic equivalent stress contour on the longitudinal section of
the circular cylinder with a hole (a=10 mm) subjected to band pressure P=130 Pa

10 mm, C=20 mm, C=30 mm, C=40 mm

for different band width, respectively C



Elasto-plastic stress [MPa]

260 .

||~l{_.\.\.
e S
240 - "&‘\ ™
230 — \*\ \-\

= i =
sa0l oo e K

°h+ ¢ R,.

i 3 ;

210 13 5 \K\"K,* l‘- :
——— 2 s S TN N

200 | TR e e Db O TR ROROR O
190 L i 1 1 1 1 ) - l L — W———— |

5§ 10 16 20 25 B0 35 40 45 B0 5 60
Cylinder length [mm]

o

Width of the band pressure
-+ C=10 mm +C=20 mm ¥ C=30 mm ®C=40 mm

Figure 7.126. Variations of the elasto-plastic stress trough the length of the circular

cylinder with a hole (a=10 mm) under band pressure P=220 MPa for different band
width along inner surface of the cylinder
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Figure 7.127. Variations of the equivalent stress trough the length of the circular cylinder

with a hole (a=10 mm) under band pressure P=220 MPa for different band width along
inner surface of the cylinder
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Figure 7.128. Variations of the tangential stress trough the length of the circular cylinder
with a hole (a=10 mm) under band pressure P=220 MPa for different band width along
inner surface of the cylinder
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CHAPTER EIGHTH

RESULTS AND CONCLUSIONS

In this study, elasto-plastic analysis is made in the circular solid and haliow cylinder
under band pressure for isotropic material. Band pressure acts as uniform loading.
External band pressure is loaded on the surface of the circular cylinder in the radial
direction.

In the solution, finite element method was used It is assumed that deformations are small
£=0.02. Circular cylinder with a band of pressure has symmetry with respect to loading,
boundary condition, geometry and material properties. Because of the symmetry only
quarter of the circular cylinder was analysed. Finite element model of the quarter of the
solid and hallow cylinder consist of 300 elements and 341 node. An isoparametric
rectangular ring shape element having four nodes is used. The automatic mesh
generation is used. General purpose computer program that is mention ANSYS is used
to solve the probiem.

To control whether the computer program gives true results, tangential and radial
stresses are obtained from the literature in the circular cylinder has hallow cross section
under external pressure. Then, these stresses are compared with the exact solution.

Two form circular cylinder that are solid and hallow cross section are investigated.
Equivaient stress is calculated by means of von Mises criterion. If the equivalent stress is
greater than yielding point of material, yielding begins. Values of the band pressure
initiating plastic deformation are determined for different diameters by von Mises
criterion. Obtained resuits show that value of the band pressure is decreasing when inner
radius of the cylinder is increasing. Yielding begins in the inner surface or symmetry axis
of the cylinder then expansion grows from the inner surface to outer surface around the
band pressure.

The stress that remains in a circular cylinder upon removal of external load is called
residual stress. The magnitude of residual stresses can be obtained by superposition of the
stresses due to loading and unloading. The unloading or reverse stress pattern is assumed
to be fully elastic and hence can be obtained using Hook’s law. The residual stresses are
obtained for different diameter of the circular cylinder. Distributions of the residual stress
components are plotted in figures for different band pressure along the inner surface of
the circular solid and hallow cylinder.
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Obtained Resuilts in the Circular Solid Cylinder:

We have investigated all region of the problem and especially critical local region
(surface and center of cylinder). Therefore, distributions of the stresses components are
plotted center and outer surfaces of the circular cylinder.

Yielding begins in the symmetry axis in the circular solid cylinder and expansions grows
from the symmetry axis to outer surface. Maximum equivalent stress (G.y) that is
obtained from von Mises criterion occurs in the symmetry axis of the cylinder. Tangential
(0v) and radial (o) stress distributions are same each other in the symmetry axis. Shear
stress () distribution is around zero in the symmetry axis. Therefore, it may be neglect.
Axial or longitudinal (o,) stress distribution is not important other stress component.

The greatest stress component is tangential and stress and occurs as compression on
outer surface of cylinder. Radial stress component is equal to band pressure in the outer
surface as compression. Shear stress distribution is approximately zero on outer surface.
Therefore, it may be neglect.

Maximum equivalent strain and maximum tangential strain occurs in the symmetry axis
of the solid cylinder.

The residual stress are obtained for different band pressure in the symmetry axis through
the length of the cylinder. First, elasto-plastic stress components are calculated then,
elastic stress components are calculated by finite element method at each node and then
residual stresses obtained by means of elastic solving are subtract from the elasto-plastic
solving. The greatest equivalent residual stress occurs around the band pressure on the
surface of the cylinder.

Obtained Results in the Hallow Section Cylinder:

Yielding begins in the inner surface of the circular cylinder with a hole and expansions
grow from the inner surface to outer surface applied pressure increases. Maximum
equivalent stress (O.,) occurs on the inner surface of thé cylinder. Tangential (o) stress
distributions is the maximum on the inner surface and outer surface. Radial stress is equal
to band pressure on the outer surface of the cylinder. In contrast, radial stress distribution
is, around zero on the inner surface of the cylinder. Shear stress (1) distribution is
around zero on the inner wall of the cylinder with a hole. Axial or longitudinal stress (o)
distribution is not important compared with the other stress component.

The greatest stress component is tangential stress on inner surface and around end of the
band pressure of the hallow cylinder as compression. Radial stress component is equal to
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band pressure on the outer surface as compression. Shear stress distribution is around
zero on outer surface. Therefore, it may be neglect.

Maximum equivalent and tangential strain occur on the inner surface of the hallow
cylinder.

The greatest equivalent residual stress occurs around the band pressure on the inner
surface of the cylinder.

After yielding point, as band pressure is increased, elasto-plastic region is getting
growing up.

Variation of the band pressure to start yielding in the circular cylinder that are solid or
with a hole for different ratios inner diameter to outer diameter is shown in figure. When
diameter of the hole is increasing band pressure to start yielding is decreases. Therefore,
if it is not need a hole for design purpose, circular haliow cylinder should not be used
under band pressures.

In the circular solid and hallow cylinder, stress components are investigated for different
band width. Variations of the elasto-plastic stress distribution and stress components are
investigated under constant band pressure for different band width. Variations of the
elasto-plastic stress distributions are shown as contour legend with different colour on
longitudinal section of the circular solid and hallow cylinder in figures. Distributions of
the stress components (elasto-plastic, equivalent, tangential and axial) are plotted in the
symmetry axis and inner surface of the cylinder in figures.

It can be done elasto-plastic analysis of composite circular solid and hallow cylinder for
- different diameter and band pressures.

And also It can be investigated large deformation elasto-plastic of isotropic circular solid
and hallow cylinder for different diameter and band pressure.
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APPENDIX A

PRESS AND SHRINK FITS

Shrink fits are found frequently in mechanical engineering. The importance of shrink fits
rests on the fact that they are capable of transmitting high moments at low production
costs. To better utilize the hub material, plastic deformation is admitted in many cases.

When two cylindrical parts are assembled by shrinking or press-fitting one part upon
another, a contact pressure is created between two parts. The stress resuiting from this
pressure may easily be determined with the equations.

Figure 1.2 shows two cylindrical members which have been assembled with a shrink fit.
A contact pressure P exists between the members at the transition radius R, causing
radial stress o, = -P in each member at the contacting surfaces. The tangential stress at
the transition radius of the outer member is determined in outer surface,

(atR)= Pmi
2 i R? —r.2

i

(A1)

. In the same manner, the tangential stress at the inner surface of the outer member is

r,> +R?
o, (atR)= ‘;l_~—fi7 (A.2)

0

These equation can not be solved until the contact pressure is known. In obtaining a
shrink fit, the radius of the male member is made larger than the radius of the female
member. The difference in these dimensions is called the radial interference and is the
radial deformation which the two members must experience. Since these dimensions are
usually known, the deformation should be introduced in order to evaluate the stresses. As
shown in figure A.1 &; and & symbolize the changes in the radii of the inner and outer
members, respectively. The total radial interference is, therefore,

5=181-8d (A3)
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Figure A.1 Notation for press and shrink fits. a- Unassembled circular
cylinder with a hole parts b- after assembly

The tangential strain at the transition radius of outer cylinder is measured by the change
in circumference, and is

_ 2r(R+8,)-27R  §

== A4
o 2nR R -
and so 8=R g, but, since
Op VO,
_Ou VO, AS
g - (A5)
then, from equation (1.1) and (1.2), we have
2 2 b
PRt +R
=—] 2=y A6
=g (rﬂz oy (A6)

This is the change in radius of the outer member. In a similar manner, the change in
radius of inner member is found to be

PR(R2+r?
oS —~—~—%— A7
5 E [Rz—rn' U"] EAT)

Then, from equation (1.3), we have total deformation

A ettt B e B




This equation can be solved for the pressure Pwhen the radial interference S is given. If
the two members are of the same materials, E,=FE=E, v,=v; and the relation simplifies to

The value of interface pressure P from either Eq. (1.8) or Eq. (1.9) can now be used to
obtain the stress state at the stress state at the specified radius in either cylinder.

In addition to the assumptions both stated and implied by the development, it is necessary
to assume that both members have the same length. In the case of a hub which has been
press-fitted to a shaft, this assumption would not be true, and there would be increased
pressure at each end of hub. It is customary to allow for this condition by the
employment of a stress concentration factor. The value of this factor depends upon the
contact pressure and the design of the female member, but its theoretical value is seldom
greater than 2.



APPENDIX B

STRESSES IN CYLINDER

Cylindrical pressure vessels, hydraulic cylinders, gun barrels, and pipes carrying fluids at
high pressures developed both radial and tangential stresses with values that are
depended upon the radius of the element under consideration. In determining the radial
stress o, and the tangential stress G, we make use of the assumption that the longitudinal
clongation is constant around the circumference of the cylinder. In other words, a right
section of the cylinder remains plane after stressing.

Referring to figure B.1 we designate the inside radius of the cylinder by r;, the outside
radius 1., the internal pressure P;, and the external pressure P,. Than it can be shown that
tangential and radial stresses exist whose magnitudes are

P=RE= rflf_(l’" - Pi)/ i

G, (B1.1)

Py rl-

Pr? —P 2 +r2r2(P, —P)/ 1
o, =— i — (B1.2)
rn = rl

As usual, positive values indicate tension and negative values, compression. The special
case of P.=0 gives

rszi r' ~
G, = rj_r‘z 1+F B1.3)
G, = 23 ) (B1.



Figure B.1 A cylinder subjected to both internal and external pressure

It should be realized that longitudinal stresses exist when the end reactions to be internal
pressure are taken by the pressure vessel itself. This stress is found to be

o = (B1.5)

We further note that equations (B1.1), (B1.2), (B1.3) and (B1.4) apply only to sections a
significant distance from the ends and away from any areas of stress concentration.
An other special case Pi=0 gives

ZP 2
R »",[H-'"—:) ®B1.6)

TR £
v ‘[“_'j B1.7)
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APPENDIX C

THE COMPUTER PROGRAM
C.1. INTRODUCTION

ANSYS program is a general-purpose computer program for finite element analysis that
was used in the solution. The ANSYS program is a general-purpose program, meaning
that you can use it for almost any type of finite element analysis in virtually any industry:
automobiles, aerospace, railways, machinery, electronics, electromagnetic, sporting
goods, power generation, power transmission, and biomechanics to mentioned just a
few. General purpose also refers to the fact that the program can be used in all disciplines
of engineering: structural, mechanical, electrical, electromagnetic, electronic, thermal,
fluid, and biomedical. The ANSYS program is also used as an educational tool in
universities and other academic institutions.

The procedure for typical ANSYS analysis can be devided into three distinct steps:

¢ Build the model

4 Apply loads and obtain the solution

¢ Review the results

- C.2. BUILD THE MODEL
C.2.1. Defining Element Type

Element types are considered. The ANSYS program element library contains over 100
types element. It may be that are span, beam, plane, volume, shell, axisymmetric etc. The
element type determines, among other thing, the degree of freedom set which is implies
the discipline (structural ,thermal, magnetic etc.), the characteristic shape of the element
(line, quadrilateral, brick etc.), and the whether the element lies in 2-D space or 3-D
space.

C.2.2. Defining Material Properties

Material properties are required for most element types. Depending on the application,
material properties may be linear, nonlinear, and/or anisotropic. Material properties are
stress-strain curve, modulus of elasticity, Poisson’s ratio in all direction.
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C.2.3. Creating the Model Geometry and Meshing

The main objective of this step is to generate a finite element model -nodes and elements-
that adequately describes model geometry. With solid modeling, you describe the
geometric boundaries of your model and than instruct the ANSYS program to
automatically mesh the geometry with nodes and elements. You can control the size and
shape of the elements that the program creates.

C.2.4. Defining Element Real Constants

Element real constants are properties that are specific to a given element type, such as
cross-sectional properties of a beam element. For example, real constants for 2-D beam
element are area of cross-section, moment of inertia, etc.

C.3. APPLY LOADS AND OBTAIN THE SOLUTION
C.3.1. Applying Forces and Pressure

Forces (Fx, Fy, Fz) and moment (Mx, My, M) are concentrated loads usually specified
on the model exterior. The direction implied by the labels are in the nodal coordinate
system. Pressures are surface loads, also usually applied on the model exterior. Positive
values of pressure act towards the element face(resulting in a compressive effect).

C.3.2. Applying Boundary Condition

Displacements (Uyx, Uy, Uz, ROTx, ROTy, ROT7) are DOF constraints usually specified
at the model boundaries to define rigid support points. They are also used to indicate
symmetry boundary conditions and points of known motion. The directions implied by
the labels are in the nodal coordinate system.

C.3.3. Obtaining Solution

Before the solution of the problem, some of the options are need to define. Define
analysis type static or dynamic or any other. Specify load step options that is need to
incremental loading. Program runs Newton-Raphson procedure and load external force
incrementally. The program will continue to do equilibrium iterations until the
convergence criteria are satisfied. Convergence checking is used two parameter. One of
them is force, other is displacement. Using tighter convergence criteria will improve the
accuracy of the results, but at the cost of more equilibrium iterations. These iterations
will continue until to obtain results for all node.



C.4. REVIEW THE RESULTS

Postprosesing is that phase of any analysis in which you review the results. Results from
a nonlinear static analysis consist mainly of displacement, stresses, strains and reactions
forces.

PLDISP to display the deformed shape of the model
PLNSOL to display contours of stresses, strains and displacement etc.
PRNSOL to obtain tabular listing of data each node element.



INGHJZCE ABSTRAKT (en fazia 250 sﬁzcﬁk) Circular cylindrical element with strip pressure in radial
direction has widely applications in engineering such as bearings, gears, pulleys and shrink fit. In these
machine elements, small permanent deformations occur under the working loads. Determination of elasio-
plastic deformations, siress components and residual siresses afier removal of loads would make possible
the utilization of uliimaie level of material capacity.

In the study, clasto-plastic siresses and residual siresses in the isofropic circular cylinder with the strip
pressure in radial direction are investigated by the finite element method.

As the siress-sirain relationship of the material is nonlinear afier the yielding point, in the non-linear region
successive incremental loading are carried out, the material is assumed lincar, and for each incremental that
material behaves linearly. Namely, successive linear analysis carried out for non-linear behavior.

In the investigation, because of the symmetry with respect 10 geometry, support condition and material
properties of the problem, the problem is analyzed by four nodes isoparametric rectangular ring shape finite
clements. Finite clement mesh generation is carried oui on computer automatically. General purpose
computer program is used to solve the problem.

In the solution, it is assumed that deformations are small. Solid and hallow sectional cylinders with ratios
inner diameter to outer diameter are considered. Stress and strain components are determined for different
band pressures. And in the removal of the band pressure residual siresses are calculated. The magnitude of
the residual siress can be obtained by superposition of the siresses due to loading and unloading. Values of
the band pressure mnitiating plastic deformation are determined for different diameters by using von-Mises

criterion.

Distributions of siress components (equivalent, tangential, radial, axial and shear stress) and residual stress
componenis are plotied along the longitudinal axis on the outer and inner surfaces of the circular cylinder.
Defoimed shape and displacement of the model are given on fhe longitudinal
cylinders. Varniations of siress confour componen i
circular cylinder for different diameter.

linal section along the




k): Ceviesi boyunca band basincina maruz dairesel silindirik
elemmlmmﬁhmdmlikwgdmﬂmmday&ymkuﬂmdmhﬂmaha&r(ﬂmmkmkw&ghmalma
elemanlanmin stki gegme ile baflanmasinda oldufu gibi). Bu form birlegtirmelerde, silindirik elemaniar
Gizerinde, blylik olmayan kalic: gekil defiigiklikieri meydana gelir. Makina clemaniannm bu bdigelerindeki,
clasto-plastik gekil degigikliklerinin, gerilme bilegenlerinin ve band basmcimn kaldiridmssyle olugan artik
gerilmelerin dnceden belitien- mesi, malzemenin mukavemetinden maksimum seviyede faydalamimasma
imkan saiar.

Bu galigmada, gevresi boyunca band basinci etkisine maruz, izotrop malzemeye sahip dairesel silindirik
(dolu ve simefri ckseni boyunca bogaltilimg) elemaniarda meynada gelen clasto-plastik gerilmeler ve artik
gerilmeler sonlu elemaniar metodu ile incelendi.

Akma nokiasindan sonra malzemenin geriime-zorlanma iligkisi non-fineer oldufundan, kiiglk artiimiaria
ardigik ylikieme yapilmig ve her bir aralikta maizemenin bneer davrandif kabul edilmigtir. Diger bir ifade ile
nonlineer analizde ¢ok tekrark lineer analiz yapimugtir. Sonlu eleman modeli, geometri, simr garilan ve
yitkleme simetrisinden dolayr izoparametrik dort dfigimifi dirtgen halka clemaniardan olugturulmugtur.
Sistemin soniu sayida elamana bSlimienmesi bilgisayarda otomatik olarak yapilmugtir.

Coziimde, gekil degigimlerinin kitglik oldufu durumlar incelenmigtir. Cozlimler, dolu ve farkh oranlarda igi
bogaltilmyg silindirler icin yapidmugtr. Farkh baud basinc: defierlerinde meydana gelen zorlanma ve geriime
bilegenleri deferleri hesaplanmmgtr. Bununla birlikte, silindire etki eden band basmcmin kaldiridmass halinde
silindirde meydana gelen artik gerilmeler hesaplanmugter. Plastik gekil degigimini baglatan band basinci
degerleri von-Mises akma kriteri esas alinarak belirlenmig ve grafik olarak sunulmugtur..

Elasto-plastik gerilme analizi sonucunda, farkh band basinc: etkisinde dairesel silindirlerin ic ve dig
yizeylerinde hesaplanan gerilme bilegenlerinin (egdeger, tefietsel, radyal, eksenel ve kayma) ve arttk gen’ime
bilegenlerinin defigimieri simetri ckseni boyunca grafikier halinde gosterildi. Modelin gekil degigtirmig

ve modeli olugturan sonitu elemanlarn yerdefigtinmeleri kesit @izerinde gOsterildi. Elasto-plastik gerﬂmc
bilegenlerinin dafilimian ve band basimcmn arimimes ile plasiik defomasyomun derinlegmesi silindirin
boylamasina kesiti Gizerinde farkh renkierle gfsterildi.




