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ABSTRACT 

In this thesis, electromagnetic scattered field analysis of two dimensional non-penetrable 

wedge geometry have been  investigated with both high frequency asymptotic techniques 

(HFA) and finite difference time domain (FDTD) method. 

Among HFA techniques, Physical optics (PO), Physical theory of diffraction (PTD), 

Unified theory of diffraction (UTD), Parabolic equation (PE), Exact series and Exact 

integral methods are applied to inspect electromagnetic scattering behavior of two 

dimensional non-penetrable wedge geometry analytically. 

As a numerical technique, finite difference time domain (FDTD) method and the important 

aspects in its implementation are explained briefly. Also, absorbing boundary conditions 

and modeling issues are investigated. Meshing algorithm is developed to reduce staircase 

modeling errors which is formed by the application of standard Yee algorithm. In order to 

show the qualification of FDTD method, some examples are presented with HFA results.  

A novel Matlab based softwares WEDGE GUI and WEDGE FDTD GUI are also 

presented with thesis. The former was developed to analyze two dimensional perfect 

electric conductor (PEC) wedge geometries with various HFA methods. The latter was 

developed to analyze same geometry with finite difference time domain (FDTD) method. 

Source codes of these programs can be found in the CD given with this thesis. 
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ÖZET 

Bu tezde, kusursuz iletken yapıdaki üçgensel objelerden oluşan elektromanyetik saçılım 

alanları, yüksek frekans asimtotik teknikleri ve zaman domeninde sonlu farklar yöntemi ile 

incelenmiştir. 

Yüksek frekans asimtotik tekniklerden, fiziksel optik, fiziksel difraksiyon teorisi, 

birleştirilmiş difraksiyon teorisi, parabolik denklem, seri ve integral metotları bu tip 

problemleri analitik olarak analiz etmek için uygulanmıştır. 

Bir numerik teknik olan zaman domeninde sonlu farklar metodu  ve bu metodun 

uygulanması da bu tez içerisinde detaylı bir şekilde anlatılmıştır. Yutucu sınır koşulları ve 

modelleme sorunları da ayrıca incelenmiştir. Standart Yee algorithmasının 

uygulanmasından dolayı oluşan modelleme hatalarını düşürmek için, hücreleme 

algorithması geliştirilmiştir. Zaman domeninde sonlu farklar yönetiminin sonunçlarının 

doğruluğunu göstermek için birkaç örnek yüksek frekans asimtotik yöntemlerinin sonuçları 

ile birlikte verilmiştir. 

Bu tez kapsamında, WEDGE GUI ve WEDGE FDTD GUI adında iki yeni matlab tabanlı 

program sunulmuştur. WEDGE GUI, 2 boyutlu kusursuz iletken üçgensel objeleri çeşitli 

yüksek frekans asimtotik teknikler ile kolay bir şekilde analiz etmek için geliştirilmiştir. 

WEDGE FDTD GUI ise aynı geometriyi zaman domeninde sonlu farklar yöntemi ile 

analiz etmek için tasarlanmıştır. Bu programların kaynak kodları tez ile birlikte verilen CD 

içerisinde bulunabilir. 
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1 INTRODUCTION 

  

The phenomena of electricity and magnetism were first noticed around 600 B.C. in ancient 

Greece. A piece of amber rubbed with a cloth was found to attract light objects, and pieces 

of a magnetic core were found to attract small iron objects. They are examples of static 

electric and magnetic fields respectively. In 19
th

 century, experiments made by Faraday 

and Ampere showed that changing magnetic field induces a changing electric field and 

vice-versa—the two are linked. These changing fields form electromagnetic waves which 

propagate in all environments. Light, microwaves, radio and TV signals are all kinds of 

electromagnetic waves. 

When the electromagnetic wave hits a material object, time varying polarization currents 

occur. This time-varying polarization currents create an additional electromagnetic field 

which is known as scattered field and propagates into both material and its surrounding 

space. Scattered fields are used to identify objects at a distance. For this reason, they are 

important for military, biomedical, aviation and mining applications. Extensive study of 

scattered fields leads to many discoveries in our lives such as stealth aircrafts, cancer 

detection systems.  Scattered field which encloses reflected field, refracted field and 

diffracted field, can be analyzed via using analytical techniques such as geometric 

optics(GO), physical theory of diffraction(PTD), physical optics(PO), exact series and 

exact integral, for regular geometries. 

On the other hand, the exact analytical solutions for scattering, radiation and wave guiding 

problems are rarely available or hard to obtain, for the irregular geometries which are 

found in actual devices. Several numerical techniques such as FDTD, Method of Moments, 

Finite Element Method, are emerged to overcome these difficulties.  Improvement of the 

computer storage and increment of processor speeds enables us to use such numerical 

techniques more efficiently and accurately to obtain solutions of Maxwell’s equations.  

Through the numerical methods, FDTD is easy to use and powerful method for obtaining 

numerical solutions of Maxwell’s equations in time domain as well as frequency domain 

via fast Fourier Transform (FFT). FDTD is based on solving differential form of 
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Maxwell’s equations via central differences. Because of being time domain method, it 

makes possible to observe electromagnetic wave step by step.  

1.1 Outline of the Thesis 

This thesis is organized as follows: In Chapter 2, we review the analytical methods used 

for analyzing scattered fields for non-penetrable wedge geometry [1]. After introducing the 

general background, we introduce WEDGE GUI which is a novel matlab based tool 

developed to compare different analytical results obtained from plane wave or line source 

illumination of wedge type obstacle.  

Chapter 3 gives detailed explanation about the application of FDTD method to obtain 

numerical solutions of Maxwell’s equations for non-penetrable wedge type geometry. 

Modeling issues are also addressed in this chapter and alternative schemes are discussed to 

reduce numerical errors. At the end of the chapter, we introduce another novel matlab 

based tool WEDGE FDTD GUI which is 2D electromagnetic simulator based on FDTD 

method and developed to compare numerical results with analytical ones.  

Although each chapter has its own concluding section, we summarize our results in chapter 

4. It concludes this dissertation with a summary of the methods applied to obtain scattered 

fields and the future directions of our research. 

Source codes of the developed programs are found in the CD given with this dissertation. 
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2 ANALYTICAL METHODS  
 

2.1 Introduction 

Electromagnetic (EM) wave scattering has been substantially investigated for many 

decades and just reviewed with a tutorial in [1] on the canonical, two-dimensional (2D) 

wedge problem. Numerical difficulties of various analytical models based on complex 

integration as well as series summation are also discussed in details in [2]. Comparisons 

against numerical techniques such as the Finite-Difference Time-Domain (FDTD) method 

are given in [3]. In all these studies, wave pieces like reflection, refraction, and diffraction 

which are the components of scattering are re-visited through analytical exact as well as 

High Frequency Asymptotic (HFA) methods, such as Geometrical Optics (GO), 

Geometrical Theory of Diffraction (GTD), its uniform extension Uniform Theory of 

Diffraction (UTD), Physical Optics (PO), Physical Theory of Diffraction (PTD), 

Elementary Edge Waves (EEW), and Parabolic Equation (PE) methods [4-20]. 

In this section, first, the problem is posted briefly and critical wave regions are outlined. 

Then, mathematical equations for both plane wave and line source illuminations are 

presented for the sake of completeness. There are many different forms of these models, 

but the ones presented here are numerically the most efficient ones. Finally, the virtual tool 

WedgeGUI is discussed together with some examples. 

The non-penetrable wedge diffraction problem is canonical and plays a fundamental role in 

the construction of HFA techniques as well as for the numerical tests. The exact solution to 

this scattering problem was first found by Sommerfeld [4] in the particular case of a half-

plane.  For the wedge with an arbitrary angle between its faces, the solution was obtained 

by Macdonald [5] and later on by Sommerfeld who developed the method of branched 

wave functions [6].   

The 2D wedge scattering scenario is pictured in figure 1. The semi-infinite wedge with 

PEC boundaries is located in vacuum. The polar coordinates   are used throughout this 

section. The z-axis is aligned along the edge of the wedge. The angle    is measured from 

the top face of the wedge. The exterior angle of the wedge equals  . The wedge is 
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illuminated by a Line Source (LS) at a distance from a direction. In other words, source 

and observation points are given by (     ) and (   ), respectively. 

 

Figure 2.1  Geometry of the wedge scattering problem (SSI: Single Side illumination, DSI: Double Side 

Illumination) 

The scenario for the LS-1 (      ) belongs to the Single Side Illumination (SSI) 

where the top face is always illuminated. In this case (i.e., for the SSI), the 2D scattering 

plane around the wedge may be divided into three regions in terms of critical wave 

phenomena occurred there. In Region–I (        ), all the field components – 

incident field, reflected field and diffracted field – exist.  The angle        is the 

limiting boundary of reflected fields and Region I (Reflection Shadow Boundary - RSB).  

In Region–II (           ) only incident and diffracted fields exist. The angle 

       is the limiting boundary of the incident field and Region–II (Incident Shadow 

Boundary - ISB). In Region–III (i.e., in the shadow region,        ) only diffracted 

fields exist. 

The scenario for the LS-2 (        ) belongs to the Double Side Illumination 

(DSI) where both faces are always illuminated. In this case, the 2D scattering plane around 

the wedge may also be divided into three regions. In Region–I (        ), all the 

field components – incident field, reflected fields from the top face, and diffracted field – 

exist.  The angle        is the limiting boundary and called Reflection Shadow 

Boundary–RSB. Similarly, in Region–III (           ), all the field 

components – incident field, reflected fields from the bottom face, and diffracted field – 

exist.  The angle           is also a RSB. The region between these two (i.e., 
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Region–II;              ) contains no reflected fields and only incident and 

diffracted fields exist. In summary, both incident and diffracted fields exist everywhere, 

but reflected fields exist only in Region–1 and Region–3. Except the UTD formulations, 

the time dependence          is accepted in the section. The field outside the wedge 

satisfies the wave equation 

  
  

   
 

 

 

 

  
 

 

  

  

   
      

  
 

               (2.1)  

and the boundary conditions (BC) 

 

        
   

  
             (2.2)  

and the Sommerfeld’s radiation condition at infinity: 

    
   

    
  

  
        (2.3)  

 

In the case of EM waves, these BCs are appropriate for the PEC wedge and function us 

represents the z-component of electric field intensity Ez (TM), while function uh is the z-

component of magnetic field intensity Hz (TE). In the case of acoustic waves, these 

conditions refer to acoustically soft (TM > SBC) and hard (TE > HBC) wedges, 

respectively. 

 

2.2 Plane Wave Illumination and HFA Models 

Mathematical equations of different models are included here for both Line source (LS) 

and Plane Wave (PW) illuminations. The PW models presented in this section are Exact by 

Series Summation, PO, PTD, UTD, and PE models. 

2.2.1 Exact Solution by Series Summation 

The total field solutions of the Helmholtz equation with SBC and HBC for both SSI and 

DSI are [11]: 

                                (2.4)  
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where  

         
  

 
    

   
 
 
                  

 

   

 (2.5)  

    
 

  
    

   
      (2.6)  

Here,          and                     . The diffracted fields   
       

 and 

  
       

 can be calculated by subtracting suitable components (i.e.,incident and/or reflected 

fields) from equation 2.4 in different regions as: 

     
               

                
    (2.7)  

where, for SSI (        ) 

 

    
  

  

                                      

                         

         

  
(2.8)  

and for DSI (        ) 

 

    
  

  

                                      

                            

             

  
(2.9)  

 

2.2.2 The Physical Optics (PO) Solution 

The diffracted fields for the PO model (i.e., the uniform part of the surface currents) are 

given as [11]: 

For SSI (        ): 

     
            

           (2.10)  

and, for DSI (        ): 

     
            

               
               (2.11)  
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where 
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(2.13)  

Here,         and        . The total fields, in these cases, can be obtained via 

     
        

    
    

  
     

   (2.14)  

with the same GO solutions given in equations 2.8 and 2.9. 

 

2.2.3 The PTD Solution 

The PO proceeds from the hypothesis that a surface current on the illuminated side of a 

scattering object is determined by GO. This hypothesis is acceptable in the case of smooth 

objects whose radii of curvature are large compared to the wavelength; however, it neither 

satisfies the reciprocity principle nor the boundary conditions (BC). The PO also fails to 

predict depolarization of the diffracted field. The PTD improves PO by taking into account 

non-uniform surface currents and concentrates near edges. The PTD model is given as 

[11]: 
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where  

   
                         

            (2.16)  

   
                         

            (2.17)  
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(2.19)  

 

  
          

    

          

         
         

                  
 

(2.20)  

 

  
          

     

          

         
          

                  
 

(2.21)  

and  

        
             
             

  (2.22)  

Again, the total fields, in these cases, can be obtained via  

     
             

       
        

   (2.23)  

with the same GO solutions given in equations 2.8 and 2.9. 
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2.2.4 The UTD Solution 

The UTD diffracted fields are in the form of  

     
            

   
     

  
 (2.24)  

where      
       and the time dependence is     . According to the UTD, the 

diffraction coefficients for SBC and HBCs with line source as follows [13] 

 

  
             

  
  

  
 

      
 
 
 
 
     

    

  
                 

    

  
            

     
    

  
                 

    

  
            

 
 
 
 
 

 
(2.25)  

 

  
             

  
  

  
 

      
 
 
 
 
     

    

  
                 

    

  
            

     
    

  
                 

    

  
            

 
 
 
 
 

 

 

(2.26)  

where        ,         and      is the Fresnel function given as  

                       
 

  

 (2.27)  

and      are determined as in [9]: 

                   
       

 
        

    

   
 (2.28)  

Here,    are the integers which most nearly satisfy the last equation given in equation 

2.28. Note that the cotangent functions in equations 2.25 and 2.26 become singular at the 

ISB and RSB and are replaces as [13]: 

    
   

  
                              

  
    

  
   (2.29)  
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for small  . This term is finite but discontinuous at the ISB and RSB and compensates the 

discontinuities of the incident or reflected fields at these boundaries. The UTD based total 

fields are then obtained by adding the GO fields appropriately: 

Again, the total fields, in these cases, can be obtained via 

     
             

             
   (2.30)  

with the GO solutions given as for SSI (        ) 

 

    
  

  

                                      

                         

         

  
(2.31)  

and for DSI (        ) 

     
    

                                      

                            

             

  (2.32)  

Note that, the UTD formulas are exactly the same for the line source excitation, except 

    in is replaces with              . 

2.2.5 The Parabolic Equation (PE) Solution 

As shown in [10] the method of Parabolic Equation (PE) provides a correct first-order 

approximation to the diffracted field in the case when      and      . 

     
                     (2.33)  

where 

               
 

     
 
 
 

   
                     (2.34)  

          

 
     

 
        

    
 
       

   
   

 

  

 (2.35)  

with                   and       
  

  . Again, the total fields, in these cases, can 

be obtained via 
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   (2.36)  

with the same GO solutions given in equations 2.8 and 2.9. 

 

2.3 HFA Models under Line Source Excitations 

Mathematical equations of the models Exact by Series, Exact by Integral, the UTD, and 

PE, Line source (LS) illumination are presented in this section. Note that, numerical results 

of these models match with the PW models given in the previous section when the source-

to-tip distance is large as compared with the wavelength. 

2.3.1 Exact Solution by Series Summations  

The total field solutions of the Helmholtz equation with SBC and HBC for both SSI and 

DSI are [11]: 

   
        

 
 
 

 
   

 
     

       
                          

 

   

    

  

 
     

        
                          

 

   

    

  (2.37)  

 

  
       

 

 
 
 

 
   

 
       

       
                          

 

   

    

  

 
       

        
                          

 

   

    

  
(2.38)  

with the same    given in equation 2.6. Normalized diffracted fields     
         can be 

obtained by subtracting GO fields 

     
                

        
  
  

    
        (2.39)  

The GO field that under LS excitation is given as follows: 
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For SSI: 

      
    

  
           

                

  
   

                

         

  (2.40)  

For DSI: 

 

     
  

  

  
           

                

  
   

                   

  
           

                   

  
(2.41)  

where     and     for SBC and HBC respectively, and 

          
                (2.42)  

          
                (2.43)  

          
                   (2.44)  

 

2.3.2 Exact Solution by Integral 

Solutions for the line source illumination are also well known and presented by Bowman 

and Senior in Handbook [8] as 

 
  

                             

                          
(2.45)  

 
  

                             

                          
(2.46)  

where 

       
 

   
   

           
        

                  
  

 

 

  (2.47)  

 

      and            
            . In this case, total fields are obtained by 
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adding the GO fields. Again, the total fields, in these cases, can be obtained via 

     
             

         
       (2.48)  

with the same GO solutions given in equations 2.8 and 2.9. 

2.3.3 The Parabolic Equation (PE) Solution 

The PE solution under a line source illumination when      and       can be listed 

as follows [10]: 

     
                            

   
    

  (2.49)  

where 
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 (2.51)  

with                 , and       
  

  . Again, the total fields, in these cases, can 

be obtained via 

     
             

     
  
  

    
        (2.52)  

with the same GO solutions are given in equations 2.8 and 2.9. 

 

2.4 The WedgeGUI Virtual Tool and Some Examples  

The Matlab-based simulation package WedgeGUI with the front panel displayed in figure 

2.2, is prepared for the investigation of wedge diffraction in 2D with various HFA models. 

The panel is divided into three parts. The top block is reserved for the structure. The wedge 

figure is shown on the top right. The wedge exterior angle incident distance and angle are 

supplied on the top left. The user also selects either of the Soft and Hard boundary 

conditions and total and diffracted fields in this block. A pop-up menu allows the user to 

choose the type of the source: Plane wave excitation or cylindrical wave excitation. For 
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each source type the methods used in simulations are given with tick boxes. Multiple 

selection is possible. The flow chart of the virtual tool is given in figure 2. 3. 

 

 

Figure 2.2  The front panel of the EM virtual tool WedgeGUI 

 

 

 

Figure 2.3  Basic flow chart of WedgeGUI 
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The area below the structure block is divided into two parts. On the left, the results are 

presented in terms of polar plots (i.e., fields vs. angle), on the right in terms of Cartesian 

plots (i.e., field vs. radial range or field vs. frequency).  For the polar plots on the left 

block, one needs to specify frequency and radial distance from the tip. The rest is handled 

automatically once the Plot button is pressed and fields are calculated at N observation 

points equidistant from the tip located        apart. The progress bar on the bottom-

left shows the status of the calculations. Figures 2.4-2.6 show example scenarios and 

simulation results. 

 

The user may edit/modify the plot in another figure window. This is possible by clicking 

on the polar plot. Similarly, one can plot field vs. range or field vs. frequency on the right 

block. Clear button clears the plot for the next simulation and Save Data button records the 

data in a text file with the name given by the user. Table 1 lists a sample recorded data 

(partially) which belongs to the simulations presented in figure 2.6. Data recording is 

important because WedgeGUI do not run simulations for both SBC and HBC, or both total 

and diffracted fields at the same time. One needs to run WedgeGUI twice for the examples 

presented in figures 2.7-2.9. 

 

 

 

Figure 2.4  Example scenario and output of WedgeGUI: Diffracted fields vs. angle for HBC ( 350  , 

0 45  , 30f  MHz, 50r  m, 31.4159kr  ). Curves belong to Exact, PTD, UTD, and PE models 
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Figure 2.5  Example scenario and the output of WedgeGUI: Total fields vs. angle for SBC ( 330  , 

0 70  , 30f  MHz, 50r  m, 31.4159kr  ). Curves belong to Exact, PO, and PTD models. 

 

 

Figure 2.6  Example scenario and the output of WedgeGUI: Diffracted fields vs. angle for HBC ( 250  , 

0 150  , 30f  MHz, 50r  m, 31.4159kr  ). Curves belong to Exact, PTD, and UTD models. 
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Table 1. Sample recorded data for angle vs. diffracted fields. 

 

 
 

 

 

 
Figure 2.7  Diffracted fields vs. angle for (Left) SBC, (Right) HBC computed with Exact and UTD Models (

240  ,
0 110  , 30f  MHz, 50r  m, 31.4159kr  ) 

 

 
Figure 2.8  Total fields vs. angle for (Left) SBC, (Right) HBC computed with Exact and UTD models (

240  ,
0 110  , 30f  MHz, 50r  m, 31.4159kr  ) 
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Figure 2.9  Diffraction coefficients vs. (Top) Frequency, (Bottom) Range for the plane wave illumination and 

SBC ( 350  , 
0 60  , 30f  MHz ) 

 

2.5 Conclusions 

A MatLab-based virtual diffraction tool, WedgeGUI, is introduced.  The WedgeGUI 

presents results of electromagnetic wave scattering from a wedge shaped object with 

Perfectly Electrical Conductor (PEC) boundaries under different structural as well as 

operational parameters. Various models under both line source and plane wave 

illuminations are included. Comparisons among Uniform Theory of Diffraction (UTD), 

Physical Optics (PO), Physical Theory of Diffraction (PTD), Parabolic Equation (PE) 

models through many scenarios and illustrations are possible. The WedgeGUI virtual tool 

can be used in many graduate and PhD level courses such as Advanced Electromagnetic 

Theory, High Frequency Asymptotic Methods in Electromagnetics, Diffraction Theory, 

etc.  
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3 FINITE DIFFERENCE TIME DOMAIN (FDTD) METHOD 
 

3.1 Introduction 

FDTD method is introduced by Yee in 1966 [21] is arguably the simplest of numerical 

methods used to solve electromagnetic problems. It is based on simple formulations which 

don’t require complex asymptotic or Green’s functions. Yee’s idea was to divide 

simulation space into cells to form a grid and solve differential form of the Maxwell’s 

equations around these cells by using second-order central differences. Although it is time 

domain based method, it can provide frequency domain responses via Fourier transform. 

FDTD has been used to solve various types of problems arises in our lives including 

scattering, radar cross section, cancer detection, cell phone radiation over human head and 

geological applications.  

Since FDTD is based on discretizing time and simulation space, it is useful to explain 

numerical derivatives. Taylor series expansion of the multivariable function        around 

the specified time    can be written as; 

 
                     

        

  
 

 

 
      

 
         

   

   

(3.1)  

If the function        is sampled in time with    intervals we can write equation 3.1 as 

follows 

 
                       

        

  
 

 

 
     

         

   

   

(3.2)  

After rearranging terms we obtain: 

 

        

  
 

                    

  
 

 

 
   

         

   

   

(3.3)  

In a similar manner, the same expansion can be repeated for finding space derivative of the 

function. The terms in the Taylor series extends to infinity and due to the discrete nature of 

the computers, this expansion should be truncated after desired accuracy is obtained. As it 
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is seen by the equation (3.3) the other terms multiplied with the orders of   .  According to 

truncation of terms there are several numerical derivative approximations. If we omit the 

terms which multiplied with the orders of    in equation 3.3, we obtain: 

 
        

  
 

                    

  
 (3.4)  

This approximation is called first-order forward difference approximation of the derivative 

of the function        . The term ―first-order‖ comes from the fact that we omitted the 

terms multiplied with the orders of    starting from the first order in the equation (3.3). 

The term ―forward‖ comes from the fact that, one forward time            is used to 

evaluate derivative.  

In kind, expansion of            around the point    gives  

 
                       

        

  
 

 

 
     

         

   

   

(3.5)  

Leaving the first order derivative alone we have  

 

        

  
 

                    

  
 

 

 
   

         

   

   

(3.6)  

Neglecting the terms multiplied with the powers of  t, we obtain the first-order backward 

approximation of the derivative of the function        . 

 
        

  
 

                    

  
 (3.7)  

The third way of obtaining a formula for an approximation of the derivative is obtained by 

averaging the forward and backward difference formulas such that  

 

                     

     
        

  
 

 

 
     

         

   
   

(3.8)  

After rearranging terms, we obtain  
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(3.9)  

In this case there is no term multiplied with first order of   . Neglecting the terms 

multiplied with the powers of    gives second-order centered difference approximation. 

 
        

  
 

                     

   
 (3.10)  

The error introduced by using this approximation is less than the first-order forward or 

backward approximations. For example, if the time step    is reduced to half of its value 

the error reduced by a factor of four.  

3.2 3D FDTD Algorithm 

Yee’s algorithm approximates the derivatives in the differential form of Maxwell’s 

equations shown in equations 3.11 – 3.14 with second-order centered differences.  

     
 

  
 (3.11)  

       (3.12)  

      
  

  
   (3.13)  

     
  

  
   (3.14)  

where   is 
 

  
  

 

  
  

 

  
 . 

The spatial positions of the field components have specific arrangement in the Yee cell as 

shown in figure 3.1. In this arrangement electric fields are placed at the centers of the 

edges of Yee cell and magnetic fields are placed at the center of the faces of the Yee cell. 

In other words, magnetic field components are surrounded by four electric field 

components and electric field components are surrounded by four magnetic field 

components. Instead, one can rearrange Yee cell so that location of the magnetic and 

electric field components are interchanged. But this arrangement has advantage because of 

the fact that boundary conditions imposed on electric field are more commonly 

encountered than those for magnetic field so placing the mesh boundaries so that they pass 
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through electric field vectors [22].  In addition to spatial arrangement, Yee assumed that 

the magnetic field components are calculated at half time steps slightly after electric field 

components. Therefore super script n+1/2 is used for magnetic fields to emphasize that 

they are calculated slightly after electric fields. 

 

Figure 3.1  Yee Cell 

Since we know the spatial locations of the field components, we are ready to discrete 

Maxwell’s equations. We first start with writing open form of curl operator in equation  

3.13.  

 

          

   
 

  

 

  

 

  
      

   

  
   

  
 

   

  
       

   

  
 

   

  
       

   

  
 

   

  
      

     

  

  
 

(3.15)  

Here we omitted the by omitting magnetic current density M and electric current density J. 

Writing                    and equating with the left side of the equation 3.15 yields 

three coupled scalar equations: 
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   (3.18)  

Repeating the same process for equation 3.14 we obtain: 

 

          

   
 

  

 

  

 

  
      

   

  
   

  
 

   

  
       

   

  
 

   

  
       

   

  
 

   

  
        

  

  
 

(3.19)  

In a similar manner, Writing                    and equating with the left side of the 

equation 3.19 yields three coupled scalar equations: 

 
   

  
 

 

 
 
   

  
 

   

  
  (3.20)  
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  (3.22)  

Referring to figure 3.1, we can approximate the derivatives of the equations 3.16 – 3.22 via 

second-order centered differences. Applying the second-order centered difference 

approximation to the time and space derivatives in equation 3.16 yields: 
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(3.23)  

Rearranging terms in equation 3.23, we obtain: 

 

  
  
    

 
 
   

 
 

  
 
    

  
    

 
 
   

 
 

  
 
  

 
  

 
    

 
 
   

 
 

  

  
  
    

 
 
    

    
  
    

 
 
  

 

  
 

  
  
        

 
 

    
  
      

 
 

 

  
  

(3.24)  

In equation 3.24 we have used compact form field components i.e.   
  
    

 

 
   

 

 

  
 

  

       
 

 
   

 

 
   

 

 
 . Here, superscript n is used for time step and subscript i, j, k is 

used for spatial location. The remaining components are presented in the equations 3.25 – 

3.30. 

 

  
  
  

 
 
     

 
 

  
 
    

  
  

 
 
     

 
 

  
 
  

 
  

 
  

 
 
     

 
 

  

  
  
        

 
 

    
  
      

 
 

 

  
 

  
  
  

 
 
      

    
  
  

 
 
    

 

  
  

(3.25)  

 

  
  
  

 
 
   

 
 
  

  
 
    

  
  

 
 
   

 
 
  

  
 
  

 
  

 
  

 
 
   

 
 
  

  

  
  
  

 
 
      

    
  
  

 
 
    

 

  
 

  
  
      

 
 
  

    
  
    

 
 
  

 

  
  

 

(3.26)  
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(3.27)  

 

  
  
    

 
 
  

      
  
    

 
 
  

  

 
  

 
    

 
 
  

 
 
 
 
 

 

  
  
    

 
 
   

 
 

  
 
    

  
    

 
 
   

 
 

  
 
 

  

 

  
  
  

 
 
   

 
 
  

  
 
    

  
  

 
 
   

 
 
  

  
 
 

  

 
 

(3.28)  

 

  
  
      

 
 

      
  
      

 
 

  

 
  

 
      

 
 
 
 
 
 
 

 

  
  
  

 
 
     

 
 

  
 
    

  
  

 
 
     

 
 

  
 
 

  

  

  
  
    

 
 
   

 
 

  
 
    

  
    

 
 
   

 
 

  
 
 

  

 
 

(3.29)  

Time step is explicit in FDTD algorithm such that magnetic fields are calculated 

before/after the electric fields. So we can disregard half-time step superscript in the 

equations 3.24-3.29. On the other hand, spatial steps are implicit and we cannot use double 
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numbers as an array index in high-level programming languages. Hence, we can apply the 

following rules to solve half-step problem: 

When it comes to calculating E values of i, j, k indexes then the indexes of the necessary H 

value follow this rule: 

 When the H index has a +1/2 assume its value 0 

 When the H index has a -1/2 assume its value -1 

When it comes to calculating H values of i, j, k indexes then the indexes of the necessary E 

value follow this rule:  

 When the H index has a -1/2 assume its value 0 

 When the H index has a +1/2 assume its value +1  
 

The complete FDTD algorithm is shown at figure 3.2. 

 

Figure 3.2  FDTD Algorithm 

In this algorithm, selection of time step and spatial step requires specific attention as will 

be explained later.  
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3.3 Reduction to 2D    and    Modes 

When both the structure being modeled and the excitation do not change with respect to 

specific direction, then the derivatives in Maxwell’s curl equations (3.15 and 3.19) with 

respect to that direction vanish.  For example, if the problem is z dimension independent 

we have: 

       
  

  
  

   

  
  

 

 

   

  
   

  
 

 

 

   

  
   

  
 

 

 
 
   

  
 

   

  
 

 (3.30)  

      
  

  
  

   

  
 

 

 

   

  
   

  
  

 

 

   

  
   

  
 

 

 
 
   

  
 

   

  
 

 (3.31)  

We can group equations 3.30 and 3.31 into two uncoupled sets called transverse magnetic 

(     and transverse electric       modes as follows: 
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(3.32)  
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(3.33)  
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As it is seen by equations 3.32 and 3.33     and     modes don’t contain common field 

components and they are identified as which have a magnetic or electric field component 

in the axial (i.e. z) direction. Although the spatial locations of the field components are 

shown at figure 3.1, we present 2D slices obtained from figure 3.1 in figures 3.3 and 3.4 

for clarity. 

 

Figure 3.3  FDTD cell for     mode 

 

 

Figure 3.4  FDTD cell for     mode 
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FDTD update equations for both     and     modes can be obtained by applying central 

difference approximation to the partial derivatives in the equations 3.32 and 3.33. For the 

sake of completeness we present them as follows: 

     Mode 

 

  
  
  

 
 
   

 
 

  
 
    

  
  

 
 
   

 
 

  
 
  

 
  

 
  

 
 
   

 
 

  

  
  
  

 
 
    

    
  
  

 
 
  

 

  
 

  
  
      

 
 

    
  
    

 
 

 

  
  

(3.34)  

   
  
  

 
 
  

      
  
  

 
 
  

  
  

 
  

 
 
  
 

 
 
 
 
 

 

  
  
  

 
 
   

 
 

  
 
    

  
  

 
 
   

 
 

  
 
 

  
 

 
 
 
 
 

 (3.35)  

   
  
    

 
 

      
  
    

 
 

  
  

 
    

 
 
 

 
 
 
 
 

 

  
  
  

 
 
   

 
 

  
 
    

  
  

 
 
   

 
 

  
 
 

  
 

 
 
 
 
 

 (3.36)  
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   (3.37)  

   
  
  

 
 
  

  
 
    

  
  

 
 
  

  
 
  

  

 
  

 
 
  

 
   

       
    

 
   

  
   (3.38)  

 

  
     
      

     
  

 
  

    
 

 
 
 
 
    

  
  

 
 
  

  
 
      

  
  

 
 
  

  
 
 

  
 

   
  
    

 
 

  
 
      

  
    

 
 

  
 
 

  
 

 
 
 
 
 

 

(3.39)  



30 
 

Most two-dimensional problems can be decomposed into    and    modes and can be 

solved separately because of the fact that they are uncoupled. The solution for the main 

problem is then obtained by summing the solutions of    and    modes. 

3.4 Numerical Dispersion 

Dispersion relation gives the relationship between wavelength and frequency. Dispersion 

occurs when the waves of different frequencies have different propagation velocities. For 

electromagnetic waves in vacuum, the frequency is proportional with wavelength   and 

dispersion relation is given as: 

   
 

 
    

 

 
   (3.40)  

In this chapter will try to find a dispersion relation for FDTD algorithm. For this purpose, 

we will analyze 2D FDTD algorithm for simplicity but the results can be extended to 3D 

FDTD algorithm easily. It is obvious that the following traveling-wave equations are the 

solutions of     mode equations (3.37-3.39): 
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where   
        

  are the components of the numerical wavevector. 

Using equations 3.41-3.43 in equation 3.37, we obtain the following equation. 

 

     
             

 
 
                                 

 
 
     

     
            

 
 
                                  

 
 
      

    

  
 

   
     

             
           

           
    

     
             

           
        

(3.44)  

Dividing both sides of the equation by                              
 

 
    

 we have 
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(3.45)  

Additional simplification can be achieved by using Euler’s formula: 

     
  

   
   

    
  
   

  

    
   
 

 
    (3.46)  

In kind, the following equations can be derived for     and     

      
  

   
   

    
  
   

  

    
   
  

 (3.47)  

        
   

 
  

  

 
 
   

   
     

  
   

 
  

   

   
     

  
   

 
   (3.48)  

Upon substituting     and     into equation 3.48, we obtain 

  
 

    
    

   

 
  

 

  
 

  
    

  
   

 
  

 

  
 

  
    

  
   

 
  

 

 (3.49)  

where        is the phase velocity. 

Equation 3.49 is the general numerical dispersion relation for the     mode. Assuming 

         and writing   
           and   

           , this equation can be written 

as 
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(3.50)  

Dividing both sides of equation 3.50 by    leads the following equation 

 

 

  
    

 
 

    
      

    

 
      

         

 
        

         

 
      

(3.51)  

where              is the speed of light,     is numerical phase velocity and    is the 

propagation direction with respect to x axes. It is obvious that both   and    affects 

numerical dispersion and should be carefully selected. Setting       and selecting 

   
 

  
 in equation 3.51 leads to 

            
 

   
 

 

   
     

   (3.52)  

That is numerical wave propagates exactly with the speed of light. Therefore, we can 

recover the ideal dispersion relation by selecting appropriate values. The dependence of     

on propagation angle   is called grid anisotropy. We demonstrate how the numerical phase 

velocity changes with propagation angle   in figure 3.5 for    
 

   
 and in figure 3.6 for 

   
 

    
. 
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Figure 3.5        versus   for         . 

 

Figure 3.6        versus   for          . 

It is evident that increasing sampling resolution decreases numerical dispersion error. 

What’s more, we cannot totally eliminate numerical dispersion error because we are 

restricted to work with finite grid cells. For this reason, numerical dispersion error is 

inherited to FDTD algorithm, but this error is very small even for     resolution. 
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3.5 Stability 

In this section, we analyze how selection of time step    affects stability of the FDTD 

algorithm. For this purpose, we will use complex-frequency analysis which allows for the 

possibility of a complex-valued numerical angular frequency,                [23]. 

We start first by modifying the angular frequency term in equation 3.43 as follows 

 
  

     
      

                                  
 

   
     
      

                                      

(3.53)  

If the term       in equation 3.53 is positive, we have exponentially decreasing wave 

amplitude. On the other hand, if        is negative, we have exponentially increasing 

wave amplitude.  In section 3.4 we have derived an expression of the numerical angular 

frequency   which is written again for clarity 

 

  
 

  
 

             
 

   
     

          

 
   

 

   
     

          

 
    

(3.54)  

 

In this equation, if the term inside the arcsin function has value between 0 and 1, we obtain 

real numerical angular frequency. We can also observe from the equation 3.54 that the 

upper bound of the expression in square root is 

 

 
 

   
     

          

 
   

 

   
     

          

 
  

  
 

   
 

 

   
 

(3.55)  

Therefore, we can write 

        
 

   
 

 

   
   (3.56)  
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To ensure stability we should select the time step    as  

 
   

 

   
 

    
 

   

 
(3.57)  

When        , equation 3.57 becomes 

    
 

    
 (3.58)  

This expression tells us that, the electromagnetic wave should travel at most one cell 

diagonally in one time step. 

In a similar manner for 3D FDTD, the time step  t should be selected as  

 
   

 

   
 

    
 

    
 

   

 
(3.59)  

 

3.6 Perfectly Matched Layer Boundary Conditions 

Scattering and radiation problems require the simulation space which extends infinity. Due 

to the finite nature of computers we cannot use infinite number of cells. Even if we are 

interested in near fields, we need to enlarge total simulation space to prevent reflections 

from the boundaries. However, increasing total simulation space increases the 

computational burden excessively. So far, several methods proposed to overcome this 

difficulty [23]. These methods split into two groups, one called absorbing boundary 

conditions (ABC), the other called radiation boundary conditions (RBC). RBCs require the 

storage of field components more than one time step back depending on the order of 

accuracy. Hence, they can cause out of memory errors for large problems. Also since they 

are a function of incident angle, they can give spurious reflections for grazing angles. On 

the other hand, ABCs don’t require the storage of field components more than one time 

step back, and give more accurate results with compare to RBCs. Among ABCs, the 

perfectly matched layer (PML) boundaries are very popular and easy to implement. PML is 

a finite-thickness special lossy medium which is placed at the terminals of the 

computational space to create perfectly matching condition for all angles and frequencies. 
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Because of being frequency and angle independent, they are used in scattering and 

radiation problems frequently. There are several types of PMLs found in literature such as 

uniaxial PML (UPML), convolutional PML (CPML), split-field PML (SPML), and the 

detailed comparison of their properties can be found in [24]. In this dissertation we 

preferred to use UPML so this type of PML will be explained. We will start by reviewing 

electromagnetic wave behavior at the boundary of two dissimilar media to explain the 

underlying theory of PMLs. 

3.6.1 Plane Wave Incident on a Lossy Medium 

Considering a     polarized field shown in figure 3.7 where the incident electric field 

phasor is given by 

 

                

                               

                   

(3.60)  

 

Figure 3.7  Plane wave incident on a lossy medium 
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The incident magnetic field is then calculated from 

 

    
 

    
      

 

    
 

           
            

                

  

  
 

    
                     

              

      
   

   
     

   

   
                

(3.61)  

Assuming a presence of reflected wave and knowing that the angle of incidence equals to 

angle of reflection, we have 

                         (3.62)  

where    
         

         
 is the reflection coefficient. Notice that the change of sign in equation 

3.62 due to the reflection. Then we can write the total electric fields in region 1 as  

                                        (3.63)  

In kind, using equation 3.61 we can write the total magnetic fields in region 1 as 

 

              
   

   
                             

     
   

   
                                 

(3.64)  

Now we can consider the electromagnetic fields in region 2 which is lossy medium 

characterized with the parameters    and   . For this reason we can write the time 

harmonic Maxwell’s equations for general lossy media as follows 

 
                     

  

   
 

         
                   

  
(3.65)  

 
                  

 

   
 

         
 

              

 
(3.66)  
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Therefore the transmitted electric field in Region 2 can be written as 

                          (3.67)  

where    
       

       
  is the transmission coefficient. The magnetic fields in Region 2 are 

calculated using equation 3.65 as follows 

 

    
 

       
  

    
 
     

         
  

    
   

           
 

  

 

  

 

  

                 

   

      
   

      
  

    
 

     
   

      
  

    
 
                 

(3.68)  

where  
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(3.69)  

is the propagation constant. 

Owing to the boundary condition that is the continuity of the tangential fields at the 

interface (x=0), the propagation in the y direction must be same in both media yields 

                               (3.70)  

Thus we can say that  

 
      

               
(3.71)  

Plugging equation 3.71 into 3.69 and solving for     yields 
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  (3.72)  

Equating y component of the magnetic fields at x=0 we obtain 

     
   

   

                     
   

      
  

    
 
           (3.73)  

In this case, we can say that  

 
      

     

     
  

    
    

  
(3.74)  

The reflection and transmission coefficients are given by [25] 

 
  

               

               
 

   

      
  

    
 

 
   

   

   

      
  

    
 

 
   

   

 
(3.75)  

and 

       

    

      
  

    
 

   

      
  

    
 

 
   

   

 (3.76)  

Reflection coefficient will be zero only if the terms in the numerator of equation 3.75 

cancel. Also it is seen that, for an arbitrary incident angle      we have complex and 

non-zero reflection number. Assuming the incident wave     , the expression in 

equation 3.75 reduces to 

   
     

     
 (3.77)  

where  
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and 

    
    

    
 

 
  
  
  
  
 
      

  

    
  

      
  

    
  

 

 

    
  

  
 

(3.78)  

Selecting                    
   

  
  yields that     , perfectly matching wave 

transmission at the boundary. But, for oblique incidence, the numerator of the term in 

equation 3.75 cannot be zero and there will always be reflection from region 2. 

3.6.2 Uniaxial Perfectly Matched Layer (PML) 

Among the different versions of the PML, the uniaxial perfectly matched layer (PML) is 

arguably simplest to understand and has been broadly used in the FDTD simulations. In 

UPML, lossy layer is described as an artificial anisotropic uniaxial absorbing material 

which is composed of both electric and magnetic permittivity tensors. The main advantage 

of the UPML is that we don’t require changing our code in both computational region and 

PML region. Therefore, the FDTD algorithm remains same in both domains. The 

placement of the PML in computational space is shown in figure 3.8. 

 

Figure 3.8  Placement of PML in computational domain 
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We can assume that the region 2 (   ) in figure 3.7, as an anisotropic uniaxial medium 

which is rotationally symmetric around the x axis and having the electrical permittivity and 

magnetic permeability tensors: 

        
   
   
   

                       
   
   
   

  (3.79)  

Also we assume that a TE polarized time-harmonic wave       
              

propagates through region 2. As we did in previous chapter for    mode, we can write 

total electric and magnetic fields in the region 1 as 

                                      (3.80)  

 

           
   

   
             

     
   

   
                             

(3.81)  

Electromagnetic waves in region 2 satisfy the Maxwell’s equations in a general anisotropic 

medium which can be expressed in phasor form as: 

                                 (3.82)  

                                (3.83)  

where 

                    (3.84)  

is the wavevector in region 2. Combining equations 3.82 and 3.83 leads to wave equation 

given as: 

                               (3.85)  

which can also be written in matrix form as: 
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(3.86)  

The solutions of the determinant of the matrix in equation 3.86 give the relationship 

between the wave numbers that is called dispersion relation as we mentioned in section 

3.4.  There are two solutions of equation 3.86 which are called TE mode (         and 

TM mode (     . We assume only TE mode solution which is obtained at setting 

        in equation 3.86 as 

            
        

       (3.87)  

The wave transmitted in region 2 can be expressed in a manner similar to equation 3.68 as  

 

                        

           
   

    
     

   

    
                 

(3.88)  

Owing to the boundary condition that is the continuity of the tangential fields at the 

interface (x=0), the propagation in the y direction must be same in both media yields 

 

                

                                     

                   

(3.89)  

and 

 

                

       
   

   

                       
   

    
            

 
   

   

      
   

    
  

   

    
      

(3.90)  
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Since         for all incident angles, we can put this equality into equation 3.87 to 

obtain the value of     as  

                  
      (3.91)  

What’s more, we can find the reflection coefficent from 3.90 as  

 

   

   

      
   

    
      

  
              

              
 

            
  

            
  

  

(3.92)  

To achive perfectly matching at the boundary, we need to have     which means that the 

nominator of equation 3.92 should be zero. From inspection, selecting      ,      , 

    and       yields 

                  
        

     
       (3.93)  

Putting equation 3.93 into equation 3.92 we have     for all incidence angles and    . 

Thus the incident wave penetrates into region 2 without any reflection.  Since we have 

found     in equation 3.93, we can put this into equation 3.88 to analyze the wave 

behavior in region 2 as 

 

          
               

                  

                 

           
   

    
     

   

   
                  

(3.94)  

Selecting     
  

    
 yields 

          
                 

     
   (3.95)  

It is obvious that the magnetic field attenuates exponentially through the propagation in 

region 2 for all incident wave angles and    . In a similar manner the electric field also 

undergoes an exponential decay through the propagation in region 2. The same analysis 

can be performed for TM mode. But in this case we need to replace          and          
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and set       for reflectionless propagation. In sum, we can write the permittivity and 

permeability tensors to have     at the boundary     as 

                            
  

    
    
    

  (3.96)  

UPML extension for 3D case can be obtained easily by considering 3D case is a 

composition of individual lossy layers. That is, we need to place individual lossy layers at 

the front ends of the x, y and z dimensions of computational space. Then, the electric 

permittivity and magnetic permeability tensors will be in the form as  

 

    
  

    
    
    

  

  
    

    

    

  
  

    
    
    

  

    

  
        

     
     

        
  

  

 

(3.97)  

where  

       
  

    
       

  

    
           

  

    
  (3.98)  

Here the parameters              are introduced for allowing non-unity real part. To 

use this tensor in FDTD algorithm we need to set non-zero conductivity at appropriate 

boundaries as demonstrated in figure 3.8. For example at     and          we need 

to set        .  

3.6.3 UPML Algorithm 

In this section, we will derive 3D numerical algorithm for implementing uniaxial perfectly 

matched layer medium formulated previously. Maxwell’s equations for general anisotropic 

media are given in phasor form by equations 3.82 and 3.83, repeated below for 

convenience: 

                                 (3.99)  



45 
 

                               (3.100)  

Writing the curl operator of equation 3.100 in matrix form and using the tensor which is 

introduced in equation 3.97 leads to  

 

 
 
 
 
 
 
 
   

  
 

   

  
   

  
 

   

  
   

  
 

   

   
 
 
 
 
 
 

     

  
        

     
     

        
  

   

  

  

  

  (3.101)  

Then we have from the first row of the matrix equation: 

 
   

  
 

   

  
       

    
  

        
  

    

    
  

    
    (3.102)  

At this point, it is instructive to give some properties of the phasor to time domain 

transformations. 

  
 

  
          (3.103)  

       
 

  
   (3.104)  

Converting equation 3.102 directly from phasor domain to time domain requires 

integration because of the term        in the denominator and integration is very 

computationally expensive process especially for large problems. To overcome this 

difficulty, we can use interim variable   which is not physical and formed as  

 

    
  

  
    

    
  

  
   

    
  

  
   

(3.105)  

Then equation 3.101 becomes 
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  (3.106)  

This leaves us to three equations which can be transformed into time domain easily by 

using equation 3.103. Moreover, since FDTD algorithm is based on discretizing partial 

derivatives in Maxwell’s equations via centered difference approximation, we can apply 

the same approximation to discretize the resulting interim fields. This provides us to 

conserve our codes in both computational region and PML region with the expense of 

doubling field components which is explained soon. But anyway, this is computationally 

less expensive than calculating integrals. Considering the first equation in 3.106, we have 

 
   

  
 

   

  
   

 

    
  

          
    

           
  

 
   (3.107)  

Applying equation 3.103 to 3.107 yields 

 
   

  
 

   

  
   

   

  
 

  

 
    (3.108)  

The components of auxiliary fields   is assumed to be same location as the components of 

electric fields as shown in figure 3.1, therefore applying centered difference approximation 

to equation 3.108 gives 

 

  
  
  

 
 
    

     
         

         
   

  
  

 
 
    

  

 
    

         
 

 
 
 
 
 

 

  
  
  

 
 
   

 
 
  

  
 
    

  
  

 
 
   

 
 
  

  
 
 

  

 

  
  
  

 
 
     

 
 

  
 
    

  
  

 
 
     

 
 

  
 
 

  

 
 

(3.109)  
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The other auxiliary field components can be derived in a similar manner, they are given 

here for the sake of completeness 

 

  
  
    

 
 
  

     
         

         
   

  
    

 
 
  

  

 
    

         

 
 
 
 
 

 

  
  
    

 
 
   

 
 

  
 
    

  
    

 
 
   

 
 

  
 
 

  
 

  
  
  

 
 
   

 
 
  

  
 
    

  
  

 
 
   

 
 
  

  
 
 

  

 
 
 
 
 

 

(3.110)  

 

  
  
      

 
 

     
         

         
   

  
      

 
 

  

 
    

         

 
 
 
 
 

 

  
  
  

 
 
     

 
 

  
 
    

  
  

 
 
     

 
 

  
 
 

  
  

  
  
    

 
 
   

 
 

  
 
    

  
    

 
 
   

 
 

  
 
 

  

 
 
 
 
 

 

(3.111)  

Now we need to convert interim fields back to electric field components. This is also can 

be accomplished easily as shown for the x component:  

 

    
  

  
              

    
  

   
          

  

   
    

       
  

 
                

(3.112)  

Applying equation 3.103 to equation 3.112 leads 

   

   

  
 

  

 
      

   

  
      (3.113)  

Discretization of equation 3.113 yields update equation for the x component of the electric 

field: 
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(3.114)  

The same analysis can be repeated for the remaining components of electric fields, and 

given as follows 

 

  
  
    

 
 
  

     
         

         
   

  
    

 
 
  

  

 
 

 
  

         

         
   

  
    

 
 
  

     
 

 
  

         

         
   

  
    

 
 
  

  

(3.115)  

 

  
  
      

 
 

     
         

         
   

  
      

 
 

  

 
 

 
  

         

         
   

  
      

 
 

     
 

 
  

         

         
   

  
      

 
 

  

(3.116)  

Thus far, we are concerned with the electric field components. The magnetic fields can be 

calculated in a similar manner by writing the curl operator of equation 3.99 in matrix form 

as follows 

 
 
 
 
 
 
 
 
   

  
 

   

  
   

  
 

   

  
   

  
 

   

   
 
 
 
 
 
 

      

  
        

     
     

        
  

 

  

  

  

  

  

(3.117)  

In the same way for electric fields, we introduce auxiliary field B to get rid of integrals as 

shown below:  

     
  

  
            

  

  
           

  

  
   (3.118)  

Using equation 3.118 in equation 3.117 leads to 
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  (3.119)  

Considering the first equation in 3.119, we obtain the following equation 

 

   

  
 

   

  
        

  

   
            

  

 
   

  
   

  
 

   

  
     

   

  
 

  

 
   

(3.120)  

Applying centered difference approximation to the partial derivatives of  equation 3.120 

yields updating equation for the interim field component    whose spatial location is the 

same as    and shown in the figure 3.1. 

 

  
  
    

 
 
   

 
 

  
 
   

         

         
   

  
    

 
 
   

 
 

  
 
  

  
    

          
    

  
  
    

 
 
    

    
  
    

 
 
  

 

  
 

  
  
        

 
 

    
  
      

 
 

 

  
  

(3.121)  

Doing same analysis as in equation 3.120 for remaining interim fields we obtain 

 

  
  
  

 
 
     

 
 

  
 
   

         

         
   

  
  

 
 
     

 
 

  
 
  

  
    

          
    

  
  
        

 
 

    
  
      

 
 

 

  
 

  
  
  

 
 
      

    
  
  

 
 
    

 

  
  

(3.122)  

 

  
  
  

 
 
   

 
 
  

  
 
   

         

         
   

  
  

 
 
   

 
 
  

  
 
  

  
    

          
   

  
  
  

 
 
      

    
  
  

 
 
    

 

  
 

  
  
      

 
 
  

    
  
    

 
 
  

 

  
  

(3.123)  
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The relationship between the interim fields   and magnetic fields   is similar to that of 

interim field   and   and can be given as 

 

    
  

  
                 

     
  

   
         

  

   
    

        
  

 
           

  

 
     

(3.124)  

Applying inverse transformation to equation 3.124 yields 

   

   

  
 

  

 
      

   

  
 

  

 
   (3.125)  

Equation 3.125 can be discretized as 

 

  
  
    

 
 
   

 
 

  
 
   

         

         
   

  
    

 
 
   

 
 

  
 
  

 
 

 
 
         

         
    

  
    

 
 
   

 
 

  
 
 

 
 

 
 
         

         
    

  
    

 
 
   

 
 

  
 
  

(3.126)  

The remaining magnetic field components can be obtained in a similar manner as follows 

 

  
  
  

 
 
     

 
 

  
 
   

         

         
   

  
  

 
 
    

 
 

  
 
  

 
 

 
 
         

         
    

  
  

 
 
     

 
 

  
 
 

 
 

 
 
         

         
    

  
  

 
 
     

 
 

  
 
  

(3.127)  
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(3.128)  

The implementation of the UPML algorithm requires two step for updating individual 

electric and magnetic fields. That is, we first need to solve interim fields and then calculate 

electric and magnetic fields from the interim fields as shown in the related equations. Also 

we need to store one time step previous values of the interim fields because the magnetic 

and electric field updates require the values of interim fields at time   or   
 

 
. Although, 

we explain the algorithm of 3D UPML, reduction to 2D case is straightforward and 

explained briefly in section 3.3. We have taken three snapshots at different time steps to 

demonstrate the PML boundary condition in 2D     mode as shown in figures 3.9, 3.10 

and 3.11. We have injected Gaussian source at the center of the simulation space. 

 

 

Figure 3.9      FDTD simulation snapshot at        
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Figure 3.10      FDTD simulation snapshot at         

 

Figure 3.11      FDTD simulation snapshot at         

 

Source codes for this simulation can be found in Appendix 1. An ideal PML is 

reflectionless, if the parameters of the PML are selected properly as described previously. 

However, because of the numerical approximations, the PML in FDTD simulations cannot 

absorb the power penetrating into PML regions properly and consequently can lead to 

significant spurious reflections. To overcome this problem, we need to use multilayer PML 

instead [26]. The term multilayer means that the conductivity profile of the lossy layer 

changes with spatial increment. There are several methods to create such a multilayer PML 

but arguably most effective one is polynomial grading whose formulation is given as 

            
 
   

 
 
 

 (3.129)  
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where the parameter   is generally taken as 3 or 4. Also in equation 3.129,   is the 

thickness of the PML and      is the maximum value of the conductivity which is 

expressed as: 

      
 

   

         
 (3.130)  

Remaining conductivity profiles can be graded in similar manner by using equation 3.129. 

3.7 Modeling PEC Objects   

Modeling objects in FDTD plays important role for the accuracy of the simulation results. 

Standard FDTD algorithm explained so far uses staircase approximation to model objects 

in simulation space. In this approximation, if the center of cubic cell is embedded inside 

the perfectly electric conductance (PEC) object, all surrounding electric fields of this cell 

are set to zero. For 2D simulations, we can examine staircase approximation for     mode 

and     mode separately as follows: when modeling a PEC in     mode, if an    node 

falls within the PEC, it is zero. In a     mode, if an    node falls within the PEC, all 

surrounding electric fields are set to zero. All the magnetic fields are updated in the usual 

way for both 3D and 2D cases. Although this approach is very simple to use, it can lead 

significant errors for slanted or curved objects as shown in figure 3.12 for     mode. In 

this figure, critical cells which constitute the boundary of pec object are marked with ―x‖. 

As it is seen, staircase approximation models missile radome very poorly and sharp corners 

resulted from the staircase approximation can lead to non-realistic diffracted fields. The 

level of staircase error can be reduced by increasing resolution but this increases 

computational burden significantly. To overcome this difficulty, several methods are 

proposed in the past decade. One solution of this problem is to use non-uniform meshing 

whose dimensions are smaller in specific regions to fit object boundaries. However, this 

approach suffers from the fact that it increases total number of cells and as a result 

computational burden. The second and more robust solution called contour-path modeling 

is based on deforming unit cells in specific regions to conform boundaries of PEC object. 

The drawback of this approach is that, we require complex meshing algorithm. Also, the 

reduction of the time step is necessary to avoid stability errors as will be explained soon.  
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Figure 3.12  Staircase modeling missile radome 

3.7.1 Day-Mittra Conformal FDTD 

In   1997, Day-Mittra introduced conformal modeling techniques for PEC and dielectric 

structures which do not conform to Yee grid [26]. In this technique, only a modification of 

Faraday loop is required as shown in figure 3.13.  

 

Figure 3.13  Modified Faraday loop in Dey-Mittra technique 

In this method, a conformal updating algorithm applied to individual partially filled cells, 

and the time step size needs to be reduced in accordance with the size and shape of the 

deformed cell. It is intructive to investigate deformed cells in the figure 3.13 seperately. 

For this purpose three different scenarios for Dey-Mittra conformal technique are 

presented in figure 3.14 
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Figure 3.14  Dey-Mittra conformal FDTD scenarios 

In all scenarios the PEC is located at the right of the cell cut and     polarization is 

assumed. In part (a) of figure 3.14, slanted object cross slightly into top right cell. If 

       is less than    which is specific parameter based on numerical stability, we can 

neglect this penetration and set all four surrounding electric fields to zero for top right 

cell. On the other hand if we apply Faraday’s law and integrate along the contour of area 

   for top left cell we obtain  

 

  

  
 
   

  

 
 
  

 
    

  
 
   

  

 
 
  

 
  

 
  

    
   

      
  

 
      

   
  

 
        

   
  

 
      

(3.131)  

In part (b) of figure 3.14 the ratio of          is larger than   . Applying Faraday’s Law 

to the top right cell and integrating over the contour of area    gives the update equation 

for    in the top right cell despite the fact that it is in PEC. Noting that two electric field 

components resides in pec and set to zero we have: 

 

  

  
 
  

  

 
 
  

 
    

  
 
  

  

 
 
  

 
  

 
  

    
   

    
  

 
     

  
  

 
       

(3.132)  

Finally for the part (c) of figure 3.14, applying Faraday’s law and integrating along over 

the contour of area    gives: 
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(3.133)  

For all scenarios, electric fields are updated as in conventional Yee’s algorithm. The 

parameter    mentioned previously specifies the smallest area which is included for 

specification of integration contour. Typically, the choice          requires     

reduction of time step below the normal limit to provide stability. The stability analysis of 

Day-Mittra conformal technique is analyzed by J.B. Scheneider and C.J. Railton [27]. The 

drawback of reduction of time step will increase total simulation time but it gives very 

accurate results. The comparison of diffracted field simulation results for stair case 

approximation and Dey-Mittra conformal FDTD technique is demonstrated in figure 3.15 

for a line source illuminated (at      wedge type pec object with     vertex angle. 

 

Figure 3.15  Comparison of Dey-Mittra conformal technique (a) and Staircase approximation (b) 

It is obvious that, the fields near to the wedge diverge in staircase approximation. Things 

are getting worse when double-side illumination is of interest. On the other hand, Day-

Mittra conformal technique gives very robust result in everywhere. As we see from 

equations 3.131 through 3.133, the application of conformal FDTD technique requires the 

calculation of intersection points. This is very tedious process so one can use external 

meshing software developed for this purpose. In this dissertation, we developed meshing 
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algorithm and used conformal FDTD algorithm for wedge type PEC object whose codes 

can be found in the CD given. 

3.8 Calculation of Diffracted Fields for Wedge Type Object 

The calculation of diffracted fields in FDTD method for PEC wedge object is presented by 

G.Çakır, L.Sevgi and P.Y.Ufimstev [3]. In this section we will summarize the multi-step 

processes which is required to extract diffracted fields from total fields. In the first step, we 

run FDTD simulation with PEC to obtain total fields which includes incident, reflected and 

difftacted fields as illustrated in figure 3.16 (a). 

 

Figure 3.16  Multi-step FDTD-based diffraction approach: (a) The wedge scenario,(b) Infinite-plane 

problem, (c) Free-space scenario 

After obtaining total fields, we stretch the top face of wedge as shown in figure 3.16 (b) 

and re-run FDTD simulation. Since there is no edge or tip the total fields in this case 

includes only incident and reflected fields. Finally we remove the wedge in simulation 

space and re-run FDTD simulation. The total fields obtained from the final step will give 

only incident fields since there is no object in the simulation space. Subtracting the time 

data of the second scenario from the first scenario in Region I (      ); and the time 
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data of the third scenario from the first scenario in Region II (         ) will yield 

diffracted-only fields all around the wedge. For double side illumination (DSI) that is both 

faces of the PEC wedge is illuminated with line source, we need four step processes similar 

to explained previously. In this case we need to repeat step two by stretching bottom face 

of the wedge. 

3.9 WEDGE FDTD GUI and Simulation Examples 

The Matlab-based simulation package Wedge FDTD GUI with the front panel displayed in 

figure 3.17, is prepared for the investigation of wedge diffraction in 2D with FDTD 

Method and various HFA models. The panel is divided into two parts. The left block is 

reserved for the structure and FDTD properties. The user also selects either of the TM 

(Soft) and TE (Hard) boundary conditions and total and diffracted fields, which are 

calculated multi-step process explained previously, in this block. The right panel is 

reserved for FDTD visualization and simulation results. User can use the tab located at the 

top of the right panel to switch between them. The user can also select the colormap which 

is used for FDTD simulation from the pop-up menu located at the top-right of the panel. 

Recording property is also enabled for saving FDTD simulation into storage devices in 

each time step. To do this, one can use record button located at the top-left of the panel. 

Only avi format is supported and recording feature uses external application embedded in 

the WEDGE FDTD software so as to reduce file size. What’s more, user can see the 

process of simulation from the progress bar which is shown dynamically during the 

simulation at the bottom of right panel. The user can expand/shrink the sizes of panels 

using the divider located between two panels. In this software, we have used Day-Mittra 

conformal modeling technique to model PEC wedge object. In addition to this, parallel 

computing feature is used for analytical solutions to achive faster simulation time. Here we 

present some simulation examples in figures 3.18 and 3.19. In the first example, we have 

illuminated to PEC wedge of     vertex angle with a     polarized line source from 70 

meter distance and     angle. We observed total and diffracted fields at 50 meter distance 

from the PEC with 1.33 degree angle steps. The results are shown at the figure 3.17 and we 

can say that FDTD simulation results agree with analytical simulation results very well.  In 

the second example we have increased wedge angle to     and changed illumination angle 

to      and polarization to    . The simulation results are shown at figure 3.18. In the 
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first example, we have illuminated to PEC wedge of     vertex angle with a     polarized 

line source from 70 meter distance and     angle. We observed total and diffracted fields 

at 50 meter distance from the PEC with 1.33 degree angle steps. The results are shown at 

the figure 3.17 and we can say that FDTD simulation results agree with analytical 

simulation results very well.   

 

 

Figure 3.17  Front panel of WEDGE FDTD software 
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Figure 3.18  Total field, Diffracted field simulation results for     mode 

In the second example we have increased wedge angle to     and changed illumination 

angle to      and polarization to    . The simulation results are shown at figure 3.19. 

 

Figure 3.19  Total field, Diffracted field simulation results for     mode 

Again we see that, the FDTD simulation results agree with analytical results very well. 

3.10 Conclusions 

In this chapter, we explained 3D and 2D FDTD technique to obtain numeric results of 

electromagnetic problems. We have seen that selection of spatial step affects numerical 

dispersion and selection of time step affects stability. In section 3.6, we reviewed 

electromagnetic wave propagation at the boundary of two dissimilar media and in 
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continuation we explain PML theory and algorithm for 3D FDTD lattice. We have seen in 

section 3.7 that, using staircase approximation for modeling slanted or curved objects can 

cause non-physical diffracted fields and can lead erroneous results. Also, we have 

mentioned alternative methods and explained Dey-Mittra conformal FDTD technique as an 

alternative of staircase method. The multi-step process for extracting diffracted fields from 

total fields is explained in section 3.8 briefly. Finally in section 3.9, we have introduced a 

novel Matlab-based virtual tool WEDGE FDTD GUI to analyze 2D wedge scattering 

problem for both     (Soft) and     (Hard) boundary conditions. We have seen that, 

FDTD results are almost perfectly fit with the HFA methods.  
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4 CONCLUSIONS AND FUTURE RESEARCH 
 

4.1 Summary 

 

In this dissertation, we have analyzed non-penetrable wedge scattering problem in 2D 

space with various HFA techniques and FDTD method. The primary goals of this research 

were to develop both HFA and FDTD algorithms for obtaining solutions of this type of 

scattering problem. During this research, we have encountered erroneous diffracted fields 

which affect the accuracy of the simulation in FDTD side, due to the staircase 

approximation of Yee algorithm. We have implemented various methods to reduce 

staircase approximation errors and we have found that Dey-Mittra conformal FDTD 

technique is optimum and gives best result. For this reason, we have developed CFDTD 

algorithm for analyzing total and diffracted fields which are formed by the illumination of 

2D PEC wedge object, numerically.   

 

We have developed two Matlab-based programs which are WEDGE GUI and WEDGE 

FDTD GUI for enabling one to investigate scattering behavior of 2D perfect electric 

conductor (PEC) wedge geometry easily. The former program is dedicated for only 

analytical solutions. We have used physical optics (PO) method, physical theory of 

diffraction (PTD) method, unified theory of diffraction (UTD) method, parabolic equation 

(PE) method with Exact series and Integral methods in this program to analyze wedge 

scattering phenomena.  The latter program uses FDTD method to obtain numeric results of 

the same problem. In this program, we have used conformal FDTD algorithm for modeling 

PEC wedge geometry and for analytical comparisons, we have used Exact integral and 

UTD methods. Being a time domain technique, FDTD method permits us to visualize time 

domain behavior of the electromagnetic wave. For this reason, we have also implemented 

this feature with recording option in WEDGE FDTD GUI.  
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4.2 Future Work 

We plan to analyze scattering behavior of PEC or dielectric double wedge geometry in 2D. 

After that, we may extend our analysis to three dimensional space. Since we have 

eliminated modeling problems in FDTD, we can easily obtain numerical solutions of three 

dimensional PEC or dielectric wedge geometries. But deriving 3D analytical solutions 

seems to be uneasy and we may deal with on this subject. 
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APPENDIX I 

 
%% ------------------------------------------------------- 
%  TMz Mode  2D Propagation in Free Space 
%  Author: Alper Uslu 
%  Method: FDTD 
%  Date:   July 2011 
% ------------------------------------------------------- 
clear; 
clc; 
delx=0.002;  % Sample size along x direction 
dely=delx;   % Sample size along y direction 
c=299792458; % Speed of Light 
f0=278e6;    % Frequency 
lambda=c/f0; % Wavelength 
k=2*pi/lambda; % Wavenumber 
delt=delx/(c*2); % Magic Time Step delt*c=delx 
epsilon=8.85*10^-12;   % Free Space Permittivity 
mu=4*pi*10^-7;         % Free Space Permeability 
nu=sqrt(mu/epsilon);   % Free Space Impedance 

  
%% PML Properties 

  
d=10;                                 %PML thickness 
rdesired=exp(-16);                    % Desired reflection coefficent 
m=4;                                  % Grading coefficent 
sigmaxmax=-(m+1)*log(rdesired)/(2*nu*d*delx); % Maximum electrical 

conductivity x direction 
sigmaymax=sigmaxmax;                        % Maximum electrical 

conductivity y direction 
kzmax=1;                                 % PML parameter 
kxmax=1;                              % PML parameter 
kymax=1;                              % PML parameter 

  
%% Simulation Space Properties 
nx=100;                               % Free space region total number of samples 

ny=100;                               % Free space region total number of samples 

  
nxx=nx+1;                             % Free space region total number of 
samples+1  

nyy=ny+1;                             % Free space region total number of 
samples+1   

dd=d+1;                               % PML Thickness + 1  
nxtot=nx+2*d;                         % Total Simulation Space number of samples 

nytot=ny+2*d;                         % Total Simulation Space number of samples 

nxxtot=nxtot+1;                       % Total Simulation Space number of samples 
+ 1 

nyytot=nytot+1;                       % Total Simulation Space number of samples 
+ 1 

  
%% Coefficent Matrices 

  
Ez=zeros(nxxtot,nyytot);              % Ez field array 
Dz=zeros(nxxtot,nyytot);              % Dz field array 

  
Hx=zeros(nxxtot,nytot);               % Hx field array 
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Bx=zeros(nxxtot,nytot);               % Bx field array 

  
Hy=zeros(nxtot,nyytot);               % Hy field array 
By=zeros(nxtot,nyytot);               % By field array 

  
C1ez=zeros(size(Ez));                 % 1.coefficent array used calculation of Dz 

C2ez=zeros(size(Ez));                 % 2.coefficent array used calculation of Dz 

C3ez=zeros(size(Ez));                 % 1.coefficent array used calculation of Ez 

C4ez=zeros(size(Ez));                 % 2.coefficent array used calculation of Ez 

C5ez=zeros(size(Ez));                 % 3.coefficent array used calculation of Ez 

C6ez=zeros(size(Ez));                 % 4.coefficent array used calculation of Ez 

  
D1hx=zeros(size(Hx));                 % 1.coefficent array used calculation of Bx 

D2hx=zeros(size(Hx));                 % 2.coefficent array used calculation of Bx 

D3hx=zeros(size(Hx));                 % 1.coefficent array used calculation of Hx 

D4hx=zeros(size(Hx));                 % 2.coefficent array used calculation of Hx 

D5hx=zeros(size(Hx));                 % 3.coefficent array used calculation of Hx 

D6hx=zeros(size(Hx));                 % 4.coefficent array used calculation of Hx 

  
D1hy=zeros(size(Hy));                 % 1.coefficent array used calculation of By 

D2hy=zeros(size(Hy));                 % 2.coefficent array used calculation of By 

D3hy=zeros(size(Hy));                 % 1.coefficent array used calculation of Hy 

D4hy=zeros(size(Hy));                 % 2.coefficent array used calculation of Hy 

D5hy=zeros(size(Hy));                 % 3.coefficent array used calculation of Hy 

D6hy=zeros(size(Hy));                 % 4.coefficent array used calculation of Hy 

  
%----------------- Coefficents for outside PML region------------------ 
C1=1;                                  
C2=delt; 
C3=1; 
C4=1/(2*epsilon*epsilon); 
C5=2*epsilon; 
C6=2*epsilon; 

  
D1=1; 
D2=delt; 
D3=1; 
D4=1/(2*epsilon*mu); 
D5=2*epsilon; 
D6=2*epsilon; 

  
C1ez(d+1:nxxtot-d,:)=C1; 
C2ez(d+1:nxxtot-d,:)=C2; 
C3ez(:,d+1:nyytot-d)=C3; 
C4ez(:,d+1:nyytot-d)=C4; 
C5ez(:,:)=C5; 
C6ez(:,:)=C6; 

  
D1hx(:,d+1:nytot-d)=D1; 
D2hx(:,d+1:nytot-d)=D2; 
D3hx(:,:)=D3; 
D4hx(:,:)=D4; 
D5hx(d+1:nxxtot-d,:)=D5; 
D6hx(d+1:nxxtot-d,:)=D6; 

  
D1hy(:,:)=D1; 
D2hy(:,:)=D2; 
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D3hy(d+1:nxtot-d,:)=D3; 
D4hy(d+1:nxtot-d,:)=D4; 
D5hy(:,d+1:nyytot-d)=D5; 
D6hy(:,d+1:nyytot-d)=D6; 

  
%--------------------------------------------------------------------- 

  
%-----------------------Coefficents for PML Region-------------------- 

  
for i=1:d 
    q=d-i-0.5; % Since Hy component's i index located at 1/2 steps  
    sigmax=(q/d)^m*sigmaxmax; % Polynomial Grading 
    kx=1+(kxmax-1)*(q/d)^m; % Polynomial Grading 

     
    D3hy(i,:)=(2*epsilon*kx-sigmax*delt)/(2*epsilon*kx+sigmax*delt);  
    D3hy(nxtot-i+1,:)=(2*epsilon*kx-

sigmax*delt)/(2*epsilon*kx+sigmax*delt); 

     
    D4hy(i,:)=1/((2*epsilon*kx+sigmax*delt)*mu); 
    D4hy(nxtot-i+1,:)=1/((2*epsilon*kx+sigmax*delt)*mu); 

  
    sigmax=((d-i)/d)^m*sigmaxmax; % Polynomial Grading 
    kx=1+(kxmax-1)*((d-i)/d)^m; % Polynomial Grading 

     
    C1ez(i,:)=(2*epsilon*kx-sigmax*delt)/(2*epsilon*kx+sigmax*delt); 
    C1ez(nxxtot+1-i,:)=(2*epsilon*kx-

sigmax*delt)/(2*epsilon*kx+sigmax*delt); 

     
    C2ez(i,:)=(2*epsilon*delt)/(2*epsilon*kx+sigmax*delt); 
    C2ez(nxxtot+1-i,:)=(2*epsilon*delt)/(2*epsilon*kx+sigmax*delt); 

     
    D5hx(i,:)=2*epsilon*kx+sigmax*delt; 
    D5hx(nxxtot-i+1,:)=2*epsilon*kx+sigmax*delt; 

     
    D6hx(i,:)=2*epsilon*kx-sigmax*delt; 
    D6hx(nxxtot-i+1,:)=2*epsilon*kx-sigmax*delt; 

  
end 

  

  
%PEC walls outside the PML 
C1ez(1,:)=-1.0; 
C1ez(nxxtot,:)=-1.0; 
C2ez(1,:)=0.0; 
C2ez(nxxtot,:)=0.0; 

  
for j=1:d 
    q=d-j-0.5; % Since Hx component's j index located at 1/2 steps 
    sigmay=(q/d)^m*sigmaymax; % Polynomial grading 
    ky=1+(kymax-1)*(q/d)^m; % Polynomial grading 

     
    D1hx(:,j)=(2*ky*epsilon-sigmay*delt)/(2*ky*epsilon+sigmay*delt); 
    D1hx(:,nytot-j+1)=(2*ky*epsilon-

sigmay*delt)/(2*ky*epsilon+sigmay*delt); 
    D2hx(:,j)=2*epsilon*delt/(2*ky*epsilon+sigmay*delt); 
    D2hx(:,nytot-j+1)=2*epsilon*delt/(2*ky*epsilon+sigmay*delt); 
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    sigmay=((d-j)/d)^m*sigmaymax; % Polynomial grading 
    ky=1+(kymax-1)*((d-j)/d)^m;   % Polynomial grading 

    

     
    C3ez(:,j)=(2*ky*epsilon-sigmay*delt)/(2*ky*epsilon+sigmay*delt); 
    C3ez(:,nyytot-j+1)=(2*ky*epsilon-

sigmay*delt)/(2*ky*epsilon+sigmay*delt); 
    C4ez(:,j)=1/((2*epsilon*ky+sigmay*delt)*epsilon); 
    C4ez(:,nyytot-j+1)=1/((2*epsilon*ky+sigmay*delt)*epsilon);    

     
    D5hy(:,j)=2*epsilon*ky+sigmay*delt; 
    D5hy(:,nyytot-j+1)=2*epsilon*ky+sigmay*delt; 
    D6hy(:,j)=2*epsilon*ky-sigmay*delt; 
    D6hy(:,nyytot-j+1)=2*epsilon*ky-sigmay*delt; 
end 

  
% PEC Walls 
C3ez(:,1)=-1; 
C3ez(:,nyytot)=-1; 
C4ez(:,1)=0; 
C4ez(:,nyytot)=0;    
%--------------------------------------------------------------------- 

  
%% Source and Simulation Time Properties 
rtau=50.0e-12; 
tau=rtau/delt; 
ndelay=3*tau; 
J0=-1.0*epsilon; 
T=350;                 % Total number of time steps 
%% FDTD Calculation 
for t=0:T 

  
    Bstore=Bx; 

     
    Bx(2:nxtot,:)=D1hx(2:nxtot,:).*  Bx(2:nxtot,:)-... 
                     D2hx(2:nxtot,:).*((Ez(2:nxtot,2:nyytot)-

Ez(2:nxtot,1:nytot)))./dely; 

                                           
    Hx(2:nxtot,:)= D3hx(2:nxtot,:).*Hx(2:nxtot,:)+... 
                      D4hx(2:nxtot,:).*(D5hx(2:nxtot,:).*Bx(2:nxtot,:)-

... 
                                           

D6hx(2:nxtot,:).*Bstore(2:nxtot,:)); 
    Bstore=By; 
    By(:,2:nytot)=D1hy(:,2:nytot).*  By(:,2:nytot)-... 
                     D2hy(:,2:nytot).*(-... 
                                          (Ez(2:nxxtot,2:nytot)-

Ez(1:nxtot,2:nytot)))./delx; 

                                       
    Hy(:,2:nytot)= D3hy(:,2:nytot).*Hy(:,2:nytot)+... 
                      D4hy(:,2:nytot).*(D5hy(:,2:nytot).*By(:,2:nytot)-

... 
                                           

D6hy(:,2:nytot).*Bstore(:,2:nytot)); 
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    Dstore=Dz; 
    Dz(2:nxtot,2:nytot)=C1ez(2:nxtot,2:nytot).*  Dz(2:nxtot,2:nytot)+... 
                            C2ez(2:nxtot,2:nytot).*((Hy(2:nxtot,2:nytot)-

Hy(1:nxtot-1,2:nytot))-... 
                                                        

(Hx(2:nxtot,2:nytot)-Hx(2:nxtot,1:nytot-1)))./delx; 

                                                     
Dz(60,60)=Dz(60,60)+J0*(t-ndelay)*exp(-((t-ndelay)^2/tau^2)); 

     
Ez(2:nxtot,2:nytot)=C3ez(2:nxtot,2:nytot).*Ez(2:nxtot,2:nytot)+... 
                            

C4ez(2:nxtot,2:nytot).*(C5ez(2:nxtot,2:nytot).*Dz(2:nxtot,2:nytot)-... 
                                                        

C6ez(2:nxtot,2:nytot).*Dstore(2:nxtot,2:nytot)); 

      
%% Plot Ez at every time step  
     surf(Ez);                        
     shading interp; lighting phong; colormap hot; axis off; zlim([0 1]); 
     set(gcf,'Color', [0 0 0], 'Number', 'off', 'Name', sprintf('Time 

Step = %i', t)); 

      
     pause(0.05); 
end 
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