
T.C. DOGUS UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

COMPUTER AND INFORMATION SCIENCES MASTER'S

DEGREE PROGRAM

REAL-TIME HYBRID PARALLEL RENDERING

Master of Science Thesis

M. Reha Cenani

200791003

Advisor:

Prof. Dr. Mithat Uysal

Istanbul, June 2009

Acknowledgements

I would like to express the deepest appreciation to my committee chair, Professor

Mithat Uysal, who has the attitude and the substance of a patience: he continually

and convincingly conveyed a spirit of adventure in regard to research and scholarship,

and an excitement in regard to teaching. Without his guidance and persistent help

this thesis would not have been possible.

I would like to thank my committee members, Professor Selim Akyokus and Coskun

Sonmez, whose work demonstrated to me that concern for informatics supported by

an engagement in computer graphics.

i

Abstract

In computer graphics, rendering is described as the process of converting a description

of a scene to an image. When the scene is complex and high quality images are required,

the rendering process becomes computationally demanding. To provide the satisfactory

performance, real-time computing techniques must be developed. Although parallelism

has been extensively used in computer graphics for a long time, its initial use was

primarily in specialized applications. Today, parallel computing is used in commodity

personal computers, and various software-based rendering systems have been developed

for general purpose real-time systems.

As the new GPUs released to the market, the available rendering performance increases

constantly. Also more powerful multi-core CPUs that have enabled more �exible and

faster software-based graphics, such as real-time ray tracing. Despite this tremendous

hardware development progress in rendering power, there will always be some appli-

cations that require distributed con�gurations for rendering. In this thesis, I present

a prototype solution consisting of a system that supports di�erent rendering mod-

ules (e.g., rasterization, and ray tracing) and combine it with a distributed graphics

processing.

This thesis provides a general introduction to the subject of real-time rendering, cover-

ing both hardware and software aspects. The main focus is on the underlying concepts

and the issues which arise in the design of real-time rendering algorithms and systems.

Di�erent types of parallelism and how they can be applied in rendering applications

are examined. Concepts from parallel computing, such as data decomposition, task

granularity, scalability, and load balancing, are considered in relation to the render-

ing problem. Also concepts from computer graphics, such as coherence, culling, and

level of detail which have a signi�cant impact on the structure of parallel rendering

algorithms are explored.

ii

Özet

Bilgisayar gra�kleri alan�nda tarama (rendering), bir sahne tan�m�ndan görüntü olu³-

turulmas� süreci olarak tan�mlan�r. Sahne kar�³�k ise ve yüksek kaliteli görüntüler is-

teniyorsa, tarama süreci uzun hesaplamalar gerektirebilir. Tatmin edici performans�

elde etmek için, gerçek-zamanl� hesaplama yöntemleri geli³tirilmelidir. Hernekadar bil-

gisayar gra�klerinde paralel i³lem uzun süredir kapsaml� olarak kullan�lsa da, temel

kullan�m alan� özel uygulamalar olmu³tur. Bugün, paralel i³lem ki³isel bilgisayarlarda

kullan�lmaktad�r ve genel amaçl� gerçek-zamanl� sistemler için çe³itli yaz�l�m tabanl�

tarama uygulamalar� geli³tirilmi³tir.

Piyasaya yeni GPU'lar sürüldükçe, mevcut tarama preformans� sürekli artmaktad�r.

Ayn� ³ekilde, daha güçlü çok çelirdekli i³lemciler gerçek-zamanl� �³�n izleme (ray tra-

cing) gibi daha esnek ve daha h�zl� yaz�l�m tabanl� gra�klere imkan sa§l�yorlar. Ta-

rama gücünde art�³ sa§layan büyük donan�m geli³tirme ilerlemelerine ra§men, tarama

için da§�t�k kon�gürayonlar gerektiren baz� uygulamalar herzaman olacakt�r. Bu tezde,

farkl� tarama modülleri destekleyen bir sistem (rasterization, �³�n izleme, v.s.) ve bunu

da§�t�k gra�k i³leme ile birle³tiren bir prototip çözüm sunulmaktad�r.

Bu tez, gerçek-zamanl� tarama konusuna hem yaz�l�m hem de donan�m taraf�ndan ge-

nel bir giri³ sunmaktad�r. Ana odak, gerçek-zamanl� tarama algoritmalar� ve sistemleri

tasarlarken ortaya ç�kan temel kavramlar ve konulard�r. Farkl� paralel i³lem türlerini

ve bunlar�n tarama uygulamalar�na nas�l uygulanabildiklerini incelenmi³tir. Veri ay-

r�³t�rma (data decomposition), task granularity, ölçeklenebilirlik (scalability) ve yük

dengeleme (load balancing) gibi paralel i³lem kavramlar�, tarama problemi ile ba§lan-

t�l� olarak de§erlendirilmi³tir. E³ fazl� olma (coherence), culling ve detay seviyesi (level

of detail) gibi paralel tarama algoritmalar�n�n yap�s�nda önemli yere sahip bilgisayar

gra�§i kavramlar� da incelenmi³tir.

iii

Contents

1 Related Work 1

2 Stream Computing 3

2.1 General Purpose Computing on Graphics Processing Units (GPGPU) . 4

2.2 Brook for GPU . 5

2.3 ATI Stream Computing . 6

2.4 NVIDIA CUDA . 7

2.5 OpenCL . 9

3 Parallel Computing 11

3.1 Shared Memory Parallel Programming 12

3.2 Distributed Memory Parallel Programming 14

4 Parallel Rendering Algorithms 16

4.1 Rasterisation . 16

4.1.1 Sort-Middle Rendering . 17

4.1.2 Sort-Last Rendering . 18

4.1.3 Sort-First Rendering . 20

4.2 Ray Tracing . 21

4.3 Radiosity . 25

5 Acceleration Algorithms & Data Structures 30

5.1 Spatial Data Structures . 30

5.1.1 Bounding Volume Hierarchies (BVHs) 31

iv

CONTENTS CONTENTS

5.1.2 Binary Search Partitioning (BSP) Trees 31

5.2 Culling . 32

5.2.1 View Frustum Culling . 34

5.2.2 Backface Culling . 35

5.2.3 Detail Culling . 37

5.2.4 Portal Culling . 37

5.2.5 Occlusion Culling . 38

5.3 Level of Detail . 40

6 Hybrid Parallel Renderer (HPR) 43

6.1 What is HPR . 43

6.2 System Design . 44

6.2.1 Processing Nodes . 45

6.3 Implementation . 46

6.3.1 Scene Distribution . 46

6.3.2 Distributed Ray Tracing . 47

6.3.3 Structure of the Source Code 48

6.3.4 Performance Analysis . 50

7 Conclusions 58

A Program Source Code 61

Bibliography 152

Index 165

v

List of Figures

6.1 Camera Class Diagram . 48

6.2 Geometry Class Diagram . 48

6.3 Scene Class Diagram . 49

6.4 Ray Class Diagram . 50

6.5 Texture Class Diagram . 50

6.6 Camera Relation Diagram . 51

6.7 Light Relation Diagram . 53

6.8 Primitive Relation Diagram . 54

6.9 Renderer Relation Diagram . 55

6.10 Shader Relation Diagram . 56

6.11 Shiny Monkeys ('Suzanne', The Blender monkey) (1280x1024 resolution) 57

vi

Listings

A.1 Texture.h . 61

A.2 Texture.cpp . 62

A.3 Scene.h . 64

A.4 Scene.cpp . 66

A.5 Ray.h . 72

A.6 Ray.cpp . 73

A.7 Cameara.h . 76

A.8 Cameara.cpp . 77

A.9 Display.h . 78

A.10 Display.cpp . 79

A.11 Geometry.h . 79

A.12 Geometry.cpp . 80

A.13 RenderObject.h . 83

A.14 RenderObject.cpp . 83

A.15 SimpleRenderer.h . 83

A.16 SimpleRenderer.cpp . 84

A.17 MultipassRenderer.h . 87

A.18 MultipassRenderer.cpp . 88

A.19 Box.h . 93

A.20 Box.cpp . 94

A.21 Cylinder.h . 98

A.22 Cylinder.cpp . 99

A.23 Plane.h . 101

vii

LISTINGS LISTINGS

A.24 Plane.cpp . 103

A.25 Sphere.h . 106

A.26 Sphere.cpp . 107

A.27 TriangleMesh.h . 109

A.28 TriangleMesh.cpp . 111

A.29 PointLight.h . 129

A.30 PointLight.cpp . 130

A.31 SunSkyLight.h . 131

A.32 SunSkyLight.cpp . 134

A.33 SphereLight.h . 141

A.34 SphereLight.cpp . 143

A.35 PinholeLens.h . 146

A.36 PinholeLens.cpp . 147

A.37 PhongShader.h . 148

A.38 PhongShader.cpp . 149

A.39 SimpleShader.h . 150

A.40 SimpleShader.cpp . 151

viii

1

Chapter 1

Related Work

There are several solutions which have been developed for the distribution of 3D graph-

ics in a network. The WireGL (Humphreys et al., 2001) and Chromium (Humphreys

et al., 2002) (Humphreys et al., 2008) graphics systems replace the OpenGL libraries

of the host operating system, and send OpenGL commands to be rendered simultane-

ously on remote hosts across the network. While having the advantage of distributing

applications transparently without modi�cations, the network bandwidth required for

transmitting these OpenGL states and commands is very high (Eilemann, 2007).

In order to lower the required network bandwidth, the Equalizer framework (Eilemann

and Pajarola, 2007) (Eilemann et al., 2008) the application is modi�ed and higher-

level commands are sent. While WireGL only supports a single sort-�rst architecture,

Chromium provides arranging its stream �lters to implement sort-�rst and sort-last

alternatives. By allowing arbitrary distribution and providing a transparent de�nition

of multi-display scenarios, Equalizer also extends these features.

All three mentioned frameworks are OpenGL based and cannot support other render-

ing techniques. The major drawback of these existing rendering frameworks is that

they have �xed processing pipelines and do not allow to add special codecs or trans-

port protocols which required for multi-view rendering. Since frameworks that allow

distributed and parallel rendering like Equalizer and OpenRT (Dietrich et al., 2003) ex-

plicitly hide the distribution and they cannot support remote rendering or collaborative

rendering.

On the other hand, the Network-Integrated Multimedia Middleware (NMM)(Lohse

et al., 2008), provides separation between media processing and media transmission,

and more transparent access to local and remote components. Media processing is

speci�ed by a �ow graph where the nodes represent speci�c operations (e.g., rendering,

or compressing images), and edges represent the transmission between nodes (e.g.,

2

pointer forwarding for local connections, or TCP for a network connection). Nodes can

be connected to each other via their input streams and output streams; depending on

the type of operation a node implements. Source nodes, for example, have no input

streams, while sink nodes have no output streams. In the graph, media data �ows

from sources to sinks, being processed by each node in-between. Prerequisite for the

successful connection of two nodes is a common format, which must be identical for

the output stream of the preceding node and the input stream of the successive node

to be connected.

The important aspect of NMM is, that nodes and edges are represented as �rst-class

objects to the application, which allows to con�gure and control media processing and

transmission transparently, for instance by choosing a certain transport protocol from

the application layer (Repplinger et al., 2005). Even though this kind of distributed

middleware solutions are especially designed for multimedia processing and do not

explicitly consider rendering, their generic approach for distributed media processing

is suitable for the requirement of �exibility the framework should provide. However,

generic solutions like NMM have not yet been applied in other scenarios and might add

signi�cant overhead over specialized solutions.

3

Chapter 2

Stream Computing

Stream programming and streaming processors have recently become popular topics

in computer architecture. The main motivation for stream processor development is

that semiconductor technology is at a point where computation is cheap and band-

width is expensive. Stream processors are designed to exploit this trend by exploiting

both the parallelism and locality available in programs. The result is machines with

higher performance per dollar (Khailany et al., 2000). To this end, stream processors

provide hundreds of arithmetic processors to exploit parallelism, and a deep hierarchy

of registers to exploit locality (Purcell, 2004).

The stream programming model constrains the way software is written such that lo-

cality and parallelism are explicit within a program. These constraints allow compilers

to automatically optimize the code to take advantage of the underlying hardware.

Of course, stream processors require su�ciently parallel computations to achieve this

higher performance.

The stream programming model is based on kernels and streams. A kernel is a function

that is going to be executed on over a large set of input records. A kernel loads an

input record, performs computations on the values loaded, and then writes an output

record. The more computation a kernel performs, the higher its arithmetic intensity or

locality, and the better a stream processor will perform on it. Streams are the sets of

input and output records operated on by kernels. Streams are what connect multiple

kernels together.

The Imagine processor (Khailany et al., 2000) is a streaming processor made up of

several arithmetic units connected to fast local registers and an on-chip memory called

a stream register �le. Imagine provides a bandwidth hierarchy with relatively small

o�-chip memory bandwidth, larger stream register �le bandwidth, and very large local

register �le bandwidth. Programs written in the stream programming model can be

4

scheduled for the processor such that they mainly use internal bandwidth instead of

external bandwidth. Imagine is programmed using StreamC and KernelC program-

ming languages for streams and kernels that are a subset of C. These languages force

programs to be written in a stream friendly manner, and are more general purpose

than the StreaMIT language for the RAW processor. However, the underlying Imag-

ine architecture is still exposed to the programmer when writing a stream program

(Purcell, 2004).

Finally, there is the Merrimac streaming supercomputer (Houston, 2008). Mer- rimac

is a large scale multi-chip streaming computer. Merrimac is programmed in a language

called Brook (Buck, 2007). Brook is like StreamC and KernelC as it is an augmented

subset of C designed for stream programming. However, one big di�erence between

Brook and StreamC/KernelC is that Brook does not expose the details of the underly-

ing architecture to the programmer. This means that programs written in Brook can

be recompiled (instead of rewritten) for other stream machines.

Perhaps the most relevant target that Brook supports is GPUs. A BrookGPU program

can compile to run on a standard Intel/AMD processor, or one of several di�erent

graphics processors (such as the NVIDIA GeForce FX or ATI Radeon GPUs) (Purcell,

2004). The ray tracing approach presented in this thesis was recently implemented in

BrookGPU.

2.1 General Purpose Computing on Graphics Pro-

cessing Units (GPGPU)

GPGPU stands for General-Purpose computation on GPUs. With the increasing pro-

grammability of commodity graphics processing units (GPUs), these chips are capable

of performing more than the speci�c graphics computations for which they were de-

signed. They are now capable coprocessors, and their high speed makes them useful for

a variety of applications. The goal of this page is to catalog the current and historical

use of GPUs for general-purpose computation.

General purpose computing on graphics processor units (GPGPU) becomes increas-

ingly popular due to their remarkable computational power, memory access bandwidth

and improved programmability. Current GPUs contain hundreds of compute cores and

support thousands of light-weight threads, which hide memory latency and provide

massive throughput for parallel computations. New programming models including

CUDA from NVIDIA (Buck, 2007), Brook+ from AMD/ATI (Dimitrov et al., 2009),

5

and under-development OpenCL (Stone et al., 2009) facilitate programmers by allow-

ing them to write GPU code in a familiar C/C++ environment, instead of forcing them

to map general purpose computation to the graphics domain. In these programming

models, the GPU is used as an accelerator to the CPU, from which memoryintensive

and compute-intensive tasks are o�oaded.

However, current GPUs do not provide hardware support for detecting soft or hard

errors, which may occur in computation logic or memory storage. For instance, the o�-

chip storage of modern GPUs such as ATI Radeon HD series uses graphics double data

rate (GDDR) type memories. As a result, any bit-�ip in a memory cell may lead to

silently corrupted results, i.e., erroneous results which are not detected. With soft-error

rates predicted to grow exponentially (Harris, 2007) in future process generations and

permanent failures/hard errors gaining importance, future GPUs are likely to be prone

to hardware errors (Dimitrov et al., 2009). This has an adverse impact on GPGPU since

many scienti�c, medical imaging and �nancial applications require strict correctness

guarantees. Unfortunately, such reliability requirements are not likely to be answered

in current or near future GPU generations. The reason is that even though GPGPU

applications are gaining popularity, modern GPU design remains largely driven by the

video games market, where totatly correct results are not strictly necessary.

2.2 Brook for GPU

Brook for GPU (BrookGPU) is a system for general-purpose computation on pro-

grammable graphics hardware. Brook extends C to include simple data-parallel con-

structs, enabling the use of the GPU as a streaming coprocessor. It has a compiler

and runtime system that abstracts and virtualizes many aspects of graphics hardware

(Buck et al., 2004).

BrookGPU is the Stanford University Graphics group's compiler and runtime imple-

mentation of the Brook stream programming language for using modern graphics hard-

ware for non-graphical or general purpose computations. Use of Graphics Processing

Unit (GPU) for doing non-graphical or general purpose calculations is also abbreviated

as GPGPU (General Purpose Graphics Processing Unit). It can be used to program a

graphics processing unit such as those found on ATI or NVIDIA graphics cards which

are highly parallel in execution.

BrookGPU compiles programs written using Brook stream programming language,

which is a variant of C. It can use OpenGL, DirectX or AMD Stream SDK for the

computational backend and runs on Microsoft Windows, Linux and MacOS X. It can

6

also simulate a virtual graphics card by itself via a special CPU backend which is useful

for debugging Brook kernels.

2.3 ATI Stream Computing

Using GPUs to perform computations holds a lot of potential for some applications

because of the fundamental di�erences of GPU microarchitectures compared to CPUs.

GPUs achieve much greater throughput (calculations per second) by executing many

programs in parallel and restricting �ow control (the ability of one program to execute

instructions independently of another). Modern GPUs also have addressable on-die

memory and extremely high performance multi-channel external memory.

ATI Stream technology is a set of advanced hardware and software technologies that

enable AMD graphics processors (GPU), working in concert with the system's central

processor (CPU), to accelerate many applications beyond just graphics (ATI, 2008).

This enables better balanced platforms capable of running demanding computing tasks

faster than ever.

Characteristics of GPU acceleration are enabling new applications on new architectures,

solving parallel problems other than graphics that map well on GPU architecture, and

making transition from �xed function to programmable pipelines.

The ATI Stream Computing Model includes a software stack and the ATI Stream pro-

cessors. The ATI Stream Computing software stack provides end-users and developers

with a complete, �exible suite of tools to leverage the processing power in ATI Stream

processors. ATI software embraces open-systems, open-platform standards.

The software includes the following components (ATI, 2008):

1. Compilers - like the Brook+ compiler with extensions for ATI devices

2. Device Driver for stream processors - ATI Compute Abstraction Layer (CAL)

3. Performance Pro�ling Tools - Stream KernelAnalyzer

4. Performance Libraries - AMD Core Math Library (ACML) for optimized domain-

speci�c algorithms

The latest generation of ATI Stream processors are programmed using the uni�ed

shader programming model. Programmable stream cores execute various user devel-

oped programs, called stream kernels (or simply: kernels) (Dimitrov et al., 2009).

7

These stream cores can execute non-graphics functions using a virtualized SIMD pro-

gramming model operating on streams of data. In this programming model, known as

stream computing, arrays of input data elements stored in memory are mapped onto a

number of SIMD engines, which execute kernels to generate one or more outputs that

are written back to output arrays in memory.

Each instance of a kernel running on a SIMD engine's thread processor is called a

thread. A speci�ed rectangular region of the output bu�er to which threads are mapped

is known as the domain of execution (Buck et al., 2004).

The stream processor schedules the array of threads onto a group of thread processors,

until all threads have been processed. Subsequent kernels can then be executed, until

the application completes.

2.4 NVIDIA CUDA

The advent of multi-core CPUs and muli-core GPUs means that mainstream processor

chips are now parallel systems. Furthermore, their parallelism continues to scale with

Moore's law. The challenge is to develop mainstream application software that trans-

parently scales its parallelism to leverage the increasing number of processor cores,

much as 3D graphics applications transparently scale their parallelism to multi-core

GPUs with widely varying numbers of cores (Nickolls et al., 2008).

CUDA is a parallel computing architecture developed by NVIDIA . CUDA is the com-

pute engine in NVIDIA graphics processing units or GPUs that is accessible to software

developers through industry standard programming languages. C is used for CUDA,

compiled through a PathScale Open64 C compiler, to code algorithms for execution on

the GPU (Ryoo et al., 2008). CUDA is architected to support various computational

interfaces, including C and new open standards like OpenCL and DirectX Compute.

Third party wrappers are also available for Python, Fortran and Java (Kirk, 2007).

The latest drivers all contain the necessary CUDA components. CUDA works with all

NVIDIA GPUs from the G8X series onwards, including GeForce, Quadro and the Tesla

line. NVIDIA states that programs developed for the GeForce 8 series will also work

without modi�cation on all future NVIDIA video cards, due to binary compatibility.

CUDA gives developers access to the native instruction set and memory of the paral-

lel computational elements in CUDA GPUs. Using CUDA, the latest NVIDIA GPUs

e�ectively become open architectures like CPUs. Unlike CPUs however, GPUs have

parallel multi-core architecture, each core capable of running thousands of threads si-

multaneously - if an application is suited to this kind of architecture, the GPU can o�er

8

large performance bene�ts. In the computer gaming industry, in addition to graph-

ics rendering, graphics cards are used in game physics calculations (physical e�ects

like debris, smoke, �re, �uids), an example being PhysX and Bullet Physics. CUDA

has also been used to accelerate non-graphical applications in computational biology,

cryptography and other �elds by an order of magnitude or more (Buck, 2007).

According to conventional wisdom, parallel programming is di�cult. Early experience

with the CUDA scalable parallel programming model and C language, however, shows

that many sophisticated programs can be readily expressed with a few easily under-

stood abstractions. Since NVIDIA released CUDA in 2007, developers have rapidly

developed scalable parallel programs for a wide range of applications, including compu-

tational chemistry, sparse matrix solvers, sorting, searching, and physics models (Buck,

2007). These applications scale transparently to hundreds of processor cores and thou-

sands of concurrent threads. NVIDIA GPUs with the new Tesla uni�ed graphics and

computing architecture run CUDA C programs and are widely available in laptops,

PCs, workstations, and servers (Kirk, 2007). The CUDA model is also applicable to

other shared-memory parallel processing architectures, including multi-core CPUs.

CUDA provides three key abstractions (a hierarchy of thread groups, shared memories,

and barrier synchronization) that provide a clear parallel structure to conventional C

code for one thread of the hierarchy (Nickolls et al., 2008).

Multiple levels of threads, memory, and synchronization provide �ne-grained data par-

allelism and thread parallelism, nested within coarse-grained data parallelism and task

parallelism. The abstractions are used by the programmer to partition the problem

into coarse sub-problems that can be solved independently in parallel, and then into

�ner pieces that can be solved cooperatively in parallel (Harris, 2007). The program-

ming model may scale to large numbers of processor cores: a compiled CUDA program

may execute on any number of processors, and only the run-time system needs to know

the physical processor count.

CUDA provides both a low level API and a higher level API. NVIDIA has released

versions of the CUDA API for Microsoft Windows, Linux and MacOS X.

Scattered reads (code can read to arbitrary addresses in memory), shared memory

(CUDA exposes a fast shared memory region that can be shared amongst threads

which can be used as a user-managed cache, enabling higher bandwidth than is possible

using texture lookups), faster downloads and read-backs to and from the GPU, and

full support for integer and bitwise operations, including integer texture lookups are

several advantages of CUDA over traditional general purpose computation on GPUs

(GPGPU) using graphics APIs Che et al. (2008).

9

Some limitations of CUDA architecture can be summarizes as follows: CUDA uses

a recursion-free, function-pointer-free subset of the C language, and some simple ex-

tensions. However, a single process must run spread across multiple disjoint memory

spaces, unlike other C language runtime environments. Since CUDA does not support

recursive functions, recursive code must be converted to loops. Also texture rendering

is not supported (Harris, 2007). For double precision there are no deviations from

the IEEE 754 standard. In single precision, Denormals and signaling NaNs are not

supported; only two IEEE rounding modes are supported (chop and round-to-nearest

even), and those are speci�ed on a per-instruction basis rather than in a control word,

and the precision of division/square root is slightly lower than single precision. In

most cases the bus bandwidth and latency between the CPU and the GPU may be a

bottleneck (Ryoo et al., 2008). Threads should be run in groups of at least 32 for best

performance, with total number of threads numbering in the thousands. Branches in

the program code do not impact performance signi�cantly, provided that each of 32

threads takes the same execution path; the SIMD execution model becomes a signi�cant

limitation for any inherently divergent task (e.g., traversing a ray tracing acceleration

data structure). And �nally, CUDA-enabled GPUs are only available from NVIDIA

(GeForce 8 series and above, Quadro and Tesla) (Che et al., 2008).

2.5 OpenCL

OpenCL (Open Computing Language) is the �rst open standard for general-purpose

parallel programming of heterogeneous systems. OpenCL provides a uniform program-

ming environment for software developers to write e�cient, portable code for high-

performance computing servers, desktop computer systems and handheld devices us-

ing a diverse mix of multi-core CPUs, GPUs, Cell Processor type architectures and

other parallel processors such as DSPs (Dimitrov et al., 2009).

OpenCL supports a wide range of applications, from embedded and consumer software

to HPC solutions, through a low-level, high-performance, portable abstraction. By

creating an e�cient programming interface, OpenCL forms the foundation layer of a

parallel computing ecosystem of platform-independent tools, middleware and applica-

tions (Stone et al., 2009).

OpenCL is being created by the Khronos Group with the participation of many industry

leading companies and institutions.

Modern processor architectures have embraced parallelism as an important pathway

to increased performance. Facing technical challenges with higher clock speeds in a

10

�xed power envelope, Central Processing Units (CPUs) now improve performance by

adding multiple cores. Graphics Processing Units (GPUs) have also evolved from �xed

function rendering devices into programmable parallel processors. As today's computer

systems often include highly parallel CPUs, GPUs and other types of processors, it is

important to enable software developers to take full advantage of these heterogeneous

processing platforms (Khr, 2009).

Creating applications for heterogeneous parallel processing platforms is challenging as

traditional programming approaches for multi-core CPUs and GPUs are very di�erent.

CPU based parallel programming models are typically based on standards but usu-

ally assume a shared address space and do not encompass vector operations. General

purpose GPU programming models address complex memory hierarchies and vector

operations but are traditionally platform, vendor, or hardware speci�c. These limita-

tions make it di�cult for a developer to access the compute power of heterogeneous

CPUs, GPUs and other types of processors from a single, multi-platform source code

base. More than ever, there is a need to enable software developers to e�ectively take

full advantage of heterogeneous processing platforms - from high performance com-

pute servers, through desktop computer systems to handheld devices - that include a

diverse mix of parallel CPUs, GPUs and other processors such as DSPs and the Cell

Broadband Engine processor.

OpenCL consists of an API for coordinating parallel computation across heterogeneous

processors; and a cross-platform programming language with a well- speci�ed compu-

tation environment. The OpenCL standard supports both data and task-based parallel

programming models, utilizes a subset of ISO C99 with extensions for parallelism, de-

�nes consistent numerical requirements based on IEEE 754, de�nes a con�guration

pro�le for handheld and embedded devices, and e�ciently interoperates with OpenGL,

OpenGL ES and other graphics APIs (Khr, 2009).

11

Chapter 3

Parallel Computing

Parallelism is familiar and frequently occurring concept in an everyday life (Lin and

Snyder, 2009). An example for parallelism is building construction. Several work-

ers simultaneously perform separate tasks such as plumbing, wiring, and furnace duct

installation and so on. A call center, where many customer representatives serve cus-

tomers at the same time, is an other example organization for parallelism. Also in

manufacturing industry, most of the tasks are performed in parallel in the assembly

line, in which many units of the product are under construction at once.

Although these tasks done in parallel, they di�er in forms of parallelism. For exam-

ple, the main di�erence between building construction and call center is that, calls are

generally independent from each other and can be served in any order with little or

no interaction among customer representatives. On the other hand, in building con-

struction, some tasks can be done simultaneously -wiring and plumbing- while others

must done in order -framing must precede wiring. The ordering restricts the amount

of parallelism that can be done at once, limiting the speed at which a construction

project can be done.

The ordering of the tasks also increases the degree of interaction among the workers.

Assembly lines are di�erent due to having strict ordering of tasks with the separate

stages often being performed sequentially. In this case, parallelism arises from having

many products in the assembly line at the same time.

In computer programs, the main purpose for executing program statements in parallel

is to complete a task faster. But most of the today's existing programs are incapable

of so much performance improvement through parallelism. Because these programs

are written that statements would be executed sequentially, namely in order one at a

time. Semantics of most programming languages enforce sequential execution. Still,

there are some situations, such as the evaluation of the (a+b)*(c+d) expression (Lin

12

and Snyder, 2009). Assuming these are simple variables, sub-expressions (a+b) and

(c+d) are independent of each other, so they can be calculated simultaneously. Such

situations are examples of Instruction Level Parallelism (ILP).

3.1 Shared Memory Parallel Programming

The OpenMP (Open Multi-Processing) is an application programming interface (API)

that supports multi-platform shared memory multiprocessing programming in C/C++

and Fortran on many architectures, including Unix and Microsoft Windows platforms.

It consists of a set of compiler directives, library routines, and environment variables

that in�uence run-time behavior.

Jointly de�ned by a group of major computer hardware and software vendors, OpenMP

is a portable, scalable model that gives programmers a simple and �exible interface for

developing parallel applications for platforms ranging from the desktop to the super-

computer. An application built with the hybrid model of parallel programming can

run on a computer cluster using both OpenMP and Message Passing Interface (MPI)

(Basumallik and Eigenmann, 2005) (Krawezik, 2003).

OpenMP is an implementation of multithreading, a method of parallelization whereby

the master "thread" (a series of instructions executed consecutively) "forks" a speci�ed

number of slave "threads" and a task is divided among them. The threads then run

concurrently, with the runtime environment allocating threads to di�erent processors.

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of ex-

ecution perform tasks de�ned implicitly or explicitly by OpenMP directives. OpenMP

is intended to support programs that will execute correctly both as parallel programs

(multiple threads of execution and a full OpenMP support library) and as sequential

programs (directives ignored and a simple OpenMP stubs library) (Nikolopoulos et al.,

2000). However, it is possible and permitted to develop a program that executes cor-

rectly as a parallel program but not as a sequential program, or that produces di�erent

results when executed as a parallel program compared to when it is executed as a

sequential program. Furthermore, using di�erent numbers of threads may result in

di�erent numeric results because of changes in the association of numeric operations.

For example, a serial addition reduction may have a di�erent pattern of addition as-

sociations than a parallel reduction (Mattson, 2003). These di�erent associations may

change the results of �oating-point addition.

An OpenMP program begins as a single thread of execution, called the initial thread

(Duran et al., 2005). The initial thread executes sequentially, as if enclosed in an

13

implicit task region, called the initial task region, that is de�ned by an implicit inactive

parallel region surrounding the whole program.

When any thread encounters a parallel construct, the thread creates a team of itself

and zero or more additional threads and becomes the master of the new team. A set

of implicit tasks, one per thread, is generated. The code for each task is de�ned by

the code inside the parallel construct (Smith and Bull, 2001). Each task is assigned

to a di�erent thread in the team and becomes tied; that is, it is always executed by

the thread to which it is initially assigned. The task region of the task being executed

by the encountering thread is suspended, and each member of the new team executes

its implicit task. There is an implicit barrier at the end of the parallel construct.

Beyond the end of the parallel construct, only the master thread resumes execution,

by resuming the task region that was suspended upon encountering the parallel con-

struct (Mattson, 2003). Any number of parallel constructs can be speci�ed in a single

program.

Parallel regions may be arbitrarily nested inside each other. If nested parallelism is

disabled, or is not supported by the OpenMP implementation, then the new team

that is created by a thread encountering a parallel construct inside a parallel region

will consist only of the encountering thread (Jeun et al., 2008). However, if nested

parallelism is supported and enabled, then the new team can consist of more than one

thread.

When any team encounters a worksharing construct, the work inside the construct is

divided among the members of the team, and executed cooperatively instead of being

executed by every thread. There is an optional barrier at the end of each worksharing

construct. Redundant execution of code by every thread in the team resumes after the

end of the worksharing construct.

When any thread encounters a task construct, a new explicit task is generated. Ex-

ecution of explicitly generated tasks is assigned to one of the threads in the current

team, subject to the thread's availability to execute work. Thus, execution of the new

task could be immediate, or deferred until later (Chapman, 2002). Threads are al-

lowed to suspend the current task region at a task scheduling point in order to execute

a di�erent task. If the suspended task region is for a tied task, the initially assigned

thread later resumes execution of the suspended task region (Duran et al., 2005). If the

suspended task region is for an untied task, then any thread may resume its execution.

In untied task regions, task scheduling points may occur at implementation de�ned

points anywhere in the region. In tied task regions, task scheduling points may occur

only in task, taskwait, explicit or implicit barrier constructs, and at the completion

14

point of the task. Completion of all explicit tasks bound to a given parallel region is

guaranteed before the master thread leaves the implicit barrier at the end of the region

(Smith and Bull, 2001). Completion of a subset of all explicit tasks bound to a given

parallel region may be speci�ed through the use of task synchronization constructs.

Completion of all explicit tasks bound to the implicit parallel region is guaranteed by

the time the program exits.

Synchronization constructs and library routines are available in OpenMP to coordinate

tasks and data access in parallel regions. In addition, library routines and environment

variables are available to control or to query the runtime environment of OpenMP

programs.

OpenMP makes no guarantee that input or output to the same �le is synchronous

when executed in parallel. In this case, the programmer is responsible for synchro-

nizing input and output statements (or routines) using the provided synchronization

constructs or library routines. For the case where each thread accesses a di�erent �le,

no synchronization by the programmer is necessary (Müller, 2003).

3.2 Distributed Memory Parallel Programming

The evolution of parallel computer architectures has recently created new trends and

challenges for both parallel application developers and end users. Systems comprised

of tens of thousands of processors are available today; hundred-thousand processor sys-

tems are expected within the next few years. Monolithic high- performance computers

are steadily being replaced by clusters of PCs and work- stations because of their more

attractive price/performance ratio (Hale, 2004). However, such clusters provide a less

integrated environment and therefore have di�erent (and often inferior) I/O behavior

than the previous architectures. Grid computing e�orts yield a further increase in the

number of processors available to parallel applications, as well as an increase in the

physical distances between computational elements (Gabriel et al., 2004).

MPI is a language-independent communications protocol used to program parallel com-

puters. Both point-to-point and collective communication are supported. MPI is a

message-passing application programmer interface, together with protocol and seman-

tic speci�cations for how its features must behave in any implementation. MPI's goals

are high performance, scalability, and portability. MPI remains the dominant model

used in high-performance computing today (Quinn, 2003).

The principal MPI-1 model has no shared memory concept, and MPI-2 has only a

limited distributed shared memory concept. Nonetheless, MPI programs are regularly

15

run on shared memory computers (Karniadakis and Kirby, 2003). Designing programs

around the MPI model (as opposed to explicit shared memory models) has advantages

on NUMA architectures since MPI encourages memory locality.

Although MPI belongs in layers 5 and higher of the OSI Reference Model, implemen-

tations may cover most layers of the reference model, with socket and TCP being used

in the transport layer.

Most MPI implementations consist of a speci�c set of routines (i.e., an API) callable

from Fortran, C, or C++ and from any language capable of interfacing with such

routine libraries. The advantages of MPI over older message passing libraries are

portability (because MPI has been implemented for almost every distributed memory

architecture) and speed (because each implementation is in principle optimized for the

hardware on which it runs) (Chapman, 2002).

MPI has Language Independent Speci�cations (LIS) for the function calls and language

bindings. The �rst MPI standard speci�ed ANSI C and Fortran-77 language bindings

together with the LIS. The draft of this standard was presented at Supercomputing 1994

and �nalized soon thereafter. About 128 functions constitute the MPI-1.2 standard as

it is now de�ned.

There are two versions of the standard that are currently popular: version 1.2 (shortly

called MPI-1), which emphasizes message passing and has a static runtime environ-

ment, and MPI-2.1 (MPI-2), which includes new features such as parallel I/O, dynamic

process management and remote memory operations (Richard et al., 2006).MPI-2's LIS

speci�es over 500 functions and provides language bindings for ANSI C, ANSI Fortran

(Fortran90), and ANSI C++. Interoperability of objects de�ned in MPI was also added

to allow for easier mixed-language message passing programming (Bruck et al., 1995).

A side e�ect of MPI-2 standardization (completed in 1996) was clari�cation of the

MPI-1 standard, creating the MPI-1.2 level.

It is important to note that MPI-2 is mostly a superset of MPI-1, although some

functions have been deprecated. Thus MPI-1.2 programs still work under MPI imple-

mentations compliant with the MPI-2 standard.

MPI is often compared with PVM, which is a popular distributed environment and

message passing system developed in 1989, and which was one of the systems that mo-

tivated the need for standard parallel message passing systems (Spetka et al., 2008).

Threaded shared memory programming models (such as Pthreads and OpenMP) and

message passing programming (MPI/PVM) can be considered as complementary pro-

gramming approaches, and can occasionally be seen used together in applications where

this suits architecture, e.g. in servers with multiple large shared-memory nodes.

16

Chapter 4

Parallel Rendering Algorithms

4.1 Rasterisation

In many applications, particularly in the scienti�c visualization of large geometric data

sets, we create images from data sets that might contain more than 500 million data

points and generate more than 100 million polygons (Angel, 2008). This situation

presents two immediate challenges. First, if we are to display this many polygons, how

can we do so when even the best commodity displays contain only about two million

pixels? Second, if we have multiple frames to display, either from new data or because

of transformations of the original data set, we need to be able to render this large

amount of geometry faster than can be achieved even with high-end systems.

One approach to both these problems is to use clusters of standard computers connected

with a high-speed network (Humphreys et al., 2001) (Peng et al., 2006). Each computer

might have a commodity graphics card. Note that such con�gurations are one aspect

of a major revolution high-performance computing (Samanta et al., 2000). Formerly,

supercomputers were composed of expensive fast processors that usually incorporated

a high degree of parallelism in their designs (Crockett, 1997). These processors were

custom designed and required special interfaces, peripheral systems, and environments

that made them extremely expensive and thus a�ordable only by a few government

laboratories and large corporations. Over the last few years, commodity processors

have become extremely fast and inexpensive. The same technology has led to a variety

of add-on graphics cards whose performance can be measured in millions of polygons

per second and hundreds of millions of pixels per second. Computers assembled from

such components can be connected standard networks that run at gigabit-persecond

rates.

17

However, there are multiple ways we can distribute the work that must be done to

render a scene among the processors. The simplest approach might be to execute the

same application program on each processor but have each use a di�erent window that

corresponds to where the processor's display is located in the output array. For small

applications, this approach might work; but for complex applications it is too slow

because each processor is doing all the work and we are not taking advantage of having

multiple processors. There are three other possibilities. In this taxonomy, the key

di�erence is where in the rendering process we assign, or sort, primitives to the correct

areas of the display.

Suppose that there is a large number of processors of two types: geometry processors

and raster processors. This distinction corresponds to the two phases of the rendering

pipeline. The geometry processors can handle front-end �oating-point calculations,

including transformations, clipping, and shading. The raster processors manipulate bits

and handle operations such as scan conversion. Note that the present general-purpose

processors and graphics processors can each do either of these tasks. Consequently, we

can apply the following strategies to either the CPUs or the GPUs. Parallelism can

be achieved among distinct nodes, within a processor chip through multiple cores, or

within the GPU. The use of the sorting paradigm will help us organize the architectural

possibilities.

Molnar et al. (1994) presented a classi�cation scheme for distributed rendering. The

authors subdivide techniques that distribute geometry according to screen-space tiles

(sort-�rst), distribute geometry arbitrarily while doing a �nal z-compositing (sort-last),

or distribute primitives arbitrarily, but do per-fragment processing in screen-space after

sorting them during rasterization (sort-middle). This separation of techniques is based

on rasterization, and where the rasterization pipeline distributes the workload across

multiple processors.

4.1.1 Sort-Middle Rendering

Consider a group of geometry processors and raster processors are connected (Angel,

2008). Suppose that we have an application that generates a large number of geometric

primitives. It can use multiple geometry processors in two obvious ways. It can run on

a single processor and send di�erent parts of the geometry generated by the application

to di�erent geometry processors. Alternatively, we can run the application on multiple

processors each of which generates only part of the geometry. At this point, we need

not worry about how the geometry gets to the geometry processors-as the best way is

often application dependent-but on how to best employ the geometry processors that

18

are available.

Assume that we can send any primitive to any of the geometry processors, each of which

acts independently. When we use multiple processors in parallel, a major concern is

load balancing, that is, having each of the processors do about the same amount of

work, so that none is sitting idle for a signi�cant amount of time, thus wasting resources.

One obvious approach would be to divide the object-coordinate space equally among

the processors. Unfortunately, this approach often leads to poor load balancing because

in many applications the geometry is not uniformly distributed in object space. An

alternative approach is to distribute the geometry uniformly among the processors as

objects are generated, independently of where the geometric objects are located. Thus,

with n processors, we might send the �rst geo-metric entity to the �rst processor, the

second to the second processor, the nth to the nth processor, the n + l-st to the �rst

processor, and so on (Angel, 2008). Now consider the raster processors. We can assign

each of these to a di�erent region of the frame bu�er or equivalently, assign each to

a di�erent region of the display. Thus, each raster processor renders a �xed part of

screen space.

Now the problem is how to assign the outputs of the geometry processors to the raster

processors. Note that each geometry processor can process objects that could go any-

where on the display. Thus, we must sort their outputs and assign primitives that

merge from the geometry processors to the correct raster processors. Consequently,

some sorting must be done before the raster stage. We refer to this architecture as

sort-middle. This con�guration was popular with high-end graphics workstations a

few years ago, when special hardware was available for each task and there were fast

internal buses to convey information through the sorting step. Recent GPUs contain

multiple geometry processors and multiple fragment processors and so can be looked

at as sort-middle processors. We tend to regard a particular commodity card with a

single GPU as a combination of one geometry processor and one raster processor, thus

aggregating the parallelism inside the GPU. Now the problem is how to use a group

of commodity cards or GPUs. If we can use a GPU or a CPU as either a geometry

processor or a raster processor and connect them with a standard network, the sorting

step in sort-middle can be a bottleneck, and two other approaches have proved simpler.

4.1.2 Sort-Last Rendering

With sort-middle rendering, the number of geometry processors and the number of

raster processors could be di�erent. Now suppose that each geometry processor is

connected to its own raster processor (Angel, 2008). This con�guration would be what

19

we would have with a collection of standard PCs, each with its own graphics card, or

on some of the most recent graphics cards that have multiple integrated vertex and

fragment processors. Once again, let's not worry about how each processor gets the

application data and instead focus on how this con�guration process the geometry

generated by the application.

Just as with sort-middle, we can load-balance the geometry processors by sending

primitives to them in an order that ignores where on the display they might lie once

they are rasterized. However, precisely because of this way of assigning geometry and

lacking a sort in the middle, each raster processor must have a frame bu�er that is the

full size of the display. Because each geometry/raster pair contains a full pipeline, each

pair produces a correct hidden-surface-removed image for part of the geometry.

Partial images can be combined with a compositing step (Angel, 2008). For the com-

positing calculations, we need not only the images in the color bu�ers of the geometry

processors but also the depth information, because we must know for each pixel which

of the raster processors contains the pixel corresponding to the closest point to the

viewer 3. Fortunately, if we are using our standard OpenGL pipeline, the necessary

information is in the z-bu�er. For each pixel, we need only compare the depths in each

of the z-bu�ers and write the color in the frame bu�er of the processor with the closest

depth. The di�culty is determining how to do this comparison e�ciently when the

information is stored on many processors.

Conceptually, the simplest approach, sometimes called binary-tree compositing, is to

have pairs of processors combine their information. Consider that where there are

four geometry/raster pipelines, numbered 0-3 (Angel, 2008). Processors 0 and 1 can

combine their information to form a correct image for the geometry they have seen,

while processors 2 and 3 do the same thing concurrently with their information. Let's

assume that these new images are formed on processors 1 and 3. Thus, processors

0 and 2 have to send both their color bu�ers and their z bu�ers to their neighbors

(processors 1 and 3, respectively). We then repeat the process between processors 1

and 3, with the �nal image being formed in the frame bu�er of processor 3. Note

that the required code is quite simple. The geometry/raster pairs each do an ordinary

rendering. If implemented with OpenGL, the compositing step requires only the use

of glReadPixels and some simple comparisons. However, in each successive step of the

compositing process, only half the processors that were used in the previous step are

still needed. In the end, the �nal image is prepared on a single processor.

There is another approach to the compositing step know as binary-swap compositing

that avoids the idle processor problem. In this technique, each processor is responsible

20

for one part of the �nal image. Hence, for compositing to be correct, each processor

must see all the data. If there are n processors involved in the compositing so they can

be arranged in a round-robin fashion (Angel, 2008). The compositing takes n steps

(rather than the log n steps required by tree compositing). On the �rst step, processor

0 sends portion 0 of its frame bu�er to processor 1 and receives portion n from processor

n. The other processors do a similar send and receive of the portion of the color and

depth bu�ers of their neighbors. At this point, each processor can update one area of

the display that will be correct for the data from a pair of processors. For processor

0 this will be region n. On the second round, processor 0 will receive from processor

n the data from region n-1, which is correct for the data from processors n and n-1.

Processor 0 will also send the data from region n, as will the other processors for part

of their frame bu�ers. All the processors will now have a region that is correct for the

data from three processors. Inductively, it should be clear that after n-1 steps, each

processor has 1/n of the �nal image. Although more steps have taken, far less data

has been transferred than with three compositing, and we have used all processors in

each step.

4.1.3 Sort-First Rendering

One of the most appealing features of sort-last rendering is that we can pair geometric

and raster processors and use standard computers with standard graphic cards (Correa

et al., 2002). Suppose that we could decide �rst where each primitive lies on the �nal

display. Then we could assign a separate portion of the display to each geometry/raster

pair and avoid the necessity of a compositing network (Angel, 2008). Here we have

included a processor at the front end to make the assignment as to which primitives

go to which processors.

This front-end sort is the key to making this scheme work. In one sense, it might seem

impossible, since we are implying that we know the solution-where primitives appear

in the display-before we have solved the problem for which we need the geometric

pipeline. But things are not hopeless. Many problems are structured so that we

may know this information in advance. We also can get the information back from

the pipeline using glGetFloatv to �nd the mapping from object coordinates to screen

coordinates. In addition, we need not always be correct. A primitive can be sent to

multiple geometry processors if it straddles more than one region of the display. Even

if we send a primitive to the wrong processor, that processor may be able to send it on

to the correct processor. Because each geometry processor performs a clipping step,

we are assured that the resulting image will be correct.

21

Sort-�rst rendering does not address the load-balancing issue, because if there are

regions of the screen with very few primitives, the corresponding processors may not

be very heavily loaded (Angel, 2008). However, sort-�rst rendering has one important

advantage over sort-last rendering: It is ideally suited for generating high-resolution

displays. Suppose that we want to display our output at a resolution much greater

than we get with typical CRT or LCD displays that have a resolution in the range of

1-3 million pixels. Such displays are needed when we wish to examine high-resolution

data that might contain more than 100 million geometric primitives.

One approach to this problem is to build a tiled display or power wall consisting of

an array of standard displays (or tiles). The tiles can be CRTs, LCD panels, or the

output of projectors. From the rendering perspective, we want to render an image

whose resolution is the array of the entire display, which can exceed 4000 x 4000 pixels.

Generally, these displays are driven by a cluster of PCs with commodity graphics cards.

Hence, the candidate rendering strategies are sort-�rst and sort-last.

However, sort-last rendering cannot work in this setting because each geometry / ras-

terizer processor must have a frame bu�er the size of the �nal image, and for the

compositing step, extremely large amounts of data must be exchanged between proces-

sors. Sort-�rst renderers do not have this problem. Each geometry / processors pair

need only be responsible for a small part of the �nal image, typically an image the size

of a standard frame bu�er.

4.2 Ray Tracing

Ray tracing (Whitted, 1980) is an extension of the same technique developed in scanline

rendering and ray casting. Similar to them, it handles complicated objects well, and

the objects may be described mathematically. Unlike scanline and ray casting, ray

tracing is almost always a Monte Carlo method (K°ivánek, 2008) that is one based on

averaging a number of randomly generated samples from a model.

In real-time rendering, using a local lighting model is the norm. That is, only the

surface data at the visible point is needed to compute the lighting. This is a strength

of the hardware pipeline, that primitives can be generated, processed, and then be

discarded (Akenine-Möller and Haines, 2002). Transparency, re�ections, and shadows

are examples of global illumination algorithms, in that they use information from other

objects than the one being illuminated. One way to think of the problem of illumination

is the paths the photons take. In the local lighting model, photons travel from the

light to a surface (ignoring intervening objects), then to the eye. With re�ection, the

22

photon goes from the light to some object, bounces o� and travels to a shiny object,

then re�ects o� it and travels to the eye. There are many possible paths light can

take. The rendering equation (Kajiya, 1986), expresses this idea of summing up all

possible paths to �nd the radiance for a given direction. A higher level of realism can

be obtained by accounting for more of these sets of paths. Global illumination research

focuses on methods for e�ciently computing the e�ect of various sets of paths.

Ray tracing is a rendering method in which rays are used to determine the visibility

of various elements. The basic mechanism is very simple, and in fact, functional ray

tracers have been written that �t on the back of a business card (Heckbert, 1994). In

classical ray tracing (Whitted, 1980), rays are shot from the eye through the pixel grid

into the scene. For each ray, the closest object is found. This intersection point then

can be determined to be in light or shadow by shooting a ray from it to each light and

�nding if anything blocks or attenuates the light.

Other rays can be spawned from an intersection point. If the surface is shiny, a ray is

generated in the re�ection direction. This ray picks up the color from any object in this

direction by recursively repeating the process of checking for shadows and re�ecting

rays, until a di�use surface is hit or some maximum depth is reached. Environment

mapping can be thought about as a very simpli�ed version of ray traced re�ections;

the ray re�ects and the light coming from the re�ection direction is retrieved. The

di�erence is that, in ray tracing, nearby objects can be intersected by the re�ection

rays. Note that if these nearby objects are all missed, an environment map can be

used to represent the rest of the environment. Rays can also be generated in the

direction of refraction for transparent solid objects, again recursively evaluated. When

the maximum number of re�ections and refractions is reached, a ray tree has been

built up. This tree is then evaluated from the deepest re�ection and refraction rays

on back to the root, so yielding a color for the sample. Ray tracing provides sharp

re�ection, refraction, and shadow e�ects. Because each sample on the image plane is

essentially independent, any point sampling and �ltering scheme desired can be used

for antialiasing. Another advantage of ray tracing is that true curved surfaces and other

untessellated objects can be intersected directly by rays (Akenine-Möller and Haines,

2002).

The main problem with ray tracing is simply speed. One reason graphics hardware

(GPU) is so fast is that it uses coherence e�ciently. Each triangle is sent through the

pipeline and covers some number of pixels, and all these related computations can be

shared when rendering a single triangle. Other sharing occurs at higher levels, such

as when a vertex is used to form more than one triangle or a shader con�guration is

used for rendering more than one primitive (Hanrahan, 1989). In ray tracing, the ray

23

performs a search to �nd the closest object. Some caching and sharing of results can

be done, but each ray potentially can hit a di�erent object. Much research has been

done on making the process of tracing rays as e�cient as possible (Smits, 1998) (Arvo

and Kirk, 1989) (Glassner, 1989) (Woop et al., 2006) (Parker et al., 2005).

There are a number of ways ray tracing can be used in a real-time context. One is

for precomputing high-quality synthetic images to use for making environment maps,

impostors, skyboxes, or other image-based parts of the scene. Ray tracing can also be

used to generate and store other information, such as depths, normals, or transparency

at each pixel of some distant object. By directly accessing this stored data in a pixel

shader, it becomes possible to rapidly rerender the object when, say, lighting conditions

change. Another use is that, during rendering itself, re�ection or shadow rays can be

generated for small parts of the scene (Wald et al., 2005). The resulting samples are

blended into the Z-bu�er image, and the process can be relatively inexpensive, though

CPU intensive. Another way to integrate ray tracing is to fold it into the per vertex

lighting computations. Tracing rays from only the vertices can signi�cantly reduce

the amount of computation, but su�ers from typical Gouraud-shading artifacts. Sharp

re�ections will usually not be captured, though this could be considered an advantage,

as the re�ections will look blurry. Lindholm et al. (2001) give an example of a vertex

shader performing ray tracing to re�ect a nearby sphere in a curved surface.

In classical ray tracing (Whitted, 1980), rays are spawned in the most signi�cant di-

rections: toward the lights and for mirror re�ections and refractions. Monte Carlo ray

tracing takes the approach of having a single ray re�ect or refract through the scene,

with each surface's BRDF in�uencing the direction that the ray next travels. By shoot-

ing many rays for each pixel, a fuller sampling of each surface's incoming irradiance

is formed. This technique is very expensive, with thousands or millions or more rays

needed per pixel to converge to a precise solution. Given enough time, it fully solves

Kajiya's (Kajiya, 1986) rendering equation. For more on the theory and practice of

classical and Monte Carlo ray tracing (K°ivánek, 2008), Shirley's book (Shirley and

Morley, 2003) can be inspected.

Shooting rays through the entire scene and distributing them with respect to the BRDF

in real time is well beyond even the fastest machines (Akenine-Möller and Haines, 2002).

However, the idea of sampling the hemisphere with ray casting is a feasible preprocess.

The idea is that vertices in cracks and crevices will tend to get less illumination. To

approximate this e�ect of self-shadowing, shoot a set of rays outwards in a hemisphere

from each vertex in a model. Weight the distribution by the cosine of the angle to the

normal. Sum up the proportion of rays that do not intersect the model itself. This

value is stored for each vertex and used during rendering to dim its illumination level.

24

The e�ect is to make objects have more de�nition and look more realistic (Zhukov

et al., 1998). Another way to use hemisphere sampling is to precompute soft shadow

textures for characters. An old technique is to put a fuzzy gray circle texture beneath

a character. By using hemisphere ray casting at each texel's location and checking for

intersection with the character, a more realistic all-purpose drop shadow texture can

be created.

Interactive ray tracing has been possible on a limited basis for some time. For exam-

ple, the demo scene (Scheib, 2001) has made real-time programs for years that have

used ray tracing for some or all of the rendering. Because each ray is, by its nature,

evaluated independently from the rest, ray tracing is "embarrassingly parallel" with

more processors being thrown at the problem usually giving a nearly linear speedup.

Ray tracing also has another interesting feature, that the time for �nding the closest

intersection for a ray is typically order O(log n) for n objects, when an e�ciency struc-

ture is used. For example, bounding volume hierarchies typically have O(log n) search

behavior. This compares well with the typical O(n) performance of the basic Z-bu�er,

in which all polygons have to be sent down the pipeline. Techniques can be used to

speed up the Z-bu�er to give it a more O(log n) response, but with ray tracing, this

performance comes with minimal user intervention.

One advantage of the Z-bu�er is its use of coherence (Davis and Reinhard, 2002),

sharing results to generate a set of fragments from a single triangle. As scene complexity

rises, this factor loses importance. As Wald et al. (2001b) have shown, by carefully

paying attention to the cache and other architectural features of the CPU, as well

as taking advantage of CPU SIMD instructions, interactive and near-interactive rates

can be achieved. While the results are impressive, Z-bu�er graphics accelerators will

be the mainstay for most real-time rendering work. Ray tracing also has its own

limitations to work around. For example, the e�ciency structure that reduces the

number of ray/object tests needed is critical to performance. When an object moves,

this structure needs to be updated rapidly to keep e�ciency at a maximum, a task

that can be di�cult to do well. There are other issues as well, such as the cache-

incoherent nature of re�ection rays (Wald et al., 2001a). A summary of the state of

the art in interactive ray tracing can be seen in See Wald and Slusallek's report (Wald

and Slusallek, 2001). Since then, Purcell (2002), Purcell et al. (2002), and Purcell

et al. (2005) have described how to use a graphics accelerator to accelerate ray tracing

directly.

The object of parallel processing is to �nd a number of preferably independent tasks

and to execute these tasks on di�erent processors.

25

4.3 Radiosity

Radiosity, also known as global illumination, is a method which attempts to simulate

the way in which directly illuminated surfaces act as indirect light sources that illumi-

nate other surfaces. This produces more realistic shading and seems to better capture

the 'ambience' of an indoor scene.

In advanced radiosity simulation (Hadwiger et al., 2008), recursive, �nite-element algo-

rithms bounce light back and forth between surfaces in the model, until some recursion

limit is reached. The coloring of one surface in this way in�uences the coloring of a

neighboring surface, and vice versa. The resulting values of illumination throughout

the model (sometimes including for empty spaces) are stored and used as additional

inputs when performing calculations in a ray casting or ray tracing model (Wald et al.,

2003).

The optical basis of the simulation is that some di�used light from a given point on

a given surface is re�ected in a large spectrum of directions and illuminates the area

around it. The simulation technique may vary in complexity. Many renderings have a

very rough estimate of radiosity, simply illuminating an entire scene very slightly with

a factor known as ambiance. However, when advanced radiosity estimation is coupled

with a high quality ray tracing algorithm, images may exhibit convincing realism,

particularly for indoor scenes (Reinhard, 2002).

If there is little rearrangement of radiosity objects in the scene, the same radiosity data

may be reused for a number of frames, making radiosity an e�ective way to improve on

the �atness of ray casting, without seriously impacting the overall rendering time-per-

frame. Because of this, radiosity has become the leading real-time rendering method.

Due to the iterative/recursive nature of the technique, complex objects are particularly

slow to emulate (Slusallek et al., 2005). Prior to the standardization of rapid radiosity

calculation, some graphic artists used a technique referred to loosely as false radiosity

by darkening areas of texture maps corresponding to corners, joints and recesses, and

applying them via self-illumination or di�use mapping for scanline rendering. Even

now, advanced radiosity calculations may be reserved for calculating the ambiance of

the room, from the light re�ecting o� walls, �oor and ceiling, without examining the

contribution that complex objects make to the radiosity or complex objects may be

replaced in the radiosity calculation with simpler objects of similar size and texture

(K°ivánek, 2008).

The �xed-function pipeline allows point lights to have a constant illumination or fall

o� with distance or distance-squared (Akenine-Möller and Haines, 2002). Often local

26

light sources are not set to drop o� with the square of the distance, as they would in

the real world. One reason is that such lights are di�cult to control. Such lights appear

to drop o� too quickly due to a lack of gamma correction. Another factor is that tone

reproduction is di�cult to perform in real time (Durand and Dorsey, 2000) (Lischinski

et al., 2006). But an important reason that distance-squared lights look unrealistic

is because most real-time systems do not properly account for indirect illumination.

In reality, a signi�cant amount of light in a scene comes from light re�ecting from

surfaces. At night, go into a room and close the blinds and drapes and turn a light

on. The reason you can see anything not in line of sight of the light source is because

the light bounces o� objects in the room. This additional light is so signi�cant that

using distance-squared point lights without accounting for indirect illumination often

means making errors in the opposite direction, with the overall lighting falling o� too

rapidly. Qualitatively, direct lighting from point sources gives a harsh look that indirect

illumination will soften.

There are many di�erent global illumination techniques for determining the amount

of light reaching a surface and then travelling to the eye. Jensen's book (Jensen,

2001) begins with a good technical overview of the subject. While many of these tech-

niques are not currently interactive, research shows a trend towards using the power

of graphics accelerators to make them so. The hemicube method of creating form

factors for radiosity algorithms naturally lends itself to hardware acceleration (Cohen

et al., 1993) (Sillion and Puech, 1994). Stürzlinger and Bastos (1997) render photon-

mapped surfaces by using textured sprites as splats. Stamminger et al. (2000) use

projective textures to blend ray tracing samples to hardware accelerated renderings.

Another example is Hakura and Snyder (2001), where they use a combination of mini-

mal ray tracing for local objects and layered environment maps to produce re�ections

and refractions that closely match fully ray traced solutions. Atmospheric e�ects such

as clouds are another area of research. For example, Harris and Lastra (2001) use an

anisotropic multiple scattering approximation to generate cloud images, which are then

displayed using impostors.

One technique that has found use within the real-time arena is radiosity, speci�cally

meshed radiosity. There have been whole books written on this algorithm (Cohen

et al., 1993) (Sillion and Puech, 1994) (Ashdown, 1995) (Dutre et al., 2006), but the

basic idea is relatively simple. Light bounces around an environment; you turn a

light on and the illumination quickly reaches a stable state. In this stable state, each

surface can be considered as a light source in its own right. When light hits a surface,

it can be absorbed, di�usely re�ected, or re�ected in some other fashion (specularly,

anisotropically, etc). Basic radiosity algorithms �rst make the simplifying assumption

27

that all indirect light is from di�use surfaces. This assumption fails for places with

polished marble �oors or large mirrors on the walls, but for most architectural settings,

this is a reasonable approximation. The BRDF of a di�use surface is a simple, uniform

hemisphere, so the surface's radiance from any direction is proportional purely to the

amount of incoming irradiance multiplied by the re�ectance of the surface.

To begin the process, each surface is represented by a number of patches (i.e., poly-

gons)(Akenine-Möller and Haines, 2002). The patches do not have to match one-for-one

with the underlying polygons of the rendered surface. There can be fewer patches, as

for a mildly curving spline surface, or more patches can be generated during processing,

in order to capture features such as shadow edges.

To create a radiosity solution, the basic idea is to form a matrix of form factors among

all the patches in a scene. Given some point or area on the surface (such as at a

vertex or the patch itself), imagine a hemisphere above it (Akenine-Möller and Haines,

2002). Similar to environment mapping, the entire scene can be projected onto this

hemisphere. The form factor is a purely geometric value denoting the proportion of

how much light travels directly from one patch to the surface. A signi�cant part of the

radiosity algorithm is accurately determining the form factors between the receiving

patch and each other patch in the scene. The area, distance, and orientations of both

patches a�ect this value. Cohen and Wallace (Cohen et al., 1993), and Sillion and

Puech (Sillion and Puech, 1994), cover a wide range of such formulae. As the viewed

patch nears the horizon of the receiving patch's hemisphere its e�ect lessens, just the

same as how a light's e�ect on a di�use surface lessens under the same circumstances.

Another important factor is visibility between patches. If something else partially

or fully blocks the tested patch from being seen by the receiver, the form factor is

correspondingly reduced. Thinking back on the hemisphere, there is essentially only

one surface visible in any given direction. Calculating the form factor of a patch for a

receiving point is equivalent to �nding the area of the patch visible on the hemisphere

and then projecting the hemisphere onto the ground plane. The proportion of the circle

on the ground plane beneath the hemisphere that the patch covers is the patch's form

factor. Called the Nusselt analog (Ward, 2007), this projection e�ectively folds in the

cosine term that a�ects the importance of the viewed patch to the receiving point.

Given the geometric relations among the various patches, some patches are designated

as being emitters (i.e., lights). Energy travels through the system, reaching equilibrium.

One way used to compute this equilibrium in fact, the �rst way discovered, using heat

transfer methods) is to form a square matrix, with each row consisting of the form

factors for a given patch times that patch's re�ectivity.

28

It is worth mentioning that the radiosity solutions for independent lights can be solved

for individually and combined later. For example, given a few light sources in a scene,

a set of light maps capturing the radiosity solution for each light could be created.

As lights are turned o� and on, the various sets of light maps can be added together

as needed. A signi�cant amount of research has focused on simplifying the solution

of this matrix. For example, in progressive radiosity, the idea is to shoot the light

out from the light sources and collect it at each patch. The patch receiving the most

light is then treated like an emitter, bouncing light back into the environment. The

next brightest patch then shoots its light out, possibly starting to re�ll the �rst shot

patch with new energy to shoot. This process continues until some level of diminishing

returns is reached. This algorithm takes no less time to fully converge on a solution

to the matrix, but has a number of advantages. Form factors are created for only

one column of the radiosity equation for each patch shoot, an O(n) process (Akenine-

Möller and Haines, 2002). After any given shoot step, a preliminary radiosity solution

can be output. This means a usable solution can be rapidly generated and displayed

in seconds or less, with the ability to re�ne the solution over time with unused cycles.

A recent improvement on the progressive algorithm is eigenvector radiosity, proposed

by Ashdown (2001), which is three orders of magnitude faster for moderately com-

plex environments. The approach has reasonable memory requirements, and is good

for simulating static environments under changing illumination conditions. Ashdown

reports computing converged radiosity results in under a tenth of a second for 1000

element environments.

Typically, however, the radiosity process itself is usually performed o�ine. The result-

ing computed illumination is applied to the surfaces by either storing the amount of

light reaching each vertex and interpolating, or by storing a light map for the surface.

Radiosity is an approach that gives a visual richness to an environment, while also

precomputing all di�use components, thereby allowing faster redisplay than computing

these on the �y. There are a few drawbacks to the technique beyond the time cost of

the algorithm itself and any visual artifacts caused by it. First, the solution is �xed in

place for a given set of lights and object positions. Turning on and o� a light is only

a state change, so could be captured by storing two solution sets. However, as with

any global illumination algorithm, moving an object will invalidate the rendering for

other objects. Movement modi�es some of the form factors, e.g., the object's angle and

position to the lighting will change, the shadows cast by the object will change, and

the light re�ected by the object itself will change.

Specular highlights have to be handled carefully in a radiosity environment, as the

29

visibility of each light a�ects whether a highlight exists or not. Ignoring this detail

means that objects in shadow will still shine. Also, if light re�ects from a patch onto

an object, this source of light will not cause a specular highlight to appear. Walter et

al. address this problem by creating a more elaborate radiosity solution that also stores

the directional specular component, �t point lights to best represent these highlights,

then use these lights in conjunction with a displayed di�use solution.

Radiosity theory has been used for terrain rendering in games (Akenine-Möller and

Haines, 2002). Ho�man and Mitchell determine how much each vertex is directly

illuminated by the sun by storing critical angles. They also compute the lighting e�ect

of the sky and surrounding terrain by using horizon mapping. In horizon mapping,

for each point on the terrain, the altitude angle of the horizon is determined for some

set of azimuth directions (e.g., eight: north, northeast, east, southeast, etc.). By using

this information and making some simplifying assumptions, they are able to get a

reasonable approximation of the e�ect of surrounding terrain and the sky. Speci�cally,

they use Stewart and Langer's result that for a scene under di�use lighting conditions,

the points near a given point have the same radiance. The result is the creation of a

light map that is multiplied by the sky's color during run time.

30

Chapter 5

Acceleration Algorithms & Data

Structures

5.1 Spatial Data Structures

Spatial data structures are used to organize geometry in some n-dimensional space

(Chalmers et al., 2002). These data structures can be used to accelerate queries about

if geometric entities overlap. Such queries are used in a wide variety of operations such

as collision detection, culling algorithms, during intersection testing and ray tracing

(Akenine-Möller and Haines, 2002).

Spatial data structures are usually hierarchically organized. This means that the top-

most level encloses the level below it, which encloses the level below that level, and

so on. Because of this, the structure is nested and has a recursive nature. The main

reason for using such a hierarchy is that di�erent types of queries get signi�cantly

faster. This improvement is usally from O(n) to O(log n). On the other hand, the

contruction of most spatial data structures is an expensive task. So, it is done as a

preprocess but incremental updates are done in real-time (Samet, 2005).

Bounding Volume Hierarchies (BVHs), variants of BSP trees, and octrees are some

di�erent types of spatial data structures. Octrees and BSP trees are based on space

subdivision. This means that entire space of the scene is subdivided and encoded in

the data structure. For example, the union of the space of all the leaf nodes is equal

to the entire space of the scene. Both variants of BSP trees are irregular, namely the

space can be subdivided more arbitrarly. On the other side, the octree is a regular

structure so that the space is uniformly splitted. But this uniformity can often be a

reason for e�ciency (Samet, 2007).

31

A bounding volume hierarchy is not a space subdivision structure, but it encloses the

regions of the space surrounding geometrical objects. Because of this, the BVH need not

enclose all space (Samet, 2008). In addition to improving e�ciency of queries, BVHs

are also commonly used to describe model relationships and for control of hierarchical

animation.

5.1.1 Bounding Volume Hierarchies (BVHs)

A bounding-volume hierarchy is a tree structure on a set of geometric data objects

(Haverkort, 2004). Each object is stored in a leaf of the tree. Each internal node stores

for each of its children v an additional geometric object V(v), that encloses all data

objects that are stored in descendants of v. In other words, V(v) is a bounding volume

for the descendants of v.

Algorithm 5.1 Intersected(Q, v)

1: for all child x of v do
2: if V (x) intersects Q then
3: if x is a leaf then
4: if M intersects Q then
5: report M
6: else
7: Intersected(Q, v)

Bounding-volume hierarchies can be used to do many types of queries on the set of

data objects. For example, the Algorithm 5.1 �nds all objects that intersect a query

range Q and are stored in descendants of node v. To �nd all data input objects that

intersect Q, start the algorithm with the root of the hierarchy as v. The query will then

descend into the tree, visiting exactly those nodes whose bounding volumes intersect

Q. The bounding-volume hierarchy can also be used for other types of queries, such as

nearest-neighbour queries.

5.1.2 Binary Search Partitioning (BSP) Trees

When the original design of the algorithm for Binary Space Partitioning (BSP)-trees

was formulated the idea was to use it to sort the polygons in the world. The reason for

this was there did not exist hardware accelerated Z-bu�ers, and software Z-bu�ering

was too slow. Today that area of usage is obsolete, since hardware accelerated Z-

bu�ers exist. Instead the usage is to optimize a wide variety of areas, such as radiosity

calculations, drawing of the world, collision detection and networking.

32

Binary Space Partioning (BSP)-trees were �rst described in 1969 by Schumacker et al.

(1969), it was hardly meant to be an algorithm used to develop entertainment products,

but BSP-trees have been used in the gaming industry to improve performance and make

it possible to use more details in the maps.

A Binary Space Partitioning-tree is a structure that, as the name suggests, subdivides

the space into smaller sets. These days, given hardware accelerated Z-bu�ers; the

bene�t of this is that one has a smaller amount of data to consider given a location in

space. The main reason BSP-trees were being used was that they sorted the polygons

in the scene so that you always drew back-to-front, meaning that the polygon with the

lowest Z-value was drawn last. There are other ways to sort the polygons so that the

closest polygon is drawn last, for example the Painter's algorithm (Hanrahan, 1989),

but few are as cheap as BSP-trees, because the sorting of the polygons is done during

the pre-processing of the map and not under run-time. The algorithm for generating

a BSP-tree is actually an extension of Painter's algorithm. Just as the original design

of the BSP algorithm, the Painter's algorithm works by drawing the polygons in the

scene in back-to-front order. However, there are some major drawbacks with Painter's

algorithm:

1. Polygons will not be drawn correctly if they pass through any other polygon

2. It is di�cult and computationally expensive to calculate the order that the poly-

gons should be drawn in for each frame

3. The algorithm cannot handle cases of cyclic overlap

The original idea for the creation of a BSP-tree is that you take a set of polygons that

is part of a scene and divide them into smaller sets, where each subset is a convex set

of polygons. That is, each polygon in this subset is in front of every other polygon

in the same set. Polygon 1 is in front of polygon 2 if each vertex in polygon 1 is on

the positive side of the plane polygon 2 de�nes or in that plane that. A cube made of

inward facing polygons is a convex set, whilst a cube made of outwards facing polygons

is not.

5.2 Culling

To cull means to remove from a �ock and in the context of computer graphics, this

is exactly what culling techniques do (Akenine-Möller and Haines, 2002). The �ock is

the whole scene that we want to render, and the removal is limited to those portions

33

of the scene that are not considered to contribute to the �nal image. The rest of

the scene is sent through the rendering pipeline. Thus, the term visibility culling is

also often used in the context of rendering. However, culling can also be done for

other parts of a program. Examples include collision detection (by doing less accurate

computations for invisible objects), physics computations, and AI. Examples of such

techniques are backface culling, view frustum culling, and occlusion culling. Backface

culling eliminates polygons facing away from the viewer. This is a simple technique

that operates on only a single polygon at a time. View frustum culling eliminates

groups of polygons outside the view frustum. As such, it is a little more complex.

Occlusion culling eliminates objects hidden by groups of other objects. It is the most

complex culling technique, as it requires an object or group of objects to gather and

use information about other objects' locations.

The actual culling can theoretically take place at any stage of the rendering pipeline,

and for some occlusion culling algorithms, it can even be precomputed. For culling

algorithms that are implemented in hardware, we can sometimes only enable/disable

or set some parameters for the culling function. For full control, the programmer can

implement the algorithm in the application stage on the CPU. Assuming the bottleneck

is not on the CPU, the fastest polygon to render is the one never sent down the

accelerator's pipeline. Culling is often achieved by using geometric calculations but is

in no way limited to these. For example, an algorithm may also use the contents of the

frame bu�er (Assarsson et al., 2003).

The ideal culling algorithm would send only the Exact Visible Set (EVS) of primi-

tives through the pipeline. In this book, the EVS is de�ned as all primitives that

are partially or fully visible. One such data structure, that allows for ideal culling,

is the aspect graph, from which the EVS can be extracted given any point of view.

Creating such data structures is possible in theory, but not really in practice, since

worst-time complexity can be as bad as O(n9) (Cohen-Or et al., 2003). Instead, prac-

tical algorithms attempt to �nd a set, called the Potentially Visible Set (PVS), that

is a prediction of the EVS. If the PVS fully includes the EVS, so that only invisible

geometry is discarded, the PVS is said to be conservative. A PVS may also be ap-

proximate, in which the EVS is not fully included. This type of PVS may therefore

generate incorrect images. The goal is to make these errors as small as possible. Since

a conservative PVS always generates correct images, it is considered more useful. By

overestimating or approximating the EVS, the idea is that the PVS can be computed

much faster. The di�culty lies in how these estimations should be done to gain overall

performance. For example, an algorithm may treat geometry at di�erent granularities,

i.e., polygons, whole objects, or groups of objects. When a PVS has been found, it is

34

rendered using the Z-bu�er, which resolves the �nal visibility (Cohen-Or et al., 2003).

5.2.1 View Frustum Culling

As a basic principle in culling, only primitives that are totally or partially inside the

view frustum need to be rendered. One way to speed up the rendering process is to

compare the bounding volume (BV) of each object to the view frustum. If the BV

is outside the frustum, then the geometry it encloses can be omitted from rendering.

Since these computations are done within the CPU, this means that the geometry

inside the BV does not need to go through the geometry and the rasterizer stages in

the pipeline. If instead the BV is inside or intersecting the frustum, then the contents

of that BV may be visible and must be sent through the rendering pipeline.

By using a spatial data structure, this kind of culling can be applied hierarchically.

For a bounding volume hierarchy (BVH), a preorder traversal from the root does the

job. Each node with a BV is tested against the frustum. If the BV of any type of

node is outside the frustum, then that node is not processed further. The tree is

pruned, since the BV's subtree is outside the view. If the BV intersects the frustum,

then the traversal continues and its children are tested. When a leaf node is found to

intersect, its contents (i.e., its geometry) is sent through the pipeline (Akenine-Möller

and Haines, 2002). The primitives of the leaf are not guaranteed to be inside the view

frustum. Clipping takes care of ensuring that only primitives inside the view frustum

are being rendered. If the BV is fully inside the frustum, its contents must all be inside

the frustum. Traversal continues, but no further frustum testing is needed for the rest

of such a subtree.

View frustum culling operates in the application stage, which means that both the

geometry and the rasterizer stages can bene�t enormously. For large scenes or certain

camera views, only a fraction of the scene might be visible, and it is only this fraction

that needs to be sent through the rendering pipeline. In such cases a large gain in

speed can be expected. View frustum culling techniques exploit the spatial coherence

in a scene, since objects that are located near each other can be enclosed in a BV, and

nearby BVs may be clustered hierarchically.

Other spatial data structures than the BVH can also be used for view frustum culling.

This includes octrees and Binary Space Partitioning (BSP) trees. These methods are

usually not �exible enough when it comes to rendering dynamic scenes. That is, it

takes too long to update the corresponding data structures when an object stored in

the structure moves. An exception for this situation is loose octrees. But for static

scenes, these methods can perform better than BVHs.

35

Polygon-aligned BSP trees are simple to use for view frustum culling. If the box

containing the scene is visible, then the root node's splitting plane is tested. If the

plane intersects the frustum (i.e., if two corners on the frustum are found to be on

opposite sides of the plane), then both branches of the BSP tree are traversed. If

instead, the view frustum is fully on one side of the plane, then whatever is on the

other side of the plane is culled. Axis-aligned BSP trees and octrees are also simple to

use. Traverse the tree from the root, and test each box in the tree during traversal. If

a box is outside the frustum, traversal for that branch is terminated.

For view frustum culling, there is a simple technique for exploiting frame-to-frame

coherency (Akenine-Möller and Haines, 2002). If a BV is found to be outside a certain

plane of the frustum in one frame, then (assuming that the viewer does not move too

quickly) it will probably be outside that plane in the next frame too. So if a BV was

outside a certain plane, then an index to this plane is stored (cached) with the BV. In

the next frame in which this BV is encountered during traversal, the cached plane is

tested �rst, and on average a speed-up can be expected.

If the viewer is constrained to only translation or rotation around one axis at a time

from frame to frame, then this can also be exploited for faster frustum culling. When

a BV is found to be outside a plane of the frustum, then the distance from that plane

to the BV is stored with the BV. If the viewer only translates, then the distance to the

BV can be updated quickly by knowing how much the viewer has translated. This can

provide a generous speed-up in comparison to a naive view frustum culler.

5.2.2 Backface Culling

All backfacing polygons that are part of an opaque object can be culled away from

further processing. A consistently oriented polygon is backfacing if the projected poly-

gon is oriented in, say, a counterclockwise fashion in screen space. This test can be

implemented by computing the normal of the projected polygon in two-dimensional

screen space: n = (v1 − v0)x(v2 − v0). This normal will either be (0,0,a) or (0,0,-a),

where a > 0 (Akenine-Möller and Haines, 2002). If the negative z-axis is pointing

into the screen, the �rst result indicates a frontfacing polygon. This test can also be

formulated as a computation of the signed area of the polygon. Either culling test can

be implemented immediately after the screen-mapping procedure has taken place (in

the geometry stage). Backface culling decreases the load on the rasterizer since we do

not have to scan convert the backfacing polygons. But the load on the geometry stage

might increase because the backface computations are done there.

36

Another way to determine whether a polygon is backfacing is to create a vector from

an arbitrary point on the plane in which the polygon lies (one of the vertices is the

simplest choice) to the viewer's position. Compute the dot product of this vector and

the polygon's normal. A negative dot product means that the angle between the two

vectors is greater than �/2 radians, so the polygon is not facing the viewer. This test is

equivalent to computing the signed distance from the viewer's position to the plane of

the polygon. If the sign is positive, the polygon is frontfacing. Note that the distance

is obtained only if the normal is normalized, but this is unimportant here, as only

the sign is of interest (Akenine-Möller and Haines, 2002). This test can be performed

after the model transform (into world space) or after the model and view transforms

(into eye space), which is a bit earlier in the geometry stage than with the screen-space

method.

Blinn (1996) points out that these two tests are geometrically the same. Both compute

the dot product between the normal and the vector from a point on the polygon to

the eye. In the test that is done in screen space, the eye has been transformed to

(0, 0,∞), and the dot product is thus only the z-component of the polygon vector in

screen-space. In theory, what di�erentiates these tests is the space where the tests are

computed-nothing else. In practice, the screen space test is often safer, because edge-

on polygons that appear to face slightly backward in eye space can become slightly

forward in screen space. This happens because the eye-space coordinates get rounded

o� to screen-space integer pixel or subpixel coordinates.

Using an API such as OpenGL or DirectX, backface culling is normally controlled with

a few functions that either enable backface or frontface culling or disable all culling.

Note also that the objects need not be closed (solid) in order to take advantage of

backface culling. It su�ces to know that only one side of a polygon will be seen. This

is often the case for buildings, where wall polygons are visible only from one side.

Also, be aware that a mirroring transform (i.e., a negative scaling operation) turns

backfacing polygons into frontfacing ones and vice versa (Blinn, 1996).

While backface culling is a simple technique for avoiding the rasterizing of many poly-

gons without due cause, it would be even faster if the CPU could decide with a single

test if a whole set of polygons should be sent through the entire pipeline or not. Such

techniques are called clustered backface culling algorithms (Akenine-Möller and Haines,

2002). The basic concept that many such algorithms use is the normal cone (Shirman

and Abi-Ezzi, 1993). Processing is made faster by dealing with a set of primitives.

This can, for example, be a triangle mesh or region of a parametric surface. For each

such set, a truncated cone is created that contains all the normal directions of the set,

and all the points of the set. Shirman and Abi-Ezzi (1993) prove that if the viewer is

37

located in the frontfacing cone, then all faces in the cone are frontfacing, and similarly

for the backfacing cone.

5.2.3 Detail Culling

Detail culling is a technique that sacri�ces quality for speed. The rationale for detail

culling is that small details in the scene contribute little or nothing to the rendered

images when the viewer is in motion. When the viewer stops, detail culling is usually

disabled. Consider an object with a bounding volume, and project this BV onto the

projection plane. The area of the projection is then estimated in pixels, and if the

number of pixels is below a user-de�ned threshold, the object is omitted from further

processing. For this reason, detail culling is sometimes called screen-size culling. Detail

culling can also be done hierarchically on a scene graph. The geometry and rasterizer

stages both gain from this algorithm. Note that this could be implemented as a sim-

pli�ed LOD technique, where one LOD is the entire model, and the other LOD is an

empty object.

5.2.4 Portal Culling

For architectural models, there is a set of algorithms that goes under the name of portal

culling. The �rst of these were introduced by Airey in 1990. Later, Teller and Séquin

(1991) and Teller and Hanrahan (1993) constructed more e�cient and more complex

algorithms for portal culling. The rationale for all portal-culling algorithms is that

walls often act as large occluders in indoor scenes. The idea is therefore to do view

frustum culling through each portal (e.g., door or window). When traversing a portal,

the frustum is diminished to �t closely around the portal. Therefore, this algorithm

can be seen as an extension of view frustum culling. Portals that are outside the view

frustum are discarded. Portal culling is a kind of occlusion culling algorithm, but is

treated separately because of its importance.

Portal-culling methods preprocess the scene in some way, either automatically or by

hand (Akenine-Möller and Haines, 2002). The scene is divided into cells that usually

correspond to rooms and hallways in a building. The doors and windows that connect

adjacent rooms are called portals. Every object in a cell and the walls of the cell are

stored in a data structure that is associated with the cell. We also store information on

adjacent cells and the portals that connect them in an adjacency graph. Teller presents

algorithms for computing this graph (Teller, 1992). A commonly used alternative is to

manually create it.

38

Luebke and Georges (1995) use a simple method that requires only a small amount of

preprocessing. The only information that is needed is the data structure associated with

each cell, as described above. An optimization that can well be worth implementing

is to use the stencil bu�er for more accurate culling. The stencil bu�er can be used to

mask away rasterization (e.g., texturing and depth test) outside that real portal.

There are many other uses for portals. Mirror re�ections can be created by transforming

the viewer when the contents of a cell seen through a portal are about to be rendered.

That is, if the viewer looks at a portal, then the viewer's position and direction can

be re�ected in the plane of that portal. Other transformations can be used to create

other e�ects, such as simple refractions. Portals can also be "one-way". For example,

assume that you walk from cell A to cell B through a portal. If the portal is one-way,

then we cannot go back from B to A-instead we may turn around and see another cell

C. This is perfectly suited for creating a di�cult maze.

5.2.5 Occlusion Culling

As we have seen, visibility may be solved via a hardware construction called the Z-

bu�er. Even though it may solve visibility correctly, the Z-bu�er is not a very smart

mechanism in all respects. For example, imagine that the viewer is looking along a line

where 10 spheres are placed (Akenine-Möller and Haines, 2002). An image rendered

from this viewpoint will show but one sphere, even though all 10 spheres will be scan-

converted and compared to the Z-bu�er, and then potentially written to the color bu�er

and Z-bu�er. Depth complexity refers to how many times each pixel is overwritten. In

the case of the 10 spheres, the depth complexity is 10 for the pixel in the middle as 10

spheres are rendered there (assuming backface culling was on), and this means that 9

writes to the pixel are unnecessary. This uninteresting scene is not likely to be found

in reality, but it describes (from the given viewpoint) a densely populated model.

These sorts of con�gurations are found in real scenes such as those of a rain forest, an

engine, a city, and the inside of a skyscraper. Given the examples in the previous para-

graph, it seems plausible that an algorithmic approach to avoid this kind of ine�ciency

may pay o� in terms of speed. Such approaches go under the name of occlusion culling

algorithms, since they try to cull away (avoid drawing) objects that are occluded, that

is, hidden by other objects in the scene. The optimal occlusion culling algorithm would

select only the objects that are visible. In a sense, the Z-bu�er selects and renders only

those objects that are visible, but not without having to send all objects through most

of the pipeline. The idea behind e�cient occlusion culling algorithms is to perform

some simple tests early on and so avoid sending data through much of the pipeline.

39

There are two major forms of occlusion culling algorithms, namely point-based and

cell-based. Point-based visibility is just what is normally used in rendering, that is,

what is seen from a single viewing location. Cell-based visibility, on the other hand, is

done for a cell, which is a region of the space, normally a box or a sphere. An invisible

object in cell-based visibility must be invisible from all points within the cell. The

advantage of cell-based visibility is that once it is computed for a cell, it can usually be

used for a few frames, as long as the viewer is inside the cell. However, it is usually more

time consuming to compute than point-based visibility. Therefore, it is often done as

a preprocessing step, and this is, in fact, the major reason this type of algorithm was

developed. Note that point-based and cell-based visibility often are compared to point

and area light sources. For an object to be invisible, it has to be in the umbra region,

i.e., fully occluded.

One can also categorize occlusion culling algorithms into those that operate in image

space, object space, or ray space (Akenine-Möller and Haines, 2002). Image space

algorithms do visibility testing in two dimensions after some projection, while object

space algorithms use the original three-dimensional objects. Ray space (Bittner and

Prikryl, 2001) (Bittner et al., 2001) (Koltun et al., 2001) methods performs their tests

in a dual space. Each point (often two-dimensional) of interest is converted to a ray

in this dual space. The idea is that testing is simpler, more exact, or more e�cient in

this space.

Depending on the particular algorithm, OR represents some kind of occlusion infor-

mation. OR is set to be empty at the beginning. After that, all objects (that pass

the view frustum culling test) are processed. Consider a particular object. First, we

test whether the object is occluded with respect to the occlusion representation OR.

If it is occluded, then it is not processed further, since we then know that it will not

contribute to the image. If the object is determined not to be occluded, then that

object has to be rendered, since it probably contributes to the image (at that point in

the rendering). Then the object is added to P, and if the number of objects in P is

large enough, then we can a�ord to merge the occluding power of these objects into

OR. Each object in P can thus be used as an occluder. Depending on the algorithm,

the merging can be done at di�erent frequencies. Also, all algorithms cannot a�ord

to merge all objects in P. Therefore, one often estimates how good an occluder is and

only merges the good ones. This last operation in the pseudocode is very important

as it provides a mechanism to fuse occluders (Zhang et al., 1997). This means that

several occluders together can occlude more than each occluder considered as a single

entity. Occluder fusion is essential to get good cull rates. However, not all algorithms

can fuse occluders.

40

Occluder fusion is even more important for cell-based than for point- based algorithms,

as the occluded space for cell-based algorithms is smaller. For conservative visibility

algorithms, the visibility test needs to overestimate the object to be tested for occlusion.

This is often done with a bounding volume around the object. However, if the object

is to be used as an occluder (inserted into the OR), the occluding power of the object

needs to be underestimated.

For some algorithms, it is expensive to update the occlusion representation, so this is

only done once (before the actual rendering starts) with the objects that are believed

to be good occluders. This set is then updated from frame to frame.

Note that for the majority of occlusion culling algorithms, the performance is dependent

on the order in which objects are drawn (Akenine-Möller and Haines, 2002). As an

example, consider a car with a motor inside it. If the hood of the car is drawn �rst,

then the motor will (probably) be culled away. On the other hand, if the motor is

drawn �rst, then the hood of the car will not be culled. Therefore, performance can

be improved by techniques such as rough front-to-back sorting of the objects by their

approximate distance from the viewer and rendering in this order. Also, it is worth

noting that small objects potentially can be excellent occluders, since the distance to

the occluder decides how much it can occlude. As an example, a match- box can

occlude the Golden Gate Bridge if the viewer is su�ciently close to the matchbox.

5.3 Level of Detail

The basic idea of Levels of Detail (LODs) is to use simpler versions of an object as it

makes less and less of a contribution to the rendered image (Akenine-Möller and Haines,

2002). For example, consider a detailed car that may consist of 10, 000 triangles. This

representation can be used when the viewer is close to the car. When the object is

farther away, say covering only 10 x 5 pixels, we do not need all 10,000 triangles.

Instead, we can use a simpli�ed model that has only, say, 100 triangles. Due to the

distance, the simpli�ed version looks approximately the same as the more detailed

version. In this way, a signi�cant speedup can be expected. Note also that fog is

often used together with LODs. This allows us to completely skip the rendering of an

object as it enters opaque fog. Also, the fogging mechanism can be used to implement

time-critical rendering. By moving the far plane closer to the viewer, objects can be

culled earlier and more rapid rendering achieved to keep the frame rate up.

Some objects, such as spheres, Bezier surfaces, and subdivision surfaces have levels of

detail as part of their geometrical description. The underlying geometry is curved, and

41

a separate LOD control determines how it is tessellated into displayable polygons.

In general, LOD algorithms consist of three major parts, namely, generation, selection,

and switching. LOD generation is the part where di�erent representations of a model

are generated with di�erent detail. Simpli�cation methods can be used to generate the

desired number of LODs. Another approach is to make models with di�erent levels

of detail by hand. The selection mechanism chooses a level of detail model based on

some criteria, such as estimated area on the screen. Finally, we need to change from

one level of detail to another, and this process is termed LOD switching.

When switching from one LOD to another, an abrupt model substitution is often

noticeable and distracting. This di�erence is called popping. Several di�erent ways to

perform this switching exists, and they all have di�erent popping traits.

In the simplest type of LOD algorithm, the di�erent representations are models of the

same object containing di�erent numbers of primitives. This algorithm is well-suited

for modern graphics hardware (GPU) (Luebke et al., 2002), because the LODs can be

turned into indexed triangle strips and pulled directly from DMA memory. A more

detailed LOD has a higher number of primitives. The switching from one LOD to

another just happens, that is, on the current frame a certain LOD is used. Then on

the next frame, the selection mechanism selects another LOD, and immediately uses

that for rendering. Popping is typically the worst for this type of LOD method.

Conceptually, a pretty obvious way to switch from one LOD to another is possible. Just

do a linear blend between the two LODs over a short period of time. This is de�nitely

going to make for a smoother switch. However, it is expensive to make such blends.

Rendering two LODs for one object is naturally more expensive than just rendering

one LOD, so this somewhat defeats the purpose of LODs. However, LOD switching

takes place during only a short amount of time, and often not for all objects in a scene

at the same time, so this may very well be pro�table.

Since the results of a blending operation depend on the current contents of the frame

bu�er, care has to be taken to draw the models in an order that does not lead to

additional artifacts due to the blend. Giegl and Wimmer (2007) propose a method

that works well in practice. Assume a transition between two LODs-say LOD1 and

LOD2-is desired, and that LOD1 is the current LOD being rendered. Now instead of

drawing both LODs transparently, �rst draw LOD1 opaquely to the frame bu�er (both

color and Z). Then fade in LOD2 by increasing its alpha value from 0 to 1 and using

the "over" blend mode. When LOD2 has faded so it is completely opaque, it is turned

into the current LOD, and LOD1 will start to fade out. The LOD that is being faded

(in or out) should be rendered with the z-test enabled and z-writes disabled. Note that

42

in the middle of the transition, both LODs are rendered opaquely, one on top of the

other.

The advantage of the method is that it works on current graphics hardware and is

simple to implement (Akenine-Möller and Haines, 2002). It also avoids the problems

usually associated with alpha blending by always drawing one of the LODs opaquely.

Sometimes the silhouettes of the di�erent LODs might not match very well. In such

cases, it is advisable to draw all opaque LODs �rst, and the LODs currently being

faded afterwards. This makes sure a correct Z-bu�er is established before transparent

objects are drawn. The technique works best if the transition intervals are kept short,

which also helps keeping the rendering overhead small.

43

Chapter 6

Hybrid Parallel Renderer (HPR)

6.1 What is HPR

Hybrid Parallel Renderer (HPR) is the real-time hybrid-parallel rendering software

which is prototyped by implementing the research which is covered in this thesis. Main

goals of the HPR are:

1. Complete computations in real-time

2. Utilize multi-core, multi-CPU, multi GPU, and multi-PC environment

3. Compute high quality images using ray tracing and radiosity

4. Handle complex and large scenes

Compared to conventional renderers which are based on direct illumination models,

achieving these goals requires enormous amount of CPU, GPU, memory, and network

resources. The solution to satisfy these requirements is to obtain the massive com-

putational power from parallel processing using cost e�cient PC cluster consisting of

multi-core CPU, and multi-GPU machines interconnected by Gigabit Ethernet.

The bene�ts gained from the hardware developments apply the same way even if mul-

tiple computers are used. Especially, the developments in the networking environment

will surely be the power to move forward the use of PC clustering.

Computer hardware technology is constantly evolving. Cheaper and faster compo-

nents are released to the market everyday. However, the e�ciency of image rendering

using only one computer is limited mainly by the computer's performance. If more

performance is required, lots of investment must be made on the high-end computers.

44

Because of this, the e�cient methodology for the future is to combine the power of

more than one cost-e�ective machines to satisfy the demand for computational power.

This solution also brings forth the way of long-time use of computers.

The architecture of such rendering system is desired to extend reliably for years. There-

fore, the �exibility to allow addition of various improvements is important. Further-

more, the renderer is intended to be the test environment for experimenting various

rendering ideas.

HPR may render multiple frames while the scene data is resident in the memory. When

HPR started, commands can be entered to modify the scene data before starting the

rendering of the next frame. The detailed rendering control commands are sent to this

console screen either directly or through socket communication. HPR waits for the

next command until it is explicitly told to terminate.

Every part of the HPR such as ray tracing, shading, and network communication is

designed to be processed in parallel. Shared memory parallel processing is implemented

using OpenMP to maximize the performance on multi-core and multi-CPU systems.

All computations in HPR's distributed rendering processing are done in the message

passing system using networked machines. Scene data are processed in sequence to

allow the computation to continue over the network. HPR uses OpenMPI for the

communication between multiple machines.

HPR's base rendering algorithm is Monte Carlo ray tracing which is simple but power-

ful, and perfectly suitable for parallel processing based on message passing. However,

ray tracing requires all scene data to be loaded in the memory. This requirement be-

comes an obstacle in achieving HPR's goal to render large scenes. There are many

proposed methods to overcome this problem. Paging the required data from disk is

one the common solutions. In some cases, HPR distributes the large scene data to

multiple machines.

Since implementation of photon map on a Monte Carlo ray tracer is easy and the algo-

rithm reliably works, photon mapping is used for the global illumination computation.

6.2 System Design

If the scene to be rendered is simple and small enough to �t in the memory of a

computer, HPR sends same copies of the entire scene data to all requesting computers

and ray tracing is executed in parallel. In this case, the speed-up is proportional to

45

the number of computers. However, if the scene is large and cannot be stored in the

memory of a computer, alternative ray tracing methodologies are considered.

Two rules for designing scene distribution methodology and rendering algorithms are:

1. Scene data should be loaded in memory

2. Ray data should passed between computers

Results of several experiments have shown that exchanging a part of the scene geometry

data between computers results in too much communication overhead. This is because

geometry data structure is complex and not suitable for partial transfers. On the

other hand, ray data are independent from each other and are easier to be transferred

between computers.

6.2.1 Processing Nodes

The HPR consists of some processing nodes. These are:

ManagerNode which distributes the workload of rendering image to the render nodes.

The ManagerNode distributes the workload between the RenderNodes by dividing the

image into many image tiles and assigning them to RenderNodes on demand.

SceneDataNode which stores and distributes the scene graph data to RenderNodes.

Also SceneDataNode is in responsible for image and object space coherence.

RenderNode which performs the rendering of a scene data to an image. Key principle

of the HPR is to render a single frame by distributing it to multiple render nodes. All

RenderNodes have access to an identical copy of an the scene graph data.

AssemblyNode which receives frame tiles from all RenderNodes, and assembles them

to a form a composite image bu�er. As there is one dedicated tile assembly node for

each display node, the nodes receive only those tiles of the rendered image stream that

are relevant for the particular display node that they are responsible. The information

about the given detail of rendered images is part of the communication between a

RenderNode and AssemblyNode. Because of this a RenderNode knows the rendered

tiles that have to be forwarded to a speci�c tile assembly node. By this way, there is

no communication overhead occurs for parts of the image that would not be displayed

later.

CodecNode has the functionality to compress image data in a desired format. These

nodes take place between the AssemblyNode and DisplayNode. Encoding the image

data in between tile assembly and display can enormously reduce the network tra�c and

46

allows rendering across high-latency or low-bandwidth networks (e.g., the Internet).

HPR may provide multiple con�gurations of encoder and decoder nodes.

DisplayNode which composes the chain of nodes, and presents any incoming image

data synchronized according to its timestamp. HPR may allow to have more than

one display nodes relate to the same rendering process, where a single display node

represents one partial view of the rendered image, which can either be a part of the

overall frame in a multi-display setup or a new view of the scene.

6.3 Implementation

The implementation of HPR's ray tracing algorithm which follows the above men-

tioned guidelines under the distributed environment is composed of two parts: scene

distribution and distributed ray tracing.

6.3.1 Scene Distribution

Large scenes are distributed and stored in multiple computers. The size of data to be

stored on each computer is determined by the physical memory it has. In most cases,

the scene data is distributed to multiple machines.

HPR needs to exchange data across multiple cores, multiple CPUs, multiple GPUs and

multiple machines. For these purposes OpenMP, Brook+ and OpenMPI are utilized.

Multi-thread implementation using OpenMP was used throughout the development

of HPR. The number of main engine threads is depends on the number of CPUs in

the computer where the process is running. That is, there will be two engine threads

on dual core/CPU computers and one engine thread on single core/CPU computers.

The main engine thread processes many tasks by scheduling and switching these tasks.

Namely, ray tracing process, shading process, and other procedures within the lookup

operation switch the execution continuously in the main engine thread.

This mechanism allows more accurate priority control and management of the exe-

cution components of HPR's pipeline. If each processing stage is implemented as an

separate thread, the priority control must rely on OpenMP's scheduler. This compli-

cates the precise priority adjustment. In HPR, the main engine thread exists as one

OpenMP thread, and various stages making up the rendering pipeline are implemented

as separate function calls. The stages of the pipeline are composed by local queues.

An execution of a stage takes out an item from its input queue, process it, and write

47

out the result to the output queue. Because the stages are implemented as individual

functions and they are connected by input and output queues, the main engine thread

can freely change the execution order of the stages. This allows proper and precise

execution priority control as needed. Because of these, minimizing the local queue size

and latency in operations is possible.

6.3.2 Distributed Ray Tracing

A ray tracing computing in the distributed environment is executed by replicating exact

copies of a ray data to all machines with distributed scene data. For each computer,

ray tracing is executed according to the received ray data. Finally, the original machine

receives results of ray tracing from all machines with distributed scene data.

If multiple sets of machines can be prepared for HPR to hold the entire scene data, ray

tracing can be executed in parallel on each set independently. As the �rst step, the ray

tracing is executed independently for each tile on the screen. The shading computa-

tions start when some of the screen rays will hit objects. The shading computation is

processed in parallel with ray tracing. Depending on the shader used, more rays such

as re�ection, and shadow rays may be calculated. These rays are processed in parallel

just like primary rays.

HPR process rays with higher generations �rst by entering the ray data in the input

queue of the ray tracing engine. The engine takes the queued data in series to process

them. If there are multiple sets of computers to hold the scene data, the computation

workload is balanced by pulling the queued data out by �rst-come-�rst-served basis.

HPR's distributed ray tracing approach handles equally if the origin or the direction

of the ray is di�erent. In addition to classic ray tracing computation, HPR ray traces

the photons which makes sorting of the ray data by their positions or directions quite

di�cult. Using the algorithm which provides consistent performance for all ray tracing

requests in the global illumination rendering is important because of this requirement.

This consistency provides simplicity in balancing the load of multiple CPUs.

Since all ray tracing calculations can be computed with the maximum of two data

transmissions between machines, all ray tracing requests can be processed with al-

most equal latency. Depending on the ray tracing request, if the algorithm requires

unpredictable number of data transmissions between computers, the variation in the

computation time complicates the load balancing of the entire system. In order to keep

the implementation simple, the consistency in latency of the ray tracing computation

is important.

48

6.3.3 Structure of the Source Code

HPR source code is grouped into several namespaces according to their functionality.

Camera, Display, Filter, Light, Parser, Primitive, Renderer, and Shader are some of

them.

Figure 6.1: Camera Class Diagram

The Camera namespace (Figure 6.6) consists of projection lens related classes; Fisheye-

Lens, PinholeLens, SphericalLens, and ThinLens (Figure 6.1). These classes determine

the visual e�ects applied to the �nal image.

Figure 6.2: Geometry Class Diagram

FastDisplay, FileDisplay, FrameDisplay, and ImgPipedisplay classes are part of the

Display namespace and they are responsible for on screen projection of respective

properies.

49

Classes in the Filter namespace are in charge of �ltering the processed image in order

to apply some visual e�ects. BoxFilter, CubicBSpline, GaussianFilter, SincFilter, and

TriangleFilter are some of these classes.

DirectionalSpotlight, ImageBasedLight, PointLight, SphereLight, SunSkyLight, and

TriangleMeshLight classes take place in the Light namespace (Figure 6.7). Their func-

tionality is to provide light into the scene.

The Primitive namepace (Figure 6.8) contains classes like Background, Box, CubeGrid,

Cylinder, ParticleSurface, Plane, QuadMesh, Sphere, Torus, and TriangleMesh. These

are primitive base objects which are used to represent scene objects.

BucketRenderer, MultipassRenderer, ProgressiveRenderer, SimpleRenderer are some of

the classes that take place in the Renderer namespace (Figure 6.9). Their functionallity

is to render the scene data.

Figure 6.3: Scene Class Diagram

Classes from the Shader namespace (Figure 6.10) are in charge of shading the scene

50

Figure 6.4: Ray Class Diagram

data. AmbientOcclusionShader, ConstantShader, Di�useShader, MirrorShader, Nor-

malShader, PhongShader, ShinyDi�useShader, SimpleShader, TexturedAmbientOc-

clusionShader, TexturedDi�useShader, TexturedPhongShader, TexturedWardShader,

UVShader, and WireframeShader are name to some.

Figure 6.5: Texture Class Diagram

Classes like Geometry (Figure 6.2), Ray (Figure 6.4), Scene (Figure 6.3), and Texture

(Figure 6.5) take place in the main namespace.

6.3.4 Performance Analysis

In order to �nd out the participation of components of the HPR to the overall rendering

process, a series of performance anaylysis tests are executed. In these test, a sample

51

Figure 6.6: Camera Relation Diagram

scene consisting of two shiny monkey faces and a smooth background is used. This

monkey face is known as 'Suzanne' the Blender monkey (Anonymous, undated), since

it is one of the primitive objects of the Blender 3D modelling software.

As seen from the speedup data from hybrid OpenMPI-OpenMP-Brook+ comparison

52

(Table 6.1), performance gain from the increase of CPU cores and PCs (computers)

are nearly proportional. The di�erence is caused by the data transfer latency be-

tween computer nodes. In the test con�guration, Gigabit Ethernet (10000 Mbit/s,

1000BASE-T, IEEE 802.3ab) via Link Aggregation Control Protocol (IEEE 802.3ad)

namely link bundling is used in order to increase PC-to-PC communication speed as

much as possible.

On the other hand, gain from the GPU (stream) processing is less satisfactory. This

may be due to insu�cient optimization. Also, some parts of the ray tracing algorithms

and calculations are not particularly suited to the GPU. So, some algorithms require

extensive modi�cations. Nevertheless, the HPR code which is used in these tests needs

much more optimization.

It is clear that better algorithm parellization and memory/cache utilization can lead to

more improved results. Especially parallelizing algorithms by considering asymmetric

processors (CPUs, and GPUs) which have di�erent computing capabilities (SIMD vs.

SISD methodology, di�erent memory access characteristics, etc.), and complex par-

allelization con�gurations (CPU to CPU, CPU to GPU, GPU to GPU, core to core,

computer to computer, etc.).

Table 6.1: Speedup data from hybrid OpenMPI/OpenMP/Brook+

of CPU Cores # of GPUs # of PCs Render Time Achived
(w/ OpenMP) (w/ Brook+) (w/ OpenMPI) (seconds) Speedup

1 1 1 7:16 -
2

1 1
3:39 1.99x

3 2:29 2.93x
4 1:41 4.32x

1
2

1
5:06 1.42x

3 3:29 2.09x
4 2:22 3.07x

1 1
2 4:01 1.81x
3 2:45 2.64x
4 1:55 3.79x

2 1
2 2:04 3.52x
3 1:23 5.25x
4 1:03 6.92x

3 1
2 1:23 5.25x
3 0:56 7.79x
4 0:40 10.09x

4 1
2 1:01 7.15x
3 0:41 10.63x
4 0:29 15.03x

53

Figure 6.7: Light Relation Diagram

54

Figure 6.8: Primitive Relation Diagram

55

Figure 6.9: Renderer Relation Diagram

56

Figure 6.10: Shader Relation Diagram

57

Figure 6.11: Shiny Monkeys ('Suzanne', The Blender monkey) (1280x1024 resolution)

58

Chapter 7

Conclusions

The HPR is prototyped as a fully scalable parallel and distributed system achieving

exceptional computational power by using an a�ordable multi-core, multi-CPU, multi-

GPU PC cluster. Depending on the demanded speed and scene size, the number of

machines to be used can be �exibly determined.

The use of distributed computing for ray tracing and data-�ow oriented shading engine

resulted in excellent load balancing to keep all CPUs constantly busy, and a general

solution to model a shading process in a parallel computing environment. The �nal

version is capable of global illumination rendering in the sample scenes.

Various new rendering algorithms can be tested by developing simple plug-in's. Also,

the methods on how to parallelize algorithms can also be tested easily. These indicate

that HPR may succeed in providing a test environment for di�erent rendering and

parallel processing algorithms.

Further speed-up, optimization, and feature improvements are possible. A lot of room

for the improvements are still exist, especially for speeding up the rendering process.

However, the original two goals to render global illumination and processing large

scenes are mostly achieved using practical algorithms.

Hybrid Parallel Rendering is executed on asymmetric processors. During the imple-

mentation of the HPR's parallel rendering algorithms, it's seen that most of the existing

research in parallel algorithms is based on symmetric processing. However, considering

hybrid parallel processing requirements, even asymmetric processing considerations are

not enough asymmetric.

Asymmetric processors (CPUs, and GPUs) have di�erent computing capabilities (SIMD

vs. SISD methodology, di�erent memory access characteristics, etc.), and complex par-

allelization con�gurations (computer to computer, core to core, CPU to CPU, CPU

59

to GPU, GPU to GPU, etc.). Therefore parallelizing algorithms by simply dividing

them into parallel executable parts which require equivalent processing capabilities is

not very e�cient in hybrid parallel processing. Algorithms must be parallelized by

considering computaional capabilities and diversities of the participating processors.

60

Biography

Reha Cenani holds a Bachelor of Science (B.S.) degree in Computer Engineering from

Marmara University of Istanbul, Turkey.

His primary research interests include distributed parallel computing, computer graph-

ics, and e-commerce. Reha's work experience includes training, teaching, retail product

management and software development.

Prior to joining the masters program in Computer Engineering at the Dogus University

of Istanbul, Reha worked for 10 years as a product manager and software architect at

a leading retail chain.

Currently, he works as a part-time lecturer in the Dogus Univeristy.

61

Appendix A

Program Source Code

Listing A.1: Texture.h

#pragma once

#include "Bitmap.h"

#include "FileUtils.h"

#include "UI.h"

#include "PluginRegistry.h"

#include "BitmapBlack.h"

#include "Color.h"

#include "MathUtils.h"

#include "Vector3.h"

#include "OrthoNormalBasis.h"

#include <string>

namespace hpr.core {

using hpr::PluginRegistry;

using hpr::image::Bitmap;

using hpr::image::BitmapReader;

using hpr::image::Color;

using hpr::image::BitmapReader::BitmapFormatException;

using hpr::image::formats::BitmapBlack;

using hpr::math::MathUtils;

using hpr::math::OrthoNormalBasis;

using hpr::math::Vector3;

using hpr::system::FileUtils;

using hpr::system::UI;

using hpr::system::UI::Module;

// Represents a 2D texture, typically used by shaders

class Texture {

62

private:

std::string �lename;

bool isLinear;

Bitmap ∗bitmap;
int loaded;

void load();

public:

Texture(std::string �lename, bool isLinear);

virtual Bitmap ∗getBitmap();
virtual Color ∗getPixel(�oat x, �oat y);
virtual Vector3 ∗getNormal(�oat x, �oat y, OrthoNormalBasis ∗basis);
virtual Vector3 ∗getBump(�oat x, �oat y, OrthoNormalBasis ∗basis, �oat scale);

};

}

Listing A.2: Texture.cpp

#include "Texture.h"

using hpr::PluginRegistry;

using hpr::image::Bitmap;

using hpr::image::BitmapReader;

using hpr::image::Color;

using hpr::image::BitmapReader::BitmapFormatException;

using hpr::image::formats::BitmapBlack;

using hpr::math::MathUtils;

using hpr::math::OrthoNormalBasis;

using hpr::math::Vector3;

using hpr::system::FileUtils;

using hpr::system::UI;

using hpr::system::UI::Module;

Texture::Texture(std::string �lename, bool isLinear) {

this−>�lename = �lename;

this−>isLinear = isLinear;

loaded = 0;

}

void Texture::load() {

if (loaded != 0) {

return;

}

std::string extension = FileUtils::getExtension(�lename);

try {

UI::printInfo(Module::TEX, "Reading texture bitmap from: \"%s\" ...", �lename);

63

BitmapReader ∗reader = PluginRegistry::bitmapReaderPlugins−>createObject(extension);
if (reader != 0) {

bitmap = reader−>load(�lename, isLinear);
if (bitmap−>getWidth() == 0 || bitmap−>getHeight() == 0) {

delete bitmap;

}

}

if (bitmap == 0) {

UI::printError(Module::TEX, "Bitmap reading failed");

bitmap = new BitmapBlack();

} else {

UI::printDetailed(Module::TEX, "Texture bitmap reading complete: %dx%d pixels found",

bitmap−>getWidth(), bitmap−>getHeight());
}

} catch (IOException ∗e) {
UI::printError(Module::TEX, "%s", e−>getMessage());

} catch (BitmapFormatException ∗e) {
UI::printError(Module::TEX, "%s format error: %s", extension, e−>getMessage());

}

loaded = 1;

}

Bitmap ∗Texture::getBitmap() {
if (loaded == 0) {

load();

}

return bitmap;

}

Color ∗Texture::getPixel(�oat x, �oat y) {
Bitmap ∗bitmap = getBitmap();

x = MathUtils::frac(x);

y = MathUtils::frac(y);

�oat dx = x ∗ (bitmap−>getWidth() − 1);

�oat dy = y ∗ (bitmap−>getHeight() − 1);

int ix0 = static_cast<int> (dx);

int iy0 = static_cast<int> (dy);

int ix1 = (ix0 + 1) % bitmap−>getWidth();

int iy1 = (iy0 + 1) % bitmap−>getHeight();
�oat u = dx − ix0;

�oat v = dy − iy0;

u = u ∗ u ∗ (3.0f − (2.0f ∗ u));
v = v ∗ v ∗ (3.0f − (2.0f ∗ v));
�oat k00 = (1.0f − u) ∗ (1.0f − v);

Color ∗c00 = bitmap−>readColor(ix0, iy0);

64

�oat k01 = (1.0f − u) ∗ v;
Color ∗c01 = bitmap−>readColor(ix0, iy1);
�oat k10 = u ∗ (1.0f − v);

Color ∗c10 = bitmap−>readColor(ix1, iy0);
�oat k11 = u ∗ v;
Color ∗c11 = bitmap−>readColor(ix1, iy1);
Color ∗c = Color::mul(k00, c00);

c−>madd(k01, c01);
c−>madd(k10, c10);
c−>madd(k11, c11);
return c;

}

Vector3 ∗Texture::getNormal(�oat x, �oat y, OrthoNormalBasis ∗basis) {
�oat ∗rgb = getPixel(x, y)−>getRGB();
return basis−>transform(new Vector3(2 ∗ rgb[0] − 1, 2 ∗ rgb[1] − 1, 2 ∗ rgb[2] − 1))−>

normalize();

}

Vector3 ∗Texture::getBump(�oat x, �oat y, OrthoNormalBasis ∗basis, �oat scale) {
Bitmap ∗bitmap = getBitmap();

�oat dx = 1.0f / bitmap−>getWidth();

�oat dy = 1.0f / bitmap−>getHeight();
�oat b0 = getPixel(x, y)−>getLuminance();
�oat bx = getPixel(x + dx, y)−>getLuminance();
�oat by = getPixel(x, y + dy)−>getLuminance();
return basis−>transform(new Vector3(scale ∗ (b0 − bx), scale ∗ (b0 − by), 1))−>normalize();

}

}

Listing A.3: Scene.h

#pragma once

#include "AccelerationStructure.h"

#include "PrimitiveList.h"

#include "LightSource.h"

#include "Shader.h"

#include "Point3.h"

#include "Vector3.h"

#include "BoundingBox.h"

#include "Color.h"

#include "Display.h"

#include "ImageSampler.h"

#include "FrameDisplay.h"

#include "UI.h"

#include "MathUtils.h"

65

#include "PhotonStore.h"

#include <string>

#include <vector>

namespace hpr.core {

using hpr::core::display::FrameDisplay;

using hpr::image::Color;

using hpr::math::BoundingBox;

using hpr::math::MathUtils;

using hpr::math::Point3;

using hpr::math::Vector3;

using hpr::system::UI;

using hpr::system::UI::Module;

// Represents a entire scene, de�ned as a collection of instances viewed by a camera.

class Scene {

private:

LightServer ∗lightServer;
InstanceList ∗instanceList;
InstanceList ∗in�niteInstanceList;
Camera ∗camera;
AccelerationStructure ∗intAccel;
std::string acceltype;

Statistics ∗stats;
bool bakingViewDependent;

Instance ∗bakingInstance;
PrimitiveList ∗bakingPrimitives;
AccelerationStructure ∗bakingAccel;
bool rebuildAccel;

int imageWidth;

int imageHeight;

int threads;

bool lowPriority;

void createAreaLightInstances();

void removeAreaLightInstances();

public:

Scene(); // Creates an empty scene.

virtual int getThreads(); // Get number of allowed threads for multi−threaded operations.

virtual int getThreadPriority(); // Get the priority level to assign to multi−threaded operations

.

virtual void setCamera(Camera ∗camera); // Sets the current camera (no support for multiple
cameras yet).

virtual Camera ∗getCamera();

66

virtual void setInstanceLists(Instance instances[], Instance in�nite[]); // Update the instance

lists for this scene.

virtual void setLightList(LightSource lights[]); // Update the light list for this scene.

virtual void setShaderOverride(Shader ∗shader, bool photonOverride); // Enables shader
overiding (set null to disable). The speci�ed shader will be used to shade all surfaces.

virtual void setBakingInstance(Instance ∗instance); // The provided instance will be considered

for lightmap baking.

virtual ShadingState ∗getRadiance(IntersectionState ∗istate, �oat rx, �oat ry, double lensU,
double lensV, double time, int instance, int dim, ShadingCache ∗cache); // Get the
radiance seen through a particular pixel.

virtual BoundingBox ∗getBounds(); // Get scene world space bounding box.

virtual void accumulateStats(IntersectionState ∗state);
virtual void accumulateStats(ShadingCache ∗cache);
virtual void trace(Ray ∗r, IntersectionState ∗state);
virtual Color ∗traceShadow(Ray ∗r, IntersectionState ∗state);
virtual void traceBake(Ray ∗r, IntersectionState ∗state);
virtual void render(Options ∗options, ImageSampler ∗sampler, Display ∗display); // Render the

scene using the speci�ed options, image sampler and display.

virtual bool calculatePhotons(PhotonStore ∗map, std::string type, int seed, Options ∗options);
// Create a photon map as prescribed by the given PhotonStore.

};

}

Listing A.4: Scene.cpp

#include "Scene.h"

using hpr::core::display::FrameDisplay;

using hpr::image::Color;

using hpr::math::BoundingBox;

using hpr::math::MathUtils;

using hpr::math::Point3;

using hpr::math::Vector3;

using hpr::system::UI;

using hpr::system::UI::Module;

Scene::Scene() {

lightServer = new LightServer(this);

instanceList = new InstanceList();

in�niteInstanceList = new InstanceList();

acceltype = "auto";

stats = new Statistics();

bakingViewDependent = false;

delete bakingInstance;

delete bakingPrimitives;

67

delete bakingAccel;

delete camera;

imageWidth = 640;

imageHeight = 480;

threads = 0;

lowPriority = true;

rebuildAccel = true;

}

int Scene::getThreads() {

return threads <= 0 ? Runtime::getRuntime()−>availableProcessors() : threads;
}

int Scene::getThreadPriority() {

return lowPriority ? Thread::MIN_PRIORITY : Thread::NORM_PRIORITY;

}

void Scene::setCamera(Camera ∗camera) {
this−>camera = camera;

}

Camera ∗Scene::getCamera() {
return camera;

}

void Scene::setInstanceLists(Instance instances[], Instance in�nite[]) {

in�niteInstanceList = new InstanceList(in�nite);

instanceList = new InstanceList(instances);

rebuildAccel = true;

}

void Scene::setLightList(LightSource lights[]) {

lightServer−>setLights(lights);
}

void Scene::setShaderOverride(Shader ∗shader, bool photonOverride) {
lightServer−>setShaderOverride(shader, photonOverride);

}

void Scene::setBakingInstance(Instance ∗instance) {
bakingInstance = instance;

}

ShadingState ∗Scene::getRadiance(IntersectionState ∗istate, �oat rx, �oat ry,

68

double lensU, double lensV, double time, int instance, int dim,

ShadingCache ∗cache) {
istate−>numEyeRays++;
�oat sceneTime = camera−>getTime(static_cast<�oat> (time));

if (bakingPrimitives == 0) {

Ray ∗r = camera−>getRay(rx, ry, imageWidth, imageHeight, lensU, lensV, sceneTime);

return r != 0 ? lightServer−>getRadiance(rx, ry, sceneTime, instance, dim, r, istate, cache) : 0;
} else {

Ray ∗r = new Ray(rx / imageWidth, ry / imageHeight, −1, 0, 0, 1);
traceBake(r, istate);

if (!istate−>hit()) {
return 0;

}

ShadingState ∗state = ShadingState::createState(istate, rx, ry, sceneTime, r, instance, dim,

lightServer);

bakingPrimitives−>prepareShadingState(state);
if (bakingViewDependent) {

state−>setRay(camera−>getRay(state−>getPoint(), sceneTime));
} else {

Point3 ∗p = state−>getPoint();
Vector3 ∗n = state−>getNormal();
// create a ray coming from directly above the point being shaded

Ray ∗incoming = new Ray(p−>x + n−>x, p−>y + n−>y, p−>z + n−>z, −n−>x, −n−>
y, −n−>z);

incoming−>setMax(1);

state−>setRay(incoming);
}

lightServer−>shadeBakeResult(state);
return state;

}

}

BoundingBox ∗Scene::getBounds() {
return instanceList−>getWorldBounds(0);

}

void Scene::accumulateStats(IntersectionState ∗state) {
stats−>accumulate(state);

}

void Scene::accumulateStats(ShadingCache ∗cache) {
stats−>accumulate(cache);

}

void Scene::trace(Ray ∗r, IntersectionState ∗state) {

69

state−>numRays++;
state−>instance = 0;

state−>current = 0;

for (int i = 0; i < in�niteInstanceList−>getNumPrimitives(); i++) {
in�niteInstanceList−>intersectPrimitive(r, i, state);

}

state−>current = 0;

intAccel−>intersect(r, state);
}

Color ∗Scene::traceShadow(Ray ∗r, IntersectionState ∗state) {
state−>numShadowRays++;
trace(r, state);

return state−>hit() ? Color::WHITE : Color::BLACK;

}

void Scene::traceBake(Ray ∗r, IntersectionState ∗state) {
state−>current = bakingInstance;

state−>instance = 0;

bakingAccel−>intersect(r, state);
}

void Scene::createAreaLightInstances() {

std::vector<Instance∗> in�niteAreaLights = 0;

std::vector<Instance∗> areaLights = 0;

// create an area light instance from each light source if possible

for (LightSource[]::const_iterator l = lightServer−>lights−>begin(); l != lightServer−>lights−>
end(); l++) {

Instance ∗lightInstance = ∗l−>createInstance();
if (lightInstance != 0) {

if (lightInstance−>getBounds() == 0) {

if (in�niteAreaLights == 0) {

in�niteAreaLights = std::vector<Instance∗>();
}

in�niteAreaLights.push_back(lightInstance);

} else {

if (areaLights == 0) {

areaLights = std::vector<Instance∗>();
}

areaLights.push_back(lightInstance);

}

}

}

// add area light sources to the list of instances if they exist

if (in�niteAreaLights != 0 && in�niteAreaLights.size() > 0) {

70

in�niteInstanceList−>addLightSourceInstances(
in�niteAreaLights.toArray(new Instance[in�niteAreaLights.size()]));

} else {

in�niteInstanceList−>clearLightSources();
}

if (areaLights != 0 && areaLights.size() > 0) {

instanceList−>addLightSourceInstances(areaLights.toArray(new Instance[areaLights.size()])

);

} else {

instanceList−>clearLightSources();
}

// TODO: this _could_ be done incrementally to avoid top−level rebuilds each frame

rebuildAccel = true;

}

void Scene::removeAreaLightInstances() {

in�niteInstanceList−>clearLightSources();
instanceList−>clearLightSources();

}

void Scene::render(Options ∗options, ImageSampler ∗sampler, Display ∗display) {
stats−>reset();
if (display == 0) {

display = new FrameDisplay();

}

if (bakingInstance != 0) {

UI::printDetailed(Module::SCENE, "Creating primitives for lightmapping ...");

bakingPrimitives = bakingInstance−>getBakingPrimitives();
if (bakingPrimitives == 0) {

UI::printError(Module::SCENE,"Lightmap baking is not supported for the given instance

.");

return;

}

int n = bakingPrimitives−>getNumPrimitives();
UI::printInfo(Module::SCENE, "Building acceleration structure for lightmapping (%d num

primitives) ...", n);

bakingAccel = AccelerationStructureFactory::create("auto", n, true);

bakingAccel−>build(bakingPrimitives);
} else {

delete bakingPrimitives;

delete bakingAccel;

}

bakingViewDependent = options−>getBoolean("baking.viewdep", bakingViewDependent);

71

if ((bakingInstance != 0 && bakingViewDependent && camera == 0) || (bakingInstance ==

0 && camera == 0)) {

UI::printError(Module::SCENE, "No camera found");

return;

}

// read from options

threads = options−>getInt("threads", 0);
lowPriority = options−>getBoolean("threads.lowPriority", true);
imageWidth = options−>getInt("resolutionX", 640);
imageHeight = options−>getInt("resolutionY", 480);
// limit resolution to 16k

imageWidth = MathUtils::clamp(imageWidth, 1, 1 << 14);

imageHeight = MathUtils::clamp(imageHeight, 1, 1 << 14);

// prepare lights

createAreaLightInstances();

// get acceleration structure info

// count scene primitives

long long numPrimitives = 0;

for (int i = 0; i < instanceList−>getNumPrimitives(); i++) {
numPrimitives += instanceList−>getNumPrimitives(i);

}

UI::printInfo(Module::SCENE, "Scene stats:");

UI::printInfo(Module::SCENE, " ∗ In�nite instances: %d", in�niteInstanceList−>
getNumPrimitives());

UI::printInfo(Module::SCENE, " ∗ Instances: %d", instanceList−>getNumPrimitives());
UI::printInfo(Module::SCENE, " ∗ Primitives: %d", numPrimitives);
std::string accelName = options−>getString("accel", 0);
if (accelName != 0) {

rebuildAccel = rebuildAccel || !acceltype.equals(accelName);

acceltype = accelName;

}

UI::printInfo(Module::SCENE, " ∗ Instance accel: %s", acceltype);
if (rebuildAccel) {

intAccel = AccelerationStructureFactory::create(acceltype, instanceList−>
getNumPrimitives(), false);

intAccel−>build(instanceList);
rebuildAccel = false;

}

UI::printInfo(Module::SCENE, " ∗ Scene bounds: %s", getBounds());
UI::printInfo(Module::SCENE, " ∗ Scene center: %s", getBounds()−>getCenter());
UI::printInfo(Module::SCENE, " ∗ Scene diameter: %.2f", getBounds()−>getExtents()−>

length());

72

UI::printInfo(Module::SCENE, " ∗ Lightmap bake: %s", bakingInstance != 0 ? (

bakingViewDependent ? "view" : "ortho") : "o�");

if (sampler == 0) {

return;

}

if (!lightServer−>build(options)) {
return;

}

UI::printInfo(Module::SCENE, "Rendering ...");

stats−>setResolution(imageWidth, imageHeight);

sampler−>prepare(options, this, imageWidth, imageHeight);

sampler−>render(display);
stats−>displayStats();
lightServer−>showStats();
removeAreaLightInstances();

delete bakingPrimitives;

delete bakingAccel;

UI::printInfo(Module::SCENE, "Done.");

}

bool Scene::calculatePhotons(PhotonStore ∗map, std::string type,
int seed, Options ∗options) {

return lightServer−>calculatePhotons(map, type, seed, options);
}

}

Listing A.5: Ray.h

#pragma once

#include "Vector3.h"

#include "Point3.h"

#include "Matrix4.h"

#include <cmath>

namespace hpr.core {

using hpr::math::Matrix4;

using hpr::math::Point3;

using hpr::math::Vector3;

// Represents a ray as a oriented half line segment.

class Ray {

private:

�oat tMin;

�oat tMax;

static const �oat EPSILON; // 0.01f;

73

Ray();

public:

�oat ox, oy, oz;

�oat dx, dy, dz;

Ray(�oat ox, �oat oy, �oat oz, �oat dx, �oat dy, �oat dz); // Creates a new ray that points

from the given origin to the given direction.

Ray(Point3 ∗o, Vector3 ∗d); // Creates a new ray that points from the given origin to the given

direction.

Ray(Point3 ∗a, Point3 ∗b); // Creates a new ray that points from point a to point b.

Ray ∗transform(Matrix4 ∗m); // Create a new ray by transforming the supplied one by the

given matrix.

void normalize(); // Normalize the direction component of the ray.

�oat getMin(); // Gets the minimum distance along the ray − usually 0.

�oat getMax(); // Gets the maximum distance along the ray. May be in�nite.

Vector3 ∗getDirection(); // Creates a vector to represent the direction of the ray.

bool isInside(�oat t); // Checks to see if the speci�ed distance falls within the valid range on

this ray.

Point3 ∗getPoint(Point3 ∗dest); // Gets the end point of the ray.

�oat dot(Vector3 ∗v); // Computes the dot product of an arbitrary vector with the direction of

the ray.

�oat dot(�oat vx, �oat vy, �oat vz); // Computes the dot product of an arbitrary vector with

the direction of the ray.

void setMax(�oat t); // Updates the maximum to the speci�ed distance if and only if the new

distance is smaller than the current one.

};

}

Listing A.6: Ray.cpp

#include "Ray.h"

using hpr::math::Matrix4;

using hpr::math::Point3;

using hpr::math::Vector3;

Ray::Ray() {

}

Ray::Ray(�oat ox, �oat oy, �oat oz, �oat dx, �oat dy, �oat dz) {

this−>ox = ox;

this−>oy = oy;

this−>oz = oz;

this−>dx = dx;

this−>dy = dy;

this−>dz = dz;

74

�oat _in = 1.0f / static_cast<�oat> (sqrt(dx ∗ dx + dy ∗ dy + dz ∗ dz));
this−>dx ∗= _in;

this−>dy ∗= _in;

this−>dz ∗= _in;

tMin = EPSILON;

tMax = 1.0f / 0.0f;

}

Ray::Ray(Point3 ∗o, Vector3 ∗d) {
ox = o−>x;
oy = o−>y;
oz = o−>z;
dx = d−>x;
dy = d−>y;
dz = d−>z;
�oat _in = 1.0f / static_cast<�oat> (sqrt(dx ∗ dx + dy ∗ dy + dz ∗ dz));
dx ∗= _in;

dy ∗= _in;

dz ∗= _in;

tMin = EPSILON;

tMax = 1.0f / 0.0f;

}

Ray::Ray(Point3 ∗a, Point3 ∗b) {
ox = a−>x;
oy = a−>y;
oz = a−>z;
dx = b−>x − ox;

dy = b−>y − oy;

dz = b−>z − oz;

tMin = EPSILON;

�oat n = static_cast<�oat> (sqrt(dx ∗ dx + dy ∗ dy + dz ∗ dz));
�oat _in = 1.0f / n;

dx ∗= _in;

dy ∗= _in;

dz ∗= _in;

tMax = n − EPSILON;

}

Ray ∗Ray::transform(Matrix4 ∗m) {
if (m == 0) {

return this;

}

Ray ∗r = new Ray();

r−>ox = m−>transformPX(ox, oy, oz);

75

r−>oy = m−>transformPY(ox, oy, oz);
r−>oz = m−>transformPZ(ox, oy, oz);
r−>dx = m−>transformVX(dx, dy, dz);
r−>dy = m−>transformVY(dx, dy, dz);
r−>dz = m−>transformVZ(dx, dy, dz);
r−>tMin = tMin;

r−>tMax = tMax;

return r;

}

void Ray::normalize() {

�oat _in = 1.0f / static_cast<�oat> (sqrt(dx ∗ dx + dy ∗ dy + dz ∗ dz));
dx ∗= _in;

dy ∗= _in;

dz ∗= _in;

}

�oat Ray::getMin() {

return tMin;

}

�oat Ray::getMax() {

return tMax;

}

Vector3 ∗Ray::getDirection() {
return new Vector3(dx, dy, dz);

}

bool Ray::isInside(�oat t) {

return (tMin < t) && (t < tMax);

}

Point3 ∗Ray::getPoint(Point3 ∗dest) {
dest−>x = ox + (tMax ∗ dx);
dest−>y = oy + (tMax ∗ dy);
dest−>z = oz + (tMax ∗ dz);
return dest;

}

�oat Ray::dot(Vector3 ∗v) {
return dx ∗ v−>x + dy ∗ v−>y + dz ∗ v−>z;

}

�oat Ray::dot(�oat vx, �oat vy, �oat vz) {

76

return dx ∗ vx + dy ∗ vy + dz ∗ vz;
}

void Ray::setMax(�oat t) {

tMax = t;

}

}

Listing A.7: Cameara.h

#pragma once

#include "RenderObject.h"

#include "CameraLens.h"

#include "MovingMatrix4.h"

#include "HprAPI.h"

#include "UI.h"

#include "Point3.h"

#include "Matrix4.h"

#include <cmath>

namespace hpr.core {

using hpr::HprAPI;

using hpr::math::Matrix4;

using hpr::math::MovingMatrix4;

using hpr::math::Point3;

using hpr::system::UI;

using hpr::system::UI::Module;

// Represents a camera to the renderer. It handles the mapping of camera space to world space.

class Camera : RenderObject {

private:

const CameraLens ∗lens;
�oat shutterOpen;

�oat shutterClose;

MovingMatrix4 ∗c2w;
MovingMatrix4 ∗w2c;

public:

Camera(CameraLens ∗lens);
virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual �oat getTime(�oat time); // Computes actual time from a time sample in the interval

[0,1).

virtual Ray ∗getRay(�oat x, �oat y, int imageWidth, int imageHeight, double lensX, double

lensY, �oat time); // Generate a ray passing though the speci�ed point on the image plane

.

77

virtual Ray ∗getRay(Point3 ∗p, �oat time); // Generate a ray from the origin of camera space

toward the speci�ed point.

virtual Matrix4 ∗getCameraToWorld(�oat time); // Returns a transformation matrix mapping

camera space to world space.

virtual Matrix4 ∗getWorldToCamera(�oat time); // Returns a transformation matrix mapping

world space to camera space.

};

}

Listing A.8: Cameara.cpp

#include "Camera.h"

using hpr::HprAPI;

using hpr::math::Matrix4;

using hpr::math::MovingMatrix4;

using hpr::math::Point3;

using hpr::system::UI;

using hpr::system::UI::Module;

Camera::Camera(CameraLens ∗lens) {
this−>lens = lens;

c2w = new MovingMatrix4(0);

w2c = new MovingMatrix4(0);

shutterOpen = shutterClose = 0;

}

bool Camera::update(ParameterList ∗pl, HprAPI ∗api) {
shutterOpen = pl−>getFloat("shutter.open", shutterOpen);
shutterClose = pl−>getFloat("shutter.close", shutterClose);
c2w = pl−>getMovingMatrix("transform", c2w);

w2c = c2w−>inverse();
if (w2c == 0) {

UI::printWarning(Module::CAM, "Unable to compute camera's inverse transform");

return false;

}

return lens−>update(pl, api);
}

�oat Camera::getTime(�oat time) {

if (shutterOpen >= shutterClose) {

return shutterOpen;

}

// warp the time sample by a tent �lter

if (time < 0.5) {

time = −1 + static_cast<�oat> (sqrt(2 ∗ time));

78

} else {

time = 1 − static_cast<�oat> (sqrt(2 − 2 ∗ time));
}

time = 0.5f ∗ (time + 1);

return (1 − time) ∗ shutterOpen + time ∗ shutterClose;
}

Ray ∗Camera::getRay(�oat x, �oat y, int imageWidth, int imageHeight, double lensX, double lensY,

�oat time) {

Ray ∗r = lens−>getRay(x, y, imageWidth, imageHeight, lensX, lensY, time);

if (r != 0) {

// transform from camera space to world space

r = r−>transform(c2w−>sample(time));
// renormalize to account for scale factors embedded in the transform

r−>normalize();
}

return r;

}

Ray ∗Camera::getRay(Point3 ∗p, �oat time) {
return new Ray(c2w == 0 ? new Point3(0, 0, 0) : c2w−>sample(time).transformP(new Point3(0,

0, 0)), p);

}

Matrix4 ∗Camera::getCameraToWorld(�oat time) {

return c2w == 0 ? Matrix4::IDENTITY : c2w−>sample(time);
}

Matrix4 ∗Camera::getWorldToCamera(�oat time) {

return w2c == 0 ? Matrix4::IDENTITY : w2c−>sample(time);
}

}

Listing A.9: Display.h

#pragma once

namespace hpr.core {

using hpr::image::Color;

// Represents an image output device.

class Display {

virtual void imageBegin(int, int, int) = 0; // Called before an image is rendered to indicate how

large the rendered image will be.

virtual void imagePrepare(int, int, int, int, int) = 0; // Prepare the speci�ed area to be

79

rendered.

virtual void imageUpdate(int, int, int, int, Color[] , �oat[]) = 0; // Update the current image

with a bucket of data.

virtual void imageFill(int, int, int, int, Color∗, �oat) = 0; // Update the current image with a

region of �at color.

virtual void imageEnd() = 0; // This call is made after the image has been rendered.

};

}

Listing A.10: Display.cpp

#include "Display.h"

using hpr::image::Color;

}

Listing A.11: Geometry.h

#pragma once

#include "RenderObject.h"

#include "Tesselatable.h"

#include "PrimitiveList.h"

#include "AccelerationStructure.h"

#include "HprAPI.h"

#include "BoundingBox.h"

#include "Matrix4.h"

#include "UI.h"

#include "NullAccelerator.h"

#include <string>

namespace hpr.core {

using hpr::HprAPI;

using hpr::core::accel::NullAccelerator;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::system::UI;

using hpr::system::UI::Module;

// Represents a geometric object in its native object space.

class Geometry : RenderObject {

private:

Tesselatable ∗tesselatable;
PrimitiveList ∗primitives;
AccelerationStructure ∗accel;
int builtAccel;

int builtTess;

80

std::string acceltype;

void tesselate();

void build();

public:

Geometry(Tesselatable ∗tesselatable); // Create a geometry from the speci�ed tesselatable

object.

Geometry(PrimitiveList ∗primitives); // Create a geometry from the speci�ed primitive

aggregate.

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual int getNumPrimitives();

virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual void intersect(Ray ∗r, IntersectionState ∗state);
virtual void prepareShadingState(ShadingState ∗state);
virtual PrimitiveList ∗getBakingPrimitives();
virtual PrimitiveList ∗getPrimitiveList();

};

}

Listing A.12: Geometry.cpp

#include "Geometry.h"

using hpr::HprAPI;

using hpr::core::accel::NullAccelerator;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::system::UI;

using hpr::system::UI::Module;

Geometry::Geometry(Tesselatable ∗tesselatable) {
this−>tesselatable = tesselatable;

delete primitives;

delete accel;

builtAccel = 0;

builtTess = 0;

acceltype = "";

}

Geometry::Geometry(PrimitiveList ∗primitives) {
delete tesselatable;

this−>primitives = primitives;

delete accel;

builtAccel = 0;

builtTess = 1; // already tesselated

}

81

bool Geometry::update(ParameterList ∗pl, HprAPI ∗api) {
acceltype = pl−>getString("accel", acceltype);
// clear up old tesselation if it exists

if (tesselatable != 0) {

delete primitives;

builtTess = 0;

}

// clear acceleration structure so it will be rebuilt

delete accel;

builtAccel = 0;

if (tesselatable != 0) {

return tesselatable−>update(pl, api);
}

// update primitives

return primitives−>update(pl, api);
}

int Geometry::getNumPrimitives() {

return primitives == 0 ? 0 : primitives−>getNumPrimitives();
}

BoundingBox ∗Geometry::getWorldBounds(Matrix4 ∗o2w) {
if (primitives == 0) {

BoundingBox ∗b = tesselatable−>getWorldBounds(o2w);

if (b != 0) {

return b;

}

if (builtTess == 0) {

tesselate();

}

if (primitives == 0) {

return 0; // failed tesselation, return in�nite bounding box

}

}

return primitives−>getWorldBounds(o2w);

}

void Geometry::intersect(Ray ∗r, IntersectionState ∗state) {
if (builtTess == 0) {

tesselate();

}

if (builtAccel == 0) {

build();

}

82

accel−>intersect(r, state);
}

void Geometry::tesselate() {

// double check �ag

if (builtTess != 0) {

return;

}

if (tesselatable != 0 && primitives == 0) {

UI::printInfo(Module::GEOM, "Tesselating geometry ...");

primitives = tesselatable−>tesselate();
if (primitives == 0) {

UI::printError(Module::GEOM, "Tesselation failed − geometry will be discarded");

} else {

UI::printDetailed(Module::GEOM, "Tesselation produced %d primitives", primitives−>
getNumPrimitives());

}

}

builtTess = 1;

}

void Geometry::build() {

// double check �ag

if (builtAccel != 0) {

return;

}

if (primitives != 0) {

int n = primitives−>getNumPrimitives();
if (n >= 1000) {

UI::printInfo(Module::GEOM, "Building acceleration structure for %d primitives ...", n);

}

accel = AccelerationStructureFactory::create(acceltype, n, true);

accel−>build(primitives);
} else {

// create an empty accelerator to avoid having to check for null pointers in the intersect

method

accel = new NullAccelerator();

}

builtAccel = 1;

}

void Geometry::prepareShadingState(ShadingState ∗state) {
primitives−>prepareShadingState(state);

}

83

PrimitiveList ∗Geometry::getBakingPrimitives() {
if (builtTess == 0) {

tesselate();

}

if (primitives == 0) {

return 0;

}

return primitives−>getBakingPrimitives();
}

PrimitiveList ∗Geometry::getPrimitiveList() {
return primitives;

}

}

Listing A.13: RenderObject.h

#pragma once

namespace hpr.core {

using hpr::HprAPI;

// This is the base interface for all public rendering object interfaces.

class RenderObject {

virtual bool update(ParameterList∗, HprAPI∗) = 0;

};

}

Listing A.14: RenderObject.cpp

#include "RenderObject.h"

using hpr::HprAPI;

}

Listing A.15: SimpleRenderer.h

#pragma once

#include "Scene.h"

#include "Options.h"

#include "Timer.h"

#include "UI.h"

#include "IntersectionState.h"

#include "Color.h"

#include "ShadingState.h"

#include <cmath>

84

#include "mpi.h"

#include <omp.h>

#include <brook.h>

namespace hpr.core.renderer {

using hpr::core::Display;

using hpr::core::ImageSampler;

using hpr::core::IntersectionState;

using hpr::core::Options;

using hpr::core::Scene;

using hpr::core::ShadingState;

using hpr::image::Color;

using hpr::system::Timer;

using hpr::system::UI;

using hpr::system::UI::Module;

class SimpleRenderer : ImageSampler {

private:

int numprocs, rank, namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

int iam = 0, np = 1;

Scene ∗scene;
Display ∗display;
int imageWidth, imageHeight;

int numBucketsX, numBucketsY;

int bucketCounter, numBuckets;

class BucketThread : Thread {

private:

const IntersectionState ∗istate = new IntersectionState();

public:

virtual void run();

virtual void updateStats();

};

public:

virtual bool prepare(Options ∗options, Scene ∗scene, int w, int h);
virtual void render(Display ∗display);
virtual void renderBucket(int bx, int by, IntersectionState ∗istate);

};

}

Listing A.16: SimpleRenderer.cpp

#include "SimpleRenderer.h"

85

using hpr::core::Display;

using hpr::core::ImageSampler;

using hpr::core::IntersectionState;

using hpr::core::Options;

using hpr::core::Scene;

using hpr::core::ShadingState;

using hpr::image::Color;

using hpr::system::Timer;

using hpr::system::UI;

using hpr::system::UI::Module;

bool SimpleRenderer::prepare(Options ∗options, Scene ∗scene, int w, int h) {
MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Get_processor_name(processor_name, &namelen);

this−>scene = scene;

imageWidth = w;

imageHeight = h;

numBucketsX = (imageWidth + 31) >>> 5;

numBucketsY = (imageHeight + 31) >>> 5;

numBuckets = numBucketsX ∗ numBucketsY;
return true;

}

void SimpleRenderer::render(Display ∗display) {
this−>display = display;

display−>imageBegin(imageWidth, imageHeight, 32);

// set members variables

bucketCounter = 0;

// start task

Timer ∗timer = new Timer();

timer−>start();
BucketThread renderThreads[scene−>getThreads()];
for (int i = 0; i < sizeof(renderThreads) / sizeof(renderThreads[0]); i++) {

renderThreads[i] = new BucketThread();

renderThreads[i]−>start();
}

for (int i = 0; i < sizeof(renderThreads) / sizeof(renderThreads[0]); i++) {

try {

renderThreads[i]−>join();
} catch (InterruptedException ∗e) {
UI::printError(Module::BCKT,

"Bucket processing thread %d of %d was interrupted", i + 1,

86

sizeof(renderThreads) / sizeof(renderThreads[0]));

} �nally {

renderThreads[i]−>updateStats();
}

}

timer−>end();
UI::printInfo(Module::BCKT, "Render time: %s", timer);

display−>imageEnd();
}

void SimpleRenderer::BucketThread::run() {

while (true) {

int bx, by;

#pragma omp parallel default(shared) private(iam, np)

{

if (bucketCounter >= numBuckets) {

return;

}

by = bucketCounter / numBucketsX;

bx = bucketCounter % numBucketsX;

bucketCounter++;

}

MPI_Finalize();

renderBucket(bx, by, istate);

}

}

void SimpleRenderer::BucketThread::updateStats() {

scene::accumulateStats(istate);

}

void SimpleRenderer::renderBucket(int bx, int by, IntersectionState ∗istate) {
// pixel sized extents

int x0 = bx ∗ 32;
int y0 = by ∗ 32;
int bw = __min(32, imageWidth − x0);

int bh = __min(32, imageHeight − y0);

Color bucketRGB[bw ∗ bh];
�oat bucketAlpha[bw ∗ bh];

for (int y = 0, i = 0; y < bh; y++) {

for (int x = 0; x < bw; x++, i++) {

ShadingState ∗state = scene−>getRadiance(istate, x0 + x, imageHeight − 1 − (y0 + y), 0.0,

0.0, 0.0, 0, 0, 0);

87

bucketRGB[i] = (state != 0) ? state−>getResult() : Color::BLACK;
bucketAlpha[i] = (state != 0) ? 1 : 0;

}

}

// update pixels

display−>imageUpdate(x0, y0, bw, bh, bucketRGB, bucketAlpha);
}

}

Listing A.17: MultipassRenderer.h

#pragma once

#include "Scene.h"

#include "Options.h"

#include "MathUtils.h"

#include "BucketOrderFactory.h"

#include "UI.h"

#include "Timer.h"

#include "IntersectionState.h"

#include "ShadingCache.h"

#include "Color.h"

#include "QMC.h"

#include "ShadingState.h"

#include <string>

#include <cmath>

namespace hpr.core.renderer {

using hpr::core::BucketOrder;

using hpr::core::Display;

using hpr::core::ImageSampler;

using hpr::core::IntersectionState;

using hpr::core::Options;

using hpr::core::Scene;

using hpr::core::ShadingCache;

using hpr::core::ShadingState;

using hpr::core::bucket::BucketOrderFactory;

using hpr::image::Color;

using hpr::math::MathUtils;

using hpr::math::QMC;

using hpr::system::Timer;

using hpr::system::UI;

using hpr::system::UI::Module;

class MultipassRenderer : ImageSampler {

private:

88

Scene ∗scene;
Display ∗display;
int imageWidth;

int imageHeight;

std::string bucketOrderName;

BucketOrder ∗bucketOrder;
int bucketSize;

int bucketCounter;

int ∗bucketCoords;
int numSamples;

�oat invNumSamples;

bool shadingCache;

void renderBucket(Display ∗display, int bx, int by, int threadID, IntersectionState ∗istate,
ShadingCache ∗cache);

class BucketThread : Thread {

private:

const int threadID;

const IntersectionState ∗istate;
const ShadingCache ∗cache;

public:

BucketThread(int threadID);

virtual void run();

virtual void updateStats();

};

public:

MultipassRenderer();

virtual bool prepare(Options ∗options, Scene ∗scene, int w, int h);
virtual void render(Display ∗display);
static �oat warpTent(�oat x);

static double warpCubic(double x);

static double qpow(double x);

static double distb1(double x);

};

}

Listing A.18: MultipassRenderer.cpp

#include "MultipassRenderer.h"

using hpr::core::BucketOrder;

using hpr::core::Display;

using hpr::core::ImageSampler;

using hpr::core::IntersectionState;

using hpr::core::Options;

89

using hpr::core::Scene;

using hpr::core::ShadingCache;

using hpr::core::ShadingState;

using hpr::core::bucket::BucketOrderFactory;

using hpr::image::Color;

using hpr::math::MathUtils;

using hpr::math::QMC;

using hpr::system::Timer;

using hpr::system::UI;

using hpr::system::UI::Module;

MultipassRenderer::MultipassRenderer() {

bucketSize = 32;

bucketOrderName = "hilbert";

numSamples = 16;

shadingCache = false;

}

bool MultipassRenderer::prepare(Options ∗options, Scene ∗scene, int w, int h) {
this−>scene = scene;

imageWidth = w;

imageHeight = h;

// fetch options

bucketSize = options−>getInt("bucket.size", bucketSize);
bucketOrderName = options−>getString("bucket.order", bucketOrderName);
numSamples = options−>getInt("aa.samples", numSamples);
shadingCache = options−>getBoolean("aa.cache", shadingCache);

// limit bucket size and compute number of buckets in each direction

bucketSize = MathUtils::clamp(bucketSize, 16, 512);

int numBucketsX = (imageWidth + bucketSize − 1) / bucketSize;

int numBucketsY = (imageHeight + bucketSize − 1) / bucketSize;

bucketOrder = BucketOrderFactory::create(bucketOrderName);

bucketCoords = bucketOrder−>getBucketSequence(numBucketsX, numBucketsY);
// validate AA options

numSamples = __max(1, numSamples);

invNumSamples = 1.0f / numSamples;

// prepare QMC sampling

UI::printInfo(Module::BCKT, "Multipass renderer settings:");

UI::printInfo(Module::BCKT, " ∗ Resolution: %dx%d", imageWidth, imageHeight);

UI::printInfo(Module::BCKT, " ∗ Bucket size: %d", bucketSize);
UI::printInfo(Module::BCKT, " ∗ Number of buckets: %dx%d", numBucketsX, numBucketsY);
UI::printInfo(Module::BCKT, " ∗ Samples / pixel: %d", numSamples);
UI::printInfo(Module::BCKT, " ∗ Shading cache: %s", shadingCache ? "enabled" : "disabled");

90

return true;

}

void MultipassRenderer::render(Display ∗display) {
this−>display = display;

display−>imageBegin(imageWidth, imageHeight, bucketSize);

// set members variables

bucketCounter = 0;

// start task

Timer ∗timer = new Timer();

timer−>start();
UI::taskStart("Rendering", 0, sizeof(bucketCoords) / sizeof(bucketCoords[0]));

BucketThread renderThreads[scene−>getThreads()];
for (int i = 0; i < sizeof(renderThreads) / sizeof(renderThreads[0]); i++) {

renderThreads[i] = new BucketThread(i);

renderThreads[i]−>setPriority(scene−>getThreadPriority());
renderThreads[i]−>start();

}

for (int i = 0; i < sizeof(renderThreads) / sizeof(renderThreads[0]); i++) {

try {

renderThreads[i]−>join();
} catch (InterruptedException ∗e) {
UI::printError(Module::BCKT, "Bucket processing thread %d of %d was interrupted", i + 1,

sizeof(renderThreads) / sizeof(renderThreads[0]));

} �nally {

renderThreads[i]−>updateStats();
}

}

UI::taskStop();

timer−>end();

UI::printInfo(Module::BCKT, "Render time: %s", timer);

display−>imageEnd();
}

MultipassRenderer::BucketThread::BucketThread(int threadID) {

this−>threadID = threadID;

istate = new IntersectionState();

cache = shadingCache ? new ShadingCache() : 0;

}

void MultipassRenderer::BucketThread::run() {

while (true) {

int bx, by;

THREAD_SYNCRONIZED(MultipassRenderer::this) {

91

if (bucketCounter >= bucketCoords::length) {

return;

}

UI::taskUpdate(bucketCounter);

bx = bucketCoords[bucketCounter + 0];

by = bucketCoords[bucketCounter + 1];

bucketCounter += 2;

}

renderBucket(display, bx, by, threadID, istate, cache);

}

}

void MultipassRenderer::BucketThread::updateStats() {

scene::accumulateStats(istate);

if (shadingCache) {

scene::accumulateStats(cache);

}

}

void MultipassRenderer::renderBucket(Display ∗display, int bx, int by, int threadID,
IntersectionState ∗istate, ShadingCache ∗cache) {

// pixel sized extents

int x0 = bx ∗ bucketSize;
int y0 = by ∗ bucketSize;
int bw = __min(bucketSize, imageWidth − x0);

int bh = __min(bucketSize, imageHeight − y0);

// prepare bucket

display−>imagePrepare(x0, y0, bw, bh, threadID);

Color bucketRGB[bw ∗ bh];
�oat bucketAlpha[bw ∗ bh];

for (int y = 0, i = 0, cy = imageHeight − 1 − y0; y < bh; y++, cy−−) {
for (int x = 0, cx = x0; x < bw; x++, i++, cx++) {

// sample pixel

Color ∗c = Color::black();

�oat a = 0;

int instance = ((cx & ((1 << QMC::MAX_SIGMA_ORDER) − 1))

<< QMC::MAX_SIGMA_ORDER) + QMC::sigma(cy & ((1

<< QMC::MAX_SIGMA_ORDER) − 1), QMC::MAX_SIGMA_ORDER);

double jitterX = QMC::halton(0, instance);

double jitterY = QMC::halton(1, instance);

double jitterT = QMC::halton(2, instance);

double jitterU = QMC::halton(3, instance);

92

double jitterV = QMC::halton(4, instance);

for (int s = 0; s < numSamples; s++) {

�oat rx = cx + 0.5f + static_cast<�oat> (warpCubic(QMC::mod1(jitterX + s ∗
invNumSamples)));

�oat ry = cy + 0.5f + static_cast<�oat> (warpCubic(QMC::mod1(jitterY + QMC::halton

(0, s))));

double time = QMC::mod1(jitterT + QMC::halton(1, s));

double lensU = QMC::mod1(jitterU + QMC::halton(2, s));

double lensV = QMC::mod1(jitterV + QMC::halton(3, s));

ShadingState ∗state = scene−>getRadiance(istate, rx, ry, lensU, lensV, time, instance + s,

5, cache);

if (state != 0) {

c−>add(state−>getResult());
a++;

}

}

bucketRGB[i] = c−>mul(invNumSamples);
bucketAlpha[i] = a ∗ invNumSamples;
if (cache != 0) {

cache−>reset();
}

}

}

// update pixels

display−>imageUpdate(x0, y0, bw, bh, bucketRGB, bucketAlpha);
}

�oat MultipassRenderer::warpTent(�oat x) {

if (x < 0.5f) {

return −1 + static_cast<�oat> (sqrt(2 ∗ x));
} else {

return +1 − static_cast<�oat> (sqrt(2 − 2 ∗ x));
}

}

double MultipassRenderer::warpCubic(double x) {

if (x < (1.0 / 24)) {

return qpow(24 ∗ x) − 2;

}

if (x < 0.5f) {

return distb1((24.0 / 11.0) ∗ (x − (1.0 / 24.0))) − 1;

}

if (x < (23.0f / 24)) {

return 1 − distb1((24.0 / 11.0) ∗ ((23.0 / 24.0) − x));

}

93

return 2 − qpow(24 ∗ (1 − x));

}

double MultipassRenderer::qpow(double x) {

return sqrt(sqrt(x));

}

double MultipassRenderer::distb1(double x) {

double u = x;

for (int i = 0; i < 5; i++) {

u = (11 ∗ x + u ∗ u ∗ (6 + u ∗ (8 − 9 ∗ u))) / (4 + 12 ∗ u ∗ (1 + u ∗ (1 − u)));

}

return u;

}

}

Listing A.19: Box.h

#pragma once

#include "HprAPI.h"

#include "ParameterList.h"

#include "BoundingBox.h"

#include "ShadingState.h"

#include "Vector3.h"

#include "OrthoNormalBasis.h"

#include "Ray.h"

#include "IntersectionState.h"

#include "Matrix4.h"

namespace hpr.core.primitive {

using hpr::HprAPI;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::core::ParameterList::FloatParameter;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Vector3;

class Box : PrimitiveList {

private:

�oat minX, minY, minZ;

94

�oat maxX, maxY, maxZ;

public:

Box();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual void prepareShadingState(ShadingState ∗state);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual int getNumPrimitives();

virtual �oat getPrimitiveBound(int primID, int i);

virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual PrimitiveList ∗getBakingPrimitives();

};

}

Listing A.20: Box.cpp

#include "Box.h"

using hpr::HprAPI;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::core::ParameterList::FloatParameter;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Vector3;

Box::Box() {

minX = minY = minZ = −1;
maxX = maxY = maxZ = +1;

}

bool Box::update(ParameterList ∗pl, HprAPI ∗api) {
FloatParameter ∗pts = pl−>getPointArray("points");
if (pts != 0) {

BoundingBox ∗bounds = new BoundingBox();

for (int i = 0; i < pts−>data−>length; i += 3) {

bounds−>include(pts−>data[i], pts−>data[i + 1], pts−>data[i + 2]);

}

// cube extents

minX = bounds−>getMinimum()−>x;
minY = bounds−>getMinimum()−>y;
minZ = bounds−>getMinimum()−>z;

95

maxX = bounds−>getMaximum()−>x;
maxY = bounds−>getMaximum()−>y;
maxZ = bounds−>getMaximum()−>z;

}

return true;

}

void Box::prepareShadingState(ShadingState ∗state) {
state−>init();
state−>getRay()−>getPoint(state−>getPoint());
int n = state−>getPrimitiveID();
switch (n) {

case 0:

state−>getNormal()−>set(new Vector3(1, 0, 0));

break;

case 1:

state−>getNormal()−>set(new Vector3(−1, 0, 0));
break;

case 2:

state−>getNormal()−>set(new Vector3(0, 1, 0));

break;

case 3:

state−>getNormal()−>set(new Vector3(0, −1, 0));
break;

case 4:

state−>getNormal()−>set(new Vector3(0, 0, 1));

break;

case 5:

state−>getNormal()−>set(new Vector3(0, 0, −1));
break;

default:

state−>getNormal()−>set(new Vector3(0, 0, 0));

break;

}

state−>getGeoNormal()−>set(state−>getNormal());
state−>setBasis(OrthoNormalBasis::makeFromW(state−>getNormal()));
state−>setShader(state−>getInstance()−>getShader(0));
state−>setModi�er(state−>getInstance()−>getModi�er(0));

}

void Box::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
�oat intervalMin = −1.0f / 0.0f;
�oat intervalMax = 1.0f / 0.0f;

�oat orgX = r−>ox;
�oat invDirX = 1 / r−>dx;

96

�oat t1, t2;

t1 = (minX − orgX) ∗ invDirX;
t2 = (maxX − orgX) ∗ invDirX;
int sideIn = −1, sideOut = −1;
if (invDirX > 0) {

if (t1 > intervalMin) {

intervalMin = t1;

sideIn = 0;

}

if (t2 < intervalMax) {

intervalMax = t2;

sideOut = 1;

}

} else {

if (t2 > intervalMin) {

intervalMin = t2;

sideIn = 1;

}

if (t1 < intervalMax) {

intervalMax = t1;

sideOut = 0;

}

}

if (intervalMin > intervalMax) {

return;

}

�oat orgY = r−>oy;
�oat invDirY = 1 / r−>dy;
t1 = (minY − orgY) ∗ invDirY;
t2 = (maxY − orgY) ∗ invDirY;
if (invDirY > 0) {

if (t1 > intervalMin) {

intervalMin = t1;

sideIn = 2;

}

if (t2 < intervalMax) {

intervalMax = t2;

sideOut = 3;

}

} else {

if (t2 > intervalMin) {

intervalMin = t2;

sideIn = 3;

}

if (t1 < intervalMax) {

97

intervalMax = t1;

sideOut = 2;

}

}

if (intervalMin > intervalMax) {

return;

}

�oat orgZ = r−>oz;
�oat invDirZ = 1 / r−>dz;
t1 = (minZ − orgZ) ∗ invDirZ;
t2 = (maxZ − orgZ) ∗ invDirZ;
if (invDirZ > 0) {

if (t1 > intervalMin) {

intervalMin = t1;

sideIn = 4;

}

if (t2 < intervalMax) {

intervalMax = t2;

sideOut = 5;

}

} else {

if (t2 > intervalMin) {

intervalMin = t2;

sideIn = 5;

}

if (t1 < intervalMax) {

intervalMax = t1;

sideOut = 4;

}

}

if (intervalMin > intervalMax) {

return;

}

if (r−>isInside(intervalMin)) {

r−>setMax(intervalMin);

state−>setIntersection(sideIn);
} else if (r−>isInside(intervalMax)) {

r−>setMax(intervalMax);

state−>setIntersection(sideOut);
}

}

int Box::getNumPrimitives() {

return 1;

}

98

�oat Box::getPrimitiveBound(int primID, int i) {

switch (i) {

case 0:

return minX;

case 1:

return maxX;

case 2:

return minY;

case 3:

return maxY;

case 4:

return minZ;

case 5:

return maxZ;

default:

return 0;

}

}

BoundingBox ∗Box::getWorldBounds(Matrix4 ∗o2w) {
BoundingBox ∗bounds = new BoundingBox(minX, minY, minZ);

bounds−>include(maxX, maxY, maxZ);
if (o2w == 0) {

return bounds;

}

return o2w−>transform(bounds);
}

PrimitiveList ∗Box::getBakingPrimitives() {
return 0;

}

}

Listing A.21: Cylinder.h

#pragma once

#include "HprAPI.h"

#include "ParameterList.h"

#include "BoundingBox.h"

#include "Matrix4.h"

#include "ShadingState.h"

#include "Instance.h"

#include "Point3.h"

#include "Vector3.h"

#include "OrthoNormalBasis.h"

99

#include "Ray.h"

#include "IntersectionState.h"

#include "Solvers.h"

#include <cmath>

namespace hpr.core.primitive {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Solvers;

using hpr::math::Vector3;

class Cylinder : PrimitiveList {

public:

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual �oat getPrimitiveBound(int primID, int i);

virtual int getNumPrimitives();

virtual void prepareShadingState(ShadingState ∗state);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual PrimitiveList ∗getBakingPrimitives();

};

}

Listing A.22: Cylinder.cpp

#include "Cylinder.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

100

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Solvers;

using hpr::math::Vector3;

bool Cylinder::update(ParameterList ∗pl, HprAPI ∗api) {
return true;

}

BoundingBox ∗Cylinder::getWorldBounds(Matrix4 ∗o2w) {
BoundingBox ∗bounds = new BoundingBox(1);

if (o2w != 0) {

bounds = o2w−>transform(bounds);
}

return bounds;

}

�oat Cylinder::getPrimitiveBound(int primID, int i) {

return (i & 1) == 0 ? −1 : 1;
}

int Cylinder::getNumPrimitives() {

return 1;

}

void Cylinder::prepareShadingState(ShadingState ∗state) {
state−>init();
state−>getRay()−>getPoint(state−>getPoint());
Instance ∗parent = state−>getInstance();
Point3 ∗localPoint = state−>transformWorldToObject(state−>getPoint());
state−>getNormal()−>set(localPoint−>x, localPoint−>y, 0);
state−>getNormal()−>normalize();

�oat phi = static_cast<�oat> (atan2(state−>getNormal()−>y, state−>getNormal()−>x));
if (phi < 0) {

phi += 2 ∗ 3.1415;
}

state−>getUV()−>x = phi / static_cast<�oat> (2 ∗ 3.1415);
state−>getUV()−>y = (localPoint−>z + 1) ∗ 0.5f;
state−>setShader(parent−>getShader(0));
state−>setModi�er(parent−>getModi�er(0));

// into world space

Vector3 ∗worldNormal = state−>transformNormalObjectToWorld(state−>getNormal());
Vector3 ∗v = state−>transformVectorObjectToWorld(new Vector3(0, 0, 1));

state−>getNormal()−>set(worldNormal);

101

state−>getNormal()−>normalize();
state−>getGeoNormal()−>set(state−>getNormal());
// compute basis in world space

state−>setBasis(OrthoNormalBasis::makeFromWV(state−>getNormal(), v));
}

void Cylinder::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
// intersect in local space

�oat qa = r−>dx ∗ r−>dx + r−>dy ∗ r−>dy;
�oat qb = 2 ∗ ((r−>dx ∗ r−>ox) + (r−>dy ∗ r−>oy));
�oat qc = ((r−>ox ∗ r−>ox) + (r−>oy ∗ r−>oy)) − 1;

double ∗t = Solvers::solveQuadric(qa, qb, qc);

if (t != 0) {

// early rejection

if (t[0] >= r−>getMax() || t[1] <= r−>getMin()) {

return;

}

if (t[0] > r−>getMin()) {

�oat z = r−>oz + static_cast<�oat> (t[0]) ∗ r−>dz;
if (z >= −1 && z <= 1) {

r−>setMax(static_cast<�oat> (t[0]));

state−>setIntersection(0);
return;

}

}

if (t[1] < r−>getMax()) {

�oat z = r−>oz + static_cast<�oat> (t[1]) ∗ r−>dz;
if (z >= −1 && z <= 1) {

r−>setMax(static_cast<�oat> (t[1]));

state−>setIntersection(0);
}

}

}

}

PrimitiveList ∗Cylinder::getBakingPrimitives() {
return 0;

}

}

Listing A.23: Plane.h

#pragma once

#include "Point3.h"

#include "Vector3.h"

#include "HprAPI.h"

102

#include "ParameterList.h"

#include "ShadingState.h"

#include "Instance.h"

#include "OrthoNormalBasis.h"

#include "Ray.h"

#include "IntersectionState.h"

#include "BoundingBox.h"

#include "Matrix4.h"

#include <cmath>

namespace hpr.core.primitive {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Vector3;

class Plane : PrimitiveList {

private:

Point3 ∗center;
Vector3 ∗normal;
public:

int k;

private:

�oat bnu, bnv, bnd;

�oat cnu, cnv, cnd;

public:

Plane();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual void prepareShadingState(ShadingState ∗state);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual int getNumPrimitives();

virtual �oat getPrimitiveBound(int primID, int i);

virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual PrimitiveList ∗getBakingPrimitives();

};

103

}

Listing A.24: Plane.cpp

#include "Plane.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Vector3;

Plane::Plane() {

center = new Point3(0, 0, 0);

normal = new Vector3(0, 1, 0);

k = 3;

bnu = bnv = bnd = 0;

cnu = cnv = cnd = 0;

}

bool Plane::update(ParameterList ∗pl, HprAPI ∗api) {
center = pl−>getPoint("center", center);
Point3 ∗b = pl−>getPoint("point1", 0);
Point3 ∗c = pl−>getPoint("point2", 0);
if (b != 0 && c != 0) {

Point3 ∗v0 = center;

Point3 ∗v1 = b;

Point3 ∗v2 = c;

Vector3 ∗ng = normal = Vector3::cross(Point3::sub(v1, v0, new Vector3()), Point3::sub(v2, v0,

new Vector3()), new Vector3())−>normalize();
if (abs(ng−>x) > abs(ng−>y) && abs(ng−>x) > abs(ng−>z)) {
k = 0;

} else if (abs(ng−>y) > abs(ng−>z)) {
k = 1;

} else {

k = 2;

}

�oat ax, ay, bx, by, cx, cy;

switch (k) {

104

case 0: {

ax = v0−>y;
ay = v0−>z;
bx = v2−>y − ax;

by = v2−>z − ay;

cx = v1−>y − ax;

cy = v1−>z − ay;

break;

}

case 1: {

ax = v0−>z;
ay = v0−>x;
bx = v2−>z − ax;

by = v2−>x − ay;

cx = v1−>z − ax;

cy = v1−>x − ay;

break;

}

case 2:

default: {

ax = v0−>x;
ay = v0−>y;
bx = v2−>x − ax;

by = v2−>y − ay;

cx = v1−>x − ax;

cy = v1−>y − ay;

}

}

�oat det = bx ∗ cy − by ∗ cx;
bnu = −by / det;

bnv = bx / det;

bnd = (by ∗ ax − bx ∗ ay) / det;
cnu = cy / det;

cnv = −cx / det;

cnd = (cx ∗ ay − cy ∗ ax) / det;
} else {

normal = pl−>getVector("normal", normal);
k = 3;

bnu = bnv = bnd = 0;

cnu = cnv = cnd = 0;

}

return true;

}

void Plane::prepareShadingState(ShadingState ∗state) {

105

state−>init();
state−>getRay()−>getPoint(state−>getPoint());
Instance ∗parent = state−>getInstance();
Vector3 ∗worldNormal = state−>transformNormalObjectToWorld(normal);

state−>getNormal()−>set(worldNormal);
state−>getGeoNormal()−>set(worldNormal);
state−>setShader(parent−>getShader(0));
state−>setModi�er(parent−>getModi�er(0));

Point3 ∗p = state−>transformWorldToObject(state−>getPoint());
�oat hu, hv;

switch (k) {

case 0: {

hu = p−>y;
hv = p−>z;
break;

}

case 1: {

hu = p−>z;
hv = p−>x;
break;

}

case 2: {

hu = p−>x;
hv = p−>y;
break;

}

default:

hu = hv = 0;

}

state−>getUV()−>x = hu ∗ bnu + hv ∗ bnv + bnd;

state−>getUV()−>y = hu ∗ cnu + hv ∗ cnv + cnd;

state−>setBasis(OrthoNormalBasis::makeFromW(normal));

}

void Plane::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
�oat dn = normal−>x ∗ r−>dx + normal−>y ∗ r−>dy + normal−>z ∗ r−>dz;
if (dn == 0.0) {

return;

}

�oat t = (((center−>x − r−>ox) ∗ normal−>x) + ((center−>y − r−>oy) ∗ normal−>y) + ((

center−>z − r−>oz) ∗ normal−>z)) / dn;
if (r−>isInside(t)) {
r−>setMax(t);

state−>setIntersection(0);
}

106

}

int Plane::getNumPrimitives() {

return 1;

}

�oat Plane::getPrimitiveBound(int primID, int i) {

return 0;

}

BoundingBox ∗Plane::getWorldBounds(Matrix4 ∗o2w) {
return 0;

}

PrimitiveList ∗Plane::getBakingPrimitives() {
return 0;

}

}

Listing A.25: Sphere.h

#pragma once

#include "HprAPI.h"

#include "ParameterList.h"

#include "BoundingBox.h"

#include "Matrix4.h"

#include "ShadingState.h"

#include "Instance.h"

#include "Point3.h"

#include "Vector3.h"

#include "OrthoNormalBasis.h"

#include "Ray.h"

#include "IntersectionState.h"

#include "Solvers.h"

#include <cmath>

namespace hpr.core.primitive {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::math::BoundingBox;

107

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Solvers;

using hpr::math::Vector3;

class Sphere : PrimitiveList {

public:

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual �oat getPrimitiveBound(int primID, int i);

virtual int getNumPrimitives();

virtual void prepareShadingState(ShadingState ∗state);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual PrimitiveList ∗getBakingPrimitives();

};

}

Listing A.26: Sphere.cpp

#include "Sphere.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::math::BoundingBox;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Solvers;

using hpr::math::Vector3;

bool Sphere::update(ParameterList ∗pl, HprAPI ∗api) {
return true;

}

BoundingBox ∗Sphere::getWorldBounds(Matrix4 ∗o2w) {
BoundingBox ∗bounds = new BoundingBox(1);

if (o2w != 0) {

bounds = o2w−>transform(bounds);
}

return bounds;

108

}

�oat Sphere::getPrimitiveBound(int primID, int i) {

return (i & 1) == 0 ? −1 : 1;
}

int Sphere::getNumPrimitives() {

return 1;

}

void Sphere::prepareShadingState(ShadingState ∗state) {
state−>init();
state−>getRay()−>getPoint(state−>getPoint());
Instance ∗parent = state−>getInstance();
Point3 ∗localPoint = state−>transformWorldToObject(state−>getPoint());
state−>getNormal()−>set(localPoint−>x, localPoint−>y, localPoint−>z);
state−>getNormal()−>normalize();

�oat phi = static_cast<�oat> (atan2(state−>getNormal()−>y, state−>getNormal()−>x));
if (phi < 0) {

phi += 2 ∗ 3.1415;
}

�oat theta = static_cast<�oat> (acos(state−>getNormal()−>z));
state−>getUV()−>y = theta / static_cast<�oat> (3.1415);

state−>getUV()−>x = phi / static_cast<�oat> (2 ∗ 3.1415);
Vector3 ∗v = new Vector3();

v−>x = −2 ∗ static_cast<�oat> (3.1415) ∗ state−>getNormal()−>y;
v−>y = 2 ∗ static_cast<�oat> (3.1415) ∗ state−>getNormal()−>x;
v−>z = 0;

state−>setShader(parent−>getShader(0));
state−>setModi�er(parent−>getModi�er(0));

// into world space

Vector3 ∗worldNormal = state−>transformNormalObjectToWorld(state−>getNormal());
v = state−>transformVectorObjectToWorld(v);

state−>getNormal()−>set(worldNormal);
state−>getNormal()−>normalize();
state−>getGeoNormal()−>set(state−>getNormal());
// compute basis in world space

state−>setBasis(OrthoNormalBasis::makeFromWV(state−>getNormal(), v));
}

void Sphere::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
// intersect in local space

�oat qa = r−>dx ∗ r−>dx + r−>dy ∗ r−>dy + r−>dz ∗ r−>dz;
�oat qb = 2 ∗ ((r−>dx ∗ r−>ox) + (r−>dy ∗ r−>oy) + (r−>dz ∗ r−>oz));

109

�oat qc = ((r−>ox ∗ r−>ox) + (r−>oy ∗ r−>oy) + (r−>oz ∗ r−>oz)) − 1;

double ∗t = Solvers::solveQuadric(qa, qb, qc);

if (t != 0) {

if (t[0] >= r−>getMax() || t[1] <= r−>getMin()) {

return;

}

if (t[0] > r−>getMin()) {

r−>setMax(static_cast<�oat> (t[0]));

} else {

r−>setMax(static_cast<�oat> (t[1]));

}

state−>setIntersection(0);
}

}

PrimitiveList ∗Sphere::getBakingPrimitives() {
return 0;

}

}

Listing A.27: TriangleMesh.h

#pragma once

#include "ParameterList.h"

#include "UI.h"

#include "HprAPI.h"

#include "MathUtils.h"

#include "BoundingBox.h"

#include "Matrix4.h"

#include "Ray.h"

#include "IntersectionState.h"

#include "ShadingState.h"

#include "Instance.h"

#include "Point3.h"

#include "Vector3.h"

#include "OrthoNormalBasis.h"

#include <string>

#include <cmath>

namespace hpr.core.primitive {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

110

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::core::ParameterList::FloatParameter;

using hpr::core::ParameterList::InterpolationType;

using hpr::math::BoundingBox;

using hpr::math::MathUtils;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Vector3;

using hpr::system::UI;

using hpr::system::UI::Module;

class TriangleMesh : PrimitiveList {

private:

static bool smallTriangles;

WaldTriangle ∗triaccel;
FloatParameter ∗normals;
FloatParameter ∗uvs;
char ∗faceShaders;
void intersectTriangleKensler(Ray ∗r, int primID, IntersectionState ∗state);
class WaldTriangle {

// private data for fast triangle intersection testing

private:

int k;

�oat nu, nv, nd;

�oat bnu, bnv, bnd;

�oat cnu, cnv, cnd;

WaldTriangle(TriangleMesh ∗mesh, int tri);

public:

void intersect(Ray ∗r, int primID, IntersectionState ∗state);
};

class BakingSurface : PrimitiveList {

public:

virtual PrimitiveList ∗getBakingPrimitives();
virtual int getNumPrimitives();

virtual �oat getPrimitiveBound(int primID, int i);

virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual void prepareShadingState(ShadingState ∗state);
virtual bool update(ParameterList ∗pl, HprAPI ∗api);

};

protected:

111

�oat ∗points;
int ∗triangles;
virtual Point3 ∗getPoint(int i);

public:

static void setSmallTriangles(bool smallTriangles);

TriangleMesh();

virtual void writeObj(std::string �lename);

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual �oat getPrimitiveBound(int primID, int i);

virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual int getNumPrimitives();

virtual void prepareShadingState(ShadingState ∗state);
virtual void init();

virtual void getPoint(int tri, int i, Point3 ∗p);
virtual PrimitiveList ∗getBakingPrimitives();

};

}

Listing A.28: TriangleMesh.cpp

#include "TriangleMesh.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::core::ParameterList::FloatParameter;

using hpr::core::ParameterList::InterpolationType;

using hpr::math::BoundingBox;

using hpr::math::MathUtils;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Vector3;

using hpr::system::UI;

using hpr::system::UI::Module;

void TriangleMesh::setSmallTriangles(bool smallTriangles) {

if (smallTriangles) {

UI::printInfo(Module::GEOM, "Small trimesh mode: enabled");

} else {

112

UI::printInfo(Module::GEOM, "Small trimesh mode: disabled");

}

TriangleMesh::smallTriangles = smallTriangles;

}

TriangleMesh::TriangleMesh() {

delete[] triangles;

delete[] points;

normals = uvs = new FloatParameter();

delete[] faceShaders;

}

void TriangleMesh::writeObj(std::string �lename) {

try {

FileWriter ∗�le = new FileWriter(�lename);

�le−>write(std::string::format("o object\n"));
for (int i = 0; i < sizeof(points) / sizeof(points[0]); i += 3) {

�le−>write(std::string::format("v %g %g %g\n", points[i], points[i + 1], points[i + 2]));

}

�le−>write("s o�\n");
for (int i = 0; i < sizeof(triangles) / sizeof(triangles[0]); i += 3) {

�le−>write(std::string::format("f %d %d %d\n", triangles[i] + 1, triangles[i + 1] + 1,

triangles[i + 2] + 1));

}

�le−>close();
} catch (IOException ∗e) {
e−>printStackTrace();

}

}

bool TriangleMesh::update(ParameterList ∗pl, HprAPI ∗api) {
bool updatedTopology = false;

int ∗triangles = pl−>getIntArray("triangles");
if (triangles != 0) {

this−>triangles = triangles;

updatedTopology = true;

}

if (triangles == 0) {

UI::printError(Module::GEOM, "Unable to update mesh − triangle indices are missing");

return false;

}

if (sizeof(triangles) / sizeof(triangles[0]) % 3 != 0) {

UI::printWarning(Module::GEOM, "Triangle index data is not a multiple of 3 − triangles may

be missing");

}

113

pl−>setFaceCount(sizeof(triangles) / sizeof(triangles[0]) / 3);
FloatParameter ∗pointsP = pl−>getPointArray("points");
if (pointsP != 0) {

if (pointsP−>interp != InterpolationType::VERTEX) {

UI::printError(Module::GEOM, "Point interpolation type must be set to \"vertex\" − was

\"%s\"", pointsP−>interp::name()−>toLowerCase(Locale::ENGLISH));
} else {

points = pointsP−>data;
updatedTopology = true;

}

}

if (points == 0) {

UI::printError(Module::GEOM, "Unable to update mesh − vertices are missing");

return false;

}

pl−>setVertexCount(sizeof(points) / sizeof(points[0]) / 3);
pl−>setFaceVertexCount(3 ∗ (sizeof(triangles) / sizeof(triangles[0]) / 3));
FloatParameter ∗normals = pl−>getVectorArray("normals");
if (normals != 0) {

this−>normals = normals;

}

FloatParameter ∗uvs = pl−>getTexCoordArray("uvs");
if (uvs != 0) {

this−>uvs = uvs;

}

int ∗faceShaders = pl−>getIntArray("faceshaders");
if (faceShaders != 0 && sizeof(faceShaders) / sizeof(faceShaders[0]) == sizeof(triangles) / sizeof(

triangles[0]) / 3) {

this−>faceShaders = new char[sizeof(faceShaders) / sizeof(faceShaders[0])];

for (int i = 0; i < sizeof(faceShaders) / sizeof(faceShaders[0]); i++) {

int v = faceShaders[i];

if (v > 255) {

UI::printWarning(Module::GEOM, "Shader index too large on triangle %d", i);

}

this−>faceShaders[i] = static_cast<char> (v & 0xFF);

}

}

if (updatedTopology) {

// create triangle acceleration structure

init();

}

return true;

}

�oat TriangleMesh::getPrimitiveBound(int primID, int i) {

114

int tri = 3 ∗ primID;
int a = 3 ∗ triangles[tri + 0];

int b = 3 ∗ triangles[tri + 1];

int c = 3 ∗ triangles[tri + 2];

int axis = static_cast<unsigned int> (i) >> 1;

if ((i & 1) == 0) {

return MathUtils::min(points[a + axis], points[b + axis], points[c + axis]);

} else {

return MathUtils::max(points[a + axis], points[b + axis], points[c + axis]);

}

}

BoundingBox ∗TriangleMesh::getWorldBounds(Matrix4 ∗o2w) {
BoundingBox ∗bounds = new BoundingBox();

if (o2w == 0) {

for (int i = 0; i < sizeof(points) / sizeof(points[0]); i += 3) {

bounds−>include(points[i], points[i + 1], points[i + 2]);

}

} else {

// transform vertices �rst

for (int i = 0; i < sizeof(points) / sizeof(points[0]); i += 3) {

�oat x = points[i];

�oat y = points[i + 1];

�oat z = points[i + 2];

�oat wx = o2w−>transformPX(x, y, z);
�oat wy = o2w−>transformPY(x, y, z);
�oat wz = o2w−>transformPZ(x, y, z);
bounds−>include(wx, wy, wz);

}

}

return bounds;

}

void TriangleMesh::intersectTriangleKensler(Ray ∗r, int primID, IntersectionState ∗state) {
int tri = 3 ∗ primID;
int a = 3 ∗ triangles[tri + 0];

int b = 3 ∗ triangles[tri + 1];

int c = 3 ∗ triangles[tri + 2];

�oat edge0x = points[b + 0] − points[a + 0];

�oat edge0y = points[b + 1] − points[a + 1];

�oat edge0z = points[b + 2] − points[a + 2];

�oat edge1x = points[a + 0] − points[c + 0];

�oat edge1y = points[a + 1] − points[c + 1];

�oat edge1z = points[a + 2] − points[c + 2];

�oat nx = edge0y ∗ edge1z − edge0z ∗ edge1y;

115

�oat ny = edge0z ∗ edge1x − edge0x ∗ edge1z;
�oat nz = edge0x ∗ edge1y − edge0y ∗ edge1x;
�oat v = r−>dot(nx, ny, nz);
�oat iv = 1 / v;

�oat edge2x = points[a + 0] − r−>ox;
�oat edge2y = points[a + 1] − r−>oy;
�oat edge2z = points[a + 2] − r−>oz;
�oat va = nx ∗ edge2x + ny ∗ edge2y + nz ∗ edge2z;
�oat t = iv ∗ va;
if (!r−>isInside(t)) {
return;

}

�oat ix = edge2y ∗ r−>dz − edge2z ∗ r−>dy;
�oat iy = edge2z ∗ r−>dx − edge2x ∗ r−>dz;
�oat iz = edge2x ∗ r−>dy − edge2y ∗ r−>dx;
�oat v1 = ix ∗ edge1x + iy ∗ edge1y + iz ∗ edge1z;
�oat beta = iv ∗ v1;
if (beta < 0) {

return;

}

�oat v2 = ix ∗ edge0x + iy ∗ edge0y + iz ∗ edge0z;
if ((v1 + v2) ∗ v > v ∗ v) {
return;

}

�oat gamma = iv ∗ v2;
if (gamma < 0) {

return;

}

r−>setMax(t);

state−>setIntersection(primID, beta, gamma);
}

void TriangleMesh::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
// alternative test −− disabled for now

// intersectPrimitiveRobust(r, primID, state);

if (triaccel != 0) {

// optional fast intersection method

triaccel[primID]−>intersect(r, primID, state);
return;

}

intersectTriangleKensler(r, primID, state);

}

int TriangleMesh::getNumPrimitives() {

return sizeof(triangles) / sizeof(triangles[0]) / 3;

116

}

void TriangleMesh::prepareShadingState(ShadingState ∗state) {
state−>init();
Instance ∗parent = state−>getInstance();
int primID = state−>getPrimitiveID();
�oat u = state−>getU();
�oat v = state−>getV();
�oat w = 1 − u − v;

state−>getRay()−>getPoint(state−>getPoint());
int tri = 3 ∗ primID;
int index0 = triangles[tri + 0];

int index1 = triangles[tri + 1];

int index2 = triangles[tri + 2];

Point3 ∗v0p = getPoint(index0);

Point3 ∗v1p = getPoint(index1);

Point3 ∗v2p = getPoint(index2);

Vector3 ∗ng = Point3::normal(v0p, v1p, v2p);

ng = state−>transformNormalObjectToWorld(ng);

ng−>normalize();
state−>getGeoNormal()−>set(ng);
switch (normals−>interp) {
case NONE:

case FACE: {

state−>getNormal()−>set(ng);
break;

}

case VERTEX: {

int i30 = 3 ∗ index0;
int i31 = 3 ∗ index1;
int i32 = 3 ∗ index2;
�oat ∗normals = this−>normals−>data;
state−>getNormal()−>x = w ∗ normals[i30 + 0] + u ∗ normals[i31 + 0] + v ∗ normals[i32 +

0];

state−>getNormal()−>y = w ∗ normals[i30 + 1] + u ∗ normals[i31 + 1] + v ∗ normals[i32 +
1];

state−>getNormal()−>z = w ∗ normals[i30 + 2] + u ∗ normals[i31 + 2] + v ∗ normals[i32 +
2];

state−>getNormal()−>set(state−>transformNormalObjectToWorld(state−>getNormal()));
state−>getNormal()−>normalize();
break;

}

case FACEVARYING: {

int idx = 3 ∗ tri;
�oat ∗normals = this−>normals−>data;

117

state−>getNormal()−>x = w ∗ normals[idx + 0] + u ∗ normals[idx + 3] + v ∗ normals[idx
+ 6];

state−>getNormal()−>y = w ∗ normals[idx + 1] + u ∗ normals[idx + 4] + v ∗ normals[idx
+ 7];

state−>getNormal()−>z = w ∗ normals[idx + 2] + u ∗ normals[idx + 5] + v ∗ normals[idx
+ 8];

state−>getNormal()−>set(state−>transformNormalObjectToWorld(state−>getNormal()));
state−>getNormal()−>normalize();
break;

}

}

�oat uv00 = 0, uv01 = 0, uv10 = 0, uv11 = 0, uv20 = 0, uv21 = 0;

switch (uvs−>interp) {
case NONE:

case FACE: {

state−>getUV()−>x = 0;

state−>getUV()−>y = 0;

break;

}

case VERTEX: {

int i20 = 2 ∗ index0;
int i21 = 2 ∗ index1;
int i22 = 2 ∗ index2;
�oat ∗uvs = this−>uvs−>data;
uv00 = uvs[i20 + 0];

uv01 = uvs[i20 + 1];

uv10 = uvs[i21 + 0];

uv11 = uvs[i21 + 1];

uv20 = uvs[i22 + 0];

uv21 = uvs[i22 + 1];

break;

}

case FACEVARYING: {

int idx = tri << 1;

�oat ∗uvs = this−>uvs−>data;
uv00 = uvs[idx + 0];

uv01 = uvs[idx + 1];

uv10 = uvs[idx + 2];

uv11 = uvs[idx + 3];

uv20 = uvs[idx + 4];

uv21 = uvs[idx + 5];

break;

}

}

if (uvs−>interp != InterpolationType::NONE) {

118

// get exact uv coords and compute tangent vectors

state−>getUV()−>x = w ∗ uv00 + u ∗ uv10 + v ∗ uv20;
state−>getUV()−>y = w ∗ uv01 + u ∗ uv11 + v ∗ uv21;
�oat du1 = uv00 − uv20;

�oat du2 = uv10 − uv20;

�oat dv1 = uv01 − uv21;

�oat dv2 = uv11 − uv21;

Vector3 ∗dp1 = Point3::sub(v0p, v2p, new Vector3()), ∗dp2 = Point3::sub(v1p, v2p, new

Vector3());

�oat determinant = du1 ∗ dv2 − dv1 ∗ du2;
if (determinant == 0.0f) {

// create basis in world space

state−>setBasis(OrthoNormalBasis::makeFromW(state−>getNormal()));
} else {

�oat invdet = 1.f / determinant;

Vector3 ∗dpdv = new Vector3();

dpdv−>x = (−du2 ∗ dp1−>x + du1 ∗ dp2−>x) ∗ invdet;
dpdv−>y = (−du2 ∗ dp1−>y + du1 ∗ dp2−>y) ∗ invdet;
dpdv−>z = (−du2 ∗ dp1−>z + du1 ∗ dp2−>z) ∗ invdet;
dpdv = state−>transformVectorObjectToWorld(dpdv);

// create basis in world space

state−>setBasis(OrthoNormalBasis::makeFromWV(state−>getNormal(), dpdv));
}

} else {

state−>setBasis(OrthoNormalBasis::makeFromW(state−>getNormal()));
}

int shaderIndex = faceShaders == 0 ? 0 : (faceShaders[primID] & 0xFF);

state−>setShader(parent−>getShader(shaderIndex));
state−>setModi�er(parent−>getModi�er(shaderIndex));

}

void TriangleMesh::init() {

delete[] triaccel;

int nt = getNumPrimitives();

if (!smallTriangles) {

if (nt > 2000000) {

UI::printWarning(Module::GEOM, "TRI − Too many triangles −− triaccel generation

skipped");

return;

}

triaccel = new WaldTriangle[nt];

for (int i = 0; i < nt; i++) {

triaccel[i] = new WaldTriangle(this, i);

}

}

119

}

Point3 ∗TriangleMesh::getPoint(int i) {

i ∗= 3;

return new Point3(points[i], points[i + 1], points[i + 2]);

}

void TriangleMesh::getPoint(int tri, int i, Point3 ∗p) {
int index = 3 ∗ triangles[3 ∗ tri + i];

p−>set(points[index], points[index + 1], points[index + 2]);

}

TriangleMesh::WaldTriangle::WaldTriangle(TriangleMesh ∗mesh, int tri) {
k = 0;

tri ∗= 3;

int index0 = mesh−>triangles[tri + 0];

int index1 = mesh−>triangles[tri + 1];

int index2 = mesh−>triangles[tri + 2];

Point3 ∗v0p = mesh−>getPoint(index0);
Point3 ∗v1p = mesh−>getPoint(index1);
Point3 ∗v2p = mesh−>getPoint(index2);
Vector3 ∗ng = Point3::normal(v0p, v1p, v2p);

if (abs(ng−>x) > abs(ng−>y) && abs(ng−>x) > abs(ng−>z)) {
k = 0;

} else if (abs(ng−>y) > abs(ng−>z)) {
k = 1;

} else {

k = 2;

}

�oat ax, ay, bx, by, cx, cy;

switch (k) {

case 0: {

nu = ng−>y / ng−>x;
nv = ng−>z / ng−>x;
nd = v0p−>x + (nu ∗ v0p−>y) + (nv ∗ v0p−>z);
ax = v0p−>y;
ay = v0p−>z;
bx = v2p−>y − ax;

by = v2p−>z − ay;

cx = v1p−>y − ax;

cy = v1p−>z − ay;

break;

}

case 1: {

nu = ng−>z / ng−>y;

120

nv = ng−>x / ng−>y;
nd = (nv ∗ v0p−>x) + v0p−>y + (nu ∗ v0p−>z);
ax = v0p−>z;
ay = v0p−>x;
bx = v2p−>z − ax;

by = v2p−>x − ay;

cx = v1p−>z − ax;

cy = v1p−>x − ay;

break;

}

case 2:

default: {

nu = ng−>x / ng−>z;
nv = ng−>y / ng−>z;
nd = (nu ∗ v0p−>x) + (nv ∗ v0p−>y) + v0p−>z;
ax = v0p−>x;
ay = v0p−>y;
bx = v2p−>x − ax;

by = v2p−>y − ay;

cx = v1p−>x − ax;

cy = v1p−>y − ay;

}

}

�oat det = bx ∗ cy − by ∗ cx;
bnu = −by / det;

bnv = bx / det;

bnd = (by ∗ ax − bx ∗ ay) / det;
cnu = cy / det;

cnv = −cx / det;

cnd = (cx ∗ ay − cy ∗ ax) / det;
}

void TriangleMesh::WaldTriangle::intersect(Ray ∗r, int primID, IntersectionState ∗state) {
switch (k) {

case 0: {

�oat det = 1.0f / (r−>dx + nu ∗ r−>dy + nv ∗ r−>dz);
�oat t = (nd − r−>ox − nu ∗ r−>oy − nv ∗ r−>oz) ∗ det;
if (!r−>isInside(t)) {
return;

}

�oat hu = r−>oy + t ∗ r−>dy;
�oat hv = r−>oz + t ∗ r−>dz;
�oat u = hu ∗ bnu + hv ∗ bnv + bnd;

if (u < 0.0f) {

return;

121

}

�oat v = hu ∗ cnu + hv ∗ cnv + cnd;

if (v < 0.0f) {

return;

}

if (u + v > 1.0f) {

return;

}

r−>setMax(t);

state−>setIntersection(primID, u, v);
return;

}

case 1: {

�oat det = 1.0f / (r−>dy + nu ∗ r−>dz + nv ∗ r−>dx);
�oat t = (nd − r−>oy − nu ∗ r−>oz − nv ∗ r−>ox) ∗ det;
if (!r−>isInside(t)) {
return;

}

�oat hu = r−>oz + t ∗ r−>dz;
�oat hv = r−>ox + t ∗ r−>dx;
�oat u = hu ∗ bnu + hv ∗ bnv + bnd;

if (u < 0.0f) {

return;

}

�oat v = hu ∗ cnu + hv ∗ cnv + cnd;

if (v < 0.0f) {

return;

}

if (u + v > 1.0f) {

return;

}

r−>setMax(t);

state−>setIntersection(primID, u, v);
return;

}

case 2: {

�oat det = 1.0f / (r−>dz + nu ∗ r−>dx + nv ∗ r−>dy);
�oat t = (nd − r−>oz − nu ∗ r−>ox − nv ∗ r−>oy) ∗ det;
if (!r−>isInside(t)) {
return;

}

�oat hu = r−>ox + t ∗ r−>dx;
�oat hv = r−>oy + t ∗ r−>dy;
�oat u = hu ∗ bnu + hv ∗ bnv + bnd;

if (u < 0.0f) {

122

return;

}

�oat v = hu ∗ cnu + hv ∗ cnv + cnd;

if (v < 0.0f) {

return;

}

if (u + v > 1.0f) {

return;

}

r−>setMax(t);

state−>setIntersection(primID, u, v);
return;

}

}

}

PrimitiveList ∗TriangleMesh::getBakingPrimitives() {

switch (uvs−>interp) {
case NONE:

case FACE:

UI::printError(Module::GEOM, "Cannot generate baking surface without texture coordinate

data");

return 0;

default:

return new BakingSurface();

}

}

PrimitiveList ∗TriangleMesh::BakingSurface::getBakingPrimitives() {

return 0;

}

int TriangleMesh::BakingSurface::getNumPrimitives() {

return TriangleMesh::getNumPrimitives();

}

�oat TriangleMesh::BakingSurface::getPrimitiveBound(int primID, int i) {

if (i > 3) {

return 0;

}

switch (uvs::interp) {

case NONE:

case FACE:

default: {

return 0;

123

}

case VERTEX: {

int tri = 3 ∗ primID;
int index0 = triangles[tri + 0];

int index1 = triangles[tri + 1];

int index2 = triangles[tri + 2];

int i20 = 2 ∗ index0;
int i21 = 2 ∗ index1;
int i22 = 2 ∗ index2;
�oat ∗uvs = TriangleMesh::uvs::data;

switch (i) {

case 0:

return MathUtils::min(uvs[i20 + 0], uvs[i21 + 0], uvs[i22 + 0]);

case 1:

return MathUtils::max(uvs[i20 + 0], uvs[i21 + 0], uvs[i22 + 0]);

case 2:

return MathUtils::min(uvs[i20 + 1], uvs[i21 + 1], uvs[i22 + 1]);

case 3:

return MathUtils::max(uvs[i20 + 1], uvs[i21 + 1], uvs[i22 + 1]);

default:

return 0;

}

}

case FACEVARYING: {

int idx = 6 ∗ primID;
�oat ∗uvs = TriangleMesh::uvs::data;

switch (i) {

case 0:

return MathUtils::min(uvs[idx + 0], uvs[idx + 2], uvs[idx + 4]);

case 1:

return MathUtils::max(uvs[idx + 0], uvs[idx + 2], uvs[idx + 4]);

case 2:

return MathUtils::min(uvs[idx + 1], uvs[idx + 3], uvs[idx + 5]);

case 3:

return MathUtils::max(uvs[idx + 1], uvs[idx + 3], uvs[idx + 5]);

default:

return 0;

}

}

}

}

BoundingBox ∗TriangleMesh::BakingSurface::getWorldBounds(Matrix4 ∗o2w) {
BoundingBox ∗bounds = new BoundingBox();

if (o2w == 0) {

124

for (int i = 0; i < uvs::data::length; i += 2) {

bounds−>include(uvs::data[i], uvs::data[i + 1], 0);

}

} else {

// transform vertices �rst

for (int i = 0; i < uvs::data::length; i += 2) {

�oat x = uvs::data[i];

�oat y = uvs::data[i + 1];

�oat wx = o2w−>transformPX(x, y, 0);
�oat wy = o2w−>transformPY(x, y, 0);
�oat wz = o2w−>transformPZ(x, y, 0);
bounds−>include(wx, wy, wz);

}

}

return bounds;

}

void TriangleMesh::BakingSurface::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
�oat uv00 = 0, uv01 = 0, uv10 = 0, uv11 = 0, uv20 = 0, uv21 = 0;

switch (uvs::interp) {

case NONE:

case FACE:

default:

return;

case VERTEX: {

int tri = 3 ∗ primID;
int index0 = triangles[tri + 0];

int index1 = triangles[tri + 1];

int index2 = triangles[tri + 2];

int i20 = 2 ∗ index0;
int i21 = 2 ∗ index1;
int i22 = 2 ∗ index2;
�oat ∗uvs = TriangleMesh::uvs::data;

uv00 = uvs[i20 + 0];

uv01 = uvs[i20 + 1];

uv10 = uvs[i21 + 0];

uv11 = uvs[i21 + 1];

uv20 = uvs[i22 + 0];

uv21 = uvs[i22 + 1];

break;

}

case FACEVARYING: {

int idx = (3 ∗ primID) << 1;

�oat ∗uvs = TriangleMesh::uvs::data;

125

uv00 = uvs[idx + 0];

uv01 = uvs[idx + 1];

uv10 = uvs[idx + 2];

uv11 = uvs[idx + 3];

uv20 = uvs[idx + 4];

uv21 = uvs[idx + 5];

break;

}

}

double edge1x = uv10 − uv00;

double edge1y = uv11 − uv01;

double edge2x = uv20 − uv00;

double edge2y = uv21 − uv01;

double pvecx = r−>dy ∗ 0 − r−>dz ∗ edge2y;
double pvecy = r−>dz ∗ edge2x − r−>dx ∗ 0;
double pvecz = r−>dx ∗ edge2y − r−>dy ∗ edge2x;
double qvecx, qvecy, qvecz;

double u, v;

double det = edge1x ∗ pvecx + edge1y ∗ pvecy + 0 ∗ pvecz;
if (det > 0) {

double tvecx = r−>ox − uv00;

double tvecy = r−>oy − uv01;

double tvecz = r−>oz;
u = (tvecx ∗ pvecx + tvecy ∗ pvecy + tvecz ∗ pvecz);
if (u < 0.0 || u > det) {

return;

}

qvecx = tvecy ∗ 0 − tvecz ∗ edge1y;
qvecy = tvecz ∗ edge1x − tvecx ∗ 0;
qvecz = tvecx ∗ edge1y − tvecy ∗ edge1x;
v = (r−>dx ∗ qvecx + r−>dy ∗ qvecy + r−>dz ∗ qvecz);
if (v < 0.0 || u + v > det) {

return;

}

} else if (det < 0) {

double tvecx = r−>ox − uv00;

double tvecy = r−>oy − uv01;

double tvecz = r−>oz;
u = (tvecx ∗ pvecx + tvecy ∗ pvecy + tvecz ∗ pvecz);
if (u > 0.0 || u < det) {

return;

}

qvecx = tvecy ∗ 0 − tvecz ∗ edge1y;
qvecy = tvecz ∗ edge1x − tvecx ∗ 0;

126

qvecz = tvecx ∗ edge1y − tvecy ∗ edge1x;
v = (r−>dx ∗ qvecx + r−>dy ∗ qvecy + r−>dz ∗ qvecz);
if (v > 0.0 || u + v < det) {

return;

}

} else {

return;

}

double inv_det = 1.0 / det;

�oat t = static_cast<�oat> ((edge2x ∗ qvecx + edge2y ∗ qvecy + 0 ∗ qvecz) ∗ inv_det);
if (r−>isInside(t)) {
r−>setMax(t);

state−>setIntersection(primID, static_cast<�oat> (u ∗ inv_det), static_cast<�oat> (v ∗
inv_det));

}

}

void TriangleMesh::BakingSurface::prepareShadingState(ShadingState ∗state) {
state−>init();
Instance ∗parent = state−>getInstance();
int primID = state−>getPrimitiveID();
�oat u = state−>getU();
�oat v = state−>getV();
�oat w = 1 − u − v;

// state.getRay().getPoint(state.getPoint());

int tri = 3 ∗ primID;
int index0 = triangles[tri + 0];

int index1 = triangles[tri + 1];

int index2 = triangles[tri + 2];

Point3 ∗v0p = getPoint(index0);

Point3 ∗v1p = getPoint(index1);

Point3 ∗v2p = getPoint(index2);

// get object space point from barycentric coordinates

state−>getPoint()−>x = w ∗ v0p−>x + u ∗ v1p−>x + v ∗ v2p−>x;
state−>getPoint()−>y = w ∗ v0p−>y + u ∗ v1p−>y + v ∗ v2p−>y;
state−>getPoint()−>z = w ∗ v0p−>z + u ∗ v1p−>z + v ∗ v2p−>z;
// move into world space

state−>getPoint()−>set(state−>transformObjectToWorld(state−>getPoint()));

Vector3 ∗ng = Point3::normal(v0p, v1p, v2p);

if (parent != 0) {

ng = state−>transformNormalObjectToWorld(ng);

}

ng−>normalize();

127

state−>getGeoNormal()−>set(ng);
switch (normals::interp) {

case NONE:

case FACE: {

state−>getNormal()−>set(ng);
break;

}

case VERTEX: {

int i30 = 3 ∗ index0;
int i31 = 3 ∗ index1;
int i32 = 3 ∗ index2;
�oat ∗normals = TriangleMesh::normals::data;

state−>getNormal()−>x = w ∗ normals[i30 + 0] + u ∗ normals[i31 + 0] + v ∗ normals[i32 +
0];

state−>getNormal()−>y = w ∗ normals[i30 + 1] + u ∗ normals[i31 + 1] + v ∗ normals[i32 +
1];

state−>getNormal()−>z = w ∗ normals[i30 + 2] + u ∗ normals[i31 + 2] + v ∗ normals[i32 +
2];

if (parent != 0) {

state−>getNormal()−>set(state−>transformNormalObjectToWorld(state−>getNormal()))
;

}

state−>getNormal()−>normalize();
break;

}

case FACEVARYING: {

int idx = 3 ∗ tri;
�oat ∗normals = TriangleMesh::normals::data;

state−>getNormal()−>x = w ∗ normals[idx + 0] + u ∗ normals[idx + 3] + v ∗ normals[idx
+ 6];

state−>getNormal()−>y = w ∗ normals[idx + 1] + u ∗ normals[idx + 4] + v ∗ normals[idx
+ 7];

state−>getNormal()−>z = w ∗ normals[idx + 2] + u ∗ normals[idx + 5] + v ∗ normals[idx
+ 8];

if (parent != 0) {

state−>getNormal()−>set(state−>transformNormalObjectToWorld(state−>getNormal()))
;

}

state−>getNormal()−>normalize();
break;

}

}

�oat uv00 = 0, uv01 = 0, uv10 = 0, uv11 = 0, uv20 = 0, uv21 = 0;

switch (uvs::interp) {

case NONE:

128

case FACE: {

state−>getUV()−>x = 0;

state−>getUV()−>y = 0;

break;

}

case VERTEX: {

int i20 = 2 ∗ index0;
int i21 = 2 ∗ index1;
int i22 = 2 ∗ index2;
�oat ∗uvs = TriangleMesh::uvs::data;

uv00 = uvs[i20 + 0];

uv01 = uvs[i20 + 1];

uv10 = uvs[i21 + 0];

uv11 = uvs[i21 + 1];

uv20 = uvs[i22 + 0];

uv21 = uvs[i22 + 1];

break;

}

case FACEVARYING: {

int idx = tri << 1;

�oat ∗uvs = TriangleMesh::uvs::data;

uv00 = uvs[idx + 0];

uv01 = uvs[idx + 1];

uv10 = uvs[idx + 2];

uv11 = uvs[idx + 3];

uv20 = uvs[idx + 4];

uv21 = uvs[idx + 5];

break;

}

}

if (uvs::interp != InterpolationType::NONE) {

// get exact uv coords and compute tangent vectors

state−>getUV()−>x = w ∗ uv00 + u ∗ uv10 + v ∗ uv20;
state−>getUV()−>y = w ∗ uv01 + u ∗ uv11 + v ∗ uv21;
�oat du1 = uv00 − uv20;

�oat du2 = uv10 − uv20;

�oat dv1 = uv01 − uv21;

�oat dv2 = uv11 − uv21;

Vector3 ∗dp1 = Point3::sub(v0p, v2p, new Vector3()), ∗dp2 = Point3::sub(v1p, v2p, new

Vector3());

�oat determinant = du1 ∗ dv2 − dv1 ∗ du2;
if (determinant == 0.0f) {

// create basis in world space

state−>setBasis(OrthoNormalBasis::makeFromW(state−>getNormal()));
} else {

129

�oat invdet = 1.f / determinant;

// Vector3 dpdu = new Vector3();

// dpdu.x = (dv2 ∗ dp1.x − dv1 ∗ dp2.x) ∗ invdet;
// dpdu.y = (dv2 ∗ dp1.y − dv1 ∗ dp2.y) ∗ invdet;
// dpdu.z = (dv2 ∗ dp1.z − dv1 ∗ dp2.z) ∗ invdet;
Vector3 ∗dpdv = new Vector3();

dpdv−>x = (−du2 ∗ dp1−>x + du1 ∗ dp2−>x) ∗ invdet;
dpdv−>y = (−du2 ∗ dp1−>y + du1 ∗ dp2−>y) ∗ invdet;
dpdv−>z = (−du2 ∗ dp1−>z + du1 ∗ dp2−>z) ∗ invdet;
if (parent != 0) {

dpdv = state−>transformVectorObjectToWorld(dpdv);

}

// create basis in world space

state−>setBasis(OrthoNormalBasis::makeFromWV(state−>getNormal(), dpdv));
}

} else {

state−>setBasis(OrthoNormalBasis::makeFromW(state−>getNormal()));
}

int shaderIndex = faceShaders == 0 ? 0 : (faceShaders[primID] & 0xFF);

state−>setShader(parent−>getShader(shaderIndex));
}

bool TriangleMesh::BakingSurface::update(ParameterList ∗pl, HprAPI ∗api) {
return true;

}

}

Listing A.29: PointLight.h

#pragma once

#include "Point3.h"

#include "Color.h"

#include "HprAPI.h"

#include "ParameterList.h"

#include "ShadingState.h"

#include "Vector3.h"

#include "LightSample.h"

#include "Ray.h"

#include "Instance.h"

#include <cmath>

namespace hpr.core.light {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::LightSample;

130

using hpr::core::LightSource;

using hpr::core::ParameterList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::image::Color;

using hpr::math::Point3;

using hpr::math::Vector3;

class PointLight : LightSource {

private:

Point3 ∗lightPoint;
Color ∗power;

public:

PointLight();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual int getNumSamples();

virtual void getSamples(ShadingState ∗state);
virtual void getPhoton(double randX1, double randY1, double randX2, double randY2, Point3

∗p, Vector3 ∗dir, Color ∗power);
virtual �oat getPower();

virtual Instance ∗createInstance();
};

}

Listing A.30: PointLight.cpp

#include "PointLight.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::LightSample;

using hpr::core::LightSource;

using hpr::core::ParameterList;

using hpr::core::Ray;

using hpr::core::ShadingState;

using hpr::image::Color;

using hpr::math::Point3;

using hpr::math::Vector3;

PointLight::PointLight() {

lightPoint = new Point3(0, 0, 0);

power = Color::WHITE;

}

bool PointLight::update(ParameterList ∗pl, HprAPI ∗api) {

131

lightPoint = pl−>getPoint("center", lightPoint);
power = pl−>getColor("power", power);
return true;

}

int PointLight::getNumSamples() {

return 1;

}

void PointLight::getSamples(ShadingState ∗state) {
Vector3 ∗d = Point3::sub(lightPoint, state−>getPoint(), new Vector3());

if (Vector3::dot(d, state−>getNormal()) > 0 && Vector3::dot(d, state−>getGeoNormal()) > 0) {

LightSample ∗dest = new LightSample();

// prepare shadow ray

dest−>setShadowRay(new Ray(state−>getPoint(), lightPoint));
�oat scale = 1.0f / static_cast<�oat> (4 ∗ 3.1415 ∗ lightPoint−>distanceToSquared(state−>

getPoint()));

dest−>setRadiance(power, power);
dest−>getDi�useRadiance()−>mul(scale);
dest−>getSpecularRadiance()−>mul(scale);
dest−>traceShadow(state);
state−>addSample(dest);

}

}

void PointLight::getPhoton(double randX1, double randY1, double randX2, double randY2, Point3

∗p, Vector3 ∗dir, Color ∗power) {
p−>set(lightPoint);
�oat phi = static_cast<�oat> (2 ∗ 3.1415 ∗ randX1);
�oat s = static_cast<�oat> (sqrt(randY1 ∗ (1.0f − randY1)));

dir−>x = static_cast<�oat> (cos(phi)) ∗ s;
dir−>y = static_cast<�oat> (sin(phi)) ∗ s;
dir−>z = static_cast<�oat> (1 − 2 ∗ randY1);
power−>set(this−>power);

}

�oat PointLight::getPower() {

return power.getLuminance();

}

Instance ∗PointLight::createInstance() {
return 0;

}

}

132

Listing A.31: SunSkyLight.h

#pragma once

#include "OrthoNormalBasis.h"

#include "Color.h"

#include "Vector3.h"

#include "SpectralCurve.h"

#include "RegularSpectralCurve.h"

#include "IrregularSpectralCurve.h"

#include "MathUtils.h"

#include "RGBSpace.h"

#include "ConstantSpectralCurve.h"

#include "HprAPI.h"

#include "ParameterList.h"

#include "ChromaticitySpectrum.h"

#include "XYZColor.h"

#include "Point3.h"

#include "ShadingState.h"

#include "LightSample.h"

#include "Ray.h"

#include "BoundingBox.h"

#include "Matrix4.h"

#include "IntersectionState.h"

#include "Instance.h"

#include <cmath>

namespace hpr.core.light {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::LightSample;

using hpr::core::LightSource;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::image::ChromaticitySpectrum;

using hpr::image::Color;

using hpr::image::ConstantSpectralCurve;

using hpr::image::IrregularSpectralCurve;

using hpr::image::RGBSpace;

using hpr::image::RegularSpectralCurve;

using hpr::image::SpectralCurve;

using hpr::image::XYZColor;

133

using hpr::math::BoundingBox;

using hpr::math::MathUtils;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Vector3;

class SunSkyLight : LightSource, PrimitiveList, Shader {

private:

int numSkySamples;

OrthoNormalBasis ∗basis;
bool groundExtendSky;

Color ∗groundColor;
Vector3 ∗sunDirWorld;

�oat turbidity;

Vector3 ∗sunDir;
SpectralCurve ∗sunSpectralRadiance;
Color ∗sunColor;
�oat sunTheta;

double zenithY, zenithx, zenithy;

const double perezY[5];

const double perezx[5];

const double perezy[5];

�oat jacobian;

�oat ∗colHistogram;
�oat ∗∗imageHistogram;
static const �oat solAmplitudes[38] = {165.5f, 162.3f, 211.2f, 258.8f, 258.2f, 242.3f, 267.6f, 296.6f

, 305.4f, 300.6f, 306.6f, 288.3f, 287.1f, 278.2f, 271.0f, 272.3f, 263.6f, 255.0f, 250.6f, 253.1f,

253.5f, 251.3f, 246.3f, 241.7f, 236.8f, 232.1f, 228.2f, 223.4f, 219.7f, 215.3f, 211.0f, 207.3f,

202.4f, 198.7f, 194.3f, 190.7f, 186.3f, 182.6f};

static const RegularSpectralCurve ∗solCurve = new RegularSpectralCurve(solAmplitudes, 380,

750);

static const �oat k_oWavelengths[64] = {300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350,

355, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 505, 510, 515, 520, 525, 530,

535, 540, 545, 550, 555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 605, 610, 620, 630, 640,

650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790};

static const �oat k_oAmplitudes[64] = {10.0f, 4.8f, 2.7f, 1.35f,.8f,.380f,.160f,.075f,.04f,.019f,.007f

,.0f,.003f,.003f,.004f,.006f,.008f,.009f,.012f,.014f,.017f,.021f,.025f,.03f,.035f,.04f,.045f,.048f,.057

f,.063f,.07f,.075f,.08f,.085f,.095f,.103f,.110f,.12f,.122f,.12f,.118f,.115f,.12f,.125f,.130f,.12f,.105f

,.09f,.079f,.067f,.057f,.048f,.036f,.028f,.023f,.018f,.014f,.011f,.010f,.009f,.007f,.004f,.0f,.0f};

static const �oat k_gWavelengths[4] = {759, 760, 770, 771};

static const �oat k_gAmplitudes[4] = {0, 3.0f, 0.210f, 0};

static const �oat k_waWavelengths[13] = {689, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780,

790, 800};

static const �oat k_waAmplitudes[13] = {0, 0.160e−1f, 0.240e−1f, 0.125e−1f, 0.100e+1f, 0.870f,

134

0.610e−1f, 0.100e−2f, 0.100e−4f, 0.100e−4f, 0.600e−3f, 0.175e−1f, 0.360e−1f};
static const IrregularSpectralCurve ∗k_oCurve = new IrregularSpectralCurve(k_oWavelengths,

k_oAmplitudes);

static const IrregularSpectralCurve ∗k_gCurve = new IrregularSpectralCurve(k_gWavelengths,

k_gAmplitudes);

static const IrregularSpectralCurve ∗k_waCurve = new IrregularSpectralCurve(

k_waWavelengths, k_waAmplitudes);

SpectralCurve ∗computeAttenuatedSunlight(�oat theta, �oat turbidity);
double perezFunction(double lam[], double theta, double gamma, double lvz);

void initSunSky();

Color ∗getSkyRGB(Vector3 ∗dir);
Vector3 ∗getDirection(�oat u, �oat v);

public:

SunSkyLight();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual int getNumSamples();

virtual void getPhoton(double randX1, double randY1, double randX2, double randY2, Point3

∗p, Vector3 ∗dir, Color ∗power);
virtual �oat getPower();

virtual void getSamples(ShadingState ∗state);
virtual PrimitiveList ∗getBakingPrimitives();
virtual int getNumPrimitives();

virtual �oat getPrimitiveBound(int primID, int i);

virtual BoundingBox ∗getWorldBounds(Matrix4 ∗o2w);
virtual void intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state);
virtual void prepareShadingState(ShadingState ∗state);
virtual Color ∗getRadiance(ShadingState ∗state);
virtual void scatterPhoton(ShadingState ∗state, Color ∗power);
virtual Instance ∗createInstance();

};

}

class RectangularArrays {

public:

static �oat∗∗ ReturnRectangularFloatArray(int Size1, int Size2) {
�oat∗∗ Array = new �oat∗[Size1];
for (int Array1 = 0; Array1 < Size1; Array1++) {

Array[Array1] = new �oat[Size2];

}

return Array;

}

};

Listing A.32: SunSkyLight.cpp

135

#include "SunSkyLight.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::IntersectionState;

using hpr::core::LightSample;

using hpr::core::LightSource;

using hpr::core::ParameterList;

using hpr::core::PrimitiveList;

using hpr::core::Ray;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::image::ChromaticitySpectrum;

using hpr::image::Color;

using hpr::image::ConstantSpectralCurve;

using hpr::image::IrregularSpectralCurve;

using hpr::image::RGBSpace;

using hpr::image::RegularSpectralCurve;

using hpr::image::SpectralCurve;

using hpr::image::XYZColor;

using hpr::math::BoundingBox;

using hpr::math::MathUtils;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Vector3;

SunSkyLight::SunSkyLight() {

numSkySamples = 64;

sunDirWorld = new Vector3(1, 1, 1);

turbidity = 6;

basis = OrthoNormalBasis::makeFromWV(new Vector3(0, 0, 1), new Vector3(0, 1, 0));

groundExtendSky = false;

groundColor = Color::BLACK;

initSunSky();

}

SpectralCurve ∗SunSkyLight::computeAttenuatedSunlight(�oat theta, �oat turbidity) {
�oat data[91]; // holds the sunsky curve data

const double alpha = 1.3;

const double lozone = 0.35;

const double w = 2.0;

double beta = 0.04608365822050 ∗ turbidity − 0.04586025928522;

// Relative optical mass

136

double m = 1.0 / (cos(theta) + 0.000940 ∗ pow(1.6386 − theta, −1.253));
for (int i = 0, lambda = 350; lambda <= 800; i++, lambda += 5) {

// Rayleigh scattering

double tauR = exp(−m ∗ 0.008735 ∗ pow(lambda / 1000.0, −4.08));
// Aerosol (water + dust) attenuation

double tauA = exp(−m ∗ beta ∗ pow(lambda / 1000.0, −alpha));
// Attenuation due to ozone absorption

double tauO = exp(−m ∗ k_oCurve−>sample(lambda) ∗ lozone);
// Attenuation due to mixed gases absorption

double tauG = exp(−1.41 ∗ k_gCurve−>sample(lambda) ∗ m / pow(1.0 + 118.93 ∗ k_gCurve
−>sample(lambda) ∗ m, 0.45));

// Attenuation due to water vapor absorption

double tauWA = exp(−0.2385 ∗ k_waCurve−>sample(lambda) ∗ w ∗ m / pow(1.0 + 20.07 ∗
k_waCurve−>sample(lambda) ∗ w ∗ m, 0.45));

// 100.0 comes from solAmplitudes begin in wrong units.

double amp = solCurve−>sample(lambda) ∗ tauR ∗ tauA ∗ tauO ∗ tauG ∗ tauWA;

data[i] = static_cast<�oat> (amp);

}

return new RegularSpectralCurve(data, 350, 800);

}

double SunSkyLight::perezFunction(double lam[], double theta, double gamma, double lvz) {

double den = ((1.0 + lam[0] ∗ exp(lam[1])) ∗ (1.0 + lam[2] ∗ exp(lam[3] ∗ sunTheta) + lam[4] ∗
cos(sunTheta) ∗ cos(sunTheta)));

double num = ((1.0 + lam[0] ∗ exp(lam[1] / cos(theta))) ∗ (1.0 + lam[2] ∗ exp(lam[3] ∗ gamma)
+ lam[4] ∗ cos(gamma) ∗ cos(gamma)));

return lvz ∗ num / den;

}

void SunSkyLight::initSunSky() {

// perform all the required initialization of constants

sunDirWorld−>normalize();
sunDir = basis−>untransform(sunDirWorld, new Vector3());

sunDir−>normalize();
sunTheta = static_cast<�oat> (acos(MathUtils::clamp(sunDir−>z, −1, 1)));
if (sunDir−>z > 0) {

sunSpectralRadiance = computeAttenuatedSunlight(sunTheta, turbidity);

// produce color suitable for rendering

sunColor = RGBSpace::SRGB−>convertXYZtoRGB(sunSpectralRadiance−>toXYZ()−>mul(1
e−4))−>constrainRGB();

} else {

sunSpectralRadiance = new ConstantSpectralCurve(0);

}

�oat theta2 = sunTheta ∗ sunTheta;
�oat theta3 = sunTheta ∗ theta2;

137

�oat T = turbidity;

�oat T2 = turbidity ∗ turbidity;
double chi = (4.0 / 9.0 − T / 120.0) ∗ (3.1415 − 2.0 ∗ sunTheta);
zenithY = (4.0453 ∗ T − 4.9710) ∗ tan(chi) − 0.2155 ∗ T + 2.4192;

zenithY ∗= 1000; // conversion from kcd/m^2 to cd/m^2

zenithx = (0.00165 ∗ theta3 − 0.00374 ∗ theta2 + 0.00208 ∗ sunTheta + 0)

∗ T2 + (−0.02902 ∗ theta3 + 0.06377 ∗ theta2 − 0.03202 ∗ sunTheta
+ 0.00394) ∗ T + (0.11693 ∗ theta3 − 0.21196 ∗ theta2 + 0.06052

∗ sunTheta + 0.25885);

zenithy = (0.00275 ∗ theta3 − 0.00610 ∗ theta2 + 0.00316 ∗ sunTheta + 0)

∗ T2 + (−0.04212 ∗ theta3 + 0.08970 ∗ theta2 − 0.04153 ∗ sunTheta
+ 0.00515) ∗ T + (0.15346 ∗ theta3 − 0.26756 ∗ theta2 + 0.06669

∗ sunTheta + 0.26688);

perezY[0] = 0.17872 ∗ T − 1.46303;

perezY[1] = −0.35540 ∗ T + 0.42749;

perezY[2] = −0.02266 ∗ T + 5.32505;

perezY[3] = 0.12064 ∗ T − 2.57705;

perezY[4] = −0.06696 ∗ T + 0.37027;

perezx[0] = −0.01925 ∗ T − 0.25922;

perezx[1] = −0.06651 ∗ T + 0.00081;

perezx[2] = −0.00041 ∗ T + 0.21247;

perezx[3] = −0.06409 ∗ T − 0.89887;

perezx[4] = −0.00325 ∗ T + 0.04517;

perezy[0] = −0.01669 ∗ T − 0.26078;

perezy[1] = −0.09495 ∗ T + 0.00921;

perezy[2] = −0.00792 ∗ T + 0.21023;

perezy[3] = −0.04405 ∗ T − 1.65369;

perezy[4] = −0.01092 ∗ T + 0.05291;

int w = 32, h = 32;

imageHistogram = RectangularArrays::ReturnRectangularFloatArray(w, h);

colHistogram = new �oat[w];

�oat du = 1.0f / w;

�oat dv = 1.0f / h;

for (int x = 0; x < w; x++) {

for (int y = 0; y < h; y++) {

�oat u = (x + 0.5f) ∗ du;
�oat v = (y + 0.5f) ∗ dv;
Color ∗c = getSkyRGB(getDirection(u, v));

imageHistogram[x][y] = c−>getLuminance() ∗ static_cast<�oat> (sin(3.1415 ∗ v));
if (y > 0) {

imageHistogram[x][y] += imageHistogram[x][y − 1];

138

}

}

colHistogram[x] = imageHistogram[x][h − 1];

if (x > 0) {

colHistogram[x] += colHistogram[x − 1];

}

for (int y = 0; y < h; y++) {

imageHistogram[x][y] /= imageHistogram[x][h − 1];

}

}

for (int x = 0; x < w; x++) {

colHistogram[x] /= colHistogram[w − 1];

}

jacobian = static_cast<�oat> (2 ∗ 3.1415 ∗ 3.1415) / (w ∗ h);
}

bool SunSkyLight::update(ParameterList ∗pl, HprAPI ∗api) {
Vector3 ∗up = pl−>getVector("up", 0);
Vector3 ∗east = pl−>getVector("east", 0);
if (up != 0 && east != 0) {

basis = OrthoNormalBasis::makeFromWV(up, east);

} else if (up != 0) {

basis = OrthoNormalBasis::makeFromW(up);

}

numSkySamples = pl−>getInt("samples", numSkySamples);
sunDirWorld = pl−>getVector("sundir", sunDirWorld);

turbidity = pl−>getFloat("turbidity", turbidity);
groundExtendSky = pl−>getBoolean("ground.extendsky", groundExtendSky);
groundColor = pl−>getColor("ground.color", groundColor);
// recompute model

initSunSky();

return true;

}

Color ∗SunSkyLight::getSkyRGB(Vector3 ∗dir) {
if (dir−>z < 0 && !groundExtendSky) {

return groundColor;

}

if (dir−>z < 0.001f) {

dir−>z = 0.001f;

}

dir−>normalize();
double theta = acos(MathUtils::clamp(dir−>z, −1, 1));
double gamma = acos(MathUtils::clamp(Vector3::dot(dir, sunDir), −1, 1));
double x = perezFunction(perezx, theta, gamma, zenithx);

139

double y = perezFunction(perezy, theta, gamma, zenithy);

double Y = perezFunction(perezY, theta, gamma, zenithY) ∗ 1e−4;
XYZColor ∗c = ChromaticitySpectrum::get(static_cast<�oat> (x), static_cast<�oat> (y));

�oat X = static_cast<�oat> (c−>getX() ∗ Y / c−>getY());
�oat Z = static_cast<�oat> (c−>getZ() ∗ Y / c−>getY());
return RGBSpace::SRGB−>convertXYZtoRGB(X, static_cast<�oat> (Y), Z);

}

int SunSkyLight::getNumSamples() {

return 1 + numSkySamples;

}

void SunSkyLight::getPhoton(double randX1, double randY1, double randX2, double randY2,

Point3 ∗p, Vector3 ∗dir, Color ∗power) {
// TODO: not implemented

}

�oat SunSkyLight::getPower() {

return 0;

}

void SunSkyLight::getSamples(ShadingState ∗state) {
if (Vector3::dot(sunDirWorld, state−>getGeoNormal()) > 0 && Vector3::dot(sunDirWorld, state

−>getNormal()) > 0) {

LightSample ∗dest = new LightSample();

dest−>setShadowRay(new Ray(state−>getPoint(), sunDirWorld));

dest−>getShadowRay()−>setMax(0x1.��feP+127f);

dest−>setRadiance(sunColor, sunColor);
dest−>traceShadow(state);
state−>addSample(dest);

}

int n = state−>getDi�useDepth() > 0 ? 1 : numSkySamples;

for (int i = 0; i < n; i++) {

// random o�set on unit square, we use the in�nite version of getRandom because the light

sampling is adaptive

double randX = state−>getRandom(i, 0, n);
double randY = state−>getRandom(i, 1, n);

int x = 0;

while (randX >= colHistogram[x] && x < sizeof(colHistogram) / sizeof(colHistogram[0]) − 1) {

x++;

}

�oat ∗rowHistogram = imageHistogram[x];

int y = 0;

while (randY >= rowHistogram[y] && y < sizeof(rowHistogram) / sizeof(rowHistogram[0]) −

140

1) {

y++;

}

// sample from (x, y)

�oat u = static_cast<�oat> ((x == 0) ? (randX / colHistogram[0]) : ((randX − colHistogram[

x − 1]) / (colHistogram[x] − colHistogram[x − 1])));

�oat v = static_cast<�oat> ((y == 0) ? (randY / rowHistogram[0]) : ((randY −
rowHistogram[y − 1]) / (rowHistogram[y] − rowHistogram[y − 1])));

�oat px = ((x == 0) ? colHistogram[0] : (colHistogram[x] − colHistogram[x − 1]));

�oat py = ((y == 0) ? rowHistogram[0] : (rowHistogram[y] − rowHistogram[y − 1]));

�oat su = (x + u) / sizeof(colHistogram) / sizeof(colHistogram[0]);

�oat sv = (y + v) / sizeof(rowHistogram) / sizeof(rowHistogram[0]);

�oat invP = static_cast<�oat> (sin(sv ∗ 3.1415)) ∗ jacobian / (n ∗ px ∗ py);
Vector3 ∗localDir = getDirection(su, sv);

Vector3 ∗dir = basis−>transform(localDir, new Vector3());

if (Vector3::dot(dir, state−>getGeoNormal()) > 0 && Vector3::dot(dir, state−>getNormal()) >
0) {

LightSample ∗dest = new LightSample();

dest−>setShadowRay(new Ray(state−>getPoint(), dir));
dest−>getShadowRay()−>setMax(0x1.��feP+127);

Color ∗radiance = getSkyRGB(localDir);

dest−>setRadiance(radiance, radiance);
dest−>getDi�useRadiance()−>mul(invP);
dest−>getSpecularRadiance()−>mul(invP);
dest−>traceShadow(state);
state−>addSample(dest);

}

}

}

PrimitiveList ∗SunSkyLight::getBakingPrimitives() {
return 0;

}

int SunSkyLight::getNumPrimitives() {

return 1;

}

�oat SunSkyLight::getPrimitiveBound(int primID, int i) {

return 0;

}

BoundingBox ∗SunSkyLight::getWorldBounds(Matrix4 ∗o2w) {

141

return 0;

}

void SunSkyLight::intersectPrimitive(Ray ∗r, int primID, IntersectionState ∗state) {
if (r−>getMax() == 1.0f / 0.0f) {

state−>setIntersection(0);
}

}

void SunSkyLight::prepareShadingState(ShadingState ∗state) {
if (state−>includeLights()) {
state−>setShader(this);

}

}

Color ∗SunSkyLight::getRadiance(ShadingState ∗state) {
return getSkyRGB(basis−>untransform(state−>getRay()−>getDirection()))−>constrainRGB();

}

void SunSkyLight::scatterPhoton(ShadingState ∗state, Color ∗power) {
// let photon escape

}

Vector3 ∗SunSkyLight::getDirection(�oat u, �oat v) {
Vector3 ∗dest = new Vector3();

double phi = 0, theta = 0;

theta = u ∗ 2 ∗ 3.1415;
phi = v ∗ 3.1415;
double sin_phi = sin(phi);

dest−>x = static_cast<�oat> (−sin_phi ∗ cos(theta));
dest−>y = static_cast<�oat> (cos(phi));

dest−>z = static_cast<�oat> (sin_phi ∗ sin(theta));
return dest;

}

Instance ∗SunSkyLight::createInstance() {
return Instance::createTemporary(this, 0, this);

}

}

Listing A.33: SphereLight.h

#pragma once

#include "Color.h"

#include "Point3.h"

#include "HprAPI.h"

142

#include "ParameterList.h"

#include "ShadingState.h"

#include "Vector3.h"

#include "OrthoNormalBasis.h"

#include "Solvers.h"

#include "LightSample.h"

#include "Ray.h"

#include "Instance.h"

#include "Sphere.h"

#include "Matrix4.h"

#include <cmath>

namespace hpr.core.light {

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::LightSample;

using hpr::core::LightSource;

using hpr::core::ParameterList;

using hpr::core::Ray;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::core::primitive::Sphere;

using hpr::image::Color;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Solvers;

using hpr::math::Vector3;

class SphereLight : LightSource, Shader {

private:

Color ∗radiance;
int numSamples;

Point3 ∗center;
�oat radius;

�oat r2;

public:

SphereLight();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual int getNumSamples();

virtual int getLowSamples();

virtual bool isVisible(ShadingState ∗state);
virtual void getSamples(ShadingState ∗state);

143

virtual void getPhoton(double randX1, double randY1, double randX2, double randY2, Point3

∗p, Vector3 ∗dir, Color ∗power);
virtual �oat getPower();

virtual Color ∗getRadiance(ShadingState ∗state);
virtual void scatterPhoton(ShadingState ∗state, Color ∗power);
virtual Instance ∗createInstance();

};

}

Listing A.34: SphereLight.cpp

#include "SphereLight.h"

using hpr::HprAPI;

using hpr::core::Instance;

using hpr::core::LightSample;

using hpr::core::LightSource;

using hpr::core::ParameterList;

using hpr::core::Ray;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::core::primitive::Sphere;

using hpr::image::Color;

using hpr::math::Matrix4;

using hpr::math::OrthoNormalBasis;

using hpr::math::Point3;

using hpr::math::Solvers;

using hpr::math::Vector3;

SphereLight::SphereLight() {

radiance = Color::WHITE;

numSamples = 4;

center = new Point3();

radius = r2 = 1;

}

bool SphereLight::update(ParameterList ∗pl, HprAPI ∗api) {
radiance = pl−>getColor("radiance", radiance);
numSamples = pl−>getInt("samples", numSamples);
radius = pl−>getFloat("radius", radius);
r2 = radius ∗ radius;
center = pl−>getPoint("center", center);
return true;

}

int SphereLight::getNumSamples() {

144

return numSamples;

}

int SphereLight::getLowSamples() {

return 1;

}

bool SphereLight::isVisible(ShadingState ∗state) {
return state−>getPoint()−>distanceToSquared(center) > r2;

}

void SphereLight::getSamples(ShadingState ∗state) {
if (getNumSamples() <= 0) {

return;

}

Vector3 ∗wc = Point3::sub(center, state−>getPoint(), new Vector3());

�oat l2 = wc−>lengthSquared();
if (l2 <= r2) {

return; // inside the sphere?

}

// top of the sphere as viewed from the current shading point

�oat topX = wc−>x + state−>getNormal()−>x ∗ radius;
�oat topY = wc−>y + state−>getNormal()−>y ∗ radius;
�oat topZ = wc−>z + state−>getNormal()−>z ∗ radius;
if (state−>getNormal()−>dot(topX, topY, topZ) <= 0) {

return; // top of the sphere is below the horizon

}

�oat cosThetaMax = static_cast<�oat> (sqrt(__max(0, 1 − r2 / Vector3::dot(wc, wc))));

OrthoNormalBasis ∗basis = OrthoNormalBasis::makeFromW(wc);

int samples = state−>getDi�useDepth() > 0 ? 1 : getNumSamples();

�oat scale = static_cast<�oat> (2 ∗ 3.1415 ∗ (1 − cosThetaMax));

Color ∗c = Color::mul(scale / samples, radiance);

for (int i = 0; i < samples; i++) {

// random o�set on unit square

double randX = state−>getRandom(i, 0, samples);
double randY = state−>getRandom(i, 1, samples);

// cone sampling

double cosTheta = (1 − randX) ∗ cosThetaMax + randX;

double sinTheta = sqrt(1 − cosTheta ∗ cosTheta);
double phi = randY ∗ 2 ∗ 3.1415; //Math.PI;

Vector3 ∗dir = new Vector3(static_cast<�oat> (cos(phi) ∗ sinTheta), static_cast<�oat> (sin(

phi) ∗ sinTheta), static_cast<�oat> (cosTheta));

basis−>transform(dir);

145

// check that the direction of the sample is the same as the normal

�oat cosNx = Vector3::dot(dir, state−>getNormal());
if (cosNx <= 0) {

continue;

}

�oat ocx = state−>getPoint()−>x − center−>x;
�oat ocy = state−>getPoint()−>y − center−>y;
�oat ocz = state−>getPoint()−>z − center−>z;
�oat qa = Vector3::dot(dir, dir);

�oat qb = 2 ∗ ((dir−>x ∗ ocx) + (dir−>y ∗ ocy) + (dir−>z ∗ ocz));
�oat qc = ((ocx ∗ ocx) + (ocy ∗ ocy) + (ocz ∗ ocz)) − r2;

double ∗t = Solvers::solveQuadric(qa, qb, qc);

if (t == 0) {

continue;

}

LightSample ∗dest = new LightSample();

// compute shadow ray to the sampled point

dest−>setShadowRay(new Ray(state−>getPoint(), dir));
// TODO: arbitrary bias, should handle as in other places

dest−>getShadowRay()−>setMax(static_cast<�oat> (t[0]) − 1e−3);
// prepare sample

dest−>setRadiance(c, c);
dest−>traceShadow(state);
state−>addSample(dest);

}

}

void SphereLight::getPhoton(double randX1, double randY1, double randX2, double randY2, Point3

∗p, Vector3 ∗dir, Color ∗power) {
�oat z = static_cast<�oat> (1 − 2 ∗ randX2);
�oat r = static_cast<�oat> (sqrt(__max(0, 1 − z ∗ z)));
�oat phi = static_cast<�oat> (2 ∗ 3.1415 ∗ randY2);
�oat x = r ∗ static_cast<�oat> (cos(phi));

�oat y = r ∗ static_cast<�oat> (sin(phi));

p−>x = center−>x + x ∗ radius;
p−>y = center−>y + y ∗ radius;
p−>z = center−>z + z ∗ radius;
OrthoNormalBasis ∗basis = OrthoNormalBasis::makeFromW(new Vector3(x, y, z));

phi = static_cast<�oat> (2 ∗ 3.1415 ∗ randX1);
�oat cosPhi = static_cast<�oat> (cos(phi));

�oat sinPhi = static_cast<�oat> (sin(phi));

�oat sinTheta = static_cast<�oat> (sqrt(randY1));

�oat cosTheta = static_cast<�oat> (sqrt(1 − randY1));

dir−>x = cosPhi ∗ sinTheta;

146

dir−>y = sinPhi ∗ sinTheta;
dir−>z = cosTheta;

basis−>transform(dir);
power−>set(radiance);
power−>mul(static_cast<�oat> (3.1415 ∗ 3.1415 ∗ 4 ∗ r2));

}

�oat SphereLight::getPower() {

return radiance−>copy()−>mul(static_cast<�oat> (3.1415 ∗ 3.1415 ∗ 4 ∗ r2))−>getLuminance
();

}

Color ∗SphereLight::getRadiance(ShadingState ∗state) {
if (!state−>includeLights()) {
return Color::BLACK;

}

state−>faceforward();
// emit constant radiance

return state−>isBehind() ? Color::BLACK : radiance;

}

void SphereLight::scatterPhoton(ShadingState ∗state, Color ∗power) {
// do not scatter photons

}

Instance ∗SphereLight::createInstance() {
return Instance::createTemporary(new Sphere(), Matrix4::translation(center−>x, center−>y,

center−>z)−>multiply(Matrix4::scale(radius)), this);

}

}

Listing A.35: PinholeLens.h

#pragma once

#include "HprAPI.h"

#include "ParameterList.h"

#include "Ray.h"

#include <cmath>

namespace hpr.core.camera {

using hpr::HprAPI;

using hpr::core::CameraLens;

using hpr::core::ParameterList;

using hpr::core::Ray;

147

class PinholeLens : CameraLens {

private:

�oat au, av;

�oat aspect, fov;

�oat shiftX, shiftY;

void update();

public:

PinholeLens();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual Ray ∗getRay(�oat x, �oat y, int imageWidth, int imageHeight, double lensX, double

lensY, double time);

};

}

Listing A.36: PinholeLens.cpp

#include "PinholeLens.h"

using hpr::HprAPI;

using hpr::core::CameraLens;

using hpr::core::ParameterList;

using hpr::core::Ray;

PinholeLens::PinholeLens() {

fov = 90;

aspect = 1;

shiftX = shiftY = 0;

update();

}

bool PinholeLens::update(ParameterList ∗pl, HprAPI ∗api) {
// get parameters

fov = pl−>getFloat("fov", fov);
aspect = pl−>getFloat("aspect", aspect);
shiftX = pl−>getFloat("shift.x", shiftX);
shiftY = pl−>getFloat("shift.y", shiftY);
update();

return true;

}

void PinholeLens::update() {

au = static_cast<�oat> (tan(Math::toRadians(fov ∗ 0.5f)));
av = au / aspect;

}

148

Ray ∗PinholeLens::getRay(�oat x, �oat y, int imageWidth, int imageHeight, double lensX, double

lensY, double time) {

�oat du = shiftX − au + ((2.0f ∗ au ∗ x) / (imageWidth − 1.0f));

�oat dv = shiftY − av + ((2.0f ∗ av ∗ y) / (imageHeight − 1.0f));

return new Ray(0, 0, 0, du, dv, −1);
}

}

Listing A.37: PhongShader.h

#pragma once

#include "Color.h"

#include "HprAPI.h"

#include "ParameterList.h"

#include "ShadingState.h"

#include "OrthoNormalBasis.h"

#include "Vector3.h"

#include "Ray.h"

#include <cmath>

namespace hpr.core.shader {

using hpr::HprAPI;

using hpr::core::ParameterList;

using hpr::core::Ray;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::image::Color;

using hpr::math::OrthoNormalBasis;

using hpr::math::Vector3;

class PhongShader : Shader {

private:

Color ∗di�;
Color ∗spec;
�oat power;

int numRays;

public:

PhongShader();

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual Color ∗getRadiance(ShadingState ∗state);
virtual void scatterPhoton(ShadingState ∗state, Color ∗power);

protected:

virtual Color ∗getDi�use(ShadingState ∗state);

149

};

}

Listing A.38: PhongShader.cpp

#include "PhongShader.h"

using hpr::HprAPI;

using hpr::core::ParameterList;

using hpr::core::Ray;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::image::Color;

using hpr::math::OrthoNormalBasis;

using hpr::math::Vector3;

PhongShader::PhongShader() {

di� = Color::GRAY;

spec = Color::GRAY;

power = 20;

numRays = 4;

}

bool PhongShader::update(ParameterList ∗pl, HprAPI ∗api) {
di� = pl−>getColor("di�use", di�);
spec = pl−>getColor("specular", spec);
power = pl−>getFloat("power", power);
numRays = pl−>getInt("samples", numRays);
return true;

}

Color ∗PhongShader::getDi�use(ShadingState ∗state) {
return di�;

}

Color ∗PhongShader::getRadiance(ShadingState ∗state) {
// make sure we are on the right side of the material

state−>faceforward();
// setup lighting

state−>initLightSamples();
state−>initCausticSamples();
// execute shader

return state−>di�use(getDi�use(state))−>add(state−>specularPhong(spec, power, numRays));
}

void PhongShader::scatterPhoton(ShadingState ∗state, Color ∗power) {

150

// make sure we are on the right side of the material

state−>faceforward();
Color ∗d = getDi�use(state);

state−>storePhoton(state−>getRay()−>getDirection(), power, d);
�oat avgD = d−>getAverage();
�oat avgS = spec−>getAverage();
double rnd = state−>getRandom(0, 0, 1);
if (rnd < avgD) {

// photon is scattered di�usely

power−>mul(d)−>mul(1.0f / avgD);
OrthoNormalBasis ∗onb = state−>getBasis();
double u = 2 ∗ 3.1415 ∗ rnd / avgD;

double v = state−>getRandom(0, 1, 1);
�oat s = static_cast<�oat> (sqrt(v));

�oat s1 = static_cast<�oat> (sqrt(1.0f − v));

Vector3 ∗w = new Vector3(static_cast<�oat> (cos(u)) ∗ s, static_cast<�oat> (sin(u)) ∗ s, s1);
w = onb−>transform(w, new Vector3());

state−>traceDi�usePhoton(new Ray(state−>getPoint(), w), power);
} else if (rnd < avgD + avgS) {

// photon is scattered specularly

�oat dn = 2.0f ∗ state−>getCosND();
// re�ected direction

Vector3 ∗refDir = new Vector3();

refDir−>x = (dn ∗ state−>getNormal()−>x) + state−>getRay()−>dx;
refDir−>y = (dn ∗ state−>getNormal()−>y) + state−>getRay()−>dy;
refDir−>z = (dn ∗ state−>getNormal()−>z) + state−>getRay()−>dz;
power−>mul(spec)−>mul(1.0f / avgS);
OrthoNormalBasis ∗onb = state−>getBasis();
double u = 2 ∗ 3.1415 ∗ (rnd − avgD) / avgS;

double v = state−>getRandom(0, 1, 1);
�oat s = static_cast<�oat> (pow(v, 1 / (this−>power + 1)));

�oat s1 = static_cast<�oat> (sqrt(1 − s ∗ s));
Vector3 ∗w = new Vector3(static_cast<�oat> (cos(u)) ∗ s1, static_cast<�oat> (sin(u)) ∗ s1, s

);

w = onb−>transform(w, new Vector3());

state−>traceRe�ectionPhoton(new Ray(state−>getPoint(), w), power);
}

}

}

Listing A.39: SimpleShader.h

#pragma once

#include "HprAPI.h"

#include "ParameterList.h"

#include "ShadingState.h"

151

#include "Color.h"

#include <cmath>

namespace hpr.core.shader {

using hpr::HprAPI;

using hpr::core::ParameterList;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::image::Color;

class SimpleShader : Shader {

public:

virtual bool update(ParameterList ∗pl, HprAPI ∗api);
virtual Color ∗getRadiance(ShadingState ∗state);
virtual void scatterPhoton(ShadingState ∗state, Color ∗power);

};

}

Listing A.40: SimpleShader.cpp

#include "SimpleShader.h"

using hpr::HprAPI;

using hpr::core::ParameterList;

using hpr::core::Shader;

using hpr::core::ShadingState;

using hpr::image::Color;

bool SimpleShader::update(ParameterList ∗pl, HprAPI ∗api) {
return true;

}

Color ∗SimpleShader::getRadiance(ShadingState ∗state) {
return new Color(abs(state−>getRay()−>dot(state−>getNormal())));

}

void SimpleShader::scatterPhoton(ShadingState ∗state, Color ∗power) {
}

}

152

Bibliography

Tomas Akenine-Möller and Eric Haines. A K Peters, Wellesley, MA, USA, 2nd edition,

2002. ISBN 9781568811826. (Cited on pages 21, 22, 23, 25, 27, 28, 29, 30, 32, 34,

35, 36, 37, 38, 39, 40, and 42.)

Edward Angel. Interactive Computer Graphics: A Top-Down Approach using OpenGL

(5th Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2008. ISBN 978-0-321-54943-0. (Cited on pages 16, 17, 18, 19, 20, and 21.)

Anonymous. Suzanne (blender primitive), undated. URL http://en.wikipedia.org/

wiki/Suzanne_(Blender_primitive). Accessed 16 May 2009. (Cited on page 51.)

James Arvo and David Kirk. A Survey of Ray Tracing Acceleration Techniques, pages

201�262. Academic Press Ltd., London, UK, UK, 1989. ISBN 0-12-286160-4. (Cited

on page 23.)

Ian Ashdown. Radiosity: a programmer's perspective. John Wiley & Sons, Inc., New

York, NY, USA, 1995. ISBN 0-471-30488-3. (Cited on page 26.)

Ian Ashdown. Eigenvector radiosity. Master's thesis, Department of Computer Science,

University of British Columbia, 2001. URL http://www.cs.ubc.ca/labs/imager/

th/2001/Ashdown2001/Ashdown2001.pdf. (Cited on page 28.)

Ulf Assarsson, Michael Dougherty, Michael Mounier, and Tomas Akenine-Möller. An

optimized soft shadow volume algorithm with real-time performance. In HWWS

'03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-

ics hardware, pages 33�40, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurograph-

ics Association. ISBN 1-58113-739-7. (Cited on page 33.)

ATI. Ati stream computing technical overview. Technical report,

ATI, 2008. URL http://ati.amd.com/technology/streamcomputing/

firestream-sdk-whitepaper.pdf. (Cited on page 6.)

http://en.wikipedia.org/wiki/Suzanne_(Blender_primitive)
http://en.wikipedia.org/wiki/Suzanne_(Blender_primitive)
http://www.cs.ubc.ca/labs/imager/th/2001/Ashdown2001/Ashdown2001.pdf
http://www.cs.ubc.ca/labs/imager/th/2001/Ashdown2001/Ashdown2001.pdf
http://ati.amd.com/technology/streamcomputing/firestream-sdk-whitepaper.pdf
http://ati.amd.com/technology/streamcomputing/firestream-sdk-whitepaper.pdf

153

Ayon Basumallik and Rudolf Eigenmann. Towards automatic translation of openmp

to mpi. In ICS '05: Proceedings of the 19th annual international conference on

Supercomputing, pages 189�198, New York, NY, USA, 2005. ACM. ISBN 1-59593-

167-8. doi: http://doi.acm.org/10.1145/1088149.1088174. (Cited on page 12.)

Jiri Bittner and Jan Prikryl. Exact regional visibility using line space partitioning.

Technical Report TR-186-2-01-06, Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria,

March 2001. URL http://www.cg.tuwien.ac.at/research/publications/2001/

Bittner-2001-ERV/. human contact: technical-report@cg.tuwien.ac.at. (Cited on

page 39.)

Jiri Bittner, Peter Wonka, and Michael Wimmer. Visibility preprocessing for urban

scenes using line space subdivision. In PG '01: Proceedings of the 9th Paci�c Con-

ference on Computer Graphics and Applications, page 276, Washington, DC, USA,

2001. IEEE Computer Society. ISBN 0-7695-1227-5. (Cited on page 39.)

Jim Blinn. Jim Blinn's corner: a trip down the graphics pipeline. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1996. ISBN 1-55860-387-5. (Cited on

page 36.)

Jehoshua Bruck, Danny Dolev, Ching Ho, Marcel Rosu, and Ray Strong. E�cient

message passing interface (mpi) for parallel computing on clusters of workstations.

Technical report, Ithaca, NY, USA, 1995. (Cited on page 15.)

Ian Buck. Gpu computing with nvidia cuda. In SIGGRAPH '07: ACM SIGGRAPH

2007 courses, page 6, New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/

10.1145/1281500.1281647. (Cited on pages 4 and 8.)

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for gpus: stream computing on graphics hardware.

In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, pages 777�786, New York, NY,

USA, 2004. ACM. doi: http://doi.acm.org/10.1145/1186562.1015800. (Cited on

pages 5 and 7.)

Alan Chalmers, Timothy Davis, and Erik Reinhard, editors. A. K. Peters, Ltd., Welles-

ley, MA, USA, 2002. ISBN 9-781568-811796. (Cited on page 30.)

Barbara M. Chapman. Parallel application development with the hybrid mpi+openmp

programming model. In Proceedings of the 9th European PVM/MPI Users' Group

http://www.cg.tuwien.ac.at/research/publications/2001/Bittner-2001-ERV/
http://www.cg.tuwien.ac.at/research/publications/2001/Bittner-2001-ERV/

154

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, page 13, London, UK, 2002. Springer-Verlag. ISBN 3-540-44296-0. (Cited

on pages 13 and 15.)

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Shea�er, and

Kevin Skadron. A performance study of general-purpose applications on graphics

processors using cuda. J. Parallel Distrib. Comput., 68(10):1370�1380, 2008. ISSN

0743-7315. doi: http://dx.doi.org/10.1016/j.jpdc.2008.05.014. (Cited on pages 8

and 9.)

Michael F. Cohen, John Wallace, and Pat Hanrahan. Radiosity and Realistic Image

Synthesis. Academic Press Professional, Inc., San Diego, CA, USA, 1993. ISBN

0-12-178270-0. (Cited on pages 26 and 27.)

Daniel Cohen-Or, Yiorgos L. Chrysanthou, Cláudio T. Silva, and Frédo Durand. A

survey of visibility for walkthrough applications. IEEE Transactions on Visualization

and Computer Graphics, 9(3):412�431, 2003. ISSN 1077-2626. doi: http://doi.

ieeecomputersociety.org/10.1109/TVCG.2003.1207447. (Cited on pages 33 and 34.)

Wagner T. Correa, James T. Klosowski, and Cláudio T. Silva. Out-of-core sort-�rst

parallel rendering for cluster-based tiled displays. In EGPGV '02: Proceedings of

the Fourth Eurographics Workshop on Parallel Graphics and Visualization, pages 89�

96, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association. ISBN

1-58113-579-3. (Cited on page 20.)

Thomas W. Crockett. An introduction to parallel rendering. Parallel Comput., 23

(7):819�843, 1997. ISSN 0167-8191. doi: http://dx.doi.org/10.1016/S0167-8191(97)

00028-8. (Cited on page 16.)

Timothy Davis and Erik Reinhard. Coherence in Ray Tracing, pages 153�184. A. K.

Peters, Ltd., Natick, MA, USA, 2002. ISBN 1-56881-179-9. (Cited on page 24.)

Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek. The openrt

application programming interface - towards a common api for interactive ray

tracing. In Proceedings of the 2003 OpenSG Symposium, 2003. Available at

http://www.openrt.de. (Cited on page 1.)

Martin Dimitrov, Mike Mantor, and Huiyang Zhou. Understanding software approaches

for gpgpu reliability. In GPGPU-2: Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, pages 94�104, New York, NY, USA, 2009.

ACM. ISBN 978-1-60558-517-8. doi: http://doi.acm.org/10.1145/1513895.1513907.

(Cited on pages 4, 5, 6, and 9.)

155

Alejandro Duran, Marc Gonzalez, and Julita Corbalán. Automatic thread distribution

for nested parallelism in openmp. In ICS '05: Proceedings of the 19th annual inter-

national conference on Supercomputing, pages 121�130, New York, NY, USA, 2005.

ACM. ISBN 1-59593-167-8. doi: http://doi.acm.org/10.1145/1088149.1088166.

(Cited on pages 12 and 13.)

Frédo Durand and Julie Dorsey. Interactive tone mapping. In Proceedings of the

Eurographics Workshop on Rendering Techniques 2000, pages 219�230, London, UK,

2000. Springer-Verlag. ISBN 3-211-83535-0. (Cited on page 26.)

Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Advanced Global Illu-

mination. AK Peters Ltd, 2006. ISBN 1568813074. (Cited on page 26.)

Stefan Eilemann. An analysis of parallel rendering systems, January 2007. URL http:

//www.equalizergraphics.com/documents/ParallelRenderingSystems.pdf.

(Cited on page 1.)

Stefan Eilemann and Renato Pajarola. The equalizer parallel rendering framework.

Technical Report IFI-2007.06, Department of Informatics, Unviersity of Zürich, 2007.

(Cited on page 1.)

Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. Equalizer: a scalable par-

allel rendering framework. In SIGGRAPH Asia '08: ACM SIGGRAPH ASIA 2008

courses, pages 1�14, New York, NY, USA, 2008. ACM. doi: http://doi.acm.org/10.

1145/1508044.1508088. (Cited on page 1.)

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,

Je�rey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timo-

thy S. Woodall. Open mpi: Goals, concept, and design of a next generation mpi

implementation. In Proceedings, 11th European PVM/MPI Users' Group Meeting,

pages 97�104, Budapest, Hungary, September 2004. (Cited on page 14.)

Markus Giegl and Michael Wimmer. Unpopping: Solving the image-space blend prob-

lem for smooth discrete lod transitions. Computer Graphics Forum, 26(1):46�49,

March 2007. ISSN 0167-7055. URL http://www.cg.tuwien.ac.at/research/

publications/2007/GIEGL-2007-UNP/. (Cited on page 41.)

Andrew S. Glassner, editor. Academic Press Ltd., London, UK, UK, 1989. ISBN

0-12-286160-4. (Cited on page 23.)

http://www.equalizergraphics.com/documents/ParallelRenderingSystems.pdf
http://www.equalizergraphics.com/documents/ParallelRenderingSystems.pdf
http://www.cg.tuwien.ac.at/research/publications/2007/GIEGL-2007-UNP/
http://www.cg.tuwien.ac.at/research/publications/2007/GIEGL-2007-UNP/

156

Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo Ropinski. Advanced

illumination techniques for gpu volume raycasting. In SIGGRAPH Asia '08: ACM

SIGGRAPH ASIA 2008 courses, pages 1�166, New York, NY, USA, 2008. ACM.

doi: http://doi.acm.org/10.1145/1508044.1508045. (Cited on page 25.)

Ziyad S. Hakura and John M. Snyder. Realistic re�ections and refractions on graphics

hardware with hybrid rendering and layered environment maps. In Proceedings of

the 12th Eurographics Workshop on Rendering Techniques, pages 289�300, London,

UK, 2001. Springer-Verlag. ISBN 3-211-83709-4. (Cited on page 26.)

Jason Hale. Workshop: introduction to parallel programming in mpi and c. InMSCCC

'04: Proceedings of the 2nd annual conference on Mid-south college computing, pages

2�2, Little Rock, Arkansas, United States, 2004. Mid-South College Computing Con-

ference. (Cited on page 14.)

Pat Hanrahan. A Survey of Ray-surface Intersection Algorithms, pages 79�119. Aca-

demic Press Ltd., London, UK, UK, 1989. ISBN 0-12-286160-4. (Cited on pages 22

and 32.)

Mark Harris. Cuda: performance tips and tricks. In SIGGRAPH '07: ACM SIG-

GRAPH 2007 courses, page 9, New York, NY, USA, 2007. ACM. doi: http:

//doi.acm.org/10.1145/1281500.1281650. (Cited on pages 5, 8, and 9.)

Mark J Harris and Anselmo Lastra. Real-time cloud rendering. Technical report,

Chapel Hill, NC, USA, 2001. (Cited on page 26.)

Herman J. Haverkort. Results on Geometric Networks and Data Structures. PhD

thesis, Utrecht University, Netherlands, 2004. URL http://www.library.uu.nl/

digiarchief/dip/diss/2004-0506-101707/c3.pdf. (Cited on page 31.)

Paul S. Heckbert. A Minimal Ray Tracer, pages 375�381. Academic Press Professional,

Inc., San Diego, CA, USA, 1994. ISBN 0-12-336155-9. URL www.graphicsgems.org.

(Cited on page 22.)

Mike Houston. Stream computing. In SIGGRAPH '08: ACM SIGGRAPH 2008

classes, pages 1�37, New York, NY, USA, 2008. ACM. doi: http://doi.acm.org/

10.1145/1401132.1401151. (Cited on page 4.)

Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll, Matthew Everett, and

Pat Hanrahan. Wiregl: A scalable graphics system for clusters. In SIGGRAPH '01:

Proceedings of the 28th annual conference on Computer graphics and interactive

http://www.library.uu.nl/digiarchief/dip/diss/2004-0506-101707/c3.pdf
http://www.library.uu.nl/digiarchief/dip/diss/2004-0506-101707/c3.pdf
www.graphicsgems.org

157

techniques, pages 129�140, New York, NY, USA, 2001. ACM. ISBN 1-58113-374-X.

doi: http://doi.acm.org/10.1145/383259.383272. (Cited on pages 1 and 16.)

Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirch-

ner, and James T. Klosowski. Chromium: a stream-processing framework for in-

teractive rendering on clusters. In SIGGRAPH '02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 693�702, New

York, NY, USA, 2002. ACM. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.

1145/566570.566639. (Cited on page 1.)

Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D.

Kirchner, and James T. Klosowski. Chromium: a stream-processing framework

for interactive rendering on clusters. In SIGGRAPH Asia '08: ACM SIGGRAPH

ASIA 2008 courses, pages 1�10, New York, NY, USA, 2008. ACM. doi: http:

//doi.acm.org/10.1145/1508044.1508087. (Cited on page 1.)

Henrik Wann Jensen. Realistic image synthesis using photon mapping. A. K. Peters,

Ltd., Natick, MA, USA, 2001. ISBN 1-56881-147-0. (Cited on page 26.)

Woo-Chul Jeun, Yang-Suk Kee, Soonhoi Ha, and Changdon Kee. Overcoming per-

formance bottlenecks in using openmp on smp clusters. Parallel Comput., 34(10):

570�592, 2008. ISSN 0167-8191. doi: http://dx.doi.org/10.1016/j.parco.2008.06.002.

(Cited on page 13.)

James T. Kajiya. The rendering equation. In SIGGRAPH '86: Proceedings of the 13th

annual conference on Computer graphics and interactive techniques, pages 143�150,

New York, NY, USA, 1986. ACM. ISBN 0-89791-196-2. doi: http://doi.acm.org/10.

1145/15922.15902. (Cited on pages 22 and 23.)

George M. Karniadakis and Robert M. Kirby. Parallel Scienti�c Computing in

C++ and MPI. Cambridge University Press, New York, NY, USA, 2003. ISBN

0521817544. (Cited on page 15.)

Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, Peter Mattson,

Jinyung Namkoong, John D. Owens, and Brian Towles. Imagine: Signal and

image processing using streams. In Hot Chips, number 12, 2000. URL http:

//cva.stanford.edu/imagine. (Cited on page 3.)

The OpenCL Speci�cation. Khronos Group, February 2009. URL http://www.

khronos.org/registry/cl/specs/opencl-1.0.33.pdf. (Cited on page 10.)

http://cva.stanford.edu/imagine
http://cva.stanford.edu/imagine
http://www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf

158

David Kirk. Nvidia cuda software and gpu parallel computing architecture. In ISMM

'07: Proceedings of the 6th international symposium on Memory management, pages

103�104, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-893-0. doi: http:

//doi.acm.org/10.1145/1296907.1296909. (Cited on pages 7 and 8.)

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. Hardware-accelerated

from-region visibility using a dual ray space. In Proceedings of the 12th Eurographics

Workshop on Rendering Techniques, pages 205�216, London, UK, 2001. Springer-

Verlag. ISBN 3-211-83709-4. (Cited on page 39.)

Géraud Krawezik. Performance comparison of mpi and three openmp programming

styles on shared memory multiprocessors. In SPAA '03: Proceedings of the �fteenth

annual ACM symposium on Parallel algorithms and architectures, pages 118�127,

New York, NY, USA, 2003. ACM. ISBN 1-58113-661-7. doi: http://doi.acm.org/10.

1145/777412.777433. (Cited on page 12.)

Jaroslav K°ivánek. Global illumination with monte carlo ray tracing. In SIGGRAPH

'08: ACM SIGGRAPH 2008 classes, pages 1�25, New York, NY, USA, 2008. ACM.

doi: http://doi.acm.org/10.1145/1401132.1401214. (Cited on pages 21, 23, and 25.)

Calvin Lin and Lawrence Snyder. Addison Wesley, Boston, MA, USA, 2009. ISBN

9780321549426. (Cited on page 11.)

Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-programmable vertex

engine. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 149�158, New York, NY, USA, 2001. ACM.

ISBN 1-58113-374-X. doi: http://doi.acm.org/10.1145/383259.383274. (Cited on

page 23.)

Dani Lischinski, Zeev Farbman, Matt Uyttendaele, and Richard Szeliski. Interactive

local adjustment of tonal values. In SIGGRAPH '06: ACM SIGGRAPH 2006 Pa-

pers, pages 646�653, New York, NY, USA, 2006. ACM. ISBN 1-59593-364-6. doi:

http://doi.acm.org/10.1145/1179352.1141936. (Cited on page 26.)

Marco Lohse, Florian Winter, Michael Repplinger, and Philipp Slusallek. Network-

integrated multimedia middleware (nmm). In MM '08: Proceeding of the 16th ACM

international conference on Multimedia, pages 1081�1084, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-303-7. doi: http://doi.acm.org/10.1145/1459359.

1459576. (Cited on page 1.)

David Luebke and Chris Georges. Portals and mirrors: simple, fast evaluation of po-

tentially visible sets. In SI3D '95: Proceedings of the 1995 symposium on Interactive

159

3D graphics, pages 105��., New York, NY, USA, 1995. ACM. ISBN 0-89791-736-7.

doi: http://doi.acm.org/10.1145/199404.199422. (Cited on page 37.)

David Luebke, Jonathan Cohen, Rob Heubner, Martin Reddy, Amitabh Varshney,

and Benjamin Watson. Advanced issues in level of detail. In Course 14 notes at

SIGGRAPH 2002, 2002. (Cited on page 41.)

Timothy G. Mattson. How good is openmp. Sci. Program., 11(2):81�93, 2003. ISSN

1058-9244. (Cited on pages 12 and 13.)

Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting classi�-

cation of parallel rendering. IEEE Comput. Graph. Appl., 14(4):23�32, 1994. ISSN

0272-1716. doi: http://dx.doi.org/10.1109/38.291528. (Cited on page 17.)

Matthias S. Müller. An openmp compiler benchmark. Sci. Program., 11(2):125�131,

2003. ISSN 1058-9244. (Cited on page 14.)

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-

gramming with cuda. In SIGGRAPH '08: ACM SIGGRAPH 2008 classes, pages

1�14, New York, NY, USA, 2008. ACM. doi: http://doi.acm.org/10.1145/1401132.

1401152. (Cited on pages 7 and 8.)

Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D. Poly-

chronopoulos, Jesús Labarta, and Eduard Ayguadé. A transparent runtime data

distribution engine for openmp. Sci. Program., 8(3):143�162, 2000. ISSN 1058-9244.

(Cited on page 12.)

Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian Smits, and

Charles Hansen. Interactive ray tracing. In SIGGRAPH '05: ACM SIGGRAPH

2005 Courses, page 12, New York, NY, USA, 2005. ACM. doi: http://doi.acm.org/

10.1145/1198555.1198751. (Cited on page 23.)

Haoyu Peng, Hua Xiong, and Jiaoying Shi. Parallel-sg: Research of parallel graphics

rendering system on pc-cluster. In VRCIA '06: Proceedings of the 2006 ACM inter-

national conference on Virtual reality continuum and its applications, pages 27�33,

New York, NY, USA, 2006. ACM. ISBN 1-59593-324-7. doi: http://doi.acm.org/10.

1145/1128923.1128929. (Cited on page 16.)

Timothy J. Purcell. Parallel Ray Tracing on a Chip, pages 329�336. A. K. Peters,

Ltd., Natick, MA, USA, 2002. ISBN 1-56881-179-9. (Cited on page 24.)

Timothy J. Purcell. Ray tracing on a stream processor. PhD thesis, Stanford, CA,

USA, 2004. Adviser-Hanrahan� Patrick M. (Cited on pages 3 and 4.)

160

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing

on programmable graphics hardware. In SIGGRAPH '02: Proceedings of the 29th

annual conference on Computer graphics and interactive techniques, pages 703�712,

New York, NY, USA, 2002. ACM. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.

1145/566570.566640. (Cited on page 24.)

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing

on programmable graphics hardware. In SIGGRAPH '05: ACM SIGGRAPH 2005

Courses, page 268, New York, NY, USA, 2005. ACM. doi: http://doi.acm.org/10.

1145/1198555.1198798. (Cited on page 24.)

Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill

Education Group, 2003. ISBN 0071232656. (Cited on page 14.)

Erik Reinhard. Parallel Global Illumination Algorithms, pages 89�132. A. K. Peters,

Ltd., Natick, MA, USA, 2002. ISBN 1-56881-179-9. (Cited on page 25.)

Michael Repplinger, Florian Winter, Marco Lohse, and Philipp Slusallek. Parallel

bindings in distributed multimedia systems. In ICDCSW '05: Proceedings of the

Seventh International Workshop on Multimedia Network Systems and Applications,

pages 714�720, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-

2328-5-07. doi: http://dx.doi.org/10.1109/ICDCSW.2005.107. (Cited on page 2.)

S. Richard, B. Miegemolle, J. M. Garcia, and T. Monteil. Performance of mpi parallel

applications. In ICSEA '06: Proceedings of the International Conference on Software

Engineering Advances, page 59, Washington, DC, USA, 2006. IEEE Computer So-

ciety. ISBN 0-7695-2703-5. doi: http://dx.doi.org/10.1109/ICSEA.2006.58. (Cited

on page 15.)

Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk, and Wen mei W. Hwu. Optimization principles and application performance

evaluation of a multithreaded gpu using cuda. In PPoPP '08: Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,

pages 73�82, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-7. doi: http:

//doi.acm.org/10.1145/1345206.1345220. (Cited on pages 7 and 9.)

Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh. Hybrid sort-

�rst and sort-last parallel rendering with a cluster of pcs. In HWWS '00: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages

97�108, New York, NY, USA, 2000. ACM. ISBN 1-58113-257-3. doi: http://doi.

acm.org/10.1145/346876.348237. (Cited on page 16.)

161

Hanan Samet. The Morgan Kaufmann Series in Computer Graphics and Geometric

Modeling. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005. ISBN

0123694469. (Cited on page 30.)

Hanan Samet. Spatital data structures. In SIGGRAPH '07: ACM SIGGRAPH 2007

courses, page 1, New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/10.1145/

1281500.1281632. (Cited on page 30.)

Hanan Samet. Sorting in space: multidimensional, spatial, and metric data structures

for computer graphics applications. In SIGGRAPH '08: ACM SIGGRAPH 2008

classes, pages 1�106, New York, NY, USA, 2008. ACM. doi: http://doi.acm.org/10.

1145/1401132.1401249. (Cited on page 31.)

Vincent Scheib. Introduction to demos & the demo scene, February 2001. URL http:

//www.gamasutra.com/features/20010216/scheib_01.htm. (Cited on page 24.)

Robert A. Schumacker, Brigitta Brand, Maurice G. Gilliland, and Werner H. Sharp.

Study for applying computer-generated images to visual simulation. Techni-

cal Report AD0700375, Air Force Human Resources Laboratory, Training Re-

search Division, September 1969. URL http://oai.dtic.mil/oai/oai?verb=

getRecord&metadataPrefix=html&identifier=AD0700375. (Cited on page 32.)

Peter Shirley and R. Keith Morley. Realistic Ray Tracing. A. K. Peters, Ltd., Natick,

MA, USA, 2003. ISBN 1568811985. (Cited on page 23.)

Leon A. Shirman and Salim S. Abi-Ezzi. The cone of normals technique for fast

processing of curved patches. Computer Graphics Forum, Eurographics, 12(3):261�

272, 1993. (Cited on page 36.)

Francois X. Sillion and Claude Puech. Radiosity and Global Illumination. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1994. ISBN 1558602771. (Cited

on pages 26 and 27.)

Philipp Slusallek, Peter Shirley, William R. Mark, Gordon Stoll, and Ingo Wald. Ren-

dering massive models. In SIGGRAPH '05: ACM SIGGRAPH 2005 Courses,

page 16, New York, NY, USA, 2005. ACM. doi: http://doi.acm.org/10.1145/

1198555.1198755. (Cited on page 25.)

Lorna Smith and Mark Bull. Development of mixed mode mpi / openmp applications.

Sci. Program., 9(2,3):83�98, 2001. ISSN 1058-9244. (Cited on pages 13 and 14.)

Brian Smits. E�ciency issues for ray tracing. J. Graph. Tools, 3(2):1�14, 1998. ISSN

1086-7651. (Cited on page 23.)

http://www.gamasutra.com/features/20010216/scheib_01.htm
http://www.gamasutra.com/features/20010216/scheib_01.htm
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0700375
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0700375

162

Scott Spetka, Haris Hadzimujic, Stephen Peek, and Christopher Flynn. High pro-

ductivity languages for parallel programming compared to mpi. In HPCMP-UGC

'08: Proceedings of the 2008 DoD HPCMP Users Group Conference, pages 413�417,

Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3515-9. doi:

http://dx.doi.org/10.1109/DoD.HPCMP.UGC.2008.41. (Cited on page 15.)

Marc Stamminger, Jörg Haber, Hartmut Schirmacher, and Hans-Peter Seidel. Walk-

throughs with corrective texturing. In Proceedings of the Eurographics Workshop

on Rendering Techniques 2000, pages 377�388, London, UK, 2000. Springer-Verlag.

ISBN 3-211-83535-0. (Cited on page 26.)

John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen mei W. Hwu, and

Klaus Schulten. High performance computation and interactive display of molecular

orbitals on gpus and multi-core cpus. In GPGPU-2: Proceedings of 2nd Workshop on

General Purpose Processing on Graphics Processing Units, pages 9�18, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-517-8. doi: http://doi.acm.org/10.1145/

1513895.1513897. (Cited on pages 5 and 9.)

Wolfgang Stürzlinger and Rui Bastos. Interactive rendering of globally illuminated

glossy scenes. In Proceedings of the Eurographics Workshop on Rendering Techniques

'97, pages 93�102, London, UK, 1997. Springer-Verlag. ISBN 3-211-83001-4. (Cited

on page 26.)

Seth J. Teller. Visibility Computations in Densely Occluded Polyhedral Environments.

PhD thesis, Department of Computer Science, University of Berkeley, 1992. (Cited

on page 37.)

Seth J. Teller and Pat Hanrahan. Global visibility algorithms for illumination com-

putations. In SIGGRAPH '93: Proceedings of the 20th annual conference on Com-

puter graphics and interactive techniques, pages 239�246, New York, NY, USA, 1993.

ACM. ISBN 0-89791-601-8. doi: http://doi.acm.org/10.1145/166117.166148. (Cited

on page 37.)

Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walk-

throughs. In SIGGRAPH '91: Proceedings of the 18th annual conference on Com-

puter graphics and interactive techniques, pages 61�70, New York, NY, USA, 1991.

ACM. ISBN 0-89791-436-8. doi: http://doi.acm.org/10.1145/122718.122725. (Cited

on page 37.)

Ingo Wald and Philipp Slusallek. State of the art in interactive ray tracing. In D. Duke

163

and R. Scopigno, editors, STAR Proceedings of Eurographics 2001, Manchester, UK,

September 2001. Eurographics Association. (Cited on page 24.)

Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. In-

teractive rendering with coherent ray tracing. In Theresa-Marie Rhyne

Alan Chalmers, editor, Computer Graphics Forum (Proceedings of EURO-

GRAPHICS 2001), volume 20, pages 153�164. Blackwell Publishers, Ox-

ford, 2001a. URL http://graphics.cs.uni-sb.de/Publications/2001/

InteractiveRenderingWithCoherentRayTracing.pdf. (Cited on page 24.)

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive dis-

tributed ray tracing of highly complex models. In Proceedings of the 12th Euro-

graphics Workshop on Rendering Techniques, pages 277�288, London, UK, 2001b.

Springer-Verlag. ISBN 3-211-83709-4. URL http://graphics.cs.uni-sb.de/

Publications/2001/egrw2001.pdf. (Cited on page 24.)

Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive global illumination

in complex and highly occluded environments. In EGRW '03: Proceedings of the

14th Eurographics workshop on Rendering, pages 74�81, Aire-la-Ville, Switzerland,

Switzerland, 2003. Eurographics Association. ISBN 3-905673-03-7. (Cited on

page 25.)

Ingo Wald, Heiko Friedrich, Gerd Marmitt, and Hans-Peter Seidel. Faster isosurface ray

tracing using implicit kd-trees. IEEE Transactions on Visualization and Computer

Graphics, 11(5):562�572, 2005. ISSN 1077-2626. doi: http://dx.doi.org/10.1109/

TVCG.2005.79. Member-Slusallek� Philipp. (Cited on page 23.)

Greg Ward. Irradiance caching algorithm. In SIGGRAPH '07: ACM SIGGRAPH

2007 courses, page 3, New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/

10.1145/1281500.1281619. (Cited on page 27.)

Turner Whitted. An improved illumination model for shaded display. Commun. ACM,

23(6):343�349, 1980. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/358876.

358882. (Cited on pages 21, 22, and 23.)

Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-kd trees for hardware acceler-

ated ray tracing of dynamic scenes. In GH '06: Proceedings of the 21st ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 67�77, New

York, NY, USA, 2006. ACM. ISBN 3-905673-37-1. doi: http://doi.acm.org/10.

1145/1283900.1283912. (Cited on page 23.)

http://graphics.cs.uni-sb.de/Publications/2001/InteractiveRenderingWithCoherentRayTracing.pdf
http://graphics.cs.uni-sb.de/Publications/2001/InteractiveRenderingWithCoherentRayTracing.pdf
http://graphics.cs.uni-sb.de/Publications/2001/egrw2001.pdf
http://graphics.cs.uni-sb.de/Publications/2001/egrw2001.pdf

164

Hansong Zhang, Dinesh Manocha, Tom Hudson, and III Kenneth E. Ho�. Visibility

culling using hierarchical occlusion maps. In SIGGRAPH '97: Proceedings of the

24th annual conference on Computer graphics and interactive techniques, pages 77�

88, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. ISBN

0-89791-896-7. doi: http://doi.acm.org/10.1145/258734.258781. (Cited on page 39.)

Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An ambient light illumination

model. In George Drettakis and Nelson L. Max, editors, Rendering Techniques,

pages 45�56. Springer, 1998. ISBN 3-211-83213-0. (Cited on page 24.)

165

Index

ACML, 6

alpha blending, 41

alpha value, 41

AMD, 4

AMD Stream SDK, 5

ATI, 5

ATI Stream Computing, 6

ATI Stream processors, 6

Radeon, 4

Bezier surface, 40

binary-tree compositing, 19

bounding volume, 34, 35, 37, 39

bounding volume hierarchy, 24, 30, 31,

34

BRDF, 26

Brook, 4

Brook kernel, 5

Brook+, 6, 46

BrookGPU, 4, 5

BSP tree, 30, 34, 35

BSP-tree, 31, 32

Bullet Physics, 7

C, 4, 5, 7, 8, 12, 15

ANSI C, 15

C++, 12, 15

ANSI C++, 15

CAL, 6

Cell Broadband Engine, 10

Cell Processor, 9

Chromium, 1

coherence, ii, iii, 22, 24

collision detection, 30

color bu�er, 38

CPU, ii, 5, 9, 17, 18, 23, 24, 33, 34, 36, 46,

58

multi-core CPU, 7, 8

multi-CPU, 43, 44, 46, 47, 58

CUDA, 7, 8

culling, ii, iii, 30, 32, 33

backface culling, 33, 36

cell-based occlusion culling, 38

clustered backface culling, 36

detail culling, 37

frontface culling, 36

occlusion culling, 33, 38

point-based occlusion culling, 38

screen-size culling, 37

view frustum culling, 33�35, 39

visibility culling, 33

data decomposition, ii, iii

DirectX, 5, 7, 36

distributed memory, 15

distributed shared memory, 14

embarrassingly parallel, 24

environment map, 23

Equalizer, 1

Exact Visible Set, 33

Fortran, 7, 12, 15

ANSI Fortran, 15

Fortran 90, 15

166

Fortran-77, 15

frame bu�er, 41

gigabit ethernet, 43, 52

global illumination, 21, 22, 24, 26, 28, 44

Gouraud shading, 23

GPGPU, 5, 8

GPU, ii, iii, 4�9, 17, 18, 22, 41

CUDA GPU, 7

multi-core GPU, 7

multi-GPU, 43, 46, 58

NVIDIA GPU, 7

grid computing, 14

horizon mapping, 28

HPR, 43�47, 52, 58

IEEE 802.3ab, 52

IEEE 802.3ad, 52

Imagine, 3, 4

impostor, 23

Intel, 4

Java, 7

KernelC, 4

Khronos Group, 9

level of detail, ii, iii, 37, 40, 41

level of detail switching, 41

link aggregation control protocol, 52

Linux, 5, 8

LIS, 15

load balancing, ii, iii

MacOS X, 5, 8

Microsoft Windows, 5, 8, 12

Monte Carlo

Monte Carlo method, 21

Monte Carlo ray tracing, 23, 44

Moore's law, 7

MPI, 12, 14, 15

MPI-1, 14, 15

MPI-2, 14, 15

multi-core, ii, 7, 17, 43, 44, 46, 58

multi-thread, 46

multithreading, 12

NMM, 1, 2

NUMA, 14

NVIDIA, 5, 7�9

GeForce, 7

GeForce FX, 4

Quadro, 7

Tesla, 7, 8

occluder, 37, 39, 40

occluder fusion, 39

occlusion culling, 40

octree, 30, 34, 35

OpenCL, 7, 9, 10

OpenGL, 1, 5, 10, 19, 36

OpenGL ES, 10

OpenMP, 12�15, 46

OpenMPI, 44, 46

OpenRT, 1

OSI, 15

Painter's algorithm, 32

parallel

parallel computing, 7

parallelism, ii, 11, 16�18

coarse-grained data parallelism, 8

�ne-grained data parallelism, 8

Instruction Level Parallelism, 12

nested parallelism, 13

task parallelism, 8

thread parallelism, 8

photon mapping, 44

PhysX, 7

167

portability, 14

Potentially Visible Set, 33

Pthreads, 15

Python, 7

radiosity, 24�26, 28

eigenvector radiosity, 28

meshed radiosity, 26

rasterization, ii, iii

ray casting, 21, 25

ray space, 39

ray tracing, ii, 4, 21�26, 30, 44, 46, 47

interactive ray tracing, 24

Monte Carlo raytracing, 23, 44

real-time ray tracing, ii, iii

real-time, 23�26, 30, 43

real-time ray tracing, ii, iii

real-time rendering, ii, 21, 24, 25

rendering, ii, iii

real-time rendering, ii

scalability, ii, iii, 14

scanline, 21

scene graph, 37

shared memory, 12, 14, 15, 44

distributed shared memory, 14

explicit shared memory, 14

SIMD, 6, 7, 9, 24

skybox, 23

sort-�rst, 1, 17, 20

sort-last, 1, 17, 18, 20

sort-middle, 17�19

space subdivision, 30

spatial data structure, 30, 34

StreamC, 4

subdivision surface, 40

task granularity, ii, iii

TCP, 15

Unix, 12

WireGL, 1

z-bu�er, 19, 23, 24, 31, 33, 38, 42

	Related Work
	Stream Computing
	General Purpose Computing on Graphics Processing Units (GPGPU)
	Brook for GPU
	ATI Stream Computing
	NVIDIA CUDA
	OpenCL

	Parallel Computing
	Shared Memory Parallel Programming
	Distributed Memory Parallel Programming

	Parallel Rendering Algorithms
	Rasterisation
	Sort-Middle Rendering
	Sort-Last Rendering
	Sort-First Rendering

	Ray Tracing
	Radiosity

	Acceleration Algorithms & Data Structures
	Spatial Data Structures
	Bounding Volume Hierarchies (BVHs)
	Binary Search Partitioning (BSP) Trees

	Culling
	View Frustum Culling
	Backface Culling
	Detail Culling
	Portal Culling
	Occlusion Culling

	Level of Detail

	Hybrid Parallel Renderer (HPR)
	What is HPR
	System Design
	Processing Nodes

	Implementation
	Scene Distribution
	Distributed Ray Tracing
	Structure of the Source Code
	Performance Analysis

	Conclusions
	Program Source Code
	Bibliography
	Index

