
 
T.C. DOĞUŞ UNIVERSITY 

INSTITUTE OF SCIENCE AND TECHNOLOGY 
COMPUTER AND INFORMATION SCIENCES MASTER PROGRAM 

 
 
 
 
 
 

A RULE BASED EXPERT SYSTEM  
GENERATION FRAMEWORK  

USING  
AN OPEN SOURCE BUSINESS RULE ENGINE 

 
 
 
 
 

M.S. Thesis 
 
 

 
 

Gökhan POLAT 
2003097002 

 
 
 
 

ADVISOR : 
Doç. Dr. Selim AKYOKUŞ 

Associate Professor Dr. Selim Akyokuş 
 
 
 

DECEMBER 2006 
İstanbul 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my family 



i 

 

ACKNOWLEDGEMENTS 

 

I would like to express special thanks to my supervisor Ass.Prof. Selim Akyokuş for his great 

support and encouragement. Without his help this thesis can not be completed. In addition, 

during master program and thesis study, my wife’s patient and help was incredible. These 

type of supports was luck for my entire study. 

 



ii 

 

ABSTRACT 

 

Knowledge is key instrument for the deciding processes. On the other hand, for a deciding 

process, gathering knowledge and learning are very difficult phases. For this reason, in the 

last decades, studies are focused on the machine-learning systems and the expert systems for 

the most of the knowledge oriented areas, like academic, commercial, military and industrial 

areas. 

  

In this thesis, a framework is developed for the rule base learning expert systems. Briefly, this 

framework will take a data set, induct the rules from this data set, construct an expert system 

according to inducted rules, and give a web based interface for testing new cases. 

 

There are a lot of concepts in this study. Classification, decision tree, knowledge acquisition, 

ID3 algorithm, rule base systems, expert systems, rule engines, open source perspective are 

some of them. These concepts will be discussed briefly, after the discussion; framework will 

be explained with some examples. 

 

Examples will show the reusability of the framework. Different data set can be applied the 

framework. But data set must be convenient to the ID3 decision tree algorithm. Other 

restrictions will be defined next sections. After constructing expert system new cases can be 

tested. 

 

This framework has some principles: 

• Java technologies are used 

• Open source tools are used where needed 

• Standardizations are applied where available 

 

As a result of these principles, usability of the framework is dramatically increased.  
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ÖZET 

 

Bilgi, karar verme süreçlerinde anahtar araçtır. Öte yandan, bir karar verme sürecinin en zor 

evreleri bilgiyi edinme ve öğrenmedir. Bu nedenle, akademik, ticari, askeri ve endüstriyel 

alanlar gibi bilgi merkezli pek çok alanda çalışmalar makina öğrenmesi sistemleri ve uzman 

sistemlere odaklanmıştır. 

 

Bu tezle bir kural tabanlı öğrenen uzman sistem çatısı sunulmaktadır. Kısaca bu çatı uygun 

data kümesini alır, bu kümeden kurallar çıkarır, bu kurallara göre bir uzman sistem kurar ve 

yeni durumları test etmek için web tabanlı bir arayüz verir. 

 

Bu çalışma birçok konuyu kapsamaktadır. Sınıflandırmalar, karar ağaçları, ID3 algoritması, 

kural tabanlı sistemler, uzman sistemler, kural motorları ve açık kaynak kodlu yaklaşım 

bunlardan bazılarıdır. Bu konular kısaca açıklanacak, değerlendirmeler sonrasında çatı 

örnekler ile açıklanacaktır. 

 

Örnekler çatının yeniden kullanabilirliğini gösterecektir. Çatı uygulama, farklı data kümeleri 

ile çalışabilmelidir. Ancak seçilen data kümeleri ID3 algoritmasına uygun olmalıdır. Diğer 

kısıtlamalar ileriki bölümlerde açıklanacaktır. 

 

Çatı aşağıdaki temel prensiplere dayanmaktadır. 

 

• Java teknolojileri kullanılmıştır 

• Gerekli durumlarda açık kaynak kodlu araçlar kullanılmıştır 

• Mümkün olduğunca standartlaştırma uygulanmıştır 

 

Bu prensipler sonucunda, çatının kullanılabilirliği önemli ölçüde artmıştır. 
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1. INTRODUCTION 

 

Learning is very attractive concept for computer-based researches. There are a lot of  methods 

for learning process. At the same time, a lot of result-based system uses these methods.  

 

Learning capabilities are needed for intelligent systems that can remain useful in the face of 

changing environments or changing standards of expertise (Buchanan B.G., 1989) 

 

Expert systems mostly need mentioned learning methods as a supporting system. In other 

words, this supporting system feeds the resulting expert system.  Feeding methods are using 

some techniques  to support expert systems , which are defined as; 

 

• rule-based techniques 

• inductive techniques 

• hybrid techniques 

• symbol-manipulation techniques 

• case-based techniques 

• qualitative techniques 

• model-based techniques 

• temporal reasoning techniques 

• neural networks 

 

In this thesis, rule-based techniques and inductive techniques are used to feed expert system. 

These two techniques are integrated as a new hybrid model. Before giving details of the new 

hybrid model, background of the expert system will be discussed. 

 

An expert system’s  central  goal  is  to  help  professional  in  the process  of  shifting  from  

old  implementation  to modern  approaches,  based  on  latest technologies. An expert system 

assists the human designer  by efficient encoding of expert knowledge and  by  reusing  the  

available  systems.   
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The  use  of  expert  systems  in  the  speed-up  of  human  professional work  has  been  in  

two  orders  of magnitude with resulting  increases  in human productivity and financial 

returns. Last decade shows that a growing number of organizations shift  their  informational  

systems  towards  a  knowledge-based approach.  This  fact  generates  the  need  for  new  

tools and environments  that intelligently  port  the  legacy  systems  in  modern,  extensible  

and  scalable knowledge-integrated systems (Pop D. and Negru V., 2003). 

 

The most popular technique of knowledge acquisition is still done with an interaction with a 

human expert. A knowledge engineer, a person acquiring knowledge, interacts with an expert 

either by observation of the expert in action or by interview. As a result, rules are produced, 

first in plain English, later on in the coded form accepted by a computer. It is the 

responsibility of the knowledge engineer to acquire knowledge in such a way that the 

knowledge base is as complete as possible (Dobroslawa et al., 1995). 

 

Classical expert system can also be explained in figured manner (Figure 1.1). As seen clearly 

on the explanations and the figure, human acts as a key role on the this picture. 

 

 

Figure 1.1  Classic transfer of expertise 
(Buchanan B.G and Shortliffe E.H., 1984) 

 

The process of working with an expert  to map what he or she knows into a form suitable for 

an expert system to use has come to be known as knowledge engineering. We refer to the 

process of mapping an expert’s knowledge into a program’s knowledge base as knowledge 

engineering. 

 

For  the  representation  of  knowledge  in  expert  systems,  a  number  of  forms  are used, 

such as: rules set (production rules, association rules, rules with exceptions), decision tables, 

classification and regression trees, instance-based representations, and clusters. Each  

representation  has  its  advantages  and  drawbacks (Pop D. and Negru V., 2003).  



3 

 

Main idea of this study is; an expert system may be built by human by means of a rule set, 

which is the natural way for humans to understand the knowledge. But limited capability of 

the human causes a bottleneck on the expert system (Figure 1.2). On the other hand, a 

decision tool , which uses some data mining methods, can make the process much more 

easier.  

 

 

 

Figure 1.2  Bottleneck on the classic expert system 
(Buchanan B.G and Shortliffe E.H., 1984) 

 

 

The knowledge needed to drive the pioneering expert systems was codified through 

protracted interaction between a domain specialist and a knowledge engineer. While the 

typical rate of knowledge elucidation by this method is a few rules per man day, an expert 

system for a complex task may require hundreds or even thousands of  such rules (Quinlan, 

J.R., 1985). 
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To avoid drawbacks of the knowledge-based systems, in this thesis, learning-based 

methodology is used. At this point, to be clear on the framework structure, summarized 

comparison of the knowledge-based and learning-based approaches is needed. 

1.1. Labor Intensive Knowledge-Based Approach 

 

Human experts construct a set of rules with which concepts can be identified in a text 

Advantages : 

• Human experience can be used to quickly distinguish good rules from bad ones 

Disadvantages : 

• Laborious, time-intensive development process 

• Requires the availability of human expertise 

1.2. Automated Learning Approach 

 

Automated learning algorithms induce a model with which concepts can be identified in a an 

example data set . Learning requires : 

• a goal-directed process of a system that improves the knowledge or the knowledge 

representation of the system by exploring experience and prior knowledge 

• acquisition of new declarative knowledge 

• development of motor and cognitive skills through instruction and practice 

• organization of new knowledge into general effective representation 

• discovery of new facts and theories through observation and experimentation 

• a process of knowledge construction, not of knowledge recording or absorption 

Advantages : 

• There is no need for human experts 

• Techniques are largely domain independent 

• Exceptions are not likely to be overlooked 

Disadvantages : 

• (Large amounts of) example data are required to train most common machine learning 

algorithms 

• Resulting model might not be easily understandable by human observer 
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2. GOAL AND ARCHITECTURE 

 

 

Data 
(Data Set)

Black Box
(new framework

without user knowledge)
USER

 

 
Figure 2.1  Brief representation of the framework 

 
 

As explained in the introduction, an automated learning methodology for rule generation is  

more reasonable approach for expert systems. This approach has a superiority against to the 

knowledge-based systems besides some drawbacks.  On the other hand, better observations 

and researches  can  produce large and good enough example data. One of the assumptions of 

this study is that; data should be reasonable. 

 

This thesis presents a complete framework for  constructing an expert system. This 

framework based on learning approach, can also be expressed as rule-based.  

This expert  system framework includes:   

 

• Uses convenient  data  set 

• Uses decision tree data mining method as a learning method 

• Uses ID3 decision tree algorithm  

• Automatic  rule  generation  

• Uses JBossRule engine 

• Generates rule file 

• Generates web based interface for test new cases 

• Uses open source products 

 

Detailed architecture of learning expert system developed in this study is shown in Figure 2.2. 
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Figure 2.2  The architecture of the framework 
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3. MACHINE LEARNING - INDUCTIVE LEARNING 

 
After the words about base of expert system and learning approach, machine learning and 

inductive learning should be explained briefly. Because the field of machine learning in 

concerned with the question of how to construct computer programs that automatically 

improve with experience, this concept should be clear. 

 

Knowledge-based systems are relatively old structures. A newer paradigm, generally 

considered to be the machine learning approach, has attracted attention of researchers in 

artificial intelligence, computer science, and other functional disciplines such as engineering, 

medicine, and business. In contrast to Knowledge-based systems which acquire knowledge 

from human experts, machine learning systems acquire knowledge automatically from 

examples, i.e., from source data. Machine learning refers to a system capable of the 

autonomous acquisition and integration of knowledge. This capacity to learn from experience, 

analytical observation, and other means, results in a system that can continuously self-

improve and thereby offer increased efficiency and effectiveness. 

 

Knowledge acquisition is the transfer and transformation of problem-solving expertise from 

some knowledge source to a program. Learning from examples may automate much of the 

knowledge acquisition process by exploiting large data bases of recorded experience 

(Buchanan B.G and Shortliffe E.H., 1984). 

 

To gain a knowledge, machine learning techniques, as rote learning, learning by being told, 

learning by analogy, learning from examples, and learning from discovery, have been studied 

extensively by AI researchers over the past two decades. Among these techniques, learning 

from examples, a special case of inductive learning appears to be the most promising machine 

learning technique for knowledge discovery or data analysis. It induces a general concept 

description that best describes the positive and negative examples. 

 

Machine-learning approaches commonly used for classification include inductive-learning 

algorithms such as decision-tree induction and rule induction, instance-based learning , neural 

networks, genetic algorithms, and Bayesian-learning algorithms. Among the various 

machine-learning approaches developed for classification, inductive learning from instances 
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is the most commonly used method in real-world application domains. Inductive learning 

techniques are fast compared to other techniques. Another advantage is that inductive 

learning techniques are simple and their generated models are easy to understand. Finally, 

inductivelearning classifiers obtain similar and sometimes better accuracies compared with 

other classification techniques (Pham D. T. and Afify A. A., 2004). 

 

Inductive learning has received considerable attention since the 1950s. Nowadays some  

approaches (eg. some growing toolkit of programs) can assist in knowledge acquisition 

(Buchanan B.G., 1989). 

 

Induction refers to inference of a generalized conclusion from particular instances. Inductive 

learning techniques are used to automatically construct classifiers using labeled training data. 

Different inductive learning algorithms was developed, some of them are listed below; 

 

• Decision Trees 

• Find Similar (a variant of Rocchio’s method for relevance feedback) 

• Naïve Bayes 

• Bayes Nets 

• Support Vector Machines (SVM) 

 

All methods require only on a small amount of labeled training data (i.e., examples of items 

in each category) as input. This training data is used to “learn” parameters of the 

classification model. (Dumais et al., 1998) 

 

Conventional knowledge based system’s inference mechanism is deductive. On the other 

hand learning systems use inductive structure. To understand difference between deduction 

and induction a table is constructed (Table 3.1). As seen from this table induction helps us for 

generalization. Whereas deduction goes from general to specific, induction, generates 

hypotheses, goes from specific to general . 
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Table 3.1  Deduction versus Induction 
 

Deduction Induction 
All humans are mortal. (Axiom) Socrates is human. (Background K.) 

Socrates is human. (Fact) Socrates is mortal. (Observation(s)) 

Conclusion: Generalization: 
Socrates is mortal. All humans are mortal. 
 

 

Inductive-learning techniques can be divided into two main categories, namely, decision-tree 

induction and rule induction (Pham D. T. and Afify A. A., 2004).In this study, decision tree 

induction and rule induction are used as a composite inductive learning method. Decision tree 

method will be explained in detail in the next sections. 
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4. CLASSIFICATION RELATED BASIC CONCEPTS 

 

As described previous sections in this thesis, decision tree algorithm is chosen as an inductive 

learning method which is the one of the best machine learning techniques. The inductive 

learning can be done with classification methods. Classification is one of the most important 

data mining tasks. In this chapter, classification will be explained briefly. 

 

4.1. Brief Explanation 

 

Classification is a key data mining technique whereby database tuples, acting as training 

samples, are analyzed in order to produce a model of the given data . Each tuple is assumed to 

belong to a predefined class, as determined by one of the attributes, called the classifying 

attribute. Once derived, the classification model can be used to categorize future data 

samples, as well as provide a better understanding of the database contents. Classification has 

numerous applications including credit approval, product marketing, and medical diagnosis 

(Kamber et al.,1997). 

 

4.2. Types of Classification 

 

A number of classification techniques from the statistics and machine learning communities 

have been proposed. These techniques are also called as classification algorithms. 

 

Algorithms that classify a given instance into a set of discrete categories are called as 

classification algorithms. These algorithms work on a training set to come up with a model or 

a set of rules that classify a given input into one of a set of discrete output values. Most 

classification algorithms can take inputs in any form, discrete or continuous although some of 

the classification algorithms require all of the inputs also to be discrete. The output is always 

in the form of a discrete value. Decision trees and Bayes nets are examples of some of 

classification algorithms (Polumetla A., 2006).  
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This thesis focuses decision tree algorithm, because it fits the main goal of the study. On the 

other hand an other method, decision table will be explained and the differences between two 

decision methods will be described. 

 

4.3. Decision Table  

 

A  decision  table  consists  of  a  two-dimensional  array  of cells, where  the columns contain  

the  system’s  constraints  and  each  row  makes  a  classification  according  to each  cell’s  

value  (Pop D. and Negru V., 2003). A decision table consists of a two-dimensional array of 

cells. Associated with each row in the array is a classification. A decision table can be viewed 

as a conjunction of row rules. An example of the decision table can be seen in Figure 4.1. 

 

 

 
Figure 4.1  An example of decision table 

(Kolahi S., 2006) 

 

4.4. Decision Tree 

 

Decision tree are commonly used for gaining information for the purpose of decision-making. 

Decision tree starts with a root node on which it is for users to take actions. From this node, 

users split each node recursively according to the decision tree learning algorithm. The final 

result is a decision tree in which each branch represents a possible scenario of decision and its 

outcome. 

 

In summary, the systems described here develop decision trees for classification tasks. These 

trees are  constructed beginning with the root of the tree and proceeding down to its leaves. 

(Quinlan, J.R., 1985). 
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4.4.1. When to Consider Decision Tree 

 

Decision trees are considered as an efficient technique to express classification knowledge 

and to use it. Their success is explained by their ability to handle complex problems by 

providing an understandable representation easier to interpret and also their adaptability to the 

inference task by producing logical rules of classification (Elouedi et al.,2000). 

 

Decision trees are useful for automating decision processes that are part of an application 

program. Decision trees are used in a large number of applications, and the number continues 

to grow as practitioners gain experience in using trees to model decision making processes. 

Present applications include various pixel classification tasks, language understanding tasks 

such as pronoun resolution, fault diagnosis, control decisions in search, and numerical 

function approximation (Utgoff  P.E., 1995). 

 

Decision tree learning algorithm is suited when 

 

• Instance is represented as attribute-value pairs. For example, attribute 'Temperature' 

and its value 'hot', 'mild', 'cool'. We are also concerning to extend attribute-value to 

continuous-valued data (numeric attribute value) in our project. 

• The target function has discrete output values. It can easily deal with instance which is 

assigned to a boolean decision, such as 'true' and 'false', 'p(positive)' and 'n(negative)'. 

Although it is possible to extend target to realvalued outputs, we will cover the issue 

in the later part of this report. 

• The training data may contain errors. This can be dealt with pruning techniques that 

we will not cover here. 
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4.5. Comparison 

 

Table 4.1  Comparison of the models 
 

Criteria 
Structured English Decision Tables Decision Trees 

Determining 
Conditions and 

Actions 
Second Best Third Best Best 

Transforming 
Conditions and 

Actions into 
Sequence 

Best Third Best Best 

Checking 
Consistency 

and 
Completeness 

Third Best Best Best 

 

 

The decision table and decision tree are essential tools for systems analysts. These decision 

aids are used by systems analysts in depicting conditional logic for programmers and in 

validating this logic with the user. In addition, many authors recommend the decision table 

and tree as useful aids in decision making (Subramanian G.H et al., 1989). 

 

A rule can be defined by structured English words, a decision table and a decision tree. All 

three methods have some advantages and drawbacks. Table 4.1 shows that decision tree is the 

most effective method for defining rule according to specified criteria. 
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5. BUILDING DECISION TREE - ID3 

 

Several methods have been proposed to construct decision trees. These algorithms input the 

training set composed by instances where each one is described by the set of attribute values 

and its assigned class. The output is a decision tree ensuring the classification of new 

instances 

 

Decision tree learning algorithm has been successfully used in expert systems in capturing 

knowledge. The main task performed in these systems is using inductive methods to the given 

values of attributes of an unknown object to determine appropriate classification according to 

decision tree rules. 

 
ID3 is a simple decision tree learning algorithm developed by Ross Quinlan (1983). The basic 

idea of ID3 algorithm is to construct the decision tree by employing a top-down, greedy 

search through the given sets to test each attribute at every tree node. In order to select the 

attribute that is most useful for classifying a given data set, a metric called information gain, 

which will be defined later, is used. 

 
ID3  is used as a machine learning methods which induces a rule set that is a subset of all 

potential rules hidden in the original data set. Successful applications of ID3, C4  and other 

decision tree algorithms have provided knowledge bases for working expert systems whose 

task is to classify. They are widely used in a variety of fields notably in artificial intelligence 

applications. Their success is explained by their ability to handle complex problems by 

providing an understandable representation easier to interpret and also their adaptability to the 

inference task by producing logical rules of classification (Elouedi et al. 2000). 

 

One approach to the induction task above would be to generate all possible decision trees that 

correctly classify the training set and to select the simplest of them. The number of such trees 

is finite but very large, so this approach would only be feasible for small induction tasks. ID3 

was designed for the other end of the spectrum, where there are many attributes and the 

training set contains many objects, but where a reasonably good decision tree is required 

without much computation. It has generally been found to construct simple decision trees, but 

the approach it uses cannot guarantee that better trees have not been overlooked. 
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The basic structure of ID3 is iterative. A subset of the training set called the window is chosen 

at random and a decision tree formed from it; this tree correctly classifies all objects in the 

window. All other objects in the training set are then classified using the tree. If the tree gives 

the correct answer for all these objects then it is correct for the entire training set and the 

process terminates. If not, a selection of the incorrectly classified objects is added to the 

window and the process continues(Quinlan, J.R., 1985). 

5.1. Data Set 

 

This study assumes that data is correct and classifiable. A measurement by a specific variable 

is the assignment of a specific value to that variable, notionally by the real-world process. The 

value set belonging to a variable is a discrete set of names, usually describing qualitative 

properties. A value set must have at least two members. The prototypical case is a boolean 

variable with values {true, false}, but other value sets are possible: for example the variable 

sex has the value set {male, female}. If a variable refers to a continuous measurement, its 

value set frequently names the results of a series of relational tests on the measurement 

The basis is a universe of objects that are described in terms of a collection of attributes. Each 

attribute measures some important feature of an object and will be limited here to taking a 

(usually small) set of discrete, mutually exclusive values(Quinlan, J.R., 1985). 

 

5.2. ID3 Algorithm  

 

Several algorithms have been developed for learning decision trees. In the artificial 

intelligence community, the most used is based on the TDIDT (Top-Down Induction of 

Decision Tree) approach. In that approach, the tree is constructed by employing a recursive 

divide and conquer strategy. Its steps can be defined as follows: 

 

• By using an attribute selection measure, an attribute will be chosen in order to 

partition the training set in an ”optimal” manner. 

• Based on a partitioning strategy, the current training set will be divided into training 

subsets by taking into account the values of the selected attribute. 

• When the stopping criterion is satisfied, the training subset will be declared as a leaf. 
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In the literature many attribute selection measures are proposed in. Among the most used, we 

mention the information gain used within the ID3 algorithm. The information gain of an 

attribute A relative to a set of objects S measures the effectiveness of A in classifying the 

training data.  

Algorithm is defined in Figure 5.1. 

 

 

 

Figure 5.1  ID3 Algorithm 
(Yüret D., 2003) 

 

5.2.1. Entropy 

 

Entropy, characterizes the (im)purity of an arbitrary collection of examples. That is, it 

measures the homogeneity of examples. Entropy equation for two classes positive and 

negative is below; 

 

n2np2p plogp- plogp -  Entropy(S) ≡        (Equation 5.1) 
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Where 

 

S is a sample of training examples 

pp  is the proportion of positive examples in S 

np  is the proportion of negative examples in S 

 

In summary; entropy is  expected number of bits needed to encode class (p or n) of randomly 

drawn member of  S. 

If all instances in S belong to the same class, then E(S) equals 0. 

If  S contains the same number of instances for each class, then E(S) equals 1. 

 

 

Figure 5.2  Entropy Graph 
 

5.2.2. Information Gain 

 

Information gain is the answer of the “How do we choose the best attribute?” question in 

decision tree algorithm. 
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In order to measure the worth of an attribute a statistical property is defined, information gain, 

which measures how well a given attribute separates the training examples according to their 

target classification. 

 

Information Gain equation is given; 
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The information gain Gain(S,A) is the expected reduction in entropy caused by knowing the 

value of the attribute A. 

5.2.3. Example Calculations with Weather Data Set 

 

The weather problem is a example data set which we will use to understand how a decision 

tree is built. It comes from Quinlan’s paper which discusses the ID3 algorithm. It is 

reproduced with slight modifications by Witten I.H., Frank E. (1999), and concerns the 

conditions under which some hypothetical outdoor game may be played. The data is shown in 

Table 5.1. 

 

Table 5.1  Weather Data set 
 

Outlook Temperature Humidity Windy Play(Class) 
sunny hot high FALSE N 

sunny hot high TRUE N 

overcast hot high FALSE P 

rain mild high FALSE P 

rain cool normal FALSE P 

rain cool normal TRUE N 

overcast cool normal TRUE P 

sunny mild high FALSE N 

sunny cool normal FALSE P 

rain mild normal FALSE P 

sunny mild normal TRUE P 

Overcast mild high TRUE P 

Overcast hot normal FALSE P 

Rain mild high TRUE N 
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In this dataset, there are five categorical attributes outlook, temperature, humidity, windy, and 

play. We are interested in building a system which will enable us to decide whether or not to 

play the game on the basis of the weather conditions, i.e. we wish to predict the value of play 

using outlook, temperature, humidity, and windy. We can think of the attribute we wish to 

predict, i.e. play, as the output attribute, and the other attributes as input attributes. 

 

 

Figure 5.3  Which attribute to select? 
 
 
Calculation for the entropy of the humidity attribute is as follows 

 

H(D) = -(9/14) log (9/14) - (5/14) log (5/14) = 0.94  

H(D, Humidity = High) = -(3/7) log (3/7) - (4/7) log (4/7) = 0.985  

H(D, Humidity = Normal) = -(6/7) log (6/7) - (1/7) log (1/7) = 0.592  

 

Calculation for the information gain of the humidity attribute; 

 

Gain(D, Humidity) = 0.94 - (7/14) * 0.985 + (7/14) * 0.592 = 0.151  

 

Similarly, for wind attrbute; 

Gain (D, Wind) = 0.94 - (8/14) * 0.811 + (6/14) * 1.0 = 0.048  

Information gains for all attributes; 
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Gain(D, Humidity) = 0.151 bits 

Gain(D, Wind) = 0.048 bits 

Gain(D, Temperature) = 0.029 bits 

Gain(D, Outlook) = 0.246 bits 

 

Clearly, outlook is the highest gain, so this should be the root node. According to the 

algorithm, the procedure should continue recursively until the end. After that, the result tree 

can be obtained  as seen in Figure 5.4. 

 

 

 
Figure 5.4  Final decision tree for weather data set 

5.3. ID3 Java Implementation 

 

In this thesis, java technologies are used for all implementations. On the other hand, ID3 java 

implementation is not developed by the author. It is originally developed by Dr.Benny 

Raphael. With his permission, some modifications are done for the framework adaptation. 
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Figure 5.5  Permission from Dr.Benny Raphael 

 

 

Important methods of the Dr. Benny Raphael’s implementation and our modifications are 

below. Furthermore, its javadoc parts in the Appendix section. 

5.3.1. Original Methods 

 

readData : Function to read the data file. The first line of the data file should contain the 

names of all attributes. The number of attributes is inferred from the number of words in this 

line. The last word is taken as the name of the output attribute. Each subsequent line contains 

the values of attributes for a data point. If any line starts with // it is taken as a comment and 

ignored. Blank lines are also ignored. 

 

calculateEntropy : Calculates the entropy of the set of data points. The entropy is calculated 

using the values of the output attribute which is the last element in the array attributes.  

 

decomposeNode : This function decomposes the specified node according to the ID3 

algorithm. Recursively divides all children nodes until it is not possible to divide any further.  

 

printTree :  This function prints the decision tree in the form of if/then/else structure. The 

action part of the rule is of the form outputAttribute = "symbolicValue" or  outputAttribute = 

{ "Value1", "Value2", .. } The second form is printed if the node cannot be decomposed any 

further into an homogenous set. 
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5.3.2. New Methods 

 

listRules : This function prints the rules as a sentence.  

 

createRules4File : This function exports the rules to a .drl file which is used for JBossRule 

Engine. 
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6. RULE-BASED SYSTEMS 

 

Rule-based systems are a very simple model that can be used to solve many decision 

problems. Instead of representing knowledge in a relatively declarative, static way, rule-based 

system represent knowledge in terms of a bunch of rules. A rule-based system consists of a 

bunch of IF-THEN rules, a bunch of facts, and some interpreter controlling the application of 

the rules, given the facts. 

 

Rule-Based systems maintain a small database of facts about the world, so that they can 

perform reasoning; if a fact about the world matches a condition of a rule, that condition is 

judged to be fulfilled (Kingston J., 1987). 

 

In Summary, a rule-based system can be defined as a system that uses rules to derive 

conclusions from premises. 

6.1. Requirements of a Rule-Based System  

 

• A set of facts to represent the initial working memory. This should be anything 

relevant to the beginning state of the system.  

• A set of rules. This should encompass any and all actions that should be taken within 

the scope of a problem, but nothing irrelevant. The number of rules in the system can 

affect its performance.  

• A condition that determines that a solution has been found or that none exists. This is 

necessary to terminate some rule-based systems that find themselves in infinite loops 

otherwise.  

 

A rule-based system works by applying the rules that are applicable to the current state of the 

system. At the beginning, the “working memory” consists of the description of the initial state 

of the system. It then finds all the rules that are applicable to this state. 

 

In this study, facts are objects (java beans) which are asserted into the working memory. Facts 

are any java objects which the rules can access. Detailed explanation about framework is 

given on the section 10 and interaction between object-oriented functionality and rule-based 

knowledge is described in Figure 6.1. 
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Figure 6.1  Interaction between OO and rule-based system 
(Maja D., 2004) 

6.2. Architecture of a Rule-Based System 

 

A typical rule-based system contains below items. It can be also seen in the Figure 6.2. 

• An inference engine 

• A rule base 

• A working memory 

User Interface

Rule Base

Inference Engine

Working Memory

 

 

Figure 6.2  Architecture of a rule-based system 
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6.2.1. Inference Mechanism 

 

The way knowledge systems model human reasoning is called inference. The inference 

engine is a component of a rule engine that fires the rules. 

 

Many rule-based expert systems are developed using expert system shells. A shell provides 

facilities for writing rules easily, often in a format which resembles English syntax, and also 

provides a strategy for solving problems in general - that is, it has built-in algoithms for 

deciding which rule is to be used when. This strategy is known as the shell's inference 

mechanism. A shell can be thought of as a rule-based expert system without any knowledge, 

or a framework around which an expert system can be developed. 

 

An inference mechanism consists of algorithms and the rules in a rule base. There are two 

methods for executing rules in rule-based systems, forward chaining and backward chaining. 

 

6.2.1.1. Forward Chaining Systems 

 

Forward chaining searches the inference rules until it finds one where the “If” clause is 

known to be true. When found it can conclude, or infer, the “Then” clause, resulting in the 

addition of new information to its dataset. 

 

Forward-chaining systems are data-driven. The facts in such systems are represented in a 

working memory that is continually updated. Furthermore, in these systems rules represent 

possible actions to take when specified conditions hold on items in the working memory, they 

are sometimes called condition-action rules. The conditions are usually patterns that must 

match items in the working memory, while the actions usually involve adding or deleting 

items from the working memory. 

 



26 

 

 

Figure 6.3  Forward chaining system 
(Chan S. T. and Gröndahl F., 2005) 

6.2.1.2. Backward Chaining Systems 

 

Backward chaining would search the inference rules until it finds one which has a “Then” 

clause that matches a desired goal. If the “If” clause of that inference rule is not known to be 

true, then it is added to the list of goals (in order for your goal to be confirmed you must also 

provide data that confirms this new rule). 

Backward-chaining systems are goal-driven. These systems look for the action in the THEN 

clause of the rules that matches the specified goal. In other words, they look for the rules that 

can produce this goal. If a rule is found and fired, they take each of that rule’s conditions as 

goals and continue until either the available data satisfies all of the goals or there are no more 

rules that match. 
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Figure 6.4  Backward chaining system 
(Chan S. T. and Gröndahl F., 2005) 

 

6.2.2. Rule Base 

 

The rules need to be stored somewhere. The rule base contains all the rules the system knows. 

They may simply be stored as strings of text, but most often a rule compiler processes them 
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into some form that the inference engine can work with more efficiently (Chanda M. 

S.,2004). 

 

The rule base contains specific knowledge about the problem area presented in rules. Rules, 

in the form “if - then” are elementary units of knowledge (Dobroslawa et al., 1995). 

 

6.2.3. Working Memory 

 
In a typical rule engine, the working memory, sometimes called the fact base, contains all the 

pieces of information the rule-base system is working with. The working memory can hold 

both the premises and conclusions (result objects) of the rules. Some implementations can 

hold only objects of a specific type, and others can include objects of any type, for example 

Java objects (Chanda M. S.,2004). 

 

The working memory holds concrete data in the form of the object-attribute-value triplets. 

The data is used by the rule engine to match to the rules’ conditions. Two possibilities arise: 

1. If one of the rule conditions has no variables, then it is satisfied only if an identical 

expression is present in the working memory 

2. If one of the rule conditions has at least one variable, i.e. if it is a pattern, then it is 

satisfied only if there exists data in working memory which matches it, taking into 

account the rule’s other conditions that have been matched (D’Hondt  M., 2004). 

 

6.3. Rules 

 

Rules are similer to the if-then statements of traditional programming languages. An order 

rule can look like this, in an English-like pseudocode: 

 
IF 

A student is in the laboratory 
AND 

He/She is hungry 
THEN 

He/She should go to the canteen to eat 
 



29 

In the simplest design, a rule is an ordered pair of symbol strings, with a left-hand side and a 

right-hand side (LHS and RHS). A rule can also be viewed as a simple conditional statement, 

and the invocation of rules as a sequence of actions chained by modus ponens. 

 

A rule consists of two parts: an antecedent and a consequent. The rule antecedent consists of 

one or more conditions that specify when and where to apply the rule. If the conditions of the 

rule are met, then the second part of a rule – the consequent – specifies the actions to take 

when the conditions of the rule are met. 

 

Rules are generally used to represent knowledge about strategies for solving problems in a 

particular area (Kingston J., 1987). 

 

Basically two different formalisms of expressing rules exist, production rules, used in 

production systems, and first-order predicate logic used in logic-based systems. Production 

systems consist of three parts, the production rules, the working memory and the rule engine  

(Rosenberg F. and Dustdar S., 2005). 

 

Obviously, production system means rule-based system and production rules are one of the 

major part of the constructed rule-based system in this study. 

 

6.4. Rule Engine 

 

The term “Rule Engine” can be defined for any system that uses rules, in any form, that can 

be applied to data to produce outcomes; which includes simple systems like form validation 

and dynamic expression engines. 

 

6.4.1. Advantages of the Rule Engine 

 

• Declarative Programming : Rule engines allow you to say "What to do" not "How to 

do it". They key advantage of this point is that it can make it easy to express solutions 

to hard problems, and consequently have those solutions verified (rules are much 

easier to read then code). Rule systems are capable of solving very hard problems, yet 

providing a solution that is able to explain why a "decision" was made. 
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• Logic and Data Separation : Your data is in your domain objects, the logic is in the 

rules.  

• Speed and Scalability : The Rete algorithm, Leaps algorithm, and its descendents, 

provide very efficient ways of matching rule patterns to your domain object data.  

• Centralization of Knowledge : By using rules, you are creating a repository of 

knowledge  which is executable. 

• Tool Integration : Tools such as eclipse provide ways to edit and manage rules and 

get immediate feedback, validation and content assistance. Auditing and debugging 

tools are also available. 

• Explanation facility :  Rule systems effectively provide an "explanation facility" by 

being able to log the "decisions" made by the rule engine (and why the decisions were 

made). Understandable rules (readable by domain experts). By creating object models 

that model your problem domain, rules can look very close to natural language. They 

lend themselves to logic that is understandable to domain experts who may be non 

technical. 

 

6.4.2. Why and When to Use a Rule Engine? 

 

While rule engines can solve a lot of problems for us , it is worth considering if a rule engine 

is appropriate for the application. Some important points are: 

 

• Application Complexity : For applications that shuffle data to and from a database , 

but not much more , it is probably best not to use a rules engine. However , where 

there is even a moderate amount of processing, it is worthwhile considering the use of 

rule engine. This is becuase most applications develop complexity over time and rule 

engine will let you cope easily with this. 

• Application Lifetime : Using a rule engine pays off especially in the medium to long 

term. Prototypes can benefit from the combination of rule engine and agile methods to 

take the 'prototype' into production. 

• Application updates : The only sure thing about your requirements is that they will 

change, either during or just after development. A rule engine helps to cope with this 

by specifying the business rule in one or more easy to configuration files. 
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6.4.3. Which Rule Engine to Use? 

 

There are many business rule engines on the market, both open source and commercial. Here 

is a list of the most popular commercial business rule engines (Chanda M. S.,2004): 

 

• JRules from ILOG 

• Advisor from Brokat 

• OPSJ from Charles Forgey 

• QuickRules from Yasu Technologies 

• CommonRules from IBM alphaworks 

• exteNd Director from Novell 

• ACQUIRE from acquired Intelligence 

 

The list of the most popular open source rule engines is as follows: 

 

• JBoss Rule Engine 

• JESS (Java Expert System Shell) from Sandia National Labs 

• Mandarax 

• CLIPS from Gary Riley 

• InfoSapient 

 

In this study, JBoss Rule Engine is used as a rule engine. One of the major reason is that this 

rule engine is an open source rule engine. Why open source question will be explained next 

section. 

 

6.4.4. RETE Algorithm 

 

The RETE algorithm was invented by Dr. Charles Forgy and documented in his PHd thesis in 

1978-79 (Forgy C., 1979),. A simplified version of the paper was published in 1982. 

 

There are many methods for optimizing rule engines to execute rules more efficiently. Most 

rule engines use the Rete (Latin for `net') Algorithm for optimization. This algorithm is 

intended to improve the speed of forward-chained rule-based engines by limiting the effort 
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required to re-compute a conflict set after a rule is fired. In the Rete algorithm, executable 

rules are compiled into a network. Input data to the network consists of changes to the 

working memory. Objects are inserted, removed, and modified. The network processes these 

changes and produces a new set of rules to be fired. The network minimizes the number of 

evaluations by sharing tests between rules and propagating changes incrementally. Briefly, 

the rete algorithm eliminates the inefficiency in the simple pattern matcher by remembering 

past test results across iterations of the rule loop. Only new or deleted working memory 

elements are tested against the rules at each step. Furthermore, Rete orgonizes the pattern 

matcher so that these few facts are only tested against the subset of rules that may actually 

match. The main drawback of this algorithm is its high memory space requirement. 
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7. JBOSS RULE AS AN OPEN SOURCE RULE ENGINE 

 

7.1. Open Source Perspective 

 
Although there is considerable confusion about the strengths and weaknesses of open source 

software (OSS), it has become clear that OSS has an important role to play in the IT industry 

and business in general. OSS, for the most part, represents a software development process. It 

can be leveraged to provide considerable value and complement commercial software 

products. At the same time, commercial software products will continue to play a critical role 

for the foreseeable future (Heintzman  D., 2003).. 

 

The IT industry is going through major changes. New concepts in technology, such as Web 

services and grid computing, are opening the door to tremendous opportunities for taking e-

business to the next level of profitability. The potential of these technologies to transform 

business is truly remarkable, and open standards and open source software will play 

increasingly critical roles in this new world. 

 

To clear the open source concept some definition should be placed. 

 

Open source software : Is the software whose source code is published and made available 

to the public, enabling anyone to copy, modify and redistribute the source code without 

paying royalties or fees. Open source code evolves through community cooperation. These 

communities are composed of individual programmers as well as very large companies. Some 

examples of open source initiatives are Linux, Eclipse, Apache, Mozilla, and various projects 

hosted on SourceForge. 

 

Free software :  Is the terms that are roughly equivalent to Open Source. The term "free" is 

meant to describe the fact that the process is open and accessible and anyone can contribute to 

it. "Free" is not meant to imply that there is no charge. "Free software" may be packaged with 

various features and services and distributed for a fee by a private company. The term "public 

domain" software is often erroneously used interchangeably with the term "free software" and 

"open source" software. In fact, "public domain" is a legal term that refers to software whose 
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copyright is not owned by anyone, either because it has expired, or because it was donated 

without restriction to the public. Unlike open source software, public domain software has no 

copyright restrictions at all. Any party may use or modify public domain software.  

 

Commercial software : Is the software that is distributed under commercial license 

agreements, usually for a fee. The main difference between the commercial software license 

and the open source license is that the recipient does not normally receive the right to copy, 

modify, or redistribute the software without fees or royalty obligations. Many people use the 

term "proprietary software" synonymously with "commercial software." Because of the 

potential confusion with the term "proprietary" in the context of standards and interfaces, and 

because commercial software may very well implement open, non-proprietary interfaces, this 

article will use the term "commercial software" to refer to non-open source software 

(Heintzman  D., 2003).  

 

7.2. Why Open Source? 

 

The most obvious boon of open source to software developers is the opportunity to base a 

design on existing software elements. The open source community gives us a rich base of 

reusable software, typically available at the cost of downloading the code from the Internet. 

So, in many cases we can select best code to reuse in our system without having to reinvent 

the wheel. The resulting products benefit in two ways. First, the reused open source code will 

typically be of higher quality than the custom-developed code’s first incarnation. Second, the 

functionality the reused element offers will often be far more complete than what the bespoke 

development would afford (Spinellis D. and Szyperski C. , 2004),. 

 

Moreover, reuse granularity is not restricted by the artificial product boundaries of 

components distributed in binary form (which marketing considerations often impose). When 

reusing open source, code adoption can happen at the level of a few lines of code, a method, a 

class, a library, a component, a tool, or a complete system. Furthermore, when software is 

available in source code form, we can more easily port to our target platform and adjust its 

interfaces to suit our needs. 
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Consequently, software reuse possibilities open up on three axes: what to reuse (promoted by 

the available software’s breadth and price), how to reuse it (diverse granularity and 

interfacing options), and where to reuse it (inherent portability of source code over most 

binary packaged component technologies). Movement along all three axes increases the 

breadth of software reuse opportunities in any development effort. 

In addition, source code’s availability lets us perpetually improve, fix, and support the reused 

elements. This factor often mitigates the risk of orphaned components or incompatible 

evolution paths that are associated with the reuse of proprietary components. Also, by 

incorporating the source code of a reused element into the system being built, developers can 

achieve tight integration and a system that can be maintained as a whole. 

 

7.3. When Open Source? 

 
Before deciding to use open source, some the conditions must be considered. An open source 

software 

 

• should meet the requirements 

• should support by large community 

• should be sure continuity 

• should be examine for performance issue 

• should be documented, published, and reviewed in source code form 

• should be discussed, internalized, generalized, and paraphrased 

• should used for solving real problems, often in conjunction with other programs 
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7.4. JBoss Rule Engine 

 

At the start of the study, an investigation was made for rule engines. Our concept is , it should 

be open source java software and meet the conditions on section “When Open Source?”. At 

the same time rule engine should obey open standards JSR-94 (Java Specification Requests, 

which are formal documents that describe proposed specifications and technologies to be 

added to the Java platform). After this investigation two alternatives were found; JESS and 

Drools. 

 

On the other hand JESS was not fully open source software, but for academic usage required 

permission was possible. However, JESS structure is very complicated and not so suitable for 

java implementation. So, Drools was best alternative for our work. 

 

Initial implementation was made by Drools 2.1. After this time, Drools Rule Engine is 

acquired by JBoss. This trade was proof the power of the Drools, because JBoss one of the 

most important open source software constitution. JBoss products are using many production 

environments, and now its rule engine is Drools(after here ,both JBoss Rule Engine and 

Drools Rule Engine are used in the same meaning). 

 

One drawback of this trade is; knowledge representation and implementation was slightly 

changed, and its version was Drools 3.x. So our initial works were reimplemented. 

 

Drools is an "augmented implementation of Charles Forgy's Rete algorithm. Rete algorithm  

is a popular approach to Forward Chaining, tailored for the Java language". Drools has 

implementations for both Rete and Leaps. The Drools Rete implementation is called ReteOO 

signifying that Drools has an enhanced and optimized implementation of the Rete algorithm 

for Object Oriented systems. 

 

In summary, open source business rule management systems might make more sense then 

their expensive commercial counterparts. JBoss Rules and Jess represent two of the better 

open source offerings out on the market. In this thesis, JBoss rule engine is chosen  for the 

below reasons: 
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It has 

• A very active community  

• Easy to use  

• Fast execution speed  

• Gaining popularity among Java developers  

• JSR 94-compliant (JSR 94 is the Java Rule Engine API)  

• Free  

After this summary about history of our rule engine works, JBoss rule engine architecture and 

its components should be explained. 

7.5. Architecture Of JBoss Rule Engine 

Drools is split into two main parts Authoring and Runtime. 

7.5.1. Authoring 

 

The authoring process involves the creation of drl or xml files for rules which are fed into a 

parser. The parser checks for correctly formed grammar and produces an intermediate 

structure, then passed to the Package Builder which produces Packages. Package Builder also 

undertakes any code generation and compilation that is necessary for the creation of the 

Package. A Package object is a self contained and deployable, in that it's serializable, object 

consisting of one or more rules (Proctor et al., 2006). 

 

 

Figure 7.1  JBoss authoring 
(Proctor et al., 2006) 
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7.5.2. Runtime 

 
A RuleBase is a runtime component which consists of one or more Package's. Packages can 

be added and removed from the RuleBase at any time. A Rule Base can instantiate one or 

more Working Memories at any time; a weak reference is maintained, unless it's told 

otherwise. The Working Memory consists of a number of sub components including Working 

Memory Event Support, Truth Maintenance System, Agenda and Agenda Event Support. 

Object assertion may result in the creation of one or more Activations, the agenda is 

responsible for scheduling the execution of these Activations (Proctor et al., 2006). 

 

 

 
 

Figure 7.2  JBoss runtime 
(Proctor et al., 2006) 
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7.5.3. Drools Rule Base 

 
A Rule Base contains one more packages of rules, ready to be used (i.e. they have been 

validated/compiled etc). A Rule Base is serializable so it can be deployed to JNDI, or other 

such services. Typically, a rule base would be generated and cached on first use; to save on 

the continually re-generation of the Rule Base; which is expensive (Proctor et al., 2006). 

 

 

 
 

Figure 7.3  Drools rule base 
 (Proctor et al., 2006) 

 
 
 

7.5.4. Drools Working Memory 

 

The Working Memory is the main Class for using the Rule Engine at runtime. It holds 

references to all data that has been "asserted" into it (until retracted) and it is the place where 

the interaction with your application occurs. Working memories are stateful objects. They 

may be shortlived, or longlived (Proctor et al., 2006). 
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Figure 7.4  Drools Working Memory 
(Proctor et al., 2006) 
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7.5.5. Knowledge Representation 

 

7.5.5.1. Rules 

 
A Production Rule, or Rule, in Drools is a two part structure with a Left Hand Side (LHS) 

and a Right Hand Side (RHS). Additionally a rule may have the following attributes: 

 

• salience 

• agenda-group 

• auto-focus 

• activation-group 

• no-loop 

• duration 

 

 
 

Figure 7.5  Procedural IF and drools rule 
 

The LHS of a Rule consists of Conditional Elements (CE) and Columns; to run the encoding 

of propositional and first order logic. The term Column is used to indicate Field Constraints 

on a Fact (Proctor et al., 2006). 

 

7.5.5.2. Facts 

 

Facts are objects (beans) from your application that you assert into the working memory. 

Facts are any java objects which the rules can access. The rule engine does not "clone" facts 

at all, it is all references/pointers at the end of the day. Facts are applications data. Strings and 

other classes without getters and setters are not valid Facts and can't be used with Field 

Constraints which rely on the JavaBean standard of getters and setters to interact with the 

object (Proctor et al., 2006). 
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7.5.6. The Rule Language 

 

Drools 3 has a "native" rule language that is non XML textual format. This format is very 

light in terms of punctuation, and supports natural and domain specific languages via 

"expanders" that allow the language to morph to your problem domain. 

 

A rule file is typically a file with a .drl extension. In a drl file you can have multiple rules, 

functions etc. However, rules can be spread across multiple rule files. Spreading rules across 

files can help with managing large numbers of rules. A DRL file is simply a text file. 

 

Domain specific languages are implemented as an enhancement over the native rule language. 

They use the "expander" mechanism. The expander mechanism is an extensible API, but by 

default it can work with .dsl files, which contain mappings from the domain or natural 

language to the rule language and your domain objects. 

 

As an option, Drools also supports a "native" rule language as an alternative to DRL. This 

allows to capture and manage the rules as XML data. Just like the non-XML DRL format, the 

XML format is parsed into the internal "AST" representation - as fast as possible (using a 

SAX parser). There is no external transformation step required. All the features are available 

with XML that are available to DRL (Proctor et al., 2006). 

 

7.6. Using Drools (Simple Example) 

 

In this chapter, a simple example will explained for giving answer the question  “how drools 

rule engine works”. This is classical hello world example which is a simple java class. It’s 

full name is gp.tez.jbossrule.HelloWorldExample. 

 

This example simple get messages, print to system out, modify the message and reprint 

modified message to the system out. For this operation two rules are written to the 

HelloWorld.drl file (Figure 7.6). 
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Figure 7.6  HelloWorld.drl file 

 
To run a drools application, some java libraries must be classpath. This list of jar files can be 

seen in Figure 7.7. 

 

 
Figure 7.7  Required library for Drools 
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After adding libraries, required classes should be imported (Figure 7.8). 

 

 

 
Figure 7.8  Importing  Packages 

 

At this point a new rule base can be created for the our rule set in the HelloWorld.drl file.  

 

 

Figure 7.9  Returning a rule base 
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A new working memory is created for the rule base, “Message” object (Figure 7.11) is 

asserted to this working memory and rules fired. 

 

 

Figure 7.10  Main part of the HelloWold example 
 

 

Figure 7.11  Message object 
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8. STANDARDIZATION OF RULE ENGINE 

 

The specification defines a Java API for rule engines. The API prescribes a set of 

fundamental rule engine operations. The set of operations is based on the assumption that 

most clients need to be able to execute a basic multiple-step rule engine cycle that consists of 

parsing rules, adding objects to an engine, firing rules, and getting resultant objects from the 

engine. 

 

This new API gives developers a standard way to access and execute rules at runtime. As 

implementations of this new spec ripen and are brought to the market, programming teams 

will be able to pull executive logic out of their applications. 

 

JSR 94 defines a simple API to access a rule engine from a Java SE or Java EE client. It 

provides APIs to  

 

• Register and unregister rules  

• Parse rules  

• Inspect rule metadata  

• Execute rules  

• Retrieve results  

• Filter results  

 

Note that JSR 94 does not standardize the following:  

 

• The rule engine itself  

• The execution flow for rules  

• The language used to describe the rules  

• The deployment mechanism for Java EE technology  

 

In other words, it doesn't standardize the semantics of rule execution (Mahmoud Q. H.,2005).  
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The goals of the specification are to: 

 

• Facilitate adding rule engine technology to Java applications. 

• Increase communication and standardization between rule engine vendors. 

• Encourage the creation of a market for third-party application and tool vendors 

through a standard rule engine API. 

• Facilitate embedding rule engine technology in other JSRs to support declarative 

programming models. 

• Promote independence of client code from J2SE environment. 

• Make Java applications more portable from one rule engine vendor to another. 

• Provide implementation patterns for rules-based applications for the J2SE platform. 

• Support rule engine vendors by offering a harmonized API that meets the needs of 

their existing customers and is easily implemented. 

8.1. Architecture Of JSR-94 

 

The interfaces and classes defined by the specification are in the javax.rules and 

javax.rules.admin packages. The javax.rules package contains classes and interfaces that are 

aimed at “runtime clients” of the rule engine. The runtime client API exposes methods to 

acquire a rule session for a registered rule execution set and interact with the rule session. The 

administrator API exposes methods to load an execution set from these external resources: 

URI, InputStream, XML Element, binary abstract syntax tree, or Reader. The administrator 

API also provides methods to register and unregister rule execution sets. Only registered rule 

execution sets are accessible through the runtime client API (Toussaint A., 2003). 

 

8.1.1. Runtime API 

 

The runtime API for the specification is defined in the javax.rules package. The high-

level capabilities of the runtime API are (Toussaint A., 2003): 

 

• Acquire an instance of a rule engine vendors RuleServiceProvider interface through 

the RuleServiceProviderManager class. 
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• Acquire an instance of the RuleRuntime interface through the RuleServiceProvider 

class. 

• Create a RuleSession through the RuleRuntime. 

• Get a java.util.List of registered URIs. 

• Interact with an acquired RuleSession. 

• Retrieve metadata for a RuleSession through the RuleExecutionSetMetadata interface. 

• Provide an ObjectFilter interface to filter the results of executing a RuleExecutionSet. 

• Use Handle instances to access objects added to a StatefulRuleSession. 

 

8.1.2. Rules Administrator API 

 

The administrator API for the specification is defined in the javax.rules.admin package. The 

high-level capabilities of the administrator API are (Toussaint A., 2003): 

 

• Acquire an instance of the RuleAdministrator interface through 

theRuleServiceProvider class. 

• Create a RuleExecutionSet from external Serializable or non-Serializable resources, as 

listed below: 

o org.w3c.dom.Element . for reading from an XML sub-document. 

o java.io.InputStream . for reading from binary streams. 

o java.lang.Object . for reading from vendor specific abstract-syntax-trees. 

o java.io.Reader . for reading from character streams. 

o java.lang.String . for reading from a URI. 

• Register a RuleExecutionSet object against a URI for use from the RuleRuntime. 

Registrations should be persistent and the rule engine vendor should clearly document 

the scope of a registration. 

• Deregister a RuleExecutionSet object from a URI so it is no longer accessible from 

the RuleRuntime. 

• Query the structural metadata of a RuleExecutionSet by retrieving a list of Rule 

objects from the RuleExecutionSet. 

• Set and get application or vendor specific properties on RuleExecutionSets and Rules. 
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8.2. Using JSR-94 With Drools (Simple Example) 

 

In this section, JSR-94 compliant HelloWorld example will be explained. To work with this 

simple example, two more parameters are required. First of them is “rule service provider” 

which is “http://drools.org/” in our example. And other one is “provider class” which is 

“org.drools.jsr94.rules.RuleServiceProviderImpl” for drools rule engine. 

 

Main part of this implementation is shown in Figure 8.1. Three external attributes are given as  

a system property. 

 

 

Figure 8.1  Main part of  JSR-94 compliant example 
 
 
After this, fireRule method is called. It’s content is in Figure 8.2. 
 
By changing the parameters, any different JSR-94 compliant rule engine can be used. This 

can be summarized the importance of the JSR-94. 
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Figure 8.2  Hello world JSR-94 example 
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9. A FRAMEWORK  FOR A LEARNING EXPERT SYSTEM 

 

A framework is an extensible semi-finished piece of software that represents a generic 

solution to a set of applications in a specific domain. A framework constitutes an ever- 

volving representation of our knowledge of the domain in terms of variations and 

commonalties. A very important point is that the framework design should not start by trying 

to model its variability and flexibility at once. Instead, a fixed application should be designed 

from the framework domain and generalize it only when the fixed case is understood. 

 

This thesis suggests a framework for a rule base learning expert system. It takes a data set, 

employs some learning algorithms, constructs a rule base, and presents a web based interface. 

9.1. Requirements For The Framework 

 

Each framework has some default assumptions. These assumptions can be defined as 

requirements of the framework. To employ framework,  all requirements should be satisfied. 

In this framework, requirements are given: 

 

• JDK 1.5.x should be installed 

• Apache Tomcat 5.5.x should be installed 

• All libraries must be on the classpath of the Tomcat 

• C:/ESM/ should exist as a “project folder” 

• A class should be created as a fact target class which acts as a bean. Contains 

attributes and their getter and setter methods. 

• Attributes of the targetClass must be String. 

• Target Class must be on "ClassPath" 

• "targetClassName".properties file also must be located under the "project folder" 

Should containbelow property pairs ; 

o targetClass=.. 

o DROOLS_RULE_SERVICE_PROVIDER_CLASS=.. 

o RULE_SERVICE_PROVIDER=.. 

• Data Set file must be start with "targetClassName_" 

• Attribute name’ first letter should be capital. 
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• Class attribute’s name must start with “Class” 

• Distinct attributes file must start with "targetClassName_" and end with 

"distinctValues" 

• Distinct attributes file must contains target java class full name 

• rule file (*.drl) must be under the "project folder" 

• rule file (*.drl) must like "targetClassName".drl 

 

9.2. Architecture of the Framework 

 

In this framework java technologies are used. There are mainly two parts. First of them is rule 

base construction part, and other is web interface part. Folder structures and java classes are 

shown in Figure 9.1. Their javadocs and jsp files can be found in Appendix I and II. 

 

 

 
Figure 9.1  Java based projects for the framework 

 

9.2.1. Constructing Rule Base 

 

First operation is getting data set. This data set should meet mentioned decision tree 

requirements. For example, its attributes should not be continuous. For continuous attributes a 
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small implementation is developed which is name ArrangeFile4DT. But this is just an 

optional helper tool. Our main focus is decision tree compliant data sets. 

 

Valid form of a data set can be found in Figure 9.2. First line of the data set should be names 

of the attributes. Last column represent class attribute. All attribute values should be 

separated with a comma. 

 

 

Figure 9.2  Content of  the Weather_DataSet.txt 
 
 

This valid data set can be processed by ID3 java implementation. This implementation 

presents three forms of rule sets. The first of them is if-then-else form Figure 9.3. This is the 

original output of the Dr.Benny Raphael ID3 java implementation. 

 

 

 
 

Figure 9.3  If-then-else form of  ID3 output 
 



54 

The other one is the rule list form which is one of the our extension of this implementation 

(Figure 9.4). This form is mainly used for middle step for controlling output. 

 

 
 

Figure 9.4  Rule list form of ID3 output 
 

 

The last one is the drl file format of the ID3 output (Figure 9.5). This is our focus for this 

study. This file will be used on the inference mechanism which is explained in the JBoss rule 

engine section.  ID3 implementation constructs all rules about data set and writes into a drl 

file in convenient format. 

 

 
 

Figure 9.5  drl output of ID3 output 
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Next part of the framework is obtaining distinct values of the data set. This process is the 

linkage of the rule base construction part and the web interface part. Its output is used for web 

based interface and constitutes web page for testing new cases. Two examples of the 

framework’s distinct values file can be found in Figure 9.6. 

 

 

 

Figure 9.6  Distinct values files 
 

9.2.2. Web Based Interface 

 

After getting distinct values file, web interface file can be used. It’s starting point is this file. 

It simply gets all attribute names and their possible values, and builds a page for selecting 

them for a new case. 

 

After submitting form, it calls rule engine routines. Because of this, all libraries must be on 

classpath. Then resulting page presents to the user. 

 

In this study Apache Tomcat 5.5 is used as open source servlet engine. But this part is 

optional. Because it is standard web application, it can be run any java based application 

server like WebSphere or Weblogic. 

 

9.2.2.1. RuleExecuter 

 

One of the most important phase for inference mechanism is getting rule in a standardized 

way and sending it to the rule engine. By means of java reflection technology, this goal can 

be achieved in this method (Figure 9.7 and Figure 9.8).   
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Figure 9.7  RuleExecuter method I 
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Figure 9.8  RuleExecuter method II 
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9.3. Framework Example 1 

 

First example is classic weather/Play tennis data set. Weather data set  has 14 lines and their 

attributes are “Outlook”, “Temperature”, ”Humidity” and “Windy”. Attribute’s possible 

values can be viewed in Figure 9.6. In the first page of the web interface weather data set’s 

distinct values option should be chosen (Figure 9.9). 

 

 

Figure 9.9  Example 1 choosing data set 
 
 
After choosing distinct file, interface reads the attributes and their possible values, then 

constructs a question form (Figure 9.10). With help of this form, we can try new options for 

the attributes. 
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Figure 9.10  Example 1 testing new case 
 
 
 
After setting all attributes and submitting form, interface starts inference mechanism for given 

attribute values. At the end of process, form result page is constructed. In this form selected 

attributes and result are displayed (Figure 9.11). 
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Figure 9.11  Example 1 result page 
 
 

9.4. Framework Example 2 

 

A framework should work with different inputs. To prove that, an other example is needed. 

For this reason CarAccept data set will be used. This data set is bigger than first data set. It 

has 1728 lines. Attributes of this data set are “Price”, “MaintCost”, “Doors”, “Persons”, 

“TrunkSize” and “Safety”. Their possible values are declared in Figure 10.5. 

 

Other main difference of this example from first one is, its class values are “unacceptable” 

(unacc), “acceptable” (acc), “very good” (vgood) and “good” (good), totally four possible 

cases. At the first example, there was only two class variables; play or not play. 

 

Screenshots of this example can be viewed in Figure 9.12, Figure 9.13 and Figure 9.14. 
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Figure 9.12  Example 2 choosing data set 
 

 

 

 

Figure 9.13  Example 2 testing new case 
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Figure 9.14  Example 2 result page 
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10. RULE DECLARATION FILE (DRL FILES) EDITOR 

 

To complete the study as a framework one more thing is needed. In some circumstances rule 

file could be not sufficient or not fit the real life exactly. For this cases rule file should be 

edited by a professional user. This user should be aware of JBoss rule language. For this 

reason a tool is developed as swing based java application (Figure 10.1). 

 

 

 

Figure 10.1  Rule file editor 
 

 

At the initial screen, there are five boxes which can be defined as rule name container, rule 

file header area, rule attribute area, LHS area and RHS area. 
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To editing a rule file, target drl file should be selected from the file system. Whenever 

selecting target file, its content is read and boxes are filled by related information (Figure 

10.2). 

 

 

 

Figure 10.2  Rule editing 
 

By means of selecting a rule in the rule container, rule information are changed automatically 

on the three boxes which is right hand side of the rule container. These three boxes are 

editable. User can change the information in these boxes. After changing rule should be 

saved. Saving is done on the memory. Whenever finish change operation rule file can be 

updated by “update rule file” button. 
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11. DISCUSSIONS 

 

We often meet decision-making problems in our daily life or working environment. 

Sometimes it is very difficult for us to make good decision. In practice, we usually use our 

past experiences to make a decision. We can see these past experiences as a form of 

performing experiments to come to a correct decision. However, executing experiments costs 

time and money. Fortunately, the developments of computer technologies and automatic 

learning techniques can make this easier and more efficient. In the domain of machine 

learning where it always lets computers decide or come up with suggestions for the right 

decision, there exist many approaches of decision making techniques, such as decision trees, 

artificial neural networks and Bayesian learning. This thesis focuses on the decision tree 

approach to solve decision making problems. 

 

There exist many methods to do decision analysis. Each method has its own advantages and 

disadvantages. In machine learning, decision tree learning is one of the most popular 

techniques for making classifications decisions in pattern recognition. 

 

The approach of decision tree is used in many areas because it has many advantages. 

Compared with maximum likelihood and version spaces methods, decision tree is the 

quickest, especially under the condition that the concept space is large. Furthermore, it is easy 

to do the data preparation and to understand for non-technical people (Liang G., 2005). 

 

Decision tree learning algorithm has been successfully used in expert systems in capturing 

knowledge. The main task performed in these systems is using inductive methods to the given 

values of attributes of an unknown object to determine appropriate classification according to 

decision tree rules. 

 

Expert systems provide a strong rationale for continued funding of research on machine 

learning, but they also serve to sharpen our understanding of problems. Expert systems offer a 

focus for development of new machine learning methods and better understanding of old 

ones(Buchanan B.G., 1989). 
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There is a large class of expert systems whose purpose is essentially to classify cases, for 

example to diagnose disease from symptoms. Expert systems have become an important 

decision making tool in many organizations. Some of the benefits attributed to expert systems 

include increased quality, reduced decision making time, and reduced downtime. Examples of 

successful expert systems are reported in many areas such as ticket auditing, trouble shooting, 

risk analysis ,computer system design, and building construction. 

 

An expert system has mainly two parts, rule base and inference engine. The inference engine 

is the mechanism by which the search for conclusions or reasoning is conducted using a 

search strategy of the knowledge built in the rule base. These search strategies could be either 

or both the forward and backward reasoning. The inference engine is located between the 

rule-base and the user interface where it accepts inputs from the user and tries to draw a 

conclusion or answer with reasoning a users' question. 

 

These two main parts can be handled by a rule engine. Rule engine features are described as 

below on the JSR-94 specification document. 

 

• Promote declarative programming by externalizing business or application logic. 

• Include a documented file-format or tools to author rules and rule execution sets 

external to the application. 

• Act upon input objects to produce output objects. Input objects are often referred to as 

facts and are a representation of the state of the application domain. Output objects are 

often referred to as conclusions or inferences and are grounded by the application into 

the application domain. 

• The rule engine may execute actions directly, which affect the application domain, 

input objects, the execution cycle, rules, or the rule engine. 

• The rule engine may merely create output objects, delegating the interpretation and 

execution of the output objects to the caller. 

 

 In this thesis “Drools Rule Engine” is used. Drools (The JBoss Rules Engine) is a JSR-94 

complaint rules engine , and is fully open source under an “Apache-Style” License. Not only 

does it express rules in a familiar Java and XML syntax , it has a strong user and developer 
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community. Other advantage of this rule engine is; RETE based highly efficient object 

oriented algotihm is used for the inference engine. 

 

All implementations are done by means of the java technologies and open source tools for 

this framework. Result of this approach, this framework can be used all environment without 

any license restriction. 
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12. CONCLUSION  

 

In this thesis a “Rule Based Expert System Framework” is presented. Adopting a rule-based 

approach for the framework has the following advantages:  

 

• Rules that represent policies are easily communicated and understood.  

• Rules retain a higher level of independence than conventional programming 

languages.  

• Rules separate knowledge from its implementation logic.  

• Rules can be changed without changing source code; thus, there is no need to 

recompile the application's code.  

 

This study is an example of fully open source java projects. Two main parts can be expressed 

for this framework, rule base construction part and web interface part. In rule base 

construction part, a rule set is derived from a data set  by means of ID3 decision tree 

algorithm. For web based interface a web application, which can be run any java based servlet 

engine, is developed. This web application act as an expert system which is used JBoss Rule 

Engine as an inference mechanism. In addition these parts some utility applications, like drl 

file editor, are prepared. 

 

For the future plan, this study can be applied for the more complex environments. An 

implementation on the portal system, an implementation on the workflow process engine (eg. 

BPEL engine) or an implementation on the enterprise service bus virtualization can be set an 

example of the complex environment implementations. These types of environments have 

lots of rules and need good rule engine implementations.  
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APPENDIX I. JAVADOCS OF THE  JAVA CLASSES 

 

gp.tez.jbossrule  
Class RuleExecuter 
java.lang.Object 

  | 

  +--gp.tez.jbossrule.RuleExecuter 

 

public class RuleExecuter  

extends java.lang.Object 

This class executes the rule. drl file name is required. if JSR94 is used additionally 
RULE_SERVICE_PROVIDER and DROOLS_RULE_SERVICE_PROVIDER_CLASS 
attributes required.  

Version:  

1.1  

Author:  

gokhan polat  

 

Constructor Summary  

RuleExecuter()  
  

 

Method 
Summary 

 

void fireRule()  
fire rule by means of normal jbossrule procedure 

void fireRuleJSR94()  
fire rule by means of JSR94 standard procedure 

java.lang.String getDrlName()  
 

java.lang.String getDROOLS_RULE_SERVICE_PROVIDER_CLASS()  
 

java.lang.Object getObject()  
 

java.lang.String getRULE_SERVICE_PROVIDER()  
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org.drools.RuleBase readRule()  
 

void setDrlName(java.lang.String drlName)  
 

void setDROOLS_RULE_SERVICE_PROVIDER_CLASS(java.lang.String 
drools_rule_service_provider_class)  
 

void setObject(java.lang.Object object)  
 

void setRULE_SERVICE_PROVIDER(java.lang.String 
rule_service_provider)  
 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 

 

RuleExecuter 
public RuleExecuter() 

 

Method Detail 

 

fireRule 
public void fireRule() 

fire rule by means of normal jbossrule procedure 

readRule 
public org.drools.RuleBase readRule() 

fireRuleJSR94 
public void fireRuleJSR94() 

fire rule by means of JSR94 standard procedure 

getDROOLS_RULE_SERVICE_PROVIDER_CLASS 
public java.lang.String getDROOLS_RULE_SERVICE_PROVIDER_CLASS() 

setDROOLS_RULE_SERVICE_PROVIDER_CLASS 
public void setDROOLS_RULE_SERVICE_PROVIDER_CLASS(java.lang.String 

drools_rule_service_provider_class) 
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getRULE_SERVICE_PROVIDER 
public java.lang.String getRULE_SERVICE_PROVIDER() 

setRULE_SERVICE_PROVIDER 
public void setRULE_SERVICE_PROVIDER(java.lang.String 

rule_service_provider) 

getObject 
public java.lang.Object getObject() 

setObject 
public void setObject(java.lang.Object object) 

getDrlName 
public java.lang.String getDrlName() 

setDrlName 
public void setDrlName(java.lang.String drlName) 

 

 
 
 

gp.tez.utils  
Class ID3 
java.lang.Object 

  | 

  +--gp.tez.utils.ID3 

 

public class ID3  

extends java.lang.Object 

A simple implementation of the ID3 algorithm This is a modified version to make my code 
closer to the standard ID3 algorithm  

Version:  

Dec. 13 2004, updated Sep 2006  

Author:  

Dr. Benny Raphael , updated by Gokhan Polat with the permission from author  

 

 

Constructor Summary  

ID3(java.lang.String infileName)  
  

ID3(java.lang.String infileName, java.lang.String 

resultClass)  
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Method 
Summary 

 

boolean alreadyUsedToDecompose(gp.tez.utils.ID3.TreeNode node, int 
attribute)  
This function checks if the specified attribute is used to decompose the 
data set in any of the parents of the specfied node in the decomposition 
tree. 

double calculateEntropy(java.util.Vector data)  
Calculates the entropy of the set of data points. 

void createRules4File(gp.tez.utils.ID3.TreeNode node, 
java.lang.String tab, java.io.BufferedWriter out, 

java.lang.String shortClassName)  
 

void decomposeNode(gp.tez.utils.ID3.TreeNode node)  
This function decomposes the specified node according to the ID3 
algorithm. 

int[] getAllValues(java.util.Vector data, int attribute)  
Returns all the values of the specified attribute in the data set 

java.util.Vector getSubset(java.util.Vector data, int attribute, int value)  
 

int getSymbolValue(int attribute, java.lang.String symbol)  
This function returns an integer corresponding to the symbolic value of 
the attribute. 

void listRules(gp.tez.utils.ID3.TreeNode node, java.lang.String 
tab)  
 

static void main(java.lang.String[] args)  
 

void printTree(gp.tez.utils.ID3.TreeNode node, java.lang.String 
tab)  
 

int readData(java.lang.String filename)  
Function to read the data file. 

void runCreateRuleFile()  
This function prints the rules to a .drl file.. 

void runListRules()  
This function prints the rules as a sentence.. 

void runPrintTree()  
This function prints the decision tree in the form of if/then/else structure. 



76 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 

 

ID3 
public ID3(java.lang.String infileName, 

           java.lang.String resultClass) 

ID3 
public ID3(java.lang.String infileName) 

 

Method Detail 

 

getSymbolValue 
public int getSymbolValue(int attribute, 

                          java.lang.String symbol) 

This function returns an integer corresponding to the symbolic value of the attribute. If the 
symbol does not exist in the domain, the symbol is added to the domain of the attribute 

getAllValues 
public int[] getAllValues(java.util.Vector data, 

                          int attribute) 

Returns all the values of the specified attribute in the data set 

getSubset 
public java.util.Vector getSubset(java.util.Vector data, 

                                  int attribute, 

                                  int value) 

calculateEntropy 
public double calculateEntropy(java.util.Vector data) 

Calculates the entropy of the set of data points. The entropy is calculated using the values 
of the output attribute which is the last element in the array attribtues 

alreadyUsedToDecompose 
public boolean alreadyUsedToDecompose(gp.tez.utils.ID3.TreeNode node, 

                                      int attribute) 

This function checks if the specified attribute is used to decompose the data set in any of 
the parents of the specfied node in the decomposition tree. Recursively checks the 
specified node as well as all parents 
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decomposeNode 
public void decomposeNode(gp.tez.utils.ID3.TreeNode node) 

This function decomposes the specified node according to the ID3 algorithm. Recursively 
divides all children nodes until it is not possible to divide any further I have changed this 
code from my earlier version. I believe that the code in my earlier version prevents 
useless decomposition and results in a better decision tree! This is a more faithful 
implementation of the standard ID3 algorithm 

readData 
public int readData(java.lang.String filename) 

             throws java.lang.Exception 

Function to read the data file. The first line of the data file should contain the names of all 
attributes. The number of attributes is inferred from the number of words in this line. The 
last word is taken as the name of the output attribute. Each subsequent line contains the 
values of attributes for a data point. If any line starts with // it is taken as a comment and 
ignored. Blank lines are also ignored. 

runPrintTree 
public void runPrintTree() 

This function prints the decision tree in the form of if/then/else structure. The action part 
of the rule is of the form outputAttribute = "symbolicValue" or outputAttribute = { 
"Value1", "Value2", .. } The second form is printed if the node cannot be decomposed 
any further into an homogenous set 

printTree 
public void printTree(gp.tez.utils.ID3.TreeNode node, 

                      java.lang.String tab) 

runListRules 
public void runListRules() 

This function prints the rules as a sentence.. 

listRules 
public void listRules(gp.tez.utils.ID3.TreeNode node, 

                      java.lang.String tab) 

runCreateRuleFile 
public void runCreateRuleFile() 

This function prints the rules to a .drl file.. 

createRules4File 
public void createRules4File(gp.tez.utils.ID3.TreeNode node, 

                             java.lang.String tab, 

                             java.io.BufferedWriter out, 

                             java.lang.String shortClassName) 

main 
public static void main(java.lang.String[] args) 

                 throws java.lang.Exception 
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gp.tez.utils  
Class FindDistinctValuesFromFile 
java.lang.Object 

  | 

  +--gp.tez.utils.FindDistinctValuesFromFile 

 

public class FindDistinctValuesFromFile  

extends java.lang.Object 

for Expert System Web Interface , *_distinctValues file needed. this file is generated from 
data set file by means of this program  

Version:  

1.0  

Author:  

gokhan polat  

 

Constructor Summary  

FindDistinctValuesFromFile()  
  

FindDistinctValuesFromFile(java.lang.String fileName_p)  
  

 

Method 
Summary 

 

static void main(java.lang.String[] args)  
 

boolean makeNewFile(java.lang.String filename)  
make _distictValues file 

int readData(java.lang.String filename)  
reading data from source data set file 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 
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FindDistinctValuesFromFile 
public FindDistinctValuesFromFile() 

FindDistinctValuesFromFile 
public FindDistinctValuesFromFile(java.lang.String fileName_p) 

 

Method Detail 

 

readData 
public int readData(java.lang.String filename) 

reading data from source data set file  

Parameters:  

filename -  

Returns:  

int 

 

makeNewFile 
public boolean makeNewFile(java.lang.String filename) 

make _distictValues file  

Parameters:  

filename -  

Returns:  

boolean 

 

 

main 
public static void main(java.lang.String[] args) 
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gp.tez.utils  
Class ArrangeFile4DT 
java.lang.Object 

  | 

  +--gp.tez.utils.ArrangeFile4DT 

 

public class ArrangeFile4DT  

extends java.lang.Object 

Arranges dataset file to the acceptable format for decision tree algorithm  

Version:  

1.0  

Author:  

gokhan polat  

 

Constructor Summary  

ArrangeFile4DT()  
  

ArrangeFile4DT(java.lang.String fileName_p, java.lang.String 

divideConstant_p)  
 

 

 

Method 
Summary 

 

static void main(java.lang.String[] args)  
 

boolean makeNewFile(java.lang.String filename)  
new file for decision tree alg. 

int readData(java.lang.String filename)  
reading data from source data set file 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 
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ArrangeFile4DT 
public ArrangeFile4DT() 

ArrangeFile4DT 
public ArrangeFile4DT(java.lang.String fileName_p, 

                      java.lang.String divideConstant_p) 

 

Method Detail 

 

readData 
public int readData(java.lang.String filename) 

reading data from source data set file 

makeNewFile 
public boolean makeNewFile(java.lang.String filename) 

new file for decision tree alg.  

Parameters:  

filename -  

Returns:  

boolean 

 

main 
public static void main(java.lang.String[] args) 
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gp.tez.utils  
Class Weather 
java.lang.Object 

  | 

  +--gp.tez.utils.Weather 

 

public class Weather  

extends java.lang.Object 

Weather bean. has only getter and setter methods.  

Version:  

1.0  

Author:  

gokhan polat  

 

Constructor Summary  

Weather()  
  

 

Method 
Summary 

 

java.lang.String getHumidity()  
 

java.lang.String getOutlook()  
 

java.lang.String getResult()  
 

java.lang.String getTempreature()  
 

java.lang.String getWindy()  
 

void setHumidity(java.lang.String humidity)  
 

void setOutlook(java.lang.String outlook)  
 

void setResult(java.lang.String result)  
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void setTempreature(java.lang.String tempreature)  
 

void setWindy(java.lang.String windy)  
 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 

Weather 
public Weather() 

Method Detail 

 

getHumidity 
public java.lang.String getHumidity() 

setHumidity 
public void setHumidity(java.lang.String humidity) 

getOutlook 
public java.lang.String getOutlook() 

setOutlook 
public void setOutlook(java.lang.String outlook) 

getResult 
public java.lang.String getResult() 

setResult 
public void setResult(java.lang.String result) 

getTemperature 
public java.lang.String getTemperature() 

setTemperature 
public void setTemperature(java.lang.String tempreature) 

getWindy 
public java.lang.String getWindy() 

setWindy 
public void setWindy(java.lang.String windy) 
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gp.tez.utils  
Class CarAccept 
java.lang.Object 

  | 

  +--gp.tez.utils.CarAccept 

 

public class CarAccept  

extends java.lang.Object 

CarAccept bean. has only getter and setter methods.  

Version:  

1.0  

Author:  

gokhan polat  

 

Constructor Summary  

CarAccept()  
  

 

Method 
Summary 

 

java.lang.String getDoors()  
 

java.lang.String getMaintCost()  
 

java.lang.String getPersons()  
 

java.lang.String getPrice()  
 

java.lang.String getResult()  
 

java.lang.String getSafety()  
 

java.lang.String getTrunkSize()  
 

void setDoors(java.lang.String doors)  
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void setMaintCost(java.lang.String maintCost)  
 

void setPersons(java.lang.String persons)  
 

void setPrice(java.lang.String price)  
 

void setResult(java.lang.String result)  
 

void setSafety(java.lang.String safety)  
 

void setTrunkSize(java.lang.String trunkSize)  
 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 

 

CarAccept 
public CarAccept() 

 

Method Detail 

 

getDoors 
public java.lang.String getDoors() 

setDoors 
public void setDoors(java.lang.String doors) 

getMaintCost 
public java.lang.String getMaintCost() 

setMaintCost 
public void setMaintCost(java.lang.String maintCost) 

getPersons 
public java.lang.String getPersons() 

setPersons 
public void setPersons(java.lang.String persons) 
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getPrice 
public java.lang.String getPrice() 

setPrice 
public void setPrice(java.lang.String price) 

getResult 
public java.lang.String getResult() 

setResult 
public void setResult(java.lang.String result) 

getSafety 
public java.lang.String getSafety() 

setSafety 
public void setSafety(java.lang.String safety) 

getTrunkSize 
public java.lang.String getTrunkSize() 

setTrunkSize 
public void setTrunkSize(java.lang.String trunkSize) 
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gp.tez.ruleadmin  
Class RuleAdmin 
java.lang.Object 

  | 

  +--gp.tez.ruleadmin.RuleAdmin 

 

public class RuleAdmin  

extends java.lang.Object 

This is utility program. by means of this , drl files can be edited easily.  

Version:  

1.3  

Author:  

gokhan polat  

Field Summary  

java.lang.String RAdmin_HOME  
 

 

Constructor Summary  

RuleAdmin()  
  

 

Method Summary  

boolean initConsole()  
 

static void log(java.lang.String msg)  
 

static void main(java.lang.String[] args)  
 

void setMenu()  
buils menu ******* 

void settingRoot()  
 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
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Field Detail 

 

RAdmin_HOME 
public java.lang.String RAdmin_HOME 

 

Constructor Detail 

 

RuleAdmin 
public RuleAdmin() 

 

Method Detail 

 

initConsole 
public boolean initConsole() 

settingRoot 
public void settingRoot() 

setMenu 
public void setMenu() 

buils menu ******* 

main 
public static void main(java.lang.String[] args) 

log 
public static void log(java.lang.String msg) 
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gp.tez.ruleadmin  
Class DrlEditor 
java.lang.Object 

  | 

  +--java.awt.Component 

        | 

        +--java.awt.Container 

              | 

              +--javax.swing.JComponent 

                    | 

                    +--javax.swing.JPanel 

                          | 

                          +--gp.tez.ruleadmin.DrlEditor 

All Implemented Interfaces:  

javax.accessibility.Accessible, java.awt.image.ImageObserver, java.awt.MenuContainer, 
java.io.Serializable  

 

public class DrlEditor  

extends javax.swing.JPanel 

this class generates JPanel for drl editing  

Version:  

1.3  

Author:  

gokhan polat  

See Also:  

Serialized Form 

Inner classes inherited from class javax.swing.JComponent 

javax.swing.JComponent.AccessibleJComponent 

 

Fields inherited from class javax.swing.JComponent 

TOOL_TIP_TEXT_KEY, UNDEFINED_CONDITION, WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, 

WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW 

 

Fields inherited from class java.awt.Component 

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT, 

TOP_ALIGNMENT 

 

Fields inherited from interface java.awt.image.ImageObserver 

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH 
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Constructor Summary  

DrlEditor(java.lang.String RAdmin_Home)  
  

Method 
Summary 

 

void addRule()  
adding new rule to the rule list 

void analyzeRuleFromString(java.lang.String str, Rule rule)  
analize the rules inside the drl file 

void fileChoose()  
choosing the rule file for editing 

boolean init()  
 

static void log(java.lang.String msg)  
generic sysout 

boolean readDrlFile()  
 

void showRuleDetail(java.lang.String ruleName)  
shows rule detail 

void updateRule()  
updates rule attributes 

void updateRuleFile()  
after updating rule new file generated 

 

Methods inherited from class javax.swing.JPanel 

getAccessibleContext, getUIClassID, updateUI 

Methods inherited from class javax.swing.JComponent 

addAncestorListener, addNotify, addPropertyChangeListener, 

addPropertyChangeListener, addVetoableChangeListener, computeVisibleRect, 

contains, createToolTip, disable, enable, firePropertyChange, 

firePropertyChange, firePropertyChange, firePropertyChange, 

firePropertyChange, firePropertyChange, firePropertyChange, 

firePropertyChange, getActionForKeyStroke, getActionMap, getAlignmentX, 

getAlignmentY, getAutoscrolls, getBorder, getBounds, getClientProperty, 

getConditionForKeyStroke, getDebugGraphicsOptions, getGraphics, getHeight, 

getInputMap, getInputMap, getInputVerifier, getInsets, getInsets, 

getListeners, getLocation, getMaximumSize, getMinimumSize, 

getNextFocusableComponent, getPreferredSize, getRegisteredKeyStrokes, 

getRootPane, getSize, getToolTipLocation, getToolTipText, getToolTipText, 
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getTopLevelAncestor, getVerifyInputWhenFocusTarget, getVisibleRect, getWidth, 

getX, getY, grabFocus, hasFocus, hide, isDoubleBuffered, isFocusCycleRoot, 

isFocusTraversable, isLightweightComponent, isManagingFocus, 

isMaximumSizeSet, isMinimumSizeSet, isOpaque, isOptimizedDrawingEnabled, 

isPaintingTile, isPreferredSizeSet, isRequestFocusEnabled, isValidateRoot, 

paint, paintImmediately, paintImmediately, print, printAll, 

putClientProperty, registerKeyboardAction, registerKeyboardAction, 

removeAncestorListener, removeNotify, removePropertyChangeListener, 

removePropertyChangeListener, removeVetoableChangeListener, repaint, repaint, 

requestDefaultFocus, requestFocus, resetKeyboardActions, reshape, revalidate, 

scrollRectToVisible, setActionMap, setAlignmentX, setAlignmentY, 

setAutoscrolls, setBackground, setBorder, setDebugGraphicsOptions, 

setDoubleBuffered, setEnabled, setFont, setForeground, setInputMap, 

setInputVerifier, setMaximumSize, setMinimumSize, setNextFocusableComponent, 

setOpaque, setPreferredSize, setRequestFocusEnabled, setToolTipText, 

setVerifyInputWhenFocusTarget, setVisible, unregisterKeyboardAction, update 

Methods inherited from class java.awt.Container 

add, add, add, add, add, addContainerListener, countComponents, deliverEvent, 

doLayout, findComponentAt, findComponentAt, getComponent, getComponentAt, 

getComponentAt, getComponentCount, getComponents, getLayout, insets, 

invalidate, isAncestorOf, layout, list, list, locate, minimumSize, 

paintComponents, preferredSize, printComponents, remove, remove, removeAll, 

removeContainerListener, setLayout, validate 

Methods inherited from class java.awt.Component 

action, add, addComponentListener, addFocusListener, 

addHierarchyBoundsListener, addHierarchyListener, addInputMethodListener, 

addKeyListener, addMouseListener, addMouseMotionListener, bounds, checkImage, 

checkImage, contains, createImage, createImage, dispatchEvent, enable, 

enableInputMethods, getBackground, getBounds, getColorModel, 

getComponentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, 

getForeground, getGraphicsConfiguration, getInputContext, 

getInputMethodRequests, getLocale, getLocation, getLocationOnScreen, getName, 

getParent, getPeer, getSize, getToolkit, getTreeLock, gotFocus, handleEvent, 

imageUpdate, inside, isDisplayable, isEnabled, isLightweight, isShowing, 

isValid, isVisible, keyDown, keyUp, list, list, list, location, lostFocus, 

mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, 

nextFocus, paintAll, postEvent, prepareImage, prepareImage, remove, 

removeComponentListener, removeFocusListener, removeHierarchyBoundsListener, 

removeHierarchyListener, removeInputMethodListener, removeKeyListener, 

removeMouseListener, removeMouseMotionListener, repaint, repaint, repaint, 

resize, resize, setBounds, setBounds, setComponentOrientation, setCursor, 

setDropTarget, setLocale, setLocation, setLocation, setName, setSize, 

setSize, show, show, size, toString, transferFocus 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait 

 

Constructor Detail 
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DrlEditor 
public DrlEditor(java.lang.String RAdmin_Home) 

Method Detail 

init 
public boolean init() 

fileChoose 
public void fileChoose() 

choosing the rule file for editing 

log 
public static void log(java.lang.String msg) 

generic sysout 

addRule 
public void addRule() 

adding new rule to the rule list 

updateRule 
public void updateRule() 

updates rule attributes 

updateRuleFile 
public void updateRuleFile() 

after updating rule new file generated 

readDrlFile 
public boolean readDrlFile() 

analyzeRuleFromString 
public void analyzeRuleFromString(java.lang.String str, 

                                  Rule rule) 

analize the rules inside the drl file  

Parameters:  

str -  

rule -  

 

showRuleDetail 
public void showRuleDetail(java.lang.String ruleName) 

shows rule detail  

Parameters:  

ruleName -  
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gp.tez.ruleadmin  
Class Rule 
java.lang.Object 

  | 

  +--gp.tez.ruleadmin.Rule 

public class Rule  

extends java.lang.Object 

Rule bean. has only getter and setter methods.  

Version:  

1.0  

Author:  

gokhan polat  

Constructor Summary  

Rule()  
  

Method 
Summary 

 

java.lang.String getAttribute()  
 

java.lang.String getLHS()  
 

java.lang.String getName()  
 

java.lang.String getRHS()  
 

void setAttribute(java.lang.String attribute)  
 

void setLHS(java.lang.String lhs)  
 

void setName(java.lang.String name)  
 

void setRHS(java.lang.String rhs)  
 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
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Constructor Detail 

 

Rule 
public Rule() 

 

Method Detail 

 

 

getAttribute 
public java.lang.String getAttribute() 

setAttribute 
public void setAttribute(java.lang.String attribute) 

getLHS 
public java.lang.String getLHS() 

setLHS 
public void setLHS(java.lang.String lhs) 

getName 
public java.lang.String getName() 

setName 
public void setName(java.lang.String name) 

getRHS 
public java.lang.String getRHS() 

setRHS 
public void setRHS(java.lang.String rhs) 
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es.servlet  
Class ESManager 
java.lang.Object 

  | 

  +--javax.servlet.GenericServlet 

        | 

        +--javax.servlet.http.HttpServlet 

              | 

              +--es.servlet.ESManager 

All Implemented Interfaces:  

java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig  

 

public class ESManager  

extends javax.servlet.http.HttpServlet 

Version:  

1.0  

See Also:  

Serialized Form 

 

 

Constructor Summary  

ESManager()  
  

 

Method 
Summary 

 

void destroy()  
 

void doGet(javax.servlet.http.HttpServletRequest req, 
javax.servlet.http.HttpServletResponse resp)  
 

void doPost(javax.servlet.http.HttpServletRequest req, 
javax.servlet.http.HttpServletResponse resp)  
 

void init()  
 

void performTask(javax.servlet.http.HttpServletRequest req, 
javax.servlet.http.HttpServletResponse resp)  
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void readProp()  
 

 

Methods inherited from class javax.servlet.http.HttpServlet 

service 

 

Methods inherited from class javax.servlet.GenericServlet 

getInitParameter, getInitParameterNames, getServletConfig, getServletContext, 

getServletInfo, getServletName, init, log, log 

 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

 

Constructor Detail 

 

ESManager 
public ESManager() 

 

Method Detail 

 

destroy 
public void destroy() 

Overrides:  

destroy in class javax.servlet.GenericServlet 

See Also:  
() 

doGet 
public void doGet(javax.servlet.http.HttpServletRequest req, 

                  javax.servlet.http.HttpServletResponse resp) 

           throws javax.servlet.ServletException, 

                  java.io.IOException 

See Also:  

(javax.servlet.http.HttpServletRequest, 

javax.servlet.http.HttpServletResponse) 
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doPost 
public void doPost(javax.servlet.http.HttpServletRequest req, 

                   javax.servlet.http.HttpServletResponse resp) 

            throws javax.servlet.ServletException, 

                   java.io.IOException 

See Also:  
(javax.servlet.http.HttpServletRequest, 

javax.servlet.http.HttpServletResponse) 

init 
public void init() 

          throws javax.servlet.ServletException 

Overrides:  

init in class javax.servlet.GenericServlet 

See Also:  
() 

performTask 
public void performTask(javax.servlet.http.HttpServletRequest req, 

                        javax.servlet.http.HttpServletResponse resp) 

readProp 
public void readProp() 

 

 

 

 

 

 

 

es.bean  
Class ReadDistinctValueFile 
java.lang.Object 

  | 

  +--es.bean.ReadDistinctValueFile 

public class ReadDistinctValueFile  

extends java.lang.Object 

Author:  

gokhan polat  

Constructor Summary  

ReadDistinctValueFile()  
  

Method 
Summary 

 

boolean findOptions()  
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java.util.Hasht

able 
getAttributes()  
 

java.lang.Strin

g 
getFileName()  
 

java.lang.Strin

g 
getFormText()  
 

void setAttributes(java.util.Hashtable attributes)  
 

void setFileName(java.lang.String fileName)  
 

void setFormText(java.lang.String formText)  
 

Methods inherited from class java.lang.Object 

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

Constructor Detail 

ReadDistinctValueFile 
public ReadDistinctValueFile() 

Method Detail 

getFormText 
public java.lang.String getFormText() 

setFormText 
public void setFormText(java.lang.String formText) 

getAttributes 
public java.util.Hashtable getAttributes() 

setAttributes 
public void setAttributes(java.util.Hashtable attributes) 

getFileName 
public java.lang.String getFileName() 

setFileName 
public void setFileName(java.lang.String fileName) 

findOptions 
public boolean findOptions()  
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APPENDIX II. JSP FILES 

 
********************* 
FindFile.jsp 
********************* 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 

<HTML> 

<HEAD> 

<%@ page  

language="java" 

contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8" 

%> 

<%!  

       public void jspInit() { 

        

       } 

       public void jspDestroy() { 

        

       } 

%> 

<META http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<META name="GENERATOR" content="IBM WebSphere Studio"> 

</HEAD> 

<BODY> 

<h1 align="center">CHOOSE THE FORM</h1> 

<HR> 

<FORM action="/ES/ESManager" method="post" > 

<TABLE border="1" align="center"> 

 <TBODY > 

<%  

 String ESMDir = "C:/ESM/"; 

%> 

  <h2 align="center" style="color: maroon">Location of the 

DistinctFiles is : </h2> 

  <h3 align="center" style="color: maroon"><%=ESMDir%></h3> 

<% 

 java.io.File b = new java.io.File(ESMDir); 

 java.io.File[] fileName = b.listFiles(); 

 int i=0; 

 String cls=""; 

 String ara=""; 

 java.util.Enumeration jarEntries; 

 while (i < fileName.length) { 

  if(fileName[i].toString().endsWith("distinctValues") ){  

%> 

  <TR> 

   <TD style="color: 

blue"><%="\""+fileName[i].getName()+"\""  %> :</TD> 

   <TD><input type='radio' name='fileOpt' value= 

<%=fileName[i].getName()  %> /></TD> 

  </TR> 

<%    

  } 

   

 ++i;  

 } 

 %> 
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 </TBODY> 

</TABLE> 

 <p align="center"><INPUT type="submit" name="SubmitButton" value="Choose 

Distinct Value File"></p> 

<INPUT type="hidden" name="operation" value="READFORM">  

 </FORM> 

</BODY> 

</HTML> 

 
 
 
 
********************* 
RuleAnswers.jsp 
********************* 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 

<HTML> 

<HEAD> 

<%@ page  

language="java" 

contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8" 

%> 

<%!  

       public void jspInit() { 

        

       } 

       public void jspDestroy() { 

        

       } 

%> 

<% 

 java.util.Hashtable rAttribute = (java.util.Hashtable) 

request.getAttribute("rAttribute"); 

 String formText = (String) request.getAttribute("formText"); 

%> 

<META http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<META name="GENERATOR" content="IBM WebSphere Studio"> 

<META http-equiv="Content-Style-Type" content="text/css"> 

</HEAD> 

<BODY> 

<h1 align="center">QUESTION FORM</h1> 

<h3 align="center" style='color: red'><%=formText  %></h3> 

<FORM action="/ES/ESManager" method="post" > 

<HR> 

<%  

 java.util.Enumeration e = rAttribute.keys(); 

 int i = 1; 

 while (e.hasMoreElements()) { 

  String element = (String) e.nextElement(); 

  java.util.Vector tmpV = (java.util.Vector) 

rAttribute.get(element); 

  String ruleText = element;  

%> 

<TABLE border="1" align="center"> 

 <TBODY > 

<caption style='color: green'><%=ruleText  %></caption> 

<%     

  for (int j = 0; j < tmpV.size(); j++) {  
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   String nOpt = (String) tmpV.elementAt(j); 

%> 

  <TR> 

   <TD width="180"><%=nOpt %></TD> 

   <TD width="80" align="center"><input type="radio" 

name=Param_<%= ruleText %> value="<%= nOpt %>" /></TD> 

  </TR> 

<% 

  } 

  i++; 

 } 

 

%> 

 </TBODY> 

</TABLE> 

<HR> 

<p align="center"><INPUT type="submit" name="SubmitButton" 

value="FormOK"></p> 

<INPUT type="hidden" name="operation" value="RESULT">  

<INPUT type="hidden" name="formText" value="<%= formText %>"> 

</FORM> 

</BODY> 

</HTML> 

 
 
 
 
********************* 
ResultForm.jsp 
********************* 
 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 

<HTML> 

<HEAD> 

<%@ page  

language="java" 

contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8" 

%> 

<%!  

       public void jspInit() { 

        

       } 

       public void jspDestroy() { 

        

       } 

%> 

<META http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<META name="GENERATOR" content="IBM WebSphere Studio"> 

</HEAD> 

<BODY> 

<h1 align="center">FORM RESULT</h1> 

<HR> 

<%  

 java.util.Hashtable ruleMap = (java.util.Hashtable) 

request.getAttribute("ruleMap"); 

 String ruleResult = (String) request.getAttribute("ruleResult");  

 String formText = (String) request.getAttribute("formText");  
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%> 

<TABLE border="1" align="center"> 

 <TBODY > 

 

<% 

 java.util.Enumeration e = ruleMap.keys(); 

 

 while (e.hasMoreElements()) { 

  String element = (String) e.nextElement(); 

%> 

  <TR> 

   <TD style="color: blue"><%= element%></TD> 

   <TD><%= ruleMap.get(element).toString() %></TD> 

  </TR> 

 

  <% 

 } 

%> 

 </TBODY> 

</TABLE> 

 

<h2 align="center" style="color: red"> Form Name : <%= formText %></h2> 

<h2 align="center" style="color: maroon">Result of the Choosen Parameters 

</h2> 

<h3 align="center" style="color: red;font-weight: 

bold">********************</h3> 

<h3 align="center" style="color: red;font-weight: 

bold"><%=ruleResult%></h3> 

<h3 align="center" style="color: red;font-weight: 

bold">********************</h3> 

</BODY> 

</HTML> 
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