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OZET

ADI DIFERANSIYEL OPERATORLERIN KOK FONKSiYONLARI

Bu tezin ana amaci, L,[0,1] uzay1 i¢inde
I(y) =-y" +q(x)y
diferansiyel ifadesi ve genel regiiler olan fakat giiclii regiiler olmayan sinir kosullar ile
tiretilen, 6z eslenik olmayan ikinci mertebeden Sturm-Liouville operatoriiniin kok
fonksiyonlar1 sistemini ve Riesz tabani 6zelligini incelemektir; burada g, [0,1] kiimesi
tizerinde kompleks degerli toplanabilir bir fonksiyondur.

Bu amagla ilk oOnce, bu operatorlerin 6zdegerleri ve 6zfonksiyonlart igin,
Q€L4[0,1] durumunda ve q potansiyelinin mutlak siirekli fonksiyon oldugu durumda,
ince asimptotik formiiller insa edilmistir. Daha sonra, bu formiiller kullanilarak, q
potansiyeli lizerinde, genel regiiler sinir kosullarina sahip Sturm-Liouville operatoriiniin
kok fonksiyonlart sisteminin Riesz tabani olusturmamasini saglayan agik kosullar
bulunmustur.

Ayrica, genel regiiler sinir kosullarina sahip, 6z eslenik olmayan ikinci
mertebeden Sturm-Liouville operatdriiniin kiigiik 6z degerlerine niimerik yontemler ile
yaklasimda bulunulmustur. Son olarak da, hata analizi verilip, bazi niimerik 6rnekler
sunulmustur.

Anahtar sozciikler: Asimptotik formiiller, Regiiler sinir kosullari, Riesz tabani, Kiigiik

0zdegerlerin niimerik yaklagima.

Istanbul, Eyliil 2014 Cemile NUR



SUMMARY

ON THE ROOT FUNCTIONS OF ORDINARY DIFFERENTIAL
OPERATORS

The main objective of this thesis is to investigate the system of the root functions
and the Riesz basis property of the second order non-self-adjoint Sturm-Liouville

operator generated in L,[0,1] by the differential expression

I(y) =-y"+a(x)y
where q is a complex-valued summable function on [0,1], and general regular boundary
conditions that are not strongly regular.

To this end, first we construct subtle asymptotic formulas for the eigenvalues
and eigenfunctions of these operators for both cases qeL4[0,1] and q is an absolutely
continuous function. Then using these formulas we find explicit conditions on the
potential g such that the system of the root functions of the Sturm-Liouville operator
with general regular boundary conditions does not form a Riesz basis.

Also, we estimate the small eigenvalues of the second order non-self-adjoint
Sturm-Liouville operators with general regular boundary conditions by the numerical
methods. Finally, we give the error estimations and present some numerical examples.
Key Words: Asymptotic formulas, Regular boundary conditions, Riesz basis, Numerical

estimations of the eigenvalues.

Istanbul, September 2014 Cemile NUR



1 INTRODUCTION AND PRELIMINARY FACTS

1.1 Introduction

Non-self-adjoint differential operators arise in the theory of open resonators, in
problems of inelastic scattering, in problems of mathematical physics, when the Fourier
method is used. The first works concerned with these operators were by G. Birkhoff
[7-11], Ya.D. Tamarkin [67-69] in the beginning of the 20th century.

In this thesis we consider the operators generated in Ls[0,1] by the differential

expression
Ly) = —y" +a(2)y (1.1)

and regular boundary conditions that are not strongly regular. Note that, if the bound-
ary conditions are strongly regular, then the root functions (eigenfunctions and asso-
ciated functions) form a Riesz basis (this result was proved independently in [24], [36]
and [47]). In the case when an operator is associated with the regular but not strongly
regular boundary conditions, the root functions generally do not form even a usual
basis. However, Shkalikov [64, 65] proved that they can be combined in pairs, so that
the corresponding 2-dimensional subspaces form a Riesz basis of subspaces. Note that
the boundary conditions are strongly regular if and only if all large eigenvalues are
far from each other. [65] This easify to investigate the perturbation theory and Riesz
basis property. If the boundary conditions are not strongly regular then the eigenvalues
are pairwise very close to each other. This situation complicates the investigation of
the Riesz basis property. Therefore the regular cases which are not strongly regular
are still investigated. Only the special cases, the periodic and antiperiodic problems,
were investigated in detail. There are some interesting results [33-35] about the basis

properties of the higher order differential operators with some regular boundary con-



ditions. Besides, there are some important investigations about the Sturm-Liouville
operators with singular potentials in [49, 50, 57-63]. Our aim is to consider the Riesz
basis property for the regular boundary conditions in general form. We discuss only
the second order differential operators for the case when the potential is from L [0, 1].

To describe the results of this thesis and preliminary results let us classify all regular
boundary conditions that are not strongly regular for the second order differential
operators. One can readily see from the pages 62-63 of [48] that all regular boundary

conditions that are not strongly regular can be written in the form
a1yp + bryy + aoyo + boyr = 0,
coYo + doy1 = 0, (1.2)
if
blCO + a1d0 §£ 0 (13)

and 93 —460:0_1 = 0, where , a;, b;, co, dg, i = 0, 1, are complex numbers and 6y, #; and

0_, are defined by
0 1 1
? + 60y + 015 = wq (blco + aldo) s+ g + 2 (alcg + bldo) wy, Vs € (C\ {0} . (1.4)

From (1.4) we obtain, 0 _; = 61 = wy (bico + a1dy) , 0o = 2 (a1¢o + bido) wy, and hence

the equality 05 — 46,0_, = 0 implies that
4wt [(arco + bido)” — (bico + a1d0)2] =0,

that is, (a2 — b?) (2 — d2) = 0 which means that at least one of the following conditions
holds:

a; = :l:bl, Co = :i:d()

First suppose that a; = (—1)7 by, where 0 = 0, 1. This with (1.3) implies that both

a; and by are not zero and at least one of ¢y and dy is not zero. If ¢y # 0, then (1.2)



can be written in the form

Yo + (=1)7y1 + aayn =0,
Yo + a1 =0, (1.5)

b d d
where a; = - — m, g = —0, ai,co # 0 and ag # — (—1)7 due to (1.3).
aq a1Co Co

Similarly, if dg # 0, then (1.2) can be transformed to
Yo+ (=1)7 y1 + asyo = 0,
Yo + 11 =0, (1.6)

b
where a3 = % _ O—CO, ay = @, ar,dg # 0 and by (1.3) ay # — (—1)7.
aq aldo do

Now suppose that dy = (—1)7 ¢g. Arguing as in the reductions of (1.5) and (1.6) we

arrive at the boundary conditions

Yo + By + Bayn =0,

Yo + (—1)0 Y1 = 0, (17)
b b
Whereﬁlz_lv 52: _OZF@ aa'17007é0and
ai a1 a1
Br# — (1) (1.8)

and the boundary conditions

Bayo + 1 + Bayr = 0,

Yo -+ (—1)0 Yy = 0, (19)
aq bo ao
where 35 = a, By= a + b—l, bi, co # 0 and
By # —(=1)7 (1.10)

for o =0,1.



One can verify in the standard way that, the boundary conditions (1.5) and (1.6),
are the adjoint boundary conditions to (1.9) and (1.7), respectively, where oz =
—(=1)7 By, ay = By and a; = (—1)7 By, aa = B5.

Thus to consider all regular boundary conditions that are not strongly regular it
is enough to investigate the boundary conditions (1.7) and (1.9). Note that these
boundary conditions depend on two parameters. Let us describe the special cases that
were investigated.

Case (a) The cases 85,3, =0, 34,63 = (1) in (1.7), (1.9) forc =1 and 0 = 0
coincide with the periodic and antiperiodic boundary conditions respectively. These
boundary conditions are the ones more commonly studied. We will briefly describe
some historical developments related to the Riesz basis property of the root functions
of the boundary value problems for such boundary conditions. Since the results for the
periodic and antiperiodic problems can be found in a similar way, we will focus only on
the periodic problem. The antiperiodic problem is similar to the periodic one. One of
the important results was obtained by Kerimov and Mamedov [32]. They proved that
if ¢ € C*[0,1] and ¢(1) # ¢(0), then the root functions of the operator L(q) generated
by (1.1) and the periodic boundary conditions form a Riesz basis in Ly[0, 1]. This result

remains valid for the case when ¢(x) is a smooth potential, satisfying
¢®0)=¢®(1), VE=01,..,s—1

and ¢ (0) # ¢*)(1) for arbitrary s > 1.( see Corollary 2 of [66]).

The first result in terms of the Fourier coefficients of the potential ¢ was obtained by
Dernek and Veliev [18]. Makin [39] extended this result for the larger class of functions.
Shkalikov and Veliev obtained in [66] more general results which cover all results about
periodic and antiperiodic boundary conditions discussed above.

The other interesting results about the periodic and antiperiodic boundary condi-



tions were obtained in [20-23, 26, 31, 37, 43, 44, 46, 70-72].

Case (b) The cases 35,8, # 0 and 31, 83 = (—1)7 were investigated in [40, 41] and
it was proved that the system of the root functions of the Sturm-Liouville operator
corresponding to this case is a Riesz basis in Ls (0,1) (see Theorem 1 of [40, 41]).

Case (c) The cases 35,5, = 0 and 31, 85 # (—1)7 were investigated in [40, 41] and
in Chapter 2 of this thesis. The results of Chapter 2 have been published in Boundary
Value Problems (see [51]). To explain the difference between the two results, first let
us give the following definition.

We call the boundary conditions (1.7) and (1.9) for 8,, 8, # 0 and 3, 85 # (—1)7
which are different from the special cases (a), (b) and (c) as the general reqular boundary
conditions that are not strongly regular. Note that in any case (3,85 # — (—1)7 by
(1.8) and (1.10). For the case (¢) and general boundary conditions Makin [40, 41] proved
that the systems of the root functions of the Sturm-Liouville operators corresponding
to these cases are Riesz bases in Ly (0, 1) if and only if all large eigenvalues are multiple.
Note that this result is not effective, since the conditions are given in implicit form and
can not be verified for concrete potentials. In this thesis we find explicit conditions on
the potential such that the system of the root functions of the Sturm-Liouville operator
corresponding to each of the cases (¢) and general boundary conditions does not form
a Riesz basis.

Since we are interested also in the numerical estimations, let us mention the litera-
ture about the investigations of the small eigenvalues. There are a lot of papers about
the estimations of the small eigenvalues for the strongly regular boundary conditions
(see for example [13, 16, 25, 53-56] ). In the numerical results about the regular but
not strongly regular boundary conditions, the estimations of the small eigenvalues for

the periodic and antiperiodic boundary conditions are the most widely-studied ones



as (see for example [2, 6, 12, 17, 19, 29, 30, 42, 74] ). There are also many papers

concerning with the estimations of the small eigenvalues for the boundary conditions

a1,1y (0) + a1 29" (0) =0,

as1y (1) +as0y' (1) =0,

where
2 2 2 2
ayq +ais # 0, a1 + A3 # 0,

which contain some strongly regular boundary conditions including the Dirichlet and
Neumann boundary conditions as special cases (see for example [1, 3, 5, 13-16, 25,
53-56] ).

We are interested in the numerical estimations of the small eigenvalues for the
regular boundary conditions that are not strongly regular in the case (c) There are only
two papers [4, 28] containing the estimations of the small eigenvalues for such boundary
conditions. In [4], C. J. Goh, K. L. Teo and R. P. Agarwal gave the estimations of
the small eigenvalues in the case when the potential is continuous and there is no any
example for the boundary conditions we are interested in. In [28], M. H. Annaby and
R. M. Asharabi, estimated the small eigenvalues for the general boundary conditions
but their numerical example concerning with the case (c) is for very simple potential.
In this thesis we use a method different from the methods of the papers [4] and [28],
to get subtle estimations for the small eigenvalues when the potential is in the form
q(z) = > 77, qpcos2mkz. Note that, for this potential, it is impossible to compute
the exact values of the eigenvalues. It consists of the transformation of the original
problem that researching the eigenvalues to a new problem concerned with finding the
root of some functions. The method used is inspired from [18].

The thesis is divided into four chapters. The first chapter presents preliminary

definitions and formulations of some results to be used in Chapter 2 and Chapter 3.



In Chapter 2 of this thesis we find explicit conditions on the potential such that
the system of the root functions of the Sturm-Liouville operator corresponding to the

case (c¢) does not form a Riesz basis. Namely we prove that if

In|n|

lim

0, (1.11)

where ¢ € L1 (0,1), s, = (¢q,sin27nt) and (.,.) is the inner product in Ls [0, 1], then
the large eigenvalues of each of the operators corresponding to these cases are simple
for 0 = 1. Moreover, if there exists a sequence {n,} such that (1.11) holds when n is
replaced by ny, then the root functions of these operators do not form a Riesz basis.
Similarly, if the condition

Infn|

lim =0 (1.11a)

n—=00 NSop41
holds instead of (1.11), then the same statements continue to hold for o = 0.

In Chapter 3 of this thesis we find explicit conditions on potential ¢ such that the
system of the root functions of the Sturm-Liouville operator generated by (1.1) and
the general regular boundary conditions does not form a Riesz basis. The main results
of Chapter 3 can be described as follows:

Let 177 (q) and T3 (q) be the Sturm-Liouville operators associated by the boundary

conditions (1.7) and (1.9), respectively. Without loss of generality we assume that

/Olq(t)dtzo.

First we prove that if ¢ € L, [0, 1] and

/0 ' in (2rnt) g (1) di = o (%) (1.12)

then the large eigenvalues of 77 (q) and Ty (q) for o = 1, are simple. Moreover if there
exists a subsequence {n;} such that (1.12) holds whenever n is replaced by ny, then

the system of the root functions of each operators 77 (q) and T3 (q) for o = 1, does not



form a Riesz basis. The same results continue to hold for 77 (¢) and 73 (¢q) for o = 0,

if instead of (1.12) the condition

/0 in((2n + Vt) g (6) di = o0 (%) (1.12a)

holds.

Now, if the potential ¢ is an absolutely continuous function and

203
1— 7

q(0)+(=1)7q(1) # (1.13)

then the large eigenvalues of 77 (q) for o = 0,1 are simple and the system of the root

functions of 77 (¢) does not form a Riesz basis. Similarly, if the condition

2432

0(0)+ (1) (1) # 5

(1.14)

holds instead of (1.13), then the same results remain valid for 7y (q) for ¢ = 0, 1.
Moreover we obtain subtle asymptotic formulas for the eigenvalues and eigenfunctions
for the operators 77 (q) and T3 (q) for both cases ¢ € L;[0,1] and ¢ is an absolutely
continuous function.

Note that the general cases we investigate in Chapter 3 are essentially different
from the case (c) as the method of investigations and obtained results. The results of
Chapter 3 have been submitted for publication. (see [52])

In Chapter 4 of this thesis we estimate the small eigenvalues of the operators defined
in Chapter 2 by the numerical methods. Finally we give the error estimations and some

numerical examples.

1.2 Preliminary Facts

Let us begin by introducing some basic definitions and formulations of some results.



1.2.1 Main Definitions and Formulations of Some Results

In this section, our aim is to present basic definitions and results which will be used in
the subsequent chapters of this thesis.

A linear differential expression means an expression of the form

L(y) =po (2)y™ +p1 () y™ D + .. +pa(2)y.

The functions pg (z) ,p1 (z),p2 (), ..., pn (x) are called the coefficients and the number
n is called the order of the differential expression. [48]

We consider only the case n = 2 and the differential expression (1.1). Therefore we
give the definitions and results only for the case n = 2.

We denote the values of the function y and its first derivatives at the boundary

points 0 and 1 of the interval [0, 1] by

Yo, Yo» 5 Y1, Y1 (1.15)

Let U (y) be a linear form in the variables (1.15):

U (y) = aoyo + cayy + Boyr + By

If two such forms U, (y) have been specified, v = 1,2, and if the conditions
U,(y) =0, v=1,2 (1.16)

are imposed on the functions y we call these the boundary conditions which y must
satisfy.

Let D be the set of the functions y € Lo [0,1] satisfying (1.16) such that 3’ €
AC[0,1] and I(y) € L2]0,1] ,where AC[0,1] is the set of all absolutely continuos

functions on [0, 1].
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Definition 1.1 The operator T is called the linear differential operator generated by
the differential expression | (y) and the boundary conditions (1.16) if T (y) =l (y) for

ally € D.

Definition 1.2 The problem of determining a function y € D (T) which satisfies the

conditions
I{y)=0
and (1.16) is called the homogeneous boundary-value problem.
We note that if T" is the operator which is generated by the differential expression
[ (y) and the boundary conditions (1.16), then the homogeneous boundary-value prob-

lem amounts to finding, in the domain of definition D of the operator T', a function y

for which T" vanishes. [48]

Definition 1.3 The operator T™ is called the adjoint operator to T if the equation

(Ty,z) = (y,T"2)

holds for all y in the domain of definition of T and all z in the domain of definition of
T*, where (.,.) denotes the inner product in Ly [0, 1].

An operator T is self-adjoint if T = T™.

Definition 1.4 A number X\ is called an eigenvalue of an operator T if there exists in

the domain of definition of the operator T a function y # 0 such that

Ty = \y. (1.17)

The function y is called the eigenfunction of the operator T' corresponding to the

etgenvalue .
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The operator T' may be generated by the differential expression [ (y) and the bound-
ary conditions (1.16). Since an eigenfunction y must belong to the domain of definition
of the operator 7', it must satisfy the conditions (1.16). Moreover, Ty = [ (y), and

therefore (1.17) is equivalent to
[(y) = \y. (1.18)

Hence, the eigenvalues of an operator T are those values of the parameter A\ for

which the homogeneous boundary-value problem

ly)=Xy, U,(y) =0, v=1,2 (1.19)

has non-trivial solutions; each of these non-trivial solutions is an eigenfunction belong-
ing to \.

Consider the differential equation (1.18). It can be easily shown that there exists
a set of linearly independent solutions which are entire in the parameter \. Let this
set be {y1 (z,\), 92 (x,\)}. The general solution of (1.18) and also the solution of the

homogeneous boundary-value problem can be expressed in the form

y = ciyr (z,A) + oy (2, )

where c¢q, ¢o are certain constants. [48]
On imposing the two linearly independent boundary conditions (1.16), one gets a

system of two linear, homogeneous equations in the two unknowns ¢y, o

U, () + Uy (y2) =0, v =1,2 (1.20)

for the determination of the constants cq, cs.
Hence we have the following results (see [45]):
(a) The homogeneous boundary-value problem (1.20) has a non-trivial solution if

and only if the determinant of the coefficient matrix vanishes.
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(b) Since the functions {y; (z, A),y2 (x, A)} are entire functions of the parameter A,
this determinant, being a linear combination of entire functions in A is itself entire.
The eigenvalues (or characteristic values) of the boundary value problem (1.19) are

determined by the zeros of the characteristic determinant A (\), which has the form

Ur (y1) Ui (2)

Us (yl) Us (92)

AN =

Definition 1.5 An eigenvalue A of the boundary-value problem (1.19) is said to have
multiplicity p if A is a root of multiplicity p of the function A (X). An eigenvalue A of

(1.19) is called simple if X is a simple zero of A ().

Theorem 1.1 If )\ is an eigenvalue of multiplicity p of the operator T, then X is an

eigenvalue of the adjoint operator T* and has the same multiplicity. [48]

By the preceding discussions, A (A) is an integral, analytic function of A and the

following theorems hold [48]:

Theorem 1.2 The eigenvalues of the operator T are the zeros of the function A (\).
If A (X\) vanishes identically, then any number X is an eigenvalue of the operator T.
If, however, A (X) is not identically zero, the operator T has at most denumerably
many eigenvalues, and these eigenvalues can have no finite limit point.
If, in particular the function A (\) has no zeros at all, then the operator T' has no

eigenvalues.

Definition 1.6 Denote by ¢, o (x) = ¢, (z) the eigenfunction of the operator T' cor-
responding to the eigenvalue \,. The function ¢, ,(v) for p =1,2,...,m, is said to

be an associated function of order p corresponding to the same eigenvalue A, and the
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eigenfunction 1, o () if all the functions 1,, , (x) satisfy the following equations

(T = An) ¢n,0 (z) =0,

(T — \n) Vo (x) = Vyp1 (), p=1,2,...,my,
where my, s called the length of the system of associated functions.

An eigenfunction v, () is said to have multiplicity m if there is a system of functions

associated with v, () of length (m — 1) but no system of length m. [48]

1.2.2 Some Auxiliary Statements

In this section, we present some auxiliary statements which will be used in the subse-
quent chapters of this thesis.
We denote by wy,ws the different two roots of —1 arranged in an order in each case
to suit later requirements.
By the transformation A = —p?, we divide the complex p-plane into 4 sectors Sy,
k=0,1,2,3 defined by
km (k+1)7

— <argp < 5

: (1.21)

For each of the sectors Sy the numbers wi,wy can be ordered in such a way that, for
all p € Sk, the inequality

R (pw1) < R (puw) (1.22)

holds, where R (z) means the real part of z. [48]

It can be obtained more general domains from the sectors S by a translation
p — p — ¢, where c is a fixed complex number. These new sectors with their vertices
at the point p = —c will correspondingly be denoted by T}, k = 0,1,2,3. Taking into

account of the way in which the T} are produced from the Sy by translation, we see
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that, for p € T}, the inequality
R((p+c)wi) <R ((p+c)ws) (1.23)

holds for a suitable ordering of the numbers wq,ws. In the sequel we shall let p vary
in a fixed domain 7} and so we shall write simply S and T instead of S, and T}. The
order of the numbers wq,ws will be such that for p € T' the inequality (1.23) is valid.
48]

The homogeneous, linear differential equation y” + p?y = 0 has, for p # 0, the
fundamental system
ipr ,—ipz

e e

Now the following theorem gives us the asymptotic estimates for the fundamental set
of solutions y; (z, p),ys2 (z,p) and their first order derivatives of the inhomogeneous
equation

y' +py=q(x)y (1.24)

as |p| — oo in the sectors (1.21).

Theorem 1.3 If the function q(x) is an arbitrary summable function in the interval
[0, 1], then the equation (1.24) has, for each region T of the complex plane, two linearly
independent solutions y1,ys which are regqular for p € T and for sufficiently large |p|,

and which, with their derivatives, can be expressed in the form

1
p

d 1
% = pelUkt {wk +0 (;)} , (1.25)

fork=1,2. [48]
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For real and positive p it is often convenient to replace these solutions by the linear

combinations of y;, y:

1
Y1ty :cospx—i-O(—),
2 P

— 1
h .y2:sinpx+0<—).
P

21
Consider the different systems U, (y) = 0, v = 1,2, of linear forms which define a
given differential operator. If y* (0) or y® (1) appear explicitly in the form U (y) but
y™) (0) and y* (1) do not, for any v > k, then we say that the form U (y) has order k.
From the way in which they are constructed the boundary conditions must have the

form

U, (y) = v y®)(0) + a,09(0) + B,y*) (1) + 8, 0y(1) = 0, v = 1,2, (1.26)

where 1 > k1 > ko > 0,and for each value of the suffix v at least one of the numbers
a,, (3, is non-zero. [48]
Consider a fixed domain Sy; as before, we number wy, ws so that, for p € S, (1.22)

holds.

Definition 1.7 The boundary conditions (1.26) are said to be regular if the numbers

0_1 and 01 defined by the identity

0_4 (a1 + Sﬁl)wlfl (o1 + %61)”51
Y + 0o + 015 =

(02 + 585)w}? (g + 16,)ws
are different from zero.

This definition of regularity is independent of the choice of the region S for which
the numbers w;, ws were arranged in order.

Note that, since 6y,0;,0_1 depend only on the complex coefficients a, and £,

(v =1,2) of the highest order derivatives in (1.26), regularity also depends on «,

and j3,.
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Definition 1.8 The reqular boundary conditions (1.26) are said to be strongly regqular

if 05 — 40,0, # 0.
The most general boundary conditions for n = 2 have the form

a1y + biyh + aoyo + boyr = 0,

c1yy + diyy + coyo + doyr = 0. (1.27)
The conditions (1.27) are regular in just these cases:
1. a1dy — by #0;
2. a1y =by=c1 =dy =0, agdy — bycy # 0;
3. ardy — byc; =0, |ag| + |b1| > 0, bico + ardy # 0.

In the first two cases 0y = 0, #; = —1, 61 = 1 and 9(2) — 46010 _1 =4 # 0, ie.,
the boundary conditions are strongly regular. In the third case we can transform the

conditions (1.27) so:
aryy + biyy + aoyo + boyr = 0,
oo + doyr = 0,

1
9_1 ((Zl + Sbl>w1 — (CLl + —bl) w1
— + 00 + 918 = s
S

1
Co + Sdo Co + gdo

1
= w1 (blcO + G1d0> (S -+ g) -+ 20J1 (alco + bldo) ,

91 = 6,1 = W1 (blco + &1d0) s 60 = 2w1 (CZ1C0 + b1d0> ;

the conditions are therefore regular if bycy + a1dy # 0. [48]
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For 63 — 460,60_1 = 0, the following sequences are obtained:

plng &€ 1 .
)\k’J_—(Qkﬂ')2{1+ 0 +O(k3/2>} j:1,2 (128)

ki

where ¢ is the double root, occurring in this case, of the equation
016° + 006 +0_, =0

(relative to the 6 for the domain Sy). The upper or lower sign is to be taken according
as n = 4v or n = 4v + 2, respectively (Here Ing ¢ is any fixed branch of the natural
logarithm). [48]

Let 1,2 be linearly independent solutions of the equation I (y) + p?y = 0 which
satisfy the relations (1.25) in a certain domain 7". An eigenfunction which belongs to a
prescribed eigenvalue A = —p? with p € T must be expressible as a linear combination
of the functions vy, ys:

Yy = 11 + 2o,

where the coefficients c;, co are non-trivial solutions of the system of homogeneous
equations (1.21). For simplicity, we consider only a simple eigenvalue A, for which the

rank of the determinant A = det [U, (yx)], v,k = 1,2, is equal to 1. Then

Y1 Y2
y =
Us (y1) Uz (y2)

is an eigenfunction belonging to the eigenvalue \. [48]

1.2.3 On the Riesz Basis

Let {gbj} be an arbitrary orthonormal basis of the space ©, and A some bounded and

boundedly invertible linear operator. Then for any vector f € ® one has

[e.9] o0

AT =) (AT 0) 6= (L AT) 65,

Jj=1 J=1
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and consequently

F=>(£x) ¢y

Jj=1
where

,éb] — AQS]’ X] — A*_1¢] (] — ]_,2, .. .) .
Obviously
(prk:) = 5jk (] = 1727 .. ) .
Therefore if
=Yy, (1.29)
j=1

then ¢; = (f, Xj) (j=1,2,...), i.e. the expansion (1.29) is unique.

Thus every bounded and boundedly invertible linear operator transforms any or-

thonormal basis into some other basis of the space 2.

Definition 1.9 A basis {1#]}(1)0 of the space ® which is obtained from an orthonormal
basis by means of such a transformation is called a basis equivalent to an orthonormal
basis (or a Riesz basis). In other words, {wj}jo is a Riesz basis if there exist a bounded

and boundedly invertible linear operator A such that 1; = Ag; for some orthonormal

basis {¢j}(1)o. [27]
We formulate a number of characteristic properties of Riesz bases. [27]

Theorem 1.4 (N. K. Bari) The following assertions are equivalent.

(1) The sequence {wj}(l)o forms a basis of the space ®, equivalent to an orthonormal
basis (i.e. {wj}io is a Riesz basis.).

(ii) The sequence {1/13}(;0 becomes an orthonormal basis of the space ® following
the appropriate replacement of the scalar product (f, g) by some new one (f,g),, topo-

logically equivalent to the original one (i.e. if there exist positive constants c1,cy such

that ey (f, ) < (f, [y < ([, /) [ €D.).
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(1i1) The sequence {Qﬁ]}io 15 complete 1n 2, and there exist positive constants ay, as

such that for any positive integer n and any complex numbers v,,7vy,...,7, one has

n n 2 n
“22‘%"25 > it 3“12‘%"2-
j=1 j=1 j=1

(iv) The sequence {Qﬁ]}io is complete in D, and its Gram matriz ||(1/1],¢k)}|io

generates a bounded invertible operator in the space ls.
(v) The sequence {wj};)o 15 complete 1 ©, there corresponds to it a complete

biorthogonal sequence {Xj }OO

L » and for any f € D one has

o0 oo

S <00, YI(Fx)] < oo

j=1 Jj=1
Definition 1.10 A sequence {9 }]° of nonzero subspaces My, C D is said to be a basis
(of subspaces) of the space ©, if any vector x € © can be expanded in a unique way in
a series of the form
T = Z Tk,

k=1

where x € Ny (K =1,2,...).

Theorem 1.5 If the sequence of subspaces {My}7° is a basis of the space © equivalent
to an orthogonal one, then any sequence {¢,}7°, obtained as the union of orthonormal
bases of all the subspaces Ny, (k=1,2,...), is a basis of the space © equivalent to

orthonormal one. [27]

If the subspaces My (k= 1,2,...) are one-dimensional, then they form a basis of
the space ® if and only if unit vectors ¢, € My (k = 1,2,...) form a vector basis of .

[27]
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2 STURM-LIOUVILLE OPERATORS WITH SOME

REGULAR BOUNDARY CONDITIONS

Let Ty (q) , T2 (q) , T3 (q) and T} (¢) be the operators generated in L»[0, 1] by the differ-

ential expression (1.1) and the following boundary conditions:

Yo+ By1 =0, yo—y1 =0, (2.1)

Yo+ By =0, yo+y1 =0, (22)

Yo — 1 =0, yo + ayr =0, (2.3)
and

Yo+ 1 =0, yo+ay =0 (2.4)

respectively, where ¢ is a complex-valued summable function on [0,1], § # 41 and
o # +1.

In conditions (2.1), (2.2), (2.3) and (24)if =1, =—-1,a=1and a = —1
respectively, then any A € C is an eigenvalue of infinite multiplicity. In (2.1) and (2.3)
if 5 = —1 and a = —1 then they are periodic boundary conditions; In (2.2) and (2.4)
if 5 =1 and a = 1 then they are antiperiodic boundary conditions.

We will focus only on the operator Tj (¢). The investigations of the operators
T5(q),T5(q) and T} (q) are similar. It is well-known that ( see (47a) and (47b)) on page
65 of [48] ) the eigenvalues of the operators T3 (¢) consist of the sequences {A, 1}, {An2}
satisfying

Anj = (2n7)% + O(n'/?) (2.5)

for j = 1,2. From this formula one can easily obtain the following inequality

Anj — (27K)2| = |2(n — k)7| [2(n + k)7| + O(n2) > n (2.6)
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for j = 1,2, k #n; k=0,1,..., and n > N, where N denotes a sufficiently large
positive integer, that is, N > 1.
The eigenvalues of the operator T1(0) are A, = (27n)® for n = 0,1,... The eigen-

value 0 is simple and the corresponding eigenfunction is 1. The eigenvalues \,, = (27m)2

for n =1,2,... are double and the corresponding eigenfunctions and associated func-
tions are
in 2
Yn () = cos2mnz & ¢, (x) = <$ — x) %, (2.7)

respectively. Note that for any constant ¢, ¢, (z) + cy, (z) is also an associated func-
tion corresponding to \,, since one can easily verify that it satisfies the equation and
boundary conditions for the associated functions. It can be shown that the adjoint

operator T7(0) is associated with the boundary conditions:
yi + Byo =0, v —yp = 0.

It is easy to see that, 0 is a simple eigenvalue of 77°(0) and the corresponding eigen-

1
function is yj (z) = x — 113 The other eigenvalues X = (2rn)? for n = 1,2, ..,

are double and the corresponding eigenfunctions and associated functions are

1 2
yr (x) =sin2mnz & ¢ (x) = (x 7 +B> coz;;mc (2.8)
respectively.
Let
@, (x) == %gbn () = 4(65_4-11) (1 f 5 x) sin 27nx (2.9)
and

L 16m(B+1) . 4(B+1) 1
oy (x) := —B T o (x) = —B — <x — —+ B) cos 2mnx (2.10)
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(see (2.7) and (2.8)). The system of the root functions of 77(0) can be written as
{fn :n € Z}, where

fon =sin2mnx, Yn>0 & f, = (x), Yn > 0. (2.11)

One can easily verify that it forms a basis in Ls[0,1] and the biorthogonal system

{gn : n € Z} is the system of the root functions of 73(0), where
gon =9, (x),Vn >0 & ¢, = cos2mnz,Vn >0, (2.12)

since (fn, gm) = dnm-

2.1 The Asymptotic Formulas for the Eigenvalues and Eigen-
functions of T} (¢q)

To obtain the asymptotic formulas for the eigenvalues A, ; and the corresponding nor-

malized eigenfunctions ¥, ;(z) of T1(q) we use (2.6) and the well-known relations

(Av; — (2mn)*) (Y 4, sin 27nx) = (q¥ 4, sin 27na) (2.13)
and
(Avy = 270)%) (W, 97) = 71 (U sin 2mna) = (W ¢7) (2.14)
where
167 (8 + 1)
M= —F% 1 >
g—1

which can be obtained by multiplying both sides of the equality
—(Uny)" +q (@) Unj = Ay Un,

by sin 2rnz and ¢ respectively. It follows from (2.13) and (2.14) that

(q¥,j,sin2mn)

i N , 2.15
)\N,j - (27m)2 7& " ( )

(¥, j,sin 2mne) =
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_ nn(q¥yy,sin2mnz) - (qVn;, ¢7)

(Unj, o0) : N #£n. (2.16)
’ (v — 2m)?)® Ay — (2mn)°
Moreover, we use the following relations
(Un,j,gsin2mne) = Z (¢, sin 2mna) (U5, sin 2mnqx) + (2.17)
n1=0

+ (g cos 2ny, sin 27n) (\IINJ-, o )],

o0

(Uns.395) = Y [(490,: 25) (U, sin 2mnaz) + (g cos 2mmz, ¢}) (L, 05, )]
n1=0
(2.18)
|(qUn ;,sin 2mnx)| < 4M, (2.19)
|(q\I/N,ja 90:1)| <4M, (220)

for N > 1,where M = sup |q,|. These relations are obvious for ¢ € L4(0,1), since to
obtain (2.17) and (2.18) we can use the decomposition of Gsin27nz and Gy by the
basis (2.11). For ¢ € L;(0,1) see Lemma 1 of [70].

To obtain the asymptotic formulas for the eigenvalues and eigenfunctions we iterate
(2.13) and (2.14) by using (2.17) and (2.18). First let us prove the following obvious
asymptotic formulas, namely (2.24), for the eigenfunctions W,, ;. The expansion of ¥,

by the basis (2.12) can be written in the form

U, 5 = Uy 0, () + vy j cos 2mne + hy, j (), (2.21)
where
Upj = (Upj,sin2mnx), v, = (Vo @r), (2.22)
hnj(x) = Z (U, 5, sin27kx) @ () + (U, 5, %) cos 2k,
k=0
k#n

and ¢, (), ¢ (x) are defined in (2.9) and (2.10), respectively. Using (2.15), (2.16),
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(2.19) and (2.20) one can readily see that, there exists a constant C' such that

1 1
sup |h,; (z)| < C Z + i =0 (ﬂ) ‘

2
k#n ’ )\n,j - (27Tk) | ‘(/\n,j — (27‘(’6)2)2‘ n
(2.23)
Hence by (2.21) and (2.23) we obtain
1
U, = Up o, (x) + vy, cos 2mnx + O (ﬂ> . (2.24)
n
Since ¥, ; is normalized, we have
2 2 2 2 2
1= [|Wn il = (Wny, Wng) = [ungl™ llen @)I7 + |vnl™ [[cos 2mna||” +
_ - Inn
+Up, iU (@, (), cos 2mnx) + vy, jUn ; (cos 2mnz, ¢, (v)) + O )=
816> — Ref + 1 5 1 9 Inn
-2 L ~ o, ; o—),
that is,
9 1 9 Inn
alun|”+ = |on|"=1+0 | — |, (2.25)
2 n
where

a_§|ﬁ|2—Reﬁ+1
3 B-1

Note that a # 0, since ]6|2 +1 > || and by (2.25) we see that at least one of u,, ; and

Up,; is different from zero.

Now let us iterate (2.13). Using (2.17) in (2.13) we get

()‘n,j - (27T”>2) (¥, ;,sin 2mnx) =

= Z [(qcpm,sin 27Tna:) (¥, j,sin2mnyx) + (g cos 2mnyz, sin 2mnx) (\Ilnﬁj, @Zl)} :
n1=0

Isolating the terms in the right-hand side of this equality containing the multiplicands

(¥, ;,sin 2mrnex) and (U, ;, k) (i.e., the case n; = n ), using (2.15) and (2.16) for the
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terms (U, ;, sin2rniz) and (U, ;, ¢; ), respectively (in the case n; # n), we obtain
Ay — (27n)* — (qy,,, sin 2mnz)| (U, 5, sin 2mnz) — (g cos 2mrna, sin 2rnx) (U, 5, h) =

= Z [(qunl,sin 27Tnx) (¥, j,8in2mnyx) + (g cos 2mnyz, sin 2mnx) (\Ifn,j, gp,*”)}
i
- Z [al (/\n,j) (qllln,jH sin 271'7111‘) + bl (/\Tlvj) (q\Ian-, SO:M)} )
ni

where

(qgonl, sin 27ma:) 11 (g cos 2mnyz, sin 2nx)
Anj = (2mn1)? (Anj — (27Tn1)2)2
(q cos 2mnyx, sin 2mn)
Anj — (2704)?

a1 (Anj) =

Y

by (An,j) =

Using (2.17) and (2.18) for the terms (q¥,, ;,sin2rniz) and (q¥,;, ¢} ) of the last

summation we obtain

[Anj — (27n)* — (g, sin 2mnx)] (¥, ;,sin 2mnz) — (g cos 2mna, sin 2mna) (¥, 5, o)) =

= Z [a1 (Mng) (q¥4 7, sin 2mnqx) + by (M) (W0, 05,) ]

ni

= Z aq (Z [(q@m, sin 27mlx) (W, j,8in 2mnex) + (g cos 2mnax, sin 2mn, ) (\IJW-, 30;2)]) +
ni

no=0
+ Zbl (Z (g, ¢5,) (W j,8in 2Tn0z) + (g cos 2mnaz, ) ) (Un (,0;2)]) ,
ni no=0

Now isolating the terms for ny, = n we get

[Anj — (27n)* — (g, sin 2mnx)] (¥, 7, sin 2mna) — (g cos 2mna, sin 2mna) (¥, 5, o)) =

= Z [a1 (g, sin2mniz) + by (g, ©5,)] (Un, sin 27na) +

ni

+ Z [a1 (g cos 2mna, sin 27ny ) + by (g cos2mna, ) )] (U, %) +

ni

+ Z { [al (qunQ, sin 27Tn1:v) + by (qgom, go;"“)] (W, ;,sin 2mnex) b+

ni,n2

+ Z { [al (q cos 2mnox, sin 2wy ) + by (q cos 2mna T, go;';l)] (\IIW-, 90;2)}.

ni,n2
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Here and below the summations are taken under the conditions n; # n and n; = 0,1, ...

for : = 1,2, .... Introduce the notations

Cl =.daq, Ml = bl,
Cy =: aras + b1 Ay = Chag + My Az, My =: a1by + b1 By = C1by + M1 By,

Crs1 =: Crag1 + MpApy1, Myp1 =: Cpbgpr + MyBiya; k=1,2,...,

(‘ank“ ,sin 27mkx) Y1ner1 (g cos 2y 12, sin 27n,x)
2 2
Anj = (2nsa) (>\n,j - (27mk+1)2)
(q cos 2mng 1, sin 2mnyx)

>\n,j - (27mk+1)2

A1 = a1 (Anj) =

9

bit1 = bt ()\n,j) =

Y

(%0 @) vmens (gcos2mnenis, o)
Anj — (2mn441)? (Anj — (27mk+1)2)2
(q COS 27Nk 1T, goflk)

)\n,j - (27mk+1)2

Ak—i—l = Ak+1 (An,j) =

Y

Bii1 = Bi ()‘n,j) =

Using these notations and repeating this iteration £ times we get

[)\n,j — (2mn)* = (qp,, sin 2nz) — A, ()\w)} (¥, j,sin2mnx) =

= [(q cos 2nx, sin 27na) 4+ By, ()\n,j)] (W i, 00 () + Ry, (2.26)
where
N k N k
Ak Qng) =D m M) s Be(Ang) =D B (Mng)
m=1 m=1
ar (M) = Y [Cilap,,sin2mnx) + My (g0, 95,)]
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It follows from (2.6), (2.19) and (2.20) that

wu=0 (2 -0 ((21)), o (222)")

(2.27)
Therefore letting k tend to infinity, we obtain
Mg = @mn)* = Qu — A(Nny)] tnj = [Pa+ B (M)l vny,
where
P, = (qcos2mnz,sin 2mnx) , Q, = (qp,,sin 2mnz), (2.28)
Ang) =D m (Ang) s Bng) =D B (Any)
m=1 m=1
and by (2.27) we have
In |n| In |n|
Aug) =0 (Z5 ), B(Any) =0 . (2.29)
n

Thus, iterating (2.13) we obtain (2.26). Now iterating (2.14) instead of (2.13), using

(2.18) and (2.17) and arguing as in the previous iteration, we get
(Mg = (2mn)* = By = A )] vy = bin + @+ B () wng + Ry, (2:30)

where

Pr = (qcos2mnx,¢r), Qn = (9@, ¢r) (2.31)

m=1 m=1
) (Anj) = Z [ék (g cos 2mnx, sin 2mngx) + M, (g cos 2mnz, @Zk)} :
N1,...,Nk
r (Ang) = Z [Ck (g2, sin 2mngx) + My (g, %J] ;
MY yeeny nk
R, = Z {5k+1 (q¥y, j,sin2mngq12) + Mg <q\I/n,j, W:kﬂ) } ,
M1y Mgt 1

5k+1 = 6’kak+1 + MkAk—i-la Mk—l—l = 5kbk+1 + MkBk—i-l; kE=1,2,...,
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(a0n,. ¢5) L i (geos2mmiz, ¢y)
Anj — (27my)? (Anyj — (27Tn1)2)2
(qcos2mnyx, @)

)\'n,j — (27T7l1)2 .

Cy = Ay (\ny) =

]/\\4/1 - B1 ()\nd') -

Similar to (2.27) one can verify that

)= O (<1n7|ln|>k> B =0 ((ln7|l7l|>k>, 7 =0 ((lnim)m).

(2.32)
Now letting k tend to infinity in (2.30), we obtain
g = (270)* = Py = A" (Ang)] vy = [1in + @ + B (Anj)] thn,
where
A Mng) =Yy (Ang) s B ng) = Y B ()
m=1 m=1
and by (2.32) we have
, In |n| , In |n|
A Q) =0 (==, B (Mj) =0 (——). (2.33)

To get some main results of this chapter we use the following system of equations,

obtained above, with respect to u, ; and v, ;

|:>\n,j — (27TTL)2 — Qn — A ()‘mj)] un,j = [Pn + B ()\n7])] ’UnJ', (234)
Mg = 2mn)* = Py = A" (M) v = [1an + Q5 + B (Ang)] thn, (2.35)
where
_ 20841 [ 2(8+1) 28
Qn = _ﬁ/o xq (z)dr + o1 (zq, cosdmnz) — 71 (q,cosdmnx) (2.36)
28+ [*
T /0 zq(z)dx + o0 (1), (2.37)
.28+ [ 2(8+1) 2
P = ﬂ/o zq (x)dx + 51 (zq,cosdmnzx) — 71 (q,cos4mnx) (2.38)
1
= %/o zq(x)dx +o0(1), (2.39)
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1
P, = 5 (q,sindmnx) =o(1), (2.40)

e o (B[ By 1 B
Qn—S(ﬁ1_1> /Oq(x)(1+ﬁl—x> (x—1+51)s1n47rnxdx_o(1) (2.41)

(see (2.28) and (2.31)). Note that (2.34), (2.35) with (2.29), (2.33) give

[Am — (27n)® = Qu+ O (IHA”‘)} {P +0 < - )] Vnj, (2.42)

[Aw — (2mn)? — P*+ 0O (m |”|>} Vnj = [yln +Q+ )] Unj  (2.43)

n

Introduce the notations

¢n = (q,cos2mnx), s, = (q,sin 2wnzx) ,
Cny = (xq,cos2mnx), s,1 = (vq,sin2mnx), (2.44)

Cna = (a:2q, cos 27mx) ) Sp2 = (x2q, sin 27rmc) .

Then, by (2.36)-(2.41) and (2.44) we have

2B +1) [ 2(B+1) 20
Q, = —W/O zq (z)dx + Wcml - ﬁczm (2.45)
1
P = %/0 zq(x)dr + %6%,1 - %C%, (2.46)
1

P, = 552 (2.47)

2 2
Q = -8 <g i_ 1) 59n,2 + 8 (%) Son,1 — —(ﬁ 8_61)282n. (248)

Theorem 2.1 The following statements hold:
(a) Any eigenfunction U, ; of Ty (q) corresponding to the eigenvalue X, ; defined in
(2.5) satisfies

W, ; = V2cos2mnx + O (n_l/Z) : (2.49)

Moreover there exists N such that for all n > N the geometric multiplicity of the

etgenvalue A\, ; 1s 1.
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(b) A complex number A € U(n) =: {\ : |A— (27m)2‘ < n} is an eigenvalue of

Ti (q) if and only if it is a root of the equation
A= (2m)? = Q. — AN)] [N = 2mn)* = Pr — A (V)] -

— [P, +B\)][in+Q;+ B (\)] =0. (2.50)

Moreover A € U(n) is a double eigenvalue of Ty (q) if and only if it is a double root of

(2.50) .

Proof. (a) By (2.5) the left-hand side of (2.43) is O(n'/?), which implies that
u, ; = O(n~Y2). Therefore from (2.24) we obtain (2.49). Now suppose that there are
two linearly independent eigenfunctions corresponding to A, j. Then there exists an

eigenfunction satisfying
U, ; = V2sin 2rnz + o (1)

which contradicts (2.49).

(b) First we prove that the large eigenvalues ), ; are the roots of the equation (2.50).
It follows from (2.49), (2.22) and (2.10) that v, ; # 0. If u, ; # 0 then multiplying the
equations (2.34) and (2.35) side by side and then canceling v, ju, ; we obtain (2.50) .
If u,; = 0 then by (2.34) and (2.35) we have P, + B (\,;) = 0 and \,; — (27n)* —
Pr — A’ (\,;) = 0 which mean that (2.50) holds. Thus in any case )\, ; is a root of
(2.50).

Now we prove that the roots of (2.50) lying in U(n) are the eigenvalues of T} (q) .

Let F(\) be the left-hand side of (2.50) which can be written as
FO)=A—2m))? = (Qun+ AN+ Pr+ A (\) (A= (2mn)?) + (2.51)
+(Qn+AN) (T + A (V) = (Pa+ B(V) (in+ Q; + B' (V)

and
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One can easily verify that the inequality
| FQA) =G [<[ G |

holds for all A from the boundary of U(n). Since the function G(\) has two roots in
the set U(n), by the Rouche’s theorem we find that F'(\) has two roots in the same
set. Thus 7} has two eigenvalues (counting with multiplicities) lying in U(n) that are
the roots of (2.50). On the other hand, (2.50) has preciously two roots (counting with
multiplicities) in U(n). Therefore A € U(n) is an eigenvalue of Tj (¢) if and only if
(2.50) holds.

If X\ € U(n) is a double eigenvalue of T} (¢q) then it has no other eigenvalues in U(n)
and hence (2.50) has no other roots. This implies that A is a double root of (2.50).
By the same way one can prove that if A is a double root of (2.50) then it is a double
eigenvalue of 71 (¢) . =

Let us consider (2.50) in detail. By (2.51) we have
F(\) =0. (2.52)
If we substitute ¢ =: A — (27n)” in (2.52), then it becomes

22— (Qn+ AN+ P+ A (\)t+ (2.53)

+(@Qn+ AW) (B + A (V) = (B + B(A) (1in+ @, + B () = 0.

The solutions of (2.53) are

(Qn+Pr+A+A) /AN
2 b

t1p =
where

AN =Qn+P +A+A)Y —4(Qu+A) (P +A)+4(P,+ B) (yyn+ Q" + B
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which can be written in the form
AN =(Qn—P +A—A)Y+4(P,+B)(vyn+ Q-+ B) (2.54)

and, as we shall see below, /A (\) can be defined as an analytic function on U(n).

Clearly the eigenvalue )\, ; is a root either of the equation
1
A= @an)? 4+ 5 [(@Qu+ P+ A+ A4) = VA (2.55)
or of the equation

A= @nn) 42 [(Qut Pyt A+ A) + VADY]. (2.56)

Now let us examine A (), ;) in detail. If (1.11) holds then one can readily see from

(2.29), (2.33), (2.45)-(2.48) and (2.54) that
A (A j) = 291082, (1 + o(1)). (2.57)

for A € U(n). By (62) there exists appropriate choice of branch of \/A (\) (depending
on n) which is analytic on U(n). Taking into account (2.57), (2.29), (2.33), (2.45) and

(2.46), we see that (2.55) and (2.56) have the form

A= (2mn)* — \/?\/@(1 +0(1)), (2.58)

A= (2mn)® + ‘/?\/@(1 +o(1)). (2.59)

Theorem 2.2 If (1.11) holds, then the large eigenvalues X, ; are simple and satisfy

the following asymptotic formulas

Anj = (2mn)? 4 (=1) \/?\/m(l +0(1)). (2.60)

for j = 1,2. Moreover, if there exists a sequence {ny} such that (1.11) holds when n is

replaced by ny, then the root functions of Ti (q) do not form a Riesz basis.
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Proof. To prove that the large eigenvalues )\, ; are simple let us show that one of
the eigenvalues, say A, satisfies (2.60) for j = 1 and the other A, , satisfies (2.60) for
j = 2. Let us prove that each of the equations (2.55) and (2.56) has a unique root in

U(n) by proving that

(2mn)* + % (Qu+ P+ A+ A)+ /A (A)}

is a contraction mapping. For this we show that there exist positive real numbers

Kl, KQ, Kg such that

A = Alp) [< Ko [ A= pu]o | AQ) = A'(p) |< Ky | A= pa | (2.61)

VAR - VA < Ky | A= p] (2.62)
for A\, p € U(n), where Ky + Ky + K3 < 1. The proof of (2.61) is similar to the proof
of (56) of the paper [73].

Now let us prove (2.62). By (2.57) and (1.11) we have

( A(A)>_1 — (1),

On the other hand arguing as in the proof of (56) of the paper [73] we get

d
AN =0().

Hence for the large values of n we have

d
d B AW B
d)\\/A(/\)_—Q\/m_Ol

Thus by the fixed point theorem, each of the equations (2.55) and (2.56) has a unique
root A\; and A, respectively. Clearly by (2.58) and (2.59), we have A\; # Ay which
implies that the equation (2.50) has two simple roots in U (n) . Therefore by Theorem
2.1(b), A\; and Ay are the eigenvalues of T} (¢) lying in U (n), that is, they are A, ; and

An,2, which proves the simplicity of the large eigenvalues and the validity of (2.60).
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If there exists a sequence {n;} such that (1.11) holds when n is replaced by ny,

then by Theorem 2.1(a)
(W1, Wy2) = 140 (. 17))

Now it follows from the theorems of [22, 23| (see also Lemma 3 of [71]) that the root

functions of 77 (¢) do not form a Riesz basis. m

2.2 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of 75 (¢q), T3 (q) and Ty (q)

Now let us consider the operators Ts (q), T3 (q) and T} (q) . First we consider the oper-
ator T3 (q).

It is well known that ( see (47a) and (47b)) on page 65 of [48] ) the eigenvalues of
the operators T5(q) consist of the sequences {13}, {23} satisfying (2.5) when A, ;
is replaced by A, ;3. The eigenvalues, eigenfunctions and associated functions of 73 (0)

are

Ans = (27Tn)2; n=20,1,2,...

«
1+«

6 (0) = (-

Yos () =a — , Yns(z) =sin2mnz; n=1,2,...

rn=1,2,....
14+«

Qo CoS 2T
47mn

respectively. The biorthogonal systems analogous to (2.11) and (2.12) are

41+« 1 >
{COSQWTL:L‘, (1 +3) ( —a:) sin27rm:} (2.63)

oY 1+« 0
4(1 >
sin 2mnz, +a) v — —2 ) cos2mnz (2.64)
-« 14+ o 0

respectively.
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Analogous formulas to (2.13) and (2.14) are
(Anjs — (27m)2) (W, j3,cos2mne) = (q¥n, 3, COS 2TNI) (2.65)

(AN7j73 — (27m)2) (\I/NJ‘,g, 902’3) — v3n (Y j3,c082mNx) = (q\I’NJ"g, gpfm) (2.66)

respectively, where

167 (1 + «
73:—( )

1 -«
Instead of (2.11)-(2.14) using (2.63)-(2.66) and arguing as in the proofs of Theorem 2.1

and Theorem 2.2 we obtain the following results for T3 (q) .

Theorem 2.3 If (1.11) holds, then the large eigenvalues A, ;3 are simple and satisfy

the following asymptotic formulas

/\n,j,3 = (27Tn)2 + (—1)J

/2
273,/—7132“(1 +o(1)).
or j = 1,2. The eigenfunctions V,, ;3 corresponding to A\, ;3 obey
7]7 7]7

U, 3= V2sin 2mnz + O (n_1/2) .

Moreover, if there exists a sequence {ny} such that (1.11) holds when n is replaced by

ng, then the root functions of T3 (q) do not form a Riesz basis.

Now let us consider the operator Ty (¢). It is well-known that ( see (47a) and (47b))

on page 65 of [48] ) the eigenvalues of the operators T5(q) consist of the sequences

{A12}, {22} satisfying
Anj2 = (2nm + )2 4+ O(n'/?), (2.67)
for j = 1,2. The eigenvalues, eigenfunctions and associated functions of T (0) are
(7 +27n)° | Yo (x) = cos (2n 4 1) 7z,

B g sin (2n + 1) 7z
bna2 () = <B—1 _‘T> 20n+ 1)1
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forn =0,1,2,.. .respectively. The biorthogonal systems analogous to (2.11) and (2.12)

are
{sin (2n + 1) 7z, 4 (354__11) (x + Bi 1) cos (2n + 1) mc}nzo (2.68)
{cos (2n + 1) 7z, 1 (Bﬁ—i—_ll) (ﬁé s x) sin (2n + 1) Wx}::) (2.69)
respectively.

Analogous formulas to (2.13) and (2.14) are
(Anj2 — ((2n+1) 7T)2) (Unjo,sin(2n+ 1)) = (q¥nN j2,8in (2n + 1) mz)  (2.70)

(Avge — (@n+1)m)%) (Unj2, ©ha)—(2n + 1) vy (Uaja,sin (20 + 1) 72) = (¢¥nj2, ) )
(2.71)

respectively, where

_sr(5-1)
N

Instead of (2.11)-(2.14) using (2.68)-(2.71) and arguing as in the proofs of Theorem 2.1

and Theorem 2.2 we obtain the following results for 75 (q) .

Theorem 2.4 If (1.11a) holds, then the large eigenvalues \, ;2 are simple and satisfy

the following asymptotic formulas

/2
Anjae = ((2n+1) 7T)2 +(=1) 272 (2n + 1) s9p41(1 + 0(1)).
for 3 =1,2. The eigenfunctions V,, ;o corresponding to \, j2 obey
\I/n,j,g = \/§COS (2n + 1) mr + O (n—l/z) .

Moreover, if there exists a sequence {ny} such that (1.11a) holds when n is replaced by

ng, then the root functions of Ty (q) do not form a Riesz basis.
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Lastly we consider the operator T (¢). It is well known that ( see (47a) and (47b))
on page 65 of [48] ) the eigenvalues of the operators Ty(q) consist of the sequences
{A1a}, {An24} satisfying (2.67) when A, ;o is replaced by A, ;4. The eigenvalues,

eigenfunctions and associated functions of T (0) are

Ana = (m+210)?, yoa(z) =sin (2n + 1) 7z,

« cos (2n + 1) mx
+x
-« 22n+1)7w

¢n,4 (z) =

forn =0,1,2,.. .respectively. The biorthogonal systems analogous to (2.11) and (2.12)

are
41—« 1 *
{COS (2n+ 1) mz, (1 n ;) (1 - x) sin (2n 4 1) Wx}no (2.72)
4(1 — >
sin (2n + 1) 7z, (1-o) 1) cos (2n+ 1)z (2.73)
1+« 11—« 0
respectively.

Analogous formulas to (2.13) and (2.14) are
(Anja— (m+ 27m)2) (W ja,cos(2n+ 1) mx) = (q¥n,ja,cos (2n + 1) wx), (2.74)

(Awja— (2n+1)m)%) (Unja, 05a) —(2n + 1) 74 (U ja,cos (2n + 1) 72) = (q¥n 4, 05 4)
(2.75)

respectively, where
81 (1l —«
+ «

Instead of (2.11)-(2.14) using (2.72)-(2.75) and arguing as in the proofs of Theorem 2.1

and Theorem 2.2 we obtain the following results for T} (q) .

Theorem 2.5 If (1.11a) holds, then the large eigenvalues \, j4 are simple and satisfy

the following asymptotic formulas

)\n,j,4 = ((2n + 1) ’7T)2 + (—1)j \/274\/ (2n + ].) 82n+1<1 + 0(].))
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for j =1,2. The eigenfunctions ¥, ;4 corresponding to \, ;4 obey
U, 4= V/2sin 2n+1)mz+ 0 (n’l/Q) )

Moreover, if there exists a sequence {ny} such that (1.11a) holds when n is replaced by

ng, then the root functions of Ty (q) do not form a Riesz basis.

Now suppose that

/01 zq (z)dx # 0. (2.76)
It

1 1
53271, + B=o (E) s (277)
where B is defined by (2.29), then one can readily see from (2.54), (2.29), (2.33) and

(2.45)-(2.48) that there exists a positive constant K such that
IAN)| > K

for A € U(n) and for the large values of n. Therefore arguing as in the proof of Theorem

2.2, we obtain the following.

Theorem 2.6 Suppose that (2.76) holds. If (2.77) holds, then the large eigenvalues
of the operator Ty (q) are simple. Moreover if there exists a sequence {ny} such that
(2.77) holds when n is replaced by ng, then the root functions of T\ (q¢) do not form a

Riesz basis. Similar results continue to hold for the operators Ty (q) , T35 (q) and Ty (q) .

Remark 2.1 Since the eigenvalues A, 1 and A, 2 are the fized points of the equations
(2.55) and (2.56) respectively, using the fized point iteration one can determine these
eigenvalues with arbitrary precision. Moreover, using these better approximations of the
ergenvalues, one can also determine the better approximations for the eigenfunctions of

the operator Ty (q) . Similar results can be obtained for the operators Ty (q), T3 (q) and

Ty (q)-
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3 STURM-LIOUVILLE OPERATORS WITH GEN-

ERAL REGULAR BOUNDARY CONDITIONS

In the present chapter we consider the non-self-adjoint linear differential operators
T7 (q) and T¥(q) for o = 0, 1, which are introduced in Section 1.1. We will focus only
on the operator T} (¢). The investigations of the operators T (q), 7% (q) and T3 (q)
are similar. First let us prove the following simple proposition about 7} (0). Note that
the simplest case ¢(z) = 0 was completely solved in [38]. Here we write the asymptotic

formulas for the eigenvalues of T} (0) in the form we need.

3.1 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of T} (¢)

Proposition 3.1 The square roots (with nonnegative real part) of the eigenvalues of

the operator T1 (0) consist of the sequences {11, (0)} and {1, ,(0)} satisfying

o1 (0) = 27, (3.1)
1 1
Uy o (0) =270 + Blﬁi Tmn +0 (E) : (3.2)

Proof. Using the fundamental solutions "¢ and e~ of —y” = Ay where u = V/\,

one can readily see that the characteristic determinant Aq (i) of 77 (0) has the form
Ao (p) = (1 — ™) (ip+ Byipe ™ — Bye™™) + (ip + Byipe™ + Bre™) (1 — e ™) =0,
After simplifying this equation, we have
Ao (p)=(1—e ™) [in(By—1) (e* —1) + B, (e +1)] =0 (3.3)

which is equivalent to

l—e™=0or f(u) =0 (3.4)
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where

flp)=e*—1- —5126—2 . e“‘u—i— L =e"—1+4+0 (%) (3.5)

The solution of the first equation in (3.4) is p,,; (0) = 2mn for n € Z, that is, (3.1) is

proved.
To prove (3.2), we estimate the roots of (3.5). Using Rouche’s theorem on the circle
{u : o |p—2mn| = E} for some constant ¢, one can easily see that, the roots of (3.5)
n

has the form

1
pg, =2m+£& =0 (ﬁ) : (3.6)
Now we prove that
By 1 1
= —+0(= ). 3.7
3 By —1mn * n? (3:7)
For this, let us consider the roots of (3.5) in detail. By (3.6) and (3.5) we have
. ' 240 (3) 2iB, 1 1
i(2mn+E) 1= 262 n — 2 +0 (_) ) 3.8
¢ Bi—12m+0 (%) B —12mn n? (38)

On the other hand, using Maclaurin expansion of ¢’ and taking into account the second

equality of (3.6) we see that

, 1
) _ 1 =4+ 0 (_>

n2
This with (3.8) gives us (3.7). Now (3.2) follows from (3.6) and (3.7). Lemma is proved.
u

For ¢ # 0 it is known that (see (21) of [41]) the characteristic polynomial of T (¢)

has the form

where Ag (1) is defined in (3.3) and

cy = /0 cos (2ut) q (t)dt, s, = /o sin (2ut) g (t) dt. (3.10)
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After some arrangements (3.9) can be written in the form
1 . . . 1
A (n) = Do (1) = ﬁ%@‘”‘ {ew (€ =1) —is, (" + 1)} +o0 (;) . (311)

Using (3.3) in this formula we obtain

A(p) = (1—6_“‘) [iu(ﬁl—l) (e“‘—l)—i—ﬁg (ei“—i—l)]—
514—1 _W{c (2m )—is (62iu+1)}+0(1)
! I

= (=e™) |in (B = 1) (" = 1) + B, (™ +1) — 61;1

cu (€™ + 1)] +
+i (B, +1)s,cosp+o (/%) .

Therefore the characteristic determinant A (i), can be written as

A(p) =27 (p)+i(By+1)s,cospu+o (%) : (3.12)

Ar(p)=(1—e") lip(B,—1) (e"—1) + (52 - 51; 1%) (e + 1)} . (3.13)

To obtain the asymptotic formulas for the eigenvalues of T} (¢) first let us consider the

roots of Ay (i) .

Lemma 3.1 The roots of the function Ay (u) consist of the sequences {,u}l’l} and

{uho} such that

[y =2mn, n € Z, (3.14)

1 1
1 =2 o 1 ~. 3.15
P, 2 m+51_1m+0 - (3.15)

Proof. The zeros of Ay (1) are the zeros of the equations

1—e " =0,
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and

g(p) =re” -1+

By +1 e+ 1

1
fr—1
The roots of the first equation are 27n for n € Z, that is (3.14) holds. By definition of

f(u) (see (3.5)) we have

B1+1 i
7 Cuet +1

fr—1 ip

g () = f(p) —

Since ¢, = o(1), there exists a sequence §,, such that ¢, = o(1) and

J

l9 () = ()] < = (3.16)

1
for € U(2mn), where U(27n) is O (—)—neighborhood of 27n.
n
Now to estimate the zeros of ¢ (1), we use Rouche’s theorem for the functions f (1)

and ¢ (p) on the circle
En
o= {il =, 0) 1= 2}, (3.17)
where 41, 5 (0) is defined in (3.2) and ¢, is chosen so that

en=0(1) & 6, = o(e,). (3.18)

For this let us estimate |f ()| on 7, by using the Taylor series of f(u) about 1, 5 (0) :

F() = £ (tnz) (= pn2) + fg@ (1= t12)" + -+

Since

l — st i62 iei# i ~ " ~
fl) =ie = 525 0 (5 ) ~ L~ L

there exist a constant ¢ > 0 such that |f’ ()| > ¢ and

7 0] > e (319)

for p1 € 7,. Thus by (3.16)-(3.19) and Rouche’s theorem, there exists a root s, , of

g (p) inside the circle (3.17). Therefore (3.15), follows from (3.2). =
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Now using (3.12), (3.13) and Lemma 3.1, we get one of the main results of this

thesis.

Theorem 3.1 (a) If (1.12) holds, then the large eigenvalues of T} (q) are simple and
the square roots (with nonnegative real part) of these eigenvalues consist of two se-

quences {1, 1 (q)} and {u, 5 (q)} satisfying the asymptotic formulas

o1 (q) = 271+ 0 (1) , (3.20)

n

1 1
fino (q) = 2mn + ﬁfi [ Fo <ﬁ) : (3.21)

Moreover the normalized eigenfunctions o, ; () and ¢, , (z) corresponding to the eigen-

values (ju, (q))2 and (fi,, 5 (q))Qsatisfy the same asymptotic formula
1
Onj (1) = V2 cos 2mnz 4+ O <ﬁ) (3.22)

forj=1,2
(b) If there exists a subsequence {ny} such that (1.12) holds whenever n is replaced

by n., then the system of the root functions of T} (q) does not form a Riesz basis.

Proof. (a) To prove (3.20) and (3.21), we show that the large roots of A (u) lies
in o (1)-neighborhood of the roots of A; (1) by using Rouche’s theorem for A (1) and

Ay (p) on Iy (ry,), Ty (1) , where

) = (s b= sty =} =o () (323)

and p,, ; for j = 1,2 are the roots of Ay (). If u € I'; (r,) for j = 1,2 then by (1.12)
1

Sy =0 (—> and by (3.12)
n

() =180 = 84 ()] <y B =0 (1) (3:24)

We can choose r,, so that

b, = 0(ry) - (3.25)
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Now let us estimate Ay (u) on the circles I'y (r,), I's (7). By (3.13)

Ap(p) = (1 —e ™) aph () (3.26)

where

1\ et +1
bt cﬂ) cr (3.27)

mm:wfﬁﬂﬂ—ﬂ+(@‘ 2 i

It follows from (3.14), (3.15) and (3.23) that if p € I'; (r,) and u € T'y(r,) then

‘ 1 . 1
p = 2mn+r,e’ and p = 27m+6 6i 1 %+Tnew—|—o (E) respectively, where 6 € (0, 27).
1
Therefore
(1—e™) ~ 7y, (3.28)
and
— 1
(1—e™) ~ =, (3.29)
n

on I'y (r,) and 'y (r,,) respectively, where a,, ~ b, means that a, = O(b,) and b, =
O(ay).
Now let us consider h () on T (1), j = 1,2. Since p,,, is the root of h () the

Taylor expansion of & (1) about i, , is

" (M}l,2>

o (1= pho) (3.30)

h(p) =N (o) (1t = pin) +

By (3.27), we have

V= 6= e+ (5,2 ) o (1)~

2 T
for p € T (r,), j = 1,2. Clearly h®) (1) ~ 1 for k > 1 and p € T; (r,,). On the other
hand, (v — ph o) ~ % for p€ Ty (ry) and (p— pl,) ~ ry for p € Ty (ry). Therefore
using (3.30) we obtain

1
h(p) ~ — vpe T (Tn)

h(p) ~rn, Yue Ty(r,).
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These formulas with (3.26), (3.28) and (3.29) imply that
Ay (p) ~rp, Ype Tj(ry) (3.31)

for j = 1,2. Thus by (3.24), (3.25), (3.31) and Rouche’s theorem, each of the disks
enclosed by the circles I'y (1,,) and I'y (r,,) contains an eigenvalue which proves (3.20)
and (3.21).

Since the distance between the centres of the circles I'y (r,,) and I's (1,) is of order
%, but r, = o <%), the eigenvalues inside the circles I'y (r,,) and I'y (r,,) are different,
that is, they are simple.

Now let us prove (3.22). Since the equation

—y" +q(z)y = 1’y

has the fundamental solutions of the form

. 1 . 1
yi(w,p) =™ + 0 (ﬁ) s Yoz, p) = e+ 0 (—)

Ju

(see p. 52 of [48]) the eigenfunctions of T} (¢) are

Yn,j (T) =

, 1 . 1
ol o)
:un,j :un,j

. . 1 . .
ity ; (L4 Byetni) + Bye'tni + O (—) —ift, 5 (14 Bre"#ni) + Bye~ni 4+ O (

n?j

, 1 , ) 1
[0 ()] ity (5 ) 0 (1] -
,U’n,j /Jln,j

. 1 A : 1
o ()]t o (L]

n.j Fin,j
1
P =20+ O (= |,
n

for j = 1,2 (see (3.20) and (3.21)), implies (3.22).

1

n7]

This with the formula

)
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(b) It is clear that if (1.12) holds for the subsequence {n;} then (3.22) holds for
{ni} too. Therefore the angle between the eigenfunctions ¢, ; (r) and ¢,, 5 (7) corre-
sponding to /i, ; (¢) and p,, 5 (¢) tends to zero. Hence the system of the root functions
of T} (q) does not form a Riesz basis (see [64]). Note that (b) follows also from (a) and
Theorem 2 of [40, 41]. =

Let ¢ be an absolutely continuous function. Then using the integration by parts

formula for s, and ¢, defined in (3.10) we obtain

5, = i 1g.(0) — (1) cos (2u)] + o<%>

and

¢ = %q (1) sin (2u) + 0 (i) |

If p € U(2mn), where U(27n) is defined in the proof of Lemma 3.1 , then

cosp=1+0 (%) &sinp =0 (%)

Therefore we have

and hence by (3.11)

A(p) =08 () +i(By+1)s,cospu+o0 (%)
a 1
where
o= "0 0) g 1)

Now we are ready to state one of the main results of this thesis.

Theorem 3.2 Let q be an absolutely continuous function and (1.18) for o = 1 hold.

Then



47

(a) the large eigenvalues of T'L(q) are simple and the square roots (with nonnegative

real part) of these eigenvalues consist of two sequences {i,, 1(q)} and {u, o(q)} satisfying

3 28, —iv/D 1
Mn,l(q) =2m™ + m +o0 (ﬁ) s (3.33)
B 28y +iVD 1
where D =2 (1 = 53) [q(0) — ¢ (1)] - (26,)°
(b) the system of the root functions of T(q) does not form a Riesz basis.
Proof. (a) By (3.32) u, ;(q) is a root of the equation
plo () +a+o(1) =0.
Using (3.3) in this equation we get
p(L—e ™) [ip (B, — 1) (" — 1) + By (e" +1)] +a+0(1) =0. (3.35)

By the Taylor expansions of e~ and e at 27n we have

_ : 1
e “zl—z(u—an)—I—O(ﬁ),

eiﬂ_1+z‘(u—2wn)+0<i)

n2
for ;o € U(27n). Therefore (3.35) can be written in the form
1
ip(p—2mn) |—u (B —1) (1 —2mn) + 26,4+ O <;)] +a+o0(1)=0. (3.36)

To prove the formulas (3.33) and (3.34) we consider the equation (3.36). In (3.36)
substituting © = u (@ — 27n) and taking into account that = = O(1) for p € U(27mn)

we get

—i (B, —1)2® +2ifoz +a+o(1) = 0. (3.37)

To solve (3.37) we compare the roots of the functions

fu () = =i (By — 1) &® + 250 + (3.38)
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and
Fo (1) = =i (B — 1) 2% + 2Bz + a+ (3.39)
on the set U(27n), where a,, = 0(1). The roots of f (1) are

—2i8, + VD

T12 = m (3.40)

where

D= <2i52)2 +4i(8y—1)a= (2i52)2 —2 (6? - 1) [¢(0) —q(1)] # 0. (3.41)

by the assumption (1.13) for 0 = 1. Therefore we have two different solutions z; and
ZIo.
On the other hand the solutions of the equations p (i — 27n) = 1 and p (u — 27n) =

x4 with respect to p are

1 T 1
0= =9 o=
H11 (n) » M2 ™ + o + <n2>

1 ) 1
=0 = =9 2 1o =
Ha1 (n) ) ™ + o + (nz)

respectively. Since 1 — x5 ~ 1 (see (3.40) and (3.41)), we have

and

1
Hio = Mo ~ Ty Hqg — fhog ™~ n’ Hig — M1 ~ T (3-42)

Now consider the roots of fs (1) by using Rouche’s theorem on
75 (rn) = {,u : |M - ,Uj2| = Tn} 5 (3.43)

for j = 1,2, where r, is chosen so that

R (%) & o = o (nry). (3.44)

By (3.38), (3.39) and (3.44)

[f1 (1) = f2 ()| = an = 0 (1)



49

on vy () Ny (). Since the roots of fi (i) are p,; fori,j = 1,2, we have

Ji(p) = A(p — pr) (0= pa2) (10— pag) (0 = fig2) (3.45)

where A is a constant. One can easily verify by using (3.42) and (3.45) that

f (t12) = A (p1g — 1) (a2 — Hay) (H1g — Hoa) ~ 10

Since f (u) is a polynomial of order 4 we have

[ (y9) = O(n2), f" (112) = O(n), f(4) (112) = O(1), f(s) (112) = 0.

Therefore using the Taylor series

fr(w) = f1 (o) (0= pyg) + -+

of f1(u) about py, for p € 7, (r,) and taking into account that (p — pyy) ~ 7, We

obtain
| f1 ()| ~ mr.

On the other hand by (3.44) we have

[f1 (1) = fa ()| = an = o ()

for u € v, (7). Therefore
[ () = 2 ()] < | fr () (3.46)

on 7, (1) In the same way we prove that (3.46) holds on ~, (7,) too. Hence inside of
each of the circles v, (r,) and v, (r,), there is one root of (3.35) denoted by ,,  (¢)
and 1, 5 (q) respectively. Since 7, = 0(2), p,, (¢) and g, , (q) satisfy the formulas
(3.33) and (3.34). To complete the proof of (a) it is enough to note that disks enclosed
by the circles v, (r,) and 4 (1,,) have no common points and there are only two roots
of (3.32) in the neighborhood of 27n. Thus (a) is proved.

(b) The proof of (b) is the same as the proof of Theorem 3.1(b). m
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3.2 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of 17 (¢), T3 (¢) and T3 (q)
Now consider the operators 7Y (¢), T% (q¢) and T (¢q) . In this case the characteristic
determinant of 70 (0), T2 (0) and T2 (0) are
AY () = (1 +€™) (ip + Byipe™™ — Bye™™) + (i + Byipe™ + Bye™) (1+e7*) =0,
DY (1) = (1+€") (Byip +ipe™ — Bye™") + (Byip +ipe™ + B,e") (L+e7) =0
and
Dy () = (1 =€) (Byip +ipe™™ — Bae™™) + (Byip + ipe™ + fye™) (1 —e™) =0

respectively. After simplifying these equations, we have

A ()= (L+e ™) [ip (B, +1) (e" +1) + B, (e™ —1)] =0,

Dy () = (14 e™) [ip (14 85) (e +1) + By (e = 1)] =0
and
Do () = (1 —e™) [ipn (1= B) (e™ = 1) + By (e" +1)] = 0.

The roots of these equations have the form

28, | 1
(2n+ 1), (2n+1)ﬂ+51+1<2n+1)7+0( )

28, 1 1
2n+1)m, <2n+1)ﬂ+53+1(2n—|—1)7r+0( )

and

1 1
2mn, 2mn + & —+0
1—pB5mn

respectively.
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The characteristic determinants of 77 (q), T2 (¢) and T3 (q) can be written in the

forms

A ) = AL+ (5, ~ D ecosncto ().

DO ) = DR ) (1= 55) syeosp+ o )
and

D) = D )+ (3 + ) syeosi o ()
where

A (p) = (1+e™) [w (By+1) (e™+1) + (ﬁz + Lo 51%) (e — 1)] ,

DY (p) = (1+e™*) {i,u (14 8;) (e™+1) + <B4 + Ps — 1cu> (e — 1)}

and

Dhw = (1-e ) [in -8 (e 1) + (5.~ 2Ha) (4|

The investigation T} (¢) is similar to the investigations of T} (q). The investigations
of T{ (¢) and T3 (¢) are also similar to the investigations of T} (q). The difference is
that, for the operators T? (¢) and T¥ (q) we consider the functions and equations in
O (%)-neighborhood of (2n 4 1) w (we denote it by U((2n + 1) 7)) instead of U(27mn),
since the eigenvalues of T7(0) and 7% (0) lie in U((2n + 1) w) while the eigenvalues of
T!(0) and T3 (0) lie in U(27n). Now instead of the triple {Ag, A1, A} using the triples
{AY, A AV (DY, DY, D}, {D}, D}, D'} and repeating the proof of Theorem 3.1 we

obtain:

Theorem 3.3 (a) If (1.12a) holds, then the large eigenvalues of T (q) and Ty(q) are
simple and the square Toots (with nonnegative real part) of the eigenvalues of these op-

erators consist of the sequences {1 1}, {5} and {p 1}, {p) o} respectively, satisfying

1
[y = (2n—|—1)7r+0(ﬁ),
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28 1 1
0 2
= (2 1 —
tnp = (0¥ )W+51+1(2n+1)7r+0(n)
and
0 1
pn,1:(2n+1)7r+0 ﬁ ’
28 1 1
0 4
= (2 1 — .
Pna = (2nF )W+53+1(2n+1)7r+0(n)

The normalized eigenfunctions corresponding to the eigenvalues (u%l)gy (M?L,g)Q; (P?m)?

and (p9172)2 have the same form
1
V2cos (2n+ 1) + O (E) :

If there exists a subsequence {ny} such that (1.12a) holds whenever n is replaced by
ni, then the systems of the root functions of TY(q) and Ty(q) do not form Riesz bases.
(b) If (1.12) holds, then the large eigenvalues of Ty (q) are simple and the square

roots (with nonnegative real part) of these eigenvalues consist of two sequences {p,,,}

1
pn1:27m+0(—),
’ n

1 1
Pn2 = 27N + O —+O<—).

1— B35 n

and {p, o} satisfying

The normalized eigenfunctions ¢, (x) and ¢, 5 (v) corresponding to the eigenvalues

(pn71)2 and (pn’2)2sati3fy the same asymptotic formula

n

P j () = V2 cos 2mnz + O (l)

forj=1,2
If there exists a subsequence {ny} such that (1.12) holds whenever n is replaced by

ni, then the system of the root functions of Ty (q) does not form a Riesz basis.

Now we investigate T7(q), 1% (¢) and Ty (¢) when g is an absolutely continuous

function. The analogous formulas to (3.32) are

o aorm e b (1)
A () = A3 + 2 + (M)—o, (3.47)



and

where

and

b=———"1a(0)+¢ ()],
a="5 "1 0)+q)
o= "0 10— g,

53

(3.48)

(3.49)

Instead of (3.32) using (3.47), (3.48), (3.49) and repeating the proof of Theorem

3.2, we obtain:

Theorem 3.4 (a) Let q be an absolutely continuous function. Suppose that for the

operators TY(q) and TY(q) the conditions (1.13) and (1.14) for ¢ = 0 hold respectively.

Then:

The large eigenvalues of T (q) and T2(q) are simple and the square roots (with

nonnegative real part) of the eigenvalues of these operators consist of two sequences

{rn} {un o} and {py 1}, {pn 5} respectively. satisfying

and

28, — iv/Ds

u271:(2n+1)7r—|—2 +

By +1)(2n+1D)r

26, + iv/D;

,u272:(2n+1)7r—|—2 +

(Br+1)@Cn+ 1w

28, — ivDs

O =(2 1

I kR YA Yo many e
28, + iv/Ds

Pnz = (20 + )W+2(63—{—1)(2n+1)7r+
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where Dy = 2 (1~ 53) [4(0) +¢(1)] = (26,)° and Dy = 2 (53 —1)[¢(0) + ¢ (1)] —
(284)°.
The systems of the root functions of TY(q) and T3 (q) do not form a Riesz basis.
(b) Let q be an absolutely continuous function and (1.14) for o =1 hold.
The large eigenvalues of Ty (q) are simple and the square roots (with nonnegative

real part) of these eigenvalues consist of two sequences {p,, 1} and {p, 5} satisfying

—928, —i/Ds 1

—9 “EPaT VS -
P 7m+4(53—1)7m+0 o)

—28, +iv/Ds 1

=9 ATV -
Pn2 = 2T F 4(63—1)7m+0 n)’

where Dy = 2 (83 — 1) [q(0) — q (1)] — (28,)°.

The system of the root functions of Ty (q) does not form a Riesz basis.
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4 NUMERICAL RESULTS

In the present chapter we estimate the small eigenvalues of the operators T; (¢), T3 (q),
T3 (q) and T} (q) defined in Chapter 2 by the numerical methods. We will focus only
on the operator 77 (¢). The investigations of the operators 15 (q), 73 (q¢) and T}y (q)
are similar. Our method is based on the equation (2.50) in Chapter 2 which gives
the eigenvalues. To consider the small eigenvalues, first we prove (see Theorem 4.1)
that the small eigenvalues also satisfy the equation (2.50) and using this equation we
show that the eigenvalue ), ; is either the root of (2.55) or the root of (2.56). To use
the numerical methods, we take finite summations instead of the infinite series in the
expressions (2.55) and (2.56) and show that the eigenvalues are close to the roots of
the equations obtained by taking these finite summations. To find the roots of these
equations, many numerical methods can be used such as the fixed point iteration and
Newton method. Since it is not necessary to compute the derivatives of the functions
fi(z), j = 1,2, defined in (4.24), we choose the fixed point iteration method. Then
using the Banach fixed point theorem, we prove that each of these equations containing
the finite summations has a unique solution on the convenient set (see Theorem 4.2).
Finally we give the error estimations and some examples.

For simplicity of calculations we assume that

q(z) = Z qx cos 2k, (4.1)
k=1
sup |q (z)] := M < oo, (4.2)
= c
>l = 5 <00 (4.3)
k=1

and that

An (@) — A (0)] < M, X, (0) = (27n)°, n=0,1,2,.... (4.4)
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For ny # n,we have
| A — (27mk)2‘ > ‘(271’%)2 — (27mk)2‘ —M > |47% (n — i) (n+ ng) | =M > 6(n), (4.5)

where

§(n) =4r*(2n — 1) — M.

To prove Theorem 4.1 we use the following lemmas.

Lemma 4.1 If

then the following equalities hold:

lim Ry, (An;) =0, (4.7)

k—oo
and

lim R; ()\n,j) = 0,

k—oo

for j =1,2, where Ry, (\,;) and R}, (N, ;) are defined in (2.26) and (2.30), respectively.

Proof. By the detailed estimations for Cj; and M, which were done in the

Appendix, we have

Re Qo) =] > {Ck+1 (qWy,j,sin 27y 412) + Myt (Q‘I’n,j,sozkﬂ)}

Z (qn—m - qﬂ+n1) (qﬂz—m - qnz+ﬂ1) s (an+1_nk - an+1+nk) (q\ljmﬁ sin 27Tnk+1x)
2k+1 (/\n,j — (27rn1)2) (/\n,j - (27m2)2) c. (/\n,j — (27mk+1)2)

One can easily see that there exists a nonnegative integer n{ such that

By (An )| < ' (Z L~ q"+"l)> S (n2,n3, ..., Mkt1)

>\n,j — (271'711)2

ni

<Qn27n(1) - Qn2+n(1)) s (qmcﬂ—nk - an+1+nk) (q\IIn,ju Sin 27Tnk+1‘r)

2641 (N, 5 — (2mn1)%) (M\ny — (2712)%) .. (Mg — (271041)7)
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It follows from (4.3) and (4.5) that

Z (Qn—nl - Qn+n1)
/\n,j — (27’(””1)2

ni

C

5 (n)

<

Repeating this process k + 1 times and taking into account that |V, ;|| = 1 and that

) ) M
(W, 510 277112)] < (gl sin 2712 <

\/57

we obtain

- " o\ kL
|Ri (Anj)| < N G (n))k+1 T /20k+ (6(n)) .

Thus this with (4.6) implies (4.7). In the same way we prove the same result for

R;c ()\nd) ]

Lemma 4.2 If (4.6) and the condition

1 121 1)? :
5(n) > (6) M (5 * i W) , 49)
hold, where
_ 4(6+1) ( _ ;)'
A(B) w1 \" 1)) (4.9)

and C (B) is defined in (4.14), then the inequality
|t i + [V 57 >0 (4.10)
18 satisfied for j =1,2.
Proof. Suppose to the contrary that (4.10) does not hold. Then
Upj =0, v,; =0,
and since U, ; is normalized we get by the formula (2.21) that

1|l =1, (4.11)
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where
oo

hpj(x) = Z [(U,,,;,sin 27kx) @, (x) + (V,5, @) ) cos 2mkz] . (4.12)
Fan
To get a contradiction, it is enough to show that

[ 5l < 1 (4.13)

for j =1,2. Since {g; : i € Z} (see (2.12)) is a Riesz basis, there exists a bounded and
boundedly invertible operator A which takes the orthonormal basis {e; : i € Z} to this

basis, say Ae_i = ¢, and Aej, = cos 2wkz ( see [27]). Thus there exists C'(f) such that

o0

JA| < C(B) & Ay (x) =Y [(Wnysin2mka) e + (Voo o) e . (4.14)
k=0
k#n

Therefore by (4.14) and Parseval’s equality we have

i gl* < [[AA™ B || < C A By || = €37 [1(Wing, sin 2mka) P + (0,5, 05[]

k=0
k#n
(4.15)
Now using (2.15), (4.5) and Bessel inequality we obtain that
2
— | (q¥y,;, sin 27k
Z| W, ;, sin 2mkx)|* Z q . 5in 2mkz)
— (27k)®
k#n
& | ! ||q\11nj||2 L
< — (q\Ilnﬁ-,\/ism%Tkx) < 2 <2 . (4.16)
(8(n))* kz; V2 ’ (6(n))> = (6(n))
k#n

By (2.16) we have

2

< 2(Si+ Ss), (4.17)

[e.e] [e.e]

q\lfn ,sin 27T]€I) (q¥,., %)
Z ‘ n,Js (pk Z L + Dk 2
— (27k) ) An,j — (27k)

k=0 k:

0o 2

Z C]‘I’ 4%, PE) Spk
— (2mk)?

Y1k (¥, j, sin 27kx)
(Anj — (27R)%)°

Slzz

k=0
k#n

)
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and v, is defined in (2.14). Using (4.6) and taking into account that ¢ > 2M, we obtain
%ﬂ (2n —1) > M and
Anj — 27k)*| > |(27n)? — (27k)?| — M = 47®|(n — k) (n + k)| — M
> %7?2 |(n—k)(n+ k)| > %7‘(‘2]{?.
Therefore, using the definition of v, and arguing as in the proof of (4.16) we obtain

2

>~ 111 1) (q¥,, ;, sin 27k 121 1% M2
S, < Z (6 + ) (q > SHL AT 2$) < |6;— 2| . (418)
k-0 27 (6 =1) (A, — (27k)) 818 —1[7w2(3(n))
To estimate Sy, we use (2.10), (4.9) and the equality
. 4(6+1 1
o0 ([0 (=] gy )
and then repeat the proof of (4.16) and get
2
- U, j, ¢k S(A(B)M)?
5222 (q 7]7<10k)2 < 2( (/8) 2) . (4.19)
= | Mg — (27K) (6(n))
k#n
Thus using (4.15)-(4.19) we obtain

Sk 121 1> M? A(B)M)?

(6(m)* 4|8 =1 2(8(n))2 ~ (6(n))?

and hence

1 1 12118+ 1) ) :
[P gl < WCM <§+ WJF (A(B)) ) ;

which contradicts to (4.11) and completes the proof of the lemma. m

Now we are ready to prove the following theorem.

Theorem 4.1 If (4.6) and (4.8) hold then X, ; is an eigenvalue of Ty if and only if it
is a root of the equation
(A= (2mn)* = Q, — AN)] [\ — (27n)* = Pr — A/ (\)] —

— [P, +B\)][yn+Q; + B (N =0. (4.20)
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Moreover \ € U(n) = [(27?71)2 — M, (2mn)® + M) is a double eigenvalue of Ty if and

only if it is a double root of (4.20).

Proof. Using Lemma 4.1 and arguing as in the proof of Theorem 2.1 (b) in Chapter
2, we obtain
Mg = 2m0)* = Qn = A(Anj)] tng = [Pa+ B (Anj)] vny, (4.21)
Mg = 2mn)* = Py = A" (Aag)] v = [1in + Q4 B (Ang)] thn, (4.22)
We have the following cases:

Case 1. u,; = 0 then by Lemma 4.2 we have v, ; # 0. Therefore from (4.21) and
(4.22) we obtain P, + B (\,;) = 0 and \,; — (2mn)* — P* — A’ (\,,) = 0 which mean
that (4.20) holds.

Case 2. v, ; = 0 then again by Lemma 4.2 we have u,, ; # 0. Therefore from (4.21)
and (4.22) we obtain A, ; — (27n)° — Q, — A(A\,;) = 0 and y,n + Q% + B’ (\,;) = 0
which mean that (4.20) again holds.

Case 3. Both v, ; # 0 and u, ; # 0. Multiplying the equations (4.21) and (4.22)
side by side and then canceling v, ju,; we obtain (4.20) . Thus in any case )\, ; is a
root of (4.20).

The other parts of the proof are the same as in the proof of Theorem 2.1 (b) in
Chapter 2. m

By Theorem 4.1, the eigenvalue ), ; is either the root of (2.55) or the root of (2.56).
To use the numerical methods, we take finite summations instead of the infinite series

in the expressions (2.55) and (2.56), and get
1
A= (2mn)® + 5 (@ut+ P+ (N, (4.23)
for j =1 and for j = 2, where

Aps (N, (4.24)

fi(A) = % <Zk,s (A) + Al ()\)) +(—1) %
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and the functions Ay, (X), A, (A) and Ay (A) are defined and investigated in the

Appendix. (see (A.5), (A.6), and (A.7)) By (A.1) and (A.2) in the Appendix we have
(@n + F7) =0.

Therefore (4.23) becomes

A= (2mn)" + £ (\). (4.25)

Now we prove that the eigenvalues of 77 are close to the roots of (4.25).

Theorem 4.2 Let (4.6) and (4.8) hold. Then for all x andy from [(27m)2 — M, (2mn)” + M]

the inequality

5 (@) = f; ()] < K |z =y (4.26)
holds for j = 1,2, where
c? 9
b G em -0 1 20

and for each j, the equation (4.25) has a unique solution r,, ; on [(27?71)2 — M, (27n)* + M} .

Moreover
2 ck+2

25 (8(n)" (20 (n) = ¢) (1 — K,)

|/\n,j — Tn,j| S s (428)

forj=1,2and s > k.
Proof. First let us prove (4.26) by using the mean-value theorem. For this we

estimate ‘fj’ (A)]. By (4.24) we have

1/d ~ d 1-LAL ()

— [ —A — A —1) ZdATES AT
1 ~ d 1

<-[|— — A - . .

<3 < d)\Ak’s (/\)’ + ‘d)\Ak’S ()\)‘ + 5 ) (4.29)

By the estimations (A.11), (A.12) and (A.13) in the Appendix we prove that

[N =

%Akﬁ (A)
Aps(N)

(4.30)
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d K
— A4 <= 4.
e ] < 5 (@31
and
LA (A
[ixAks V| < 2K,, (4.32)
VBT
respectively. Hence by (4.29)-(4.32) we obtain
V] < K
and since K,, can be written as
c2 oo ( c )j
Kn = )
AR
. . 9
we get by (4.6) and the geometric series formula that K, < 6
Since the inequality
i) <K, <1 (4.33)

holds for all x and y from [(27m)2 — M, (2mn)® + M], by the mean value theorem (4.26)
holds, and the equation (4.25) has a unique solution r, ; on [(27m)2 — M, (27n)* + M|
for each j (j = 1,2), by the contraction mapping theorem.

Now let us prove (4.28). Let
Hj(z) =2 — (2mn)* — f; (z). (4.34)
Using the definition of {r, ;}, we obtain

H]' (rn,j) =0,
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for j = 1,2. Therefore by (2.55) and (2.56) we have

|Hj (Anj) — Hj (rng)| = [Hj (M)l

~ 1
(Aks Qung) + 4. <Aw~>) +(=1) 54/ Bks Og)

+ WA (hu) mk,s n)|)

(4.35)

1 1

1
2

5 (A Q) A ) + (=17 2 A () -

1 ! / Y
< 5 (14 0ng) = A, ) 44 00) = A )

First let us estimate the first term of the right-hand side of (4.35).From the formula

(A.6) in the Appendix and by the definition of A’ (A, ;) in Section 2.1 we get

(A (Ang) = Ay (Ang))] <

Z |(qn*n1 + qn+n1) (qn2 ni + Qn2+n1 . (q Nkg+1—Nk + an+1+nk) (qn*n]ﬁq + qn+nk+1)‘
2k+2 ()\nd' — (271'711) ) ( 271'77,2 2) ( 27rnk) ) ()\n,j — (27mk+1)2)

Z ‘<ann1 + Qn+n1) (annl + anJrnl) e (an+27nk+1 + an+2+nk+1) (annk+2 + qn+nk+2)|
2k+3 ()\n,j — (27%1)2) ()\n,j — (27TTL2)2) Ce ()\nd' — (27Tnk+1)2) ()\n,j — (27mk+2)2)

_|_...}7

for s > k (see (A.15) in the Appendix). Arguing as in the proof of Lemma 4.1 and

using the geometric series formula, we obtain

Ck+2

A /\nj —A;fs /\n,j < % s .
(O = e O = oG G s = .

Similarly, from the formula (A.5) in the Appendix and by the definition of A (A, ;) in

Section 2.1, for the second term of the right-hand side of (4.35), we get

Ck+2

Any) = Ars ()| < (4.37)

T 28(8(n)" (20 (n) — )

for s > k (see (A.14) in the Appendix). Using (A.7) and (A.8) in the Appendix, for
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the third term of the right-hand side of (4.35) we get

005 = /B0 )| = [ ) = 4 O) = ) = (s ) = 4 ) = )
< ’A (M) — Ars (Ang)

2ck+2
< . (4.38)
2k (6 (n))" (26 (n) —¢)

+[A" (Ang) — A s ()|

by (4.36) and (4.37).
Hence by (4.35)-(4.38) we obtain

26k+2

H; (M) — H;(rn;)| < , 4.39
Hy ()~ Hy (s S G (4:39)
for j =1,2.
To apply the mean value theorem we estimate |H 7 (A) E
)] = 1= 50| = 1= |50 > 1- K, (140

By the mean value formula, (4.39) and (4.40) we get
|Hj (Ang) = Hy ()| = [H} ()| 1Ang — gl € € [(2mn)* — M, (2mn)* + M]

|)\nj _ Tnj‘ _ |Hj ()‘n,j) - Hj (Tn,j)‘
s |55 ©)]

20k+2

= R
26(6(n))" (20 (n) =) (1 = K,)

I

forj=1,2. m

Now let us approximate 7, ; by the fixed point iterations:
Tnip1 = (2m0)" + fi (Tn;) (4.41)

and
Yn,itl = (27rn)2 + f2 (Yn,i) (4.42)

where f; (z) (j = 1,2) is defined in (4.24).
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First, using (A.7), (A.9) and (A.10) in the Appendix, we get

|fi Q)] < Aps (Anj)

1
2

_ % (‘Aks )|+ A%s Q)| + 1/ Drs (An,j))

ol (4.43)

‘Ak s (/\n,j) + A;c,s ()‘n,j)

+ew

[\DI»—

Similarly,

<! (\ﬁk,s ()| + |4k (@7n)?) |+ /e (20 >)

1 2 k J 2
< — _
“ 2\ (20— 1) & (87r2 )) el + s e G o =

J

1 c? 1 Tl + c?
2\ 8@ —D)1- oy M TSR @0 1) ¢

1 c? + 1gon] + c?
S 2\8m2(2n—1) —c on 82 (2n—1) —c

_ |QZn| CQ
2 82 (2n —1) —

IA

(4.44)

Theorem 4.3 If (4.6) and (4.8) hold then for the sequence {x,;} and {y,;} defined

by (4.41) and (4.42), the following estimations hold:

; |QQn| 62
ni — Tna| < K, : 4.45
[0 = Tl ”(2(1—Kn)+(1—Kn)(87r2(2n—1)—c) (4.45)

2

i |G2n| c
Yo = Taal < K, (2 -k (-K)@reen—1)- c)) ’ (4.46)

fori=1,23,..., where K, is defined in (4.27).

Proof. Without loss of generality we can take z,0 = (27n). By (4.34) and (4.41)

we have

|Zi — Tl = |(270)° + fi (@ni1) — (270)° + fi (ra1))| = 1A (@nic1) = fi (7))

< Kn ‘xn,ifl - 7,n,l| < K; ’xn,O - rn,1| :
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Therefore it is enough to estimate |z, 0 — ry, 1|. By definitions of r,, ; and z,, o we obtain
Tna — Tno = f1 (Th1) + (27m)2 — Tno = f1 (1) = f1 (Tno) + f1 ((27m)2)
and by the mean value theorem there exists = € [(27m)2 — M, (2nn)* + M | such that
fi(rag) = fi(@no) = f1(2) (rag — @np) -
These two equalities imply that
(rag = a0 (1= i () = fi ((270)?).

Hence by (4.33) and (4.44) we get

fi ((2mn)”) g20 -
(rn,l _ xn,O) < W < (2<1 _ Kn) + (1 — Kn) (871'2 (QTL - 1) - C))

and

; |Gan| c
[0 = Tl (2(1—Kn) T CK) i1 =0

One can easily show in a similar way to (4.45) that

i |q2n’ 62
ng ~ I'n SKZ
Ui = Tzl ”(2(1—Kn) T —R) B eni—1 -0

for the iteration (4.42). m
Thus by (4.28), (4.45) and (4.46) we have the approximations x,,; and y,,; for A, 1

and A, o, respectively, with the errors

En,i = |)\n,1 - xn,il

< cht? LK < | G20 n ¢ )
2k (6 (n))k (20 (n) — ) (1 — K,,) "\2(1-K,) (1-K,@m?2n—-1)—c¢)

= A2 = Ynil

Ck+2 ; |q2n| C2
<o (6 (n))" (26 (n) — ¢) (1 — K,,) a <2 (- K, (- K, 2n—1) - c)) '
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Remark 4.1 Ifq(x) = 1_, qrcos(2knz), where p is a finite positive integer, then it
follows from the formulas (4.41) and (4.42) that forn > s+p+1
Tni = Ynji = (27T7’L)2,

since the multiplicands (¢n—n, — Qniny) AN (Gn—ny + Gntny) ™ f1 (2n:) and fo (yn,) are

Z€ero.

4.1 Numerical Examples

First we give the algorithm for the estimations of the small eigenvalues.

Stepl. Compute the followings for n = 1,2, ...10.

1 1
cn:/ q (z) cos 2mnxdzx, sn:/ q (x) sin 2nxdz,
0 0
1 1
cn,1:/ zq (x) cos 2mnxdz, Sn,1=/ zq (x) sin 2rnadz,
1 "
cmg:/ 2%q () cos 2mnadr, smg:/ 2%q () sin 2mnada.
0 0
2(6+1) [ 2(8+1) 28
n— T 5 4 d -5 1 C2nl1 = 5 1 C2ny
Q -1 /OHI(fL“) T+ F_1 T o1
2(6+1) [ 2(6+1) 2
Py=—" dr + ———Cn1 — Z7——Can,
1
P, = 5527’”
: B+1\7 B+1N? 86
=8| —— n 8| 5—= n,l — T . 9°2n
167 (8 + 1)
M=
g—1

Step2. Define the following functions:

o, (x) = 4(6le1) (1 f 5 JZ) sin 27nax,




B+1) ( 1 )
= — | XX — ——= | COS 27Tnflf,
51 143

*
—~
8
~—
H~
—

(g, sin2wnx)  ~yny (qcos 2mnyz, sin 2mnz)

ay (A) = )
A — (2mmy)? (A = (2mmy)?)’
by (\) (g cos 27?71131:,8111227rmc)7
A — (27TTL1)

(q¢”k+1 » S 277”’695) Y1nkr1 (G cos 2mny 1@, sin 27n41)

a1 (A) = ’
A — (21 )? (A = (2mnr)?)?
COS 2Nk 1, Sin 2TNEx
beas (V) — (q k1 il ),
A — (27T7’Lk+1)
Aps () <qg0nk+l’ 90:%) V141 (C] COS 2T Nj41 T, 90:%)
k+1 = )
A — (2mng41)? (A= (27mk+1)2)2
COS 2Nk 41T, Py,
Bk+1(>\):(q as gok)3k:172>---'

A — (27Tnk+1)2

Cl ()\) =. a1 ()\) s M1 ()\) =: bl ()\) s
Cg ()\) =:a109 + blAQ = 01&2 + MlAQ, M2 ()\) =: albg + blBg = Cle + MlBQ,

Ci1 (A) =2 Cragy1 + MpAprr, My (N) =: Cpbpyr + MypBi; k=1,2,...,

68
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yin1 (g cos 2mnyz, )

=~ o o (qunlv(p?*z)
Cr(A)=A1(A) = N — (27m)? (A — (27Tn1)2)2
—~ ~ (qcos 27m1x,90;)‘

My(A) =Bi(A) = ——— @

ey

Crr1 () = Chatgsr + MyArr, My () = Ciboy + MyByr; b =1,2,

_ |

C. (q cos 2mnz, sin 2mn,,x) + M, (q cos 2mna, go;;m)

ny,...,Nm=1
:| )

ém (qun, sin 27T7’Lm1'> + Mm (qufm ijzm)

Step3. Define the following function.

Ay (N) = (Qn — P A (M) — A, (A))2+4 (Pn + By, (A)) (vin+ Q% + By, (V)

Step4. Compute z,, ;11 by the iteration (4.41) corresponding to the eigenvalue A, 1,

with the initial value z,, o:

ta = (@1 + 3 Qu+ P2+ 5 (A (o) + 4 (20)) -
(gk (xn,l) + A;c (*77%1)) -

—_

N}

1
o2 = (2m0)° + B (Qn+Py) +
2 1 * 1 7Y / 1
Tnirt = (2m0)" + o (@ + PY) + 5 (Ak (@ni) + Ay (xn,i)> = 5\ Ak (@ni)-
Stepb. Compute y,, ;41 by the iteration (4.42) corresponding to the eigenvalue )\, 2,

with the initial value y,, o:
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yur = @m0+ 3 (Qut P 5 (A (o) + AL (100)) +

N DN =
N DN =

gz = @en)? 4 5 (Qu o+ P+ 5 (B () + 4 () +

. 9 1 . 1/~ , 1
Unit1 = (2mn)" + 5 (Qn+ Pr) + 3 <Ak (Yn,i) + A, (?an)) + 5\/ Ak, (Yni)-

Since ¢(z) = cos(2mzx) is a famous Mathieu potential and ¢(x) = cos(2mx) +
cos(4mx) is the generalization of the Mathieu potential, we consider these potentials in

our examples.

Example 4.1 For q(z) = cos(2nx), f =2, k = 3 and s = 5 with the initial approz-
imations Tn,0 = 0 and y, o = 0, we have the following table for the estimations of the
small eigenvalues of Ty (q). According to Remark 4.1, it is enough to compute only the
first 6 eigenvalues for this case.

From the table we can see that we have the same values for both of the iterations
(4.41) and (4.42) corresponding to A\,1 and Ao, respectively. This shows that the
etgenvalues A\, 1 and N\, are very close to each other or equal and they are close to
(27m)2. In this table x,,; and y,; denote the estimations for A\, 1 and A, 2, respectively,

where i is the number of the iterations.
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Tn,i | Tnit1 — Tl Yn,i Ynit1 — Yn.il

0 0
39.478417597303 39.4784175973 39.478417597303 39.4784175973
39.478417590249 7.05405e-09 39.478417590249 7.05405e-09
39.478417590249 0 39.478417590249 0

0 0
157.907337842668 | 157.9073378427 | 157.907337842668 | 157.9073378427
157.915781384907 0.00844354 157.915781384907 0.00844354
157.915781234413 1.50494e-07 157.915781234413 1.50494e-07
157.915781234416 2.70006e-12 157.915781234416 2.70006e-12
157.915781234416 0 157.915781234416 0

0 0

355.304175232077
355.307024967954
355.307024949669
355.307024949669
355.307024949669

355.3041752321
0.00284974
1.82848e-08
1.13687e-13

0

355.304175232077
355.307024967954
355.307024949669
355.307024949669
355.307024949669

355.3041752321
0.00284974
1.82848e-08
1.13687e-13

0

0
631.653978047253

631.6539780473

0
631.653978047253

631.6539780473

= W N P O WP OO WD ONOUE W PO WD OWN PR O

631.655586327175 0.00160828 631.655586327175 0.00160828
631.655586321910 5.26495e-09 631.655586321910 5.26495e-09
631.655586321910 1.13687e-13 631.655586321910 1.13687e-13
631.655586321910 0 631.655586321910 0

0 0
986.960044322621 | 986.9600443226 | 986.960044322621 | 986.9600443226
986.961143729834 0.00109941 986.961143729834 0.00109941
986.961143729834 2.17722e-09 986.961143729834 2.17722e-09
986.961143729834 0 986.961143729834 0

0 0

1421.222780453807
1421.223609446167
1421.223609445068
1421.223609445068

1421.2227804538
0.000828992
1.09912e-09
0

1421.222780453807
1421.223609446167
1421.223609445068
1421.223609445068

1421.2227804538
0.000828992
1.09912e-09
0
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Example 4.2 For q(x) = cos(2mx)+cos(4dnx), =2, k = 3 and s = 5 with the initial
approximations T,o = 0 and y, o = 0 we have the following table for the estimations of
the small eigenvalues of Ty (q). xn; is the estimation for A\, 1 and y,; is the estimation
for A\na. According to Remark 4.1, it is enough to compute only the first 7 eigenvalues
for this case.

From the following table we can see that the first eigenvalues A1 and A1 are far
from each but the other eigenvalues A\, 1 and A, o are close to each other or equal and
they are close to (27m)2. In this table x,; and y,,; denote the estimations for A, and

An,2, Tespectively, where i is the number of the iterations.
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i T | T i1 — Tl Yn,i Ynit1 — Yniil
0 0 0

1| 38.97842204110939 38.9784 39.97842204110939 39.9784

2| 38.97842421532967 2.17422e-06 39.97842429233646 2.25123e-06
3| 38.97842421532983 1.63425e-13 39.97842429233664 1.77636e-13
41 38.97842421532983 0 39.97842429233664 0

0 0 0

1| 157.90727564526605 157.9073 157.90743559977980 157.9074
2 | 157.91576453269735 0.00848889 157.91578226434297 0.00834666
3| 157.91576438313135 1.49566e-07 157.91578211477969 1.49563e-07
4 | 157.91576438313396 2.6148e-12 157.91578211478236 2.67164e-12
5| 157.91576438313396 0 157.91578211478236 0

0 0 0

1| 355.29780466405339 355.2978 355.29796405424344 355.2980
2| 355.30781619970361 0.0100115 355.30781871744506 0.00985466
3| 355.30781611026259 8.9441e-08 355.30781862924766 8.81974e-08
4 | 355.30781611026339 7.95808e-13 355.30781862924846 7.95808e-13
51 355.30781611026339 0 355.30781862924846 0

0 0 0

1| 631.65239992994259 631.6524 631.65239992994259 631.6524
2| 631.65611341414319 0.00371348 631.65611341414319 0.00371348
3| 631.65611339781697 1.63262e-08 631.65611339781697 1.63262e-08
41 631.65611339781708 1.13687e-13 631.65611339781708 1.13687e-13
5| 631.65611339781708 0 631.65611339781708 0

0 0 0

1| 986.95934179624237 986.9593 986.95934179624237 986.9593
2| 986.96154063378719 0.00219884 986.96154063378719 0.00219884
3| 986.96154062804419 5.743e-09 986.96154062804419 5.743e-09
4 1 986.96154062804419 0 986.96154062804419 0

0 0 0

1| 1421.22238506661188 1421.2224 1421.22238506661188 1421.2224
2 | 1421.22392680582675 0.00154174 1421.22392680582675 0.00154174
3| 1421.22392680316057 2.66618e-09 1421.22392680316057 2.66618e-09
4 1 1421.22392680316057 0 1421.22392680316057 0

0 0 0

1| 1934.44220931027280 1934.4422 1934.44220931027280 1934.4422
2 | 1934.44272647093135 0.000517161 1934.44272647093135 0.000517161
3 | 1934.44272647078719 | 0.000000000144 | 1934.44272647078719 | 0.000000000144
4 11934.44272647078719 0 1934.44272647078719 0
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Appendix

Since ¢ (z) has the form (4.1), by (2.44)-(2.48) we have the followings:

1
/ zq(z)dr =0,
0

Cp = / q (x) cos 2mnxdr = q—n,
; 2
1
Sy = / q (x) sin 2rnadx = 0,
01 )
Cng = / xq (x) cos 2mnadr = -,
0 4
1 1
Sn.1 :/ xq (x)sin2mnadr = s,9 :/ 2%q (z) sin 2rnada,
0 0
2(8+1) [* 2(8+1 2 n
0, - _%/0 2q (z) dz + %cm - 53102” - - (A1)
2(6+1) [ 2(6+1) 2 Gon
pr=_""__7 S ——Cy, = — A2
n 5_1 /0 l‘q(I)d.’L’—F 5_1 Con,1 5_16271, 2 ) ( )
1
Pn—582n—0, (Ag)
Q= —s(2t! 2 Y e 2 il = (A-4)
n 6_]- 2n,2 6_]- 2n,1 (B—1>2 2n )

and

We also evaluate the following functions defined in Section 2.1:

(qum ,8in 271'77,37) Y11 (q Cos 2mn1 x, sin 27TTLI) Gn-ny = Qntny
a1 ()\) = 2 + 2\ 2 = 2\ ?
A — (2mn4) (A = (27m1)?) 2 (A= (2mn4)”)
by (\) = (q cos 2mnyx, sin 2n) o,

A — (2mny)°



16}

in 2 :
(C]SpnkH,S wnkx) Y1 Mks1 (q €COS 2Ny 1, SIN 27N L) Gryyy—ng, — Gngpr+ng

Qp+1 (/\) = = )
A — (2mnp4)? (A= (27mk+1)2)2 2(\— (27rnk+1)2)
2 in 2
bess (A) = (q cos 2mng,1x, sin 27mkx) o,
A — (27Tnk+1)
(qunk-i-l’ <’OT%) V141 (q COS 2M N 412, @Zk) Y141 (an+1_nk + an+1+nk)
Ak+1 ()\) = A\ B 2\ 2 = 22 ’
— (2mng11) (A = (2mngg1)”) 2 (A= (2mngs1))
COS 2TTNk41T, ), npi1—np T Qnp.14n
Bk+1(/\):(q k+1 ik)ZQk+1 k qk+1+2k;k:172"..,
A — (2mng41) 2 (A = (2mnyp1)”)

Cr (V) = a1 (M) = zq(’;ﬁ (;j;ijl’;;) - My (N) = by (V) =0,

Cg ()\) = Clag + M]_A2 = a10d2, Mg ()\) = Clbg + MlBQ = 0,
Crt1 (A) = Crapgr + MpApi1 = aqas . . . agajg1,

M1 (N) = Cipbpgr + My By =0; k=1,2,...,

(40,5 9%) | vana (geos2mnz, @)

Cy(A\) =A; (\) = +
' ' A — (2mny)° (A — (27m1)2)2
_ i (geos2mmz, ) Y1 (nny + dnim)
(A = (2mny)?)’ 2 (A — (27mp)?)°

—~ cos 2mnx, ¢, n—n1 T Qntn
Ml(/\):Bl(/\):(q 1 f):(q 1 Q-i-;),
A — (2mnq) 2 (A= (2mn4)”)

52 ()\) = 61&2 + MlAg
_ (Qn—m + Gniny) (Gny—ny — qﬂ2+n1) (qﬂ—m + Gniny) Y172 (qﬁz—m + qﬂ2+n1)
2(A— (27m1)2)2 2(A—(2m2)%)  2(A—(2mm1)?) 9 (A= (27r712)2)2
_ (@n—ny + Gniny) (Gno—n, — an-i-m) 1 Y112 (@n—ny + Gntny) (an—m + Qn2+n1)
22 (A — (27m1)%)" (A — (27n2)?) 22 (A — (27m1)%) (A — (2n5)?)”

(Qn—m + qﬂ+n1) (qﬂz—m + Qn2+n1>

2 (A= (2mm1)%) 2 (A — (27n2)?)
(Qn—m + Qn—i-m) (qm—m + Qn2+n1)

22— (2mm)?) (A — (2mne)?)

MQ ()\) - élbg + MlBg — MIBQ =
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and

Mys1 () = Cibgiy + MyByy = MyByoy = BiBy ... By

(annl + QHJrnl) (Qngfnl + Qn2+n1) e (anJrlfnk + an+1+nk)

= s k=1,2,....
2k+1 ()\ — (27Tn1)2) ()\ — (2’/TTL2)2) c. ()\ — (27T7’Lk+1)2) ’ 7
Using these functions, we obtain the followings:
Qs (A) i= Z [Cm (g, sin 2mn,x) + My, (q<pn, gpflm)}

n,..ey Nm=1
s

= Z a1y . . . Ay (qp,,, SIN 27N, )

N1,ee =1

. Z n—n1 = ntny Qna—n1 = nadmy npm—nm-1 — Qum+nm—1 n—nm — Antnm
2(A—(2m)?) 2 (A — (2m)?)  2(A — (27n,n)°) 2

_ Z { (Gn—n1 = @ntnr) (Gno—ny — Qnpny) - - - (Qnmfnmq - Qnernmfl) (Gn—nm = Gninm)

mH1 () — (Qﬂnlf) (A= (27m2)2) (A= (27mm)2)

Bums (A) == Z [Cy, (g cos 2mna, sin 270y, x) + M, (g cos 2mna, ¢ )] =0,
N1,y Nnm=1
N k
A (N = o (V)
m=1

3

Z Z (Gn—ny = @nnr) (Gny—ny — Tngtny) - - (Qnm—nmq - qnm-&-nmq) (Gn—nm = Gntnn)

mtl () — (Qﬂm)Z) (A= (27rn2)2) (A= (27mm)2)

m=1ny,....nm=1
S 2 S
_ (Qn—nl - Qn+n1) (Qn—nl - Qn+n1) (an—nl - Qn2+n1) (Qn—nQ - Qn—|—n2)+
- 2 § : 2 2
2 (A = (2mn4)") Bl 23 (A = (2mm1)7) (A — (27n2)”)

(A.5)

s

o Z (@n—ny = ntny) (Gna—ny = Qo) - - - (an—nk_l - an+nk—1) (C_Zn—nk - Qn—i-nk)

200 (1~ 27m)’) (A~ 2mna)?) - (A~ 2mme))

Brs(N) =) _ Bns (V) =0,

m=1

b



7

al (N = Z [@n (g cos2mnx, sin 2, x) + M,, (q cos 2mna, gozm)]

S

—~

= Z M, (qcosanw,gpj‘Lm)

n1,...,;hm=1

_ Z (qnfnl + QnJrnl) (qngfm + QH2+H1) to (qnm*nm_l + qnm+nm_1) (Q| | + q )
_ n—"nm n+nm ) »

2041 (3= 27m)?) (A = (27m2)’) . (A = (27n))

AN =) a, ()

m=1

— i Z (%17711 + qn+n1) (qnzfnl + Qn2+n1) e (Qnmfnm_l + Qnernm_l) (annm + QHJrnm)

2 (3 = (27m)?) (A = o)) - (A~ @)

S

An—n, + qn+n1)2 Z (ann1 + qn+n1) (qn2*n1 + qn2+n1) (qn*HQ + qn+n2)
2(A = (2mm)?) 23 (X — (2mm1)%) (A — (27n2)?)

+

(]

ni,n2=1

(A.6)

s

+ + Z (qnfnl + Qn+n1) <Qn27n1 + anJrnl) e (anfnk,l + anJrnk,l) (annk + QnJrnk)
o 26+ (X — (27m1)%) (A — (27n2)?) ... (A = (27n,)?)

Y

= (Ao ) = A V) =) (A7)

and

AN =(AN) = A (V) = ga)” (A-8)



78

Using (4.3) and (4.5), in (A.5) and (A.6), we obtain

> ams ()

[Aks )] =

_ (Gn—n1 = @ntnr) (Gno—ny — Qnpny) - - - (qnm*nm—l - Qnernm—l) (Gn—rm = Gninm)
IDEDD 2mtL (A — (27m1)%) (A — (27n2)7) ... (A = (27n,)°)

S (qn ny Qn+n1) (Qn—n17QTL+n1)(QnQ—n]_7Qn2+n1)(Qn—n27qn+n2)
Z”1:1 22(/\ (27n1) ) +Zn1>"2 1 23()\—(27Tn1)2)()\—(27m2)2 +

)
g(qn—nk —dn+ny,)

)

s (Qn—nl Qn+n1)(QnQ—nl*Qn2+n1)~~~(an—nk71*‘]nk+nk71
+..F an ----- ng=1 2k+1 (/\7(27”11)2)()\7(271%2)2)...(/\7(2777”@)

2 C3 Ck—l—l

= 225 (n) ' 23 (5 (n))>? +"'+W

and

Z Z (Gn—n1 + Gnins) (@no—ny + Gnon) - - - (qnm*nm—l + Qnm+nm—1) (Gn—npm + Gninyn,)
2mtL (A — (27m1)%) (A — (27n2)°) ... (A = (27n.)°)
S (qn n1+Qn+n1) (Qn—n1+QTL+n1)(QnQ—n1+Qn2+n1)<Qn—n2+qn+n2)
Zm 1 22(A—(2mn1)?) + Zm,m 1 23(A—(2mn1)?) (A= (27n2)° T

s (Qn—nl +(In+n1)(Qn2—n1 +Qn2+n1)~~~(an—nk71 +ng+ng_q
+..t an ----- np=1 2k+1 (/\—(27rn1)2)()\—(27Tn2)2)...</\—(27rnk)

2 C3 Ck—l—l

= 225<n)+23(5(n))2+'”+m

2 Cn)>j

o o

Jj=0

)
Q(Qn—nk +Qn+nk)
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by the geometric series formula.
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5 CONCLUSIONS

In this work we constructed subtle asymptotic formulas for the eigenvalues and eigen-
functions of non-self-adjoint Sturm-Liouville operators with general regular boundary
conditions for both cases ¢ € L; [0, 1] and ¢ is an absolutely continuous function. Us-
ing these formulas we found explicit conditions on potential ¢ such that the system
of the root functions of the Sturm-Liouville operator with general regular boundary
conditions does not form a Riesz basis. Also we estimated the small eigenvalues of the
operators defined in Chapter 2 by the numerical methods.

The results of this work for the differential operators may be extended for the nth
order differential operators or when the potential function ¢ (z) is chosen from Sobolev

spaces.
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