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ÖZET 
 
ADİ DİFERANSİYEL OPERATÖRLERİN KÖK FONKSİYONLARI 

 

Bu tezin ana amacı, L₂[0,1] uzayı içinde   

 l(y) = -y′′ + q(x) y    

diferansiyel ifadesi ve genel regüler olan fakat güçlü regüler olmayan sınır koşulları ile 

üretilen, öz eşlenik olmayan ikinci mertebeden Sturm-Liouville operatörünün kök 

fonksiyonları sistemini ve Riesz tabanı özelliğini incelemektir; burada q, [0,1] kümesi 

üzerinde kompleks değerli toplanabilir bir fonksiyondur.   

Bu amaçla ilk önce, bu operatörlerin özdeğerleri ve özfonksiyonları için,  

q∈L₁[0,1] durumunda ve q potansiyelinin mutlak sürekli fonksiyon olduğu durumda, 

ince asimptotik formüller inşa edilmiştir. Daha sonra, bu formüller kullanılarak, q 

potansiyeli üzerinde, genel regüler sınır koşullarına sahip Sturm-Liouville operatörünün 

kök fonksiyonları sisteminin Riesz tabanı oluşturmamasını sağlayan açık koşullar 

bulunmuştur. 

 Ayrıca, genel regüler sınır koşullarına sahip, öz eşlenik olmayan ikinci 

mertebeden Sturm-Liouville operatörünün küçük öz değerlerine nümerik yöntemler ile 

yaklaşımda bulunulmuştur. Son olarak da, hata analizi verilip, bazı nümerik örnekler 

sunulmuştur.   

Anahtar sözcükler: Asimptotik formüller, Regüler sınır koşulları, Riesz tabanı, Küçük 

özdeğerlerin nümerik yaklaşımı.  
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SUMMARY  
 
ON THE ROOT FUNCTIONS OF ORDINARY DIFFERENTIAL    

OPERATORS 

 

The main objective of this thesis is to investigate the system of the root functions 

and the Riesz basis property of the second order non-self-adjoint Sturm-Liouville 

operator generated in L₂[0,1] by the differential expression 

 

 l(y) = -y′′ + q(x) y    

where q is a complex-valued summable function on [0,1], and general regular boundary 

conditions that are not strongly regular. 

To this end, first we construct subtle asymptotic formulas for the eigenvalues 

and eigenfunctions of these operators for both cases q∈L₁[0,1] and q is an absolutely 

continuous function. Then using these formulas we find explicit conditions on the 

potential q such that the system of the root functions of the Sturm-Liouville operator 

with general regular boundary conditions does not form a Riesz basis. 

 Also, we estimate the small eigenvalues of the second order non-self-adjoint 

Sturm-Liouville operators with general regular boundary conditions by the numerical 

methods. Finally, we give the error estimations and present some numerical examples. 

Key Words: Asymptotic formulas, Regular boundary conditions, Riesz basis, Numerical 

estimations of the eigenvalues. 
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1 INTRODUCTIONANDPRELIMINARYFACTS

1.1 Introduction

Non-self-adjoint di¤erential operators arise in the theory of open resonators, in

problems of inelastic scattering, in problems of mathematical physics, when the Fourier

method is used. The �rst works concerned with these operators were by G. Birkho¤

[7-11], Ya.D. Tamarkin [67-69] in the beginning of the 20th century.

In this thesis we consider the operators generated in L2[0; 1] by the di¤erential

expression

l (y) = �y00 + q(x)y (1.1)

and regular boundary conditions that are not strongly regular. Note that, if the bound-

ary conditions are strongly regular, then the root functions (eigenfunctions and asso-

ciated functions) form a Riesz basis (this result was proved independently in [24], [36]

and [47]). In the case when an operator is associated with the regular but not strongly

regular boundary conditions, the root functions generally do not form even a usual

basis. However, Shkalikov [64, 65] proved that they can be combined in pairs, so that

the corresponding 2-dimensional subspaces form a Riesz basis of subspaces. Note that

the boundary conditions are strongly regular if and only if all large eigenvalues are

far from each other. [65] This easify to investigate the perturbation theory and Riesz

basis property. If the boundary conditions are not strongly regular then the eigenvalues

are pairwise very close to each other. This situation complicates the investigation of

the Riesz basis property. Therefore the regular cases which are not strongly regular

are still investigated. Only the special cases, the periodic and antiperiodic problems,

were investigated in detail. There are some interesting results [33-35] about the basis

properties of the higher order di¤erential operators with some regular boundary con-
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ditions. Besides, there are some important investigations about the Sturm-Liouville

operators with singular potentials in [49, 50, 57-63]. Our aim is to consider the Riesz

basis property for the regular boundary conditions in general form. We discuss only

the second order di¤erential operators for the case when the potential is from L1 [0; 1].

To describe the results of this thesis and preliminary results let us classify all regular

boundary conditions that are not strongly regular for the second order di¤erential

operators. One can readily see from the pages 62-63 of [48] that all regular boundary

conditions that are not strongly regular can be written in the form

a1y
0
0 + b1y

0
1 + a0y0 + b0y1 = 0;

c0y0 + d0y1 = 0; (1.2)

if

b1c0 + a1d0 6= 0 (1.3)

and �20 � 4�1��1 = 0; where , ai; bi; c0; d0, i = 0; 1, are complex numbers and �0; �1 and

��1 are de�ned by

��1
s
+ �0 + �1s = w1 (b1c0 + a1d0)

�
s+

1

s

�
+ 2 (a1c0 + b1d0)w1; 8s 2 Cn f0g : (1.4)

From (1.4) we obtain, ��1 = �1 = w1 (b1c0 + a1d0) ; �0 = 2 (a1c0 + b1d0)w1; and hence

the equality �20 � 4�1��1 = 0 implies that

4!21
�
(a1c0 + b1d0)

2 � (b1c0 + a1d0)
2� = 0;

that is, (a21 � b21) (c
2
0 � d20) = 0 which means that at least one of the following conditions

holds:

a1 = �b1; c0 = �d0:

First suppose that a1 = (�1)� b1; where � = 0; 1: This with (1.3) implies that both

a1 and b1 are not zero and at least one of c0 and d0 is not zero. If c0 6= 0, then (1.2)
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can be written in the form

y00 + (�1)
� y01 + �1y1 = 0;

y0 + �2y1 = 0; (1.5)

where �1 =
b0
a1
� a0d0
a1c0

, �2 =
d0
c0
, a1; c0 6= 0 and �2 6= � (�1)� due to (1.3).

Similarly, if d0 6= 0, then (1.2) can be transformed to

y00 + (�1)
� y01 + �3y0 = 0;

�4y0 + y1 = 0; (1.6)

where �3 =
a0
a1
� b0c0
a1d0

, �4 =
c0
d0
, a1; d0 6= 0 and by (1.3) �4 6= � (�1)� :

Now suppose that d0 = (�1)� c0: Arguing as in the reductions of (1.5) and (1.6) we

arrive at the boundary conditions

y00 + �1y
0
1 + �2y1 = 0;

y0 + (�1)� y1 = 0; (1.7)

where �1 =
b1
a1
; �2 =

�
b0
a1
� a0
a1

�
; a1; c0 6= 0 and

�1 6= � (�1)
� (1.8)

and the boundary conditions

�3y
0
0 + y01 + �4y1 = 0;

y0 + (�1)� y1 = 0; (1.9)

where �3 =
a1
b1
; �4 =

b0
b1
� a0
b1
; b1; c0 6= 0 and

�3 6= � (�1)
� (1.10)

for � = 0; 1:



4

One can verify in the standard way that, the boundary conditions (1.5) and (1.6),

are the adjoint boundary conditions to (1.9) and (1.7), respectively, where �3 =

� (�1)� �2, �4 = �1 and �1 = (�1)
� �4, �2 = �3.

Thus to consider all regular boundary conditions that are not strongly regular it

is enough to investigate the boundary conditions (1.7) and (1.9). Note that these

boundary conditions depend on two parameters. Let us describe the special cases that

were investigated.

Case (a) The cases �2; �4 = 0 , �1; �3 = (�1)
� in (1.7), (1.9) for � = 1 and � = 0

coincide with the periodic and antiperiodic boundary conditions respectively. These

boundary conditions are the ones more commonly studied. We will brie�y describe

some historical developments related to the Riesz basis property of the root functions

of the boundary value problems for such boundary conditions. Since the results for the

periodic and antiperiodic problems can be found in a similar way, we will focus only on

the periodic problem. The antiperiodic problem is similar to the periodic one. One of

the important results was obtained by Kerimov and Mamedov [32]. They proved that

if q 2 C4[0; 1] and q(1) 6= q(0), then the root functions of the operator L(q) generated

by (1.1) and the periodic boundary conditions form a Riesz basis in L2[0; 1]. This result

remains valid for the case when q(x) is a smooth potential, satisfying

q(k)(0) = q(k)(1); 8 k = 0; 1; :::; s� 1

and q(s)(0) 6= q(s)(1) for arbitrary s � 1:( see Corollary 2 of [66]).

The �rst result in terms of the Fourier coe¢ cients of the potential q was obtained by

Dernek and Veliev [18]. Makin [39] extended this result for the larger class of functions.

Shkalikov and Veliev obtained in [66] more general results which cover all results about

periodic and antiperiodic boundary conditions discussed above.

The other interesting results about the periodic and antiperiodic boundary condi-
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tions were obtained in [20-23, 26, 31, 37, 43, 44, 46, 70-72].

Case (b) The cases �2; �4 6= 0 and �1; �3 = (�1)
� were investigated in [40, 41] and

it was proved that the system of the root functions of the Sturm-Liouville operator

corresponding to this case is a Riesz basis in L2 (0; 1) (see Theorem 1 of [40, 41]).

Case (c) The cases �2; �4 = 0 and �1; �3 6= (�1)
� were investigated in [40, 41] and

in Chapter 2 of this thesis. The results of Chapter 2 have been published in Boundary

Value Problems (see [51]). To explain the di¤erence between the two results, �rst let

us give the following de�nition.

We call the boundary conditions (1.7) and (1.9) for �2; �4 6= 0 and �1; �3 6= (�1)
�

which are di¤erent from the special cases (a) ; (b) and (c) as the general regular boundary

conditions that are not strongly regular. Note that in any case �1; �3 6= � (�1)� by

(1.8) and (1.10). For the case (c) and general boundary conditions Makin [40, 41] proved

that the systems of the root functions of the Sturm-Liouville operators corresponding

to these cases are Riesz bases in L2 (0; 1) if and only if all large eigenvalues are multiple.

Note that this result is not e¤ective, since the conditions are given in implicit form and

can not be veri�ed for concrete potentials. In this thesis we �nd explicit conditions on

the potential such that the system of the root functions of the Sturm-Liouville operator

corresponding to each of the cases (c) and general boundary conditions does not form

a Riesz basis.

Since we are interested also in the numerical estimations, let us mention the litera-

ture about the investigations of the small eigenvalues. There are a lot of papers about

the estimations of the small eigenvalues for the strongly regular boundary conditions

(see for example [13, 16, 25, 53-56] ). In the numerical results about the regular but

not strongly regular boundary conditions, the estimations of the small eigenvalues for

the periodic and antiperiodic boundary conditions are the most widely-studied ones
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as (see for example [2, 6, 12, 17, 19, 29, 30, 42, 74] ). There are also many papers

concerning with the estimations of the small eigenvalues for the boundary conditions

a1;1y (0) + a1;2y
0 (0) = 0;

a2;1y (1) + a2;2y
0 (1) = 0;

where

a21;1 + a21;2 6= 0; a22;1 + a22;2 6= 0;

which contain some strongly regular boundary conditions including the Dirichlet and

Neumann boundary conditions as special cases (see for example [1, 3, 5, 13-16, 25,

53-56] ).

We are interested in the numerical estimations of the small eigenvalues for the

regular boundary conditions that are not strongly regular in the case (c) There are only

two papers [4, 28] containing the estimations of the small eigenvalues for such boundary

conditions. In [4], C. J. Goh, K. L. Teo and R. P. Agarwal gave the estimations of

the small eigenvalues in the case when the potential is continuous and there is no any

example for the boundary conditions we are interested in. In [28], M. H. Annaby and

R. M. Asharabi, estimated the small eigenvalues for the general boundary conditions

but their numerical example concerning with the case (c) is for very simple potential.

In this thesis we use a method di¤erent from the methods of the papers [4] and [28],

to get subtle estimations for the small eigenvalues when the potential is in the form

q (x) =
P1

k=1 qk cos 2�kx. Note that, for this potential, it is impossible to compute

the exact values of the eigenvalues. It consists of the transformation of the original

problem that researching the eigenvalues to a new problem concerned with �nding the

root of some functions. The method used is inspired from [18].

The thesis is divided into four chapters. The �rst chapter presents preliminary

de�nitions and formulations of some results to be used in Chapter 2 and Chapter 3.
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In Chapter 2 of this thesis we �nd explicit conditions on the potential such that

the system of the root functions of the Sturm-Liouville operator corresponding to the

case (c) does not form a Riesz basis. Namely we prove that if

lim
n!1

ln jnj
ns2n

= 0; (1.11)

where q 2 L1 (0; 1) ; sn = (q; sin 2�nt) and (:; :) is the inner product in L2 [0; 1] ; then

the large eigenvalues of each of the operators corresponding to these cases are simple

for � = 1. Moreover, if there exists a sequence fnkg such that (1.11) holds when n is

replaced by nk; then the root functions of these operators do not form a Riesz basis.

Similarly, if the condition

lim
n!1

ln jnj
ns2n+1

= 0 (1.11a)

holds instead of (1.11), then the same statements continue to hold for � = 0.

In Chapter 3 of this thesis we �nd explicit conditions on potential q such that the

system of the root functions of the Sturm-Liouville operator generated by (1.1) and

the general regular boundary conditions does not form a Riesz basis. The main results

of Chapter 3 can be described as follows:

Let T �1 (q) and T
�
2 (q) be the Sturm-Liouville operators associated by the boundary

conditions (1.7) and (1.9), respectively. Without loss of generality we assume thatZ 1

0

q (t) dt = 0:

First we prove that if q 2 L1 [0; 1] andZ 1

0

sin (2�nt) q (t) dt = o

�
1

n

�
(1.12)

then the large eigenvalues of T �1 (q) and T
�
2 (q) for � = 1; are simple. Moreover if there

exists a subsequence fnkg such that (1.12) holds whenever n is replaced by nk, then

the system of the root functions of each operators T �1 (q) and T
�
2 (q) for � = 1; does not
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form a Riesz basis. The same results continue to hold for T �1 (q) and T
�
2 (q) for � = 0;

if instead of (1.12) the conditionZ 1

0

sin((2n+ 1)�t) q (t) dt = o

�
1

n

�
(1.12a)

holds.

Now, if the potential q is an absolutely continuous function and

q (0) + (�1)� q (1) 6= 2�22
1� �21

(1.13)

then the large eigenvalues of T �1 (q) for � = 0; 1 are simple and the system of the root

functions of T �1 (q) does not form a Riesz basis. Similarly, if the condition

q (0) + (�1)� q (1) 6= 2�24
�23 � 1

(1.14)

holds instead of (1.13), then the same results remain valid for T �2 (q) for � = 0; 1.

Moreover we obtain subtle asymptotic formulas for the eigenvalues and eigenfunctions

for the operators T �1 (q) and T
�
2 (q) for both cases q 2 L1 [0; 1] and q is an absolutely

continuous function.

Note that the general cases we investigate in Chapter 3 are essentially di¤erent

from the case (c) as the method of investigations and obtained results. The results of

Chapter 3 have been submitted for publication. (see [52])

In Chapter 4 of this thesis we estimate the small eigenvalues of the operators de�ned

in Chapter 2 by the numerical methods. Finally we give the error estimations and some

numerical examples.

1.2 Preliminary Facts

Let us begin by introducing some basic de�nitions and formulations of some results.



9

1.2.1 Main De�nitions and Formulations of Some Results

In this section, our aim is to present basic de�nitions and results which will be used in

the subsequent chapters of this thesis.

A linear di¤erential expression means an expression of the form

el (y) = p0 (x) y
(n) + p1 (x) y

(n�1) + : : :+ pn (x) y:

The functions p0 (x) ; p1 (x) ; p2 (x) ; : : : ; pn (x) are called the coe¢ cients and the number

n is called the order of the di¤erential expression. [48]

We consider only the case n = 2 and the di¤erential expression (1.1). Therefore we

give the de�nitions and results only for the case n = 2.

We denote the values of the function y and its �rst derivatives at the boundary

points 0 and 1 of the interval [0; 1] by

y0; y
0
0; ; y1; y

0
1: (1.15)

Let U (y) be a linear form in the variables (1.15):

U (y) = �0y0 + �1y
0
0 + �0y1 + �1y

0
1:

If two such forms U� (y) have been speci�ed, � = 1; 2; and if the conditions

U� (y) = 0; � = 1; 2 (1.16)

are imposed on the functions y we call these the boundary conditions which y must

satisfy.

Let D be the set of the functions y 2 L2 [0; 1] satisfying (1.16) such that y0 2

AC [0; 1] and l (y) 2 L2 [0; 1] ;where AC [0; 1] is the set of all absolutely continuos

functions on [0; 1].



10

De�nition 1.1 The operator T is called the linear di¤erential operator generated by

the di¤erential expression l (y) and the boundary conditions (1.16) if T (y) = l (y) for

all y 2 D.

De�nition 1.2 The problem of determining a function y 2 D (T ) which satis�es the

conditions

l (y) = 0

and (1.16) is called the homogeneous boundary-value problem.

We note that if T is the operator which is generated by the di¤erential expression

l (y) and the boundary conditions (1.16); then the homogeneous boundary-value prob-

lem amounts to �nding, in the domain of de�nition D of the operator T , a function y

for which T vanishes. [48]

De�nition 1.3 The operator T � is called the adjoint operator to T if the equation

(Ty; z) = (y; T �z)

holds for all y in the domain of de�nition of T and all z in the domain of de�nition of

T �, where (:; :) denotes the inner product in L2 [0; 1].

An operator T is self-adjoint if T = T �.

De�nition 1.4 A number � is called an eigenvalue of an operator T if there exists in

the domain of de�nition of the operator T a function y 6= 0 such that

Ty = �y: (1.17)

The function y is called the eigenfunction of the operator T corresponding to the

eigenvalue �.
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The operator T may be generated by the di¤erential expression l (y) and the bound-

ary conditions (1.16). Since an eigenfunction y must belong to the domain of de�nition

of the operator T , it must satisfy the conditions (1.16). Moreover, Ty = l (y), and

therefore (1.17) is equivalent to

l (y) = �y: (1.18)

Hence, the eigenvalues of an operator T are those values of the parameter � for

which the homogeneous boundary-value problem

l (y) = �y; U� (y) = 0; � = 1; 2 (1.19)

has non-trivial solutions; each of these non-trivial solutions is an eigenfunction belong-

ing to �.

Consider the di¤erential equation (1.18). It can be easily shown that there exists

a set of linearly independent solutions which are entire in the parameter �. Let this

set be fy1 (x; �) ; y2 (x; �)g. The general solution of (1.18) and also the solution of the

homogeneous boundary-value problem can be expressed in the form

y = c1y1 (x; �) + c2y2 (x; �)

where c1; c2 are certain constants. [48]

On imposing the two linearly independent boundary conditions (1.16), one gets a

system of two linear, homogeneous equations in the two unknowns c1; c2

c1U� (y1) + c2U� (y2) = 0; � = 1; 2 (1.20)

for the determination of the constants c1; c2.

Hence we have the following results (see [45]):

(a) The homogeneous boundary-value problem (1.20) has a non-trivial solution if

and only if the determinant of the coe¢ cient matrix vanishes.
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(b) Since the functions fy1 (x; �) ; y2 (x; �)g are entire functions of the parameter �,

this determinant, being a linear combination of entire functions in � is itself entire.

The eigenvalues (or characteristic values) of the boundary value problem (1.19) are

determined by the zeros of the characteristic determinant �(�), which has the form

�(�) =

�������
U1 (y1) U1 (y2)

U2 (y1) U2 (y2)

������� :
De�nition 1.5 An eigenvalue � of the boundary-value problem (1.19) is said to have

multiplicity p if � is a root of multiplicity p of the function �(�). An eigenvalue � of

(1.19) is called simple if � is a simple zero of �(�).

Theorem 1.1 If � is an eigenvalue of multiplicity p of the operator T , then � is an

eigenvalue of the adjoint operator T � and has the same multiplicity. [48]

By the preceding discussions, �(�) is an integral, analytic function of � and the

following theorems hold [48]:

Theorem 1.2 The eigenvalues of the operator T are the zeros of the function �(�).

If �(�) vanishes identically, then any number � is an eigenvalue of the operator T .

If, however, �(�) is not identically zero, the operator T has at most denumerably

many eigenvalues, and these eigenvalues can have no �nite limit point.

If, in particular the function �(�) has no zeros at all, then the operator T has no

eigenvalues.

De�nition 1.6 Denote by  n;0 (x) �  n (x) the eigenfunction of the operator T cor-

responding to the eigenvalue �n. The function  n;p (x) for p = 1; 2; : : : ;mp is said to

be an associated function of order p corresponding to the same eigenvalue �n and the
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eigenfunction  n;0 (x) if all the functions  n;p (x) satisfy the following equations

(T � �n) n;0 (x) = 0;

(T � �n) n;p (x) =  n;p�1 (x) ; p = 1; 2; : : : ;mp;

where mp is called the length of the system of associated functions.

An eigenfunction  n (x) is said to havemultiplicity m if there is a system of functions

associated with  n (x) of length (m� 1) but no system of length m. [48]

1.2.2 Some Auxiliary Statements

In this section, we present some auxiliary statements which will be used in the subse-

quent chapters of this thesis.

We denote by !1; !2 the di¤erent two roots of �1 arranged in an order in each case

to suit later requirements.

By the transformation � = ��2; we divide the complex �-plane into 4 sectors Sk,

k = 0; 1; 2; 3 de�ned by

k�

2
� arg � � (k + 1) �

2
: (1.21)

For each of the sectors Sk the numbers !1; !2 can be ordered in such a way that, for

all � 2 Sk, the inequality

R (�!1) � R (�!2) (1.22)

holds, where R (z) means the real part of z. [48]

It can be obtained more general domains from the sectors Sk by a translation

� ! � � c, where c is a �xed complex number. These new sectors with their vertices

at the point � = �c will correspondingly be denoted by Tk, k = 0; 1; 2; 3. Taking into

account of the way in which the Tk are produced from the Sk by translation, we see



14

that, for � 2 Tk, the inequality

R ((�+ c)!1) � R ((�+ c)!2) (1.23)

holds for a suitable ordering of the numbers !1; !2. In the sequel we shall let � vary

in a �xed domain Tk and so we shall write simply S and T instead of Sk and Tk. The

order of the numbers !1; !2 will be such that for � 2 T the inequality (1.23) is valid.

[48]

The homogeneous, linear di¤erential equation y00 + �2y = 0 has, for � 6= 0, the

fundamental system

ei�x; e�i�x:

Now the following theorem gives us the asymptotic estimates for the fundamental set

of solutions y1 (x; �) ; y2 (x; �) and their �rst order derivatives of the inhomogeneous

equation

y00 + �2y = q (x) y (1.24)

as j�j ! 1 in the sectors (1.21).

Theorem 1.3 If the function q (x) is an arbitrary summable function in the interval

[0; 1], then the equation (1.24) has, for each region T of the complex plane, two linearly

independent solutions y1; y2 which are regular for � 2 T and for su¢ ciently large j�j,

and which, with their derivatives, can be expressed in the form

yk = e�!kx
�
1 +O

�
1

�

��
;

dyk
dx

= �e�!kx
�
!k +O

�
1

�

��
; (1.25)

for k = 1; 2: [48]
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For real and positive � it is often convenient to replace these solutions by the linear

combinations of y1; y2:

y1 + y2
2

= cos �x+O

�
1

�

�
;

y1 � y2
2i

= sin �x+O

�
1

�

�
:

Consider the di¤erent systems U� (y) = 0; � = 1; 2, of linear forms which de�ne a

given di¤erential operator. If y(k) (0) or y(k) (1) appear explicitly in the form U (y) but

y(�) (0) and y(�) (1) do not, for any � > k, then we say that the form U (y) has order k.

From the way in which they are constructed the boundary conditions must have the

form

U�(y) = ��y
(k�)(0) + ��;0y(0) + ��y

(k�)(1) + ��;0y(1) = 0; � = 1; 2; (1.26)

where 1 � k1 � k2 � 0;and for each value of the su¢ x � at least one of the numbers

�� ; �� is non-zero. [48]

Consider a �xed domain Sk; as before, we number !1; !2 so that, for � 2 Sk, (1.22)

holds.

De�nition 1.7 The boundary conditions (1.26) are said to be regular if the numbers

��1 and �1 de�ned by the identity

��1
s
+ �0 + �1s =

�������
(�1 + s�1)!

k1
1 (�1 +

1
s
�1)!

k1
2

(�2 + s�2)!
k2
1 (�2 +

1
s
�2)!

k2
2

�������
are di¤erent from zero.

This de�nition of regularity is independent of the choice of the region S for which

the numbers !1; !2 were arranged in order.

Note that, since �0; �1; ��1 depend only on the complex coe¢ cients �� and ��

(� = 1; 2) of the highest order derivatives in (1.26), regularity also depends on ��

and �� .
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De�nition 1.8 The regular boundary conditions (1.26) are said to be strongly regular

if �20 � 4�1��1 6= 0.

The most general boundary conditions for n = 2 have the form

a1y
0
0 + b1y

0
1 + a0y0 + b0y1 = 0;

c1y
0
0 + d1y

0
1 + c0y0 + d0y1 = 0: (1.27)

The conditions (1.27) are regular in just these cases:

1. a1d1 � b1c1 6= 0;

2. a1 = b1 = c1 = d1 = 0; a0d0 � b0c0 6= 0;

3. a1d1 � b1c1 = 0; ja1j+ jb1j > 0; b1c0 + a1d0 6= 0:

In the �rst two cases �0 = 0, �1 = �1, ��1 = 1 and �20 � 4�1��1 = 4 6= 0, i.e.,

the boundary conditions are strongly regular. In the third case we can transform the

conditions (1.27) so:

a1y
0
0 + b1y

0
1 + a0y0 + b0y1 = 0;

c0y0 + d0y1 = 0;

��1
s
+ �0 + �1s =

��������
(a1 + sb1)!1 �

�
a1 +

1

s
b1

�
!1

c0 + sd0 c0 +
1

s
d0

��������
= !1 (b1c0 + a1d0)

�
s+

1

s

�
+ 2!1 (a1c0 + b1d0) ;

�1 = ��1 = !1 (b1c0 + a1d0) ; �0 = 2!1 (a1c0 + b1d0) ;

the conditions are therefore regular if b1c0 + a1d0 6= 0. [48]
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For �20 � 4�1��1 = 0, the following sequences are obtained:

�k;j = � (2k�)2
�
1 +

� ln0 �

k�i
+O

�
1

k3=2

��
, j = 1; 2. (1.28)

where � is the double root, occurring in this case, of the equation

�1�
2 + �0� + ��1 = 0

(relative to the � for the domain S0). The upper or lower sign is to be taken according

as n = 4� or n = 4� + 2, respectively (Here ln0 � is any �xed branch of the natural

logarithm). [48]

Let y1; y2 be linearly independent solutions of the equation l (y) + �2y = 0 which

satisfy the relations (1.25) in a certain domain T . An eigenfunction which belongs to a

prescribed eigenvalue � = ��2 with � 2 T must be expressible as a linear combination

of the functions y1; y2:

y = c1y1 + c2y2;

where the coe¢ cients c1; c2 are non-trivial solutions of the system of homogeneous

equations (1.21). For simplicity, we consider only a simple eigenvalue �, for which the

rank of the determinant � = det [U� (yk)], �; k = 1; 2, is equal to 1. Then

y =

�������
y1 y2

U2 (y1) U2 (y2)

�������
is an eigenfunction belonging to the eigenvalue �. [48]

1.2.3 On the Riesz Basis

Let
�
�j
	
be an arbitrary orthonormal basis of the space D, and A some bounded and

boundedly invertible linear operator. Then for any vector f 2 D one has

A�1f =
1X
j=1

�
A�1f; �j

�
�j =

1X
j=1

�
f; A��1�j

�
�j;
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and consequently

f =
1X
j=1

�
f; �j

�
 j;

where

 j = A�j; �j = A��1�j (j = 1; 2; : : :) :

Obviously �
 j; �k

�
= �jk (j = 1; 2; : : :) :

Therefore if

f =

1X
j=1

cj j; (1.29)

then cj =
�
f; �j

�
(j = 1; 2; : : :), i.e. the expansion (1.29) is unique.

Thus every bounded and boundedly invertible linear operator transforms any or-

thonormal basis into some other basis of the space D.

De�nition 1.9 A basis
�
 j
	1
1
of the space D which is obtained from an orthonormal

basis by means of such a transformation is called a basis equivalent to an orthonormal

basis (or a Riesz basis). In other words,
�
 j
	1
1
is a Riesz basis if there exist a bounded

and boundedly invertible linear operator A such that  j = A�j for some orthonormal

basis
�
�j
	1
1
. [27]

We formulate a number of characteristic properties of Riesz bases. [27]

Theorem 1.4 (N. K. Bari) The following assertions are equivalent.

(i) The sequence
�
 j
	1
1
forms a basis of the space D, equivalent to an orthonormal

basis (i.e.
�
 j
	1
1
is a Riesz basis:).

(ii) The sequence
�
 j
	1
1
becomes an orthonormal basis of the space D following

the appropriate replacement of the scalar product hf; gi by some new one hf; gi1, topo-

logically equivalent to the original one (i.e. if there exist positive constants c1; c2 such

that c1 hf; fi � hf; fi1 � c2 hf; fi f 2 D:).
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(iii) The sequence
�
 j
	1
1
is complete in D, and there exist positive constants a1; a2

such that for any positive integer n and any complex numbers 
1; 
2; : : : ; 
n one has

a2

nX
j=1

��
j��2 �
�����
nX
j=1


j j

�����
2

� a1

nX
j=1

��
j��2 :
(iv) The sequence

�
 j
	1
1
is complete in D, and its Gram matrix



� j;  k�

11
generates a bounded invertible operator in the space l2.

(v) The sequence
�
 j
	1
1
is complete in D, there corresponds to it a complete

biorthogonal sequence
�
�j
	1
1
, and for any f 2 D one has

1X
j=1

���f;  j���2 <1;

1X
j=1

���f; �j���2 <1:

De�nition 1.10 A sequence fNkg11 of nonzero subspaces Nk � D is said to be a basis

(of subspaces) of the space D, if any vector x 2 D can be expanded in a unique way in

a series of the form

x =
1X
k=1

xk

where xk 2 Nk (k = 1; 2; : : :) :

Theorem 1.5 If the sequence of subspaces fNkg11 is a basis of the space D equivalent

to an orthogonal one, then any sequence f�kg
1
1 , obtained as the union of orthonormal

bases of all the subspaces Nk (k = 1; 2; : : :), is a basis of the space D equivalent to

orthonormal one. [27]

If the subspaces Nk (k = 1; 2; : : :) are one-dimensional, then they form a basis of

the space D if and only if unit vectors �k 2 Nk (k = 1; 2; : : :) form a vector basis of D.

[27]
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2 STURM-LIOUVILLEOPERATORSWITH SOME

REGULAR BOUNDARY CONDITIONS

Let T1 (q) ; T2 (q) ; T3 (q) and T4 (q) be the operators generated in L2[0; 1] by the di¤er-

ential expression (1.1) and the following boundary conditions:

y00 + �y01 = 0; y0 � y1 = 0; (2.1)

y00 + �y01 = 0; y0 + y1 = 0; (2.2)

y00 � y01 = 0; y0 + �y1 = 0; (2.3)

and

y00 + y01 = 0; y0 + �y1 = 0 (2.4)

respectively, where q is a complex-valued summable function on [0; 1], � 6= �1 and

� 6= �1:

In conditions (2.1), (2.2), (2.3) and (2.4) if � = 1; � = �1; � = 1 and � = �1

respectively, then any � 2 C is an eigenvalue of in�nite multiplicity. In (2.1) and (2.3)

if � = �1 and � = �1 then they are periodic boundary conditions; In (2.2) and (2.4)

if � = 1 and � = 1 then they are antiperiodic boundary conditions.

We will focus only on the operator T1 (q). The investigations of the operators

T2 (q) ; T3 (q) and T4 (q) are similar. It is well-known that ( see (47a) and (47b)) on page

65 of [48] ) the eigenvalues of the operators T1(q) consist of the sequences f�n;1g; f�n;2g

satisfying

�n;j = (2n�)
2 +O(n1=2) (2.5)

for j = 1; 2. From this formula one can easily obtain the following inequality

���n;j � (2�k)2�� = j2(n� k)�j j2(n+ k)�j+O(n
1
2 ) > n (2.6)
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for j = 1; 2; k 6= n; k = 0; 1; :::, and n � N; where N denotes a su¢ ciently large

positive integer, that is, N � 1:

The eigenvalues of the operator T1(0) are �n = (2�n)
2 for n = 0; 1; : : : The eigen-

value 0 is simple and the corresponding eigenfunction is 1: The eigenvalues �n = (2�n)
2

for n = 1; 2; : : : are double and the corresponding eigenfunctions and associated func-

tions are

yn (x) = cos 2�nx & �n (x) =

�
�

1 + �
� x

�
sin 2�nx

4�n
; (2.7)

respectively. Note that for any constant c, �n (x) + cyn (x) is also an associated func-

tion corresponding to �n, since one can easily verify that it satis�es the equation and

boundary conditions for the associated functions. It can be shown that the adjoint

operator T �1 (0) is associated with the boundary conditions:

y1 + �y0 = 0; y
0
1 � y00 = 0:

It is easy to see that, 0 is a simple eigenvalue of T �1 (0) and the corresponding eigen-

function is y�0 (x) = x � 1

1 + �
. The other eigenvalues ��n = (2�n)

2 for n = 1; 2; : : :,

are double and the corresponding eigenfunctions and associated functions are

y�n (x) = sin 2�nx & ��n (x) =

�
x� 1

1 + �

�
cos 2�nx

4�n
(2.8)

respectively.

Let

'n (x) :=
16�n (� + 1)

� � 1 �n (x) =
4 (� + 1)

� � 1

�
�

1 + �
� x

�
sin 2�nx (2.9)

and

'�n (x) :=
16�n

�
� + 1

�
� � 1

��n (x) =
4
�
� + 1

�
� � 1

�
x� 1

1 + �

�
cos 2�nx (2.10)
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(see (2.7) and (2.8)). The system of the root functions of T �1 (0) can be written as

ffn : n 2 Zg; where

f�n = sin 2�nx; 8n > 0 & fn = '�n (x) ; 8n � 0: (2.11)

One can easily verify that it forms a basis in L2[0; 1] and the biorthogonal system

fgn : n 2 Zg is the system of the root functions of T1(0); where

g�n = 'n (x) ;8n > 0 & gn = cos 2�nx; 8n � 0; (2.12)

since (fn; gm) = �n;m:

2.1 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of T1 (q)

To obtain the asymptotic formulas for the eigenvalues �n;j and the corresponding nor-

malized eigenfunctions 	n;j(x) of T1(q) we use (2.6) and the well-known relations

(�N;j � (2�n)2)(	N;j; sin 2�nx) = (q	N;j; sin 2�nx) (2.13)

and

�
�N;j � (2�n)2

�
(	N;j; '

�
n)� 
1n (	N;j; sin 2�nx) = (q	N;j; '

�
n) ; (2.14)

where


1 =
16� (� + 1)

� � 1 ;

which can be obtained by multiplying both sides of the equality

� (	N;j)00 + q (x)	N;j = �N;j	N;j

by sin 2�nx and '�n respectively. It follows from (2.13) and (2.14) that

(	N;j; sin 2�nx) =
(q	N;j; sin 2�nx)

�N;j � (2�n)2
; N 6= n; (2.15)
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(	N;j; '
�
n) =


1n (q	N;j; sin 2�nx)�
�N;j � (2�n)2

�2 +
(q	N;j; '

�
n)

�N;j � (2�n)2
; N 6= n: (2.16)

Moreover, we use the following relations

(	N;j; q sin 2�nx) =

1X
n1=0

[
�
q'n1 ; sin 2�nx

�
(	N;j; sin 2�n1x)+ (2.17)

+ (q cos 2�n1x; sin 2�nx)
�
	N;j; '

�
n1

�
];

(	N;j; q'
�
n) =

1X
n1=0

��
q'n1 ; '

�
n

�
(	N;j; sin 2�n1x) + (q cos 2�n1x; '

�
n)
�
	N;j; '

�
n1

��
;

(2.18)

j(q	N;j; sin 2�nx)j < 4M; (2.19)

j(q	N;j; '�n)j < 4M; (2.20)

for N � 1;where M = sup jqnj : These relations are obvious for q 2 L2(0; 1); since to

obtain (2.17) and (2.18) we can use the decomposition of q sin 2�nx and q'�n by the

basis (2.11). For q 2 L1(0; 1) see Lemma 1 of [70].

To obtain the asymptotic formulas for the eigenvalues and eigenfunctions we iterate

(2.13) and (2.14) by using (2.17) and (2.18). First let us prove the following obvious

asymptotic formulas, namely (2.24), for the eigenfunctions 	n;j. The expansion of 	n;j

by the basis (2.12) can be written in the form

	n;j = un;j'n (x) + vn;j cos 2�nx+ hn;j (x) ; (2.21)

where

un;j = (	n;j; sin 2�nx) ; vn;j = (	n;j; '
�
n) ; (2.22)

hn;j (x) =
1X
k=0
k 6=n

[(	n;j; sin 2�kx)'k (x) + (	n;j; '
�
k) cos 2�kx] ;

and 'n (x), '
�
n (x) are de�ned in (2.9) and (2.10), respectively. Using (2.15), (2.16),
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(2.19) and (2.20) one can readily see that, there exists a constant C such that

sup jhn;j (x)j � C

0@X
k 6=n

0@ 1

j �n;j � (2�k)2 j
+

n�����n;j � (2�k)2�2���
1A1A = O

�
lnn

n

�
:

(2.23)

Hence by (2.21) and (2.23) we obtain

	n;j = un;j'n (x) + vn;j cos 2�nx+O

�
lnn

n

�
: (2.24)

Since 	n;j is normalized, we have

1 = k	n;jk2 = (	n;j;	n;j) = jun;jj2 k'n (x)k
2 + jvn;jj2 kcos 2�nxk2+

+un;jvn;j ('n (x) ; cos 2�nx) + vn;jun;j (cos 2�nx; 'n (x)) +O

�
lnn

n

�
=

=

 
8

3

j�j2 � Re� + 1
j� � 1j2

!
jun;jj2 +

1

2
jvn;jj2 +O

�
lnn

n

�
;

that is,

a jun;jj2 +
1

2
jvn;jj2 = 1 +O

�
lnn

n

�
; (2.25)

where

a =
8

3

j�j2 � Re� + 1
j� � 1j2

:

Note that a 6= 0, since j�j2 + 1 > j�j and by (2.25) we see that at least one of un;j and

vn;j is di¤erent from zero.

Now let us iterate (2.13). Using (2.17) in (2.13) we get

�
�n;j � (2�n)2

�
(	n;j; sin 2�nx) =

=

1X
n1=0

��
q'n1 ; sin 2�nx

�
(	n;j; sin 2�n1x) + (q cos 2�n1x; sin 2�nx)

�
	n;j; '

�
n1

��
:

Isolating the terms in the right-hand side of this equality containing the multiplicands

(	n;j; sin 2�nx) and (	n;j; '�n) (i.e., the case n1 = n ), using (2.15) and (2.16) for the
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terms (	n;j; sin 2�n1x) and
�
	n;j; '

�
n1

�
, respectively (in the case n1 6= n), we obtain

�
�n;j � (2�n)2 � (q'n; sin 2�nx)

�
(	n;j; sin 2�nx)� (q cos 2�nx; sin 2�nx) (	n;j; '�n) =

=
1X
n1=0
n1 6=n

��
q'n1 ; sin 2�nx

�
(	n;j; sin 2�n1x) + (q cos 2�n1x; sin 2�nx)

�
	n;j; '

�
n1

��

=
X
n1

�
a1 (�n;j) (q	n;j; sin 2�n1x) + b1 (�n;j)

�
q	n;j; '

�
n1

��
;

where

a1 (�n;j) =

�
q'n1 ; sin 2�nx

�
�n;j � (2�n1)2

+

1n1 (q cos 2�n1x; sin 2�nx)�

�n;j � (2�n1)2
�2 ;

b1 (�n;j) =
(q cos 2�n1x; sin 2�nx)

�n;j � (2�n1)2
:

Using (2.17) and (2.18) for the terms (q	n;j; sin 2�n1x) and
�
q	n;j; '

�
n1

�
of the last

summation we obtain

�
�n;j � (2�n)2 � (q'n; sin 2�nx)

�
(	n;j; sin 2�nx)� (q cos 2�nx; sin 2�nx) (	n;j; '�n) =

=
X
n1

�
a1 (�n;j) (q	n;j; sin 2�n1x) + b1 (�n;j)

�
q	n;j; '

�
n1

��
=
X
n1

a1

 1X
n2=0

��
q'n2 ; sin 2�n1x

�
(	n;j; sin 2�n2x) + (q cos 2�n2x; sin 2�n1x)

�
	n;j; '

�
n2

��!
+

+
X
n1

b1

 1X
n2=0

��
q'n2 ; '

�
n1

�
(	n;j; sin 2�n2x) +

�
q cos 2�n2x; '

�
n1

� �
	n;j; '

�
n2

��!
:

Now isolating the terms for n2 = n we get

�
�n;j � (2�n)2 � (q'n; sin 2�nx)

�
(	n;j; sin 2�nx)� (q cos 2�nx; sin 2�nx) (	n;j; '�n) =

=
X
n1

�
a1 (q'n; sin 2�n1x) + b1

�
q'n; '

�
n1

��
(	n;j; sin 2�nx)+

+
X
n1

�
a1 (q cos 2�nx; sin 2�n1x) + b1

�
q cos 2�nx; '�n1

��
(	n;j; '

�
n)+

+
X
n1;n2

f
�
a1
�
q'n2 ; sin 2�n1x

�
+ b1

�
q'n2 ; '

�
n1

��
(	n;j; sin 2�n2x)g+

+
X
n1;n2

f
�
a1 (q cos 2�n2x; sin 2�n1x) + b1

�
q cos 2�n2x; '

�
n1

�� �
	n;j; '

�
n2

�
g:
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Here and below the summations are taken under the conditions ni 6= n and ni = 0; 1; :::

for i = 1; 2; :::. Introduce the notations

C1 =: a1; M1 =: b1;

C2 =: a1a2 + b1A2 = C1a2 +M1A2; M2 =: a1b2 + b1B2 = C1b2 +M1B2;

Ck+1 =: Ckak+1 +MkAk+1; Mk+1 =: Ckbk+1 +MkBk+1; k = 1; 2; : : : ;

where

ak+1 = ak+1 (�n;j) =

�
q'nk+1 ; sin 2�nkx

�
�n;j � (2�nk+1)2

+

1nk+1 (q cos 2�nk+1x; sin 2�nkx)�

�n;j � (2�nk+1)2
�2 ;

bk+1 = bk+1 (�n;j) =
(q cos 2�nk+1x; sin 2�nkx)

�n;j � (2�nk+1)2
;

Ak+1 = Ak+1 (�n;j) =

�
q'nk+1 ; '

�
nk

�
�n;j � (2�nk+1)2

+

1nk+1

�
q cos 2�nk+1x; '

�
nk

��
�n;j � (2�nk+1)2

�2 ;

Bk+1 = Bk+1 (�n;j) =

�
q cos 2�nk+1x; '

�
nk

�
�n;j � (2�nk+1)2

:

Using these notations and repeating this iteration k times we get

h
�n;j � (2�n)2 � (q'n; sin 2�nx)� eAk (�n;j)i (	n;j; sin 2�nx) =
=
h
(q cos 2�nx; sin 2�nx) + eBk (�n;j)i (	n;j; '�n (x)) +Rk; (2.26)

where

eAk (�n;j) = kX
m=1

�m (�n;j) , eBk (�n;j) = kX
m=1

�m (�n;j) ;

�k (�n;j) =
X

n1;:::;nk

�
Ck (q'n; sin 2�nkx) +Mk

�
q'n; '

�
nk

��
;

�k (�n;j) =
X

n1;:::;nk

�
Ck (q cos 2�nx; sin 2�nkx) +Mk

�
q cos 2�nx; '�nk

��
;

Rk =
X

n1;:::;nk+1

n
Ck+1 (q	n;j; sin 2�nk+1x) +Mk+1

�
q	n;j; '

�
nk+1

�o
:
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It follows from (2.6), (2.19) and (2.20) that

�k (�n;j) = O

 �
ln jnj
n

�k!
; �k (�n;j) = O

 �
ln jnj
n

�k!
; Rk = O

 �
ln jnj
n

�k+1!
:

(2.27)

Therefore letting k tend to in�nity, we obtain

�
�n;j � (2�n)2 �Qn � A (�n;j)

�
un;j = [Pn +B (�n;j)] vn;j;

where

Pn = (q cos 2�nx; sin 2�nx) ; Qn = (q'n; sin 2�nx) ; (2.28)

A (�n;j) =

1X
m=1

�m (�n;j) , B (�n;j) =
1X
m=1

�m (�n;j)

and by (2.27) we have

A (�n;j) = O

�
ln jnj
n

�
, B (�n;j) = O

�
ln jnj
n

�
: (2.29)

Thus, iterating (2.13) we obtain (2.26). Now iterating (2.14) instead of (2.13), using

(2.18) and (2.17) and arguing as in the previous iteration, we get

�
�n;j � (2�n)2 � P �n � A0k (�n;j)

�
vn;j = [
1n+Q�n +B0

k (�n;j)]un;j +R0k; (2.30)

where

P �n = (q cos 2�nx; '
�
n) ; Q

�
n = (q'n; '

�
n) ; (2.31)

A0k (�n;j) =
kX

m=1

�0m (�n;j) , B
0
k (�n;j) =

kX
m=1

�0m (�n;j) ;

�0k (�n;j) =
X

n1;:::;nk

h eCk (q cos 2�nx; sin 2�nkx) + fMk

�
q cos 2�nx; '�nk

�i
;

�0k (�n;j) =
X

n1;:::;nk

h eCk (q'n; sin 2�nkx) + fMk

�
q'n; '

�
nk

�i
;

R0k =
X

n1;:::;nk+1

n eCk+1 (q	n;j; sin 2�nk+1x) + fMk+1

�
q	n;j; '

�
nk+1

�o
;

eCk+1 = eCkak+1 + fMkAk+1; fMk+1 = eCkbk+1 + fMkBk+1; k = 1; 2; : : : ;
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eC1 = A1 (�n;j) =

�
q'n1 ; '

�
n

�
�n;j � (2�n1)2

+

1n1 (q cos 2�n1x; '

�
n)�

�n;j � (2�n1)2
�2 ;

fM1 = B1 (�n;j) =
(q cos 2�n1x; '

�
n)

�n;j � (2�n1)2
:

Similar to (2.27) one can verify that

�0k (�n;j) = O

 �
ln jnj
n

�k!
; �0k (�n;j) = O

 �
ln jnj
n

�k!
; R0k = O

 �
ln jnj
n

�k+1!
:

(2.32)

Now letting k tend to in�nity in (2.30), we obtain

�
�n;j � (2�n)2 � P �n � A0 (�n;j)

�
vn;j = [
1n+Q�n +B0 (�n;j)]un;j;

where

A0 (�n;j) =
1X
m=1

�0m (�n;j) , B
0 (�n;j) =

1X
m=1

�0m (�n;j)

and by (2.32) we have

A0 (�n;j) = O

�
ln jnj
n

�
, B0 (�n;j) = O

�
ln jnj
n

�
: (2.33)

To get some main results of this chapter we use the following system of equations,

obtained above, with respect to un;j and vn;j

�
�n;j � (2�n)2 �Qn � A (�n;j)

�
un;j = [Pn +B (�n;j)] vn;j; (2.34)�

�n;j � (2�n)2 � P �n � A0 (�n;j)
�
vn;j = [
1n+Q�n +B0 (�n;j)]un;j; (2.35)

where

Qn = �
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 (xq; cos 4�nx)� 2�

� � 1 (q; cos 4�nx) (2.36)

= �2 (� + 1)
� � 1

Z 1

0

xq (x) dx+ o (1) ; (2.37)

P �n =
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 (xq; cos 4�nx)� 2

� � 1 (q; cos 4�nx) (2.38)

=
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+ o (1) ; (2.39)
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Pn =
1

2
(q; sin 4�nx) = o (1) ; (2.40)

Q�n = 8

�
�1 + 1

�1 � 1

�2 Z 1

0

q (x)

�
�1

1 + �1
� x

��
x� 1

1 + �1

�
sin 4�nxdx = o (1) (2.41)

(see (2.28) and (2.31)). Note that (2.34), (2.35) with (2.29), (2.33) give�
�n;j � (2�n)2 �Qn +O

�
ln jnj
n

��
un;j =

�
Pn +O

�
ln jnj
n

��
vn;j; (2.42)�

�n;j � (2�n)2 � P �n +O

�
ln jnj
n

��
vn;j =

�

1n+Q�n +O

�
ln jnj
n

��
un;j: (2.43)

Introduce the notations

cn = (q; cos 2�nx) , sn = (q; sin 2�nx) ;

cn;1 = (xq; cos 2�nx) , sn;1 = (xq; sin 2�nx) ; (2.44)

cn;2 =
�
x2q; cos 2�nx

�
, sn;2 =

�
x2q; sin 2�nx

�
:

Then, by (2.36)-(2.41) and (2.44) we have

Qn = �
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 c2n;1 �
2�

� � 1c2n; (2.45)

P �n =
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 c2n;1 �
2

� � 1c2n; (2.46)

Pn =
1

2
s2n; (2.47)

Q�n = �8
�
� + 1

� � 1

�2
s2n;2 + 8

�
� + 1

� � 1

�2
s2n;1 �

8�

(� � 1)2
s2n: (2.48)

Theorem 2.1 The following statements hold:

(a) Any eigenfunction 	n;j of T1 (q) corresponding to the eigenvalue �n;j de�ned in

(2.5) satis�es

	n;j =
p
2 cos 2�nx+O

�
n�1=2

�
: (2.49)

Moreover there exists N such that for all n > N the geometric multiplicity of the

eigenvalue �n;j is 1.
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(b) A complex number � 2 U(n) =: f� :
���� (2�n)2�� � ng is an eigenvalue of

T1 (q) if and only if it is a root of the equation�
�� (2�n)2 �Qn � A (�)

� �
�� (2�n)2 � P �n � A0 (�)

�
�

� [Pn +B (�)] [
1n+Q�n +B0 (�)] = 0: (2.50)

Moreover � 2 U(n) is a double eigenvalue of T1 (q) if and only if it is a double root of

(2.50) .

Proof. (a) By (2.5) the left-hand side of (2.43) is O(n1=2); which implies that

un;j = O(n�1=2): Therefore from (2.24) we obtain (2.49). Now suppose that there are

two linearly independent eigenfunctions corresponding to �n;j. Then there exists an

eigenfunction satisfying

	n;j =
p
2 sin 2�nx+ o (1)

which contradicts (2.49).

(b) First we prove that the large eigenvalues �n;j are the roots of the equation (2.50).

It follows from (2.49), (2.22) and (2.10) that vn;j 6= 0: If un;j 6= 0 then multiplying the

equations (2.34) and (2.35) side by side and then canceling vn;jun;j we obtain (2.50) .

If un;j = 0 then by (2.34) and (2.35) we have Pn + B (�n;j) = 0 and �n;j � (2�n)2 �

P �n � A0 (�n;j) = 0 which mean that (2.50) holds. Thus in any case �n;j is a root of

(2.50).

Now we prove that the roots of (2.50) lying in U(n) are the eigenvalues of T1 (q) :

Let F (�) be the left-hand side of (2.50) which can be written as

F (�) = (�� (2�n)2)2 � (Qn + A (�) + P �n + A0 (�))
�
�� (2�n)2

�
+ (2.51)

+(Qn + A (�)) (P �n + A0 (�))� (Pn +B (�)) (
1n+Q�n +B0 (�))

and

G(�) = (�� (2�n)2)2:
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One can easily verify that the inequality

j F (�)�G(�) j<j G(�) j

holds for all � from the boundary of U(n): Since the function G(�) has two roots in

the set U(n); by the Rouche�s theorem we �nd that F (�) has two roots in the same

set. Thus T1 has two eigenvalues (counting with multiplicities) lying in U(n) that are

the roots of (2.50). On the other hand, (2.50) has preciously two roots (counting with

multiplicities) in U(n): Therefore � 2 U(n) is an eigenvalue of T1 (q) if and only if

(2.50) holds.

If � 2 U(n) is a double eigenvalue of T1 (q) then it has no other eigenvalues in U(n)

and hence (2.50) has no other roots. This implies that � is a double root of (2.50).

By the same way one can prove that if � is a double root of (2.50) then it is a double

eigenvalue of T1 (q) :

Let us consider (2.50) in detail. By (2.51) we have

F (�) = 0: (2.52)

If we substitute t =: �� (2�n)2 in (2.52), then it becomes

t2 � (Qn + A (�) + P �n + A0 (�)) t+ (2.53)

+(Qn + A (�)) (P �n + A0 (�))� (Pn +B (�)) (
1n+Q�n +B0 (�)) = 0:

The solutions of (2.53) are

t1;2 =
(Qn + P �n + A+ A0)�

p
�(�)

2
;

where

�(�) = (Qn + P �n + A+ A0)
2 � 4 (Qn + A) (P �n + A0) + 4 (Pn +B) (
1n+Q�n +B0)
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which can be written in the form

�(�) = (Qn � P �n + A� A0)
2
+ 4 (Pn +B) (
1n+Q�n +B0) (2.54)

and, as we shall see below,
p
�(�) can be de�ned as an analytic function on U(n):

Clearly the eigenvalue �n;j is a root either of the equation

� = (2�n)2 +
1

2

h
(Qn + P �n + A+ A0)�

p
�(�)

i
(2.55)

or of the equation

� = (2�n)2 +
1

2

h
(Qn + P �n + A+ A0) +

p
�(�)

i
: (2.56)

Now let us examine �(�n;j) in detail. If (1.11) holds then one can readily see from

(2.29), (2.33), (2.45)-(2.48) and (2.54) that

�(�n;j) = 2
1ns2n(1 + o(1)): (2.57)

for � 2 U(n): By (62) there exists appropriate choice of branch of
p
�(�) (depending

on n) which is analytic on U(n): Taking into account (2.57), (2.29), (2.33), (2.45) and

(2.46), we see that (2.55) and (2.56) have the form

� = (2�n)2 �
p
2
1
2

p
ns2n(1 + o(1)); (2.58)

� = (2�n)2 +

p
2
1
2

p
ns2n(1 + o(1)): (2.59)

Theorem 2.2 If (1.11) holds, then the large eigenvalues �n;j are simple and satisfy

the following asymptotic formulas

�n;j = (2�n)
2 + (�1)j

p
2
1
2

p
ns2n(1 + o(1)): (2.60)

for j = 1; 2: Moreover, if there exists a sequence fnkg such that (1.11) holds when n is

replaced by nk; then the root functions of T1 (q) do not form a Riesz basis.
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Proof. To prove that the large eigenvalues �n;j are simple let us show that one of

the eigenvalues, say �n;1 satis�es (2.60) for j = 1 and the other �n;2 satis�es (2.60) for

j = 2: Let us prove that each of the equations (2.55) and (2.56) has a unique root in

U(n) by proving that

(2�n)2 +
1

2

h
(Qn + P �n + A+ A0)�

p
�(�)

i
is a contraction mapping. For this we show that there exist positive real numbers

K1; K2; K3 such that

j A (�)� A(�) j< K1 j �� � j; j A0(�)� A0(�) j< K2 j �� � j; (2.61)���p�(�)�p�(�)��� < K3 j �� � j (2.62)

for �; � 2 U(n); where K1 +K2 +K3 < 1. The proof of (2.61) is similar to the proof

of (56) of the paper [73].

Now let us prove (2.62). By (2.57) and (1.11) we have�p
�(�)

��1
= o(1):

On the other hand arguing as in the proof of (56) of the paper [73] we get

d

d�
�(�) = O(1):

Hence for the large values of n we have

d

d�

p
�(�) =

d

d�
�(�)

2
p
�(�)

= o(1):

Thus by the �xed point theorem, each of the equations (2.55) and (2.56) has a unique

root �1 and �2 respectively. Clearly by (2.58) and (2.59), we have �1 6= �2 which

implies that the equation (2.50) has two simple roots in U (n) : Therefore by Theorem

2.1(b), �1 and �2 are the eigenvalues of T1 (q) lying in U (n) ; that is, they are �n;1 and

�n;2, which proves the simplicity of the large eigenvalues and the validity of (2.60).
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If there exists a sequence fnkg such that (1.11) holds when n is replaced by nk,

then by Theorem 2.1(a)

(	nk;1;	nk;2) = 1 +O
�
n
�1=2
k

�
:

Now it follows from the theorems of [22, 23] (see also Lemma 3 of [71]) that the root

functions of T1 (q) do not form a Riesz basis.

2.2 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of T2 (q), T3 (q) and T4 (q)

Now let us consider the operators T2 (q), T3 (q) and T4 (q) : First we consider the oper-

ator T3 (q).

It is well known that ( see (47a) and (47b)) on page 65 of [48] ) the eigenvalues of

the operators T3(q) consist of the sequences f�n;1;3g; f�n;2;3g satisfying (2.5) when �n;j

is replaced by �n;j;3: The eigenvalues, eigenfunctions and associated functions of T3 (0)

are

�n;3 = (2�n)
2 ; n = 0; 1; 2; : : :

y0;3 (x) = x� �

1 + �
; yn;3 (x) = sin 2�nx; n = 1; 2; : : :

�n;3 (x) =

�
x� �

1 + �

�
cos 2�nx

4�n
; n = 1; 2; : : : :

respectively. The biorthogonal systems analogous to (2.11) and (2.12) are�
cos 2�nx;

4 (1 + �)

1� �

�
1

1 + �
� x

�
sin 2�nx

�1
n=0

(2.63)

�
sin 2�nx;

4 (1 + �)

1� �

�
x� �

1 + �

�
cos 2�nx

�1
n=0

(2.64)

respectively.
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Analogous formulas to (2.13) and (2.14) are

�
�N;j;3 � (2�n)2

�
(	N;j;3; cos 2�nx) = (q	N;j;3; cos 2�nx) (2.65)

�
�N;j;3 � (2�n)2

� �
	N;j;3; '

�
n;3

�
� 
3n (	N;j;3; cos 2�nx) =

�
q	N;j;3; '

�
n;3

�
(2.66)

respectively, where


3 =
16� (1 + �)

1� �
:

Instead of (2.11)-(2.14) using (2.63)-(2.66) and arguing as in the proofs of Theorem 2.1

and Theorem 2.2 we obtain the following results for T3 (q) :

Theorem 2.3 If (1.11) holds, then the large eigenvalues �n;j;3 are simple and satisfy

the following asymptotic formulas

�n;j;3 = (2�n)
2 + (�1)j

p
2
3
2

p
ns2n(1 + o(1)):

for j = 1; 2: The eigenfunctions 	n;j;3 corresponding to �n;j;3 obey

	n;j;3 =
p
2 sin 2�nx+O

�
n�1=2

�
:

Moreover, if there exists a sequence fnkg such that (1.11) holds when n is replaced by

nk; then the root functions of T3 (q) do not form a Riesz basis.

Now let us consider the operator T2 (q). It is well-known that ( see (47a) and (47b))

on page 65 of [48] ) the eigenvalues of the operators T2(q) consist of the sequences

f�n;1;2g; f�n;2;2g satisfying

�n;j;2 = (2n� + �)2 +O(n1=2); (2.67)

for j = 1; 2. The eigenvalues, eigenfunctions and associated functions of T2 (0) are

(� + 2�n)2 ; yn;2 (x) = cos (2n+ 1) �x;

�n;2 (x) =

�
�

� � 1 � x

�
sin (2n+ 1) �x

2 (2n+ 1) �



36

for n = 0; 1; 2; : : :respectively. The biorthogonal systems analogous to (2.11) and (2.12)

are (
sin (2n+ 1) �x;

4
�
� � 1

�
� + 1

�
x+

1

� � 1

�
cos (2n+ 1) �x

)1
n=0

(2.68)

�
cos (2n+ 1) �x;

4 (� � 1)
� + 1

�
�

� � 1 � x

�
sin (2n+ 1) �x

�1
n=0

(2.69)

respectively.

Analogous formulas to (2.13) and (2.14) are

�
�N;j;2 � ((2n+ 1) �)2

�
(	N;j;2; sin (2n+ 1) �x) = (q	N;j;2; sin (2n+ 1) �x) (2.70)

�
�N;j;2 � ((2n+ 1) �)2

� �
	N;j;2; '

�
n;2

�
�(2n+ 1) 
2 (	N;j;2; sin (2n+ 1) �x) =

�
q	N;j;2; '

�
n;2

�
(2.71)

respectively, where


2 =
8� (� � 1)
� + 1

:

Instead of (2.11)-(2.14) using (2.68)-(2.71) and arguing as in the proofs of Theorem 2.1

and Theorem 2.2 we obtain the following results for T2 (q) :

Theorem 2.4 If (1.11a) holds, then the large eigenvalues �n;j;2 are simple and satisfy

the following asymptotic formulas

�n;j;2 = ((2n+ 1) �)
2 + (�1)j

p
2
2
2

p
(2n+ 1) s2n+1(1 + o(1)):

for j = 1; 2: The eigenfunctions 	n;j;2 corresponding to �n;j;2 obey

	n;j;2 =
p
2 cos (2n+ 1) �x+O

�
n�1=2

�
:

Moreover, if there exists a sequence fnkg such that (1.11a) holds when n is replaced by

nk; then the root functions of T2 (q) do not form a Riesz basis.
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Lastly we consider the operator T4 (q). It is well known that ( see (47a) and (47b))

on page 65 of [48] ) the eigenvalues of the operators T4(q) consist of the sequences

f�n;1;4g; f�n;2;4g satisfying (2.67) when �n;j;2 is replaced by �n;j;4: The eigenvalues,

eigenfunctions and associated functions of T4 (0) are

�n;4 = (� + 2�n)
2 ; yn;4 (x) = sin (2n+ 1) �x;

�n;4 (x) =

�
�

1� �
+ x

�
cos (2n+ 1) �x

2 (2n+ 1) �

for n = 0; 1; 2; : : :respectively. The biorthogonal systems analogous to (2.11) and (2.12)

are �
cos (2n+ 1) �x;

4 (1� �)

1 + �

�
1

1� �
� x

�
sin (2n+ 1) �x

�1
n=0

(2.72)�
sin (2n+ 1) �x;

4 (1� �)

1 + �

�
�

1� �
+ x

�
cos (2n+ 1) �x

�1
n=0

(2.73)

respectively.

Analogous formulas to (2.13) and (2.14) are

�
�N;j;4 � (� + 2�n)2

�
(	N;j;4; cos (2n+ 1) �x) = (q	N;j;4; cos (2n+ 1) �x) ; (2.74)

�
�N;j;4 � ((2n+ 1) �)2

� �
	N;j;4; '

�
n;4

�
�(2n+ 1) 
4 (	N;j;4; cos (2n+ 1) �x) =

�
q	N;j;4; '

�
n;4

�
(2.75)

respectively, where


4 =
8� (1� �)

1 + �
:

Instead of (2.11)-(2.14) using (2.72)-(2.75) and arguing as in the proofs of Theorem 2.1

and Theorem 2.2 we obtain the following results for T4 (q) :

Theorem 2.5 If (1.11a) holds, then the large eigenvalues �n;j;4 are simple and satisfy

the following asymptotic formulas

�n;j;4 = ((2n+ 1) �)
2 + (�1)j

p
2
4
2

p
(2n+ 1) s2n+1(1 + o(1)):
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for j = 1; 2: The eigenfunctions 	n;j;4 corresponding to �n;j;4 obey

	n;j;4 =
p
2 sin (2n+ 1) �x+O

�
n�1=2

�
:

Moreover, if there exists a sequence fnkg such that (1.11a) holds when n is replaced by

nk; then the root functions of T4 (q) do not form a Riesz basis.

Now suppose that Z 1

0

xq (x) dx 6= 0: (2.76)

If

1

2
s2n +B = o

�
1

n

�
; (2.77)

where B is de�ned by (2.29), then one can readily see from (2.54), (2.29), (2.33) and

(2.45)-(2.48) that there exists a positive constant K such that

j�(�)j > K

for � 2 U(n) and for the large values of n: Therefore arguing as in the proof of Theorem

2.2, we obtain the following.

Theorem 2.6 Suppose that (2.76) holds. If (2.77) holds, then the large eigenvalues

of the operator T1 (q) are simple. Moreover if there exists a sequence fnkg such that

(2.77) holds when n is replaced by nk; then the root functions of T1 (q) do not form a

Riesz basis. Similar results continue to hold for the operators T2 (q) ; T3 (q) and T4 (q) :

Remark 2.1 Since the eigenvalues �n;1 and �n;2 are the �xed points of the equations

(2.55) and (2.56) respectively, using the �xed point iteration one can determine these

eigenvalues with arbitrary precision. Moreover, using these better approximations of the

eigenvalues, one can also determine the better approximations for the eigenfunctions of

the operator T1 (q) : Similar results can be obtained for the operators T2 (q) ; T3 (q) and

T4 (q) :
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3 STURM-LIOUVILLEOPERATORSWITHGEN-

ERAL REGULAR BOUNDARY CONDITIONS

In the present chapter we consider the non-self-adjoint linear di¤erential operators

T �1 (q) and T
�
2 (q) for � = 0; 1; which are introduced in Section 1.1. We will focus only

on the operator T 11 (q). The investigations of the operators T
0
1 (q) ; T

0
2 (q) and T

1
2 (q)

are similar. First let us prove the following simple proposition about T 11 (0). Note that

the simplest case q(x) � 0 was completely solved in [38]. Here we write the asymptotic

formulas for the eigenvalues of T 11 (0) in the form we need.

3.1 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of T 11 (q)

Proposition 3.1 The square roots (with nonnegative real part) of the eigenvalues of

the operator T 11 (0) consist of the sequences
�
�n;1 (0)

	
and

�
�n;2 (0)

	
satisfying

�n;1 (0) = 2�n; (3.1)

�n:2 (0) = 2�n+
�2

�1 � 1
1

�n
+O

�
1

n2

�
: (3.2)

Proof. Using the fundamental solutions ei�x and e�i�x of �y00 = �y where � =
p
�,

one can readily see that the characteristic determinant �0 (�) of T 11 (0) has the form

�0 (�) =
�
1� ei�

� �
i�+ �1i�e

�i� � �2e
�i��+ �i�+ �1i�e

i� + �2e
i�
� �
1� e�i�

�
= 0:

After simplifying this equation, we have

�0 (�) =
�
1� e�i�

� �
i� (�1 � 1)

�
ei� � 1

�
+ �2

�
ei� + 1

��
= 0 (3.3)

which is equivalent to

1� e�i� = 0 or f(�) = 0 (3.4)
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where

f(�) = ei� � 1� i�2
�1 � 1

ei� + 1

�
= ei� � 1 +O

�
1

�

�
(3.5)

The solution of the �rst equation in (3.4) is �n;1 (0) = 2�n for n 2 Z, that is, (3.1) is

proved.

To prove (3.2), we estimate the roots of (3.5). Using Rouche�s theorem on the circlen
� : j�� 2�nj = c

n

o
for some constant c, one can easily see that, the roots of (3.5)

has the form

�02;n = 2�n+ � & � = O

�
1

n

�
: (3.6)

Now we prove that

� =
�2

�1 � 1
1

�n
+O

�
1

n2

�
: (3.7)

For this, let us consider the roots of (3.5) in detail. By (3.6) and (3.5) we have

ei(2�n+�) � 1 = i�2
�1 � 1

2 +O
�
1
n

�
2�n+O

�
1
n

� = 2i�2
�1 � 1

1

2�n
+O

�
1

n2

�
: (3.8)

On the other hand, using Maclaurin expansion of ei� and taking into account the second

equality of (3.6) we see that

ei(2�n+�) � 1 = i� +O

�
1

n2

�
This with (3.8) gives us (3.7). Now (3.2) follows from (3.6) and (3.7). Lemma is proved.

For q 6= 0 it is known that (see (21) of [41]) the characteristic polynomial of T 11 (q)

has the form

�(�) = �0 (�)�
�1 + 1

2

�
ei� (c� � is�)� e�i� (c� + is�)

	
+ o

�
1

�

�
; (3.9)

where �0 (�) is de�ned in (3.3) and

c� =

Z 1

0

cos (2�t) q (t) dt; s� =

Z 1

0

sin (2�t) q (t) dt: (3.10)
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After some arrangements (3.9) can be written in the form

�(�) = �0 (�)�
�1 + 1

2
e�i�

�
c�
�
e2i� � 1

�
� is�

�
e2i� + 1

�	
+ o

�
1

�

�
: (3.11)

Using (3.3) in this formula we obtain

�(�) =
�
1� e�i�

� �
i� (�1 � 1)

�
ei� � 1

�
+ �2

�
ei� + 1

��
�

��1 + 1
2

e�i�
�
c�
�
e2i� � 1

�
� is�

�
e2i� + 1

�	
+ o

�
1

�

�
=
�
1� e�i�

� �
i� (�1 � 1)

�
ei� � 1

�
+ �2

�
ei� + 1

�
� �1 + 1

2
c�
�
ei� + 1

��
+

+i (�1 + 1) s� cos�+ o

�
1

�

�
:

Therefore the characteristic determinant �(�), can be written as

�(�) = �1 (�) + i (�1 + 1) s� cos�+ o

�
1

�

�
: (3.12)

where

�1 (�) =
�
1� e�i�

� �
i� (�1 � 1)

�
ei� � 1

�
+

�
�2 �

�1 + 1

2
c�

��
ei� + 1

��
: (3.13)

To obtain the asymptotic formulas for the eigenvalues of T 11 (q) �rst let us consider the

roots of �1 (�) :

Lemma 3.1 The roots of the function �1 (�) consist of the sequences
�
�1n;1

	
and�

�1n;2
	
such that

�1n;1 = 2�n; n 2 Z; (3.14)

�1n:2 = 2�n+
�2

�1 � 1
1

�n
+ o

�
1

n

�
: (3.15)

Proof. The zeros of �1 (�) are the zeros of the equations

1� e�i� = 0,
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and

g (�) =: ei� � 1 + 1

�1 � 1

�
�2 �

�1 + 1

2
c�

�
ei� + 1

i�
= 0:

The roots of the �rst equation are 2�n for n 2 Z, that is (3.14) holds. By de�nition of

f (�) (see (3.5)) we have

g (�) = f(�)�
�1+1
2
c�

�1 � 1
ei� + 1

i�
:

Since c� = o(1), there exists a sequence �n such that �n = o(1) and

jg (�)� f(�)j < �n
n

(3.16)

for � 2 U(2�n); where U(2�n) is O
�
1

n

�
-neighborhood of 2�n.

Now to estimate the zeros of g (�), we use Rouche�s theorem for the functions f (�)

and g (�) on the circle


n =
n
� :j �� �n;2 (0) j=

"n
n

o
; (3.17)

where �n;2 (0) is de�ned in (3.2) and "n is chosen so that

"n = o(1) & �n = o("n): (3.18)

For this let us estimate jf (�)j on 
n by using the Taylor series of f(�) about �n;2 (0) :

f (�) = f 0
�
�n;2

� �
�� �n;2

�
+
f 00
�
�n;2

�
2!

�
�� �n;2

�2
+ � � �

Since

f 0(�) = iei� � i�2
�1 � 1

iei�

i�
+O

�
1

n2

�
� 1, f 00(�) � 1; : : : ;

there exist a constant c > 0 such that jf 0 (�)j > c and

jf (�)j > c
"n
2n

(3.19)

for � 2 
n. Thus by (3.16)-(3.19) and Rouche�s theorem, there exists a root �
1
n;2 of

g (�) inside the circle (3.17). Therefore (3.15), follows from (3.2).
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Now using (3.12), (3.13) and Lemma 3.1, we get one of the main results of this

thesis.

Theorem 3.1 (a) If (1.12) holds, then the large eigenvalues of T 11 (q) are simple and

the square roots (with nonnegative real part) of these eigenvalues consist of two se-

quences f�n;1 (q)g and f�n;2 (q)g satisfying the asymptotic formulas

�n;1 (q) = 2�n+ o

�
1

n

�
, (3.20)

�n;2 (q) = 2�n+
�2

�1 � 1
1

�n
+ o

�
1

n

�
: (3.21)

Moreover the normalized eigenfunctions 'n;1 (x) and 'n;2 (x) corresponding to the eigen-

values
�
�n;1 (q)

�2
and

�
�n;2 (q)

�2
satisfy the same asymptotic formula

'n;j (x) =
p
2 cos 2�nx+O

�
1

n

�
(3.22)

for j = 1; 2

(b) If there exists a subsequence fnkg such that (1.12) holds whenever n is replaced

by nk, then the system of the root functions of T 11 (q) does not form a Riesz basis.

Proof. (a) To prove (3.20) and (3.21), we show that the large roots of �(�) lies

in o
�
1
n

�
-neighborhood of the roots of �1 (�) by using Rouche�s theorem for �(�) and

�1 (�) on �1 (rn), �2 (rn) ; where

�j (rn) =
�
� :

���� �1n;j
�� = rn

	
; rn = o

�
1

n

�
(3.23)

and �1n;j for j = 1; 2 are the roots of �1 (�). If � 2 �j (rn) for j = 1; 2 then by (1.12)

s� = o

�
1

n

�
and by (3.12)

a (�) =: j�(�)��1 (�)j < bn; bn = o

�
1

n

�
: (3.24)

We can choose rn so that

bn = o (rn) : (3.25)
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Now let us estimate �1 (�) on the circles �1 (rn), �2 (rn). By (3.13)

�1 (�) =
�
1� e�i�

�
i�h (�) (3.26)

where

h (�) = (�1 � 1)
�
ei� � 1

�
+

�
�2 �

�1 + 1

2
c�

�
ei� + 1

i�
: (3.27)

It follows from (3.14), (3.15) and (3.23) that if � 2 �1 (rn) and � 2 �2 (rn) then

� = 2�n+rne
i� and � = 2�n+

�2
�1 � 1

1

�n
+rne

i�+o

�
1

n

�
respectively, where � 2 (0; 2�).

Therefore �
1� e�i�

�
� rn, (3.28)

and �
1� e�i�

�
� 1

n
, (3.29)

on �1 (rn) and �2 (rn) respectively, where an � bn means that an = O(bn) and bn =

O(an):

Now let us consider h (�) on �j (rn), j = 1; 2. Since �1n;2 is the root of h (�) the

Taylor expansion of h (�) about �1n;2 is

h (�) = h0
�
�1n;2

� �
�� �1n;2

�
+
h00
�
�1n;2

�
2!

�
�� �1n;2

�2
+ � � � : (3.30)

By (3.27), we have

h0 (�) = (�1 � 1) iei� +
�
�2 �

�1 + 1

2
c�

�
iei�

i�
+O

�
1

n2

�
� 1

for � 2 �j (rn) ; j = 1; 2. Clearly h(k) (�) � 1 for k > 1 and � 2 �j (rn). On the other

hand,
�
�� �1n;2

�
� 1

n
for � 2 �1 (rn) and

�
�� �1n;2

�
� rn for � 2 �2 (rn). Therefore

using (3.30) we obtain

h (�) � 1

n
; 8� 2 �1 (rn) ;

h (�) � rn; 8� 2 �2 (rn) :
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These formulas with (3.26), (3.28) and (3.29) imply that

�1 (�) � rn; 8� 2 �j (rn) (3.31)

for j = 1; 2: Thus by (3.24), (3.25), (3.31) and Rouche�s theorem, each of the disks

enclosed by the circles �1 (rn) and �2 (rn) contains an eigenvalue which proves (3.20)

and (3.21).

Since the distance between the centres of the circles �1 (rn) and �2 (rn) is of order

1

n
, but rn = o

�
1

n

�
, the eigenvalues inside the circles �1 (rn) and �2 (rn) are di¤erent,

that is, they are simple.

Now let us prove (3.22). Since the equation

�y00 + q(x)y = �2y

has the fundamental solutions of the form

y1(x; �) = ei�x +O

�
1

�

�
; y2(x; �) = e�i�x +O

�
1

�

�
(see p. 52 of [48]) the eigenfunctions of T 11 (q) are

yn;j (x) =

=

��������
ei�n;jx +O

�
1

�n;j

�
e�i�n;jx +O

�
1

�n;j

�
i�n;j

�
1 + �1e

i�n;j
�
+ �2e

i�n;j +O

�
1

�n;j

�
�i�n;j

�
1 + �1e

�i�n;j
�
+ �2e

�i�n;j +O

�
1

�n;j

�
��������

=

�
ei�n;jx +O

�
1

�n;j

���
�i�n;j

�
1 + �1e

�i�n;j
�
+ �2e

�i�n;1j +O

�
1

�n;j

��
�

�
�
e�i�n;jx +O

�
1

�n;j

���
i�n;j

�
1 + �1e

i�n;1
�
+ �2e

i�n;j +O

�
1

�n;j

��
:

This with the formula

�n;j = 2�n+O

�
1

n

�
;

for j = 1; 2 (see (3.20) and (3.21)), implies (3.22).
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(b) It is clear that if (1.12) holds for the subsequence fnkg then (3.22) holds for

fnkg too. Therefore the angle between the eigenfunctions 'nk;1 (x) and 'nk;2 (x) corre-

sponding to �nk;1 (q) and �nk;2 (q) tends to zero. Hence the system of the root functions

of T 11 (q) does not form a Riesz basis (see [64]). Note that (b) follows also from (a) and

Theorem 2 of [40, 41].

Let q be an absolutely continuous function. Then using the integration by parts

formula for s� and c� de�ned in (3.10) we obtain

s� =
1

2�
[q (0)� q (1) cos (2�)] + o(

1

�
)

and

c� =
1

2�
q (1) sin (2�) + o

�
1

�

�
:

If � 2 U(2�n); where U(2�n) is de�ned in the proof of Lemma 3.1 , then

cos� = 1 +O

�
1

�

�
&sin� = O

�
1

�

�
Therefore we have

s� =
1

2�
[q (0)� q (1)] + o(

1

�
); c� = o

�
1

�

�
and hence by (3.11)

�(�) = �0 (�) + i (�1 + 1) s� cos�+ o

�
1

�

�
= �0 (�) +

a

�
+ o

�
1

�

�
(3.32)

where

a =
i (�1 + 1)

2
[q (0)� q (1)] :

Now we are ready to state one of the main results of this thesis.

Theorem 3.2 Let q be an absolutely continuous function and (1.13) for � = 1 hold.

Then
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(a) the large eigenvalues of T 11 (q) are simple and the square roots (with nonnegative

real part) of these eigenvalues consist of two sequences f�n;1(q)g and f�n;2(q)g satisfying

�n;1(q) = 2�n+
2�2 � i

p
D

4 (�1 � 1)�n
+ o

�
1

n

�
, (3.33)

�n;2(q) = 2�n+
2�2 + i

p
D

4 (�1 � 1)�n
+ o

�
1

n

�
: (3.34)

where D = 2
�
1� �21

�
[q (0)� q (1)]� (2�2)

2

(b) the system of the root functions of T 11 (q) does not form a Riesz basis.

Proof. (a) By (3.32) �n;j(q) is a root of the equation

��0 (�) + a+ o (1) = 0:

Using (3.3) in this equation we get

�
�
1� e�i�

� �
i� (�1 � 1)

�
ei� � 1

�
+ �2

�
ei� + 1

��
+ a+ o (1) = 0: (3.35)

By the Taylor expansions of e�i� and ei� at 2�n we have

e�i� = 1� i (�� 2�n) +O

�
1

n2

�
;

ei� = 1 + i (�� 2�n) +O

�
1

n2

�
for � 2 U(2�n): Therefore (3.35) can be written in the form

i� (�� 2�n)
�
�� (�1 � 1) (�� 2�n) + 2�2 +O

�
1

�

��
+ a+ o (1) = 0: (3.36)

To prove the formulas (3.33) and (3.34) we consider the equation (3.36). In (3.36)

substituting x = � (�� 2�n) and taking into account that x = O(1) for � 2 U(2�n)

we get

�i (�1 � 1)x2 + 2i�2x+ a+ o (1) = 0: (3.37)

To solve (3.37) we compare the roots of the functions

f1 (�) = �i (�1 � 1)x2 + 2i�2x+ a (3.38)
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and

f2 (�) = �i (�1 � 1)x2 + 2i�2x+ a+ �n (3.39)

on the set U(2�n); where �n = o (1). The roots of f1 (�) are

x1;2 =
�2i�2 �

p
D

�2i (�1 � 1)
(3.40)

where

D = (2i�2)
2 + 4i (�1 � 1) a = (2i�2)

2 � 2
�
�21 � 1

�
[q (0)� q (1)] 6= 0: (3.41)

by the assumption (1.13) for � = 1. Therefore we have two di¤erent solutions x1 and

x2.

On the other hand the solutions of the equations � (�� 2�n) = x1 and � (�� 2�n) =

x2 with respect to � are

�11 = O

�
1

n

�
; �12 = 2�n+

x1
2�n

+O

�
1

n2

�
and

�21 = O

�
1

n

�
; �22 = 2�n+

x2
2�n

+O

�
1

n2

�
respectively. Since x1 � x2 � 1 (see (3.40) and (3.41)), we have

�12 � �21 � n; �12 � �22 �
1

n
; �12 � �11 � n: (3.42)

Now consider the roots of f2 (�) by using Rouche�s theorem on


j (rn) =
�
� :

���� �j2
�� = rn

	
; (3.43)

for j = 1; 2, where rn is chosen so that

rn = o

�
1

n

�
& �n = o (nrn) : (3.44)

By (3.38), (3.39) and (3.44)

jf1 (�)� f2 (�)j = �n = o (1)
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on 
1 (rn) \ 
2 (rn). Since the roots of f1 (�) are �ij for i; j = 1; 2, we have

f1 (�) = A (�� �11) (�� �12) (�� �21) (�� �22) (3.45)

where A is a constant. One can easily verify by using (3.42) and (3.45) that

f 0 (�12) = A (�12 � �11) (�12 � �21) (�12 � �22) � n

Since f (�) is a polynomial of order 4 we have

f 00 (�12) = O(n2); f 000 (�12) = O(n); f (4) (�12) = O(1); f (5) (�12) = 0:

Therefore using the Taylor series

f1 (�) = f 01 (�12) (�� �12) + � � � :

of f1 (�) about �12 for � 2 
1 (rn) and taking into account that (�� �12) � rn we

obtain

jf1 (�)j � nrn:

On the other hand by (3.44) we have

jf1 (�)� f2 (�)j = �n = o (nrn)

for � 2 
1 (rn). Therefore

jf1 (�)� f2 (�)j < jf1 (�)j (3.46)

on 
1 (rn) In the same way we prove that (3.46) holds on 
2 (rn) too. Hence inside of

each of the circles 
1 (rn) and 
2 (rn), there is one root of (3.35) denoted by �n;1 (q)

and �n;2 (q) respectively. Since rn = o
�
1
n

�
; �n;1 (q) and �n;2 (q) satisfy the formulas

(3.33) and (3.34). To complete the proof of (a) it is enough to note that disks enclosed

by the circles 
1 (rn) and 
2 (rn) have no common points and there are only two roots

of (3.32) in the neighborhood of 2�n. Thus (a) is proved.

(b) The proof of (b) is the same as the proof of Theorem 3.1(b).
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3.2 The Asymptotic Formulas for the Eigenvalues and Eigen-

functions of T 01 (q), T
0
2 (q) and T 12 (q)

Now consider the operators T 01 (q), T
0
2 (q) and T

1
2 (q) : In this case the characteristic

determinant of T 01 (0), T
0
2 (0) and T

1
2 (0) are

�0
0 (�) =

�
1 + ei�

� �
i�+ �1i�e

�i� � �2e
�i��+ �i�+ �1i�e

i� + �2e
i�
� �
1 + e�i�

�
= 0;

D0
0 (�) =

�
1 + ei�

� �
�3i�+ i�e�i� � �4e

�i��+ ��3i�+ i�ei� + �4e
i�
� �
1 + e�i�

�
= 0

and

D1
0 (�) =

�
1� ei�

� �
�3i�+ i�e�i� � �4e

�i��+ ��3i�+ i�ei� + �4e
i�
� �
1� e�i�

�
= 0

respectively. After simplifying these equations, we have

�0
0 (�) =

�
1 + e�i�

� �
i� (�1 + 1)

�
ei� + 1

�
+ �2

�
ei� � 1

��
= 0;

D0
0 (�) =

�
1 + e�i�

� �
i� (1 + �3)

�
ei� + 1

�
+ �4

�
ei� � 1

��
= 0

and

D1
0 (�) =

�
1� e�i�

� �
i� (1� �3)

�
ei� � 1

�
+ �4

�
ei� + 1

��
= 0:

The roots of these equations have the form

(2n+ 1) �; (2n+ 1) � +
2�2
�1 + 1

1

(2n+ 1) �
+O

�
1

n2

�
;

(2n+ 1) �; (2n+ 1) � +
2�4
�3 + 1

1

(2n+ 1) �
+O

�
1

n2

�
and

2�n; 2�n+
�4

1� �3

1

�n
+O

�
1

n2

�
respectively.
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The characteristic determinants of T 01 (q), T
0
2 (q) and T

1
2 (q) can be written in the

forms

�0 (�) = �0
1 (�) + i (�1 � 1) s� cos�+ o

�
1

�

�
;

D0 (�) = D0
1 (�) + i (1� �3) s� cos�+ o

�
1

�

�
and

D1 (�) = D1
1 (�) + i (�3 + 1) s� cos�+ o

�
1

�

�
;

where

�0
1 (�) =

�
1 + e�i�

� �
i� (�1 + 1)

�
ei� + 1

�
+

�
�2 +

1� �1
2

c�

��
ei� � 1

��
;

D0
1 (�) =

�
1 + e�i�

� �
i� (1 + �3)

�
ei� + 1

�
+

�
�4 +

�3 � 1
2

c�

��
ei� � 1

��
and

D1
1 (�) =

�
1� e�i�

� �
i� (1� �3)

�
ei� � 1

�
+

�
�4 �

�3 + 1

2
c�

��
ei� + 1

��
:

The investigation T 12 (q) is similar to the investigations of T
1
1 (q): The investigations

of T 01 (q) and T
0
2 (q) are also similar to the investigations of T

1
1 (q): The di¤erence is

that, for the operators T 01 (q) and T
0
2 (q) we consider the functions and equations in

O

�
1

n

�
-neighborhood of (2n+ 1) � (we denote it by U((2n+ 1) �)) instead of U(2�n);

since the eigenvalues of T 01 (0) and T
0
2 (0) lie in U((2n+ 1) �) while the eigenvalues of

T 11 (0) and T
1
2 (0) lie in U(2�n): Now instead of the triple f�0;�1;�g using the triples

f�0
0;�

0
1;�

0g,fD0
0; D

0
1; D

0g, fD1
0; D

1
1; D

1g and repeating the proof of Theorem 3.1 we

obtain:

Theorem 3.3 (a) If (1.12a) holds, then the large eigenvalues of T 01 (q) and T
0
2 (q) are

simple and the square roots (with nonnegative real part) of the eigenvalues of these op-

erators consist of the sequences f�0n;1g, f�0n;2g and f�0n;1g, f�0n;2g respectively, satisfying

�0n;1 = (2n+ 1) � + o

�
1

n

�
,
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�0n;2 = (2n+ 1) � +
2�2
�1 + 1

1

(2n+ 1) �
+ o

�
1

n

�
and

�0n;1 = (2n+ 1) � + o

�
1

n

�
,

�0n;2 = (2n+ 1) � +
2�4
�3 + 1

1

(2n+ 1) �
+ o

�
1

n

�
:

The normalized eigenfunctions corresponding to the eigenvalues
�
�0n;1

�2
,
�
�0n;2

�2
,
�
�0n;1
�2

and
�
�0n;2
�2
have the same form

p
2 cos (2n+ 1) �x+O

�
1

n

�
:

If there exists a subsequence fnkg such that (1.12a) holds whenever n is replaced by

nk, then the systems of the root functions of T 01 (q) and T
0
2 (q) do not form Riesz bases.

(b) If (1.12) holds, then the large eigenvalues of T 12 (q) are simple and the square

roots (with nonnegative real part) of these eigenvalues consist of two sequences f�n;1g

and f�n;2g satisfying

�n;1 = 2�n+ o

�
1

n

�
,

�n;2 = 2�n+
�4

1� �3

1

�n
+ o

�
1

n

�
:

The normalized eigenfunctions �n;1 (x) and �n;2 (x) corresponding to the eigenvalues�
�n;1
�2
and

�
�n;2
�2
satisfy the same asymptotic formula

�n;j (x) =
p
2 cos 2�nx+O

�
1

n

�
for j = 1; 2

If there exists a subsequence fnkg such that (1.12) holds whenever n is replaced by

nk, then the system of the root functions of T 12 (q) does not form a Riesz basis.

Now we investigate T 01 (q), T
0
2 (q) and T

1
2 (q) when q is an absolutely continuous

function. The analogous formulas to (3.32) are

�0 (�) = �0
0 (�) +

b

�
+ o

�
1

�

�
= 0; (3.47)
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D0 (�) = D0
0 (�) +

d

�
+ o

�
1

�

�
= 0 (3.48)

and

D1 (�) = D1
0 (�) +

c

�
+ o

�
1

�

�
= 0; (3.49)

where

b =
i (1� �1)

2
[q (0) + q (1)] ;

d =
i (�3 � 1)

2
[q (0) + q (1)]

and

c =
i (�3 + 1)

2
[q (0)� q (1)] :

Instead of (3.32) using (3.47), (3.48), (3.49) and repeating the proof of Theorem

3.2, we obtain:

Theorem 3.4 (a) Let q be an absolutely continuous function. Suppose that for the

operators T 01 (q) and T
0
2 (q) the conditions (1.13) and (1.14) for � = 0 hold respectively.

Then:

The large eigenvalues of T 01 (q) and T
0
2 (q) are simple and the square roots (with

nonnegative real part) of the eigenvalues of these operators consist of two sequences

f�0n;1g, f�0n;2g and f�0n;1g, f�0n;2g respectively, satisfying

�0n;1 = (2n+ 1) � +
2�2 � i

p
D2

2 (�1 + 1) (2n+ 1) �
+ o

�
1

n

�
;

�0n;2 = (2n+ 1) � +
2�2 + i

p
D2

2 (�1 + 1) (2n+ 1) �
+ o

�
1

n

�
;

and

�0n;1 = (2n+ 1) � +
2�4 � i

p
D4

2 (�3 + 1) (2n+ 1) �
+ o

�
1

n

�
;

�0n;2 = (2n+ 1) � +
2�4 + i

p
D4

2 (�3 + 1) (2n+ 1) �
+ o

�
1

n

�
;
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where D2 = 2
�
1� �21

�
[q (0) + q (1)] � (2�2)

2 and D4 = 2
�
�23 � 1

�
[q (0) + q (1)] �

(2�4)
2 :

The systems of the root functions of T 01 (q) and T
0
2 (q) do not form a Riesz basis.

(b) Let q be an absolutely continuous function and (1.14) for � = 1 hold.

The large eigenvalues of T 12 (q) are simple and the square roots (with nonnegative

real part) of these eigenvalues consist of two sequences f�n;1g and f�n;2g satisfying

�n;1 = 2�n+
�2�4 � i

p
D3

4 (�3 � 1)�n
+ o

�
1

n

�
;

�n;2 = 2�n+
�2�4 + i

p
D3

4 (�3 � 1)�n
+ o

�
1

n

�
;

where D3 = 2
�
�23 � 1

�
[q (0)� q (1)]� (2�4)

2 :

The system of the root functions of T 12 (q) does not form a Riesz basis.
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4 NUMERICAL RESULTS

In the present chapter we estimate the small eigenvalues of the operators T1 (q), T2 (q),

T3 (q) and T4 (q) de�ned in Chapter 2 by the numerical methods. We will focus only

on the operator T1 (q). The investigations of the operators T2 (q) ; T3 (q) and T4 (q)

are similar. Our method is based on the equation (2.50) in Chapter 2 which gives

the eigenvalues. To consider the small eigenvalues, �rst we prove (see Theorem 4.1)

that the small eigenvalues also satisfy the equation (2.50) and using this equation we

show that the eigenvalue �n;j is either the root of (2.55) or the root of (2.56). To use

the numerical methods, we take �nite summations instead of the in�nite series in the

expressions (2.55) and (2.56) and show that the eigenvalues are close to the roots of

the equations obtained by taking these �nite summations. To �nd the roots of these

equations, many numerical methods can be used such as the �xed point iteration and

Newton method. Since it is not necessary to compute the derivatives of the functions

fj (x), j = 1; 2, de�ned in (4.24), we choose the �xed point iteration method. Then

using the Banach �xed point theorem, we prove that each of these equations containing

the �nite summations has a unique solution on the convenient set (see Theorem 4.2).

Finally we give the error estimations and some examples.

For simplicity of calculations we assume that

q (x) =
1X
k=1

qk cos 2�kx; (4.1)

sup jq (x)j :=M <1; (4.2)

1X
k=1

jqkj :=
c

2
<1; (4.3)

and that

j�n (q)� �n (0)j �M , �n (0) = (2�n)
2 , n = 0; 1; 2; : : : . (4.4)
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For nk 6= n;we have

���n � (2�nk)2�� � ��(2�n)2 � (2�nk)2���M �
��4�2 (n� nk) (n+ nk)

���M � �(n); (4.5)

where

�(n) = 4�2 (2n� 1)�M:

To prove Theorem 4.1 we use the following lemmas.

Lemma 4.1 If

� (n) >
4c

3
; (4.6)

then the following equalities hold:

lim
k!1

Rk (�n;j) = 0; (4.7)

and

lim
k!1

R0k (�n;j) = 0;

for j = 1; 2, where Rk (�n;j) and R0k (�n;j) are de�ned in (2.26) and (2.30), respectively.

Proof. By the detailed estimations for Ck+1 and Mk+1 which were done in the

Appendix, we have

jRk (�n;j)j =

������
X

n1;:::;nk+1

n
Ck+1 (q	n;j; sin 2�nk+1x) +Mk+1

�
q	n;j; '

�
nk+1

�o������
�

������
X

n1;:::;nk+1

(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
�
qnk+1�nk � qnk+1+nk

�
(q	n;j; sin 2�nk+1x)

2k+1
�
�n;j � (2�n1)2

� �
�n;j � (2�n2)2

�
: : :
�
�n;j � (2�nk+1)2

�
������ :

One can easily see that there exists a nonnegative integer n01 such that

jRk (�n;j)j �
�����
 X

n1

(qn�n1 � qn+n1)

�n;j � (2�n1)2

!
S (n2; n3; : : : ; nk+1)

�����
where

S (n2; n3; : : : ; nk+1) =
X

n2;:::;nk+1

�
qn2�n01 � qn2+n01

�
: : :
�
qnk+1�nk � qnk+1+nk

�
(q	n;j; sin 2�nk+1x)

2k+1
�
�n;j � (2�n1)2

� �
�n;j � (2�n2)2

�
: : :
�
�n;j � (2�nk+1)2

� :



57

It follows from (4.3) and (4.5) that�����X
n1

(qn�n1 � qn+n1)

�n;j � (2�n1)2

����� � c

� (n)
:

Repeating this process k + 1 times and taking into account that k	n;jk = 1 and that

j(q	n;j; sin 2�nk+1x)j � kq	n;jk ksin 2�nk+1xk �
Mp
2
;

we obtain

jRk (�n;j)j �
Mck+1p

22k+1 (� (n))k+1
=

Mp
22k+1

�
c

� (n)

�k+1
:

Thus this with (4.6) implies (4.7). In the same way we prove the same result for

R0k (�n;j).

Lemma 4.2 If (4.6) and the condition

�(n) > C (�)M

 
1

2
+
121 j� + 1j2

4�2 j� � 1j2
+ (A (�))2

! 1
2

; (4.8)

hold, where

A (�) = sup
x2[0;1]

����4 (� + 1)� � 1

�
x� 1

1 + �

����� ; (4.9)

and C (�) is de�ned in (4.14), then the inequality

jun;jj2 + jvn;jj2 > 0 (4.10)

is satis�ed for j = 1; 2.

Proof. Suppose to the contrary that (4.10) does not hold. Then

un;j = 0, vn;j = 0,

and since 	n;j is normalized we get by the formula (2.21) that

khn;jk = 1; (4.11)
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where

hn;j (x) =
1X
k=0
k 6=n

[(	n;j; sin 2�kx)'k (x) + (	n;j; '
�
k) cos 2�kx] : (4.12)

To get a contradiction, it is enough to show that

khn;jk < 1 (4.13)

for j = 1; 2. Since fgi : i 2 Zg (see (2.12)) is a Riesz basis, there exists a bounded and

boundedly invertible operator A which takes the orthonormal basis fei : i 2 Zg to this

basis, say Ae�k = 'k and Aek = cos 2�kx ( see [27]). Thus there exists C(�) such that

kAk � C(�) & A�1hn;j (x) =
1X
k=0
k 6=n

[(	n;j; sin 2�kx) e�k + (	n;j; '
�
k) ek] : (4.14)

Therefore by (4.14) and Parseval�s equality we have

khn;jk2 �


AA�1hn;j

2 � C2



A�1hn;j

2 = C2
1X
k=0
k 6=n

�
j(	n;j; sin 2�kx)j2 + j(	n;j; '�k)j

2� :
(4.15)

Now using (2.15), (4.5) and Bessel inequality we obtain that

1X
k=0
k 6=n

j(	n;j; sin 2�kx)j2 =
1X
k=0
k 6=n

�����(q	n;j; sin 2�kx)�n;j � (2�k)2

�����
2

� 1

(�(n))2

1X
k=0
k 6=n

���� 1p2
�
q	n;j;

p
2 sin 2�kx

�����2 � 1
2
kq	n;jk2

(�(n))2
�

1
2
M2

(�(n))2
: (4.16)

By (2.16) we have

1X
k=0
k 6=n

j(	n;j; '�k)j
2 =

1X
k=0
k 6=n

�����
1k (q	n;j; sin 2�kx)�
�n;j � (2�k)2

�2 +
(q	n;j; '

�
k)

�n;j � (2�k)2

�����
2

� 2(S1 + S2); (4.17)

where

S1 =
1X
k=0
k 6=n

�����
1k (q	n;j; sin 2�kx)�
�n;j � (2�k)2

�2
�����
2

; S2 =

1X
k=0
k 6=n

����� (q	n;j; '�k)�n;j � (2�k)2

�����
2

;
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and 
1 is de�ned in (2.14). Using (4.6) and taking into account that c � 2M , we obtain
12

11
�2 (2n� 1) > M and

���n;j � (2�k)2�� > ��(2�n)2 � (2�k)2���M = 4�2 j(n� k)(n+ k)j �M

>
32

11
�2 j(n� k)(n+ k)j > 32

11
�2k:

Therefore, using the de�nition of 
1 and arguing as in the proof of (4.16) we obtain

S1 �
1X
k=0
k 6=n

����� 11 (� + 1)2� (� � 1)
(q	n;j; sin 2�kx)

(�n;j � (2�k)2)

�����
2

� 121 j� + 1j2M2

8 j� � 1j2 �2(�(n))2
: (4.18)

To estimate S2, we use (2.10), (4.9) and the equality

(q	n;j; '
�
k) =

��
4 (� + 1)

� � 1

�
x� 1

1 + �

��
q	n;j; cos 2�nx

�
;

and then repeat the proof of (4.16) and get

S2 =
1X
k=0
k 6=n

����� (q	n;j; '�k)�n;j � (2�k)2

�����
2

�
1
2
(A(�)M)2

(�(n))2
: (4.19)

Thus using (4.15)-(4.19) we obtain

khn;jk2 � C2

 
1
2
M2

(�(n))2
+

121 j� + 1j2M2

4 j� � 1j2 �2(�(n))2
+
(A(�)M)2

(�(n))2

!
;

and hence

khn;jk �
1

�(n)
CM

 
1

2
+
121 j� + 1j2

4 j� � 1j2 �2
+ (A(�))2

! 1
2

;

which contradicts to (4.11) and completes the proof of the lemma.

Now we are ready to prove the following theorem.

Theorem 4.1 If (4.6) and (4.8) hold then �n;j is an eigenvalue of T1 if and only if it

is a root of the equation

�
�� (2�n)2 �Qn � A (�)

� �
�� (2�n)2 � P �n � A0 (�)

�
�

� [Pn +B (�)] [
1n+Q�n +B0 (�)] = 0: (4.20)
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Moreover � 2 U(n) :=
�
(2�n)2 �M; (2�n)2 +M

�
is a double eigenvalue of T1 if and

only if it is a double root of (4.20).

Proof. Using Lemma 4.1 and arguing as in the proof of Theorem 2.1 (b) in Chapter

2, we obtain

�
�n;j � (2�n)2 �Qn � A (�n;j)

�
un;j = [Pn +B (�n;j)] vn;j; (4.21)

�
�n;j � (2�n)2 � P �n � A0 (�n;j)

�
vn;j = [
1n+Q�n +B0 (�n;j)]un;j; (4.22)

We have the following cases:

Case 1. un;j = 0 then by Lemma 4.2 we have vn;j 6= 0: Therefore from (4.21) and

(4.22) we obtain Pn +B (�n;j) = 0 and �n;j � (2�n)2 � P �n �A0 (�n;j) = 0 which mean

that (4.20) holds.

Case 2. vn;j = 0 then again by Lemma 4.2 we have un;j 6= 0: Therefore from (4.21)

and (4.22) we obtain �n;j � (2�n)2 � Qn � A (�n;j) = 0 and 
1n + Q�n + B0 (�n;j) = 0

which mean that (4.20) again holds.

Case 3. Both vn;j 6= 0 and un;j 6= 0: Multiplying the equations (4.21) and (4.22)

side by side and then canceling vn;jun;j we obtain (4.20) . Thus in any case �n;j is a

root of (4.20).

The other parts of the proof are the same as in the proof of Theorem 2.1 (b) in

Chapter 2.

By Theorem 4.1, the eigenvalue �n;j is either the root of (2.55) or the root of (2.56).

To use the numerical methods, we take �nite summations instead of the in�nite series

in the expressions (2.55) and (2.56), and get

� = (2�n)2 +
1

2
(Qn + P �n) + fj (�) ; (4.23)

for j = 1 and for j = 2, where

fj (�) =
1

2

� eAk;s (�) + A0k;s (�)
�
+ (�1)j 1

2

q
�k;s (�); (4.24)
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and the functions eAk;s (�), A0k;s (�) and �k;s (�) are de�ned and investigated in the

Appendix. (see (A.5), (A.6), and (A.7)) By (A.1) and (A.2) in the Appendix we have

(Qn + P �n) = 0:

Therefore (4.23) becomes

� = (2�n)2 + fj (�) : (4.25)

Now we prove that the eigenvalues of T1 are close to the roots of (4.25).

Theorem 4.2 Let (4.6) and (4.8) hold. Then for all x and y from
�
(2�n)2 �M; (2�n)2 +M

�
the inequality

jfj (x)� fj (y)j < Kn jx� yj (4.26)

holds for j = 1; 2, where

Kn =
c2

4 (� (n)) (� (n)� c)
<
9

16
; (4.27)

and for each j, the equation (4.25) has a unique solution rn;j on
�
(2�n)2 �M; (2�n)2 +M

�
.

Moreover

j�n;j � rn;jj �
2ck+2

2k (� (n))k (2� (n)� c) (1�Kn)
; (4.28)

for j = 1; 2 and s � k.

Proof. First let us prove (4.26) by using the mean-value theorem. For this we

estimate
��f 0j (�)��. By (4.24) we have
��f 0j (�)�� =

�����12
�
d

d�
eAk;s (�) + d

d�
A0k;s (�)

�
+ (�1)j 1

4

d
d�
�k;s (�)p
�k;s (�)

�����
� 1

2

 ���� dd� eAk;s (�)
����+ ���� dd�A0k;s (�)

����+ 12
����� dd��k;s (�)p
�k;s (�)

�����
!
: (4.29)

By the estimations (A.11), (A.12) and (A.13) in the Appendix we prove that���� dd� eAk;s (�)
���� � Kn

2
; (4.30)
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���� dd�A0k;s (�)
���� � Kn

2
; (4.31)

and �� d
d�
�k;s (�)

�����p�k;s (�)
��� � 2Kn; (4.32)

respectively. Hence by (4.29)-(4.32) we obtain

��f 0j (�)�� � Kn

and since Kn can be written as

Kn =
c2

4 (� (n))2

1X
j=0

�
c

� (n)

�j
;

we get by (4.6) and the geometric series formula that Kn <
9

16
.

Since the inequality ��f 0j (�)�� � Kn < 1 (4.33)

holds for all x and y from
�
(2�n)2 �M; (2�n)2 +M

�
, by the mean value theorem (4.26)

holds, and the equation (4.25) has a unique solution rn;j on
�
(2�n)2 �M; (2�n)2 +M

�
for each j (j = 1; 2), by the contraction mapping theorem.

Now let us prove (4.28). Let

Hj (x) = x� (2�n)2 � fj (x) : (4.34)

Using the de�nition of frn;jg, we obtain

Hj (rn;j) = 0;
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for j = 1; 2. Therefore by (2.55) and (2.56) we have

jHj (�n;j)�Hj (rn;j)j = jHj (�n;j)j

=

�����n;j � (2�n)2 � 12 (Qn + P �n)�
1

2

� eAk;s (�n;j) + A0k;s (�n;j)
�
+ (�1)j 1

2

q
�k;s (�n;j)

����
=

����12 (A (�n;j) + A0 (�n;j)) + (�1)j
1

2

q
�(�n;j)�

1

2

� eAk;s + A0k;s

�
+ (�1)j 1

2

p
�k;s

����
� 1

2

���A0 (�n;j)� A0k;s (�n;j)
��+ ���A (�n;j)� eAk;s (�n;j)���+ ����q�(�n;j)�q�k;s (�n;j)

����� :
(4.35)

First let us estimate the �rst term of the right-hand side of (4.35).From the formula

(A.6) in the Appendix and by the de�nition of A0 (�n;j) in Section 2.1 we get

���A0 (�n;j)� A0k;s (�n;j)
��� �

� 2f
1X

n1;:::;nk+1=1

��(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnk+1�nk + qnk+1+nk

� �
qn�nk+1 + qn+nk+1

���
2k+2

�
�n;j � (2�n1)2

� �
�n;j � (2�n2)2

�
: : :
�
�n;j � (2�nk)2

� �
�n;j � (2�nk+1)2

� +
+

1X
n1;:::;nk+2=1

��(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnk+2�nk+1 + qnk+2+nk+1

� �
qn�nk+2 + qn+nk+2

���
2k+3

�
�n;j � (2�n1)2

� �
�n;j � (2�n2)2

�
: : :
�
�n;j � (2�nk+1)2

� �
�n;j � (2�nk+2)2

� +

+ � � � g;

for s � k (see (A.15) in the Appendix). Arguing as in the proof of Lemma 4.1 and

using the geometric series formula, we obtain

���A0 (�n;j)� A0k;s (�n;j)
��� � ck+2

2k (� (n))k (2� (n)� c)
; (4.36)

Similarly, from the formula (A.5) in the Appendix and by the de�nition of A (�n;j) in

Section 2.1, for the second term of the right-hand side of (4.35), we get

���A (�n;j)� eAk;s (�n;j)��� � ck+2

2k (� (n))k (2� (n)� c)
(4.37)

for s � k (see (A.14) in the Appendix). Using (A.7) and (A.8) in the Appendix, for
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the third term of the right-hand side of (4.35) we get����q�(�n;j)�q�k;s (�n;j)

���� = ���(A (�n;j)� A0 (�n;j)� q2n)�
� eAk;s (�n;j)� A0k;s (�n;j)� q2n

����
�
���A (�n;j)� eAk;s (�n;j)���+ ��A0 (�n;j)� A0k;s (�n;j)

��
� 2ck+2

2k (� (n))k (2� (n)� c)
(4.38)

by (4.36) and (4.37).

Hence by (4.35)-(4.38) we obtain

jHj (�n;j)�Hj (rn;j)j �
2ck+2

2k (� (n))k (2� (n)� c)
; (4.39)

for j = 1; 2.

To apply the mean value theorem we estimate
��H 0

j (�)
��:

��H 0
j (�)

�� = ��1� f 0j (�)
�� � ��1� ��f 0j (�)���� � 1�Kn: (4.40)

By the mean value formula, (4.39) and (4.40) we get

jHj (�n;j)�Hj (rn;j)j =
��H 0

j (�)
�� j�n;j � rn;jj ; � 2

�
(2�n)2 �M; (2�n)2 +M

�
;

j�n;j � rn;jj =
jHj (�n;j)�Hj (rn;j)j��H 0

j (�)
��

� 2ck+2

2k (� (n))k (2� (n)� c) (1�Kn)
;

for j = 1; 2.

Now let us approximate rn;j by the �xed point iterations:

xn;i+1 = (2�n)
2 + f1 (xn;i) ; (4.41)

and

yn;i+1 = (2�n)
2 + f2 (yn;i) ; (4.42)

where fj (x) (j = 1; 2) is de�ned in (4.24).
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First, using (A.7), (A.9) and (A.10) in the Appendix, we get

jfj (�n;j)j �
1

2

��� eAk;s (�n;j) + A0k;s (�n;j)
���+ ����(�1)j 12

q
�k;s (�n;j)

����
=
1

2

���� eAk;s (�n;j)���+ ��A0k;s (�n;j)��+q�k;s (�n;j)

�
� jq2nj

2
+

c2

2� (n)� c
: (4.43)

Similarly,

��fj �(2�n)2��� � 1

2

���� eAk;s �(2�n)2�+ A0k;s
�
(2�n)2

�����+ 1
2

q
�k;s

�
(2�n)2

�
� 1

2

���� eAk;s �(2�n)2����+ ��A0k;s �(2�n)2���+q�k;s

�
(2�n)2

��
� 1

2

 
c2

8�2 (2n� 1)

kX
j=0

�
c

8�2 (2n� 1)

�j
+ j�q2nj+

c2

8�2 (2n� 1)� c

!

� 1

2

 
c2

8�2 (2n� 1)
1

1� c
8�2(2n�1)

+ jq2nj+
c2

8�2 (2n� 1)� c

!

=
1

2

�
c2

8�2 (2n� 1)� c
+ jq2nj+

c2

8�2 (2n� 1)� c

�
=
jq2nj
2
+

c2

8�2 (2n� 1)� c
: (4.44)

Theorem 4.3 If (4.6) and (4.8) hold then for the sequence fxn;ig and fyn;ig de�ned

by (4.41) and (4.42), the following estimations hold:

jxn;i � rn;1j � Ki
n

�
jq2nj

2 (1�Kn)
+

c2

(1�Kn) (8�2 (2n� 1)� c)

�
; (4.45)

jyn;i � rn;2j � Ki
n

�
jq2nj

2 (1�Kn)
+

c2

(1�Kn) (8�2 (2n� 1)� c)

�
; (4.46)

for i = 1; 2; 3; : : :, where Kn is de�ned in (4.27).

Proof. Without loss of generality we can take xn;0 = (2�n)
2. By (4.34) and (4.41)

we have

jxn;i � rn;1j =
��(2�n)2 + f1 (xn;i�1)�

�
(2�n)2 + f1 (rn;1)

��� = jf1 (xn;i�1)� f1 (rn;1)j

< Kn jxn;i�1 � rn;1j < Ki
n jxn;0 � rn;1j :
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Therefore it is enough to estimate jxn;0 � rn;1j. By de�nitions of rn;j and xn;0 we obtain

rn;1 � xn;0 = f1 (rn;1) + (2�n)
2 � xn;0 = f1 (rn;1)� f1 (xn;0) + f1

�
(2�n)2

�
and by the mean value theorem there exists x 2

�
(2�n)2 �M; (2�n)2 +M

�
such that

f1 (rn;1)� f1 (xn;0) = f 01 (x) (rn;1 � xn;0) :

These two equalities imply that

(rn;j � xn;0) (1� f 01 (x)) = f1
�
(2�n)2

�
:

Hence by (4.33) and (4.44) we get

(rn;1 � xn;0) �
f1
�
(2�n)2

�
1�Kn

�
�

jq2nj
2 (1�Kn)

+
c2

(1�Kn) (8�2 (2n� 1)� c)

�
and

jxn;i � rn;1j � Ki
n

�
jq2nj

2 (1�Kn)
+

c2

(1�Kn) (8�2 (2n� 1)� c)

�
:

One can easily show in a similar way to (4.45) that

jyn;i � rn;2j � Ki
n

�
jq2nj

2 (1�Kn)
+

c2

(1�Kn) (8�2 (2n� 1)� c)

�
for the iteration (4.42).

Thus by (4.28), (4.45) and (4.46) we have the approximations xn;i and yn;i for �n;1

and �n;2, respectively, with the errors

En;i =: j�n;1 � xn;ij

<
ck+2

2k (� (n))k (2� (n)� c) (1�Kn)
+Ki

n

�
jq2nj

2 (1�Kn)
+

c2

(1�Kn) (8�2 (2n� 1)� c)

�

E 0n;i =: j�n;2 � yn;ij

<
ck+2

2k (� (n))k (2� (n)� c) (1�Kn)
+Ki

n

�
jq2nj

2 (1�Kn)
+

c2

(1�Kn) (8�2 (2n� 1)� c)

�
:
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Remark 4.1 If q(x) =
Pp

k=1 qk cos(2k�x), where p is a �nite positive integer, then it

follows from the formulas (4.41) and (4.42) that for n � s+ p+ 1

xn;i = yn;i = (2�n)
2 ;

since the multiplicands (qn�n1 � qn+n1) and (qn�n1 + qn+n1) in f1 (xn;i) and f2 (yn;i) are

zero.

4.1 Numerical Examples

First we give the algorithm for the estimations of the small eigenvalues.

Step1. Compute the followings for n = 1; 2; : : : 10.

cn =

Z 1

0

q (x) cos 2�nxdx, sn =
Z 1

0

q (x) sin 2�nxdx;

cn;1 =

Z 1

0

xq (x) cos 2�nxdx, sn;1 =
Z 1

0

xq (x) sin 2�nxdx;

cn;2 =

Z 1

0

x2q (x) cos 2�nxdx, sn;2 =
Z 1

0

x2q (x) sin 2�nxdx:

Qn = �
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 c2n;1 �
2�

� � 1c2n;

P �n =
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 c2n;1 �
2

� � 1c2n;

Pn =
1

2
s2n;

Q�n = �8
�
� + 1

� � 1

�2
s2n;2 + 8

�
� + 1

� � 1

�2
s2n;1 �

8�

(� � 1)2
s2n;


1 =
16� (� + 1)

� � 1 :

Step2. De�ne the following functions:

'n (x) :=
4 (� + 1)

� � 1

�
�

1 + �
� x

�
sin 2�nx;
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'�n (x) :=
4
�
� + 1

�
� � 1

�
x� 1

1 + �

�
cos 2�nx;

a1 (�) =

�
q'n1 ; sin 2�nx

�
�� (2�n1)2

+

1n1 (q cos 2�n1x; sin 2�nx)�

�� (2�n1)2
�2 ;

b1 (�) =
(q cos 2�n1x; sin 2�nx)

�� (2�n1)2
;

ak+1 (�) =

�
q'nk+1 ; sin 2�nkx

�
�� (2�nk+1)2

+

1nk+1 (q cos 2�nk+1x; sin 2�nkx)�

�� (2�nk+1)2
�2 ;

bk+1 (�) =
(q cos 2�nk+1x; sin 2�nkx)

�� (2�nk+1)2
;

Ak+1 (�) =

�
q'nk+1 ; '

�
nk

�
�� (2�nk+1)2

+

1nk+1

�
q cos 2�nk+1x; '

�
nk

��
�� (2�nk+1)2

�2 ;

Bk+1 (�) =

�
q cos 2�nk+1x; '

�
nk

�
�� (2�nk+1)2

; k = 1; 2; : : : :

C1 (�) =: a1 (�) ; M1 (�) =: b1 (�) ;

C2 (�) =: a1a2 + b1A2 = C1a2 +M1A2; M2 (�) =: a1b2 + b1B2 = C1b2 +M1B2;

Ck+1 (�) =: Ckak+1 +MkAk+1; Mk+1 (�) =: Ckbk+1 +MkBk+1; k = 1; 2; : : : ;

�m;s (�) =
sX

n1;:::;nm=1

�
Cm (q'n; sin 2�nmx) +Mm

�
q'n; '

�
nm

��
;

�m;s (�) =

sX
n1;:::;nm=1

�
Cm (q cos 2�nx; sin 2�nmx) +Mm

�
q cos 2�nx; '�nm

��
;

eAk;s (�) = kX
m=1

�m;s (�) , eBk;s (�) = kX
m=1

�m;s (�) ;
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eC1 (�) = A1 (�) =

�
q'n1 ; '

�
n

�
�� (2�n1)2

+

1n1 (q cos 2�n1x; '

�
n)�

�� (2�n1)2
�2 ;

fM1 (�) = B1 (�) =
(q cos 2�n1x; '

�
n)

�� (2�n1)2
:

eCk+1 (�) = eCkak+1 + fMkAk+1; fMk+1 (�) = eCkbk+1 + fMkBk+1; k = 1; 2; : : : ;

�0m;s (�) =
sX

n1;:::;nm=1

h eCm (q cos 2�nx; sin 2�nmx) + fMm

�
q cos 2�nx; '�nm

�i
;

�0m;s (�) =
sX

n1;:::;nm=1

h eCm (q'n; sin 2�nmx) + fMm

�
q'n; '

�
nm

�i
;

A0k;s (�) =
kX

m=1

�0m;s (�) , B
0
k;s (�) =

kX
m=1

�0m;s (�) :

Step3. De�ne the following function.

�k;s (�) =
�
Qn � P �n + eAk;s (�)� A0k;s (�)

�2
+4
�
Pn + eBk;s (�)� �
1n+Q�n +B0

k;s (�)
�
:

Step4. Compute xn;i+1 by the iteration (4.41) corresponding to the eigenvalue �n;1,

with the initial value xn;0:

xn;1 = (2�n)
2 +

1

2
(Qn + P �n) +

1

2

� eAk (xn;0) + A0k (xn;0)
�
� 1
2

q
�k (xn;0);

xn;2 = (2�n)
2 +

1

2
(Qn + P �n) +

1

2

� eAk (xn;1) + A0k (xn;1)
�
� 1
2

q
�k (xn;1);

� � �

xn;i+1 = (2�n)
2 +

1

2
(Qn + P �n) +

1

2

� eAk (xn;i) + A0k (xn;i)
�
� 1
2

q
�k (xn;i):

Step5. Compute yn;i+1 by the iteration (4.42) corresponding to the eigenvalue �n;2,

with the initial value yn;0:
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yn;1 = (2�n)
2 +

1

2
(Qn + P �n) +

1

2

� eAk (yn;0) + A0k (yn;0)
�
+
1

2

q
�k (yn;0);

yn;2 = (2�n)
2 +

1

2
(Qn + P �n) +

1

2

� eAk (yn;1) + A0k (yn;1)
�
+
1

2

q
�k (yn;1);

� � �

yn;i+1 = (2�n)
2 +

1

2
(Qn + P �n) +

1

2

� eAk (yn;i) + A0k (yn;i)
�
+
1

2

q
�k (yn;i):

Since q(x) = cos(2�x) is a famous Mathieu potential and q(x) = cos(2�x) +

cos(4�x) is the generalization of the Mathieu potential, we consider these potentials in

our examples.

Example 4.1 For q(x) = cos(2�x), � = 2, k = 3 and s = 5 with the initial approx-

imations xn;0 = 0 and yn;0 = 0, we have the following table for the estimations of the

small eigenvalues of T1 (q). According to Remark 4.1, it is enough to compute only the

�rst 6 eigenvalues for this case.

From the table we can see that we have the same values for both of the iterations

(4.41) and (4.42) corresponding to �n;1 and �n;2, respectively. This shows that the

eigenvalues �n;1 and �n;2 are very close to each other or equal and they are close to

(2�n)2. In this table xn;i and yn;i denote the estimations for �n;1 and �n;2, respectively,

where i is the number of the iterations.
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n i xn;i jxn;i+1 � xn;ij yn;i jyn;i+1 � yn;ij

1

0
1
2
3

0
39.478417597303
39.478417590249
39.478417590249

39.4784175973
7.05405e-09

0

0
39.478417597303
39.478417590249
39.478417590249

39.4784175973
7.05405e-09

0

2

0
1
2
3
4
5

0
157.907337842668
157.915781384907
157.915781234413
157.915781234416
157.915781234416

157.9073378427
0.00844354
1.50494e-07
2.70006e-12

0

0
157.907337842668
157.915781384907
157.915781234413
157.915781234416
157.915781234416

157.9073378427
0.00844354
1.50494e-07
2.70006e-12

0

3

0
1
2
3
4
5

0
355.304175232077
355.307024967954
355.307024949669
355.307024949669
355.307024949669

355.3041752321
0.00284974
1.82848e-08
1.13687e-13

0

0
355.304175232077
355.307024967954
355.307024949669
355.307024949669
355.307024949669

355.3041752321
0.00284974
1.82848e-08
1.13687e-13

0

4

0
1
2
3
4
5

0
631.653978047253
631.655586327175
631.655586321910
631.655586321910
631.655586321910

631.6539780473
0.00160828
5.26495e-09
1.13687e-13

0

0
631.653978047253
631.655586327175
631.655586321910
631.655586321910
631.655586321910

631.6539780473
0.00160828
5.26495e-09
1.13687e-13

0

5

0
1
2
3
4

0
986.960044322621
986.961143729834
986.961143729834
986.961143729834

986.9600443226
0.00109941
2.17722e-09

0

0
986.960044322621
986.961143729834
986.961143729834
986.961143729834

986.9600443226
0.00109941
2.17722e-09

0

6

0
1
2
3
4

0
1421.222780453807
1421.223609446167
1421.223609445068
1421.223609445068

1421.2227804538
0.000828992
1.09912e-09

0

0
1421.222780453807
1421.223609446167
1421.223609445068
1421.223609445068

1421.2227804538
0.000828992
1.09912e-09

0
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Example 4.2 For q(x) = cos(2�x)+cos(4�x), � = 2, k = 3 and s = 5 with the initial

approximations xn;0 = 0 and yn;0 = 0 we have the following table for the estimations of

the small eigenvalues of T1 (q). xn;i is the estimation for �n;1 and yn;i is the estimation

for �n;2. According to Remark 4.1, it is enough to compute only the �rst 7 eigenvalues

for this case.

From the following table we can see that the �rst eigenvalues �1;1 and �1;2 are far

from each but the other eigenvalues �n;1 and �n;2 are close to each other or equal and

they are close to (2�n)2. In this table xn;i and yn;i denote the estimations for �n;1 and

�n;2, respectively, where i is the number of the iterations.
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n i xn;i jxn;i+1 � xn;ij yn;i jyn;i+1 � yn;ij

1

0
1
2
3
4

0
38.97842204110939
38.97842421532967
38.97842421532983
38.97842421532983

38.9784
2.17422e-06
1.63425e-13

0

0
39.97842204110939
39.97842429233646
39.97842429233664
39.97842429233664

39.9784
2.25123e-06
1.77636e-13

0

2

0
1
2
3
4
5

0
157.90727564526605
157.91576453269735
157.91576438313135
157.91576438313396
157.91576438313396

157.9073
0.00848889
1.49566e-07
2.6148e-12

0

0
157.90743559977980
157.91578226434297
157.91578211477969
157.91578211478236
157.91578211478236

157.9074
0.00834666
1.49563e-07
2.67164e-12

0

3

0
1
2
3
4
5

0
355.29780466405339
355.30781619970361
355.30781611026259
355.30781611026339
355.30781611026339

355.2978
0.0100115
8.9441e-08
7.95808e-13

0

0
355.29796405424344
355.30781871744506
355.30781862924766
355.30781862924846
355.30781862924846

355.2980
0.00985466
8.81974e-08
7.95808e-13

0

4

0
1
2
3
4
5

0
631.65239992994259
631.65611341414319
631.65611339781697
631.65611339781708
631.65611339781708

631.6524
0.00371348
1.63262e-08
1.13687e-13

0

0
631.65239992994259
631.65611341414319
631.65611339781697
631.65611339781708
631.65611339781708

631.6524
0.00371348
1.63262e-08
1.13687e-13

0

5

0
1
2
3
4

0
986.95934179624237
986.96154063378719
986.96154062804419
986.96154062804419

986.9593
0.00219884
5.743e-09

0

0
986.95934179624237
986.96154063378719
986.96154062804419
986.96154062804419

986.9593
0.00219884
5.743e-09

0

6

0
1
2
3
4

0
1421.22238506661188
1421.22392680582675
1421.22392680316057
1421.22392680316057

1421.2224
0.00154174
2.66618e-09

0

0
1421.22238506661188
1421.22392680582675
1421.22392680316057
1421.22392680316057

1421.2224
0.00154174
2.66618e-09

0

7

0
1
2
3
4

0
1934.44220931027280
1934.44272647093135
1934.44272647078719
1934.44272647078719

1934.4422
0.000517161
0.000000000144

0

0
1934.44220931027280
1934.44272647093135
1934.44272647078719
1934.44272647078719

1934.4422
0.000517161
0.000000000144

0
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Appendix

Since q (x) has the form (4.1), by (2.44)-(2.48) we have the followings:Z 1

0

xq(x)dx = 0;

cn =

Z 1

0

q (x) cos 2�nxdx =
qn
2
;

sn =

Z 1

0

q (x) sin 2�nxdx = 0;

cn;1 =

Z 1

0

xq (x) cos 2�nxdx =
qn
4
;

sn;1 =

Z 1

0

xq (x) sin 2�nxdx = sn;2 =

Z 1

0

x2q (x) sin 2�nxdx;

Qn = �
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 c2n;1 �
2�

� � 1c2n = �
q2n
2
; (A.1)

P �n =
2 (� + 1)

� � 1

Z 1

0

xq (x) dx+
2 (� + 1)

� � 1 c2n;1 �
2

� � 1c2n =
q2n
2
; (A.2)

Pn =
1

2
s2n = 0; (A.3)

Q�n = �8
�
� + 1

� � 1

�2
s2n;2 + 8

�
� + 1

� � 1

�2
s2n;1 �

8�

(� � 1)2
s2n = 0; (A.4)

Qn � P �n = �2c2n = �q2n;

and

Qn + P �n = 0:

We also evaluate the following functions de�ned in Section 2.1:

a1 (�) =

�
q'n1 ; sin 2�nx

�
�� (2�n1)2

+

1n1 (q cos 2�n1x; sin 2�nx)�

�� (2�n1)2
�2 =

qn�n1 � qn+n1
2
�
�� (2�n1)2

� ;
b1 (�) =

(q cos 2�n1x; sin 2�nx)

�� (2�n1)2
= 0;
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ak+1 (�) =

�
q'nk+1 ; sin 2�nkx

�
�� (2�nk+1)2

+

1nk+1 (q cos 2�nk+1x; sin 2�nkx)�

�� (2�nk+1)2
�2 =

qnk+1�nk � qnk+1+nk

2
�
�� (2�nk+1)2

� ;
bk+1 (�) =

(q cos 2�nk+1x; sin 2�nkx)

�� (2�nk+1)2
= 0;

Ak+1 (�) =

�
q'nk+1 ; '

�
nk

�
�� (2�nk+1)2

+

1nk+1

�
q cos 2�nk+1x; '

�
nk

��
�� (2�nk+1)2

�2 =

1nk+1

�
qnk+1�nk + qnk+1+nk

�
2
�
�� (2�nk+1)2

�2 ;

Bk+1 (�) =

�
q cos 2�nk+1x; '

�
nk

�
�� (2�nk+1)2

=
qnk+1�nk + qnk+1+nk

2
�
�� (2�nk+1)2

� ; k = 1; 2; : : : ;

C1 (�) = a1 (�) =
qn�n1 � qn+n1
2
�
�� (2�n1)2

� ; M1 (�) = b1 (�) = 0;

C2 (�) = C1a2 +M1A2 = a1a2; M2 (�) = C1b2 +M1B2 = 0;

Ck+1 (�) = Ckak+1 +MkAk+1 = a1a2 : : : akak+1;

Mk+1 (�) = Ckbk+1 +MkBk+1 = 0; k = 1; 2; : : : ;

eC1 (�) = A1 (�) =

�
q'n1 ; '

�
n

�
�� (2�n1)2

+

1n1 (q cos 2�n1x; '

�
n)�

�� (2�n1)2
�2

=

1n1 (q cos 2�n1x; '

�
n)�

�� (2�n1)2
�2 =


1n1 (qn�n1 + qn+n1)

2
�
�� (2�n1)2

�2 ;

fM1 (�) = B1 (�) =
(q cos 2�n1x; '

�
n)

�� (2�n1)2
=
(qn�n1 + qn+n1)

2
�
�� (2�n1)2

� ;
eC2 (�) = eC1a2 + fM1A2

=

1n1 (qn�n1 + qn+n1)

2
�
�� (2�n1)2

�2 (qn2�n1 � qn2+n1)

2
�
�� (2�n2)2

� + (qn�n1 + qn+n1)

2
�
�� (2�n1)2

� 
1n2 (qn2�n1 + qn2+n1)

2
�
�� (2�n2)2

�2
=

1n1 (qn�n1 + qn+n1) (qn2�n1 � qn2+n1)

22
�
�� (2�n1)2

�2 �
�� (2�n2)2

� +

1n2 (qn�n1 + qn+n1) (qn2�n1 + qn2+n1)

22
�
�� (2�n1)2

� �
�� (2�n2)2

�2 ;

fM2 (�) = eC1b2 + fM1B2 = fM1B2 =
(qn�n1 + qn+n1)

2
�
�� (2�n1)2

� (qn2�n1 + qn2+n1)

2
�
�� (2�n2)2

�
=
(qn�n1 + qn+n1) (qn2�n1 + qn2+n1)

22
�
�� (2�n1)2

� �
�� (2�n2)2

� ;
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and

fMk+1 (�) = eCkbk+1 + fMkBk+1 = fMkBk+1 = B1B2 : : : Bk+1

=
(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :

�
qnk+1�nk + qnk+1+nk

�
2k+1

�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nk+1)2

� ; k = 1; 2; : : : :

Using these functions, we obtain the followings:

�m;s (�) :=
sX

n1;:::;nm=1

�
Cm (q'n; sin 2�nmx) +Mm

�
q'n; '

�
nm

��
=

sX
n1;:::;nm=1

a1a2 : : : am (q'n; sin 2�nmx)

=
sX

n1;:::;nm=1

(
qn�n1 � qn+n1
2
�
�� (2�n1)2

� qn2�n1 � qn2+n1
2
�
�� (2�n2)2

� : : : qnm�nm�1 � qnm+nm�1

2
�
�� (2�nm)2

� qn�nm � qn+nm
2

)

=
sX

n1;:::;nm=1

(
(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :

�
qnm�nm�1 � qnm+nm�1

�
(qn�nm � qn+nm)

2m+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

� )
;

�m;s (�) :=
sX

n1;:::;nm=1

�
Cm (q cos 2�nx; sin 2�nmx) +Mm

�
q cos 2�nx; '�nm

��
= 0;

eAk;s (�) := kX
m=1

�m;s (�)

=

kX
m=1

sX
n1;:::;nm=1

(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
�
qnm�nm�1 � qnm+nm�1

�
(qn�nm � qn+nm)

2m+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

�
=

sX
n1=1

(qn�n1 � qn+n1)
2

22
�
�� (2�n1)2

� + sX
n1;n2=1

(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) (qn�n2 � qn+n2)

23
�
�� (2�n1)2

� �
�� (2�n2)2

� +

(A.5)

+ : : :+
sX

n1;:::;nk=1

(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
�
qnk�nk�1 � qnk+nk�1

�
(qn�nk � qn+nk)

2k+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nk)2

� ;

eBk;s (�) := kX
m=1

�m;s (�) = 0;
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�0m;s (�) :=
sX

n1;:::;nm=1

h eCm (q cos 2�nx; sin 2�nmx) + fMm

�
q cos 2�nx; '�nm

�i
=

sX
n1;:::;nm=1

fMm

�
q cos 2�nx; '�nm

�
=

sX
n1;:::;nm=1

(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnm�nm�1 + qnm+nm�1

�
2m+1

�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

� �
qjn�nmj + qn+nm

�
;

A0k;s (�) :=
kX

m=1

�0m;s (�)

=

kX
m=1

sX
n1;:::;nm=1

(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnm�nm�1 + qnm+nm�1

�
(qn�nm + qn+nm)

2m+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

�
=

sX
n1=1

(qn�n1 + qn+n1)
2

22
�
�� (2�n1)2

� + sX
n1;n2=1

(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) (qn�n2 + qn+n2)

23
�
�� (2�n1)2

� �
�� (2�n2)2

� +

(A.6)

+ : : :+
sX

n1;:::;nk=1

(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnk�nk�1 + qnk+nk�1

�
(qn�nk + qn+nk)

2k+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nk)2

� ;

�k;s (�) :=
�
Qn � P �n +

eAk;s (�)� A0k;s (�)
�2
+ 4

�
Pn + eBk;s (�)� �
1n+Q�n +B0

k;s (�)
�

=
�
Qn � P �n + eAk;s (�)� A0k;s (�)

�2
=
� eAk;s (�)� A0k;s (�)� q2n

�2
; (A.7)

and

�(�) = (A (�)� A0 (�)� q2n)
2
: (A.8)
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Using (4.3) and (4.5), in (A.5) and (A.6), we obtain��� eAk;s (�)��� =
�����
kX

m=1

�m;s (�)

�����
=

�����
kX

m=1

sX
n1;:::;nm=1

(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
�
qnm�nm�1 � qnm+nm�1

�
(qn�nm � qn+nm)

2m+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

� �����
=

��������
Ps

n1=1

(qn�n1�qn+n1)
2

22(��(2�n1)2)
+
Ps

n1;n2=1

(qn�n1�qn+n1)(qn2�n1�qn2+n1)(qn�n2�qn+n2)
23(��(2�n1)2)(��(2�n2)2)

+

+ : : :+
Ps

n1;:::;nk=1

(qn�n1�qn+n1)(qn2�n1�qn2+n1):::(qnk�nk�1�qnk+nk�1)(qn�nk�qn+nk)
2k+1(��(2�n1)2)(��(2�n2)2):::(��(2�nk)2)

��������
� c2

22� (n)
+

c3

23 (� (n))2
+ : : :+

ck+1

2k+1 (� (n))k

=
c2

22� (n)

kX
j=0

�
c

2� (n)

�j
; (A.9)

and

��A0k;s (�)�� =
�����
kX

m=1

�0m;s (�)

�����
=

�����
kX

m=1

sX
n1;:::;nm=1

(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnm�nm�1 + qnm+nm�1

�
(qn�nm + qn+nm)

2m+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

� �����
=

��������
Ps

n1=1

(qn�n1+qn+n1)
2

22(��(2�n1)2)
+
Ps

n1;n2=1

(qn�n1+qn+n1)(qn2�n1+qn2+n1)(qn�n2+qn+n2)
23(��(2�n1)2)(��(2�n2)2)

+

+ : : :+
Ps

n1;:::;nk=1

(qn�n1+qn+n1)(qn2�n1+qn2+n1):::(qnk�nk�1+qnk+nk�1)(qn�nk+qn+nk)
2k+1(��(2�n1)2)(��(2�n2)2):::(��(2�nk)2)

��������
� c2

22� (n)
+

c3

23 (� (n))2
+ : : :+

ck+1

2k+1 (� (n))k

=
c2

22� (n)

kX
j=0

�
c

2� (n)

�j
� c2

2 (2� (n)� c)
; (A.10)

by the geometric series formula.

Moreover, we shall use the followings for the proof of Theorem 4.2:���� dd�C1 (�)
���� = ���� dd�a1 (�)

���� =
������ qn�n1 � qn+n1

2
�
�� (2�n1)2

�2
����� ;���� dd�ak+1 (�)

���� =
������qnk+1�nk � qnk+1+nk

2
�
�� (2�nk+1)2

�2
����� ;
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���� dd�C2 (�)
���� = ����� d

d�
C1

�
a2 + C1

�
d

d�
a2

�����
=

�����
 
� qn�n1 � qn+n1

2
�
�� (2�n1)2

�2
!
qn2�n1 � qn2+n1
2
�
�� (2�n2)2

� + qn�n1 � qn+n1
2
�
�� (2�n1)2

�  � qn2�n1 � qn2+n1

2
�
�� (2�n2)2

�2
!�����

� 2 (qn�n1 � qn+n1) (qn2�n1 � qn2+n1)

22 (� (n))3
;

���� dd�C3 (�)
���� = ����� d

d�
C2

�
a3 + C2

�
d

d�
a3

�����

=

j
"
� qn�n1 � qn+n1

2
�
�� (2�n1)2

�2 qn2�n1 � qn2+n1
2
�
�� (2�n2)2

� + qn�n1 � qn+n1
2
�
�� (2�n1)2

�  � qn2�n1 � qn2+n1

2
�
�� (2�n2)2

�2
!#

�

� qn3�n2 � qn3+n2
2
�
�� (2�n2)2

�+
+

qn�n1 � qn+n1
2
�
�� (2�n1)2

� qn2�n1 � qn2+n1
2
�
�� (2�n2)2

�  � qn3�n2 � qn3+n2

2
�
�� (2�n3)2

�2
!
j

� 3 (qn�n1 � qn+n1) (qn2�n1 � qn2+n1) (qn3�n2 � qn3+n2)

23 (� (n))4
;

���� dd�Ck+1 (�)
���� = ����� d

d�
Ck

�
ak+1 + Ck

�
d

d�
ak+1

����� ;
�
(k + 1) (qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :

�
qnk+1�nk � qnk+1+nk

�
2k+1 (� (n))k+2

; k = 1; 2; : : : ;

���� dd��k;s (�)
���� =

�����
sX

n1;:::;nk=1

�
d

d�
Ck

�
(q'n; sin 2�nkx)

�����
�

sX
n1;:::;nk=1

k jqn�n1 � qn+n1j jqn2�n1 � qn2+n1j : : :
��qnk�nk�1 � qnk+nk�1

��
2k (� (n))k+1

jqn�nk � qn+nk j
2

;

���� dd� eAk;s (�)
���� =

�����
kX

m=1

d

d�
�m;s (�)

�����
�

kX
m=1

sX
n1;:::;nm=1

m (qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
�
qnm�nm�1 � qnm+nm�1

�
(qn�nm � qn+nm)

2m+1 (� (n))m+1

=
sX

n1=1

(qn�n1 � qn+n1)
2

22 (� (n))2
+

sX
n1;n2=1

2 (qn�n1 � qn+n1) (qn2�n1 � qn2+n1) (qn�n2 � qn+n2)

23 (� (n))3
+

+ : : :+

sX
n1;:::;nk=1

k (qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
�
qnk�nk�1 � qnk+nk�1

�
(qn�nk � qn+nk)

2k+1 (� (n))k+1
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� c2

22 (� (n))2
+

2c3

23 (� (n))3
+ : : :+

kck+1

2k+1 (� (n))k+1

=
c

2 (� (n))

kX
i=1

i

�
c

2� (n)

�i
� c2

23 (� (n))2

kX
i=0

�
c

� (n)

�i
� c2

23 (� (n))2
1

1� c

� (n)

� c2

23� (n) (� (n)� c)
; (A.11)

���� dd�fM1 (�)

���� = ���� dd�B1 (�)
���� =

������ (qn�n1 + qn+n1)

2
�
�� (2�n1)2

�2
����� ;���� dd�Bk+1 (�)

���� =
������
�
q cos 2�nk+1x; '

�
nk

��
�� (2�nk+1)2

�2
����� =

�
qnk+1�nk + qnk+1+nk

�
2
�
�� (2�nk+1)2

�2 ; k = 1; 2; : : : ;
���� dd�fM2 (�)

���� = ���� dd� �fM1B2

����� = ����� d

d�
fM1

�
B2 + fM1

�
d

d�
B2

�����
=

�����
 
� (qn�n1 + qn+n1)

2
�
�� (2�n1)2

�2
!
(qn2�n1 + qn2+n1)

2
�
�� (2�n2)2

� + (qn�n1 + qn+n1)

2
�
�� (2�n1)2

�  �(qn2�n1 + qn2+n1)

2
�
�� (2�n2)2

�2
!�����

� 2 (qn�n1 + qn+n1) (qn2�n1 + qn2+n1)

22 (� (n))3
;

���� dd�fMk+1 (�)

���� = ���� dd� �fMkBk+1

����� = ����� d

d�
fMk

�
Bk+1 + fMk

�
d

d�
Bk+1

�����
�
(k + 1) (qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :

�
qnk+1�nk + qnk+1+nk

�
2k+1 (� (n))k+2

; k = 1; 2; : : : ;

���� dd��0k;s (�)
���� =

�����
sX

n1;:::;nk=1

�
d

d�
fMk

��
q cos 2�nx; '�nk

������
�

sX
n1;:::;nk=1

k (qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnk�nk�1 + qnk+nk�1

�
2k (� (n))k+1

�
q cos 2�nx; '�nk

�
;

k = 1; 2; : : : ;
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���� dd�A0k;s (�)
���� =

�����
kX

m=1

d

d�
�0m;s (�)

�����
�

kX
m=1

sX
n1;:::;nm=1

m (qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
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�
(qn�nm + qn+nm)

2m+1 (� (n))m+1

=
sX

n1=1

(qn�n1 + qn+n1)
2

22 (� (n))2
+

sX
n1;n2=1

2 (qn�n1 + qn+n1) (qn2�n1 + qn2+n1) (qn�n2 + qn+n2)

23 (� (n))3
+

+ : : :+

sX
n1;:::;nk=1

k (qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
�
qnk�nk�1 + qnk+nk�1

�
(qn�nk + qn+nk)

2k+1 (� (n))k+1

� c2

22 (� (n))2
+

2c3

23 (� (n))3
+ : : :+

kck+1

2k+1 (� (n))k+1
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c

2� (n)

kX
i=1

i

�
c

2� (n)

�i
� c2

23 (� (n))2

kX
i=0

�
c

� (n)

�i
� c2

23 (� (n))2
1

1� c

� (n)

� c2

23� (n) (� (n)� c)
; (A.12)

and �� d
d�
�k;s (�)

�����p�k;s (�)
��� =

2
���Qn � P �n + eAk;s (�n)� A0k;s (�n)

��� ��� dd� eAk;s (�)� d
d�
A0k;s (�)

������Qn � P �n +
eAk;s (�n)� A0k;s (�n)

���
� 2

����� dd� eAk;s (�)
����+ ���� dd�A0k;s (�)

�����
� c2

2� (n) (� (n)� c)
: (A.13)

By (A.5) and (A.6), and using the de�nitions of A (�n;j), eAk (�n;j), A0 (�n;j) and
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A0k (�n;j) in Section 2.1, for s � k we obtain

���A (�n;j)� eAk;s (�n;j)��� � ���A (�n;j)� eAk (�n;j)���+
+

�����
kX

m=1

1X
n1;:::;nm=s+1

(qn�n1 � qn+n1) (qn2�n1 � qn2+n1) : : :
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�
(qn�nm � qn+nm)

2m+1
�
�� (2�n1)2

� �
�� (2�n2)2

�
: : :
�
�� (2�nm)2

� �����
� 2f
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���
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�n;j � (2�n1)2

� �
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: : :
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� �
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� �
qn�nk+2 � qn+nk+2

���
2k+3

�
�n;j � (2�n1)2

� �
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=
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2k (� (n))k (2� (n)� c)
; (A.14)

and

���A0 (�n;j)� A0k;s (�n;j)
��� � jA0 (�n;j)� A0k (�n;j)j+

+

�����
kX
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1X
n1;:::;nm=s+1
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�
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� �
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� 2f
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��(qn�n1 + qn+n1) (qn2�n1 + qn2+n1) : : :
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� �
qn�nk+1 + qn+nk+1

���
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�
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� �
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: : :
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� �
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� �
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� �
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: : :
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� + � � � g
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2k+1 (� (n))k+1
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ck+3

2k+2 (� (n))k+2
+ � � �

=
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j=0

�
c

2� (n)

�j
=

ck+2

2k (� (n))k (2� (n)� c)
: (A.15)
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5 CONCLUSIONS

In this work we constructed subtle asymptotic formulas for the eigenvalues and eigen-

functions of non-self-adjoint Sturm-Liouville operators with general regular boundary

conditions for both cases q 2 L1 [0; 1] and q is an absolutely continuous function. Us-

ing these formulas we found explicit conditions on potential q such that the system

of the root functions of the Sturm-Liouville operator with general regular boundary

conditions does not form a Riesz basis. Also we estimated the small eigenvalues of the

operators de�ned in Chapter 2 by the numerical methods.

The results of this work for the di¤erential operators may be extended for the nth

order di¤erential operators or when the potential function q (x) is chosen from Sobolev

spaces.
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