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ABSTRACT 

 

 

Optical fiber cables have become ideal for achieving the challenge of reaching high speed 

data rates and terabit transmission, due to its low attenuation characteristics and high 

bandwidth capability such as 50 THz. Multiplexing of numerous channels on the same 

fibre requires higher transmit power or sufficiently lower fibre losses to utilize the 

available bandwidth having high bit rate with a span of thousands of kilometer.  

It is required to increase the number of optical channels in dense WDM systems in order to 

meet the extreme capacity demands on data transmission networks. This necessity of 

increment in number of channels can be provided only with small channel spacing. In 

order to reach required amount of signal channels, new frequency standards such as 25 

GHz and 12.5 GHz were recently specified by ITU. In such narrower channel spacing with 

large number of WDM channels, the non-linear effects of the optical fibre can induce 

serious system impairments. In modern WDM systems, the primary nonlinear effects are 

cross phase modulation (XPM), and the four-wave mixing (FWM). The FWM 

characteristics are especially related to frequency allocation of channels. Throughout this 

thesis, we will be mainly dealing with the FWM impairments. 

The occurrence of FWM depends on several factors, such as frequency spacing between 

channels, the input power per channel, the dispersion characteristics of the optical fiber, 

and the distance along which the channels interact. 

Four wave mixing results from changes in the refractive index with optical power called 

optical Kerr effect. In FWM, two co-propagating waves produce two new optical sideband 

waves at different frequencies. The generation of these beat signals which fall into original 

signal wavelengths causes a channel energy loss, which induces a crosstalk effect. In long 

haul transmission links, the deployment of optical amplifiers makes the problem even 

worse, as not only the transmitted signal is amplified, but also the generated FWM 

products, which mix again with the signals, causing new products. Also when intense 

incident signal power launched into a fiber, linearity of optical response is lost. Moreover, 

in the usage of dispersion-shifted fibers (DSF), the FWM mechanism is enhanced, due to a 

depletion of the phase mismatch associated to the fiber's chromatic dispersion. In 

consequence, the detected signal power will fluctuate considerably.  

Numerous techniques have been proposed to minimize the detrimental limiting effects of 

FWM such as: the spectral allocation of the channels, the spectral assignment of the 

channels as far as possible from the zero-dispersion wavelength (λZD), and the spectral 

distribution of the unequally spaced channels, which requires a complex system design. 

In this study, the impact of the channel spacing (positioning of the DWDM channels), 

phase mismatching, changing of channel input power and fiber length on FWM efficiency 

were analyzed based on represented algorithm. For various types of fibers such as G.652 
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(Single- Mode Fiber - SMF), G.653 (Dispersion-Shifted Fiber - DSF), and G.655 (Non-

Zero Dispersion-Shifted Fiber - NZDSF) compliant fibers, considering the DWDM grids 

suggested by the ITU-T Recommendations G.692, and G.694.1, with uniform channel 

spacing of 100, 50, 25, and 12.5 GHz were compared with simulations. Split Step Fourier 

Method (SSFM) numerical technique has been used to model nonlinear Schrödinger (NLS) 

equation in order to investigate pulse propagation in optical fibers.  
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DALGA BOYU BÖLMELİ ÇOĞULLAMA SİISTEMLERİNİN FİBER 

KANALLARINDA DÖRT DALGA-KARIŞIMI ETKİLERİNİN İNCELENMESİ 

 

 

ÖZET 

 

 

Fiber optik kablolar, düşük zayıflama özellikleri ve 50 THz gibi yüksek bant genişliği 

sağlayabilen profilleri sayesinde yüksek hızlı verilerin aktarımına ulaşmak için ideal hale 

gelmiştir. Aynı fiber üzerinden, binlerce kilometrelik mesafelerde yüksek bit hızı ile 

mevcut bant genişliği kullanmak için çok sayıda kanalın çoğullanması, yüksek iletim gücü 

yada kaybı yeterince düşük fiber gerektirir. 

Veri iletimi şebekelerinde artan kapasite taleplerini karşılamak amacıyla yoğun dalga boyu 

bölmeli çoğullama (WDM) sistemlerinde optik kanal sayısını artırmak gerekmiştir. Gerekli 

olan bu kanal sayısı artışı sadece kanal aralığı küçük tutularak sağlanabilir. İstenen sayıda 

sinyal kanalına ulaşabilmek için uluslar arası telekomünikasyon kurumu (ITU) tarafindan 

belirlenen son frekans aralıkları olan 25 GHz ve 12.5 GHz frekanslar kullanılmaktadır. Bu 

denli yakın kanal boşlukları kullanılarak elde edilen WDM sinyalleri, optik fiberin 

doğrusal olmayan etkileri sebebiyle ciddi sistem bozukluklarına neden olabilir. Modern 

WDM sistemlerinde doğrusal olmayan etkilerin başlıcaları Çapraz-Faz Modülasyonu  

(XPM) ve Dört-Dalga Karışımı (FWM), sistem performansını sınırlandırmaktadır. FWM 

etkisinin karakteristiği özellikle kanalların frekans düzlemindeki tahsisi ile ilişkilidir. Bu 

tez boyunca, FWM bozuklukları ve etkileri ele alınıp incelenmiştir. 

FWM oluşumu; kanallar arası frekans aralığı, kanal başına giriş gücü, optik fiberin 

dispersiyon özellikleri ve kanalların aldığı mesafe boyunca birbirleri ile etkileşimi gibi 

birçok faktöre bağlıdır. 

Dört dalga karışımı, “Optik Kerr Etkisi” adı verilen fiber kırılma indisinin optik güç ile 

değişiminden gelmektedir. FWM etkisinde, eş yayılan iki dalga farklı frekanslarda iki yeni 

optik yan dalga üretmektedir. Bu bozucu yan dalga ürünlerinin orijinal sinyal kanalları 

üzerinde oluşması sonucu enerji kaybı meydana gelmekte ve çapraz karışım etkisine sebep 

olmaktadır. Uzun mesafeli veri iletim hatlarında, optik kuvvetlendiricilerin kullanılması; 

problemi daha da ciddileştirmekte olup iletilecek ana sinyal ile beraber  FWM ürünü 

sinyallerin de kuvvetlendirilmesine, karışıma sebep olacak yeni ürünler doğmasına sebep 

olmaktadır. Ayrıca fibere yoğun bir giriş sinyali uygulandığında optik doğrusallık 

bozulmaktadır. Buna ilaveten Dispersiyonu Kaydırılmış Fiber (DSF) kullanılması 

durumunda, fiberin kromatik dispersiyonu ile ilişkili olarak faz uyumsuzluğunun azalması 

sonucu FWM etkisi gelişir. Bunun sonucu olarak elde edilen edilen sinyal gücü önemli 

ölçüde dalgalanır. 

FWM ve sınırlayıcı etkilerinin minimize edilmesi için sayısız teknik geliştirilmiştir. 

Kanalların spektral dağılımı, sıfır-dispersiyon dalga boyundan (λZD) mümkün olan en uzak 
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mesafede kanalların seçimi ve eşit olmayan bir spektral dağılım, karmaşık bir sistem 

tasarımı gerektiren tekniklerdir. 

Bu tez çalışmasında, kanal aralığının etkisi (DWDM kanal konumlandırması), faz 

uyuşmazlığı, kanal giriş gücünün ve fiber uzunluğunun değişiminin FWM verimliliği 

üzerinde etkisi sunulan algoritma kullanılarak analiz edilmiştir. ITU-T G.692 ve G.694.1 

DWDM kanal dağılım standardları olan 100, 50, 25 ve 12.5 GHz kanal aralıkları ile fiber 

standartları olan G.652 basamak-indisli tek modlu optik fiber (step-index, SMF), G.653 

dispersiyonu kaydırılmış fiber (DSF) ve G.655 sıfırlanmamış dispersiyonu kaydırılmış 

fiber (NZDSF) türleri simülasyonlarda karşılaştırılmıştır. Simülasyonlarda optik fiberin 

darbe yayılımını sayısal teknik ile araştırmak amacıyla parçalı adım Fourier metodu 

(SSFM) ile doğrusal olmayan Schrödinger (NLS) denklemi çözülmektedir. 
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1. INTRODUCTION 

1.1 Background and Problem Definition 

 

The rapid increase of worldwide communication, internet and multimedia demands has led 

to an explosive growth of high speed digital communications. Throughout the latter quarter 

of the 20th century fiber optics has been indispensable in facilitating this extraordinary load 

[1]. 

Modern commercial fiber optic systems are capable of transmitting hundreds of gigabits-

per-second, with experimental systems demonstrating terabit capability [2]. Contemporary 

optical fibers have a bandwidth in excess of 30 terahertz [3]. While the fiber channel may 

be capable of transmitting terabit-per-second (Tb/s) data rates, no current single electrical 

communication system can reach this capacity. The electrical transmitters and receivers on 

either end of a fiber channel are subject to technological constraints currently which limit 

their speeds at about 40 Gb/s [4]. 

Communication systems overcame the electronic limitations with the invention of low-loss 

optical fibers and wavelength division multiplexing (WDM) thereby resulting in an 

increment in the transmission capacities [3]. 

In WDM systems, the available bandwidth is divided into separate channels with each 

channel carrying one signal. The data rate of each channel frequently limited to 10 Gb/s, 

but total data rate of all channels are much higher [2]. In order to increase the transmission 

capacity of WDM optical system, transmission data rate per wavelength has been increased 

as well as the number of wavelengths. 

However, there are two different transmission issues which are limiting factors in long-

haul WDM systems: dispersion and fiber nonlinearities.  

In terms of the high data rate transmission, the chromatic dispersion (CD) and polarization-

mode dispersion (PMD) are typically major obstacles which result in much larger penalties 

than the nonlinearity of optical fiber. Thus, nonlinear effects were usually neglected prior 

to the 1990’s. With the improvement of dispersion shifted fibers (DSF), dispersion 

compensating fibers (DCF) and the other dispersion management techniques, the limiting 

problem of CD has been mitigated [5,6]. 
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As data rates have continued to increase the number of wavelengths the number of 

wavelengths also increased. Decreasing channel spacing in WDM systems led to 

limitations due to nonlinearities such as four-wave mixing (FWM) and cross-phase 

modulation (XPM).  

In order to establish communications over long-haul networks the power losses are 

compansated by using erbium-doped single mode fiber amplifier (EDFA) at about every 50 

km in WDM transmission systems. 

Although EDFAs make the high optical power levels available in WDM systems, they also 

led to a more vulnerable system performance by increasing nonlinear effects [7,8]. This 

leads to interference, distortion, and excess attenuation of the transmitted signals and 

results in system degradations. As a result, fiber nonlinearities emerged as the most serious 

limiting factor.  

The origin of nonlinearities arise from the variation of the refractive index in an optical 

fiber that is related to the intensity of the optical signal. This detrimental effect becomes 

more significant when high aggregate power is launched, even if the individual power of 

each channel may be below the level needed to produce nonlinearities. The combination of 

high total optical power and large number of channels at narrower spaced wavelengths 

leads to the formation of many unwanted components. Hence, four-wave mixing seems to 

be the most harmful  impairment in dense wavelength division multiplexing (DWDM) 

systems [9-11]. 

1.2 Introduction to Optical Fibers in Communication Systems 

An optical fiber is a dielectric waveguide consisting a core region which has a higher 

refractive index surrounded by a cladding layer that has lower refractive index material. 

This type of fiber is called step-index fiber. This refractive index difference ensures that 

the propagating signal power is contained predominantly within the core region which has 

a higher refractive index. For propagation, the angle of incidence of the propagating light 

should be smaller than the critical angle at the boundary waveguide. For core region with a 

refractive index cn  , and for the cladding region with a refractive index cln , the critical 

angle can be expressed as 
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arcsin cl
c

c

n

n


 
  

 
                       (1.1) 

Another parameter used to characterize an optical fiber is Numerical Aperture (N.A.). 

Numerical aperture is the maximum angle that light can be accumulated into a fiber from 

its end faces and can be calculated with Snell-law: 

  2 2

1sin c clNA n n                      (1.2) 

where refractive index of environment is taken as “1” considering incidence from air. 

As opposed to step-index fibers, the graded-index fibers have a refractive index profile 

which has its highest value on the axis and decreases monotonically towards the index of 

the cladding region. Figure 1.1 shows schematically the index profile and the cross section 

for the two kinds of fibers. 
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Figure 1.1: Cross section and refractive-index profile for step-index and graded-index fibers [2]. 

The normalized frequency which is denoted as V determines the number of modes 

supported by an optical fiber and can be expressed as 

1
2 2 2

0 ( )c clV k a n n                           (1.3) 
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where 0
2k 


   ,    is the core radius, and    is the wavelength of the light. It is 

observed that the V parameter depends on the geometry of fiber and the core-cladding 

index difference. Industrial fibers are designed to support only one mode that can be 

satisfied by the V<2.405 condition. A step-index fiber which satisfies this condition is 

referred as Single-mode fiber(SMF). In this thesis, only single mode fibers are investigated 

with different classification of ITU such as G.652, G.653, G.655 fibers. Fiber modes will 

be explained in more detail in the following chapter. 

1.3 WDM Optical Fiber Communication Systems 

 

A standard communication system consists of basic components like multiplexer, 

demultiplexer, signal source, receiver and carrier medium. In order to use the system in full 

capacity, a new technique is developed through the simultaneous multiplexing of each 

channel. Time division multiplexing (TDM) and Frequency division multiplexing (FDM) 

are two main multiplexing schemes which use time domain and frequency domain 

respectively. In practice, these two multiplexing techniques can be used both in electrical 

domain and optical domain. Due to the limitations imposed by electronic components, 

transmission of multiple channels over same fiber provided a simple way for exploiting the 

large bandwidth offered by optical fibers. Development of such system corresponds to 

optical carriers at different wavelengths, which is called Wavelength Division 

Multiplexing (WDM) [2].  

Wavelength division multiplexing (WDM) is a technology used to combine and split two 

or more optical signals of different optical center wavelengths in a fiber. This technique 

allows fiber capacity to be expanded in the frequency domain from one channel to more 

than 100 channels.  

The WDM channel wavelength assignment is an industry standard defined in International 

Tele-communications Union (ITU-T) recommendation (See Appendix-G). 

In a typical WDM system (Figure 1.2), bit sequence is modulated in transmitters through 

optical carriers each at a different wavelength i.e., λ1 … λN with a specific modulation 

format. Optical bandpass filtering and combining of the individual wavelength signals are 

performed in multiplexer level. The demultiplexer coupler separates the combined signals 
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through their corresponding channel ports. Basic WDMs are transparent to all optical 

protocols such as SONET, SDH, GigE, 10GigE, etc. They are also transparent to 

transmission rates up to the WDM’s specification limits (Appendix-H). 

During signal propagation several linear and nonlinear fibre impairments such as 

attenuation, chromatic dispersion and fibre nonlinearities affect the system. The main focus 

of this thesis is to study the effects of four-wave mixing (FWM) which is considered as a 

major limitation in a Dense Wavelength Division Multiplexing System [12].  

 

 

Figure 1.2: Schematic view of a DWDM System. 

When low loss SMF is used (e.g, fibers with reduced OH-absorption near 1.4µm), the 

ultimate capacity of a WDM system can reach up to 300 nm bandwidth. The minimum 

channel spacing can be as small as 50 GHz or 0.4 nm for 40-Gb/s channels. Since 750 

channels can fit into the 300-nm bandwidth, the resulting effective total bit rate may be as 

large as 30 Tb/s. Assuming that the WDM signal can be transmitted over 1000 km by 

using optical amplifiers with dispersion management, the effective BL product may exceed 

30,000 (Tb/s).km with the usage of WDM technology [2]. 

1.4 Overview and Objective of the Thesis 

This thesis is focused on the several degradation effects of four-wave mixing in high 

capacity DWDM systems. The propagation algorithm is used to calculate linear and 

nonlinear fiber transmission parts. The long-haul scenario is unique in the sense that it 
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simultaneously requires high data rates, high power levels and long distances. This is 

precisely the condition under which nonlinear effects are the limiting factor. 

The thesis is organized as follows. The problem definition and some preliminaries on 

optical communication channels are given in Chapter 1. 

Chapter 2 introduces the theoretical background of pulse propagation equation in fiber 

optic transmission systems. Linear and nonlinear fibre impairments effecting the 

transmission are presented.  All of the high capacity WDM systems transmit multiple-

channels on a single fiber with high spectral efficiency. The performance in these systems 

is limited by the inter-channel non-linearities (XPM, FWM) due to the interaction of 

neighbouring channels. The main focus of this work will be the effect of FWM as the most 

problematic nonlinear impairment of DWDM systems. The impact of intra-channel and 

inter-channel nonlinear effects of FWM is analyzed at 10 and 40 Gbit/s.  

The signal propagation in a fiber channel can be described by the nonlinear Schrodinger 

equation (NLSE) and the solution of the NLSE can be solved numerically by using split-

step Fourier method (SSFM).  

In Chapter 3 numerical solution of pulse propagation equation is presented.  Software 

simulations performed in Matlab with Split Step Algorithm (SSFM). Optisystem, (or 

Linksim)  a commercial software is used to compare and verify results.  SSFM algorithm is 

implemented by solving the linear and nonlinear part in an iterative method numerically. 

All the simulation results derived are given in Chapter 4. The conclusions are 

summarized. Several future research directions are also suggested and discussed in this 

chapter. 
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2. THEORY OF OPTICAL FIBERS 

2.1 Fiber Types 

An introduction to the theory of optical fibers was given in Section 1.2. In terms of the ray 

optics, approximation for propagation is described by the Snell’s law and Total Internal 

Reflection. The fibers with higher fractional index change Δ are not suitable for optical 

communications due to the multipath dispersion (modal dispersion). For this reason, 

another type of fiber is developed with considerably reduced intermodal dispersion. Such 

an optical fiber is called as graded-index fiber (GRIN) [2]. 

Graded-index fibers have a core with radially decreasing refractive index from the center 

to the core boundary. Considering the geometrical properties and the number of guided 

modes, the fibers can be categorized further as multi-mode and single mode fibers. 

The graded index profile is usually given as: 

 

1

1 2

1 ( ) ;        ,     
( )

1 ;        

n
n

n n

   


 

       
   

                  (2.1) 

where   is the core radius. The parameter   determines the index profile. 1n  is the 

nominal refractive index 1  ( 0)n n r  , 2n  is the refractive index of the homogeneous 

cladding, ρ is the radius of the core,  2 2 2

1 2 1( ) 2n n n    . A step-index profile is 

approached in the limit of large  . A parabolic-index fiber corresponds to 2  . 

n

r[µm]

(a)

0

125 62.5

n

r[µm]

(b)

0

125 462.5 125 4 125
 

Figure 2.1: Standard geometrical parameters and index profiles for optical fibers  

(a) graded-index MMF, (b) step-index SMF [13]. 
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For optical communication systems, optical fibers are assumed to be a perfect data 

transmission medium considering bandwidth limitations of the other mediums. Several 

limitations are taken into account especially in high bit rate systems, as the distance and 

number of amplifiers increase. These limitations can be divided into two major categories: 

linear and nonlinear. 

The linear propagation effects of the fibers are attenuation, chromatic dispersion (CD) and 

polarization mode dispersion (PMD).  

In particular, the nonlinear effects set strict limitations for multiwavelength WDM systems 

at higher bit rates and increased distances. The primary nonlinear effects are self phase 

modulation (SPM), cross phase modulation (CPM) and four-wave mixing (FWM).  

These fiber transmission impairments are categorized in the Figure 2.2. 

 

 

 

Figure 2.2: Linear and non-linear optical fiber effects. 
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2.2 Linear Degredation 

2.2.1. Attenuation in Fibers  

Average optical power P of a bit stream propagating inside an optical fiber differs and it 

can be shown by Beer’s formula: 

dP
P

dz
                     (2.2) 

where   is the attenuation coefficient. 

Optical power loss is wavelength dependent and cumulative in an optical fiber. It increases 

exponentially with fiber length,  

( )

0( , ) z j t z

xE z t E e e W                               (2.3) 

The amount that an optical signal is attenuated in power after propagating through a 

passive component or fiber can be defined as optical loss and given by 

exp( )out inP P L                   (2.4) 

where outP   is the transmitted power, inP  is the initial power and 𝐿 is the length of the fiber.  

The value of   can be expressed in units of dB/km using the relation 

 10

10
( ) log 4.343out

in

p
dB km

L p
 

 
  

 
                          (2.5) 

Elastic collisions between the light wave and fiber molecules cause the scattering of light 

along the entire length of the fiber. This type of scattering is also known as Rayleigh 

scattering. Some of the light escaping from the fiber waveguide and some of the light 

reflecting back to the source is a direct outcome of Rayleigh scattering that causes 96% of 

(attenuation) signal loss in fibers. However, the other factors such as material absorption 

and bending loss account for the rest.  
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Figure 2.3: Fiber attenuation dependence on wavelength. 

 

Absorption of light energy by fiber impurities such as water (OH−) molecules is called 

material absorption. The main water absorption band is centered at 1383 nm, which is 

considerably reduced in newer G.652.c/d fiber. Figure 2.3 shows fiber attenuation 

dependence on wavelength of a typical standard G.652.a/b fiber and reduced water 

absorption G.652.c/d fiber. 

2.2.2. Chromatic Dispersion 

Variation in propagation delay with respect to wavelength results in broadening of the 

pulses. This phenomenon is referred as Chromatic Dispersion (C.D.) which depends on 

fiber materials and dimensions.  

Phase velocity of a propagating wave (carrier velocity) is related to propagation parameter 

β as defined in the equation below 

eff

c

n





                         (2.6) 

effn is the effective refractive (mode) index that is related to propagation constant: 

0effn k                    (2.7) 
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where 0k  is the wave number and defined as 0 2k c    . 

For a single mode fiber (SMF), the major source of dispersion is the group velocity 

dispersion (GVD). Group velocity (pulse envelope velocity or information velocity) is 

defined as derivative of the phase velocity,  

1

1( ) 1g d d                                 (2.8) 

where   is the propagation constant. 

The wavelength dependence of the group velocity leads to pulse broadening due to the 

dispersion of different spectral components during propagation. Resulted time delay (Fig. 

2.4) can be determined as 

gT L v                              (2.9) 
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Figure 2.4: Pulse spreading due to chromatic dispersion in fiber [12]. 

 

Using Equation 2.9, the extent of broadening ( )T  for a pulse spectral width of Δω 

through a fiber of length L is governed by 

2

22

g

dT d L d
T L L

d d v d


    

  

 
          

 

                        (2.10) 

2  is known as the group velocity dispersion (GVD) parameter. It’s used to present pulse 

broadening parameter of the optical signal while propagating inside the fiber. 

Dispersion coefficient can also be derived from the propagation constant with expansion of 

Taylor-series as 
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                            (2.11) 

where   
2

2 2

d

d





   is group velocity dispersion (GVD)              (2.12) 

Spectral width of the optical pulse is defined as 

 22 c                            (2.13) 

Substituting Equation 2.13 in Equation 2.10, broadening of pulse can be written as 

g

d L
T DL

d v
 



 
      

 

               (2.14) 

where 
22

1 2

g

d c
D

d v




 

  
    

 

                        (2.15) 

D is called dispersion coefficient and can be expressed by the group velocity dispersion, β2,  

22

2 c
D





     ps/(km-nm)                           (2.16) 

dispersion slope is also often expressed in terms of wavelength using the dispersion slope 

parameter 

2

32

0 0

2 2dD c
S D

d




  

 
   

 
               (2.17) 

where the slope parameter S is normally given in ps/nm2/km. A typical value in SMF at 

1550 nm is 0.08 ps/nm2/km. 

Material dispersion and waveguide dispersion are the two subproducts of total dispersion 

in optical fibers. 

Predominant one material (intermodal) dispersion appears in MMF because the different 

modes are associated with different velocities. Material dispersion occurs due to the fiber 

core’s refractive index changing with wavelength. 

It can be defined as 
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1 g

M

dn
D

c d
                   (2.18) 

where 
gn  is the group index defined as  ( )g eff effn n dn d   . 

At the wavelength of 1.276 µm, slope of 
gn  becomes zero ( 0)gdn d  . This wavelength 

is referred to as zero-dispersion wavelength ZD . For the region below ZD , MD  is negative 

and above that it becomes positive. Zero dispersion wavelength of the fibers can vary 

depending on doping the core and cladding which results in with a refractive index 

variation based upon design. 

The main cause of the waveguide dispersion effect is the physical structure of the fiber 

core cladding that causes pulses to propagate at different velocities for different 

wavelengths.  

Waveguide dispersion depends on fiber design parameters such as core radius   and core-

cladding index difference ∆. It can be calculated as 

2 2

2 2

2

2 ( ) ( )g g

W

n dnVd Vb d Vb
D

n dV d dV



  

 
   

  

               (2.19) 

Since the result of this equation is always negative, WD  is negative throughout the entire 

wavelength range [2].  

If the total dispersion is considered (Figure 2.5) as the combination of material and 

waveguide dispersion, it reduces to 

M WD D D                      (2.20) 

As the pulse propagate in fiber, signal pulse becomes wider due to chromatic disperison 

which leads to two major problems: 

1) Trailing and leading edges of the pulse spreads into adjacent pulse bit time slots 

which is called as Inter Symbol Interference (ISI), 

2) The spread of pulse to adjacent time slot results in decreasing in the optical power. 
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Figure 2.5: Total chromatic dispersion in SMF resulting from material and waveguide dispersion [4]. 

 

Typical values of dispersion are in the range 15–18 ps/(km-nm) near 1.55µm. In WDM 

communication systems, this wavelength region has remarkable interest. 

Using this feature, new fibers designed such that whose zero dispersion wavelength are 

shifted towards the longer wavelengths.  

Most commonly deployed fiber type is Standard Single Mode Fiber (SMF, ITU-T G.652) 

which has a non-dispersion shifted structure. Therefore it is also known as Non-Dispersion 

Shifted Fiber (NDSF). Zero dispersion wavelength of SMF is approximately 1310 nm. 

They are used for both TDM and DWDM transmission systems with the dispersion 

compensation requirement. 

Dispersion-shifted fibers (DSF, ITU-T G.653) have its zero dispersion wavelength in 1550 

nm region. This property reduces dispersion for this window whereas increasing nonlinear 

distortions especially FWM in deployment for DWDM links. 

The other type of fiber has a low chromatic dispersion window in 1550 nm region but not 

zero. Those fibers which are designed to alleviate nonlinear distortions is known as Non-

zero Dispersion Shifted Fiber (NZDSF, ITU-T G.655). Because of the reasons, these fibers 

are frequently preferred in multichannel DWDM systems. 

Also fibers with the positive 2  value ,(D negative) in the wavelength region below 1.6 

µm are designated to compensate dispersion in communication links. This type of fiber is 

called dispersion compensating (DCF) fiber [12].  
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2.2.3 Polarization Mode Dispersion 

Ideally, single mode fibers have perfectly cylindrical and circular core. But in industry the 

core of the fibers exhibit variations in the shape along with the fiber length due to 

mechanical and thermal stresses included during manufacturing and deployment. The 

change of geomety results in a difference between index of refraction and the orthogonally 

polarized modes.  

This phenomenon is referrred to as birefrigence and defined as  

m x eff y effB n n                     (2.21) 

where 
x effn 

 and 
y effn 

 are mode indices for orthogonally polarized modes. 

A periodical power exchange between these two orthogonal polarization components 

occurs because of the birefrigence. This period is called beat length and can be calculated 

as 

B

m

L
B


                  (2.22) 

Typically 10 mBL   at 1µm.  

As a result of birefrigence, initially launched linear polarization quickly reaches a state of 

arbitrary polarization.  

These two principal states of polarization have different velocities that lead to pulse 

spreading along the fiber. The amount of pulse spreading in time between the two 

polarization pulses is referred to as differential group delay (DGD) and is measured in 

units of picoseconds (Figure 2.6). 

Differential group delay is given by  

1 1 1( )x y

gx gy

L L
T L L

v v
                           (2.23) 

When both of the polarization components of input pulse excited into a waveguide fiber, 

pulse becomes broader as the components disperse due to different propagation velocities 

(also for different frequency components) of the signal’s two orthogonal polarizations. 
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This phenomenon is called polarization-mode dispersion (PMD) and turns out to be a 

restrictive factor for optical communication systems operating at high bit rates. 
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Figure 2.6: Differential group delay (PMD) effect on pulse propagation [3]. 

 

It can be calculated as; 

   p

T
D ps km

L


                            (2.24) 

where T  is the differential group delay and L is the length of the fiber as a transmission 

distance. 

PMD value is in the range of 0.1-1 ps/√km. Because of its √L dependence, PMD induced 

pulse broadening is relatively small as compared to GVD effects [2,12].  

2.3 Nonlinear Degredations 

The refractive index of the fiber is assumed to be constant at low power levels. This 

assumption makes silica as a linear medium. In other words the fiber material (silica) is 

assumed to be linear medium. 

Even though silica is intrinsically not a highly nonlinear material, the waveguide geometry 

confines light to the small core cross section and hence power density becomes several 

hundreds of MW/m2 . Thus, over long fiber spans nonlinear effects become significant in 

the design of WDM communication systems. 

Effect of nonlinear impairments is dependent on signal strength which declines 

exponentially along with the propagation in the fiber. Therefore, effective fiber length is 

defined as the length of fiber beyond which nonlinear effects are no longer significant. 
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                (2.25) 

where inP  is the initial optical power, L is the fiber length and ( )P z  is the power of the 

optical signal at length of z. ( )P z  is related to the attenuation in the fiber: 

( ) z

inP z P e                     (2.26) 

Thus 
effL  can be reduced to  

1 L

eff

e
L






                             (2.27) 

Typically α is 0.048/km (αdB = 0.21 dB/km) at 1550 nm, then Leff is approximately 21 km 

for very long (where L>> 21 km) nonamplified fiber links. 

Nonlinear effects in optical fiber mainly originate from fiber’s refractive index dependence 

on intensity of the propagating signal which is referred to as Kerr effect. Variation in 

refractive index due to the Kerr effect is caused by two reasons. 

First one is the change in refractive index due to the high signal power levels. This change 

in refractive index can be calculated as  

2( , ) ( )eff

eff

p
n E n n

A
                              (2.28) 

where 
effA  is the effective fiver core area, 2n  is the nonlinear index coefficient. Typical 

values of 2n  are 3.0 x 10-20 m2/W (varies between 2.0 x 10-20 to 3.5 x 10-20 m2/W) for silica. 

Second significant reason of nonlinear Kerr effect is the change in refractive index due to 

the change of propagation parameter (β) by a factor called nonlinear coefficient (). It can 

be derived by 

' P                     (2.29) 

where '  is the nonlinear propagation parameter. 

In practice nonlinear coefficient () varies between 1 to 3 (1/km.W) And it can be obtained 

by 
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eff

n

A





                    (2.30) 

2.3.1 Self-phase modulation 

Nonlinear coefficient term (  ) produces a pahse shift which increases linearly along with 

the propagation distance z. This nonlinear phase modulation induces a pulse on itself 

which referred as Self-Phase Modulation (SPM). Assuming the constant input power, 

nonlinear phase shift due to SPM is given by 

0 0

( ) ( )

L L

SPM

in eff' dz P z dz P L                                  (2.31) 

where ( )P z  and 
effL are defined in Equation (2.26) and (2.27) respectively. 

SPM leads to frequency chirping of optical pulses which depends on the pulse shape. In 

order to reduce the impact of SPM, phase shift value SPM  should be less than 0.1. For long 

fibers, this assumption can be approximated to  

0.1 ( )in AP N                   (2.32) 

In practice, if =2 (1/W.km), NA=10, α=0.2 dB/km, the input peak power is limited to 2.2 

mW.  

2.3.1 Cross-phase modulation 

The nonlinear behaviour of the refractive index due to the optical intensity of other 

channels creates phase shift (i.e. frequency modulation) for a specific channel. This 

phenomena is known as cross-phase modulation (CPM or XPM) which occurs especially 

in multichannel transmission systems such as DWDM. 

Phase shift of the j-th channel can be written as 

( 2 )XPM

j eff j m

m j

L P P 


                         (2.33) 

Assuming equal channel powers worst case of the phase shift occurs when pulses 

completely overlap one another. In this case phase shift can be estimated as 
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( ) (2 1)XPM

j jM P                     (2.34) 

Pulses at different wavelengths travel at different group velocities in the presence of 

dispersion and cause walk-off between pulses. This process diminishes the distortions 

induced by XPM. Therefore, the effect of XPM is inversely proportional to dispersion 

discrepancies among channels in WDM systems [2,12].  

2.4 Four-Wave Mixing 

2.4.1 Introduction 

In WDM transmission, when three optical signals of different center wavelengths are 

propagating through an optical fiber, beating (mixing) of the signals leads to generation of 

interfering signals at new wavelengths. This process is called as Four-Wave Mixing 

(FWM). This newly produced signal is called FWM component which can cause signal 

crosstalk if the frequency falls within the band of an existing WDM channel. FWM 

originates from the dependence of the fiber’s refractive index on the intensity of optical 

signal that produces a nonlinear medium due to the third order nonlinear susceptibility. If 

the number of channels are increased, number of FWM light is also increased. It can be 

expressed as 

4 1 2 3                      (2.35) 

But only frequency combinations of 4 1 2 3       are generate significantly high 

power components in WDM systems provided that the channel spacing and dispersion are 

small enough to meet the phase matching condition. 

FWM process is also different from SPM and XPM because of energy transfer between 

channels. Such a power transfer not only results in the power loss for the channel but also 

induces interchannel crosstalk that degrades the system performance seriously. 



 

20 

 

C37 C36 C35 C34 C33 C32 C31 C30

DWDM Channels

P
o

w
er

DWDM Signals

Newly generated 

FWM products

λ113 λ112 

λ213 

λ123 

λ223 λ132 

λ312 

λ221 λ332 

λ321 

λ231 

λ331 

λ1 λ2 λ3 

 

Figure 2.7:  FWM products of three equally spaced DWDM signals [12]. 

 

In Table 2.1 three equally spaced DWDM channels (λ1=1550.12,  λ2=1550.92, λ3=1551.72 

nm) and FWM components is presented. Generated FWM terms are given in Table 2.1. 

Table 2.1: FWM products of three equally spaced DWDM channels. 

Generated interfering wavelength Channel Assignmet (ITU-T) 

λ113=1548.52 nm channel 36 

λ123=1549.32 nm , λ213=1549.32 nm channel 35 

λ112=1549.32 nm channel 35 

λ223
*=1550.12 nm channel 34 

λ312
*=1550.92 nm, λ132=1550.92 nm channel 33 

λ221
*=1551.72 nm channel 32 

λ332=1552.52 nm channel 31 

λ321=1552.52 nm, λ231=1552.52 nm channel 31 

λ331=1553.32 nm channel 30 

 

The generated components with center wavelengths λ223=1550.12, λ312=1550.92, 

λ221=1551.72 fall directly into the original DWDM signal channels therefore causing 

interference. The other generated components fall into adjacent and nearby DWDM 

channels interfering with those channels (Figure 2.7) [2,12].  

Total number of generated FWM components is calculated by 
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2 ( 1)

2

N N 
                (2.36) 

where N is the number of DWDM channels.  

Assuming channels are equally spaced and number of channels are even, the number of 

these FWM components on the m-th signal channel is expressed as 

2 2

4 2 2 2
FWM

N Nm m m
N N                  (2.37) 

Therefore, the total number of the FWM components that fall on the signal channels can be 

calculated as:  
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        (2.38) 

As number of channels increases, generated FWM products increases rapidly. 

 

Figure 2.8:  Number of FWM components. 
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2.4.2 FWM Efficiency 

FWM leads to crosstalk and this resulting with the generation of new wave at frequency 

can be defined by 

FWM i j k       

Types of mixing are divided to two categories as degenerate and non-degenerate. 

Degenerate involves FWM components that do not appear on the original DWDM signal 

channels ( )i j kf f f  .  Nondegenerate involves FWM components that can appear on the 

same original DWDM signal channels ( )i j kf f f   . 

Assuming all signals have the same polarization along the propagation in the fiber and no 

amplifiers are used, the power of FWM component can be calculated as 

 

2 2 21
( )

9

L

ijk i j k effP d PP P L e                             (2.39) 

where   is the efficiency and d  is the degeneracy factor which defined as 

3,

6,
ijk

i j
d

i j


 


  

FWM efficiency can be obtained as 
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4 sin ( 2)
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L
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                  (2.40) 

where   is the phase mismatch. 

Assuming same channel spacing, phase mismatch parameter can be given by (Appendix-

E). 

2 2

fc

2
CD ( )

2

k k
ik jk c ik jkf f f f S

c c

 


 
       

 
           (2.41) 

Assuming the same channel spacing, depending on the distance of center wavelength of the 

DWDM system to the zero-dispersion wavelength phase mismatch parameter ,   ,can be 

reduced to  



 

23 

 

4
20

0 02

2
2

0

2
( )  is near 

2
 is far from 

i m

m c
m

f f f S
c

D
f

c


 




 


 

  
 


                            (2.42) 

The FWM efficiency is shown in Figure 2.9 as a function of channel spacing. Fiber 

dispersion coefficient for a 100 km fiber span with attenuation is also taken 0.21 dB/km at 

1550 nm. As the fiber’s dispersion coefficient or channel spacing increases, the FWM 

efficiency decreases, thereby reducing the power of FWM component. As the CD 

increases, the FWM becomes negligible especially for the broader channel spacing. 
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Figure 2.9:  FWM efficiency for different channel spacing with respect to different values of chromatic 

dispersion [12]. 

 

For the long-distance transmission in WDM system, if the standard SMF is employed at 

1550nm window, a cumulative CD will degrade the system performance. Due to the GVD, 

different channels travel at different speeds thereby lowering FWM efficiency.  

When the perfect phase matching occurs the efficiency takes its the highest value, e.g. in a 

fibre without chromatic dispersion. Higher fibre dispersion and larger channel spacing 

decrease the phase matching [13].  
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2.4.3 Reducing FWM Effect 

Numerous techniques have been proposed to reduce the effect of FWM-induced 

degradation on WDM systems. Generally these techniques focused on the minimizing of 

FWM terms that intersect with WDM channels. These techniques consist of 

 

1- Designing WDM systems with unequal channel spacing: In order to prevent 

overlapping of generated FWM components on the WDM channels, uneven 

channel spacing can be designed. 

2- Designing WDM systems with wide channel spacing: As the spacing between 

DWDM channels are increased, phase-matching is decreased with a result of 

reduced FWM efficiency. 

3- Reducing transmitter signal power and amplifier spacing can help diminishing the 

FWM effect. 

4- Deploying a fiber with larger cross sectional area (i.e. ITU-T G.655). Larger 

effective area reduces the optical intensity and consequently effects of FWM. 

 

Large Effective Area 
NZDSF

Aeff=72µm2

NZDSF
Aeff=55 µm2

Radius (µm)

Light Intensity

Effective Area

 

Figure 2.10:  Cross sectional area of a G.655 fiber. 

 

5- Using polarization-multiplexed DWDM channels can reduce FWM component 

power and cross talk. 
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If deployed optical fiber is not a ITU G.655 type fiber, another practical and applicable 

solution is to plan a dispersion-management map such that GVD is high locally all along 

the fiber even though its average value is quite low. Such a dispersion map can be realized 

with the combinations of fibers with normal and anomalous GVD. Consequently, locally 

high GVD leads to reduce of phase mismatch and hence resulting in a reduced FWM 

crosstalk [13]. 
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3. PULSE PROPAGATION IN WDM OPTICAL FIBER CHANNEL 

3.1 Wave Propagation Equation 

Maxwell equations govern the propagation of optical fields. 

,
t


  



D
H J                  (3.1) 

,
t


  



B
Ε                                                               (3.2) 

. ,f D                      (3.3) 

. 0, B                      (3.4) 

where E and H are electric and magnetic field vectors, D and B are corresponding electric 

and magnetic flux densities, J and ρf are current density vector and the charge density, 

respectively.  

Since following assumptions can be made: 

 There are no free charges 
f = 0. 

 Conductivity is very close to zero ( 0,  assuming a lossless medium .  ,  0   J E J ).  

 Silica is a nonmagnetic material. 

The flux densities D and B are related to the electric and magnetic fields E and P 

propagating inside the medium as 

0 D Ε P                          (3.5)         

0B H                   (3.6) 

where ε0 = 8.885 × 10-12 As/Vm is the vacuum permittivity, μ0 = 1.2566 ×10-6 Vs/Am is 

the vacuum permeability, and P is the induced electric polarization.  

Equations 3.1 to 3.4 take the following form for propagation in optical fibers 

B

t


  


Ε                   (3.7) 

D

t


 


H                   (3.8) 

. 0 D                              (3.9) 

. 0 B                 (3.10) 
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Putting equations (3.1), (3.2), (3.5) and (3.6) together and taking the curl leads to 

( ),
t


   


Ε B               (3.11) 

0 0( ) ,
t t
 

    
     

   
Ε Ε P                   (3.12) 

2 2

0 0 02 2t t
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Ε                   (3.13) 

where 

0 0 2

1
,

c
                   (3.14) 

Equation (3.13) yields 

2 2

02 2 2

1

c t t


 
   

 

Ε P
Ε              (3.15) 

In order to solve Equation (3.15), a relation between induced polarization vector P and 

electric field vector E is needed.  

Induced polarization consists of two parts: linear (PL) and nonlinear (PNL) . 

( , ) ( , ) ( , ).L NLt t t P r P r P r               (3.16) 

(1)

0( , ) ( ). ( , ) ,L t t t' t' dt' 




 P r E r              (3.17) 

(3)

0 1 2 3 1 2 3 1 2 3( , ) ( , , ) ( , ) ( , ) ( , ) .NL t t t t t t t t t t dt dt dt 
  

  

     P r E r E r E r                    (3.18) 

Since optical fibers (silica) are isotropic and symmetric compounds, second order 

nonlinear susceptibility is ignored in calculations. 

Nonlinear part of polarization is a result of third order susceptibility χ(3) as explained in 

(Appendix-A) 

Due to the weakness of nonlinear effecs in silica fibers; it’s considered as PNL has a small 

perturbation on total polarization. It will be assumed as PNL = 0 and only linear part of the 

polarization will be taken into account as a first step. 

Using the Equation (3.17) in Equation (3.15), yields 
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Taking Fourier transform and simplifying both sides of Equation (3.19) leads to 
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           (3.20) 
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     Ε r Ε r               (3.21) 

where Ẽ (r,ω) is the Fourier transform of E(r,t) and it’s given by 

( , ) ( , )exp( )t i t dt 




 Ε r E r               (3.22) 

here ε(ω) is frequency dependent dielectric constant and related to the susceptibility as  

 (1)( ) 1 ( ) ,                    (3.23) 

where 
(1) ( )   is Fourier transform of 

(1) ( )t . Since 
(1) ( )   is generally complex, 

therefore ε(ω) is also complex. The real and imaginary parts of ε(ω) are related to 

refractive index n(ω) and absorption coefficient α(ω) by  

2
( )

( ) ( ) .
2

i c
n

 
  



 
  
 

              (3.24) 

Using the Equation (3.23) and (3.24) following relation can be obtained 

2

(1) 21 ( )
2

c i c
n n

 
 

 

 
    

 
             (3.25) 

Real and imaginary components in Equation (3.25) can be simplified as 

(1)( ) Im ( )
nc


                     (3.26) 

2 (1)1 Re ( ) ,n                     (3.27) 

  
1

(1) 21 Re ( )n                    (3.28) 

Using the binomial expansion, Equation (3.28) reduces to 
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(1)1
( ) 1 Re ( ) .

2
n                      (3.29) 

Since n(ω) often behaves independently of spatial coordinates in both the core and 

cladding of step index fibers, the following identity can be used 

2( . ) .    Ε Ε Ε               (3.30) 

Using ρf  = 0, it can be easily deduced that . 0 E . Thus, 

2 .  Ε Ε                (3.31) 

Another simplification can be made by considering the fact that, the imaginary part of ε(ω) 

is small, in comparison to the real part because of low loss of optical fiber in the 

wavelength region of interest. Thus, in Equation (3.24), ε(ω) can be replaced by n2(ω). 

With this simplification wave equation in equation (3.21) is simplified to 

2
2 2

2
 ( , ) ( ) ( , ) 0n

c


    Ε r Ε r              (3.32) 

3.2 Fiber Modes 

Even though the nonlinear effects in optical fibers have a key role, they can be omitted in 

the discussion of fiber modes. 

An optical mode means to a specific solution of the wave equation that satisfies the 

appropriate boundary conditions. Also an optical mode’s spatial distribution does not 

change with propagation. Signal transmission in fiber-optic communication systems occurs 

through the guided modes only. In the remainig part of chapter, guided modes of a step-

index fiber will be explained [2]. 

Depending on the cylindrical symmetry of the optical fibers, Equation (3.32) can be 

represented in cylindrical coordinates: ρ, φ and z. Applying the Laplacian operator  ∇2  in 

cylindrical form, given as 

2 2 2
2 2

02 2 2 2

1 1
0n k

z    

   
    

   

Ε Ε Ε Ε
Ε             (3.33) 

where 
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2 2 2 2

1 1
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z    

   
    

   
             (3.34) 
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                             (3.35) 

where n is the refractive index.  

For a fiber having core radius a,  n = n1 for ρ ≤ a (means inside the core) and n = nc for ρ > 

a (means outside the core), Ẽ (r,ω)  is the Fourier transform of  E(r,t) defined as 

1
( , ) ( , )exp( ) .

2
t i t d  







 E r Ε r              (3.36) 

The wave equation for  Ẽz  can be solved using the method of variables separation which 

takes the following general form as 

( , ) ( ) ( )exp( )exp( ),zE A F im i z     r             (3.37) 

where A(ω) is a normalization constant, F(ρ) is the radial component of Ẽz ,m is an integer, 

and β is propagation constant. 

2 2
2 2 2

02 2

1
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d F dF m
n k F

d d


   

 
     

 
               (3.38) 

To analyze the fiber core region (ρ ≤ a) it can be deduced that 

2 2
2 2 2

02 2

1
0.

d F dF m
n k F

d d


   

 
     

 
               (3.39) 

where 

2 2 2 2

1 0n k                  (3.40) 

This is a well-known Bessel differential equation, whose general solution is given by 

1 2( ) ( ) ( )m mF C J C N                  (3.41) 

( ) ( )  for  .mF J a                             (3.42) 

For analysis of wave propagation in the cladding region (i.e. for ρ > a), substitute the 

following relation in Equation (3.38) 

2 2 2 2

2 0n k                              (3.43) 
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Solution of Helmholtz equation can be considered as follows: 

2 2
2

2 2

1
0.

d F dF m
F

d d


   

 
    

 
             (3.44) 

For cladding region, the solution F (ρ) is given by 

( ) ( ) for  .mF K a                  (3.45) 

where Km represents a modified Bessel function such that the solution F(ρ) decays 

exponentially for larger values of ρ 

The equations given can be limited to SMF using the following procedure. 

2 2 2 2 2 2 2 2

1 0 2 0 and n k n k         can be combined as follows; 

2 2 2 2 2

1 2 0( ) .n n k                   (3.46) 

Cut-off frequency is an important parameter for each mode. This frequency can be 

determined by setting the condition γ = 0 (n2=β/k0)  in Equation (3.46) which is called as 

cutoff condition leads to 

2 2

0 1 2( )c k n n                    (3.47) 

Using the relation (3.47), a normalized frequency V can be defined as 

2 2

0 1 2. . . ( )cV a a k n n                       (3.48) 

To achieve the condition of single mode fiber, V must be smaller than Vc where Vc ≈2.405. 

3.2.1 Single Mode Condition 

The single-mode condition is determined by the value of V at which the TE 01 and TM01 

modes reach cutoff. A fiber designed such that V < 2.405 supports only the fundamental 

HE 11 mode namely the single-mode condition. 

For the operating wavelength range 1.3–1.6 µm, the fiber is generally designed to become 

single mode for λ>1.2 µm. By taking λ=1.2µm, n1=1.45, and ∆=5×10−3, Equation (3.44) 

shows that V<2.405 for a core radius a<3.2µm. The required core radius can be increased 
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to about 4 µm by decreasing ∆ to 3×10 −3.  Indeed, most telecommunication fibers are 

designed with a ≈ 4µm. 
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Figure 3.1: Normalized propagation constant b as a function of normalized frequency V for a few low-order 

fiber modes [2].  

 

3.3 Pulse Propagation Equation 

Optical fiber can be considered isotropic and ρ = 0, therefore E  vanishes 

0( 0)   D E . 

 Recalling wave equation in (3.15) and using relation 
2 2( ) ,     E E E E  

Wave equation takes the following form 

2 2
2

02 2 2

1

c t t


 
  

 

E P
E               (3.45) 

Using the linear and nonlinear representation of polarization, wave equation is given by 
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and PL denotes the linear part while PNL the nonlinear part of the induced polarization 

vector. 

It will be assumed that the wave will maintain its polarization along the fiber length. 

The optical field is considered to be quasi-monochromatic (∆𝜔 𝜔0 ≪ 1⁄   where 𝜔0 is the 

center frequency and ∆𝜔 is the spectral width). 

PNL is treated as a small perturbation compared to PL (nonlinear effects are weak in silica 

fibers). 
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Rapidly varying part of the electric field is seperated according to slowly varying envelope 

approximation in the following form  

0 0

1
ˆ( , ) ( , )exp( ) ( , )exp( ) ,

2
t x E t i t E t i t     E r r r           (3.48) 

where x̂   is the polarization unit vector of the light assumed to be linearly polarized along 

the x axis, E(r, t) is a slowly-varying function of time (relative to the optical period) and E* 

means the complex conjugate of E. 

In the same manner, the material polarization components PL and PNL are expressed as 

0 0

0 0

1
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Considering only linear polarization if we substitute Equation (3.48) into Equation (3.49), 

it takes the form as  

 (1)

0 0( , ) ( ) ( , ) exp ( ) .L xxt t t' E t' i t t' dt'  




  P r r                      (3.50) 

Fourier transform of this equation will be as follows 
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Taking the inverse Fourier transform, equation takes the form; 

 (1)0
0 0( , ) ( ) ( , ) exp ( ) ,

2
L xxP t E i t d


      



 

 

    r r           (3.52) 

The nonlinear response PNL is assumed to be instantaneous. Using the relations given in 

Appendix-A nonlinear polarization takes the form as 

0( , ) ( , ),NL NLP t E t r r                   (3.53) 

where NL  is nonlinear contribution to the dielectric constant, defined as  

(3) 23
( , ) .

4 xxxxNL E t  r                (3.54) 

Using (3.48),  (3.52) and (3.53) into equation (3.46) and taking the Fourier transform; 

Ẽ(r,ω –ω0 ) satisfies the Helmholtz equation 

2 2

0( ) 0,k   E E                (3.55) 

where 0k c  and ( )   is the dielectric constant given as 

21 3

0

3
( ) 1 ( ) .

4
xx xxxx E t      r,              (3.56) 

Helmholtz equation and can be solved by using the method of separation of variables 

0

0 0( , ) ( , ) ( , ) .
i z

E F x y E z e
     r             (3.57) 
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where 
0( , )E z    is a slowly varying function of z and F(x, y) is a function which 

corresponds to the transverse electric modes in the (x, y) plane if the z-axis is identical to 

the propagation direction.  

Hence,  

2 2
2

02 2

1 1
( )

F F
k

F x y E
 

  
   

  
             (3.58) 

Making all constants match in Equation (3.58), equation takes the form as 

2 2
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0 02 2
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             (3.59) 
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             (3.60) 

where   is the wave number and it is determined by solving the eigenvalue equation. 

Due ( , )E z   is a slowly varying function of z, the second derivative can be neglected. The 

eigenvalue   can be written as 

( ) ( ) ,                      (3.61) 

where   is a perturbation term and ( )   is the frequency dependent mode propagation 

constant. Thus,  

2

0

0

1
( ) 2 ( ) 0.

2

E i
E

z
     



 
         

           (3.62) 

Expanding ( )   in a Taylor-series around the carrier frequency 0  (Appendix-E) and 

neglecting the terms that are higher than second order such as 1   and 2  . Thus, we 

may obtain the following equation in the Fourier space; 

2

1 0 2 0 0( ) ( ) 0.
2

E i
i E E i E

z
       


      


           (3.63) 

Combining Equation (3.61) and (3.62) and taking inverse Fourier transform; 
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and 
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F                        (3.65) 

Following equation is achieved which defines the pulse propagation in optical fibers 
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2
1 2
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iE E E
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z t t


 

  
    

  
             (3.66) 

The term with   includes the effect of fiber loss and nonlinearity.  

2
,

2
i E


                    (3.67) 

where  is the nonlinear coefficient defined by 

2 0

eff

,
A

n

c


                  (3.68) 

Aeff is the effective core area in which is inversely proportional to the nonlinearity. 

n2 is the so-called nonlinear refractive index which perturbs the linear index at higher 

intensities 0 2n n n I   (Appendix-C). 

The effective core area is given in the form of 
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              (3.69) 

where F(x, y) is the transverse mode field distribution that can be obtained from the 

eigenvalue equation. Making a variable transformation with 

1 ,
g

z
T t t z

v
                   (3.70) 

The obtained equation is called Nonlinear Schrödinger Equation (NLSE) as follows; 
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or 
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The nonlinear term of the NLSE is 
2

A A  .When the three-channel scenario is taken into 

consideration, i.e.: 

1 2 3A A A A    

The nonlinear term can be extended as: 
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4. NUMERICAL ALGORITHM AND SIMULATIONS 

4.1 Numerical method to solve NLSE       

Nonlinear Schrödinger Equation (3.71) is used to analyze the different physical phenomena 

encountered when ultrashort pulses propagate through dispersive and nonlinear fibers. 

Since it is difficult to obtain the analytical solution of the equation, different approaches 

have been developed to determine the numerical solution.  

Split Step Fourier Method (SSFM) is the most effective and widely used method to find 

the numerical solution of NLS equation. Split-Step Fourier method considers the effects of 

attenuation, dispersion and nonlinearity over suitable small distances of the fiber (from z to 

z+dz) where z is a running variable over the entire length of the fiber, and dz is step size.  

In SSFM, the given fiber length is conceptually divided into a large number of steps or 

segments. The propagation of the optical pulse is executed for each segment sequentially 

divided by linear and nonlinear parts. The nonlinear term is solved in time domain, while 

the dispersion term (linear term) is solved in the frequency domain using fast Fourier 

transform (FFT).  

The NLSE given in equation (3.71) describes the effects of fiber attenuation, dispersion 

and nonlinearities;  

2
22
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( , ) ( , )
( , ) ( , ) . ( , )

2 2

A z t A z t
A z t j j A z t A z t

z t




 
   

 
                             (4.1) 

In order to solve NLS equation by the SSF method, following functional differential 

equation is written by separating linear and nonlinear parts as: 

( , )
[ ]. ( , )

A z t
L N A z t

z


 


                  (4.2) 

where L represents linear part and N represents the nonlinear part respectively. 
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2
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39 

 

Integrating along z using a small space intervalΔz , the solution can be written in the form 

of 

 ( , ) exp( ). ( , )A z z t z L N A z t                             (4.5) 

The effects of the linear operator implemented in frequency domain. The time derivatives 

of linear operator are replaced by ( )nj  and thereby converted to Fourier Space where n is 

the order of the derivative. 

4.2 Symmetric Split Step Fourier Method 

The symmetric split step Fourier method (S-SSFM) subdivides the global propagation 

distance into steps of length and supposes that the effects of dispersion and nonlinearity act 

independently along each step. Effects of nonlinearity are inserted at the middle of each 

step  Δz 2 of the fiber. Schematic illustration of this method is shown in Figure 4.1 [14].

2 2( , ) ( , )
h h

L L
hNA z z t e e e A z t                        (4.6)

 

Linear Part

Nonlinear Part

∆z

Output PulseInput Pulse

 

Figure 4.1: Schematic view of SSFM process. 

Equation (4.6) can be approximated as, 

( , ) exp .exp ( ) .exp ( , )
2 2

z z

z

z z
A z z t L N z dz L A z t
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The symmetric split-step Fourier method (S-SSFM) which is derived from the fact that the 

dispersive and nonlinear operators do not commute thus, It can be shown that the global 

relative error of the symmetric split-step Fourier method (S-SSFM) is O(Δz)2 where Δz is 

the spatial step size. Linear term is solved in frequency domain using FFT routines 

whereas the nonlinear term is solved in time domain.  

For a fiber with length z, the number of steps is (z/∆z). 

In every step of iteration amplitude (A) moves to the next step governed by following 

algortihm  

( , ) where 0, ,kA A k z t k h     

 2
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kA IFFT e FFT A
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2 1

z NA e A   

 2
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z
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kA IFFT e FFT A




 
  

 
                (4.9) 

The method proceeds as follows: 

STEP-1: Take 0N   and solve Linear part in frequency domain as 
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taking the fourier transform of dispersive term 
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where the linear operator can be implemented in the frequancy-domain by using the 

correspondence  
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STEP-2: Take 𝐿 ≡ 0 and solve Nonlinear part in time domain as 
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STEP-3: Take 𝑁 ≡ 0 once more and solve Linear part in frequency domain as 
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Algorithm terminates at the h-th iteration and 𝐴ℎ is used to plot output shape of the pulse. 

Detailed algorithm of S-SSFM and related Matlab code are given in Appendix-F. 

The initial pulse width 0 (0, )A A t  is chosen as Gaussian pulse as given in Appendix-D. 
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4.3 Simulations 

In this section a Matlab based simulation software is presented according to mathematical 

model given in Section 4.1. 

Selected simulation parameters are  

Center wavelength: 1550 nm 

Effective core area: 78 µm2 

Fiber attenuation: 0.22 dB/km 

Dispersion parameter: 17 ps/nm.km 

Nonlinear refractive index: 2.68 

Input power: 0.5 mW 

Nominal Channel spacing: 0.8 nm (100 GHz)  

There are many factors which have significant influence on the magnitude of FWM 

products. Some of these factors are channel spacing and dispersion parameter. Different 

types of fibers have different dispersion parameters. Various typical values of dispersion 

parameter D (β2= …) are considered. D is inversely proportional to the FWM component 

power. 

  

Figure 4.2:  FWM power change along with the fiber length with respect to different dispersion parameters. 



 

43 

 

In Figure 4.2 effect of channel spacing on FWM Efficiency is shown for four different 

values of fiber dispersion. Increasing fiber dispersion will decrease FWM efficiency. For 

low dispersion fibers another factor that increases the FWM power is DWDM signal 

channel spacing. In this case FWM efficiency becomes larger even for the large channel 

spacing values. 

 

Figure 4.3 : Variation of FWM Efficiency with different channel spacing for different dispersion parameters. 

 

In Figure 4.4, different FWM component power are presented for different types of fibers 

with parameters given in Table 4.1.  

 
Table 4.1: Characteristics of different types of optical fibers. 

Fiber Type Aeff (µm)2 D (ps/nm.km) α(dB/km)  (W-1km) 

SMF 80 17 0.2 2.5 

NZDSF 50 -3 0.23 3.9 

DCF 20 -80 0.29 3 

 

Maxima of the FWM power occurs when ∆𝛽.
𝐿

2
= 𝑛. 𝜋 , where 𝑛 is an arbitrary integer due 

to the phase mismatch between propagating signals.  Figure 4.4 shows that power of FWM 

compoenets are effected by fiber parameters and variation in channel spacing. Considering 
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FWM efficiency equation, minimum values of the FWM power occurs every 2𝜋/∆𝛽 

meter. 

 

Figure 4.4: Variation of FWM Power with different channel spacing for different types of fiber. 

 

As can be seen from the simulation outputs presented in the Figure 4.5, FWM power is 

dependent on channel input powers and increases as channel power increased. FWM 

component power saturates at some distance propagated along the fiber. 
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Figure 4.5: FWM Noise Power change with Injected power. 

 

 
 

Figure 4.6: Intensities at input and output. 
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Figure 4.7: Produced FWM components for equidistant 3 channel DWDM system. 

 

 

4.4 Results 

In this thesis, effect of FWM in a wavelength division multiplexed (WDM) optical 

communication system has investigated. Simulations demonstrate that efficiency of FWM 

effect is dependent on type of fiber, fiber length, channel input power and channel spacing. 

As the number of channels increases, number of FWM components also increases 

exponentially. Therefore designing system with a narrower wavelength produces more 

FWM terms on the same signal channel which leads to degradation of original signals and 

interference between them. In order to avoid this degradation in the performance of the 

system unequal channel spacing scheme can be implemented. Thereby, it’s possible to 

avoid some of the produced FWM terms to coincide with original channels. But this design 

strategy leads to a trade-off between limiting FWM effects and efficient use of available 

large bandwidth of the fiber. Dispersion management in the system design is another 

limiting factor which increases FWM efficiency. A signal propagating with constant group 

velocity and constant phase along the fiber leads to increased FWM effect which has its 

greatest value in the zero dispersion wavelength region. 
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4.5 Future Work 

Some of the techniques to reduce FWM effects are proposed in the previous sections. 

Using unequal channel spacing and also extending the number of channels requires 

additional optical bandwidth. Polarization multiplexing of DWDM channels is an 

alternative technique to obtain higher spectral efficiency with an beneficial improvement in 

reducing of channel spacing. 

It has been experimentally resulted that the reduction of FWM power in WDM systems is 

possible with arranging the signal lights having orthogonal state of polarization. Using 

polarization-multiplexed schemes is particularly helpful to reduce of nonlinear crosstalk 

effect caused by FWM in DWDM systems. Applying the polarization state of each 

DWDM channel orthogonal to the adjacent one along the fiber provides a FWM product 

suppression factor of 4. Since, practically, the state of polarization cannot be maintained 

constant along the fiber especially for long-haul systems DGD varies randomly. When 

system differential group-delay (DGD) is smaller than 1/(4∆f), where ∆f is the channel-

spacing, it’s possible to get a significant improvement in system performance. However, in 

the regime that this condition is satisfied, even a small amount of PMD reduce helps to 

suppression of nonlinear crosstalk of FWM [15,16].  

Recent advences in higher order modulation formats made implementing available of 

higher data rates 40 Gbit/s and 100 Gbit/s. In practice linear effects such as Chromatic 

Dispersion, Polarization-Mode Dispersion and nonlinear impairments of fiber are 

compensated with passive optical components in optical side of the DWDM systems. In 

order to achieve higher bit rates with properly suppressed linear and nonlinear effects, 

coherent detection techniques are developed along with the digital signal processing which 

provides a significant improvement in spectral efficiency. In coherent detection 

mechanism, complex field of the received signal is fully recovered interfering with a 

hybrid local oscillator while the linear impairments are compensated along with the  digital 

filters. Electronic dispersion compensation and digital backward propagation are some of 

the coherent detection techniques [17-19]. 
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APPENDIX-A 

NONLINEAR SUSCEPTIBILITY 

The components of polarization vector P  can be expressed as  

(1) (2) (3)

, , ,0

1
i ij j ijk j k ijkl j k l

j j k j k l

P E E E E E E  


                     (A.1) 

Optical fiber material (SiO2) is isotropic (at λ region of interest). Therefore the electric 

susceptibility tensors should also be isotropic. 

When represented in a Cartesian frame the most general isotropic tensors of rank 0-4 are as 

follows: [Ref. R.E. Hunt Mathematical Methods II, pg.60] 

Rank 0: All scalars are isotropic. 

Rank 1: There are no non-zero isotropic vectors. 

Rank 2:
(1)
ij ij   where  is any scalar. 

Rank 3:
(3)
ijk ijk  . 

Rank 4:
(4)
ijkl ij kl ik jl il jkv          where ,  ,     are scalars. 

1 if  

0 if .
ij

i j

i j



 


  the Kronecker’s delta tensor 

1 (1,2,3),(2,3,1) and (3,1,2)

1 (1,3,2),(2,1,3) and (3,2,1)

0

ijk

for

for

else






 



   the permutation tensor 

Isotropic tensor is one whose components are the same in all frames. 

A tensor ijkT  is said to be symmetric in a pair of indices (say i j) if ijk jikT T   or anti-

symmetric if it satisfies ijk jikT T  . 

Thus for isotropic case, (2)  is anti-symmetric whereas (1)  and (3)  are symmetric. 

Optical fibers are represented with isotropic and symmetric tensors here. 
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(1) (3)

0

1
i ij j ij kl l k jP E E E E    


                             (A.2) 

where  ’s are scalars and Einstein convention is used [summation over repeated indices] 

Assume that 

(3)
   and 0v     

111 221 331 1 112 222 332 2 113 223 333 3( ) ( ) ( )ijkl lE E E E                    

11 22 33 1 1 2 2 3 3( )[ ]ijkl l kE E E E E E E E            

2

ijkl l k jE E E E E                      (A.3) 

For an x-polarized wave we have 

2(3)

0

1 NL
x x xP E E


                            

(A.4) 

where superscript NL stands for nonlinear part of polarization. Linear part being simply 

(1)

0L XP E                            (A.5) 

the isotropy of the medium makes (3)  is invariant under any rotational transformation.  

1111 2222 3333     

1212 1313   

Following this same logic, all 
(3)

iijj
  are the same for i j  all 

(3)

ijji
  are the same for i j , 

and all 
(3)

ijij
  are the same for i j . 

Thus, 

1111 2222 3333     

1122 1133 2211 2233 3311 3322            

1212 1313 2323 2121 3131 3232            
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1221 1331 2112 2332 3113 3223            

Therefore nonlinear part can be derived by 

 

(1) (2) (3)

, , ,0

0

(1) (2) 2 (3) 3

0 0 0

0

0

(1) (2) 2 2 (3) 3 3

0 0 0 0 0

1

cos( )

cos( ) cos ( ) cos ( )

i ij j ijk j k ijk j k l

j j k j k l

P E E E E E E

P E E E

E E t kz

P E t kz E t kz E t kz
  

  


     



        

   

   

 

      

  

           (A.6) 

Using trigonometric relations; 

2

3

1
cos ( ) (1 cos2 )

2

1
cos ( ) (cos3 3cos )

4

 

  

 

 

                   (A.7) 

We obtain; 

(1) (2) 2 (3) 3

0 0 0 0 0 0

0 0

(1) (2) 2 (2) 2 (3) 3 (3) 3

0 0 0 0 0

0

0

(1) (3) 3

0 0

0

1 1
cos (1 cos2 ) (cos3 3cos )

2 4

1 1 1 1 3
cos cos2 cos3 cos

2 2 4 4

1 1 3
cos( ) cos3( )

4 4

P E E E

P E E E E E

P E t kz E t kz

         

        


   


    

    

     (3) 3

0

(1) (3) 3

0 0 0 0

cos( )

3
cos( ) cos( )

4

E t kz

P E t kz E t kz

 

     



   

    (A.8) 
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APPENDIX-B 

NONLINEAR POLARIZATION IN FWM 

To understand the effects of four-wave mixing, consider a WDM signal that is the sum of n 

monochromatic plane waves. Thus the electric field of this signal can be written as 

1

( , ) cos( )
n

i i i

i

E t E t z 


 r          (B.1) 

(3)

0

1 1 1

(3)
20

1

( , ) cos( ) cos( ) cos( )

3
2 cos( )

4

n n n

NL i i i j j j k k k

i j k

n

i i j i i i

i j i

P t E t z E t z E t z

E E E E t z

       

 
 

  

 

   

 
   

 



 

r

         (B.2) 

(3)
30

1

              + cos(3 3 )
4

n

i i i

i

E t z
 

 


                 (B.3) 

(3)
20

1

3
              + cos((2 ) (2 ) )

4

n

i j i j i j

i j i

E E t z
 

   
 

                             (B.4) 

(3)
20

1

3
              + cos((2 ) (2 ) )

4

n

i j i j i j

i j i

E E t z
 

   
 

                  (B.5) 

(3)

0

1

i

6
              +

4

                             (cos(( ) ( ) )

n

i j k

i j i k j

j k i j k

E E E

t z

 

     

  

    


            (B.6) 

i                        + (cos(( ) ( ) )j k i j kt z                          (B.7) 

i                           + (cos(( ) ( ) )j k i j kt z                      (B.8) 

i                           + (cos(( ) ( ) ))j k i j kt z                          (B.9) 

        

The terms (B.3), (B.5), and (B.6) can be neglected because of lack of phase matching. 

Under appropriate conditions, it is likely to approximately satisfy the phase-matching 

condition for the rest of the terms, which are all of the form  

,  ,   ( ,   not necessarily distinct)i j k i ji j k        

For instance, if the wavelengths in the WDM system are closely distributed, or are 

distributed near the dispersion zero of the fiber, then β is nearly constant over these 

frequencies and the condition of phase-matching is nearly satisfied. 
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APPENDIX-C 

RELATION BETWEEN NONLINEAR REFRACTIVE INDEX AND INTENSITY 

In terms of nonlinear refractive index nonlinear part of polarization can be written as 

0
NL
x NLP E                     (C.1) 

where    

2(3)3

4
NL xxxx E                    (C.2) 

There are various effects that are resulting from degenerate four-wave mixing. 

(3) *
0 1 2 3NLP E E E                               (C.3) 

Assume 

1 2 3E E E E                   

So the polarization becomes: 

2(3)
0NLP E E                    (C.4) 

Single-field degenerate four-wave mixing causes “self” effects. 

Recall inhomogeneous wave equation: 

2 2 2

02 2 2 2
0

1E E P

z c t t


  
 

  
                  (C.5) 

the polarization envelope (the linear and nonlinear terms): 

2 2(1) (3) (1) (3)
0 0P E E E E E           
   

             (C.6) 

Substituting the polarization into the wave equation (assuming slow variation in the 

envelope of E compared to 1/ω): 

2 2 2
2(1) (3)

0 02 2 2 2
0

1E E E
E

z c t t
   

     
   

                     (C.7) 
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2(1) (3)
2 2

2 2 2
0

1
0

EE E

z c t

      
 

   since   2
0 0 1 c                      (C.8) 

So the refractive index is: 

2(1) (3)1n E                        (C.9) 

the usual refractive index (which we called as n0) is: 

(1)
0 1n     

22 (3)
0n n E    

2(3) 2
0 01n E n                 (C.10) 

Assume that the nonlinear term << n0: 

2(3) 2
0 01 2n n E n  
 

 

2(3)
0 02n n E n   

since
2

I E    

0 2n n n I                     (C.11) 

Take 0 1.46n   and 20 2
2 3.2 10  m Wn   . For the propagation of a mode carrying 100 

mW of power in a SMF, for 250 μmeffA  , intensity becomes 9 22 10  W m .   

Change in refractive index due to the NL effect is 

11
2 6.4 10n I    

This change in refractive index becomes very significant when thousands of km fiber 

lengths are used. 
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APPENDIX-D 

GAUSSIAN BEAM AND PULSE 

Gaussian Beam 

It is crucial to know the propagation characteristics of laser beam in most laser 

applications.  Generally, laser-beam propagation can be approximated by assuming that the 

laser beam has an ideal Gaussian intensity profile.   

Many lasers emit beams with a Gaussian profile, in which case the laser is said to be 

operating on the fundamental transverse mode, or "TEM00 mode" of the laser's optical 

resonator. When refracted by a lens, a Gaussian beam is transformed into another Gaussian 

beam (characterized by a different set of parameters), which explains why Gaussian optics 

is a convenient, widespread model in laser optics.  

The Gaussian beam is a radially symmetrical distribution whose electric field variation is 

given by the following equation: 

2
0( )

0
r w

sE E e


                     (D.1) 

 

Figure D.1: Focus of Gaussian beam. 

 

The beam radius R(z)has its minimum value w0 at the waist (z=0), reaches √2𝑤0 at 𝑧 =

±𝑧0, and increases linearly with z for large z  

where 𝜃 = 𝑤0/𝑧0 
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Consider x polarized wave in a weakly guiding single mode fiber.  

The electric field E can be written in phasor form as 

2( ) ( )2
0

z
r w j t z

xE E e e e


 


                             (D.2) 

We assume the beam waist parameter “w” and the attenuation constant “α” to be constant 

over DWDM band. 

Let the power injected at the input (z=0) be P then 

 
2

2
2 2 20

0

r w

S

E
P e rdrd E B

z





                          (D.3) 

where 2 0
0

0 0

1
,  

2
r

B Z
Z

 

 
     

Thus we can write  

xE B   with the understanding (0) P    

To eliminate the rapid variation we introduce  

0 0[ ( ) ]
      ,       

j t z
Ae A P

  
     

where “ω0” may be chosen as the center frequency of the DWDM band. 

DWDM signal can now be expressed as 

1

1
( , ) ( , ) . .

2
m

M
jC

m

m

A z t B z t e c c


 
  

 
                                                                                    (D.4) 

with 2( , ) ( )
z

m m mB z t P I t e




  where ( ) 1mI t dt





   is the input pulse shape 

2
0, 1, 2,

1

2
m m m m mC t z    

 
      

                  (D.5)

   

0

0 , 0, 0,       ,       = ( ) ( )
i

m
m m i m m mi




        




   


                                (D.6) 
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The time dependence of nonlinear polarization component is modelled as an instantaneous 

process. It is also assumed the contribution of  “β1,m,  β2,m” are negligible when calculating 

Kerr type nonlinear effects. 

Then writing Gm for 2( ) m

z
j

mG PI t e e






  and m for m m mt z     where 0,m m   

the DWDM signal can be expressed simply as  

1

1
( , ) . .

2
m

M
j

m

i

A z t G e c c




 
  

 
                      (D.7) 

Full Width at Half Maximum of Gaussian Pulse 

To define the pulse width for an arbitrary pulse, the full width at half maximum (FWHM) 

intensity points are used. Using the FWHM as a specification allows a single number to 

unambiguously describe the properties of the Gaussian envelope, Fig. D.2. Assuming a 

Gaussian pulse shape in time, and writing the pulsed electric field centered at 
0 as 

2

0

0( )

t

i t
E t E e e



 
                     (D.8) 

Detectors respond to intensity, which is defined as 

*( ) ( ) ( )I t E t E t                  (D.9) 

2

2

0

2
-

2      

t

E e                  (D.10) 

When the intensity is at half its maximum value, 

2

2

2

1

2

T

e


 
 
                    (D.11) 

2

2

1 2
ln

2

T



 
  

 
               (D.12) 

ln(2)

2
T                              (D.13) 

2FWHM T                 (D.14) 

             = 2ln(2)                (D.15) 
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Figure D.2: Normalized Gaussian beam Intensity as a function of t [3]. 

 

 

0

HWEM

where     E(t) = pulse's electric field amplitude (voltage), /

 pulse's optical peak power, 

time, s

=  width of the pulse's optical power, s

half pulse width at 1  optical power point, 

V m

P W

t

RMS

T e









FWHM

s

full pulse width at half maximum optical power point (-3 dB), sT 
 

 

Full width at half maximum. FWHM=2T 

The spectral field is given by the Fourier transform of the temporal field in Equation D.8. 

Note that it is the fields that are transformed, and not the intensities. 

2
0( )

2
0

( ) ( ) i tE E t e dt

E e



  



 







 
 
 






               (D.16) 

Comparison with the Equations D.8 and D.15 shows that 

2
Spectral Width = 2ln(2)


              (D.17) 
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2

1
( ) exp

2
o

HWEM

t
E t P

T

  
    
   

                 (D.18) 

2

0( ) exp
HWEM

t
P t P

T

  
   
   

                (D.19) 

1

2
HWEMT                  (D.20) 

1

2 2ln 2
FWHMT 

                                                                                                       
(D.21) 

2 2ln2 FWHM HWEMT T                (D.22) 
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APPENDIX- E 

Derivation of phase-mismatch parameter 

Phase mismatch factor is estimated by expanding the propagation constant in Taylor series 

around 2m mc     as follows: 

2
1 2

1
( ) ( ) ( ) ( )

2
m m m                                        (E.1) 

where 0( )m    is propagation parameter, 1  is the inverse of the group velocity, 2 is 

the group velocity dispersion (pulse propagation parameter) respectively. 

Using 
2 2

2 c
D





  , one can write 

   
2 4

2 3

2 2
( )

4 24

m m m c m c
m m

p g

D dD

v v c dc

    
     

 


                  (E.2) 

Therefore, i j k ijk          can be deduced as: 

ijk k i j                                 (E.3) 

2 4

2 2
( )( ) ( )( )( 2 )

2 8

m c m c
k i k j k i k j i j m

D dD

c dc

 
           

 
                    (E.4) 

If center wavelength is far from the zero-dispersion wavelength the last term can be 

negelected and phase mismatch becomes 

2 22
( )( ) ( )( )

2

m c m c
k i k j k i k j

D D
f f f f

c c

 
    


                   (E.5) 

If the center wavelength is locate near the zero-dispersion wavelength, then 0Dc   and 

the last term representing higher order dispersion dominates: 

4

0 2 2

4

0 2

( )( )( 2 )
8

( )( )( 2 )

m
k i k j i j

m
k i k j i j

dDc

dc

dDc
f f f f f f f

dc


       







     

    

             (E.6) 

 



 

61 

 

APPENDIX-F 

Matlab code & GUI 

MATLAB CODE: 

close all; clear all; clc; 

i=sqrt(-1);c=3e8;  

P0=0.001; % W 

alfadB=0; % dB/km 

D=17; % ps/nm*km 

lambda=1550; %  nm 

n2=3.2e-16; % cm^2/W 

Aef=50; % um^2 

z=50; % km 

dz=0.25; % 0.1 - 1 km 

T0=50; %HWEM  A=A0*1/e 

C=0; %chirp 

m=1; %deg of gauss 

N=1024; % 

tau=400; % 

%------------------------------------------------------------------------- 

beta2=-D*1e-24*((lambda)^2)/(2*pi*c);% s^2/m 

gamma=(2*pi*n2*1e17)/(lambda*Aef); %1/m.W 

BW=(1/tau)*1000;  %GHz 

Bit=tau/(2*T0); 

BR=(BW)*Bit; 

T0=(T0)*1e-12; 

Ld=(T0^2)/abs(beta2); 

save initials2.mat Ld beta2 BW BR 

h=z/dz;                                             

dz=dz*1000;                                         %km -> m 

alfa=(1*alfadB/4.343)/1000;                         % 1/m 

t=-(tau/2)*1e-12:(tau*1e-12)/(N-1):(tau/2)*1e-12;             % 

dt=(tau*1e-12)/(N-1);                              
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A=sqrt(P0)*exp((-(1+i*C)/2)*(t/T0).^(2*m)); % Electric Field Amplitude (voltage, V/m) 

I=(abs(A)).^2;                              %Intensity Optical Intensity  

plot(t*1e12,I/P0,'k','LineWidth',1.2);   %Normalized Intensity  

xlabel('Time [ps]'); 

ylabel('Normalized Intensity'); 

grid on;hold on; 

l=length(A); 

dw=2*pi*1/(dt*l); 

w=(-1*l/2:1:l/2-1)*dw; 

w=fftshift(w); 

freq_A0=fft(A); 

for k=1:h, 

    freq_A1=freq_A0.*exp(-(alfa/2)*(dz/2)+i*w.^2*(beta2/2)*(dz/2)); 

    time_A1=ifft(freq_A1); 

    time_A2=time_A1.*exp(i*gamma*(abs(A)).^2*dz); 

    freq_A2=fft(time_A2); 

    freq_A0=freq_A2.*exp(-(alfa/2)*(dz/2)+i*w.^2*(beta2/2)*(dz/2)); 

end; 

 A=ifft(freq_A0); 

 title('\it{Input and Output Pulse Shape}','FontSize',12)  

 plot(t*1e12,(abs(A)).^2/P0,'r-','LineWidth',1.2);  %/sqrt(P0) 

 Pout=max(abs(A)).^2; 

 save initials2.mat Ld beta2 BW BR Pout 

 legend('input','output');   
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Figure F.1: Flow diagram of the symmetric Split-Step Fourier Method for solving the Nonlinear-Schrödinger 

Equation. 
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APPENDIX-G 

ITU-T DWDM FREQUENCY GRID OF 100 GHZ 0.8 nm 
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APPENDIX-H 

Optical Data Transmission Rates  

For many transmission systems, it is mandatory to multiplex of numerous channels to fully 

utilize system capacity. Time-division multiplexing (TDM) and frequency-division 

multiplexing (FDM) are two powerful techniques to perform this in both electrical and 

optical domains. Optical FDM is often referred to as WDM. 

Currently, widely used transmission and multiplexing standard for high-speed signals 

within the carrier infrastructure in North America is SONET (Synchronous Optical 

Network). 

SDH (Synchronous Digital Hierarchy) is the another similarly related standard which has 

been developed for Europe and Japan. (Table H.1.) 

 

Table H.1: Transmission data rates for SONET/SDH. 

SONET SDH Bit Rate (Mb/s) Channels 

OC-1 (STS-1) 

 

51.84 672 

OC-3 (STS-3) STM-1 155.52 2016 

OC-12 (STS-12) STM-4 622.08 8064 

OC-24 (STS-24) 

 

1244.16 16128 

OC-48 (STS-48) STM-16 2488.32 32256 

OC-192 (STS-192) STM-64 9953.28 129024 

OC-768 (STS-768) STM-256 39814.32 516096 

 

 

 

 

 

 



 

67 

 

Table H.2: OTN line rates compared with SONET/SDH line rates. 

OTN (G.709) Line Rates SONET/SDH Line Rates 

OTU-1 2.666 Gb/s STS-48 / STM-16 2.488 Gb/s 

OTU-2 10.709 Gb/s STS - 192 / STM-64 9.953 Gb/s 

OTU-3 43.018 Gb/s STS-768 / STM-128 39.813 Gb/s 

 

The Optical Transport Network (OTN), which is referred to ITU standard of G.709, was 

designed to transport data packet traffic such as IP and Ethernet over fiber optics, as well 

as legacy traffic and in particular SONET/SDH. In OTN technology, client signal is 

wrapped in overhead information for operations, administration, and management. Used 

line rates OTU1, OTU2, and OTU3, are shown in Table H.2. which are build on 

SONET/SDH concepts [13].  
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