
 

DOGUS UNIVERSITY 

INSTITUTE OF SCIENCE AND TECHNOLOGY 

MATHEMATICS 

 

 

 

 

 

 

ON THE SPECTRAL PROPERTIES OF THE 

OPERATORS GENERATED BY A SYSTEM OF 

DIFFERENTIAL EQUATIONS 

 

Ph. D.  Thesis 

 

 

 

Fulya SEREF 

2011196002 

 

 

Supervisor 

Prof. Oktay VELİEV 

ISTANBUL, SEPTEMBER 2014 



ACKNOWLEDGEMENTS

My first thanks and sincere gratitude go to my supervisor, Oktay A. Veliev; for his
continuous support, patience, motivation, enthusiasm and immense knowledge. This work
depends upon the guidance and encouragement he offered. Ever since, he has supported me
not only by providing a research assistantship over almost five years, but also academically
and emotionally through the rough road to finish the thesis. It will be always an honor in
my whole academic life to be one of his Ph. D. students.

I have to thank the members of my Ph. D. committee, Mahir Hasansoy and Bülent
Yılmaz, for their helpful career advice and suggestions in general.

I am thankful to the rector and to the vice rector of Dogus University, Ahmet Nuri
Ceranoğlu and Mahir Hasansoy, for their support to study in Nantes University.

I have to express my profound thanks to all members of the Department of Mathematics
in Dogus University for providing academic support with the broad perspective they have
had individually.

I gratefully acknowledge the financial support provided by The Scientific and Techno-
logical Research Council of Turkey.

My special thanks also go to my friends (too many to list here) for providing support,
friendship, motivation and encouragement I needed.

Last, but certainly not least, I must acknowledge with tremendous and deep thanks
my parents; Gülfer and Mustafa Seref and my sister, Gülden Kalelioğlu. Words can not
express how grateful I am. They have taught me about hard work and self-respect, about
persistence. They have always expressed how proud they are of me and how much they
love me. I am too proud of being a part of them and I love them very much.

Istanbul, September 2014 Fulya Seref

i



ABSTRACT

We consider non-self-adjoint operator Lm(Q) generated in Lm2 [0, 1] by the Sturm-Liouville
equation with m × m matrix potential and the boundary conditions, whose scalar case
(m = 1) are strongly regular.First we obtain asymptotic formulas for the eigenvalues
and eigenfunctions of Lm(Q) and then find a condition on the potential for which the
root functions of the operator form a Riesz basis. We also study the approximation of
eigenvalues of Lm(Q) by finite difference method.

Key words: Differential operators, matrix potential, Riesz basis, asymptotic formulas,
eigenvalues, finite difference method
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ÖZET

Lm2 [0, 1] uzayında, m×m matris potansiyele sahip Sturm-Liouville denklemi ve skaler du-
rumda (m = 1) kısıtlı düzgün sınır koşulları ile oluşturulan kendine eş olmayan Lm(Q) op-
eratörü göz önüne alınmıştır. İlk olarak, Lm(Q) operatörünün özdeğerleri ve özfonksiyon-
ları için asimptotik formüller elde edilmiş ve daha sonra operatörün kök fonksiyonları Riesz
tabanı oluşturacak şekilde potansiyel üzerine bir koşul bulunmuştur. Aynı zamanda Lm(Q)
operatörünün küçük özdeğerleri üzerine sonlu farklar metodu ile yaklaşım yapılmıştır.

Anahtar kelimeler: Diferansiyel operatörler, matris potansiyel, Riesz tabanı, asimp-
totik formüller, özdeğerler, sonlu farklar metodu
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INTRODUCTION

We consider the non-self-adjoint differential operator Lm(Q), in the space Lm2 [0, 1]
generated by the differential expression

−y′′
(x) +Q (x)y(x) (0.1)

and the boundary conditions

Ui(y) = αiy
(ki)(0) + αi,0y(0) + βiy

(ki)(1) + βi,0y(1) = 0, i = 1, 2 (0.2)

whose scalar case (the case m = 1)

Ui(y) = αiy
(ki)(0) + αi,0y(0) + βiy

(ki)(1) + βi,0y(1) = 0, i = 1, 2 (0.3)

are strongly regular, where 0 ≤ k2 ≤ k1 ≤ 1, αi, αi,0, βi, βi,0 are complex numbers
and for each value of the index i at least one of the numbers αi, βi is nonzero. Here,
y (x) = (y1 (x) , y2 (x) , ..., ym (x))T and Lm2 [0, 1] is the set of vector-functions f (x) =
(f1 (x) , f2 (x) , ..., fm (x)) with fk ∈ L2 [0, 1] for k = 1, 2, ...,m and Q(x) = (bi,j (x)) is
a m×m matrix with the complex-valued square integrable entries bi,j. The norm ‖.‖ and
inner product (., .) in Lm2 [0, 1] are defined by

‖f‖ =

 1∫
0

|f (x)|2 dx


1
2

, (f, g) =

1∫
0

〈f (x) , g (x)〉 dx,

where |.| and 〈., .〉 are respectively the norm and the inner product in Cm.

Non-self-adjoint differential operators arise in the theory of open resonators, in prob-
lems of inelastic scattering and in problems of mathematical physics, when the Fourier
method is used. The early works concerned with these operators were investigated in
[7]-[11] and [54]-[56], at the beginning of the 20th century. In the scalar case (m = 1),
the strongly regular boundary conditions are the ones which are studied more commonly.
If the boundary conditions are strongly regular, then the root functions (eigenfunctions
and associated functions) of the operators generated in the space L2 [0, 1] by the ordinary
differential expression form a Riesz basis. This result was proved independently in [21],
[29] and [43]. In the case when an operator is regular but not strongly regular, the root
functions generally do not form even usual basis.
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A. A. Shkalikov proved that the root functions of the operators generated by an or-
dinary differential expression with summable matrix coefficients and regular boundary
conditions form a Riesz basis with parenthesis and in the parenthesis,only the functions
corresponding to splitting eigenvalues should be included. (see [48]-[53]).

L. M. Luzhina generalized this result for the boundary value problems when the coef-
ficients depend on the spectral parameter. (see [32],[33]).

In the paper of Veliev, (see [58]), the differential operator Tt(Q) generated in the space
Lm2 [0, 1] by the differential expression (0.1) and the quasiperiodic conditions

y
′
(1) = eity

′
(0) , y (1) = eity (0) ,

for t ∈ (0, 2π) and t 6= π was considered . It was proved that the eigenvalues λk,j of Tt(Q)
lie in the O

(
ln k
k

)
neighborhoods of the eigenvalues of the operator Tt(C), where

C =
∫ 1

0
Q (x) dx. (0.4)

Note that, to obtain the asymptotic formulas of order O( 1
k
) for the eigenvalues λk,j of

the differential operators generated by (0.1), using the classical asymptotic expansions for
the solutions of the matrix equation

−Y ′′
+Q (x)Y = λY,

it is required that Q be differentiable (see [12], [35], [36], [44]). The suggested method
in [58] gives the possibility of obtaining the asymptotic formulas of order O(k−1 ln |k|)
for the eigenvalues λk,j and the normalized eigenfunctions Ψk,j(x) of Tt(Q) when there
is not any condition about smoothness of the entries bi,j of Q. Then, in papers [59]-
[63], using the method of [58], the spectrum and basis property of the root functions
of differential operators generated in Lm2 [0, 1] by the differential expression of arbitrary
order and by the t−periodic, periodic, antiperiodic boundary conditions were considered
and these investigations were applied to the differential operators with periodic matrix
coefficients.

In [60], the following investigations were done: Let L(P2, P3, ..., Pn) ≡ L be the differ-
ential operator generated in the space Lm2 (−∞,∞) by the differential expression

l(y) = y(n)(x) + P2 (x) y(n−2)(x) + P3 (x) y(n−3)(x) + ...+ Pn(x)y, (0.5)

and Lt(P2, P3..., Pn) ≡ Lt be the differential operator generated in Lm2 (0, 1) by the same
differential expression and the boundary conditions

Uν,t(y) ≡ y(ν) (1)− eity(ν) (0) = 0, ν = 0, 1, ..., (n− 1), (0.6)
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where n ≥ 2, Pν = (pν,i,j) is a m ×m matrix with the complex-valued summable entries
pν,i,j, and Pν (x+ 1) = Pν (x) for ν = 2, 3, ...n. The eigenvalues µ1, µ2, ..., µm of the matrix

C2 =

∫ 1

0

P2 (x) dx

are simple and y = (y1, y2, ..., ym) is a vector valued function.

It is well-known that the spectrum σ(L) of L is the union of the spectra σ(Lt) of Lt
for t ∈ [0, 2π). (see [22], [23], [39]-[41], [46]). Therefore the investigation of the boundary
condition (0.6) depends on this fact. First, an asymptotic formula was derived for the
eigenvalues and eigenfunctions of Lt which is uniform with respect to t in Qε(n), where

Qε(2µ) = {t ∈ Q : |t− πk| > ε,∀k ∈ Z}, Qε(2µ+ 1) = Q, ε ∈ (0,
π

4
), µ = 1, 2, ...,

and Q is a compact subset of C containing a neighborhood of the interval [−π
2
, 2π − π

2
].

Using these formulas, it was proved that the root functions of Lt for t ∈ C(n) form a Riesz
basis in Lm2 (0, 1), where C(2µ) = C\{πk : k ∈ Z}, C(2µ+ 1) = C.

In [63], the operator L(P2, P3, ..., Pn) generated in Lm2 [0, 1] by the differential expression
(0.5) and the periodic boundary conditions

y(ν) (1) = y(ν) (0) , ν = 0, 1, ..., (n− 1),

where n is an even integer, Pν(x) = (pν,i,j(x)) is a m × m matrix with the complex-
valued summable entries pν,i,j(x) for ν = 2, 3, ...n was investigated. First, asymptotic
formulas were obtained for the eigenvalues and eigenfunctions of L. Then, necessary and
sufficient conditions were found on the coefficient P2 (x) for which the root functions of
the operator L form a Riesz basis in Lm2 [0, 1]. The similar results were obtained for the
operator A(P2, P3, ..., Pn) generated by (0.5) and the antiperiodic boundary conditions

y(ν) (1) = −y(ν) (0) , ν = 0, 1, ..., (n− 1).

Note that the Riesz basis property of the differential operator with periodic and an-
tiperiodic boundary conditions was investigated in the papers; [15], [17-20], [24], [28], [34],
[37], [38], [42], [53] and [57].

In this thesis, we are interested in the investigation of spectral properties of non-
self-adjoint operator Lm(Q) generated in Lm2 [0, 1] by the differential expression (0.1) and
the boundary conditions (0.2). First we obtain asymptotic formulas for the eigenvalues
and eigenfunctions of Lm(Q) and then find a condition on the potential for which the
root functions of the operator form a Riesz basis. Besides the spectral properties of the
operator Lm(Q) with strongly regular boundary conditions, we also study the eigenvalue
problem for (0.1)-(0.2) by the numerical methods.
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The knowledge and understanding of methods for the numerical solution of boundary
value problems for ordinary differential equations has increased significantly at the be-
ginning of 1980s. Although important theoretical and practical developments have taken
place on a number of fronts, they have not previously been comprehensively described in
any text. The most remarkable studies in this area are given by [5] and [27]. It is clear that
no modern applied mathematician, physical scientist or engineer can be properly trained
without some understanding of numerical methods.

There are a lot of methods and a lot of papers about estimation of the eigenvalues for
Sturm-Liouville operator in scalar case, for instance see [1-4], [6], [13], [14], [16], [26], [45],
[64] and references on them. However, to my best knowledge, the numerical estimation of
the eigenvalues for the differential operator generated by a system of differential equation is
investigated in this thesis for the first time. Comparing with numerical methods, it seems
finite difference methods are more uniform and admit a more unified theory since the
problem can be expressed by matrix form after applying finite difference approximations.

Let us consider the Sturm-Liouville eigenvalue problem

−y′′
+ q(x)y = λy, 0 ≤ x ≤ π, (0.7)

with boundary conditions
y(0) = y(π) = 0. (0.8)

If finite difference approximations were used on a grid

G = {xj;xj = jh, j = 0, 1, 2, ..., n+ 1, h = π/(n+ 1)} ,

then, the problem (0.7)-(0.8) replaces by an algebraic eigenvalue problem of order n such
that

(−A+D)u
∼

= λ(n)u
∼
, (0.9)

(viz. where D ≡ 0 if and only if q ≡ 0). It is well known that algebraic eigenvalues
λ
(n)
1 , λ

(n)
2 , ..., λ

(n)
n of (0.9) only yield satisfactory approximations for the fundamental eigen-

values of (0.7)-(0.8), i.e., λ1 and the first few harmonics λ2, λ3,...,λm(m� n). For example,
if q ≡ 0 and a central difference formula is used to approximate −y′′ on G, then the
corresponding algebraic eigenvalues (i.e. the algebraic eigenvalues of −A) are given by

4 sin2(kh/2)/h2, k = 1, 2, ..., n,

while the corresponding error is

ε
(n)
k = k2 − 4 sin2(kh/2)/h2, k = 1, 2, ..., n, (0.10)

which satisfies
ε
(n)
k = O(k4h2).

This clearly illustrates the rapid growth of ε(n)k as a function of k.
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In the papers [2], [4], [6], [45], [64], Sturm-Liouville eigenvalue problem with Dirichlet
boundary conditions was considered.

In [45] , it was shown how approximate algebraic eigenvalues λ(n)k derived for (0.7)-
(0.8), for general q can be corrected to yield substantially improved approximations. The
eigenvalues of

−y′′
= µy, y(0) = y(π) = 0,

are known(µk = k2), and the algebraic eigenvalues defined by

−Au
∼

= µ(n)u
∼
,

can be evaluated analytically, the error

k2 − µ(n)
k ,

can be used to estimate the asymptotic behaviour of λk − λ(n)k , and thereby generate the
corrected eigenvalue approximations

λ̃
(n)
k = λ

(n)
k + k2 − µ(n)

k .

It was proved in [45] that when q ∈ C2[0, π], there exists an α, independent of n, such that

λ̃
(n)
k + ε

(n)
k = λ

(n)
k +O(kh2), 1 ≤ k ≤ αn, α < 1. (0.11)

In [1], using the results in [26], the same eigenvalue problem (0.7) was considered with
the general boundary conditions

α1y
′
(0)− α2y(0) = 0,

β1y
′
(π) + β2y(π) = 0,

and the same result was proved as in (0.11).

Besides, in the papers [3], [13], [14], [16], periodic and antiperiodic eigenvalue problem
were investigated by numerical method.

The thesis consists of four chapters. The first chapter presents preliminary definitions
and formulations of some results to be used in Chapter 2 and Chapter 3.

In Chapter 2, we investigate the operator Lm(Q) defined by (0.1)-(0.2) in the space of
vector functions. First we prove that if the boundary conditions (0.3) are regular, then
the boundary conditions (0.2) are also regular. Then, we consider the operator Lm(Q) as
a perturbation of Lm(C) by Q−C and obtain asymptotic formulas for the eigenvalues and
eigenfunctions of Lm(Q) in term of the eigenvalues and eigenfunctions of Lm(C), where
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C is defined in (0.4). Finally, using the obtained asymptotic formulas and the theorem
of Bari (see, [25]), we prove that if the eigenvalues of the matrix C are simple, then the
root functions of the operator Lm(Q) form a Riesz basis. These results are published in
Mathematical Notes, see [47].

In Chapter 3, we investigate the numerical estimation of small eigenvalues of Lm(Q)
by finite difference method. First, we consider Dirichlet boundary conditions and then we
consider general separated boundary conditions. Applying finite difference approximations
to (0.1) and boundary conditions, we express the problem in matrix form. Then we find
the errors in each case as O(h3/2) and O(h1/2) respectively.

In Chapter 4, we give some examples which summarize the notions mentioned in Chap-
ter 2 and Chapter 3.
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Chapter 1

PRELIMINARY FACTS

1.1 Strongly Regular Boundary Conditions in Scalar
Case

Consider the n− th order linear ordinary differential expression

l(y) = y(n) + p1(x)y(n−1) + ...+ pn(x)y, (1.1)

given on the interval [0, 1]. The functions p1(x), p2(x), ..., pn(x) are called the coefficients
of the differential expression. The coefficients ps(x) will be assumed Lebesgue integrable
and complex valued functions on [0, 1] where s = 1, 2, ..., n.

Let B(y) be a linear form in the variable ya, y
′
a, ..., y

(n−1)
a , yb, y

′

b, ..., y
(n−1)
b at the bound-

ary points a and b of the interval [a, b], that is,

B(y) = α0ya + α1y
′
a + ...+ αn−1y

(n−1)
a + β0yb + β1y

′
b + ...+ βn−1y

(n−1)
b , (1.2)

where y(k)a = y(k)(a) and y(k)b = y(k)(b),for k = 0, 1, 2, ..., n − 1. If B1(y), B2(y), ..., Bn(y)
are independent linear forms then the conditions

Bv(y) = 0, v = 1, 2, ..., n, (1.3)

are called homogeneous boundary conditions.

Definition 1.1.1 Let D(L) be subspace of L2[0, 1] defined by

D(L) = {y ∈ L2[0, 1] : ∃y(n−1) ∈ AC[0, 1], l(y) ∈ L2[0, 1], Bv(y) = 0, v = 1, 2, ..., n}

where AC[0, 1] is the set of absolutely continuous functions on [0, 1]. We say that operator
L is generated by the differential expression l(y) and the boundary conditions (1.3) if
Ly = l(y) for y ∈ D(L).
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The problem of determining a function y ∈ D(L) which satisfies the conditions

l(y) = 0, (1.4)
Bv(y) = 0, v = 1, 2, ..., n,

is called the homogeneous boundary value problem.
A number λ is called an eigenvalue of an operator L if there exists a function y 6= 0

in the domain of definition of the operator L such that Ly = λy. The function y is called
the eigenfunction of the operator L for the eigenvalue λ.

The eigenvalues of the operator L are determined by the zeros of the characteristic
determinant ∆(λ), which has the form

∆(λ) =

∣∣∣∣∣∣
B1(y1) ... B1(yn)
. ... .

Bn(y1) ... Bn(yn)

∣∣∣∣∣∣ .
If ∆(λ) vanishes identically, then any number λ is an eigenvalue of the operator L.

An eigenvalue λ may be multiple zero of ∆(λ). In this case we have the following
definition:

Definition 1.1.2 An eigenvalue λ0 of the boundary value problem (1.4) is said to have
multiplicity p if λ0 is root of multiplicity p of the function ∆(λ). An eigenvalue λ0 of (1.4)
is called simple if λ0 is a simple zero of the characteristic determinant ∆(λ).

There is also one more notion called associated function. Denote by

ϕn,0(x) ≡ ϕn(x)

the eigenfunction of the operator L corresponding to the eigenvalue λn. The function
ϕn,p(x) of the operator L, for p = 1, 2, ...,mp, is said to be associated function of order p
corresponding to the same eigenvalue λn and the eigenfunction ϕn,0(x) if all the functions
ϕn,p(x) satisfy the following equations

(L− λn)ϕn(x) = 0,

(L− λn)ϕn,p(x) = ϕn,p−1(x), p = 1, 2, ...,mp,

where mp is called the length of the system of associated functions.
The set of all eigenfunctions and associated functions is called root functions.
To define adjoint operator L∗, first we need to present the definition of adjoint differ-

ential expression and adjoint boundary conditions. To do this, first we shall define the
Lagrange’s formula:

Assume that the coefficients pk(x), k = 0, 1, 2, ..., n of the differential expression

l(y) = p0(x)
dny

dxn
+ p1(x)

d(n−1)y

dxn−1
+ ...+ pn(x)y,
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have continuous derivatives up to the order (n−k) inclusive on the interval [a, b]. Further
let y and z be two arbitrary functions in C(n). By k partial integrations we get∫ b

a

pn−kzy
(k)dx = [pn−kzy

(k−1) − (pn−kz)′y(k−2) + ... (1.5)

+ (−1)k−1(pn−kz)(k−1)y]x=bx=a + (−1)k
∫ b

a

y(pn−kz)(k)dx.

Here z denotes the complex number conjugate to z, and z = z(x) denotes the function
whose values are conjugate to those of z(x). If we put k = n, n− 1, ..., 0 in (1.5) and add
the resulting equations we obtain the formula∫ b

a

l(y)zdx = P (η, ζ) +

∫
yl∗(z)dz, (1.6)

where

l∗(z) = (−1)n(p0z)(n) + (−1)n−1(p1z)(n−1) + (−1)n−2(p2z)(n−2) + ...+ pnz, (1.7)

and P (η, ζ) is a certain bilinear form in the variables

η = ya, y
′
a, ..., y

(n−1)
a , yb, y

′
b, ..., y

(n−1)
b ,

ζ = za, z
′
a, ..., z

(n−1)
a , zb, z

′
b, ..., z

(n−1)
b .

The differential expression l∗(z) defined by the formula (1.7) is called the adjoint differ-
ential expression of l(y), and (1.6) is called Lagrange’s formula. A differential expression
l(y) is said to be self adjoint if l = l∗.

Now, let B1, B2, ..., Bm be linearly independent forms in the variables

ya, y
′
a, ..., y

(n−1)
a , yb, y

′
b, ..., y

(n−1)
b

if m < 2n, we shall supplement them with other forms Bm+1, ..., B2n to obtain a linearly
independent system of 2n forms B1, B2, ..., B2n. Since these forms are linearly independent,
the variables ya, y′a, ..., y

(n−1)
a , yb, y

′
b, ..., y

(n−1)
b can be expressed as linear combinations of the

forms B1, B2, ..., B2n.
We substitute these expressions in the bilinear form P (η, ζ) which occured in La-

grange’s formula.(see (1.6)). Then P (η, ζ) becomes a linear, homogeneous form in the
variables B1, B2, ..., B2n, and its 2n coefficients are themselves linear, homogeneous forms,
which we denote by V2n, V2n−1, ..., V1, in the variables za, z′a, ..., z

(n−1)
a , zb, z

′
b, ..., z

(n−1)
b . La-

grange’s formula now takes the form∫ b

a

l(y)zdx = B1V2n +B2V2n−1 + ...+B2nV1 +

∫ b

a

yl∗(z)dx.

The forms V1, V2, ..., V2n are linearly independent. Therefore, the boundary conditions

V1 = 0, V2 = 0, ..., V2n−m = 0, (1.8)
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(and all boundary conditions equivalent to them) are said to be adjoint to the original
boundary conditions

B1 = 0, B2 = 0, ..., Bm = 0. (1.9)

Boundary conditions are self adjoint if they are equivalent to their adjoint boundary
conditions.

Definition 1.1.3 Let L be the operator generated by the expression l(y) and the boundary
conditions (1.9). The operator generated by l∗(y) and the boundary conditions (1.8) will
be denoted by L∗ and called the adjoint operator to L.

Now let us define the process for boundary conditions, called normalization; before the
definition of regular boundary conditions.

We wish to investigate the different systems Bv(y), v = 1, 2, ..., n, of linear forms which
are defined by a given differential operator. If y(k)0 or y(k)1 appear explicitly in the form
B(y) but y(v)0 and y(v)1 do not, for any v > k, then we say that the form B(y) has order
k. We consider the forms Bv(y) of order (n − 1), if there are any. By replacing them, if
necessary, by equivalent linear combinations, we can arrange that the maximum number
of forms of order (n− 1) is ≤ 2. The remaining forms have orders ≤ (n− 2); we apply the
same process to the forms of order (n − 2) and reduce their number to a minimum; and
so on.

The operations described are called the normalization of the boundary conditions, and
the boundary conditions are said to be normalized. From the way in which they are
constructed it follows that the normalized boundary conditions must have the form

Bv(y) =: Bv0(y) +Bv1(y) = 0,

where

Bv0(y) = αvy
(kv)
0 +

kv−1∑
j=0

αvjy
(j)
0 ,

Bv1(y) = βvy
(kv)
1 +

kv−1∑
j=0

βvjy
(j)
1 ,

n− 1 ≥ k1 ≥ k2 ≥ ... ≥ kn ≥ 0, kv+2 < kv,

and for each value of the suffix v at least one of the numbers αv, βv is non-zero.
Now we are ready to define regular boundary conditions:

Definition 1.1.4 Suppose n is even. The normalized boundary conditions are said to be
regular if the numbers θ−1 and θ1 defined by the identity

θ−1
s

+ θ0 + θ1s =

11



∣∣∣∣∣∣∣∣
α1ω

k1
1 ... α1ω

k1
µ−1 (α1 + sβ1)ω

k1
µ (α1 + 1

s
β1)ω

k1
µ+1 β1ω

k1
µ+2 ... β1ω

k1
n

α2ω
k2
1 ... α2ω

k2
µ−1 (α2 + sβ2)ω

k2
µ (α2 + 1

s
β2)ω

k2
µ+1 β2ω

k2
µ+2 ... β2ω

k2
n

. ... . . . . ... .

αnω
kn
1 ... αnω

kn
µ−1 (αn + sβn)ωknµ (αn + 1

s
βn)ωknµ+1 βnω

kn
µ+2 ... βnω

kn
n

∣∣∣∣∣∣∣∣
are different from zero. Here ω1, ω2, ..., ωn are different n− th roots of −1 arranged in an
order in each case to suit later requirements.

Remark 1.1.1 Note that, in the case n = 2, the determinant in the Definition 1.1.4 has
the form

θ−1
s

+ θ0 + θ1s = det

[
(α1 + sβ1)ω

k1
1 (α1 + 1

s
β1)ω

k1
2

(α2 + sβ2)ω
k2
1 (α2 + 1

s
β2)ω

k2
2

]
,

where ω1 = i and ω2 = −i.

Definition 1.1.5 The boundary conditions are said to be strongly regular if

θ20 − 4θ1θ−1 6= 0.

Theorem 1.1.1 A differential operator of the n − th order which is generated by an
expression and by regular boundary conditions has precisely denumerably many eigenvalues,
whose behaviour at infinity is specified for even n = 2µ, and θ20−4θ1θ−1 6= 0 by the following
formulae:

λ′k = (−1)µ(2kπ)2µ
{

1∓ µ ln0 ξ
′

kπi
+O(

1

k2
)

}
,

λ′′k = (−1)µ(2kπ)2µ
{

1∓ µ ln0 ξ
′′

kπi
+O(

1

k2
)

}
,

where ξ′ and ξ′′ are the roots of the equation

θ1ξ
2 + θ0ξ + θ−1 = 0

where the upper or lower sign is to be taken according as n = 4v or n = 4v + 2.
For even n, n = 2µ, and θ20 − 4θ1θ−1 = 0, the following sequences are obtained:

λ′k = (−1)µ(2kπ)2µ
{

1∓ µ ln0 ξ

kπi
+O(

1

k3/2
)

}
,

λ′′k = (−1)µ(2kπ)2µ
{

1∓ µ ln0 ξ

kπi
+O(

1

k3/2
)

}
,

k = N,N + 1, ...,

where ξ is the double root, occuring in this case. The signs are to be chosen in the same
way.

In the first case, all eigenvalues of sufficiently large modulus are simple; but in the
second case all eigenvalues of sufficiently large modulus can be either simple or double.

Remark 1.1.2 It follows from Theorem 1.1.1 that the boundary conditions are strongly
regular if and only if ξ′ 6= ξ′′, that is, the eigenvalues are far from each other. (see [49]).
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1.2 On Sturm-Liouville Operators

In this section, we consider Sturm-Liouville operators generated by the most general
boundary conditions which have the form

B1 =: a1y
′
0 + b1y

′
1 + a0y0 + b0y1 = 0, (1.10)

B2 =: c1y
′
0 + d1y

′
1 + c0y0 + d0y1 = 0.

Proposition 1.2.1 In the following three cases the boundary conditions (1.10) are strongly
regular:

(a) a1d1 − b1c1 6= 0,
(b) a1d1 − b1c1 = 0, |a1|+ |b1| > 0, b1c0 + a1d0 6= 0, a1 6= ±b1 and c0 6= ±d0,
(c) a1 = b1 = c1 = d1 = 0, a0d0 − b0c0 6= 0.

Proof. (a) a1d1 − b1c1 6= 0
By solving (1.10) for y′0 and y′1, with the condition a1d1 − b1c1 6= 0, we have the

boundary conditions in the form

y′0 + a11y0 + a12y1 = 0, (1.11)
y′1 + a21y0 + a22y1 = 0.

Here, α1 = 1, α2 = 0, β1 = 0 and β2 = 1, so, by Remark 1.1.1 we have,

θ−1
s

+ θ0 + θ1s =

∣∣∣∣ i −i
si −1

s
i

∣∣∣∣ =
1

s
− s.

It is clear that boundary conditions are regular since θ1 = −1 and θ−1 = 1. Moreover,
since θ20 − 4θ1θ−1 = 0− 4 · (−1) · 1 = 4 6= 0, the boundary conditions are strongly regular.

(b) a1d1 − b1c1 = 0, |a1|+ |b1| > 0
In this case we can transform the conditions (1.10) so;

a1y
′
(0) + b1y

′
(1) + a0y(0) + b0y(1) = 0, (1.12)

c0y(0) + d0y(1) = 0.

Hence,

θ−1
s

+ θ0 + θ1s =

∣∣∣∣ (a1 + sb1)i −(a1 + 1
s
b1)i

(c0 + sd0) c0 + 1
s
d0

∣∣∣∣
= i(b1c0 + a1d0)

(
s+

1

s

)
+ 2(a1c0 + b1d0)i.

which implies that

θ0 = 2(a1c0 + b1d0)i, θ1 = θ−1 = i(b1c0 + a1d0)

13



We see that the boundary conditions are regular if b1c0+a1d0 6= 0.Moreover, the conditions
are strongly regular if

θ20 − 4θ1θ−1 = −4(a1c0 + b1d0)
2 + 4(b1c0 + a1d0)

2 = (a21 − b21)(c20 − d20) 6= 0,

that is, the conditions a1 6= ±b1 and c0 6= ±d0 hold.
(c) a1 = b1 = c1 = d1 = 0
In this case the boundary conditions are in the form

a0y0 + b0y1 = 0, (1.13)
c0y0 + d0y1 = 0.

Hence,
θ−1
s

+ θ0 + θ1s =

∣∣∣∣ a0 + sb0 a0 + 1
s
b0

c0 + sd0 c0 + 1
s
d0

∣∣∣∣ = (a0d0 − b0c0)(s−
1

s
)

Therefore the boundary conditions are regular if a0d0 − b0c0 6= 0. Since

θ20 − 4θ1θ−1 = 4(a0d0 − b0c0)2 6= 0,

the boundary conditions are also strongly regular.
Besides the regular boundary conditions can be classified and investigated in following

forms (see, [31]). To do this, let

A =

[
a1 b1 a0 b0
c1 d1 c0 d0

]
,

be the coefficient matrix associated with B1, B2. For integers i, j with 1 ≤ i ≤ j ≤ 4, let
A(ij) denote the 2× 2 submatrix of A obtained by retaining the i−th and j−th columns
and let

Aij = detA(ij).

In [30], it was proved that Aij satisfies the following fundamental quadratic equation

A12A34 − A13A24 + A14A23 = 0.

In terms of the Aij, the self adjoint of L is characterized by the following theorem:

Theorem 1.2.1 L = L∗ iff there exists a complex number γ 6= 0 such that

A12 = γA12, A23 = γA23,

A24 = γA24, A13 = γA13,

A14 = γA14, A34 = γA34.

Moreover, the characteristic determinant is given by

∆(ρ) = −[A12ρ
2 − i(A14 + A23)ρ+ A34]e

iρ

+ [A12ρ
2 + i(A14 + A23)ρ+ A34]e

−iρ + 2i[A13 + A24]ρ.

Now we present the theorems which are useful to calculate the eigenvalues:

14



Theorem 1.2.2 The point λ0 = ρ20 6= 0 is an eigenvalue of L iff the point ρ0 6= 0 is a zero
of ∆, in which case the algebraic multiplicity of λ0 is equal to the order of ρ0 as a zero of
∆. Moreover, λ0 = 0 is an eigenvalue of L iff

A34 − (A14 + A23)− (A13 + A24) = 0.

Note that ∆(−ρ) = −∆(ρ), so ρ0 is a zero of ∆ iff -ρ0 is a zero of ∆. Also, when A12 = 0
and A14 + A23 6= 0, then associated with ∆, the quadratic polynomial is defined as

Q(z) = i(A14 + A23)z
2 + 2i(A13 + A24)z + i(A14 + A23),

and Q has two distinct roots iff A14 + A23 6= ∓(A13 + A24).

Theorem 1.2.3 Let ξ0 6= 0 and η0 6= 0 be constants with ξ0 6= η0, let

f(ρ) = [eiρ − ξ0][eiρ − η0],

and let
h(ρ) = [eiρ − ξ0]2.

Then
(a) the zeros of f are given by the two sequences

µ′k = (Argξ0 + 2kπ)− i ln |ξ0| , k = 0,±1,±2, ...,

µ′′k = (Argη0 + 2kπ)− i ln |η0| , k = 0,±1,±2, ...,

where µ′k 6= µ′′l for all k, l and each µ′′k is a zero of order 1 of f.
(b) the zeros of h are given by the sequence

µk = (Argξ0 + 2kπ)− i ln |ξ0| , k = 0,±1,±2, ...,

where each µk is a zero of order 2 of h.
In addition, if

g(ρ) =
1

ρ
[A2e

2iρ + A1e
iρ + A0] +

1

ρ2
[B2e

2iρ +B1e
iρ +B0],

where the Ai, Bi are constants and if F = f + g,then
(c) the zeros of Fare given by two sequences

ρ′k = µ′k + ε′k, |ε′k| ≤
γ

|k|
, k = ±k0,±(k0 + 1),

ρ′′k = µ′′k + ε′′k, |ε′′k| ≤
γ

|k|
, k = ±k0,±(k0 + 1),

plus a finite number of additional zeros, where γ > 0 is a constant and k0 is a positive
integer, ρ′k 6= ρ′l for all k, l and each ρ′k and each ρ′′k is a zero of order 1 of F .
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Now, let us present the cases related to strongly regular boundary conditions in terms
of the notation used in [31].

Case 1: The differential operator L belongs to Case 1 provided

A12 6= 0 and A13 = A14 = A23 = A24 = A34 = 0.

In this case the characteristic determinant is given by

∆(ρ) = −A12ρ
2eiρ[eiρ − 1][eiρ + 1],

and the nonzero zeros of ∆ are clearly determined by the function

f(ρ) = [eiρ − 1][eiρ + 1].

Applying Theorem 1.2.3(a) with ξ0 = 1 and η0 = −1, we see that the nonzero zeros of ∆
are precisely

ρk = kπ, k = ±1,±2, ....

From Theorem 1.2.2 it follows that the nonzero eigenvalues of L are

λk = (kπ)2, k = 1, 2, ....

Finally, in Case 1 there is only one possible normalized form for the coefficient matrix A,
namely

A =

[
1 0 0 0
0 1 0 0

]
,

which corresponds to Neumann boundary conditions and L is always self adjoint.
Case 2: The principal strategy for studying Case 2 is to treat it as a perturbation of

Case 1. For the differential operator L to belong to Case 2, it must satisfy the conditions

A12 6= 0 and A13, A14, A23, A24, A34 are not all zero.

The characteristic determinant for this case is given by

∆(ρ) = −A12ρ
2e−iρ[eiρ − 1][eiρ + 1]

+ A12ρ
2e−iρ

1

A12ρ

[
i(A14 + A23)e

2iρ + 2i(A13 + A24)e
iρ + i(A14 + A23)

]
− A12ρ

2e−iρ
A34

A12ρ2
[e2iρ − 1],

and the nonzero zeros of ∆ are clearly determined by the function

F (ρ) = f(ρ) + g(ρ),

where
f(ρ) = [eiρ − 1][eiρ + 1],
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and

g(ρ) = − 1

A12ρ

[
i(A14 + A23)e

2iρ + 2i(A13 + A24)e
iρ + i(A14 + A23)

]
+

A34

A12ρ2
[e2iρ − 1].

Using Theorem 1.2.3(c), with ξ0 = 1 and η0 = −1, the nonzero zeros of ∆ are given by
a sequence

ρk = kπ + εk with |εk| ≤
γ

|k|
, k = ±k0,±(k0 + 1), ...,

plus a finite number of additional zeros, where γ > 0 is a constant and k0 is a positive
integer and where each ρk is a zero of order 1 of ∆. It follows that the eigenvalues of L
are given by the sequence

λk = ρ2k, k = k0, k0 + 1, ...,

plus a finite number of additional eigenvalues. The coefficient matrix A can have only one
possible normalized form in Case 2, namely,

A =

[
1 0 a0 b0
0 1 c0 d0

]
,

with a0, b0, c0, d0 not all zero. For the normalized form, L is self adjoint iff −b0 = c0, d0 = d0
and a0 = a0.

Case 3: It is possible to explicitly calculate all the spectral quantities, although some
of the calculations are quite complicated. To belong to Case 3, the differential operator L
must satisfy the conditions

A12 = 0, A14 + A23 6= 0, A14 + A23 6= ∓(A13 + A24), A34 = 0.

The characteristic determinant for this case is given by

∆(ρ) = i(A14 + A23)ρe
−iρ[eiρ − ξ0][eiρ − η0],

where ξ0, η0 are the roots of the quadratic polynomial Q. Clearly ξ0η0 = 1, while ξ0 6= η0
by the third condition, i.e. A34 = 0 and hence, ξ0 6= ±1 and η0 6= ±1. Also, the nonzero
zeros of ∆ are clearly determined by the function

f(ρ) = [eiρ − ξ0][eiρ − η0],

whose zeros are all unequal to 0 because ξ0 6= 1 and η0 6= 1.
Applying Theorem 1.2.3(a), we see that the nonzero zeros of ∆ are given precisely by

the two sequences

ρk = (Argξ0 + 2kπ)− i ln |ξ0| , k = 0,±1,±2, ..., (*)
ζk = (−Argξ0 + 2kπ) + i ln |ξ0| , k = 0,±1,±2, ...,

where ρk 6= ζl for all k, l and where each ρk and each ζk is a zero of order 1 of ∆. Observe
that ζk = −ρ−k for k = 0,±1,±2, ... and that

∆(1)(ρk) = (A14 + A23)(η0 − ξ0)ρk, k = 0,±1,±2, ....
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We conclude that the nonzero eigenvalues of L are given by the sequence

λk = ρ2k, k = 0,±1,±2, ....

Finally in Case 3 the coefficient matrix A can have three possible normalized forms, viz

A =

[
1 b1 0 0
0 0 1 d0

]
,

with d0 6= −b1, b1 6= ±1 and d0 6= ±1 or

A =

[
1 b1 0 0
0 0 0 1

]
,

with b1 6= ±1, or

A =

[
0 1 0 0
0 0 1 d0

]
,

with d0 6= ±1. If A has the normalized form (first one), then L is self adjoint iff b1d0 = 1.
Case 4: It is treated as a perturbation of Case 3, the technique being similar to the

way Case 2 was treated as a perturbation of Case 1. The differential operator L belongs
to Case 4 provided it satisfies the conditions

A12 = 0, A14 + A23 6= 0, A14 + A23 6= ∓(A13 + A24), A34 6= 0.

In this case,

∆(ρ) = i(A14 + A23)ρe
−iρ×{

[eiρ − ξ0][eiρ − η0]−
A34

i(A14 + A23)ρ

[
e2iρ − 1

]}
,

for the characteristic determinant, where ξ0, η0 are the roots of the quadratic polynomial
Q with ξ0η0 = 1 and ξ0 6= η0. Clearly, the nonzero zeros of ∆ are determined by the
function

F (ρ) = f(ρ) + g(ρ),

where
f(ρ) = [eiρ − ξ0][eiρ − η0],

and
g(ρ) = − A34

i(A14 + A23)ρ

[
e2iρ − 1

]
.

It follows from Theorem 1.2.3(c) that the nonzero zeros of ∆ are given by two sequences

ρk = (Argξ0 + 2kπ)− i ln |ξ0|+ εk with |εk| ≤
γ

|k|
, (**)

ζk = (−Argξ0 + 2kπ) + i ln |ξ0| − εk with |εk| ≤
γ

|k|
,

18



k = ±k0,±(k0 + 1), ..., plus a finite number of additional zeros, where γ > 0 is a constant
and k0 is a positive integer, where ρk 6= ζl for all k, l and where each ρk and each ζl is
a zero of order 1 of ∆. We can assume without loss of generality that ζk = −ρ−k for
k = ±k0,±(k0 + 1), ...Thus, the eigenvalues of L are given by the sequence

λk = ρ2k, k = ±k0,±(k0 + 1), ...,

plus a finite number of additional eigenvalues.
The coefficient matrix A can have three possible normalized forms in Case 4:

A =

[
1 b1 0 b0
0 0 1 d0

]
,

with d0 6= −b1,b1 6= ±1, d0 6= ±1, and b0 6= 0; or

A =

[
1 b1 a0 0
0 0 0 1

]
,

with b1 6= ±1 and a0 6= 0; or

A =

[
0 1 0 b0
0 0 1 d0

]
,

with d0 6= ±1 and b0 6= 0. When A is in the normalized form L is selfadjoint iff b1d0 = 1
and Argb0 = Arg(±b1).

Case 5: It is simple to treat because all the spectral quantities are easily computed.
To belong to Case 5, the differential operator L must satisfy the conditions

A12 = 0, A14 + A23 = 0, A34 6= 0, A13 + A24 = 0, A13 = A24.

We can easily see that the characteristic determinant for this case is given by

∆(ρ) = −A34e
−iρ[eiρ − 1][eiρ + 1],

and obviously the function
f(ρ) = [eiρ − 1][eiρ + 1]

determines the nonzero zeros of ∆. It follows from Theorem 1.2.3(a) with ξ0 = 1 and
η0 = −1 that the nonzero zeros of ∆ are

ρk = kπ, k = ±1,±2, ...,

with each ρk being a zero of order 1 of ∆. Therefore, the nonzero eigenvalues of L are

λk = (kπ)2, k = 1, 2, ....

We note that there is only one normalized form for the coefficient matrix A, namely,

A =

[
0 0 1 0
0 0 0 1

]
,

which corresponds to Dirichlet boundary conditions. It should also be noted that L is
always self-adjoint in this case.
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Theorem 1.2.4 In cases 1-5, the boundary conditions are strongly regular.

Proof. One can easily observe that, Case 1 and Case 2 are related to the case which
is mentioned in Proposition 1.2.1(a), since the condition a1d1 − b1c1 6= 0 holds. Case 5
is familiar with the case written in Proposition 1.2.1(c), when the conditions a1 = b1 =
c1 = d1 = 0 and a0d0 − b0c0 6= 0 hold. In Case 3 and Case 4, one can easily see from the
formulas (*) and (**), the conditions ξ0η0 = 1 and ξ0 6= η0 hold, that is, the eigenvalues
are far from each other. Therefore, from Remark 1.1.1 we say that Case 3 and Case 4 are
also strongly regular.
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1.3 Linear operators in the space of vector-functions

Let Cm denote anm−dimensional complex vector space; i.e. Cm consists of all vectors
y = (y1, y2, ..., ym) where each yr is a complex number. Functions y = y (x) , of the real
independent variable x, whose values are not numbers but vectors in Cm are called vector
functions. A vector function is therefore simply a system of m complex-valued functions

y (x) = (y1 (x) , y2 (x) , ..., ym (x)) ,

and each of the scalar functions yr (x) is called a component of the vector function y (x) .
The function y(x) is said to be continuous at the point x0 if all its components are con-

tinuous at x0.Similarly, a function y(x) is said to be differentiable if each of its components
is differentiable, and by definiton

y′(x) = (y′1 (x) , y′2 (x) , ..., y′m (x)) .

Derivatives of higher order are defined in a similar way. It may be easily seen that:

(y + z)′ = y′ + z′, (λy)′ = λ′y + λy′,

(y, z)′ = (y′, z) + (y, z′),

where

(y, z) =
m∑
k=1

yk(x)zk(x).

In addition to vector functions we shall also be concerned with operator functions.
The values of operator functions are linear operators in Cm. Such operators can be repre-
sented by means of square matrices A(x) = [ajn(x)] of order m, whose elements are scalar
functions.

Essentially, operator-functions are also vector functions, since the aggregate of all linear
operators is a vector space of dimension m2. Consequently an operator-function A(x) will
be said to be continuous at the point x0 if all its functions ajk(x) are continuous at x0,
and to be differentiable at x0 if all the ajk(x) are differentiable at x0. So, by definition,
A′(x) is the matrix whose elements are a′

jk(x). We see that the following rules hold:

(A+B)′ = A′ +B′, (λA)′ = λ′A+ λA′,

(AB)′ = A′B + AB′, (Ay)′ = A′y + Ay′.

Definition 1.3.1 Let P0(x), P1(x), ..., Pn(x) be operator functions which are continuous
in [a, b] and suppose detP0(x) 6= 0 in [a, b] . An expression of the form

l(y) = P0(x)y(n) + P1(x)y(n−1) + ...+ Pn(x)y,

is called a linear differential expression in the space of vector functions.
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We remark that, essentially, l(y) is a system of m differential expressions of the n−th
order which depend on m scalar functions y1(x), y2(x), ..., ym(x).

We denote by ya,y
′
a, ...,y

(n−1)
a ;yb,y

′

b, ...,y
(n−1)
b the value of the vector function and its

first (n− 1) derivatives at the points a and b respectively, so that ya, ...,y
(n−1)
b are vectors

in the space Cm. We put

U(y) = A0ya + A1y
′

a + ...+ An−1y
(n−1)
0 +B0yb +B1y

′

b + ...+Bn−1y
(n−1)
b , (1.14)

where A0, ..., An−1, B0, ..., Bn−1 are fixed linear operators in the space Cm.

Definition 1.3.2 If several such forms (1.14) are given, U1(y), U2(y), ..., Uq(y), then
equations of the form

U1(y) = 0, U2(y) = 0, ..., Uq(y) = 0 (1.15)

are called boundary conditions.

Definition 1.3.3 Let D(L) be subspace of Lm2 [0, 1] defined by

D(L) = {y ∈ Lm2 [0, 1] : ∃y(n−1) ∈ AC[0, 1], l(y) ∈ L2[0, 1], Uv(y) = 0, v = 1, 2, ...,m}

where AC[0, 1] is the set of absolutely continuous functions on [0, 1]. We say that operator
L is generated by the differential expression l(y) and the boundary conditions (1.15) if
Ly = l(y) for y ∈ D(L).

We will assume in the definiton of D(L) that the forms

Uv(y) = Av,0ya + ...+ Av,n−1y
(n−1)
a +Bv,0yb + ...+Bv,n−1y

(n−1)
b , v = 1, 2, ...q,

are linearly independent; this implies that the rank of the matrix formed from all the
elements of the matrices [Avj], [Bvj], viz.

A10, ..., A1,n−1, B10, ..., B1,n−1
A20, ..., A2,n−1, B20, ..., B2,n−1
. ..., . . . .

Aq0, ..., Aq,n−1, Bq0, ..., Bq,n−1

 ,
is equal to mq; for each form Uv(y) has m components. From now on we shall mainly be
concerned with the case q = n.

Definition 1.3.4 The problem of determining a vector-function y which shall satisfy the
conditions

l(y) = 0, (1.16)
Uv(y) = 0, v = 1, 2, ..., n, (1.17)

is called the homogeneous boundary value problem.
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We consider the n2 × n2 matrix,

U =


U1(Y1) U1(Y2) ... U1(Yn)
U2(Y1) U2(Y2) ... U2(Yn)
. . ... .

Un(Y1) Un(Y2) ... Un(Yn)

 ,
where Y1, Y2, ..., Yn are the solutions of the homogeneous equation

l(Y ) = P0(x)Y (n) + P1(x)Y (n−1) + ...+ PnY = 0.

If these solutions are linearly independent, it can be seen that any solution of the equation
l(y) = 0 has the form

y = Y1c1 + Y2c2 + ...+ Yncn,

where c1, c2, ..., cn are arbitrary constant vectors in Cm.
Therefore, a homogeneous boundary-value problem (1.16), (1.17) has a non trivial

solution if and only if the determinant of the matrix U vanishes.
Now let us give the definition of eigenvalue of a differential operator in the space of

vector functions.
A number λ is called an eigenvalue of an operator L if there exists a function y 6= 0

in the domain of definition of the operator L such that Ly = λy. In particular, the
eigenvalues are the zeros of the characteristic determinant

∆(λ) =

∣∣∣∣∣∣
U1(Y1) . . . U1(Yn)
. . . . .

Un(Y1) . . . Un(Yn)

∣∣∣∣∣∣ ,
where Y1, Y2, ..., Yn are linearly independent solutions of the operator equation l(Y )−λY =
0.

In fact, according to the definitions given until now, it is not difficult to see that the
ordinary eigenvalue problem in the space of vector functions is equivalent to a certain
generalized eigenvalue problem for scalar functions.

Now let us state the definitons of adjoint differential expression, adjoint boundary
conditions and finally adjoint operator.

We now further require that, for k = 0, 1, 2, ..., n, the coefficient matrices Pk(x) shall
each be continuously differentiable (n − k) times. We denote the scalar product of the
vectors y,z ∈ Cm by (y, z). Integrating by parts, we obtain

b∫
a

(l(y), z)dx = P (η, ζ) +

b∫
a

(y, l∗(z))dx, (1.18)

where P (η, ζ) is a bilinear form in

η = (ya,y
′

a, ...,y
(n−1)
a ;yb,y

′

b, ...,y
(n−1)
b ),
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and
ζ = (za, z

′

a, ..., z
(n−1)
a ; zb, z

′

b, ..., z
(n−1)
b ),

and where
l∗(z) = (−1)n(P ∗0 z)(n) + (−1)n−1(P ∗1 z)(n−1) + ...+ P ∗nz.

The differential expression l∗(z) is said to be adjoint to l(z). Formula (1.18) is called
Lagrange’s formula. A differential expression l(y) is said to be self-adjoint if l∗(y) = l(y).

We supplement any given set of linearly independent forms U1,..., Un, to form a complete
system of linearly independent forms U1, U2, ..., U2n. We can tansform the formula (1.18)
to

b∫
a

(l(y), z)dx = (U1, V2n) + (U2, V2n−1) + ...+ (U2n, V1) +

b∫
a

(y, l∗(z))dx, (1.19)

where V1, V2, ..., V2n are linearly independent forms in the variables

za, z
′

a, ..., z
(n−1)
a ; zb, z

′

b, ..., z
(n−1)
b

The boundary conditions
Vv = 0, v = 1, 2, ..., n, (1.20)

(or any conditions equivalent to them) are said to be adjoint to the boundary conditions

Uv = 0, v = 1, 2, ..., n. (1.21)

Definition 1.3.5 The operator generated by the differential expression l∗(y) and the bound-
ary conditions (1.20) is said to be adjoint to the operator L generated by the differential
expression l(y) and the boundary conditions (1.21). It will be denoted by L∗.

It follows from the formula (1.19) that for the operators L and L∗, the equation

b∫
a

(Ly, z)dx =

b∫
a

(y, L∗z)dx,

holds. An operator L is self adjoint if L∗ = L. In other words, an operator L is self
adjoint if it is generated by a self-adjoint differential expression and self-adjoint boundary
conditions.

Now we will give the definiton of normalization for the boundary conditions in vectoral
case.

A given differential operator is characterised by the boundary conditions Uv(y) =
0, v = 1, 2, ...n. The number k is called the order of a form U(y) if U(y) contains at least
one of the vectors y(k)

0 and y
(k)
1 but does not contain the vectors y(v)

0 or y(v)
1 for v > k. We

consider forms U(y) of order (n− 1), if there are any; they have the form

Uv(y) = Av,n−1y
(n−1)
0 +Bv,n−1y

(n−1)
1 + ....
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The rectangular matrix [Av,n−1, Bv,n−1] has m rows and 2m columns. The maximum
number of linearly independent rows of 2m elements is, however, 2m; if, then, we replace
the rows in the forms of order (n− 1) by linear combinations of these rows (if this process
is necessary), we can arrange that not more than two forms of order (n− 1) occur.

Continuing in the same way with the remaining forms, we can, after a finite number
of such steps, reduce the boundary conditions to the form

Uv(y) = Uv0(y) + Uv1(y) = 0

where

Uv0(y) = Avy
(kv)
0 +

kv−1∑
j=0

Avjy
(j)
0 , (1.22)

Uv1(y) = Bvy
(kv)
1 +

kv−1∑
j=0

Bvjy
(j)
1 ,

n− 1 ≥ k1 ≥ k2 ≥ ... ≥ kn ≥ 0, kv+2 > kv,

and where, for each v, v = 1, 2, ..., n, at least one of the matrices Av, Bv is different from
the zero-matrix.

The operations just described are referred as the normalization of the boundary condi-
tions, and the finally boundary conditions of the form (1.22) are called normalized bound-
ary conditions.

The asymptotic formulae are going to be derived for a particular class of boundary
conditions which we shall call regular. The definiton of regular boundary conditions de-
pends on whether n is even or odd. In our problem, n is even. We consider a fixed domain
Sk, and number ω1, ω2, ..., ωn so that, for ρ ∈ S,

<(ρω1) ≤ <(ρω2) ≤ ... ≤ <(ρωn).

Definition 1.3.6 Suppose n is even; n = 2µ. The normalized boundary conditions (1.22)
are said to be regular if both the numbers θ−m and θm defined by the equation

θ−ms
−m + θ−m+1s

−m+1 + ...+ θms
m =∣∣∣∣∣∣∣∣

A1ω
k1
1 ... A1ω

k1
µ−1 (A1 + sB1)ω

k1
µ (A1 + 1

s
B1)ω

k1
µ+1 B1ω

k1
µ+2 ... B1ω

k1
n

A2ω
k2
1 ... A2ω

k2
µ−1 (A2 + sB2)ω

k2
µ (A2 + 1

s
B2)ω

k2
µ+1 B2ω

k2
µ+2 ... B2ω

k2
n

. ... . . . . ... .

Anω
kn
1 ... Anω

kn
µ−1 (An + sBn)ωknµ (An + 1

s
Bn)ωknµ+1 Bnω

kn
µ+2 ... Bnω

kn
n

∣∣∣∣∣∣∣∣
don’t vanish.

We can see at once regularity does not depend on the particular domain Sk selected.
In questions concerning the asymptotic behaviour of the eigenvalues, the equation

θ−ms
−m + θ−m+1s

−m+1 + ...+ θms
m = 0, (1.23)
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for even n, plays an important part. If the boundary conditions are regular, this equation
has order 2m, and all the roots are different from zero. In the following theorem we
assume that the coefficients of the differential expression considered are continuous matrix
functions in the interval [0, 1].

Theorem 1.3.1 Let L be a differential operator of n − th order, defined in the interval
[0, 1] , whose differential expression contains no derivative of the (n − 1) − th order, and
whose boundary conditions are regular. If n is even, then to each simple root ξ of the
equation (1.23) for the domain S0 corresponds a sequence λk of eigenvalues of the operator
L, and

λk = (2kπi)n
[
1∓ n ln0 ξ

2kπi
+O

(
1

k2

)]
k = N, (N + 1), ..

where the upper or lower signs hold according as n = 4v or n = 4v + 2. To each multiple
zero ξ of equation (1.23), with multiplicity r, correspond r sequences of eigenvalues λk,j of
the operator L, and

λk,j = (2kπi)n
[
1∓ n ln0 ξ

2kπi
+O

(
1

k1+1/r

)]
j = 1, 2, ..., r; k = N, (N + 1), ..

and again the sign is − or + according as n = 4v or n = 4v + 2.
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1.4 On Riesz Bases

In this section, we give the basic definitons for Riesz basis. As it is mentioned in
introduction, we need these definitions to determine if root functions form a Riesz basis
or not. These descriptions are clearly given in [25].

A sequence {φj}∞1 of vectors of a Banach space Ω is called a basis of this space if every
vector x ∈ Ω can be expanded in a unique way in a series

x =
∞∑
j=1

cjφj, (1.24)

which converges in the norm of the space Ω. In this expansion the coefficients cj are
obviously linear functionals of the element x ∈ Ω :

cj = ϕj(x), j = 1, 2, , ..., (1.25)

Moreover by a well known theorem of Banach, these linear functionals are continuous
(ϕj ∈ Ω∗; j = 1, 2, ...) and there exists a constant Cφ associated with them such that

|φj|−1 ≤ |ϕj| ≤ Cφ |φj|−1 . (1.26)

We shall apply these generel results to a basis {φj} of a Hilbert space Ω = H. In this case
the relations (1.25) can be written in the form

cj = (x, ϕj) (ϕj ∈ H; j = 1, 2, ...) (1.27)

Setting x = φk(k = 1, 2, ...), we obtain

(φk, ϕj) = δjk (j, k = 1, 2, ...)

Let us recall that two sequences {ςj} and {νj} with elements from H are said to be
biorthogonal, if

(fj, gk) = δjk (j, k = 1, 2, ...)

For a given sequence {fj}∞1 ∈ H a biorthogonal sequence {gj}∞1 ∈ H exists if and only if
each element fj (j = 1, 2, ...) lies outside the closed linear hull Υj of all the other elements
fk (k 6= j). If this condition is fullfilled then the biorthogonal sequence {gj}∞1 will be
uniquely determined if and only if the system {fj}∞1 is complete in H. In this case the
orthogonal complement %⊥j = H 	 Υj(j = 1, 2, ...) is one dimensional and the element gj
is determined by the conditions gj ∈ %⊥j , (gj, fj) = 1 (j = 1, 2, ...).

Thus for every basis {φj}∞j=1 the biorthogonal sequence {ϕj}∞1 is defined uniquely.
From the equalities (1.24) and (1.27) it follows that any vector f which is orthogonal

to all the vectors ϕj(j = 1, 2, ...) equals zero. Consequently the sequence biorthogonal to
a basis is always complete in H.
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Theorem 1.4.1 The sequence {ϕj}∞1 , biorthogonal to a basis {φj}∞1 of a Hilbert space
H, is also a basis of H.

We shall say that a sequence {φj} of vectors from H is almost normalized if

inf
n
|φn| > 0 and sup

n
|φn| <∞

If the basis {φj}∞1 of the space H is almost normalized, then the biorthogonal basis {ϕj}∞1
is almost normalized.

Let {φj} be an arbitrary orthonormal basis of the space H, and A some bounded linear
invertible operator. Then for any vector f ∈ H one has

A−1f =
∞∑
j=1

(A−1f, φj)φj =
∞∑
j=1

(f, A∗−1φj)φj

and consequently

f =
∞∑
j=1

(f, fj)ϕj

where
ϕj = Aφj, fj = A∗−1φj j = 1, 2, ...

Obviously
(ϕj, fj) = δjk j, k = 1, 2, ...

Therefore if

f =
∞∑
j=1

cjϕj

then
cj = (f, fj) j = 1, 2, ...

i.e. the expansion is unique.
Thus every bounded invertible operator transforms any orthonormal basis into some

other basis of the space H. A basis {ϕj} of the space H which is obtained from an
orthonormal basis by means of such a transformation is called a basis equivalent to an
orthonormal basis (in the terminology of N. K. Bari, a Riesz basis).

Theorem 1.4.2 The followings are equivalent:
(i) {ϕj} is a Riesz basis.
(ii) The sequence {ϕj} becomes an orthonormal basis of H following the appropriate

replacement of the inner product (f, g) by some new one (f, g)1 ,

c1(f, f) ≤ (f, f)1 ≤ c2(f, f)

.
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(iii) The sequence {ϕj} is complete in H and there exist positive constants a1, a2, ...
such that for any positive integer n and any complex numbers γ1, ..., γn one has

a2

n∑
j=1

|γj|2 ≤

∣∣∣∣∣
n∑
j=1

|γjϕj|

∣∣∣∣∣
2

≤ a1

n∑
j=1

|γj|2 .

(iv) The sequence {ϕj} is complete in H and its Gram matrix ‖(ϕj, ϕk)‖∞1 generates
a bounded invertible operator in l2.

(v) {ϕj} is complete in H,there exist a complete biorthogonal sequence {xj} and for
any f ∈ Hone has ∑

|(f, ϕj)|2 <∞,

and ∑
|(f, xj)|2 <∞.

Moreover, let us give the definiton of basis of subspaces:
A sequence {Hk}∞1 of nonzero subspaces Hk ⊂ H is said to be a basis (of subspaces)

of the space H, if any vector x ∈ H can be expanded in a unique way in a series of the
form

x =
∞∑
k=1

xk,

where xk ∈ Hk(k = 1, 2, ...). If the subspaces Hk, (k = 1, 2, ..., ) are one-dimensional, then
they form a basis of the space H if and only if unit vectors φk ∈ Hk(k = 1, 2, ...) form a
vector basis of H.

Now it will be useful to present a simple result which establishes connections between
bases of subspaces and vector bases:

If the sequence of subspaces {Hk}∞1 is a basis of the spaceH equivalent to an orthogonal
one, then any sequence {φj}∞1 , obtained as the union of orthonormal bases of all the
subspaces Hk, (k = 1, 2, ...), is a basis of the space H equivalent to orthonormal one.
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1.5 On the Finite Difference Methods and Numerical
Solutions

To solve differential equations numerically we can replace the derivatives in the equa-
tion with finite difference approximations on a discretized domain. This results in a number
of algebraic equations that can be solved one at a time (explicit methods) or simultane-
ously (implicit methods) to obtain values of the dependent function yi corresponding to
values of the independent function xi in the discretized domain.

A finite difference is a technique by which derivatives of functions are approximated by
differences in the values of the function between a given value of the independent variable
say x0, and a small increment (x0 + h). For example, from the definiton of the derivative,

df/dx = lim
h→0

(f(x+ h)− f(x))/h,

we can approximate the value of df/dx by using the finite difference approximation

(f(x+ h)− f(x))/h

with a small value of h.
The error, i.e., the difference between the numerical derivative ∆f/∆x and the actual

value,varies linearly with the increment h in the independent variable. It is very common
to indicate this dependency by saying that "the error is of order h", or error =O(h). The
magnitude of the error can be estimated by using Taylor series expansions of the function
f(x+ h).

The Taylor series expansion of the function f(x) about the point x = x0 is given by
the formula

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

where f (n)(x0) = (dnf/dxn) |x=x0 , and f (0)(x0) = f(x0).
If we let x = x0 + h, then x− x0 = h, then the series can be written as

f(x0 + h) =
∞∑
n=0

f (n)(x0)

n!
hn = f(x0) +

f
′
(x0)

1!
h+

f
′′
(x0)

2!
h2 +O(h3),

where the expansion O(h3) represents the remaining terms of the series and indicates that
the leading term is of order h3. Because h is a small quantity, we can write 1 > h, and
h > h2 > h3 > h4 > ... Therefore, the ramaining of the series represented by O(h3)
provides the order of the error incurred in neglecting this part of the series expansion
when calculating f(x0 + h).

From the Taylor series expansion shown above we can obtain an expression for the
derivative f ′

(x0) as

f
′
(x0) =

f(x0 + h)− f(x0)

h
+
f ′′(x0)

2!
h+O(h2) =

f(x0 + h)− f(x0)

h
+O(h)
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In practical applications of finite differences, we will replace the first-order derivative
df/dx at x = x0, with the expression (f(x0 + h) − f(x0))/h, selecting an appropriate
value for h, and indicating that the error introduced in the calculation is of order h, i.e.
error=O(h).

The approximation
df/dx = (f(x0 + h)− f(x0))/h

is called a forward difference formula because the derivative is based on the value x = x0
and it involves the function f(x) evaluated at x = x0 + h, i.e., at a point located forward
from x0 by an increment h.

If we include the values of f(x) at x = x0−h, and x = x0, the approximation is written
as

df/dx = (f(x0)− f(x0 − h))/h

and is called a backward difference formula. The order of the error is still O(h).
A centered difference formula for df/dx will include the point (x0 − h, f(x0 − h)) and

(x0 + h, f(x0 + h)). To find the expression for the formula as well as the order of the
error we use the Taylor series expansion of f(x) once more. First we write the equation
corresponding to a forward expansion

f(x0 + h) = f(x0) + f ′(x0)h+ 1/2f ′′(x0)h
2 + 1/6f (3)(x0)h

3 +O(h4)

Next, we write the equation for a backward expansion

f(x0 − h) = f(x0)− f ′(x0)h+ 1/2f ′′(x0)h
2 − 1/6f (3)(x0)h

3 +O(h4)

Subtracting these two equations results in

f(x0 + h)− f(x0 − h) = 2f ′(x0)h+ 1/3f (3)(x0)h
3 +O(h5).

Notice that the even terms in h, vanish. Therefore, the order of the remaining terms in
this last expression is O(h5). Solving for f ′(x0) from the last result produces the following
centered difference formula for the first derivative

df

dx
|x=x0=

f(x0 + h)− f(x0 − h)

2h
+

1

3
f (3)(x)h2 +O(h4),

or
df

dx
=
f(x0 + h)− f(x0 − h)

2h
+O(h2)

This result indicates that the centered difference formula has an error of order O(h2),
while the forward and backward difference formulas had an error of the order O(h). Since
h2 < h, the error introduced in using the centered difference formula to approximate a first
derivative will be smaller than if the forward or backward difference formulas are used.

To obtain a centered finite difference formula for the second derivative, we’ll start
by using the equations for the forward and backward Taylor series expansions from the
previous section but including terms up to O(h5), i.e.,

f(x0 + h) = f(x0) + f ′(x0)h+ 1/2f ′′(x0)h
2 + 1/6f (3)(x0)h

3 + 1/24f (4)(x0)h
4 +O(h5)
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and

f(x0 − h) = f(x0)− f ′(x0)h+ 1/2f ′′(x0)h
2 − 1/6f (3)(x0)h

3 + 1/24f (4)(x0)h
4 −O(h5)

Next, add the two equations and find the following centered difference formula for the
second derivatives

d2f/dx2 = [f(x0 + h)− 2f(x0) + f(x0 − h)]/h2 +O(h2).

Forward and backward finite difference formulas for the second derivatives are given, re-
spectively, by

d2f/dx2 = [f(x0 + 2h)− 2f(x0 + h) + f(x0)]/h
2 +O(h),

and
d2f/dx2 = [f(x0)− 2f(x0 − h) + f(x0 − 2h)]/h2 +O(h).
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Chapter 2

ASYMPTOTIC FORMULAS and
RIESZ BASIS PROPERTY of

DIFFERENTIAL OPERATORS in
SPACE of VECTOR FUNCTIONS

Let us first consider the differential operator L(q) generated in the space L2 [0, 1] by
the differential expression

−y′′
(x) + q (x) y(x) (2.1)

where q(x) is a summable function, and the boundary conditions are as defined in (0.3).
The eigenvalues of the operator L(q) generated in the space L2 [0, 1] by the differential

expression (2.1) and strongly regular boundary conditions (0.3), where q is a summable
function, consist of the sequences

{ρ(1)n (q)} & {ρ(2)n (q)} (2.2)

satisfying

ρ(1)n (q) = (2nπ + γ1)
2 +O(1), ρ(2)n (q) = (2nπ + γ2)

2 +O(1); n ≥ N >> 1, (2.3)

where
γj = −i ln ζj,Re γj ∈ (−π, π], ζ1 6= ζ2, (2.4)

and ζ1, ζ2 are the roots of the equation

θ1ζ
2 + θ0ζ + θ−1 = 0. (2.5)

By the help of Remark 1.2.1, when the conditons in Proposition 1.2.1(a) and Proposition
1.2.1(c) hold, remember that we find θ1 = −1, θ0 = 0 and θ−1 = 1. If we substitute these
values in (2.5), we have the equation

−ζ2 + 1 = 0,

33



which have the roots ζ1 = 1 and ζ2 = −1. Hence using (2.4), we have

γ1 = 0, γ2 = π. (2.6)

In the condition of Proposition 1.2.1(b) since we obtain that θ1 and θ−1 are equal, equation
(2.5) has the form

ζ2 +
b

a
ζ + 1 = 0,

that is, ζ1ζ2 = 1 and by (2.4) ζ1 6= ζ2 which implies that ζ1 6= ±1 and ζ2 6= ±1. Therefore,
we have

γ1 = −γ2 6= πk. (2.7)

Theorem 2.0.1 If the boundary conditions (0.3) are regular then the boundary conditions
(0.2) are also regular.

Proof. The conditions (0.3) are regular (see [33], p. 121) if the numbers Θ−m , Θm

defined by the identity

Θ−ms
−m + Θ−m+1s

m−1 + ...+ Θms
m = detM(m) (2.8)

are both different from zero, where

M(m) =

[
(α1 + sβ1)ω

k1
1 I (α1 + 1

s
β1)ω

k1
2 I

(α2 + sβ2)ω
k2
1 I (α2 + 1

s
β2)ω

k2
2 I

]
and I is m ×m identity matrix. One can easily see that the intersection of the first and
(m+ 1)-th rows and columns forms the matrix

M(1) =

[
(α1 + sβ1)ω

k1
1 (α1 + 1

s
β1)ω

k1
2

(α2 + sβ2)ω
k2
1 (α2 + 1

s
β2)ω

k2
2

]
and its complementary minor is M(m − 1). Moreover, the determinant of the minors of
M(m) formed by intersection of the first and (m+ 1)-th rows and other pairs of columns
is zero, since the 2×m matrix consisting of these rows has the form[

(α1 + sβ1)ω
k1
1 0 0 · · · 0 (α1 + 1

s
β1)ω

k1
2 0 0 ... 0

(α2 + sβ2)ω
k2
1 0 0 ... 0 (α2 + 1

s
β2)ω

k2
2 0 0 ... 0

]
.

Therefore using the Laplace’s cofactor expansion along the first and (m + 1)-th rows we
obtain

detM(m) = detM(1) detM(m− 1). (2.9)

By induction the formula (2.9) implies that

detM(m) = (detM(1))m . (2.10)
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Now it follows from (2.2) and the results of Proposition 1.2.1 that

Θm = (θ1)
m , Θ−m = (θ−1)

m

which implies that the boundary conditions (0.2) are regular if (0.3) are regular.
By (2.5), (2.8) and (2.10), ζ1 and ζ2 are the roots of the equation

Θ−mζ
−m + Θ−m+1ζ

m−1 + ...+ Θmζ
m = 0

with multiplicity m. Therefore it follows from the theorem (see [44], Theorem 2 in p.123)
that to each root ζ1 and ζ2 correspond m sequences, denoted by

{λ(1)k,1 : k = N,N + 1, ...}, {λ(1)k,2 : k = N,N + 1, ...}, ..., {λ(1)k,m : k = N,N + 1, ...}

and

{λ(2)k,1 : k = N,N + 1, ...}, {λ(2)k,2 : k = N,N + 1, ...}, ..., {λ(2)k,m : k = N,N + 1, ...}

respectively, satisfying

λ
(1)
k,j = (2kπ + γ1)

2 +O(k1−
1
m ), λ(2)k,j = (2kπ + γ2)

2 +O(k1−
1
m ) (2.11)

for k = N,N + 1, ... and j = 1, 2, ...,m, where N � 1.
Now to analyze the operators Lm(0), Lm(C) and Lm(Q), we introduce the following

notations. To simplify the notations we omit the upper indices in ρ(1)n (0), ρ
(2)
n (0), λ

(1)
k,j, λ

(2)
k,j

(see (2.3) and (2.11)) and enumerate these eigenvalues in the following way

ρ(1)n (0) =: ρn, ρ
(2)
n (0) =: ρ−n, λ

(1)
k,j =: λk,j, λ

(2)
k,j =: λ−k,j (2.12)

for n > 0 and k ≥ N � 1. We remark that there is one-to-one correspondence between
the eigenvalues (counting with multiplicities) of the operator L1(0) and integers which
preserve asymptotic (2.3). This statement can easily be proved in a standard way by
using Rouche’s theorem (we omit the proof of this fact, since it is used only to simplify
the notations). Denote the normalized eigenfunction of the operator L1(0) corresponding
to the eigenvalue ρn by ϕn. Clearly,

ϕn,1 = (ϕn, 0, 0, ...0)T , ϕn,2 = (0, ϕn, 0, ...0)T , ..., ϕn,m = (0, 0, ...0, ϕn)T (2.13)

are the eigenfunctions of the operator Lm(0) corresponding to the eigenvalue ρn. Similarly,

ϕ∗n,1 = (ϕ∗n, 0, 0, ...0)T , ϕ∗n,2 = (0, ϕ∗n, 0, ...0)T , ..., ϕ∗n,m = (0, 0, ...0, ϕ∗n)T (2.14)

are the eigenfunctions of the operator L∗m(0) corresponding to the eigenvalue ρn, where ϕ∗n
is the eigenfunction of L∗1(0) corresponding to the eigenvalue ρn.

Since the boundary conditions (0.3) are strongly regular, all eigenvalues of sufficiently
large modulus of L1(q) are simple (see, [44], the end of Theorem 2 of p.65). Therefore,
there exists n0 such that the eigenvalues ρn of L1(0) are simple for |n| > n0. However,
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the operator L1(0) may have associated functions ϕ(1)
n , ϕ

(2)
n , ..., ϕ

(t(n))
n corresponding to

the eigenfunction ϕn for |n| ≤ n0. Then, it is not hard to see that Lm(0) has associated
functions

ϕn,1,p = (ϕ(p)
n , 0, 0, ...0)T , ϕn,2,p = (0, ϕ(p)

n , 0, ...0)T , ..., ϕn,m,p = (0, 0, ...0, ϕ(p)
n )T ,

for p = 1, 2, ..., t(n) corresponding to ρn for |n| ≤ n0, that is,

(Lm(0)− ρn)ϕn,i,0 = 0,

(Lm(0)− ρn)ϕn,i,p = ϕn,i,p−1, p = 1, 2, ..., t(n),

where ϕn,i,0(x) =: ϕn,i(x). Since the system of the root functions of L1(0) forms Riesz basis
in L2 (0, 1) (see [43]), the system

{ϕn,i,p : n ∈ Z, i = 1, 2, ...,m, p = 1, 2, ..., t(n)} (2.15)

forms a Riesz basis in Lm2 (0, 1) . The system,

{ϕ∗n,i,p : n ∈ Z, i = 1, 2, ...,m, p = 1, 2, ..., t(n)} (2.16)

which is biorthogonal to {ϕn,i,p} is the system of the eigenfunctions and the associated
functions of the adjoint operator L∗m(0). Clearly, (2.16) can be constructed by repeating
the construction of (2.15) and replacing everywhere ϕn by ϕ∗n. Thus

(L∗m(0)− ρn)ϕ∗n,i,0 = 0, (2.17)
(L∗m(0)− ρn)ϕ∗n,i,p = ϕ∗n,i,p−1, p = 1, 2, ..., t(n). (2.18)

To prove the main results, we need the following properties of the eigenfunctions ϕn
and ϕ∗n.

Proposition 2.0.1 If the boundary conditions (0.3) are strongly regular then there exists
a positive constant M such that

sup
x∈[0,1]

|ϕn(x)| ≤M, sup
x∈[0,1]

|ϕ∗n(x)| ≤M, (2.19)

sup
x∈[0,1]

|ϕn,i,p(x)| ≤M, sup
x∈[0,1]

∣∣ϕ∗n,i,p(x)
∣∣ ≤M, (2.20)

for all n, i, p, where ϕ∗n is the eigenfunctions of L∗1(0), satisfying

(ϕn, ϕ
∗
n) = 1 (2.21)

for |n| > n0. Moreover, the following asymptotic formulas hold

ϕ∗n(x)ϕn(x) = 1 + A1e
i(4πn+2γ1)x +B1e

−i(4πn+2γ1)x +O(
1

n
), n > 0, (2.22)

ϕ∗n(x)ϕn(x) = 1 + A2e
i(4πn+2γ2)x +B2e

−i(4πn+2γ2)x +O(
1

n
), n < 0,

where Aj and Bj for j = 1, 2 are constants.
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Proof. When the condition in Proposition 1.2.1(c) holds, we have

ϕn(x) = ϕ∗n(x) =
√

2 sin 2nx, ϕ−n(x) = ϕ∗−n(x) =
√

2 sin(2n+ 1)x, (2.23)

where n = 1, 2, .... In (1.11), using the well known expression for eigenfunction∣∣∣∣ eiρnx e−iρnx

U1(e
iρnx) U1(e

−iρnx)

∣∣∣∣
and (2.3), (2.12), and also taking into account that γ1 = 0 and γ2 = π (see the proof of
Proposition 1.2.1(a) and (2.6)), we obtain

ϕn(x) =
√

2 cos 2nx+O(
1

n
), ϕ−n(x) =

√
2 cos(2n+ 1)x+O(

1

n
), (2.24)

and
ϕ∗n(x) =

√
2 cos 2nx+O(

1

n
), ϕ∗−n(x) =

√
2 cos(2n+ 1)x+O(

1

n
). (2.25)

In the same way in (1.12) we get the formulas

ϕn(x) = a+ei(2πn+γ1)x + b+e−i(2πn+γ1)x +O(
1

n
), (2.26)

ϕ∗n(x) = c+ei(2πn+γ1)x + d+e−i(2πn+γ1)x +O(
1

n
),

for n > 0 and

ϕn(x) = a−ei(2πn+γ2)x + b−e−i(2πn+γ2)x +O(
1

n
), (2.27)

ϕ∗n(x) = c−ei(2πn+γ2)x + d−e−i(2πn+γ2)x +O(
1

n
),

for n < 0. Thus in any case inequality (2.19) holds. Equality (2.20) follows from (2.19)
and equality (2.22) follows from (2.21), (2.23)-(2.27).

As it is noted in the introduction, we obtain asymptotic formulas for the eigenvalues and
eigenfunctions of Lm(Q) in term of the eigenvalues and eigenfunctions of Lm(C). Therefore
first we analyze the eigenvalues and eigenfunctions of Lm(C). Suppose that the matrix C
has m simple eigenvalues µ1, µ2, ..., µm. The normalized eigenvector corresponding to the
eigenvalue µj is denoted by vj. In these notations the eigenvalues and eigenfunctions of
Lm(C) are

µk,j = ρk + µj & Φk,j(x) = vjϕk(x) (2.28)

respectively. It can be easily verified since

Lm(C) = Lm(0) + C

and multiplying both sides by Φk,j(x). Indeed,

Lm(C)Φk,j(x) = Lm(0)Φk,j(x) + CΦk,j(x),
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hence using the equalities needed, we obtain,

Lm(C)Φk,j(x) = Lm(0)vjϕk(x) + Cvjϕk(x),

and
Lm(C)Φk,j(x) = ρkvjϕk(x) + µjvjϕk(x).

Finally, it can be easily seen that

Lm(C)Φk,j(x) = (ρk + µj)Φk,j(x).

Similarly, the eigenvalues and eigenfunctions of (Lm(C))∗ are µk,j, Φ∗k,j(x) = v∗jϕ
∗
k, where

v∗j is the eigenvector of C∗ corresponding to µj such that
(
v∗j , vj

)
= 1. To obtain the

asymptotic formulas for the eigenvalues and eigenfunctions of Lm(Q), we use the following
formula

(λk,j − µk,i)(Ψk,j,Φ
∗
k,i) = ((Q− C)Ψk,j,Φ

∗
k,i) (2.29)

obtained from
Lm(Q)Ψk,j(x) = λk,jΨk,j(x) (2.30)

by multiplying both sides of (2.29) with Φ∗k,i(x) and using Lm(Q) = Lm(C) + (Q − C).
Indeed, we start with the equation

(Lm(Q)Ψk,j(x),Φ∗k,j(x)) = (λk,jΨk,j(x),Φ∗k,j(x)),

and using the equalities for Lm(Q), we obtain

(Lm(C) + (Q− C)Ψk,j(x),Φ∗k,j(x)) = (λk,jΨk,j(x),Φ∗k,j(x)).

Now using the properties of inner product and adjoint operators, we have

(Lm(C)Ψk,j(x),Φ∗k,j(x)) + ((Q− C)Ψk,j(x),Φ∗k,j(x)) = (λk,jΨk,j(x),Φ∗k,j(x)),

and

(Ψk,j(x), L∗m(C)Φ∗k,j(x)) + ((Q− C)Ψk,j(x),Φ∗k,j(x)) = (λk,jΨk,j(x),Φ∗k,j(x)).

Since

(Ψk,j(x), L∗m(C)Φ∗k,j(x)) = (Ψk,j(x), µk,jΦ
∗
k,j(x)) = (µk,jΨk,j(x),Φ∗k,j(x)),

we obtain (2.29). To prove that λk,j is close to µk,j, we first show that the right-hand side
of (2.29) is a small number for all j and i (see Lemma 2.0.1) and then we prove that for
each eigenfunction Ψk,j of Lm(Q), where |k| ≥ N, there exists a root function of (Lm(C)))∗

denoted by Φ∗k,j such that (Ψk,j,Φ
∗
k,j) is a number of order 1 (see Lemma 2.0.2). Before

the proof of these lemmas, we need the following preparations: Multiplying both sides of
(2.30) by ϕ∗n,i,0, using Lm(Q) = Lm(0) +Q and (2.17) we get

(λk,j − ρn)(Ψk,j, ϕ
∗
n,i,0) = (QΨk,j, ϕ

∗
n,i,0),

38



(Ψk,j, ϕ
∗
n,i,0) =

(QΨk,j, ϕ
∗
n,i,0)

λk,j − ρn
, (2.31)

for i, j = 1, 2, ...,m and λk,j 6= ρn. Now multiplying (2.30) by ϕ∗n,i,1 and using (2.18), (2.31),
we get

(λk,j − ρn)(Ψk,j, ϕ
∗
n,i,1) = (QΨk,j, ϕ

∗
n,i,1) +

(QΨk,j, ϕ
∗
n,i,0)

λk,j − ρn
,

(Ψk,j, ϕ
∗
n,i,1) =

(QΨk,j, ϕ
∗
n,i,1)

λk,j − ρn
+

(QΨk,j, ϕ
∗
n,i,0)

(λk,j − ρn)2
.

In this way one can deduce the formulas

(Ψk,j, ϕ
∗
n,i,s) =

s∑
p=0

(QΨk,j, ϕ
∗
n,i,p)

(λk,j − ρn)s+1−p , (2.32)

for s = 0, 1, ..., t(n).
Since, (QΨk,j, ϕ

∗
n,i,p) = (Ψk,j, Q

∗ϕ∗n,i,p), ‖Ψk,j‖ = 1, and the entries of Q are the ele-
ments of L2 (0, 1) , it follows from (2.20) and Cauchy-Schwarz inequality that there exists
a positive constant c1 such that ∣∣(QΨk,j, ϕ

∗
n,i,p)

∣∣ < c1. (2.33)

In the subsequent estimates we denote by cm for m = 1, 2, ..., the positive constants whose
exact value are inessential. On the other hand, it follows from (2.3), (2.11) and (2.12) that
if k is a sufficiently large number then

| λk,j − ρp |> c2k
2,∀p ≤ n0, (2.34)

|λk,j − ρp| > c3 ||p| − |k|| (|p|+ |k|),∀p 6= ±k, (2.35)

and
|λk,j − ρ−k| > c4 |k| . (2.36)

Therefore by (2.31)-(2.36) we have∣∣(Ψk,j, ϕ
∗
p,q,s)

∣∣ < c5k
−2,∀p ≤ n0, (2.37)

| (Ψk,j, ϕ
∗
p,q) |≤

c6
||p| − |k|| (|p|+ |k|)

, | (Ψk,j, ϕ
∗
−k,q) |≤

c7
|k|

(2.38)

for all |k| � 1, p 6= ±k, s = 0, 1, ..., t(p) and q, j = 1, 2, ...,m.
Now, we are ready to prove the lemmas.

Lemma 2.0.1 For any i = 1, 2, ...,m and j = 1, 2, ...,m the following estimation holds

(
Ψk,j, (Q

∗ − C∗)Φ∗k,i
)

= O(αk) +O(
ln |k|
k

), (2.39)
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where αk = max
{
| b+s,i,2k,r |, | b

−
s,i,2k,r |: s, i = 1, 2, ...,m; r = 1, 2

}
,

b±s,i,2k,r =

∫ 1

0

bs,i(x)e±i(4πk+2γr)x, (2.40)

bs,i ∈ L2 (0, 1) are the entries of the matrix Q, and γr is defined in (2.4).

Proof. Since Φ∗k,i(x) = v∗iϕ
∗
k(x), it is enough to prove that

(
Ψk,j, (Q

∗ − C∗)ϕ∗k,s
)

= O (αk) +O(
ln |k|
k

) (2.41)

for s = 1, 2, ...,m. The decomposition of (Q∗ − C∗)ϕ∗k,s by the basis (2.16) has the form

(Q∗ − C∗)ϕ∗k,s =
m∑
q=1

∑
p:|p|≤n0

t(p)∑
v=1

c(k, s, p, q, v)ϕ∗p,q,v+

∑
q=1,2,...m

∞∑
p:|p|>n0

((Q∗ − C∗)ϕ∗k,s, ϕp,q)ϕ∗p,q

Therefore

(Ψk,j, (Q
∗ − C∗)ϕ∗k,s) =

m∑
q=1

∑
p:|p|≤n0

t(p)∑
v=1

c(k, s, p, q, v)(Ψk,j, ϕ
∗
p,q,v)+ (2.42)

m∑
q=1

∑
p:|p|>n0

((Q∗ − C∗)ϕ∗k,s, ϕp,q)(Ψk,j, ϕ
∗
p,q)

Since c(k, s, p, q, v) = O(1), by (2.37) the first summation of the right hand side of (2.42)
is O(k−2).

Now let us estimate the second summation S of the right hand side of (2.42). It can
be written in the form

S = S1 + S2, (2.43)

where

S1 =
m∑
q=1

((Q∗ − C∗)ϕ∗k,s, ϕk,q)(Ψk,j, ϕ
∗
k,q),

S2 =
m∑
q=1

∑
p 6=k

((Q∗ − C∗)ϕ∗k,s, ϕp,q)(Ψk,j, ϕ
∗
p,q).

Using (2.13), (2.14), (2.20) and (2.22), one can easily verify that

S1 = O (αk) +O(
1

k
) (2.44)
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On the other hand, by (2.38), we have

S2 = O(
ln |k|
k

) (2.45)

Therefore, (2.41) follows from (2.42)-(2.45). The lemma is proved.

Lemma 2.0.2 For each eigenfunction Ψk,j of Lm(Q), where |k| ≥ N, there exists an
eigenfunction of (Lm(C))∗ denoted by Φ∗k,j such that∣∣(Ψk,j,Φ

∗
k,j

)∣∣ > c8. (2.46)

Proof. Since (2.15) is a Riesz basis of Lm2 [0, 1] , we have

Ψk,j =
m∑
q=1

∑
p:|p|≤n0

t(p)∑
v=1

c(k, j, p, q, v)ϕp,q,v +
m∑
q=1

∑
p:|p|>n0

(
Ψk,j, ϕ

∗
p,q

)
ϕp,q. (2.47)

It follows from (2.20) and (2.38) that

m∑
q=1

∑
p 6=k
|p|>n0

∥∥(Ψk,j, ϕ
∗
p,q

)
ϕp,q
∥∥ = O(

ln |k|
k

). (2.48)

On the other hand, arguing as in the estimation for the first summation of (2.42) we get

m∑
q=1

∑
p:|p|≤n0

t(p)∑
j=1

‖c(k, s, p, q, j)ϕp,q,j‖ = O(
1

k2
).

Therefore using (2.48), (2.47), we obtain

Ψk,j =
m∑
q=1

(
Ψk,j, ϕ

∗
k,q

)
ϕk,q +O(

ln |k|
k

) (2.49)

Since {ϕk,1, ϕk,2, ...., ϕk,m} is orthonormal system and ‖Ψk,j‖ = 1, there exists an index q
such that ∣∣(Ψk,j, ϕ

∗
k,q

)∣∣ > c9. (2.50)

On the other hand

ϕ∗k,q =
m∑
j=1

(
ϕ∗k,q,Φk,j

)
Φ∗k,j (2.51)

because Φ∗k,j = v∗jϕ
∗
k, and the vectors v∗j , j = 1, 2, ...m form a basis in Cm. Now, using

(2.51) in (2.50), we get the proof of the lemma.
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Theorem 2.0.2 Suppose that all eigenvalues µ1, µ2, ..., µm of the matrix C are simple.
Then, there exists a number N such that all eigenvalues λk,1, λk,2, ..., λk,m of Lm (Q) for
| k |≥ N are simple and satisfy the asymptotic formula

λk,j = µk,j +O(αk) +O(
ln |k|
k

), (2.52)

where µk,j is the eigenvalue of Lm (C) and αk is defined in Lemma 2.0.1. The normalized
eigenfunction Ψk,j(x) of Lm(Q) corresponding to λk,j satisfies

Ψk,j(x) = Φk,j(x) +O(αk) +O(
ln |k|
k

), (2.53)

where Φk,j(x) is the normalized eigenfunction of Lm (C) corresponding to µk,j. The root
functions of Lm (Q) form a Riesz basis in Lm2 (0, 1).

Proof. In (2.29) replacing i by j, and then dividing the both sides of the obtained
equality by (Ψk,j,Φ

∗
k,j) and using Lemma 2.0.1 and Lemma 2.0.2, we see all large eigen-

values of Lm (Q) lie in rk neighborhood of the eigenvalues µk,j for | k |≥ N, j = 1, 2, ...,m
of Lm(C), where

rk = O(αk) +O(
ln |k|
k

). (2.54)

Now we prove that these eigenvalues are simple. Let λk,j be an eigenvalue of Lm (Q)
lying in 1

2
aj neighborhood of µk,j = ρk + µj (see (2.28)), where aj = mini 6=j | µj − µi | .

Then, by triangle inequality

| λk,j − µk,i |>| µk,j − µk,i | − | λk,j − µk,j |≥ aj −
1

2
aj =

1

2
aj

for i 6= j. Therefore using (2.29) and Lemma 2.0.1 we get

(Ψk,j,Φ
∗
k,i) = O (αk) +O(

ln |k|
k

)

for i 6= j. This and (2.49) imply that (2.53) holds for any normalized eigenfunction
corresponding to λk,j, since

span {ϕk,1, ϕk,2, ..., ϕk,m} = span{Φk,1,,Φk,2,, ...,Φk,m,}.

Using this, let us prove that λk,j is a simple eigenvalue. Suppose to the contrary that λk,j
is a multiple eigenvalue. If there are two linearly independent eigenfunctions correspond-
ing to λk,j, then one can find two orthogonal eigenfunctions satisfying (2.53), which is
impossible. Hence there exists a unique eigenfunction Ψk,j corresponding to λk,j. If there
exists an associated function Ψk,j,1 belonging to the eigenfunction Ψk,j, then

(Lm(Q)− λk,j)Ψk,j,1(x) = Ψk,j(x).

42



Multiplying both sides of this equality by Ψ∗k,j(x), where Ψ∗k,j(x) is the normalized eigen-
function of (Lm(Q))∗ corresponding to the eigenvalue λk,j,we obtain

(Ψk,j,Ψ
∗
k,j) = (Ψk,i,1, ((Lm(Q))∗ − λk,j))Ψ∗k,j) = 0. (2.55)

Since the proved statements are also applicable for the adjoint operator (Lm(Q))∗, formula
(2.53) holds for this operator too, that is, we have

Ψ∗k,j(x) = Φ∗k,j(x) +O (αk) +O(
ln |k|
k

). (2.56)

This formula, (2.53) and the obvious relation (Φk,j,Φ
∗
k,j) = 1 contradict with (2.55). Thus,

λk,j is a simple eigenvalue.
We proved that all large eigenvalues of Lm (Q) lie in the disk

∆k,j = {z : |z − µk,j| < rk}

for | k |≥ N , j = 1, 2, ...,m, where rk is defined in (2.54). Clearly, the disks ∆k,j for
j = 1, 2, ...,m and | k |≥ N are pairwise disjoint. Let us prove that each of these disks
does not contain more than one eigenvalue of Lm (Q) . Suppose to the contrary that, two
different eigenvalues Λ1 and Λ2 lie in ∆k,j. Then it has already been proven that these
eigenvalues are simple and the corresponding eigenfunctions Ψ1 and Ψ2 satisfy

Ψp(x) = Φk,j(x) +O (αk) +O(
ln |k|
k

)

for p = 1, 2. Similarly, the eigenfunctions Ψ∗1 and Ψ∗2 of (Lm (Q))∗ corresponding to the
eigenvalues Λ1 and Λ2 satisfy

Ψ∗p(x) = Φ∗k,j(x) +O (αk) +O(
ln |k|
k

).

for p = 1, 2. Since Λ1 6= Λ2, we have

0 = (Ψ1,Ψ
∗
2) = 1 +O (αk) +O(

ln |k|
k

)

which is impossible. Hence the pairwise disjoint disks ∆k,1, ∆k,2, ..., ∆k,m , where |k| ≥ N,
contain m eigenvalues of Lm(Q) and each of these disks does not contain more than one
eigenvalue. Therefore, there exists a unique eigenvalue λk,j of Lm(Q) lying in ∆k,j, where
j = 1, 2, ...,m and |k| ≥ N. Thus the eigenvalues λk,j for |k| ≥ N are simple and the
formulas (2.52) and (2.53) hold.

It remains to prove that the root functions of Lm (Q) form a Riesz basis in Lm2 (0, 1).
For this, let us prove that for f ∈ Lm2 (0, 1), the following series is convergent

m∑
j=1

∞∑
k=N+1

|(f,Ψk,j)|2 <∞, (2.57)
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where N is a large positive number. By the asymptotic formula (2.53), we have

∞∑
k=N+1

|(f,Ψk,j)|2 ≤ 3(
∞∑

k=N+1

|(f,Φk,j)|2 +
∞∑

k=N+1

|(f, gk)|2 +
∞∑

k=N+1

|(f, hk)|2) (2.58)

where ‖gk‖ = O (αk) and ‖hk‖ = O( ln|k|
k

). The first series in the right side of (2.58)
converges, since the root functions of Lm (C) is a Riesz basis in Lm2 (0, 1). Using the Cauchy-
Schwarz inequality we get

∞∑
k=N+1

|(f, gk)|2 ≤ c10 ‖f‖2
∞∑

k=N+1

|αk|2 . (2.59)

On the other hand, using the definition of αk (see Lemma 2.0.1) and taking into account
that the entries of the matrix Q are the element of L2 (0, 1) , we obtain

∞∑
k=N+1

|αk|2 <∞.

Therefore, by (2.59), the second series in the right side of (2.58) converges too. In the same
way, we prove that the third series in the right side of (2.58) converges. Thus, the series of
the left-hand side of (2.58) converges, that is, (2.57) is proved. By Bari’s definition, this
implies that the system of eigenfunctions of the operator under consideration is Bessel.
Since the system of root functions of the adjoint operator has the asymptotics (2.56), in
the same way, we obtain that it is also Bessel. Moreover, the equality

(Ψk,j,Ψ
∗
k,j) = 1 +O (αk) +O(

ln |k|
k

)

(see (2.53) and (2.56)) implies that the system of the root functions of (Lm(Q))∗ , which
is biorthogonal to the system of the root functions of Lm(Q), is also Bessel. As it is noted
in [52] and [53], the system of root functions of the operators Lm(Q) and (Lm(Q))∗ are
complete in the space Lm2 (0, 1). These arguments and Bari’s theorem (if two biorthogonal
systems are complete and Bessel, then they both are Riesz bases, see Theorem 1.4.2)
conclude the proof of the theorem.

These results are given in [47] and published in 2014.
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Chapter 3

NUMERICAL ESTIMATE of SMALL
EIGENVALUES

3.1 System of Sturm Liouville Operator with Dirichlet
Boundary Conditions

In this chapter, we consider the differential operator Dd(Q) generated in the space
Ld2 [0, 1] by the differential expression (0.1) and the Dirichlet boundary conditions

y(0) = y(1) = 0. (3.1)

First, for simplicity, let us consider the case d = 2. Then, we will investigate the case d = 3
and general d.

To estimate the small eigenvalues of Dd(Q), take an equally spaced mesh

0 = x0 < x1 < ... < xm+1 = 1,

where
xj = jh, h =

1

m+ 1
.

Substituting

y(xj) = yj = (yj,1, yj,2)
T , Q(xj) =

[
b1,1(xj) b1,2(xj)
b2,1(xj) b2,2(xj)

]
, y

′′
(xj) = y

′′

j , (3.2)

and using the centered difference approximation

−y′′

j =
−yj−1 + 2yj − yj+1

h2
+O(h2),

in the equation
−y′′

(x) +Q(x)y(x) = λy, (3.3)
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we obtain the approximating scheme
−yj−1 + 2yj − yj+1

h2
+ O(h2) +Qjyj = λyj j = 1, 2, ...,m. (3.4)

Incorporating the boundary conditions (3.1), we get

y0 = 0, and ym+1 = 0.

One can easily notice that, (3.4) is the system of 2m equation with respect to the 2m
unknown y1,1, y1,2, y2,1, y2,2, ..., ym,1, ym,2. Now, let us write all equations which form this
system with these unknown functions.

For j = 1,

−y0 + 2y1 − y2

h2
+Q(x1)y1 − λy1 = O(h2).

Using (3.2), we obtain

2

[
y1,1
y1,2

]
−
[
y2,1
y2,2

]
h2

+

[
b1,1(x1) b1,2(x1)
b2,1(x1) b2,2(x1)

] [
y1,1
y1,2

]
− λ

[
y1,1
y1,2

]
= O(h2),

and with the operations on matrices, we have[
2y1,1 − y2,1
2y1,2 − y2,2

]
h2

+

[
b1,1(x1)y1,1 + b1,2(x1)y1,2
b2,1(x1)y1,1 + b2,2(x1)y1,2

]
− λ

[
y1,1
y1,2

]
= O(h2).

Finally, when we simplify, we obtain the first two equations as:
2y1,1 − y2,1

h2
+ b1,1(x1)y1,1 + b1,2(x1)y1,2 − λy1,1 = O(h2), (3.5)

2y1,2 − y2,2
h2

+ b2,1(x1)y1,1 + b2,2(x1)y1,2 − λy1,2 = O(h2).

For j = 2, we have the equation
−y1 + 2y2 − y3

h2
+Q(x2)y2 − λy2 = O(h2).

After the operations of multiplication and addition on matrices,

−
[
y1,1
y1,2

]
+ 2

[
y2,1
y2,2

]
−
[
y3,1
y3,2

]
h2

+

[
b1,1(x2) b1,2(x2)
b2,1(x2) b2,2(x2)

] [
y2,1
y2,2

]
− λ

[
y2,1
y2,2

]
= O(h2),

it can be easily seen that we obtain,
−y1,1 + 2y2,1 − y3,1

h2
+ b1,1(x2)y2,1 + b1,2(x2)y2,2 − λy2,1 = O(h2), (3.6)

−y1,2 + 2y2,2 − y3,2
h2

+ b2,1(x2)y2,1 + b2,2(x2)y2,2 − λy2,2 = O(h2).
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For j = m, we have the equation

−ym−1 + 2ym − ym+1

h2
+Q(xm)ym − λym = O(h2),

In the same way and using the boundary condition ym+1 = 0, we obtain

−
[
ym−1,1
ym−1,2

]
+ 2

[
ym,1
ym,2

]
h2

+

[
b1,1(xm) b1,2(xm)
b2,1(xm) b2,2(xm)

] [
ym,1
ym,2

]
− λ

[
ym,1
ym,2

]
= O(h2),

Hence the last two equations are,

−ym−1,1 + 2ym,1
h2

+ b1,1(xm)ym,1 + b1,2(xm)ym,2 − λym,1 = O(h2), (3.7)

−ym−1,2 + 2ym,2
h2

+ b2,1(xm)ym,1 + b2,2(xm)ym,2 − λym,2 = O(h2).

Therefore, the equation (3.5)-(3.7) can be written in the matrix form

(T2 − λI)Y = O(h2), (3.8)

where Y = (y1,1, y1,2, y2,1, y2,2, ..., ym,1, ym,2)
T and O(h2) is an 2m dimensional vector with

components O(h2). Here T2 is defined by

T2 =
1

h2
K2 +B2,

where

K2 =



2 0 −1
0 2 0 −1

.
.
.

−1 0 2 0
−1 0 2


,

and

B2 =



b1,1(x1) b1,2(x1)
b2,1(x1) b2,2(x1)

.
.
.

b1,1(xm) b1,2(xm)
b2,1(xm) b2,2(xm)


. (3.9)
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Similarly, for the case d = 3, substituting

y(xj) = yj = (yj,1, yj,2, yj,3)
T , Q(xj) =

 b1,1(xj) b1,2(xj) b1,3(xj)
b2,1(xj) b2,2(xj) b2,3(xj)
b3,1(xj) b3,2(xj) b3,3(xj)

 , (3.10)

in the equation (3.3), and writing all equations obtained from the approximating scheme
(3.4) for j = 1, ...,m, we get the following matrix form

(T3 − λI)Y = O(h2),

where
T3 =

1

h2
K3 +B3,

with the matrices K3 and B3 are defined as,

K3 =



2 0 0 −1
0 2 0 0 −1
0 0 2 0 0 −1

.
.
.

−1 0 0 2 0 0
−1 0 0 2 0

−1 0 0 2


,

and

B3 =



b1,1(x1) b1,2(x1) b1,3(x1)
b2,1(x1) b2,2(x1) b2,3(x1)
b3,1(x1) b3,2(x1) b3,3(x1)

.
.
.

b1,1(xm) b1,2(xm) b1,3(xm)
b2,1(xm) b2,2(xm) b2,3(xm)
b3,1(xm) b3,2(xm) b3,3(xm)


. (3.11)

In the same way, for general case d instead of (3.8), we obtain the following equation

(Td − λI)Y = O(h2), (3.12)

where
Td =

1

h2
Kd +Bd,
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and the matrices Kd, Bd are defined as follows:

Kd =



M1 P1

N2 M2 P2

. . . . . . . . .
. . . . . . . . .

Nm−1 Mm−1 Pm−1
Nm Mm


,

whereM1,M2, ...,Mm are d×d diagonal matrices with entries 2, N2, ..., Nm and P1, P2, ..., Pm−1
are d× d diagonal matrices which have entries −1, and

Bd =


R1

R2

. . .
Rm

 , (3.13)

where R1, R2, ..., Rm are d× d square matrices that have the form

R1 =

 b1,1(x1) ... b1,d(x1)
. . .

bd,1(x1) ... bd,d(x1)

 , ..., Rm =

 b1,1(xm) ... b1,d(xm)
. . .

bd,1(xm) ... bd,d(xm)

 ,
Now, we prove that the eigenvalues of the operator Dd(Q) are approximated by the eigen-
values of the matrix Td.

Theorem 3.1.1 Suppose that Q(x) is a symmetric matrix for all x ∈ [0, 1]. Let λ1, λ2, ..., λdm
be eigenvalues of the matrix Td. Then, for every small eigenvalue λ of Dd(Q) there is an
index j such that

λ− λj = O(h
3
2 ). (3.14)

Proof. To prove the theorem we use (3.12). Since md = O( 1
h
) and as we noted above

that the right -hand side of (3.12) is a vector with components having the norm O(h2),
we obtain

‖ O(h2) ‖= (mdO(h4))
1
2 = O(h

3
2 ),

since md = O( 1
h
). On the other hand , without loss of the generality it can be assumed

that ‖Y ‖ = 1. Using these we obtain Y = (Td − λI)−1O(h2) and

1 ≤‖ (Td − λI)−1 ‖ O(h
3
2 ).

Since (Td − λI)−1 is the symmetric matrix having the eigenvalues (λi − λ)−1 for i =
1, 2, ..., dm, we have

‖ (Td − λI)−1 ‖= max
i=1,2,...,dm

| λ− λi |−1=| λ− λj |−1,

for some j. The last two equalities give

1 ≤| λ− λj |−1 O(h
3
2 ),

which implies the equality (3.14).
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3.2 System of Sturm Liouville Operator with Separated
Boundary Conditions

In this section, we consider the differential operator Sd(Q) generated in the space
Ld2 [0, 1] by the differential expression (0.1) and separated boundary conditions

α1y
′
(0)− α2y(0) = 0, (3.15)

β1y
′
(1) + β2y(1) = 0,

where α1 6= 0, β1 6= 0.
These boundary conditions (3.15) can be written in the form

y
′
(0) = ay(0), (3.16)

y
′
(1) = by(1).

It easily follows from Proposition 1.2.1(a) that the boundary conditions (3.16) for the
scalar case d = 1 are strongly regular. Again, as in the previous section, first let us
consider the case d = 2, then for d = 3 and then for general d. Using the boundary
conditions (3.16), Taylor series at x = 0 and taking into account the equality

y
′′
(0) = (Q (0)− λ)y(0), (3.17)

(see (3.3)), we obtain

y1,1 = y0,1 + hy
′

0,1 +
1

2
h2y

′′

0,1 +O(h3), (3.18)

= y0,1 + hay0,1 +
1

2
h2(Q(0)− λ)y0,1 +O(h3),

= y0,1 + hay0,1 +
1

2
h2((b1,1(0)− λ)y0,1 + b1,2(0)y0,2) +O(h3).

First, let us estimate the expression

y
′′

0,1 = ((b1,1(0)− λ)y0,1 + b1,2(0)y0,2). (3.19)

First consider the case y0,1 = c 6= 0. By Definition 1.1.1 y′
1 is an absolutely continuous

function on the closed interval [0, 1] and hence there exists a positive constant K such that∣∣y′
1(x)

∣∣ ≤ K for all x ∈ [0, 1]. Then ∣∣∣∣∫ x

0

y
′

1(t)dt

∣∣∣∣ ≤ Kx.

This, with the equality

y1(x) = y1(0) +

∫ x

0

y
′

1(t)dt,
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where y1(0) = y0,1, and the triangle inequality implies that

|y1(x)| ≥ |y0,1| −
∣∣∣∣∫ x

0

y
′

1(t)dt

∣∣∣∣ ≥ |y0,1| −Kx
From this inequality we obtain that

|y1(x)| ≥ 1

2
|y0,1| , ∀x ∈ [0,

|c|
2K

] (3.20)

Let p be integer part of m |c|
2K
. Then by (3.20) we have

|yk,1| ≥
1

2
|y0,1| ,∀k = 1, 2, ..., p

which implies that
|y0,1|2 ≤ 4 |yk,1|2 ,∀k = 1, 2, ..., p

Therefore we have
p |y0,1|2 ≤ 4

p∑
k=1

|yk,1|2 ≤ 4
m∑
k=1

|yk,1|2

and hence
|y0,1|2 = O(h)

m∑
k=1

|yk,1|2 , (3.21)

since 1
p

= O(h). On the other hand, if y1(x) is eigenfunction then Cy1(x), for any constant
C, is also eigenfunction and (3.21) holds if y1(x) is replaced by Cy1(x). Therefore it can
be assumed without loss of generality that

m∑
k=1

|yk,1|2 = 1. (3.22)

Then from (3.21) and (3.22) we obtain

y0,1 = O(h1/2) (3.23)

in the case y0,1 6= 0. It is clear that (3.23) holds in the case y0,1 = 0 too.
In the same way we obtain

y0,2 = O(h1/2). (3.24)

Thus, by (3.19), (3.23) and (3.24) we have

((b1,1(0)− λ)y0,1 + b1,2(0)y0,2) = O(h1/2). (3.25)

Using this in (3.18), we get

y1,1 = y0,1 + hay0,1 +O(h5/2),
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that is,
y0,1 =

y1,1
1 + ah

+O(h5/2). (3.26)

In the same way, we obtain
y0,2 =

y1,2
1 + ah

+O(h5/2). (3.27)

Moreover arguing as above and using the Taylor series at x = 1,we have the equality

ym,1 = ym+1,1 − hy
′

m+1,1 +
1

2
h2y

′′

m+1,1 +O(h3),

and therefore

ym+1,1 =
ym,1

1− bh
+O(h5/2), ym+1,2 =

ym,2
1− bh

+O(h5/2). (3.28)

Now, let us define the matrix Z2 with the similar operations that are done in the previous
section.

For j = 1, we have

−y0 + 2y1 − y2

h2
+Q(x1)y1 − λy1 = O(h1/2).

Using (3.26), (3.27) and taking into account the assumptions (3.22)-(3.23), we obtain

−
[ y1,1

1+ah
y1,2
1+ah

]
+ 2

[
y1,1
y1,2

]
−
[
y2,1
y2,2

]
h2

+O(h1/2) +

[
b1,1(x1) b1,2(x1)
b2,1(x1) b2,2(x1)

] [
y1,1
y1,2

]
= λ

[
y1,1
y1,2

]
,

simplifying the matrices by the operations of addition and multiplication,[
2y1,1 − y2,1 − y1,1

1+ah

2y1,2 − y2,2 − y1,2
1+ah

]
h2

+ O(h1/2) +

[
b1,1(x1)y1,1 + b1,2(x1)y1,2
b2,1(x1)y1,1 + b2,2(x1)y1,2

]
= λ

[
y1,1
y1,2

]
,

and we get

(2− 1
1+ah

)y1,1 − y2,1
h2

+O(h1/2) + b1,1(x1)y1,1 + b1,2(x1)y1,2 = λy1,1, (3.29)

(2− 1
1+ah

)y1,2 − y2,2
h2

+O(h1/2) + b2,1(x1)y1,1 + b2,2(x1)y1,2 = λy1,2.

For j = 2,
−y1 + 2y2 − y3

h2
+ O(h2) +Q(x2)y2 = λy2.

Notice that the order of error is O(h2), because of centered difference formula for the
second derivative. Hence

−
[
y1,1
y1,2

]
+ 2

[
y2,1
y2,2

]
−
[
y3,1
y3,2

]
h2

+ O(h2) +

[
b1,1(x2) b1,2(x2)
b2,1(x2) b2,2(x2)

] [
y2,1
y2,2

]
= λ

[
y2,1
y2,2

]
,
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and finally we have

−y1,1 + 2y2,1 − y3,1
h2

+O(h2) + b1,1(x2)y2,1 + b1,2(x2)y2,2 = λy2,1, (3.30)

−y1,2 + 2y2,2 − y3,2
h2

+O(h2) + b2,1(x2)y2,1 + b2,2(x2)y2,2 = λy2,2.

For j = m, the approximating scheme have the form

−ym−1 + 2ym − ym+1

h2
+ O(h1/2) +Q(xm)ym = λym.

Taking into account the boundary conditions, we get

−
[
ym−1,1
ym−1,2

]
+ 2

[
ym,1
ym,2

]
−
[ ym,1

1−bh
ym,2

1−bh

]
h2

+O(h1/2)+

[
b1,1(xm) b1,2(xm)
b2,1(xm) b2,2(xm)

] [
ym,1
ym,2

]
= λ

[
ym,1
ym,2

]
,

and therefore

−ym−1,1 + (2− 1
1−bh)ym,1

h2
+O(h1/2) + b1,1(xm)ym,1 + b1,2(xm)ym,2 = λym,1, (3.31)

−ym−1,2 + (2− 1
1−bh)ym,2

h2
+O(h1/2) + b2,1(xm)ym,1 + b2,2(xm)ym,2 = λym,2.

The equation (3.29)-(3.31) can be written in the matrix form

(Z2 − λI)Y = u, (3.32)

where Y = (y1,1, y1,2, y2,1, y2,2, ..., ym,1, ym,2)
T and Z2 is defined by

Z2 =
1

h2
V2 +W2, (3.33)

with the matrices

V2 =



2− 1
1+ah

0 −1 0 .

0 2− 1
1+ah

0 −1 0 .

−1 0 2 0 −1 0 . .

. . .
. . . . . . .

. . . .
. . . . . .

. . . . .
. . . . .

. 0 −1 0 2− 1
1−bh 0

. 0 −1 0 2− 1
1−bh


,

and W2 is defined as in (3.9). Here, u = (u1, u2, ...., u2m) is a vector where

u1 = O(h1/2), u2 = O(h1/2), u2m−1 = O(h1/2), u2m = O(h1/2),
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and uk = O(h2) for 2 < k < 2m− 1. Therefore we have

‖u‖ = O(h1/2). (3.34)

Similarly, in case d = 3, instead of (3.31) we have

(Z3 − λI)Y = u.

Here, Z3 is defined by

Z3 =
1

h2
V3 +W3,

where

V3 =



2− 1
1+ah

0 0 −1

0 2− 1
1+ah

0 0 −1

0 0 2− 1
1+ah

0 0 −1

−1 0 0 2 0 0 −1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

−1 0 0 2− 1
1−bh 0 0

−1 0 0 2− 1
1−bh 0

−1 0 0 2− 1
1−bh


,

and W3 is defined as in (3.11). Moreover in this case, (3.34) also holds.
In the same way, in the general case we obtain

(Zd − λI)Y = u,

and Zd is defined by

Zd =
1

h2
Vd +Wd.

Now, Vd and Wd are defined as in the following:

Vd =



E1 F1

G2 E2 F2

. . . . . . . . .
. . . . . . . . .

Gm−1 Em−1 Fm−1
Gm Em


,

where

E1 =

 2− 1
1+ah

. . .
2− 1

1+ah

 ,
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E2, ..., Em−1 are d× d diagonal matrices with entries 2,

Em =

 2− 1
1−bh

. . .
2− 1

1−bh

 ,

G2, ..., Gm and F1, F2, ..., Fm−1 are d×d diagonal matrices which have the entries −1. One
can easily notice that there is no change for the matrixWd. Therefore, in the general case,
Wd is again defined as (3.13). Besides (3.34) holds in general case also.

Now using (3.32) and repeating the proof of the previous theorem we state the following
theorem:

Theorem 3.2.1 Suppose that Q(x) is a symmetric matrix for all x ∈ [0, 1]. Let λ1, λ2, ..., λdm
be eigenvalues of the matrix Zd. If a and b are real numbers, then for every small eigenvalue
λ of Sd(Q) then there is an index j such that

λ− λj = O(h
1
2 ). (3.35)
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Chapter 4

SOME EXAMPLES and
CONCLUSIONS

In this chapter, we will give three examples about finite difference approximations
applied to eigenvalue problem in the space of vector functions. With these examples,
we show the combination of the theoretical facts which are proved in Chapter 2 and the
numerical approach which are given in Chapter 3.

First, we want to show that the eigenvalue problem in vectoral case can be reduced
to the eigenvalue problem in scalar case. To do this, let us consider the operator Ld(Q)
generated by the differential expression (0.1) and the Dirichlet boundary conditions (3.1)
with the potential Q(x) = q(x)I +A, where q(x) is the complex-valued square intregrable
function, I is d by d unit matrix, A is a d by d constant matrix. In this case, we present
the following proposition:

Proposition 4.0.1 The eigenvalues and eigenfunctions of the operator Ld(qI + A) are

ρk,j = λk(q) + ρj & Φk,j = vjϕk(x)

for k = 1, 2, ... and j = 1, 2, ..., d, where λk(q) and ϕk(x) are the eigenvalue and eigenfunc-
tions of boundary value problem

L(q) = −y′′
(x) + q(x)y(x)

with Dirichlet boundary conditions, ρj and vj are the eigenvalue and eigenvector of the
matrix A.

Proof. Indeed, using Avj = ρjvj and L(q)ϕk(x) = λkϕk(x), we obtain,

Ld(q(x)I + A)Φk,j = Ld(q(x)I)Φk,j + AΦk,j,

= Ld(q(x)I)vjϕk(x) + Avjϕk(x) = λk(q)vjϕk(x) + ρjvjϕk(x),

= (λk(q) + ρj)vjϕk(x) = (λk(q) + ρj)Φk,j.
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which gives the proof.

Hence, for an ordinary eigenvalue problem in vectoral case, which has the potential in
the form Q(x) = q(x)I+A, one can determine the eigenvalues of the operator Ld(qI+A),
using the results in scalar case (i.e. the eigenvalues of L(q)) and computing the eigenvalues
of the matrix A.

Now we are ready to give the example:

Example 4.0.1 Let L(1)
2 (Q) be the differential operator generated in the space L2

2 [0, 1] by
the differential expression (0.1) and the Dirichlet boundary conditions (3.1), where

Q(x) =

[
x2 + 4 2
−1 x2 + 1

]
.

The eigenvalues of the matrix,

A =

[
4 2
−1 1

]
,

are ρ1 = 2 and ρ2 = 3.

The eigenvalues of the boundary value problem with matrix potential obtained by finite
difference method, are summarized in Table 4.1. Here the spacing is taken h = 1

100
, h = 1

300

and h = 1
500

respectively.
Table 4.1

k ρk,j(h = 1
100

) ρk,j(h = 1
300

) ρk,j(h = 1
500

)
1 12.150351845 12.151073785 12.151131540
2 13.150351845 13.151073785 13.151131540
3 41.786406415 41.797949881 41.798873475
4 42.786406415 42.797949881 42.798873475
5 91.088610368 91.147036971 91.151712425
6 92.0886610368 92.147036971 92.151715425
7 160.036264456 160.220873452 160.235649623
8 161.036264456 161.220873452 161.235649623
9 248.564577836 249.015134334 249.051207319
10 249.564577836 250.015134334 250.051207319
19 981.202522196 988.391682483 988.968634667
20 982.202522196 989.391682483 989.968634667
29 2182.202633316 2218.431810922 2221.350816542
30 2183.202633316 2219.431810922 2222.350816542
39 3821.993322956 3935.765080140 3944.982555028
40 3822.993322956 3936.765080140 3945.982555028
49 5860.197629400 6135.684823767 6158.162958280
50 5861.197629400 6136.684823767 6159.162958280
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Now, Table 4.2 shows the eigenvalues of the boundary value problem with the potential
q obtained by finite difference method. Here, again h is taken 1

100
, 1
300

and 1
500

respectively.
Table 4.2

k λk(h = 1
100

) λk(h = 1
300

) λk(h = 1
500

)
1 10.150351840 10.151073785 10.151131542
2 39.786406415 39.797949881 39.798873475
3 89.088610368 89.147036971 89.151712426
4 158.036264456 158.220873452 158.235649624
5 246.564577836 247.015134334 247.051207319
10 979.202522196 986.391682483 986.968634667
15 2180.202633162 2216.431810922 2219.350816542
20 3819.993322956 3933.765080141 3942.982555028
25 5858.197629400 6133.684523767 6156.162958281

Therefore, if we add the eigenvalues of the matrix A; i.e. ρ1 = 2 and ρ2 = 3, to the
each eigenvalue given in Table 4.2, we obtain the eigenvalues given in Table 4.1, which
satisfies Proposition 4.0.1.

Now, the next two examples concern with the estimation of small eigenvalues of the
operators generated in the space L2

2 [0, 1] and L3
2 [0, 1] respectively.

Since we want to show the effect of h to the approximation of the solution, in these
two examples, h is taken as 1

100
, 1
900

and 1
2500

respectively.
Moreover, since we are interested in the estimate of small eigenvalues, we list the first

100 eigenvalues in tables.
The whole results are in the end of the chapter.

Example 4.0.2 We consider the differential operator L(2)
2 (Q) generated in the space L2

2 [0, 1]
by the differential expression (0.1) and the Dirichlet boundary conditions (3.1), where

Q(x) =

[
cos 2πx 3x2

3x2 cos 2πx

]
is a symmetric matrix. The matrix C defined by (0.4) has the form,

C =
∫ 1

0
Q (x) dx =

[
0 1
1 0

]
.

The eigenvalues of C are µ1 = −1 and µ2 = 1. Besides, let

Λ1 < Λ2 < Λ3 < ... < Λ2n−1 < Λ2n < ....,

be eigenvalues of the operator L(2)
2 (C) numerated in the increasing order, that is

Λ2n−1 = (πn)2 − 1, Λ2n = (πn)2 + 1,

58



for n = 1, 2, ... Moreover, let

λ1(h) < λ2(h) < λ3(h) < ...

be eigenvalues of L(2)
2 (Q) found by finite difference method.

In Table 4.3, first coloumn shows the eigenvalues of the operator L(2)
2 (C), the sec-

ond,third and fourth coloumns show the eigenvalues of L(2)
2 (Q) evaluated via Finite Dif-

ference Method written in MATLAB software.
Table 4.4 shows the comparison for eigenvalues of the operator L(2)

2 (C) with L(2)
2 (Q).

Table 4.3

n Λn λn( 1
100

) λn( 1
900

) λn( 1
2500

)
1 8.869604401 8.509249116 8.510056114 8.510064908
2 10.86960441 10.202562763 10.203371939 10.203380770
3 38.478417604 38.504985195 38.517816377 38.517956000
4 40.478417604 40.426580707 40.439415761 40.439555428
5 87.826439609 87.780420305 87.845344092 87.846050671
6 89.826439609 89.747687394 89.812614081 89.813320692
7 156.913670417 156.717034596 156.922169697 156.924402741
8 158.913670417 158.698835403 158.903973388 158.906206459
9 245.740110027 245.240264191 245.740926585 245.746378269
10 247.740110027 247.228660062 247.72932549 247.734777203
19 985.960440108 977.871442095 985.862000298 985.949223577
20 987.960440108 979.868548709 987.859111508 987.946334814
29 2219.660990245 2178.870301484 2219.154484972 2219.596027309
30 2221.660990245 2180.8690110385 2221.153201835 2221.594744200
39 3946.841760435 3818.660554919 3945.239022007 3946.634401715
40 3948.841760435 3820.659821994 3947.238300376 3948.633680113
49 6167.502750680 5856.864661462 6163.589374837 6166.995711857
50 6169.502750680 5858.864182880 6165.588913025 6168.995250075
59 8881.643960980 8243.295155568 8873.529700239 8880.592189513
60 8883.643960980 8245.294810936 8875.29379540 8882.591868845
69 12089.265391334 10919.190158386 12074.234485666 12087.316668083
70 12091.265391334 10921.189889174 12076.234250048 12089.31643249
79 15790.367041742 13818.660236841 15764.728749361 15787.042535528
80 15792.367041742 13820.660010353 15766.728568961 15789.042355159
89 19984.948912205 16870.310806950 19943.888323338 19979.623725316
90 19986.948912205 16872.310601858 19945.888180792 19981.623582804
99 24673.011002723 19999.000100000 24610.440191059 24664.894717485
100 24675.011002723 20000.999900000 24612.440075589 24666.894602051
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Table 4.4

n Λn − λn( 1
100

) Λn − λn( 1
900

) Λn − λn( 1
2500

)
1 0.360355284 0.359548287 0.359539493
2 0.667041164 0.667041646 0.66622364
3 −0.265675917 −0.039398773 −0.039538396
4 0.051836896 0.039001843 0.038862176
5 0.046019303 −0.018904483 −0, 019611062
6 0.078752214 0.013825528 0.013118917
7 0.196635820 −0.00849928 −0.010732324
8 0.214835013 0.009697029 0.007463958
9 0.499845835 −0.000816558 −0.006268242
10 0.511449964 0.010784534 0.005332824
19 8.088998012 0.09843981 0.011216531
20 8.091891398 0.1013286 0.014105294
29 40.790688760 0.506505273 0.064962936
30 40.791979206 0.50778841 0.066246045
39 128.181205515 1.602738428 0.207358720
40 128.181938441 1.603460059 0.208080322
49 310.638089217 3.913375843 0.507038823
50 310.638567799 3.913837655 0.507500605
59 638.348805411 8.114260741 1.051770585
60 638.349150043 8.35016558 1.052092135
69 1170.075232947 15.030905668 1.948723251
70 1170.075502159 15.031141286 1.948958837
79 1971.706804900 25.638292381 3.324506214
80 1971.707031388 25.638472781 3.324686583
89 3114.638105254 41.060588867 5.325186889
90 3114.638310346 41.060731413 5.325329401
99 4674.010902722 62.570811664 8.116285238
100 4674.011102722 62.570927134 8.116400672
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Figure 4.1 shows the results given in Table 4.4 graphically:

Figure 4.1

Example 4.0.3 We consider the differential operator L
(3)
3 (Q∗) generated in the space

L3
2 [0, 1] by the differential expression (0.1) and the Dirichlet boundary conditions (3.1),

where

Q∗(x) =

 cos 2πx sin 2πx 2x
sin 2πx cos 2πx sin 4πx

2x sin 4πx cos 4πx


is a symmetric matrix. The matrix is defined by (0.4) has the form

C =
∫ 1

0
Q∗ (x) dx =

 0 0 1
0 0 0
1 0 0

 .
The eigenvalues are µ1 = −1, µ2 = 0 and µ2 = 1. Let

Λ1 < Λ2 < Λ3 < ... < Λ3n−2 < Λ3n−1 < Λ3n < ....,

be eigenvalues of the operator L(3)
3 (C) numerated in the increasing order, that is

Λ3n−2 = (πn)2 − 1, Λ3n−1 = (πn)2, Λ3n = (πn)2 + 1,

for n = 1, 2, ..... Let
λ1(h) < λ2(h) < λ3(h) < ...

be eigenvalues of L(3)
3 (Q∗) found by finite difference method.

In Table 4.5, first coloumn shows the eigenvalues of the operator L(3)
3 (C), the sec-

ond,third and fourth coloumns show the eigenvalues of L(3)
3 (Q∗) evaluated via Finite Dif-

ference Method written in MATLAB software. Here, h is taken as 1
100
, 1
900

and 1
2500

respec-
tively. These eigenvalues are the small ones.
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Table 4.6 shows the comparison of the eigenvalues of the operator L(3)
3 (C) with the

eigenvalues of the operator L(3)
3 (Q∗).

Table 4.5

n Λn λn( 1
100

) λn( 1
900

) λn( 1
2500

)
1 8.869604401 8.564210723 8.565025800 8.565034694
2 9.869604401 9.345652519 9.346468170 9.346477024
3 10.869604401 10.637759053 10.638569295 10.638578137
4 38.478417604 38.194664012 38.207492497 38.207632095
5 39.4784176043 39.469419395 39.482254885 39.482394539
6 40.478417604 40.242353066 40.255191312 40.255331022
7 87.826439609 87.762469547 87.827395647 87.828102267
8 88.826439609 88.766537125 88.831460817 88.832167399
9 89.826439609 89.768518714 89.833440305 89.834146876
10 156.913670417 156.708353950 156.913489843 156.915722909
11 157.913670417 157.710323851 157.915458100 157.917691129
12 158.913670417 158.082863242 158.913422576 158.915655647
13 245.740110027 245.234639585 245.735303147 245.740754849
14 246.740110027 246.348706428 246.735534636 246.740986329
15 247.740110027 247.234602815 247.735266681 247.740718387
16 354.305758843 353.255970373 354.293760870 354.305065391
17 355.305758843 354.256115437 355.293906454 355.305210971
18 356.305758843 355.255941193 356.2937320193 356.305036544
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Table 4.6

n Λn − λn( 1
100

) Λn − λn( 1
900

) Λn − λn( 1
2500

)
1 0.305393677 0.304578601 0.304569707
2 0.523952211 0.523136230 0.523127377
3 0.231845348 0.231035105 0.231026264
4 0.283753592 0.270925107 0.2707855093
5 0.008998209 −0.003837281 −0.003976934
6 0.236064538 0.223226292 0.2230865823
7 0.063970062 −0.000956038 −0.001662657
8 0.059902484 −0.005021207 −0.005727789
9 0.057920895 −0.007000695 −0.007707266
10 0.205316467 0.000180573 −0.002052491
11 0.203346566 −0.001787683 −0.004020711
12 0.830807175 0.000247841 −0.001985229
13 0.505470442 0.004806879 −0.000644821
14 0.391403599 0.004575390 −0.000876301
15 0.505507212 0.004843346 −0.000608359
16 1.049788470 0.011997973 0.000693452
17 1.049643406 0.011852389 0.000547872
18 1.049817650 0.012026824 0.000722299

In Table 4.7, first coloumn shows the eigenvalues of the operator L(3)
3 (C), the sec-

ond,third and fourth coloumns show the eigenvalues of L(3)
3 (Q∗) evaluated via Finite Dif-

ference Method written in MATLAB software. Here, h is taken as 1
100
, 1
900

and 1
2500

respec-
tively. These eigenvalues are the middle ones.

Table 4.8 shows the approximate eigenvalues L(3)
3 (C) obtained by the asymptotic method

and their comparison with L(3)
3 (Q∗).
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Table 4.7

n Λn λn( 1
100

) λn( 1
900

) λn( 1
2500

)
28 985.960440108 977.870014024 985.860574494 985.947797790
29 986.960440108 978.870060724 986.860621795 986.947845084
30 987.960440108 979.870003816 987.860564609 987.947787908
43 2219.660990245 2178.86966255 2219.153849728 2219.595392088
44 2220.660990245 2179.86968226 2220.153870083 2220.595412435
45 2221.660990245 2180.86965789 2221.153845397 2221.595387760
58 3946.841760435 3818.6601915 3945.238664375 3946.634044102
59 3947.841760435 3819.6602022 3946.238675691 3947.63405541
60 3948.841760435 3820.6601888 3947.238661950 3948.634041678
73 6167.502750680 5856.8644240 6163.589145858 6166.995482909
74 6168.502750680 5857.8644304 6164.589153059 6167.995490098
75 6169.502750680 5858.8644221 6165.589144308 6168.995481363
88 8881.643960980 8243.2949845 8873.529541184 8880.592030504
89 8882.643960980 8244.2949886 8874.529546170 8881.592035464
90 8883.643960980 8245.2949830 8875.539540108 8882.592029431
103 12089.265391334 10919.190024 12074.234368789 12087.316551242
104 12090.265391334 10920.190027 12075.234372444 12088.316554883
105 12091.265391334 10921.190023 12076.234367997 12089.316550455

Table 4.8

n Λn − λn( 1
100

) Λn − λn( 1
900

) Λn − λn( 1
2500

)
28 8.090426084 0.099865614 0.012642318
29 8.090379384 0.099818313 0.012595024
30 8.090436292 0.099875499 0.0126522
43 40.791327695 0.507140516 0.065598157
44 40.791307985 0.507120161 0.06557781
45 40.791332355 0.507144847 0.065602485
58 128.181568935 1.603096059 0.207716333
59 128.181558235 1.603084743 0.207705023
60 128.181571635 1.603098484 0.207718757
73 310.63832668 3.9136048215 0.507267771
74 310.63832028 3.9135976206 0.507260582
75 310.63832858 3.9136063718 0.507269317
88 638.34897648 8.1144197955 1.051930476
89 638.34897238 8.1144148079 1.051925516
90 638.34897798 8.1044208719 1.051931548
103 1170.075367334 15.031022544 1.948840092
104 1170.075364334 15.031018889 1.948836451
105 1170.075368334 15.031023336 1.948840879
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Figure 4.2 shows the results given in Table 4.8 graphically.

Figure 4.2

These calculations show that the study of finite difference method on approximating
the eigenvalues for Sturm-Liouville problems gives sufficient accuracy when h is chosen
very small. Moreover, we have presented the effectiveness of two methods: asymptotic
formulas and numerical methods. Thus, asymptotic formulas are better to determine
large eigenvalues, whereas numerical methods are preferable to calculate small and middle
eigenvalues.

The numerical method, in general, gives better results for smaller eigenvalues. Table
4.4, Table 4.6, Figure 4.1 and Figure 4.2 show that the results of the asymptotic formulas
are not at all bad for small eigenvalues.

The main result in this work is to determine a condition on the potential for which the
root functions of the operator form a Riesz basis with the help of asymptotic formulas for
the eigenvalues and eigenfunctions which we have derived in Chapter 2. We have focused
on boundary conditions which are strongly regular in scalar case, while we have studied
Sturm-Liouville operator in the space of vector functions.
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