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ABSTRACT

Electromagnetic scattering theory is crucial to understand interaction of electromagnetic
waves with objects and medium in which it propagates. Scattering fields are formed
primarily by reflected, refracted and diffracted fields. There are also other wave
phenomenon such as creeping waves, whispering-galley waves, etc. but all these

phenomenon are formed by the interaction of reflected, refracted and diffracted fields.

Each scattering phenomenon should be considered carefully in the design of electronic
devices. For example, warplane designer should minimize radar cross section (RCS) by
avoiding reflective surfaces that may direct incoming radar wave towards radar receiver.
Another example is that, today’s electronic circuits contain so many components and
conductive traces. Unwanted incoming radiation can reach critical components by being
subjected to various scattering mechanisms. Therefore, EMC engineers should protect
important parts of the devices by applying shielding techniques. As a final example,
mobile phone designers should control the electromagnetic energy radiated towards human
head to reduce specific absorption rate (SAR) value. This is accomplished by covering the
back side of mobile phone with specific materials e.g. perfect electric conductor (PEC)

materials. All these applications require extensive knowledge on scattering theory.

Reflection and refraction phenomenon has long been analyzed via well-known Snell’s law.
On the other hand, diffraction is much more difficult to analyze. There is no simple
formulation to analyze diffraction. Exact solutions of diffracted fields are only known for a
limited number of geometries such as wedge, sphere, and cylinder. In addition, these
solutions are generally in the form of infinite series that are slowly convergent at high
frequencies (i.e. when the wavelength is very small compare to the object size). Hence
their applicability is limited. High frequency asymptotic (HFA) methods such as geometric
theory of diffraction (GTD) and physical theory of diffraction (PTD) are developed to
overcome this difficulty. These methods are derived from the exact solution of the problem
and can be used to analyze diffraction mechanism at high frequencies. With today’s high
speed modern computers, it is also possible to analyze diffraction phenomena numerically.
Numerical methods such as finite difference time domain (FDTD), method of moments

(MoM) and finite element method (FEM) can be used for this purpose. These methods are



used in broad range of frequencies and the upper frequency limit depend on the computer’s

résources.

In this dissertation, we advanced the numerical diffraction theory by proposing three novel
time domain based diffraction models: double tip diffraction model (Chapter 3), soft-hard
strip diffraction model (Chapter 4) and time domain fringe current model (Chapter 5). In
double tip diffraction model study, we obtained diffracted fields around 2D rectangular
object for various incidence angles and rectangle thicknesses with FDTD method. The
verification is performed with MoM model. In soft-hard strip diffraction model study,
diffracted fields around a 2D canonical strip geometry with one face hard and the other
face soft boundary condition (BC) is obtained with FDTD method. The model is verified
with existing MoM solution. Finally in time domain fringe current model, we obtain fringe
currents that are induced on 2D wedge geometry that is illuminated by a line source. We
then calculate fringe waves radiated by fringe currents and verified proposed model with

existing PTD and MoM solutions.
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OZET

Elektromanyetik sacilma teorisi elektromanyetik dalgalarin nesnelerle veya yayildig
ortamlarla etkigemini anlamak i¢in ¢ok Onemlidir. Bir objeden sagilan alanlar baslica
yanstyan, kirillan, kirinan alanlardan olusur. Bunlarin disinda whispering-galley, creeping
vb. alanlarda mevcuttur fakat tiim bu alanlar yansiyan, kirilan ve kirman alanlarin

birbirleriyle etkilesimlerinden dolay1 olugur.

Elektronik cihaz tasariminda biitiin sagilma mekanizmalar1 goz 6niinde bulundurulmalidir.
Ornegin, savas ugag1 tasarimcisi gelen radar sinyalini radar vericisine dogru yonlendirecek
yansitict ylizey kullanimindan olabildigince kag¢inmalidir. Bir diger o6mek olarak,
giiniimiiziin elektronik devreleri oldukga fazla bilesen ve devre yolundan olusur. Dig
ortamdan gelen istenmeyen elektromanyetik radyasyon birden fazla sagilma
mekanizmasina maruz kalarak devredeki kritik bilesenlere ulagabilir. Bu ylizden
elektromanyetik uyumluluk (EMC) miihendisleri cihazlardaki kritik pargalar1 cesitli
ekranlama teknikleriyle koruma altina almalidirlar. Son bir 6mek olarak, cep telefonu
tasarimcilan insan kafasina dogru yayilan elektromanyetik enerjiyi 6zgiil emilim oranini
(SAR) diisiirmek icin yansitmalidirlar. Bu islem cep telefonlarinin arka yiizeyinin 6zel
materyallerle (6r. siiper elektriktriksel iletken), kaplanilmasiyla gergeklestirilir.
Bahsettigimiz tiim uygulamalar sa¢ilma teorisinin iyi bir bi¢cimde anlagilmasiyla

mumkiindiir.

Yansima ve kirilma sagilma mekanizmalart uzun siireden beri herkes tarafindan bilinen
Snell yasasi ile incelenmektedir. Diger taraftan, kirinim sag¢ilma mekanizmasi i¢in bu
sekilde bir formiilasyon bulunmamaktadir. Kirinan alanlarin kesin/tam ¢oziimleri sadece
belli bash kanonik geometriler (6r. Kama, kiire ve silindir) i¢in bilinmektedir. Bunun
yaninda bu ¢oziimler genelde yiiksek frekanslarda (dalga boyunun obje boyutlarindan ¢ok
kiigiik oldugu durumlarda) yavas yakinsayan sonsuz seri formatindadir. Bu yiizden bu
¢oziimlerin kullanim alanlar1 sinirlhidir. Kesin ¢oziimleri kullanmakta karsilasilan sorunlari
ortadan kaldirmak i¢in geometrik kirinim teorisi (GTD), fiziksel kirinim teorisi (PTD) gibi
metotlar gelistirilmistir. Bu metotlar problemin kesin ¢6ziimii kullanilarak elde edilmistir
ve kirmim mekanizmasini sadece yiliksek frekanslarda analiz etmek icin kullanilabilir.
Gliniimiiziin modern ve yiiksek hizli bilgisayarlar kirmim mekanizmasini analiz etmek

icin niimerik yontemlerin kullanimina izin vermektedir. Zamanda sonlu farklar metodu
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(FDTD), moment metodu (MoM) ve sonlu elemanlar metodu (FEM) bu amagcla
kullanilabilmektedir. Tiim bu niimerik metodlar genis bir frekans araliginda kullanilabilir

ve frekans {ist limiti kullanilan bilgisayarin kaynaklarina baglidir.

Bu tez kapsaminda ¢ift uclu kirinim modeli (Bolim 3), yumusak-sert serit kirmim modeli
(Boliim 4) ve zaman domeninde kenar akimlar1 modeli (Boliim 5) adli ti¢ adet yeni kirinim
modeli zaman domeninde FDTD yontemi ile gelistirilerek niimerik kirmim teorisine
katkida bulunulmustur. Cift u¢lu kirmnim modeli ¢aligmasinda iki boyutlu dikdoértgensel
nesneden olusan kirinan alanlar cesitli gelen dalga agis1 ve dikgortgen kalinliginda
incelenmistir. Sonuglarin dogrulugu MoM metodu kullanilarak saglanmistir. Yumusak-sert
kirimim modeli ¢aligmasinda, bir tarafi yaumusak diger tarafi sert sinir kosuluna sahip iki
boyutlu serit geometrisinden kirman alanlar zaman domeninde elde edilmistir. Model
halihazirda var olan MoM ¢oziimii kullanilarak dogrulanmistir. Son olarak, zaman
domeninde kenar akimlart modeli ¢alismasinda iki boyutlu kama geometrisinin ¢izgisel
kaynak tarafindan aydinlatilmasi sonucunda yiizeyde indiiklenen kenar akimlar1 zaman
domeninde elde edilmistir. Daha sonra kenar akimlarindan dolay1 olusan kenar alanlar

hesaplanmis ve model hali hazirda var olan MoM ve PTD ¢6ziimii ile dogrulanmistir.
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1. INTRODUCTION

1.1. Research Overview

Electromagnetic (EM) waves interact with objects and media, in which they travel, by
inducing currents in the object body. These induced currents give rise to scattered fields
which are formed by reflected, refracted and diffracted fields. Reflection occurs when
electromagnetic wave bounces from a surface back towards the source. Refraction occurs
when electromagnetic waves are deflected as the wave goes through a substance. The wave
generally changes its the speed and angle of its general direction. Diffraction occurs when
electromagnetic wave passes an edge, passes through a narrow gap or goes past an object.
Diffracted waves radiate in all directions as if being emerged by a point source. It is for
this reason that signals are able to provide coverage even in hilly or mountainous terrain.
Diffraction theory is used in many areas by physicists, mathematicians and various
engineering disciplines. For example, telecommunications engineer should study the

effects of building’s edges or hills located in transmission path before designing the link.

Each scattering mechanism needs to be modeled and considered separately for the design
of targets with desired scattered field characteristics. Reflection and refraction can be
modeled with well-known Snell’s law but diffraction is much more difficult to model.
Exact solution of diffracted fields is obtained from an appropriate boundary value problem
for Maxwell’s equations. However, there are only a few problems such as infinite half-
plane, wedge and circular cylinder that allows explicit exact solutions [1], [2]. These
problems are also called as canonical problems. The solutions of canonical problems are
generally in the form of infinite series (e.g., a series formed by Hankel and Bessel
functions of any kind) which are slowly convergent for the electrically large objects (/ > 4

). Hence they have limited applicability at high frequencies.

High frequency asymptotic (HFA) methods such as geometric theory of diffraction (GTD)
[3], uniform theory of diffraction (UTD) [4] and physical theory of diffraction (PTD) [5],
[6] can be used to analyze diffraction approximately when the wavelength is small
compared to the object being considered. These methods are constructed by using either
direct or indirect approach [7]. In the former approach, asymptotic method applied to

Maxwell’s equations directly at the beginning of the problem, while in the latter,



asymptotic method is applied to the exact solution of the problem to construct approximate
asymptotic solution. At high frequencies, diffracted fields obey localization principle i.e.
they don’t depend on every point on the surface of the scatterer but only on the points
located in the vicinity of discontinuities e.g. tips, edges and vertices. Localization principle
allows HFA methods to calculate diffracted fields around more complex shapes. This can
be accomplished by first dividing the shape into canonical geometries and then super-

positioning contributions of each canonical geometry at observation point.

Numerical methods such as FDTD [8], MoM [9] and FEM [10] can also be used to analyze
diffracted fields starting from Rayleigh region (A >>/; /:maximum length of target ). The

upper frequency limit depends on the computational resources but today’s high speed,
large memory computers enable us to analyze diffraction mechanism up to the beginning
of the optical scattering region (/<104). Time domain based numerical methods also
improves our understanding of diffraction phenomena because they enable to analyze

diffraction step by step in time.

1.2. Contributions

The work discussed in this dissertation advances numerical diffraction theory by
introducing three novel time domain based diffraction models: double tip diffraction model
[11], soft-hard strip diffraction model [12] and time domain fringe current model [13].
Currently there are no exact solution exists for introduced models. The models are derived
on specific two-dimensional (2D) geometries by using FDTD method. MoM method is
used to validate proposed diffracted models. The following section describes the

organization of each of the topics within this dissertation.

1.3. Organization of Dissertation

The remaining chapters of this thesis are outlined as follows:

Chapter 2 reviews fundamentals of electromagnetic theory including boundary conditions,
time-harmonic fields and wave equations. Next, it introduces the concept of radar cross
section and scattering mechanisms. The chapter continues with brief information about
high frequency asymptotic methods; geometric optics (GO), physical optics (PO),
geometrical theory of diffraction (GTD) and physical theory of diffraction (PTD). Finally,



it concludes with a description of most used numerical electromagnetic methods; MoM,
FEM and FDTD. Here, we dwell on mostly FDTD method because all the diffraction

models introduced by this thesis are derived with this method.

Chapter 3 presents one of the main contributions of this dissertation: Double tip diffraction
model [11]. It starts with the introduction of the problem and its geometry. FDTD based
diffraction model is next introduced and necessary steps that are needed to extract
diffracted fields from total fields are explained. Afterwards, MoM-based diffraction model
is presented. Finally, several examples and comparisons are shown to prove validity of

proposed model.

Chapter 4 presents another novel diffraction model: Diffraction modeling by a soft-hard
strip [12]. First, the problem geometry is introduced; a strip having soft boundary condition
on one of its faces and hard boundary condition on the other. Afterwards, FDTD based
diffraction model is explained step by step. Although, MoM method has been available for
this structure we also briefly described it for the sake of completeness. Finally, the validity
of the proposed FDTD based diffraction model is proved with the comparisons of MoM

model.

Chapter 5 describes time domain modeling of fringe waves around perfectly reflecting
wedge geometry [13]. A novel FDTD approach is first introduced to obtain fringe currents
on the surface of the wedge. The fringe waves are then calculated from fringe currents via
well-known radiation integrals [14]. The chapter concludes with several examples and

comparisons against existing MoM model [15] to illustrate validity of proposed method.

Although each chapter has its own concluding section, we summarize our work and give

directions for future work in Chapter 6.



2. BACKGROUND

2.1. Overview of Electromagnetics

2.1.1. Maxwell’s Equations

Electromagnetic phenomena are governed by a set of four vector equations known as
Maxwell’s equations. Differential forms of these equations for time-varying fields are

given by (2.1)-(2.4):

V-B=q,_, (2.2)

VxE:—M—a—B (2.3)
Ot

VxH=J+a—D 24
ot

where D is electric flux density (C/m?), B is magnetic flux density (Wb/m?), E is electric
field intensity (V/m), H is magnetic field intensity (A/m), J is electric current density
(A/m?), M is magnetic current density (W/m?), qev is volume electric charge density (C/m?)
and gmv is volume magnetic charge density (Wb/m?®). Equations (2.1)—(2.4) are known as
Gauss’ law, magnetic Gauss’ law, Maxwell-Faraday law and Ampere law respectively. In
addition to the four Maxwell’s equations, there is an additional equation relating the
electrical charge density to the electrical current density. This equation is also known as

continuity equation and expressed by:

oq
V.J=——tev 2.5
Py (2.5)

For problems that possess symmetry, it is more convenient to use integral form of Maxwell
equations. These are obtained from differential form by utilizing Stoke’s and divergence

theorems given in (2.6) and (2.7) respectively:

ng-m:[j]’(vXA)-ds (2.6)
C S
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Taking surface integral of both sides of (2.3) and (2.4) and applying Stoke’s theorem yields

integral form of Faraday and Amperes law which are given in (2.8) and (2.9):

[ﬁE-dlz—%”B-ds 2.8)
C S

o
@Hdl: JJ~ds+5J;:[D~ds 2.9)

The other two Maxwell equations can be obtained in integral form by taking volume
integral of both sides of (2.1) and (2.2) and then applying divergence theorem. These are
also given in equations (2.10) and (2.11):

[ﬂD-ds=ﬂ G dv (2.10)
S Vv

[[B-as=[[[q,,d 2.11)
S vV

Similarly, integral form of continuity equation can be obtained by utilizing divergence

theorem as:

Ik -ds=—§ﬂjqev dv. (2.12)
N vV

The relationship between electric flux density D and electric field intensity E and similarly
magnetic flux density B and magnetic field intensity H are governed by constitutive
equations given in (2.13) and (2.14):

D=¢cE (2.13)

B=uH (2.14)

where € is the permittivity, and p is the permeability of the medium. In free space they are

expressed as:

€=¢ R~ 8.85x107!2 (Farad | meter) (2.15)



M=ty =4rxl 0~ (Henry | meter) (2.16)

2.1.2. Boundary Conditions

The differential forms of Maxwell equations given in (2.1)-(2.4) are not valid in regions
where the parameters of the media changes abruptly. In other words, partial derivatives in
differential form of Maxwell equations have meaning only if the medium is continuous. At
points of discontinuity of the material properties, the field behavior is governed by BCs

which are expressed by (2.17)-(2.20):

—nx(E, -E,) =M, (2.17)
nx(H,—H,)=J, (2.18)
n-(D,-D,)=gq, (2.19)
n-(B,-B,)=g,, (2.20)

where the subscripts 1 and 2 are used for fields located in medium 1 and 2 and n is the unit
vector normal to the boundary. These equations state that in source-free regions of space,
the tangential components of electric and magnetic field are continuous whereas normal

components of electric and magnetic fields are discontinuous by amount of ¢ /¢, and

M, | 1, respectively.

2.1.3. Time-Harmonic Fields

Time-harmonic fields are those fields whose time variations are of cosinusoidal form.

Assuming that fields have a time dependence e’/“", the instantaneous fields can be related

with their complex forms by:

A(x,y,z,t)= Re[[&(x,y, z)eja”] (2.21)

where A is complex form. For such time-harmonic fields, the time-derivative in Maxwell

equations are replaced simply by j@ and can be re-written as:
VxE=-M, - joB (2.22)

VxH=J, + joD (2.23)



V-D=gq, (2.24)

V-B=gq, (2.25)

2.1.4. Wave Equations

Maxwell’s equations given by (2.1)-(2.4) or (2.22)-(2.25) are first-order coupled partial
differential equations, i.e. calculation of electric field requires knowledge about magnetic
field and vice versa. These coupled equations can be transformed to uncoupled equations
by increasing their order. This can be accomplished by first taking the curl of (2.3) and
(2.4) and then applying the vector identity given by:

VxVxA=V(V-A)-V?A (2.26)

Substituting equations (2.1) and (2.2) into resulting equation yields the following second-

order uncoupled equations which are also known as wave equations:

oJ 1 OE, o’E
VE=VxM+ u—+-Vq, + uoc—+ ue—— 2.27
Hot e Qe THO B TS (227)
2
vsz—VxJ+aM+lvqmv+ea—M+yaa—H+ ea—? (2.28)
P ot ot ot

In source-free and lossless regions (J=M=¢q, =¢q,, =0 =0), (2.27) and (2.28) can be re-

written as:
2
E
V’E = ye% (2.29)
5 o'H

Similar wave equations can be obtained for time-harmonic fields by replacing partial

derivatives in (2.27)-(2.30) by 0/0t = jew, 0* /0t° = -’



2.2. Radar Cross Section

Radar cross section (RCS) is a measure of reflective strength of a target which is defined
by IEEE as 47 times the ratio of the power per unit solid angle scattered in a specified
direction to the power per unit are in a plane wave incident on the scatterer from specified
direction. Mathematically it is expressed as:

o= lim 4;;1!22M (2.31)

R0 |E; |2

When electromagnetic wave sent by radar transmitter hits an object, currents are induced
on the surface of the body and even within its volume if the object is not made of perfectly
conducting material. These induced currents give rise to scattered fields which are radiated
back and detected by radar receiver. A typical radar scenario is pictured at Fig. 2.1.
According to the arrangement of transmitter and receiver, radar systems can be categorized
into two groups: mono-static and bi-static. Mono-static radars use the same antenna for
transmitter and receiver. Most radar systems works in mono-static arrangement because of
their compactness. Bi-static radars use separate antennas located in two different locations
for transmitter and receiver. It is possible to obtain larger RCS with bi-static arrangement

because most RCS reduction techniques consider mono-static arrangement.

Scattered Field Eg
L Incident Field E;

o
R/

e Target Range r Y
£ §* "\

Transmitter

Figure 2.1 Typical radar scenario [16]

Scattering characteristics of the target not only depend on the target’s geometry and its
material properties but also the frequency of incident wave. There are three frequency

regimes in which RCS of the target behave differently: Rayleigh, resonance and optical.



These frequency regimes are illustrated in Fig. 2.2 for RCS of sphere of radius a. In
Rayleigh region where the target size is small compared with wavelength, the current
induced on the target is approximately constant. RCS increases with frequency and does
not depend on the shape of target. In resonance region, target size becomes comparable
with wavelength and the current induced on the target have considerable phase variations.
The target contributes to its RCS as a whole. In optical region, target size is large
compared with the wavelength and the RCS of the target approaches to physical area of the
target. Measurement of RCS is a very time consuming and expensive process. Instead, high
frequency and numerical techniques can be used to calculate RCS approximately at initial
steps of target design. High frequency methods such as GO, PO, PTD and GTD are widely
used in optical region. Numerical methods such as MoM, FDTD and FEM become
computationally expensive as the target size increases; therefore they are used generally in

Rayleigh and resonance region.
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Optical
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Figure 2.2 RCS of a sphere [16]
2.3. Scattering Mechanisms

Scattering field is comprised as a result of various scattering mechanisms. Fig. 2.3 shows
various scattering mechanisms formed on combat aircraft. Specular reflection is mirror-
like reflection of wave from flat and smooth surfaces. This scattering mechanism is

governed by well-known Snell’s law i.e. the angle of incidence is equal to the angle of
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reflection (6, =6, ), and contributes significantly to the target RCS especially in optical

region. Multiple reflections are possible if multiple surfaces are present. For example,
electromagnetic wave can reflect from vertical stabilizer of an aircraft, hit horizontal
stabilizer and then return to radar receiver by reflecting from that surface. Diffraction
arises from electrically small discontinuities such as edges, tips and vertexes. Diffracted
fields emerge in all directions hence they exists even in the shadow region where the
incident field is zero. Diffracted fields contribute significantly to scattered field especially
in lower and middle resonance regions. As the wavelength becomes smaller than object
size, diffracted fields become less intense than reflected fields. An incident
electromagnetic wave leads to traveling surface waves which propagate along flat smooth
surfaces. Upon reaching a surface discontinuity such as edges or vertex, part of the surface
wave reflects and propagates back towards the radar. They have significant contribution to

target’s RCS for surface grazing angles less than 30° in resonance and optical region [17].

Tip

X Diffraction from
Tip From Fuel Tank
Diffraction at Engine Cavity
Aircraft Nose

Figure 2.3 Scattering mechanisms [16]

Creeping wave is actually traveling wave which circulates around the smooth closed
shapes such as sphere. Together with diffracted fields, these are the only waves that exist
in shadow region. They are also responsible for the oscillations in resonance region of RCS
of the sphere as shown at Fig. 2.2. Creeping waves may not be taken into account when
radius of curvature is greater than five times the wavelength. Hence their contribution is

only significant up to middle of resonance region.
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Any discontinuity on the object surface such as curvature, gap and seam can been seen as
an echo source. Their effects generally masked with other scattering mechanisms discussed
so far. Hence, they are not taken into account generally in designing low observable

targets.

2.4. Analytic Methods in Electromagnetics

2.4.1. Geometric Optics

Geometric optics (GO), also known as ray optics, is a high frequency asymptotic technique
used to analyze electromagnetic wave scattering from objects whose dimensions are very
large compared to wavelength (/ >> A4). Principles of GO are derived from the treatment of

light and given as:

1. Light travels in the form of rays.

2. Light rays satisty Snell’s law of reflection and refraction.

3. Light rays travel along the path of least time e.g. they travel as straight lines in
homogenous medium (Fermat’s principle).

4. Light intensity between two points is governed by the conservation of energy flux

in a tube of rays. [14]

GO is very useful in analysis of reflected and refracted fields in optical region. Wave
nature of light is not taken into account because postulates of this method is derived in the
limit when wavelength goes to zero (or frequency is infinite). As a result, wave
phenomenon such as interference, diffraction and dispersion can’t be modeled with this
method. In GO, wave direction is specified by a vector normal to the eikonal surfaces

which are expressed by the solution of (2.32):

2

2
oY — n(x,7,2) (2.32)
ox

2
o¥
|V(x:yaz)| - +‘8_Z

oY
+ PR
oy

where w(x,y,z) is eikonal function and n(x,y,z) is refractive index. If the refractive

index of the medium is constant i.e. homogenous medium, then the wave propagates in a
direction specified by straight lines. In this case, eikonal surfaces may be parallel planes or
concentric spheres as shown in Fig. 2.4 [18]. In order to use GO in electromagnetic

problems, amplitude, polarization and phase concepts needs to be introduced.
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Amplitude Relation
Amplitude relationship of rays is obtained by imposing the conservation of energy flux in a

tube of rays. This can be demonstrated with the aid of Fig.2.5. Here, the light radiated from

point source constitutes a ray tube which has cross sectional areas d4, and dA at some

reference points. Radiation densities at these points are related by:

S,dA4, = SdA (2.33)
o S e e [ St e Eikonal [
e surfaces r | '

LSS LSS obova [T\

Eikonal surfaces ¢(x,y,z) '
(a) (b)

Figure 2.4 Eikonal surfaces in homogenous medium (a) Plane wave (b) Spherical wave [14]

In electromagnetic theory, radiation density is also related with electric field in the far zone

2

(distance from source > 2D where D is largest dimension of the radiator) by:

12

S(r,0,4) = i|E(r,l9, o)’ (2.34)

where 77 is wave impedance and E(r,8, @) is electric field. Combining (2.33) and (2.34)

1E] _ [ (2.35)
E,| \ad '

For cylindrical eikonal surfaces (2.35) will be proportional to the distance (radii of

yields the amplitude relation for GO:

curvature) from source point:

1E[ _ fdﬂ __Po (2.36)
| E, | dd  py+s
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If the eikonal surfaces are planar, then R, and R, can be assumed to be infinite and as a

result, (2.35) will be equal to one.

dA

Figure 2.5 Tube of rays [14]

Phase and Polarization Relation
Phase and polarization relation for GO is obtained via Luneberg—Kline high frequency

expansion [19] that is given by (2.37) with the aid of Fig. 2.5:

E(s) = E,'(0)e/* /—ppisefﬁs (2.37)
0

Here, the term E,'(0)e’*” represents the value of complex electric field at reference point

—JPs

s=0, o represents the spatial attenuation due to spreading of wavefront and e
Pots

represents the phase variation. The polarization of the field is determined by the vector

Eo' (0). Applications of GO in electromagnetic problems can be found in [20].

2.4.2. Physical Optics

Physical optics, introduced by Macdonald (1912), has long been applied to analyze
scattering fields from electrically large (d 2104) convex bodies. In contrast to GO, the
wave nature is preserved in this method and wave phenomenon such as diffraction and
interference are modeled. When electromagnetic waves encounter an object, surface or

volume currents are induced depending on the electrical properties of the object. These
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induced currents are then used in vector potential equations (2.38)-(2.40) to find radiated

fields everywhere. PO scattered fields are also calculated in the same way.

E, =—jwA (for 8 and ¢ components only) (2.38)
H, = lar xE, (for € and ¢ components only) (2.39)
n
_ ILl 1 ' ' ejﬂR ]
A—EHSJS()C,)/,Z)—R ds (2.40)

In this method, induced currents are assumed as if they are induced on infinite tangent
plane and calculated from the incident electrical and magnetic fields obtained by using GO

approximation as:
J, =2nxHY (2.41)

These currents are assumed to be non-zero only in the illuminated portion of the body and
set to zero in the shadow region as shown in Fig. 2.6. PO currents are also known as
uniform currents because magnitude spectrum of currents induced on infinite-plane is
uniform. Similar to GO, PO is most accurate at specular direction but it also gives good

results in the vicinity of forward scattering direction in which GO is not applicable.

Figure 2.6 Illuminated and Shadow Regions of surface for application of PO.

One of the drawbacks of PO is that it is insensitive to polarization i.e. scattering field is the
same for each polarization. In addition to this, its accuracy is poor at points near to
discontinuities such as edges, tips and corners because diffraction mechanism is not
modeled correctly. Actually, the diffraction modeled in PO is due to abrupt termination of

currents near discontinuities and this is not true in reality.
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2.4.3. Geometrical Theory of Diffraction
Geometrical Theory of Diffraction (GTD) is introduced by Keller to remove inefficiencies
of GO in incident and shadow regions [3]. Besides the usual rays, diffracted ray concept is
introduced with GTD. Diffracted rays lie on the surface of cone called as Keller’s cone
whose half-angle is equal to the angle which incident ray makes with point of discontinuity
on the object surface as shown at Fig. 2.7.

Edge Diffracted Rays

On
Keller Cone

Conducting
N Wedge

Figure 2.7 Keller cone in GTD [16]

According to GTD, total fields are formed by the GO fields plus diffracted fields and

expressed as:

E — EGO + EGTD

(2.42)
H — HGO + HGTD

where E®©, H% are GO total fields and E¢™ , H®™ are diffracted fields derived by
GTD. The postulates of the GTD are the same as those of GO but also include following
ones for diffracted fields:

1. Diffracted rays satisfy Fermat’s principle.
2. Diffracted rays are linearly related to the incident field at diffraction point by

diffraction coefficient.

As a consequence of the postulates given above, diffracted rays are expressed with the aid

of Fig. 2.8 as:
E,(s)=E,(Q,)-D A(s",5)e " (2.43)

where E,(s), E, are diffracted and incident fields and D is diffraction coefficient (usually

dyadic) derived from the appropriate canonical problem by subtracting GO solution from
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exact total field solution [14]. The term A(s',s) is called as spatial attenuation factor and

expressed by (2.44) for plane, cylindrical and spherical waves:

for plane wave

A(s',s) = ﬁ’ p =ssin f3, for cylindrical wave (2.44)
il for spherical wave
s(s+s")

Observation  Straight
Point Diffracting
s Edge

b Op

Source

Figure 2.8 Edge diffraction scenario for [14]

GTD can be used to analyze scattered fields from complex shapes. To accomplish this,
complex shape is partitioned into canonical geometries. The total field is then calculated
via superposition of the fields formed by each canonical geometry. Diffraction coefficient
for various canonical geometries as well as detailed explanation of GTD can be found in

[3], [14] and [21].

2.4.4. Physical Theory of Diffraction

Physical theory of diffraction is a current based high frequency asymptotic method and can
be seen as an extension of PO. According to PTD, induced currents are formed by uniform
and non-uniform components. Uniform components are actually physical optics currents
which are assumed to be induced on an infinite tangent plane. Non-uniform (fringe)
currents, on the other hand, are formed due to the discontinuities of object surface such as

edges, tips, corners and any other inhomogeneities of the material. Fig. 2.9 demonstrates
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the currents induced on perfectly reflecting tangent plane. As can be seen, non-uniform

currents are concentrated in the vicinity of discontinuity.

: ““Total Currents
1 _—PO Currents

|

]

Magnitude of current density in
arbitrary units

_—~PTD Currents

Magnitude of current density in
arbitrary units
F -9

0 2 4 6 8 10

Distance from edge in wavelength

Figure 2.9 Total, uniform (PO) and non-uniform (PTD) currents on half-plane

In PTD, total scattered field is expressed by the sum of the field radiated by uniform (PO)

and non-uniform (fringe) currents as:

E — EPO + Efringe

. (2.45)
H — HPO + Hfrmge

In accordance with (2.45) fringe fields are found by subtracting PO solution from exact
total fields i.e. fields determined by canonical problems. As stated previously, diffraction is
considered a local phenomenon in high frequencies. Hence, complex targets can be
partitioned into canonical geometries to analyze radiated scattered field with PTD. The
drawback of this approach is that interactions between discontinuities are difficult to model
because canonical problems with multiple discontinuities are limited. The interested reader

is referred to [5], [6] and [22] for further information.
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2.5. Numerical Methods in Electromagnetics

2.5.1. Method of Moments

Integral equations are encountered very frequently in electromagnetics, e.g. scattered fields
are found from current density via well-known radiation equations [14] that are actually an
integral equations. Method of moments is an integral equation based frequency domain
method and particularly used in antenna radiation and wave scattering problems. In this
method, integral equation is converted to matrix equation by representing unknown

function as the sum of basis functions. MoM can be formulated mathematically by:

[F=g (2.46)

where the function g is known excitation (e.g. incident electric or magnetic field), F is the
unknown function (e.g. current density) which needs to be determined and L is a linear

operator (e.g integral). Expanding unknown function F in series form yields:

F=Ya,F,. (2.47)

m

Here, &, ‘s are the unknown coefficients and F,, ’s are the known basis functions.

Substituting (2.47) into (2.46) and using the linearity of operator L, one can obtain:
N N
LF=LY a,F, => a,F, =g (2.48)

Equation (2.48) has N unknowns and can be solved if it is transformed into a system of N

linearly independent equations with N unknowns. This can be accomplished by

multiplying both sides of (2.48) by a set of testing functions 7's and taking inner product

of (2.48) against each 1 :

iam (T,,LF,)=(T,,g) i=1,2,.N (2.49)

m

The testing functions 7, s are generally selected to be equal to basis functions i.e. £/ =T

and this selection is known as Galerkin method. Equation (2.49) can be re-written in matrix

form as:
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[4]la]=[G] (2.50)

where
A4,,=(T,,LF,) (2.51)
G,=(T,.8) (2.52)

The unknown expansion coefficients «,,s are then found by:

[2]=[4]"[G] (2.53)

in case of the matrix [A4] is not equal to zero, i.e. [4] is not non-singular. Once expansion

coefficients are known, the solution for F is found by (2.47). It is important to choose
basis functions which approximate to the exact solution with as less as possible terms. For
example, if the unknown function F oscillates throughout a particular region, using pulse
functions may not be a good choice [23]. The most common basis functions are pulse
functions, triangular functions and piecewise sinusoidal functions. These are illustrated in

Fig. 2.10.

b & R R
|
0 1 2 3 4 5 6
PULSE FUNCTIONS
F F F F F
1 2 3 4 ~5
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N / \ ,
/ /( >\ X /\ \
pd , N\ N \/ N
o} 1 2 3 4 5 6
TRIANGULAR FUNCTIONS

PIECEWISE SINUSOIDAL

Figure 2.10 Base functions used in MoM [24].

The implementation of MoM requires order of N* operations and order of N? computer
memory storage. Detailed information and application of MoM to various problems can be

found in [9], [23] and [25].
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2.5.2. Finite Element Method

Finite element method is a very popular frequency domain based numeric method used to
solve electromagnetic boundary value problems. In this method, the whole simulation
region is divided into smaller sub-regions, called elements. For two-dimensional problems,
the most common element type is triangle and for three-dimensional problems the most

common element types are tetrahedron and hexahedron. These are illustrated in Fig.2.11.

Four-Node Quadrilateral

Three-Node Triangle 0

Eight-Node Hexahedron

Four-Node Tetrahedron

Figure 2.11 Elements used in FEM [24]

The unknown quantity (e.g. field, current, voltage, etc.) in an element is interpolated by
node values using shape (interpolation) functions. For example, the field inside a triangular

element “e” is expressed by:
Fe(x,y) = N{ ¢ + N§FS + NSFf (2.54)

where F|, F,, F, are the field values at the nodes of triangle and N,, N, , N, are the shape
functions of nodes. Shape functions should be equal to one at corresponding node and zero
at another node e.g. N} =1 at node 1 and N} =1 at node 2. The next step is to obtain

linear equations for a single element from the differential equation. This is accomplished
by using either variational or weighted-residual metho. In the variational method, linear
equations are obtained by minimizing a functional which represents the energy associated
with the problem. This process involves taking partial derivatives of the functional with
respect to each of the dependent variables and setting them to zero [26]. The weighted-
residual method works directly on the differential equation and does not require any
functional. The residual is formed by collecting all terms of the differential equation at one

side. It is then multiplied by appropriate weight (testing) function and integrated over the
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domain of the element. If the weight function is selected to be same as the shape function
then this selection is known as Galerkin’s method. Once linear equations for single element
is obtained, global matrix system of equations that describe the solution of the problem
needs to be assembled. Finally, appropriate BC e.g. Dirichlet is imposed to the assembled
global matrix system and it is solved via linear algebra techniques such as Lower Upper

(LU) decomposition.

The memory required for the FEM method is proportional to number of unknowns or
elements O(N). This is very low in contrast to other numerical methods such as FDTD and
MoM. In addition to this, complex structures are easily modeled with FEM without need to
change the procedure. Similar to FDTD, implementation of perfectly matched layers (PEC)
or absorbing BCs (ABC) are required to use this method in radiation and scattering
problems. The reader is referred to [10], [26], [27] and [28] for detailed explanation of
FEM and its applications.

2.5.3. Finite Difference Time Domain Method

FDTD method, introduced by Yee in 1966 [8], is arguably the simplest of numerical
methods used to solve electromagnetic problems. It is based on simple formulations on
time domain. Yee’s idea was to divide simulation space into rectangular cells to form a
grid and then solve differential form of the Maxwell’s equations around these cells by
using second-order central differences. FDTD has been used to solve various types of
problems including scattering, radar cross section, cell phone radiation over human head
and geological applications. Although being time domain method, frequency domain
responses can also be obtained via Fourier transform. In this section we briefly explain
FDTD method because the majority of the work done in this thesis is performed by this
method.

Since FDTD is based on discretizing time and simulation space, it is useful to start with the

concept of numerical derivative. Taylor series expansion of the multivariable function

f(x,t) around the specified time 7, can be written as:

Flnt) = f(xz)+(z—z)af(“) S t)zaf(“) . (2.55)
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If the function f(x,t) is sampled in time with A¢ intervals we can write (2.55) as follows:

of (x,t 0* f(x,t
f(xty+A1) = f(x,8,)+(Ar) f(; o) +1(At)2 %+ (2.56)
After re-arranging terms the following expression is obtained for time-derivative:
2
af(x’to) — (f(xato +At)_f(x,t0)) _lAt a f(-x’to) - (257)

ot At 2 or’

Similar steps can be used to obtain expression for spatial derivative. The terms in the
Taylor series extend to infinity and needs to be truncated at some point. Omitting the terms

that contain the orders of Af in (2.57) yields:

ox,ty) (S (x.t+ A~ f(x,1)) (2.58)
ot At '

This approximation is called first-order forward difference approximation of the derivative
of the function f(x,t) with respect to ¢. The term “first-order” comes from the fact that

we omitted the terms multiplied by the orders of Az starting from the first-order in the
equation (2.57). The term ‘“forward” comes from the fact that, one forward time

f(x,t,+At) is used to evaluate derivative.

Similarly, the expansion of f'(x,#, —At) around the point {, gives:

2
FOuty—AD = fnty) (A L) L ppp OT k) (2.59)
ot 2 ot
Leaving the first-order derivative alone yields:
_ _ 2
o ety _ (S Gat) =Sty =A0) 1, Ff () .60

ot At 2 or’

Neglecting the terms multiplied with the powers of At in (2.60), first-order backward

approximation of the derivative of the function f'(x,¢) with respect to ¢ is obtained:

o (xnty) (S (xty) = [ (.8, — AD) (2.61)
ot At |
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The third most common form of numerical derivative is obtained by averaging the forward

and backward difference expressions such that

3
F Oty + A — f (ot — Aty =28 LE0) L ppp 0T C0l) (2.62)
ot 3 ot
Rearranging terms in (2.62) yields the following expression:
_ _ 2 A3
O (isty) _ SOty + AN~ ity =A) _ (A0 S (ty) | 0.6

ot 2At 6 ot

As can be observed from the above equation, there is no term multiplied with the first-
order of Az. The order of Ar starts from two and thus this scheme is called as second-
order centered difference approximation. Numerical approximation of the derivative with
this scheme is obtained in a similar manner by neglecting the terms that include powers of
At and it is given by equation (2.64). The error introduced in this difference
approximation is less than the first-order forward or backward difference approximations.
For example, if the time step At is reduced to half of its value, the error reduced by a

factor of four.

of (x,t,) N f(x,t, +At)— f(x,t,— At)

2.64
ot 2At ( )

2.5.3.1. 3D FDTD Algorithm

As stated previously, Yee’s algorithm approximates the derivatives in the differential form
of Maxwell’s equations (2.1)-(2.4) with second-order centered differences. Application of
finite differences requires specifying spatial and temporal location of field components.
Fig. 2.12 shows the spatial arrangement of field components in a cubical cell also known
as Yee’s cell. In this arrangement, electric fields are placed at the centers of the edges of
Yee cell and magnetic fields are placed at the center of the faces of the Yee cell. In other
words, magnetic field components are surrounded by four electric field components and
electric field components are surrounded by four magnetic field components. Instead, one
can rearrange Yee cell so that location of the magnetic and electric field components are
interchanged. But first arrangement has advantage because of the fact that boundary
conditions imposed on electric field are more commonly encountered than those for

magnetic field. Therefore, placing mesh boundaries so that they pass through electric field
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vectors is required with the first arrangement [29]. In addition to spatial arrangement, Yee
assumed that magnetic field components are calculated at half time steps slightly after

electric field components.

— E
(i-1,j,k+1) - (i-1,j+1,k+1)
I (Il S H, ﬁ'_ HI
% e | EI
(i k+1) £— DL :
] ]
t Ey “‘:‘Ej"gl _______ :__ﬁ\s,
I 1 | -
4 H 2
wis| 1 ng
; | I e
EM , i E 41\, i
- 2 _ﬂ _____ s 1
! “, ] I ] 5ol Iy
I i | | {i-1,j+1,k)
' ] ’ % | Y
] 4 i
ey ey
ik LS - *
(i,j+1,k)

Figure 2.12 Yee Cell

Derivation of algorithm starts with the open form of Maxwell’s curl equations e.g. Faraday

law;

ik
oE - -
ViE —det| & 0 O_[9E. %, iJ{@EX_aEij
ox Oy Oz oy 0Oz 0z Ox
(2.65)
E, E, E

OFE -
= OF, K- cH
ox Oy

Here magnetic current density M and electric current density J are omitted. Equating
corresponding components of i, j and k on each side of (2.65) yields the three coupled

scalar equations:

_OE, | (2.66)

(2.67)
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(2.68)

OH | _l[aEZ _aEx}
ot ul ox oz

Repeating the same process for Ampere’s law (2.4) yields:

_ oH
OE, 1|0H, oH, (2.69)
ot €| Oy oz

OFE [ )
» 1 OH, 0oH, (2.70)
ot €| Oz ox |
o -
ok L&, o, 2.71)
ot €| Ox oy

Derivatives of the equations (2.66)-(2.71) can be replaced by second-order centered

differences. By doing so, the equations (2.72)-(2.77) are obtained for 3D FDTD algorithm

2 — 2
Hx i,j-v—l,k+l F * i,j+l,k+l +
2 2
n _ n n _ n (2.72)
At Ey i,j+%,k+l y z’,j+%,k _Ez i,j+1,k+% Ez i,j,k+%
uo Az Ay
i, j+—k+—
272
1 1
n+5 n—E
Hy A | vl .
1+§,J,k+§ i+—,jk+
n _ n n _ n 2'73
At Ez i+1,j,k+l Ez i,j,k+l Ex i+i,j,k+1 Ex i+l,j,k ( )
+ 2 2 2 2
o Ax Az
i+, k+—
2772
1 1
n+5 n—E
Hz,l,l _Hz, 1
l+5,]+§,k 1+7,/+§,k
n _ n n _ n 2.74
At Ex i+i,j+1,k Ex i+l,j,k Ey i+1,j+l,k Ey i,j+l,k ( )
+ 2 2 _ 2 2
. Ay Ax
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H o H n+% H o H n+%
At T T ML YL et (2.75)
+ 2° 2 2° 2 2 2 2
€ Ay Az
i+—,j.k
n+l n
v lijele = Fv lijel
2 2
H n+]§ o n+]§ H n+]§ H n+%
Ar | el T e b T L T L ] (276)
+
€ Az Ax
l,j+§,k
n+l n
E, i,_/',k+]§ Tz i,j,k+%
H o H n+% H n+% H o
At YLl L el A el el AL (2.77)
+ 2 2 2 2 W 2 2
€ Ax Ay
i,jk+—
Field components are represented in compact form ie.
e A S T N o ,
H_| =H_(i,j+—,k+—,n+—) is used. Here, superscript n is used for time step and
SRR A M
)

subscript i, j, k is used for spatial location. Time step is explicit in FDTD algorithm i.e.
magnetic fields are calculated before/after the electric fields. However, spatial step is
implicit and fractions cannot be used as an array index in high-level programming

languages. The following procedures should be followed to overcome this issue:

The indexes of the necessary H values should follow below rules when it comes to

calculating E values:

e  When the H index has a +1/2 assume its value 0

e  When the H index has a -1/2 assume its value -1

The indexes of the necessary E values should follow below rules when it comes to

calculating H values:

e When the E index has a -1/2 assume its value 0
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e When the E index has a +1/2 assume its value +1

Selection of time step and spatial step requires specific attention in FDTD algorithm and

this topic will be explained later in this chapter. A flowchart of complete FDTD algorithm
is shown at Fig. 2.13.

Determine geometry of the problem

Allocate memory for variables

Set time step, total simulation time
and spatial step

Update magnetic fields using
2 equations 2.72-2.74

Update electric fields using equations
2.75—-2.77

Apply boundary conditions

Increase time step

Last No
iteration

Y

Figure 2.13 Flowchart of FDTD Algorithm
2.5.3.2. Reduction to 2D TE and TM Modes
When both the structure being modeled and the excitation does not change with respect to
specific direction e.g. z direction, then the derivatives in Maxwell’s curl equations (2.3)
and (2.4) with respect to that direction vanish. The resulting equations can then be split
into two uncoupled groups which are known as TE and TM. Assuming that there is no

variation in z direction, these two groups are presented in (2.78) and (2.79).
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oH, __13E,
ot M Oy
OH
z :lai ™ . (2.78)
ot u Ox
OE, 1 OH | _OH,
ot €| Ox oy
o, _1aH,
ot € Oy
OoE
» 107, ZE, (2.79)
ot € Ox
OH, 1|0E, _aEy
ot u| oy Ox

2D FDTD update equations for TMz and TE; modes can be obtained similar to that for 3D
by replacing partial derivatives with their second-order centered difference

approximations. For the sake of completeness, they are given in equations (2.80) through

(2.85):

TE, Mode
n n n n
1 1 Ex | 1. _Ex | 1. Ey | . _Ey | o1
Nt n— At l+E,j+1 HE’J z+1,j+§ la]'*'g
H | ¢ =H[|}{ + B (2.80)
i+—, j+— +—jt+= A Ax
27" 2 Moo Y
i+, j+=
2772
_ X X _
nJrE n+5
Hz|.l,l_Hz|.l,l
n+l n At +§"/ 2 HE’ 2
E "' =E_|', + (2.81)
Tl TVl e A
2’ 2’ 1 3
l+7,j
2
- X _
+E n+5
Hz|41.1_Hz|.1.1
n+l n At +E’J+E 175’J+5
E " =E[ |- (2.82)
T Ax
Y2 Y2 !
l,j+§
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TM, Mode
el L E " —E"| |
Hx | 21 — HX | 21 _ At z |1,‘/+1 z |1,_/ (283)
i,j+5 i,j+5 lu N Ay
l,_]+§ -
il al E [  —E" |
H | }=H} + Al e iy ~E2i (2.84)
i+—=,j / i+5,‘ 1 Ax
i+—,j -
1 1 1 1
" " " 2
At A, wly a, |i—1j .| jl 1 j—
E.[[)=E. [, +— 2" r M 2 (2.85)
’ A Ax Ay

6J

Working with two-dimensional models is relatively easier than three-dimensional ones.
The simulation time can be drastically reduced because in general less computational
resources (e.g. memory) are needed. If the structure being modeled has a uniform cross
section, the solution of the problem can be handled in 2D by considering cross sectional
area instead of volume. The resulting two-dimensional problem can be further decomposed
into TE and TM modes and solved separately. The total solution in 2D is obtained by
summing the solutions of TE and TM modes. For normal incidence, the two and three-

dimensional scattered fields are related by (2.86):

Zejiz'/4J
E, ~|E “— (2.86)
3D ( ZDW

where / is the length of target and p is the distance from target to observation point [14].

2.5.3.3. Numerical Dispersion

Wave dispersion expresses the relationship between wavelength and frequency. For an
electromagnetic wave in vacuum, the frequency is proportional with wavelength and

expressed by (2.87):

1=Sor? i (2.87)
A
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Finite difference approximation used in FDTD algorithm can cause non-physical
dispersion leading the phase velocity of numerical wave to be different from its actual
value. The factors that contribute to numerical dispersion are expressed by numerical
dispersion relation. This expression will be derived hereafter for 2D FDTD algorithm
because of its simplicity. Extension of this expression to 3D algorithm is straightforward
and will also be given at the end of this section. It is obvious that, following traveling wave

equations are the solutions of TM, mode update equations (2.83-2.85):

n JjlonAt—k IAx—k , JAy

H, [, = Hge'l ) (2.88)
no_ J(@nAt—k IAx—k, JAy)

H, [, =Hye (2.89)
n J(@nAt—k IAx—k JAy

E [, = Eqe! ) (2.90)

where k, and ky are the x and y components of the numerical wave vector k . Substituting

(2.88) and (2.90) into (2.83) yields the following equation:

; 1 (1
one.f(w”At)e](wAIZ je*j(kx[Ax)eij(kylAy) e j(ky 2 ij _ /A
t

1 1
. *j(watj . ik 7][/{}_ fij
one‘/(a)nAt)e 2™) ilkia) i }.JAy)e 2 (2.91)
1 [E.e j(wnAt)e— JkIAY) = j(kVJAy)e—j(kyAy) _J

LAy E.qe j(wnAt)e— JkIAY) ;= J(k,JAY)

. . —J(k, J+ Ay]
Dividing both sides of the (2.91) by the common factor e/(“*)e /(kiA), ( Zj

gives:

2 2 o] 1
- —jk,=0y)  +j(k,-Ay)
H,, =— E., [e 2 e 2 J (2.92)

Additional simplification can be achieved by using Euler’s formula in (2.92). The resulting

expression is given below:
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.k Ay
N sin( '2 )

H, = . E, Y, (2.93)
HEY sin(T)

Similar expressions are obtained for /,, E, by using (2.89)-(2.91) into (2.84) and (2.85).

The resulting equations are given in (2.94) and (2.95):

_ kAx

At s1n(—“2 )
H,,=-——E, A7 (2.94)

HAY T Gin (@20

2

kAy\ H

EZOSin[w—AtJ=£ B gin| 22|50 g K Ax (2.95)
2 el Ay 2 Ax 2

Finally, substituting (2.93) and (2.94) into (2.95) and making some algebraic
manipulations leads to equation (2.96) which is known the general numerical dispersion

relation for TM;, mode:

’ 2 k Ay
[ ! sin [a)_At)] = [Lsin(k)‘m D + [Lsin (y—yD (2.96)
v, At 2 Ax 2 Ay 2

where v, = ue is the speed of light in the material which is characterized by € and x .

This equation can be further simplified by assuming Ax=Ay=A and substituting

k, =kcos(§) and k, = ksin(¢) into (2.96) as shown below:

{ A jz sin’ [w_At) =sin® (Mj +sin? [MJ (2.97)
v,At 2 2 2

Leaving @ alone in the left side of (2.97) and dividing both sides by & yields to below

equation which is similar to (2.87):

@y 2 Gin! [V”—At \/sinz (M} sin’ [MJ J (2.98)
kP kAL A 2 2

where Z is the phase velocity of the wave in FDTD grid. It is obvious that both A and
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At affects numerical dispersion and should be carefully selected. The dependence of Z on

propagation angle ¢ is called grid anisotropy and it is demonstrated in Figs 2.14 and 2.15

A A . . . . . .
for At =—— and At =—— respectively. It is obvious that grid anisotropy is reduced by

2vp \/Ev

P

increasing the resolution i.e. decreasing cell size. It will be equal to ideal case for ¢ = 45°

A

72,

eliminated because we are restricted to work with finite grid cells. For this reason,

and Ar= in 2D. Apart from that, numerical dispersion error cannot be totally

numerical dispersion error is inherited to FDTD algorithm, but this error is very small even
for /5 resolution. Extension of numerical dispersion relation to 3D is simply performed

by adding third dimension to (2.98) as given below:

— v At k k i
Ly =isin_1 2 Isin? LEZ} + sin® Lo, +sin? kA (2.99)
k P kAt A 2 2 2

In this case, grid anisotropy will be equal to ideal case for k. =k, = k. =k-/3 ie.

A
propagation along a diagonal of cubic cell with time step Af = .
N
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2
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Ratio of numerical wave velocity to actual velocity
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Figure 2.14 Grid anisotropy in 2D FDTD simulation for Az =A/2v,
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Figure 2.15 Grid anisotropy in 2D FDTD simulation for Af =A/ \/Evp
2.5.3.4.Stability

Selection of time step Ar affects not only grid anisotropy but also stability of FDTD
algorithm. To demonstrate this, numerical angular frequency is allowed to have imaginary
part in the solution of wave equation as shown below for equation (2.90):

J(( @+ O JrS—Fes TN IAY) (-2, ) (@it IAx =, JAY)

E_qe = E g\ " mee) o\ e (2.100)

n
Ez [’J: z z

If the term @, . in equation (2.100) is positive, then the amplitude of the wave decreases

imag

with time. On the other hand, if w.

mag 18 N€gative, the amplitude of the wave exponentially
increases with time and eventually becomes infinite. Numerical angular frequency
expression for 2D was given before in equation (2.98). By inspecting this equation, it can
be seen that if the term inside the arcsine function has value between 0 and 1, numerical
angular frequency consists only real part and stable propagation is guaranteed. The upper

bound of the expression in square root is given by:

k A ksin(¢)A
12 sin’ cos(¢) A + 12 sin” sin () Ay < 12 + 12 (2.101)
Ax 2 Ay 2 Ax® Ay

Therefore, we need to consider the following equation:
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0<v,Ar /§+$31 (2.102)
4

At S—l 0 (2.103)

V|t
A A2
If the same cell size is used in both x and y dimensions i.e. Ax =Ay =A, equation (2.103)

can be written as:

A

o

p

At <

(2.104)

The meaning of (2.104) is that electromagnetic wave can travel at most one cell diagonally
in one time step in 2D. Similar expression is obtained for 3D case by adding third

dimension to (2.103):

At < (2.105)

1 1 1
Vp A2 +Ay2 +A22

In this case, equation (2.105) states that electromagnetic wave can travel at most one cubic

cell diagonally in one time step.

2.5.3.5. Perfectly Matched Layer Boundary Condition

Scattering and radiation problems require the simulation space to be extended to infinity.
Due to the finite nature of computers we cannot use infinite number of cells. Even if we are
interested in near fields, we need to enlarge total simulation space to prevent reflections
from the boundaries. However, increasing total simulation space increases the
computational burden excessively. So far, several methods proposed to overcome this
difficulty [29] - [31]. These methods split into two groups, one is called absorbing
boundary conditions (ABC), and the other is called radiation boundary conditions (RBC).

RBCs require the storage of field components more than one time step back depending on

the order of accuracy. Hence, they can cause out of memory errors for large problems.
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Furthermore, since they are a function of incident angle, they can give spurious reflections

for grazing angles.

On the other hand, ABCs don’t require the storage of field components more than one time
step back, and give more accurate results compared to RBCs. Among ABCs, the perfectly
matched layer (PML) boundaries are very popular and easy to implement. PML is a finite-
thickness special lossy medium which is placed at the terminals of the computational space
to create perfectly matching condition for all angles and frequencies. There are several
types of PMLs found in literature such as uniaxial PML (UPML), convolutional PML
(CPML) and split-field PML (SPML). Detailed comparison of PML types can be found in
[31]. In this dissertation, we preferred to use UPML because of its simplicity. Therefore
this type of PML will be explained hereafter. We will start by reviewing electromagnetic
field behaviour at the boundary of two dissimilar media to explain the theory behind all

kind of PMLs.

Considering a TM,, polarized field shown in Fig. 2.16, incident electric field is written in

phasor form as:

() o =i(kcos(@)xrksin(@)y) - ~i(kecthy)

E, =ze =ze =ze (2.1006)

The corresponding incident magnetic field can be obtained simply by using phasor form of

Faraday’s law as shown below:

1 1 X y z
H,=——VXE,=———|0/0dx 0J/0y 0/ 0z
Jou, Jjou, i)
0 0 et
- ‘-;(—jk,-vx+jk,-xy)e"("“”"”) (2.107)
J O, ’
— |:in -y £:| e—j(k“x+ku.y)
O, O,

Assuming that reflected field also exists in region 1, we can express its electric field

component as:

E, =—zle /) (2.108)
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[E,0,9)]
| E;(0,)]

obtained by using (2.108) in phasor form of Faraday law. Total field in region 1 equals to

where I = is the reflection coefficient. Similarly, reflected magnetic field is

the sum of incident and reflected fields and it is given by (2.109) and (2.110) for electric

and magnetic field respectively:

E, =z(e /" +Te " )e ™ (2.109)
Ky (k) (k) \ (k) k, — (k) (k) (ki)
H, :X—(e " Tet )e ’ +y—”‘(—e' " Tet )e : (2.110)
oL, oL,

Now we can consider the electromagnetic field in region 2 which is a lossy medium
characterized with the parameters; electrical conductivity (o) and magnetic conductivity

(o). The transmitted electric field in region 2 is expressed by:

E, =E, = zTe =) @.111)
Region 1 Region 2
I:EI']"I:I*C!:D} {Ez:Uz’U)J Gm:l
Figure 2.16 Plane wave incident on a lossy medium
E_ (0, . . . :
where T = % is the transmission coefficient. To calculate magnetic field, we need
(0,

to utilize Faraday’s law for lossy medium as shown below:
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X by
O-m
. a),uz(1+jaw j
H, =- VxE, = 2 e et (0 112)

. 0, ktx

Jjou, (1+ - J y————

SO oply [1+ O j

Jjou, ) |

where k, =k, cos(0),k, =k, sin(0), k’=k’ +k,y2 =o' Hyz€,; - The relationship between

the fields in region 1 and region 2 can be described by boundary conditions given by
(2.17)-(2.20). Enforcing the continuity of tangential electric and magnetic fields on the
boundary (x=0) yields the following equations:

2(1+T) e =zTe /1) (2.113)
v alj (c1+T)e ) oy Ew gl (2.114)
# wu, (1+ ,0’" j
JOH,

Reflection and transmission coefficients are easily obtained from (2.113) and (2.114) and

given as:
ke ke
we, | 1+ 22 @4
e n,cos0, —m,cosd, | jwe, 2.115)
n,cos6, +ncos, k., n k.
we, | 1+-Z “a
jooe,
2k
we, (1 +-22 J
J W&
T=1+T= (2.116)
ktx + kbc

O, €,
we, | 1+—2 :
J e,

As can be observed from equation (2.115), reflection coefficient will be zero only if the
numerator equals to zero. Assuming that the incidence angle equal to zero i.e. 8; = 0, the

expression for reflection coefficient reduces to
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r="2"" 2.117)
n, +1,

where 77,77, are the intrinsic impedances of medium 1 and 2 respectively and expressed

by:

O
(uz (H " N
. ,
7, = /”eff _ J Ot 2.118)
o

m = [ (2.119)

In this case, perfectly matched transmission (I" = 0) is obtained by choosing constitutive

: e/
parameters of medium 1 and 2 as g =u4,, ¢ =¢, and o, =94 Unfortunately, the
&

numerator of the equation (2.115) cannot be zero for any oblique angle and there will

always be reflected field in region 1.
Uniaxial Perfectly Matched Layer (UPML)

Among different versions of PMLs, UPML is arguably simplest to understand and has
been broadly used in the FDTD simulations. In UPML, artificial anisotropic uniaxial
absorbing material, which is composed of both electric and magnetic permittivity sensors,
is placed in computational domain as shown in Fig 2.17. The main advantage of the UPML
over other types of PMLs is that FDTD algorithm does not require any modifications and

can be used in both computational and PML region.

To analyze UPML, we can assume that a TE, polarized wave propagating through the
region 2 (x > 0) that is formed by an anisotropic uniaxial material whose electrical

permittivity and magnetic permeability are expressed by rank-2 tensors as:

a 0 0 c 0 0
&=6|0 b 0 w=u10 d 0 (2.120)
0 0 b 0 0 d
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Figure 2.17 Placement of PML in FDTD Computational Domain

As we did previously for TM mode, we can write total electric and magnetic fields in the

region 1 and region 2 as:

H, =zH, (1+ref(2"1x"))e‘f("““"“’y) 2.121)

k. . . .
E, =H, [—xi(l +Te/ k) ) +y kl—"(l —Te/ ki )} R V.2

weq 0
H, = 7H,Te /o) (2.123)
k ik
E,=H,| x—2 rytax |ttt (2.124)
wea - web

Enforcing the continuity of tangential magnetic and electric fields at the interface (x=0)

yields:

HI(O»Y):Hz(O»Y)

_ _ (2.125)
zH, (1+T)e 70) _ g, Te %) 14T = Tand ki, =k,
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E;(0.y)=E,(0.y)

k - k -J
H, {y . (l—r)}e ) g, {y 2 }Te 11k7) (2.126)
we, web
_,&(1_r)=k2_xT

The expression for reflection coefficent can be derived from (2.125) and (2.126) as:

-1
_ko6b-k 04 _ k& —kab

2.127
k,06b+ky 06 k6 +ky b7 @127

The fields in region 2 should satisfy the Maxwell’s equations in a general anisotropic

medium which can be expressed in phasor form as given below:

k,xE=awumH (2.128)

k,xH = —we, E (2.129)

where k, = xk,, +Yyk,, is the wave vector in region 2. Combining equations (2.128) and

(2.129) leads to second-order differential equation so-called wave equation:
kzx[(ez) kzijJra) /LH=0 (2.130)

which can also be written in matrix form as:

@ ec—ky b~k kb7 0 H,
ko ky b7 kid —I; b 0 H, (=0 (2.131)
0 0 o’ ed -k b~ -k 0 |LH,

Assuming the TE, polarization (Hx,Hy=0), (2.131) reduces to:
@’ ty6,d — k3 b~ k3 a7 =0 (2.132)

Solution of the equation (2.132) is actually dispersion relation for anisotropic uniaxial

medium and gives the relationship between wave-vectors k, ., k

»,, and angular frequency.
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Since k, =k, for all incident angles as given by (2.125), x-component of wave vector

can be expressed as:

ko =@ pbd ~kia™'b (2.133)

To achive reflectionless transmission at the boundary, the nominator of equation (2.127)

should be equal to zero i.e. k, =bk, . This can be achived by choosing ¢ =¢,, 1, = 1,,

d=b and a”' =b as given below:

ko =\ @ e pnb? ~kLb* =b\[ki —k?, = b, (2.134)
The field components in region 2 are then expressed by

—j(bk, x+hk,¥)

k =/ X
E,=H,| —x—2 py x| (B x+h,) (2.136)
wea " e

As can be observed from (2.135) or (2.136), selection of b=1- Ox

- yields exponentially
J 6

attenuating wave for all incident wave angles and k;, . The same analysis can be repeated
for TM, mode. In this case we need to replace » with d and a with ¢ and set ¢”' =d to
achieve reflectionless propagation. In summary, if the permittivity (E ) and permeability

tensors (; ) are of the form:

R I S B
6 =8 [th=Ms; s= 0 s 0 (2.137)
0 0 =

o : :
where s = K _+-——, then the lossy layer perfectly matches to computational domain and

J g
provides exponentially attenuating propagation along x direction. Here the parameter K

is introduced for allowing non-unity real part. Similar expression is obtained for other

dimensions e.g by changing K ,o, with K ,o, in (2.137) for y dimension. The whole
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computational area can be covered by placing individual layers to the terminals of each

dimension of computational space. A more general expression of tensor s is given by

(2.138):

st o olls, 0 ot 0 0
s=[ 0 s, O] 0O 5, O s, 0
0 sl 00 s [0 0 s
2.138
sx_lsysz 0 0 ( )
= 0 sxs;lsz 0
0 0 sxsysz_l

The values of s, s, and s_ are only non-zero at corresponding boundaries e.g. 0, = g, =
Oaty =0andy = y;p-
UPML Algorithm

To derive an algorithm for UPML, we can start by using the tensor introduced previously

in the matrix form of Ampere’s law (in phasor form) as follows:

_GHZ GH},_
G(Z 6?; sx_lsysz 0 0 E
x z | — 4 -1
% ox joe| 0 S.8,S. 0 ) E, (2.139)
OH, oH. 0 0 s.ss. | E.
X Oy |

Expansion of (2.139) yields three equations for electric field components and the first

among them is given by:

o o

OH, OH (Ky+'yj(KZ+ 2 j

o = joe Joe - 1)\ (2.140)
K +—=
( ! ja)fj

Converting of (2.140) from phasor domain to time domain introduces integral operation

because of the term jwe+o, in the denominator. However, integral operation is
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computationally expensive especially for large problems. To overcome this difficulty, an

interim field D that is expressed by (2.141) can be used in (2.139) instead of the electric

field components as shown by (2.142):

D ,=¢2E,
Sx
S

D =XFE

y Sy y
S

D . =¢LE

oH, OH, ]
o oz
OH, 0H.
oz ox
OH, OH
o oy |

o O
N

(2.141)

(2.142)

Equation (2.142) is then transformed from phasor domain to time domain by using the

property(?(—) jo easily. The resulting time domain equation can be discretized using
t

centered difference approximation similar to FDTD algorithm. The components of interim

fields D are assumed to be at the same location as electric fields components. For the sake

of completeness, their discrete forms are presented in (2.143)-(2.145):

n+l

D[y

i+—,j.k
D J

2eAt

26K, +0,Al

B 2€Ky — O'yAZ
2€Ky + O'yAl

n
ij "
1 RV A
2]
1 1
n+5 n+5
HZ | 1.1 _HZ 11
i+—, j+—k i+—,j——=k
27 2 27 2
Ay
1 1
n+5 I n+E
H,| —H, |
Y 1‘4—1,_/',1(4—l Y H—l,j,k—1
2 2 2 2

Az

(2.143)
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D |n+1 _(261(2 —UZAl‘ij |n

Y i,j+%,k 2¢K, +0, At i,j+%,k
_ | _
n+5 n+
HX|. 1 1_Hx|,,1 1
i, j+—k+= i,j+—k—
PN AP (2.144)
N 2e At Az
2¢K, +0,At n% ,,%
Hol 2o~
_ s YAPY
L Ax i

D, :(ZEKX—UxAtJ DI

: i,j,k+% 2¢K +o At) © i,j,k+%
_ 1 | -
n+§ n+§
Hyl T2 0
2772 2772 (2.145)
2eAt Ax
ZEKX + O'xAt n-;—l n-{-l
2 2
H,| —H,|
x|l 71 xl1 o
i+t Ij—k+
y 2 2"
i Ay ]

Once interim fields are calculated, we need to convert them back to electric field
components. This can be accomplished easily via (2.41) e.g. the following conversion

formula is obtained for x-component of electric field:

O-)C

D, =¢2E — joK.D. +2:D = joeK E, +0.E, (2.146)
S

X

€

Converting (2.146) from phasor domain to time domain leads to:

kL %p k% g (2.147)
ot € ot

The above equation can also be discretized by using central difference approximation as

shown below:

n

— ( 2K, — GZAtJ £

gk T\ 2K oAt ) e
(2.148)
+l 2€KX+GXAt DX n+11 - _l 2EKX_O-XAZ‘ DX }-11 .
e\ 2¢K_+0o.At Fplh e\ 2eK, + oAt ok
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The same analysis can be repeated for the remaining components of electric fields, and

discrete form of them are presented in (2.149) and (2.150):

n+l 25K¥ — O_XAt
Ey |i,j+l,k = . Ey
|\ 2¢K_+o At

n

i,j+%,k
+l 2¢K, +0 /At =8 1 2¢K, -0 At DI
e\ 2K +o,At ) " e\ 2¢K +o Ar) T
e 2¢K —o At p
E. __lklz ——— |E. .
M\ 26K, +o At A
+l 2¢K_+o0 At D, i 1_1 2¢K —o At D. "
€\ 2¢K, +o0 At RAET 2¢K, +0 At brkyy

(2.149)

(2.150)

Thus far, we are concerned with the electric field components. The magnetic fields can

also be calculated in a similar manner by writing the curl operator of equation (2.128) in

matrix form as follows:

g [jEZ sx’lsysz 0 0 H.
o —E =] 0 s 0 |[=|H
0z Ox Jen 0 S*S(y) . » Hy
5SS, f
aEy B % ¥
| ox Oy |

2.151)

In this case an auxiliary field B that is expressed by (2.152) is introduced to avoid integral

operation. Using this auxiliary field B in (2.151) leads to (2.153) that can be converted to

. . . . . 0 .
time domain easily by using the transformation o & jo:

B =u—H,
Sx

B,=¢*H,
S)’
S/

B =¢—+H.

(2.152)
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;;; ;:j s, 0 0 B,
f——21=—jw| 0 s. 0 |=|B 2.153
FR— J X : By ( )
OE, OE. 5 :
| ox Oy |

The resulting time domain equation can be discretized by replacing partial derivatives with

their second-order central differences. By doing so, the following update equations are

obtained for interim field components:

n+%
B =
i,j+=k+—
2 2
+(
1
e
By 1 :(
i+—,j k+—
2 2
+(
1
n+—
2 —
1
27 2

2€Ky—GyAt

2eAt

2eK, — oAt

2eAt

2¢K —o At
2¢K +o At

i =
z i+—, j+—.k

N 2¢eAt
2¢K +o At

The relationship between the interim field B and magnetic field H is

2¢K L+ GyAl

2¢K, +o0 At

2¢K. +0 At

2eK. +0.At

Bx - Al 1
i, j+—k+—
20 2
B n n ]
1, —F 1
z,_/+2,k+l 1,_/+2,k (2154)
J Az
n n
_EZ i,j+1,k+%_ z i,j,k+%
Ay
1
ne——
jBy i+l2 'k+l
PR
~ \ \ -
1= 1
z j. ] i — V4 i 7 —
i+ ,j,k+2 1,],k+2 (2‘155)
Ax
n n
x i+l,j,k+1 X i+l,j,k
L Az i
1
"
sz i+l ‘+ik
2-] 2
I n n
1 —-E | 1
¥ i jrie T ik
l+2 j+ l+2j (2_156)
Ay
n n
Y oli+l ‘+lk - yli ‘+lk
_ sJ > sJ >’
L Ax J

similar to that of

interim field D and E and can be given e.g. for the x component as:
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9B = jouk H +Z2uH_ (2.157)
€ €

B = ,uS—ZHx ors B =us H — joK B +

S)C
Equation (2.157) is in phasor domain and needs to be expressed in time domain to be used
within FDTD algorithm. The resulting time domain equations can then be discretized by
using central difference approximation. Equations (2.158)-(2.160) gives discretized forms

of these equations.

1
n+— 2 K — A n——
Hx_.21 1:€Z—GZtHx__21 1
l,j+5,k+5 2€KZ +O'ZAZ‘ l,j+E,k+E (2 158)
1(2eK +0 A o vy 12K, 0 A1) o0y '
p\ 2eK_ +o At ) ik ul 2eK, + o At ) gy
1 1
4 2¢K_—o At n—
Hy 12,1:#[—5.1241
i+—, 7 .k+ 26Kx +GAAZ‘ l+5],k+5 (2 159)
1(26K +0 At ail 1(26K - At at '
P Poiihin Bt Tmady B (S » O g T
u\ 26K _+o At ) Tk ul\ 26K+ o At ) T ik
nJrl 2fKV_O- At nfl
H|¢ , = — H_| ¢
i+5,j+5,k 2€Ky + G"At i+5j+5,k
’ (2.160)
1( 26K, +0.At nit 1( 2¢K. -0 At -t
+_—6ZO-Z Bz.lel__ti,lz,l
y7; 2€Ky+O'yAt A A N 7} 2€Ky+O'yAl‘ A

In summary, implementation of UPML algorithm requires two steps for updating
individual electric and magnetic fields. In the first step interim fields are calculated by
using (2.143)-(2.145) or (2.154)-(2.156). Then in the second step, electric and magnetic
fields are calculated from the interim fields by using (2.148)-(2.150) or (2.158)-(2.160).
Fig. 2.18 shows three snapshots that is taken at different time steps to demonstrate the
PML boundary condition in Gaussian source-excited 2D TM, mode. An ideal PML is
reflectionless, if the parameters are selected properly as described before. However, due to
the discretization of PML equations, significant spurious reflections may occur. To
overcome this problem, multilayer PML is used. The term multilayer means that the
conductivity profile of lossy layer changes with spatial increment. There are several

methods in literature to create such a multilayer PML [32], [33] but arguably the most
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effective one is obtained by polynomial grading in which conductivity profile is expressed

as:

d—x m
O-(x)_o-max( d j . (2161)

Here d is the thickness of the PML and o;,,,, is the maximum value of the conductivity

which is expressed as:

m+1

O = 2.162
2007,/e. A (2162

The parameter m is generally taken as 3 or 4.

2.5.3.6.Modeling PEC Objects

Modeling objects accurately plays important role in FDTD simulations. Standard FDTD
algorithm explained so far uses staircase approximation to model objects. We can examine
staircase approximation for TM, mode and TE, mode separately in 2D simulations as
follows: when modeling a PEC in TM, mode, if E; node falls within the PEC, it is set to
zero and if H; node falls within the PEC in TE, mode, all surrounding electric fields are set
to zero. Anyhow, magnetic fields are updated in the usual way for both 3D and 2D.
Although this approach is very simple to use, it can lead to significant errors for slanted or
curved objects as shown in Fig. 2.19 for TE, mode. Here, critical cells located at the
boundary of PEC object are marked with “x”. As it is seen, staircase approximation of
missile radome is very poor and sharp corners resulted from the staircase approximation
lead to diffracted fields that don’t exist in reality. The amount of staircase error can be
reduced by increasing resolution (i.e. decreasing cell size) but this increases computational
burden significantly. To overcome this difficulty, several methods are proposed in the past
decade [34] - [36]. One solution to this problem is to use non-uniform meshing [34]. In this
method, smaller cells are used around the object boundaries. Although this approach is
simple to implement, total number of cells and computational burden will still be
unacceptable for complex objects. The second and more robust solution is called as
contour-path or Dey-Mittra modeling. This approach is based on deforming Yee cells in

specific regions to conform boundaries of PEC object [36].



t = 20At

t = 150At

t = 300At

Figure 2.18 Snapshots of 2D FDTD Simulation for TM, mode
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L,r""f‘:;-:
x/
x\\\_

X 19 X

Figure 2.19 Staircase modeling of missile radome [30]

To understand conformal modeling, it is intructive to investigate three different scenarios
presented in Fig. 2.20. In all scenarios TE, polarization is assumed and the PEC is located
at the right of the cell cut. In Fig.2.20 (a), slanted object cross slightly into top right cell. If
the ratio s/AxAy is less than R; which is specific parameter based on numerical stability,
this penetration can be neglected and all four surrounding electric fields are set to zero in
top right cell. On the other hand, a significant portion of the top left cell does not reside
within PEC material. Hence this cell is neither treated as PEC nor non-PEC. The update
equations for this cell is obtained by applying Faraday’s law and integrating along the

contour of area 4, as given by (2.163):

y=4y y=4y y=4ay
rE‘, JE, [E,
y=0 y=0 ¥=0
JE, ® JE, JE,
: H,
K=g:-av x=-Ax E, ¥=0 ?" ng:_ﬂv x=-Ax -E-i /x=0 =E‘: x=ﬂ\":'ﬂ\"

(b) (€

Figure 2.20 Three different scenarios for conformal modeling [37]
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Ax
E! —Ax,—)Ay+E; (_T’ij f (2.163)

In Fig. 2.20 (b) the ratio of 4, /(AxAy) is larger than R,. Even the /. component resides
within PEC, the area 4, should be excluded from PEC region. This can be accomplished

by applying Faraday’s law to the top right cell and integrating over the contour of area 4,.

Noting that two electric field components reside within PEC set to zero, we have:

1 1
i z(ﬁ,&j:}]z z(ﬁ,Q} d (E;(O,ﬂlerEf(g,ijfj (2.164)
22 272 ) A, 2 2

Finally for the part (c) of Fig. 2.20, applying Faraday’s law and integrating along over the

contour of area A; gives:

Ay Ax
E" 0,== |Ay+E"| =—+A 2.165
A ( zjy x(z yjf ( )

A
IUO 3 _Es(gjojg

2

For all scenarios, electric fields are updated as in conventional Yee’s algorithm. The

parameter R, specifies the smallest area which is included for specification of integration
contour. Typically, the choice R, =0.025 require %30 reduction of time step below the

normal limit to ensure stability. The stability analysis of Day-Mittra conformal techniques
can be found in [38]. The advantage of using contour-path modeling over staircase
approximation is demonstrated in Fig. 2.21. Here, diffracted fields from a wedge of 80°
apex angle that is illuminated by a line source located at 60° from the tip, is considered. It
is obvious that, the fields in the vicinity of wedge diverge (shown in dashed circle) in
staircase approximation. On the other hand, Day-Mittra conformal technique gives very

precise result in everywhere.



Figure 2.21

Comparison of Dey-Mittra (a) and staircase (b) modeling in wedge diffraction problem
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3. DOUBLE TIP DIFFRACTION MODELING

Diffraction is a wave phenomenon and defined as the bending of a wave around the edges
of an aperture or obstacle. It can be best explained by Huygen’s principle with the aid of
Fig.3.1. The principle states that every point on a wavefront, which is a set of equiphase
points on propagating wave, may be considered as a source of secondary spherical
wavelets which spread out in the forward direction at the speed of light [39]. The new
wavefront is the tangential surface to all of these secondary wavelets. The direction of the
propagating wave is determined by a vector which is perpendicular to the surface of
wavefront at each point e.g. wavefront of point source is sphere and the wave radiates

spherically.

--a

Original wavefront New wavefront

Source of secondary

wavelet
________ Secondary wavelet

Figure 3.1 Huygen's Principle

To show relationship between Huygen’s principle and diffraction, let’s assume that
incidence plane wave hits a perfectly reflecting obstacle with an aperture as shown at
Fig.3.2. Let’s further assume that aperture size is much smaller than wavelength of the
incidence wave. When the wave hits non-apertured portion, it will be reflected back. When
it comes to aperture, the points on the wavefront creates wavelets and these wavelets form
a new wavefront which spreads beyond the obstacle. This phenomenon is known as

diffraction and the resulting wavefront is called as diffracted wave. As the wavelength
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becomes larger than object the diffraction tends to be stronger. Hence, for constant size
objects such as hills and mountains, it can be stated that lower frequency waves diffract
more than higher frequency waves, in other words, if there exists e.g a mountain between
transmitter and receiver, using lower frequency signals (e.g. AM band) provide better

signal reception than higher frequency signals (e.g. FM band).

-

..\\‘

(a) (b)

Figure 3.2 Plane wave diffraction by perfectly reflecting object with aperture: (a) Before the wave hits
object, (b) After the wave hits the object

Diffraction is important in communication problems because it is the only source of
transmitted signal in shadow regions. The other reason diffraction is important is that it
represents the principal source of radar signals that return at all angles other than those
producing specular reflections. Hence, designer of low observable targets should minimize
diffraction effects by avoiding discontinuities at the object surface and material.
Diffraction is also important in the way of electromagnetic compatibility (EMC).
Unwanted radiation can diffract from the discontinuity and affect other parts of the device.
Therefore, product designers should consider diffraction effects and use shielding
techniques to protect critical components of the system. An interesting discussion on the

diffraction can be found in [40].

Theoretical analysis of diffraction is very complicated and exact diffraction models are
only available for limited number of geometries such as wedges, long-thin cylinders and
spheres. High frequency asymptotic (HFA) methods, such as geometric theory of
diffraction (GTD), uniform theory of diffraction (UTD), and physical theory of diffraction
(PTD) has long been used to analyze diffracted fields when the wavelength is small
compared to object size [5], [41] - [45]. A useful MATLAB-based virtual tool has been
introduced for the use of HFA modeling in the classical wedge problem [46].

Backscattering from a wedge with different boundary conditions is also modeled



55

analytically [47]. Diffraction modeling has also been investigated numerically [15], [48] -
[51]. Diffracted waves and diffraction coefficients are extracted with the FDTD method
using time-gating in [52]. A more general multi-step FDTD approach is also used in
diffraction modeling [49], [50]. Similarly it is shown in [15], [51] that the MoM is also
successful in diffraction modeling. Double diffraction has also been investigated
analytically and numerically [53] - [62]. The double wedge or double tip is a canonical
geometry which arises in many practical structures. The analysis via a spectral extension of
the UTD has been described, which yields closed-form expressions for the field doubly
diffracted in the far zone by the edges of two interacting wedges illuminated by a plane
wave in [54], [55]. The UTD has been extended to include double diffraction by an
arbitrary configuration of two wedges and a scalar double diffraction coefficient is defined
in [56]. An HFA analysis of the scattering by a double impedance wedge via the extended
spectral ray method and diffraction coefficients were derived for up to and including the
triple diffraction mechanism in [60]. A time domain single diffraction solution of a wedge
type obstacle is extended to double diffraction and the resulting waveform is compared
with the corresponding solution in the frequency domain by applying the inverse Fourier

transform of the waveform in [62].

In this dissertation, a novel time-domain based double tip diffraction modeling approach is
introduced by FDTD method. In parallel, MoM-based model is also developed in our
group; hence it is included to this chapter. An analytical solution using a spectral approach
for the problem of scattering by two-dimensional (2D) semi-infinite or finite polygonal
objects with an imperfectly reflective surface, illuminated by a plane wave can be found in

[63].

3.1. Double Tip Diffraction Structure

The structure shown in Fig. 3.3 is used in double tip diffraction modeling. The polar

coordinates p,q,z are used. It is a non-penetrable rectangular object infinite along z and

excited with a line source. The problem has a translational symmetry along z therefore

can be investigated in 2D on the xy plane. The origin is chosen at midpoint of the top edge
with length L therefore the top boundary extends from (—L/2,0) to (+L/2,0) on the

axis. The lengths of left and right boundaries are infinite (d, = d, — ). The line source is
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assumed only in the first quadrant (0 < ¢, <7 /2) because of the structural symmetry. The
dashed circle with radius p shows the locations of receivers. 360 receivers are located on
this circle which yields Ap=1° angular resolution. Under these assumptions, top
boundary reflected fields exist for the receivers located between the lines Z; and L, , while
side boundary (specular) reflections occur only for the receivers between the lines L, and
L, . Incident fields do not exist in the shadow region bounded by the left side of the

structure and the line SB. The two tips are responsible for the creation of the diffracted
fields which exist everywhere. Note that Fig. 3.3 shows the reflection and shadow regions

for p,cos@, > L /2. Mathematically, the problem is postulated via the 2D wave equation

in polar coordinates:
1o o), 18 | 1
———| p— |+ =—+k tu="L5(p-py)S(p- (3.1)
{p ap(p apj 2 007 } 4 (P=p)o(@ =)
where k is the wave number, / is the line current amplitude, (p,,¢,)and (0,9) specify

the source and the observation points, respectively, J(-) is the Dirac delta function. The

related non-penetrable BCs are u =0 (TM case) or ou/0n=0 (TE case) on the structure.

Radiation condition also applies.

y S(Pos o)
Top-surface
Reflections
th;\
] '\ x
SB X - =
<X @ d d @ X
Shadow | A / \
g Nl \
region side N L.

¥ Reflections
4

Figure 3.3 Double tip structure (Structure-1)
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In the limit when the lengths of left and right boundaries goes to zero the structure yields
another canonical scattering problem; the infinite strip problem. This is pictured in Fig.
3.4. The tips marked with number 1 and 2 are responsible for the creation of the diffracted

fields. In this case, reflected fields only exist for the receivers located between the lines L,
and L, . The region between the lines SB, and SB, is the shadow region where no

incident field exists. The incident, scattered, and diffracted field components all exist

elsewhere.

Note also that, the structure in Fig. 3.3 also reduces to (vertical) half-plane problem when
L — 0 meaning that three important canonical problems can be investigated at the same
time once numerical models are established for the Structure-1 in the figure.
Electromagnetic line source may be the z component of either electric field intensity (

u=FE_, TM case) or magnetic field intensity (u = H,, TE case). In the case of acoustic

waves, these conditions refer to acoustically soft (TM — SBC) and hard (TE — HBC)

boundary conditions, respectively.

Note that, the word scattering represents all types of waves generated from EM (incident)
wave-object interaction (e.g., reflections, refractions, diffractions, creeping waves,
whispering gallery waves, etc.). The addition of scattered and incident fields
yields total fields. Diffractions occur from edge and/or tip type

discontinuities.

v 5[90, (po)
P
L » 7
2 \ 7
Reflections . /
\\ by f/
B N
~ ~e \/’
h b . .// \‘
i 7o i
@) ey X
L

SB, A

Shadow region -"'..SB.

Figure 3.4 Infinite strip problem (Structure-2)
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3.2. FDTD Model

The FDTD method has been used in the calculation of diffraction coefficients and there are
many studies in modeling diffraction from various wedges [49], [50], [52]. The multi-step
FDTD approach introduced in [49] is extended here for the calculation of double tip
diffractions. The incident, reflected, and diffracted fields are separated in the time and then
total and/or diffracted fields vs. angle are obtained by the application of Fast Fourier
Transform (FFT). For the structure in Fig. 3.3, diffracted fields are extracted with the

following 4 steps:

1) Run the FDTD simulation with the structure and record transient responses at the

specified number of receivers on the observation circle. This will yield total fields.

2) Remove the structure, re-run the FDTD simulation in free space and record transient

responses at the same receivers. This will yield incident fields.

3) Replace the structure with infinite-plane (in other words, extend the top edge of the
structure infinitely on the horizontal axis) and re-run the FDTD simulations. Recorded
fields will include only incident and reflected fields on the upper half-plane. Use them only

for the receivers located between the lines L, and L, .

4) Extend the right side of the structure infinitely on the vertical direction and repeat step

3. Recorded fields will include only incident and reflected fields on the right half-plane.

Use them only for the receivers located between the lines L, and L,.

Once time variations of the fields for the four steps are obtained incident and reflected
fields are extracted in regions where they exist and only time variations of diffracted fields
are left at the receivers on the observation circle. Diffracted fields at a specified frequency
can then be extracted by the application of FFT on all receivers’ data. Note that, only the
first three steps are enough to extract diffracted field data for the infinite strip shown in

Fig. 3.4. Moreover, only the first two steps are enough to obtain scattered field.

Also note that, the incident field is a pulse in time therefore broadband diffraction
characteristic can be obtained via a single FDTD simulation. Once incident and diffracted
pulses are recorded, discrete/fast Fourier transform (DFT/FFT) can be applied and

diffraction coefficient vs. frequency and/or diffraction coefficients vs. angle variations can
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be obtained. The 2D FDTD models used for TM and TE polarizations on the xy -plane
contain sets of H ,H ,E, and E ,E ,H, components, respectively. The update equations

for these polarizations are given in section 2.5.3.2.

3.3. MoM Model

A similar multi-step MoM is also used in diffraction modeling as described in [15], [S1].
Here, the method is extended to double tip diffraction problem. In this model, the three
boundaries of Structure-1 in Fig. 3.3 are divided into small segments (where segment
lengths are much smaller than the wavelength). Although d, =d, — o, they have to be
finite in numerical algorithms. Side boundary lengths between 104 —-1004 are enough
depending on the parameters of the problem at hand. The length of top boundary is finite.
The currents on each segment are assumed to be constant. In the standard MoM, the
source-excited segment fields are calculated, the matrix system is built, and the segment
currents are calculated numerically from the solution of the derived system of equations

[51]. The segment-scattered fields at the observer are then accumulated.

Necessary MoM equations (with the time dependence) in this procedure are:

V,==E"(p,)=—e,H," (k|p, —p,|) (SBC)

inc ) (32)
sz_Hz (pm)z_hOHO (k|pm_p0 |) (HBC)

where V, denotes the field at matching points (p ) on each segment and the impedance

matrix is obtained by:

kg, A
—7{T°Ho“)(k P —Pu ), m=n

- K2 {1 +iZlog i kA)},
7 de

N
1

(SBC)

(3.3)

ikA LA
— Bk Py =, D@, Py, mE

N
I

(HBC)

0.5, m=n

where A is the segment length, 7, ~1207 is the intrinsic impedance of free space, H"

and H" are the first kind Hankel functions with order zero and one, respectively,
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y =1.781 is the exponential of the Euler constant, i, denotes the unit normal vector of the
segment at p ,and p . is the unit vector in the direction from source p, to the receiving

element p, . While considering the effects of segment currents, the scattered fields are:

w k A2N+M
E*(p)=—=0= 3 1H"(k|p—p,]) (SBC)

n=1
ikA P | - o
H(p) ===~ 3 1L,H " (k|p=p, ) x(d, p,) (HBC)

n=1

The MoM procedure is implemented as follows: The fields upon segments in (3.2) are
calculated by using the free space Green’s function. The impedance matrix in (3.3) is
formed. Then, the source-induced segment currents are obtained. Finally, scattered fields
in (3.4) on the chosen observation points are calculated from the superposition of segment

radiations using the Green’s function.

The direct wave from the source to the receiver and scattered waves from all segments to
the receiver are added and total wave at the receiver is obtained. For the structure in Fig.

3.3, MoM computed diffracted fields are extracted with the following 3 steps:

1) Run the MoM simulation with the structure and record the scattered fields at the

specified number of receivers on the observation circle.

2) Replace the structure with infinite-plane (in other words, extend the top edge of the
structure infinitely on the horizontal axis) and re-run the MoM simulations. Recorded
scattered fields will include only reflected fields on the upper half-plane. Use them only for

the receivers located between the lines Z, and L, .

3) Extend the right side of the structure infinitely in the vertical direction and repeat step 2.
Recorded scattered fields will include only reflected fields on the right half-plane. Use
them only for the receivers located between the lines L, and L,. Only the first two steps
are enough to extract diffracted field data for the infinite strip (Structure-2) shown in Fig.

3.4. In addition, MoM directly yields scattered fields therefore only the first step is enough

for the extraction of scattered fields.
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3.4. Examples and Comparisons

This section presents several comparisons. Note that, diffracted fields presented in the
following examples contain single and double tip diffractions from both tips. Fig. 3.5
illustrates single and double diffracted waves from the left tip. The right tip also

contributes the same single and double diffracted waves.

Note that, standard free space FDTD and MoM algorithms are used here. The FDTD space
is terminated with UPML absorbing boundary as explained in section 2.5.3.5 and edges are
directly extended into these layers. This is how infinite length structure is simulated. On
the other hand, edges are truncated in MoM so that and are finite, but the lengths of the
truncated edges are long enough to simulate. One needs to check if the first segment
beyond the truncation has negligible induced current. Beyond the truncation, this (i.e., the
simulation of the infinite edges) is achieved if the scattered field at the nearest receiver,
caused by the segment currents is less than a specified value corresponding to the stated
accuracy and/or error. Relative accuracy of 1% or less is used to generate all examples.
Additionally, the examples given in this section present total, diffracted, and scattered
fields around Structure-1, Structure-2, and for the vertical half-plane for a given line source

at 30 MHz. Source and observer radial distances are 100 m ( p, =104 ) and 80 m ( p, =81

), respectively. The polarizations and angle of incidences are mentioned in figure captions.

In Fig. 3.6; total, diffracted, and scattered fields around the tip of a vertical half-plane,
simulated with both FDTD and MoM approaches, are given. Here, the angle of incidence
is ¢, =30°. The top side of Structure-1 is taken as L =A4/10. As observed in the total field
plot, the ripples in the angular region —30° < ¢ <210° correspond to the interference of
incident and diffracted fields, the ripples in the angular region 270 < ¢ <330° correspond
to the interference of incident, diffracted, and reflected fields. The dominant diffraction
occurs along the two critical boundaries Incident Shadow Boundary (ISB) and reflection

shadow boundary (RSB). On the other hand, forward scattering and specular reflections

dominate the scattered fields.

Figs. 3.7-3.9 belong to Structure-1. Total, diffracted and scattered fields, simulated with
both FDTD and MoM approaches for different illumination angles and top surface lengths
are shown in Figs. 3.7 and 3.8. Only total and diffracted fields are given in Fig. 3.9. Note
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that, there are two tips and four critical boundaries. The diffracted fields along these

boundaries and their interference for different top surface lengths are observed.

Receiver .......... 4 :

" Incident Recewer_l___, .......... Incident

".’ wave "_,. wave

r / r
i
L L
(a) (b)

Recei\i’e"‘_,.. ----------- & Incident Receiver _...coe.... Incident

kA @ l' wave

A 75 wave |

(c) (d)

Figure 3.5 Single and double tip diffractions; (a) single diffraction from right tip, (b) double diffractions
from RL-tips, (c) single diffraction from left tip, (d) double diffractions from LR-tips

Figs. 3.10-3.12 belongs to the FDTD and MoM simulation results for the Structure-2
(infinite strip). Scattered fields are also included in Figs. 3.11 and 3.12. As observed
angular variations of total, scattered, and diffracted fields for different angles of
illumination with different top surface lengths, the forward scattering and specular
reflections dominate the scattering fields, but, as mentioned above, dominant diffractions
are observed along critical boundaries. On the other hand, interference of the double

diffractions may change the picture significantly depending on the angle of illumination
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and top surface lengths. Note that, different discretizations are required in MoM
simulations for the TM (SBC) and TE (HBC) polarizations. Infinite sides of Structure-1 are
approximated by 104 long finite sides for the TM polarization. On the other hand, up to
1004 long side-lengths may be required for the TE polarization (because ill-conditioned
matrices may be obtained in this polarization). The segment lengths are chosen to be

A/20 for this polarization. The FDTD cell sizes are taken as A4/20 in both polarizations.
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Figure 3.6 Total, diffracted, and scattered fields around Structure-1; L=1/10, p, =104, ¢, =30°,

p =81, f=30MHz, TM/SBC case; Solid: MoM, Dashed: FDTD.

The source is above the horizontal plane in these examples, but it can be located arbitrarily
anywhere in the angular domain. In this case, one has to pay attention to the infinite

boundaries in both FDTD and MoM procedures. In other words, when a plane (or
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cylindrical) wave of incidence below the horizontal plane is considered, the infinite

boundaries must extend well beyond the source.

Note also that, there are highly effective commercial FDTD and MoM packages that can
be used in numerical simulation of broad range of EM problems. Unfortunately, they
cannot be used in solving the problems discussed in this section. By using a commercial
package, total fields can be reproduced, but scattered and/or diffracted fields cannot be

discriminated without using the multi-step approach introduced here.
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Figure 3.7 Total, diffracted, and scattered fields around Structure-1; L=A1, p, =101, ¢, =45°, p=84,

f =30MHz , TE/SBC case; Solid: MoM, Dashed: FDTD.
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3.5. Conclusions

Time domain based double tip diffraction modeling is introduced with FDTD method.
MoM approach is also discussed. MATLAB-based diffraction algorithm is developed and
numerical results are presented. Very good agreement between the results shows that
FDTD can be used effectively in double tip diffraction modeling. The novel multi-step
multi-tip diffraction modeling introduced here is highly effective for FDTD. It can be
extended to 3D. Since the power and beauty of these numerical models is their application
capability directly in 3D, distinguishing and discriminating scattered and diffracted fields
for the realistic objects in 3D would be very helpful in understanding and designing low-
visible objects. Note that, the reader is referred to [64] - [67] for indoor, anechoic chamber
measurement results which belong to 2D propagation above flat, perfectly reflecting

surface with single and double diffractive obstacles.
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Figure 3.8 Total, diffracted, and scattered fields around Structure-1; L=4, p, =101, ¢, =30°, p=84,
f =30MHz TM/SBC case; Solid: MoM, Dashed: FDTD.
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Figure 3.9 Total (Left) and diffracted (Right) fields around Structure-1 L=41, p, =101, ¢, =60°,
p =101, f=30MHz TM/SBC case; Solid: MoM, Dashed: FDTD.
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Figure 3.10 Total (Left) and diffracted (Right)fields around Structure-1 L =24, p, =101, ¢, =45°,
p=84, f=30MHz TM/SBC case; Solid: MoM, Dashed: FDTD
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Figure 3.11 Total, diffracted, and scattered fields around Structure-1; L =51, p, =104, ¢, =30°, p=84,
f =30MHz TM/SBC case; Solid: MoM, Dashed: FDTD.
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Figure 3.12 Total, diffracted, and scattered fields around Structure-1; L =64, p, =104, ¢, =60°, p =81
, f=30MHz TM/SBC case; Solid: MoM, Dashed: FDTD.
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4. DIFFRACTION MODELING BY A SOFT-HARD STRIP

Most materials used in the aircrafts, ships, ballistic missiles are those whose static (d.c.)

electrical conductance is very high i.e. on the order of 10’. In diffraction problems, these
materials are considered as perfect electric conductor [5]. In practice there is no real
material with infinite conductivity but the assumption of PEC condition is very attractive
for analytical and numerical methods because it is easy to model PEC objects. Perfect
magnetic conductor (PMC) boundary condition is dual to the PEC boundary condition.
There is no real magnetic conductor because there is no magnetic current. However, recent
advances in technology have attracted interest in artificial PMCs which are also known as
high impedance surfaces. Artificial PMCs are generally realized by using periodic
dielectric substrates and multiple metallization patterns [68]. These materials are used in
various EM applications e.g. they are used to reduce specific absorption rate (SAR) in

mobile phones.

Electromagnetic field behavior on PEC and PMC material boundaries is governed by
boundary conditions. For PEC materials, tangential component of electric field satisfies
Dirichlet or Soft BC i.e. E,, =0 and magnetic field components satisfy Neumann or Hard
BC i.e.% =0. Similar conditions can be derived for PMC materials by using the duality
principle: tangential component of magnetic field satisfies Dirichlet or Soft B.C. and
electric field components satisfy or Neumann or Hard BC. In electromagnetic
terminology, Soft and Hard boundary conditions correspond to transverse electric (TE) and
transverse magnetic (TM) problems with respect to surface normal e.g. in TM mode,
tangential electric field components is equal to zero and normal electric field component is
non-zero. Various aspects of soft/hard surface modeling were discussed in a special issue

[69].

As stated in Chapter 2, electromagnetic diffraction behaves as a local phenomenon at high
frequencies (when the wavelength is very small compare to the object size) thus, total
diffracted field can be obtained by dividing the object into canonical geometries and
summing up their individual contributions. 2D strip geometry is one of the canonical
geometries and considered in this dissertation. Here, time domain diffraction model is

introduced with FDTD method for a two-dimensional (2D) strip with one face soft (SBC)
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and the other hard (HBC) BC and results are compared against existing MoM-based model
[70]. Here, for the sake of completeness, the MoM procedure is also included and

summarized.

The problem geometry is shown in Fig. 4.1. The cylindrical coordinates p, ¢,z are used.
Since the strip is assumed to be infinite along z direction, the problem can be reduced to

two-dimension (2D) and handled in polar coordinates p, ¢ . The width of the strip is L. The
origin is chosen at midpoint of the strip therefore the strip extends from edge to edge
between (0,L/2) and (0,—L/2)on the y-axis. The numbers 1 and 2 show top and bottom
edges, respectively. The left part of the strip has soft boundary condition while the right side
has hard boundary condition. The line source is assumed on (p,,9, ). The dashed circle
with radius p shows the locations of receivers. 360 receivers are located on this circle
which yields Ap =1° angular resolution. According to the scenario shown in Fig. 4.1,

reflections occur for the receivers located only between the lines L and L. The incident
field exists everywhere except the shadow region shown in between the lines SB1 and SBo.

The two tips are responsible for the creation of the diffracted fields which exist everywhere.

Y S(pcp (pD)

SBC

Shadow region

WJSBE LN
v
Figure 4.1 The strip structure. The left side is soft (u = 0), the right side is hard (du / dn = 0 ). The width of
the strip is L. Numbers 1 (x=0,y=L/2 )and 2 (x=0,y=—L/2 ) denote edge points.

We consider here the total and diffracted waves induced on a strip having zero impedance

(Dirichlet BC) on one (left) face (#=0) and infinite impedance (Neumann BC) on the
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other (right) face (au/ on= O). The total field u(p,#) around the strip satisfies the wave

equation

(az 1o 12

2], oV Ls(s-
ap2+;6p+?8¢2+k Ju_lo(s(p po)p§(¢ ) D

and boundary conditions

u =0 (SBC) on the left face of the strip, 4.2)
Z—u =0 (HBC) on the right face of the strip, (4.3)
n

and the Sommerfeld’s Radiation Condition (SRC) at infinity:

. ou
lim, w/k,o(%—zku) =0, (4.4)

under a line source illumination at u(p,,®,). Here, k is the wave number. Note that,

Ou/0On=0ou/0ox for the scenario pictured in Fig. 4.1. The source becomes plane wave
when p, = . Plane wave illumination and exp(—iwt) time dependence are assumed in

this model.

4.1. FDTD Model

The object under investigation is located in the middle of FDTD space. The space left for
the air and termination which simulates the free space is around 34—54 on both axes.
Therefore, any 204 x 204 object can be investigated in this FDTD space. This corresponds
far into quasi-optical and optical scattering frequency regime, therefore comparisons with
HFA is possible. Due to finite nature of FDTD grid, the strip is modeled as one cell wide
as shown in Fig. 4.2. Assuming the left and right faces of the strip at i=N"™ and i=(N+1)"
cells respectively, the SBC and HBC boundary conditions will be satisfied using (
u=00rE,(N)=0)and ou/on=0or E_(N +1)=E_(N +2)respectively, along all vertical
cells on the strip. Diffracted fields are extracted from total fields by applying a 3-step

procedure similar to [49] as follows:
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1) FDTD simulation is run with the strip and time domain values of the fields at the
receivers are recorded on the observation circle. Total fields are obtained at the end
of this step.

2) The strip is replaced by a full plane (i.e., the strip is extended to infinity vertically
on both ends) and the FDTD simulation is re-run. The recorded time domain data at

the receivers on the source side only contain incidence and reflected fields.

Strip \ y

4 &
o b

I =5

L

SBC | , 'HBC

— Ly

W

N i=N+2

I

i
® E(N,j)=0 0 E,(N+1,j} = E,(N+2,j)

Figure 4.2 FDTD modeling of the SHBC strip (Left Face: SBC, Right face: HBC, Strip width is one FDTD
cell).

3) The strip is removed and the FDTD simulation is run in the free space without
having any objects. The recorded time domain data at all the receivers include only

incident fields.

Once 3-step procedure is completed, the time data obtained from step 2 is subtracted from
the time data obtained from step 1 within upper reflection boundaries. The resulting time
data contains only incident and diffracted fields (I+D data). Then, the time data obtained
from step 3 is subtracted from the [+D data within left or right reflection boundaries
depending on the incidence angle. Once this step is completed, only diffracted fields will
exist in simulation area. A sample plot for both total and scattered fields around the SHBC
strip is shown in Fig. 4.3. Here, the source is a plane wave incident at 45° and hits the strip

from the hard face. As observed in the top plot, there is a shadow region behind the strip
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where only edge-diffracted waves appear. The bottom plot shows that forward scattering
and specular reflections are dominant. Edge diffractions are also observable in the figures.
Note that, incident fields are subtracted from the top plot and scattered-only fields around

the strip are obtained.

Figure 4.3 FDTD-generated (Top) total and (Bottom) scattered fields around the SHBC strip.
4.2. MoM Model

MoM has recently been successfully used in modeling diffraction from a strip with one
face soft, the other hard and compared with physical theory of diffraction (PTD) results
[70]. Here, integral equations and the procedure are summarized for the sake of
completeness.

In the classical MoM approach, the faces of the strip are divided into small segments. The
field u(p') and/or its derivative 1A1-Vu(p "Y=0u(p')/ on with respect to the normal on the

surface (C ) on each segment are assumed to be constant. The Green function of the

problem is postulated via
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ViG(p.p)+k'G(p.p)=~8(p~p) (4.5)
where G(p,p’) is the scalar Green function and the source is represented with the Dirac

delta 8(-); p' and p show the position of the source and observer, respectively. The field

u satisfies homogeneous part of (4.5). The total field is obtained for p'e C and p eV as:

aG(/D,p ) au(p )

u(p)=u""(p)+], [ P Gp.p )jdp (4.6)

The form suitable for MoM computations is obtained when the observer is placed on the

surface p',peC:

e (p) =) _ jc{pp,}[u(p')—a‘}(””’ ')jdp'+ jc(_a“a(f') G(p,p')Jdp' @)

2 on

Here, the Green function and its normal derivative, respectively, are

Gp.p)=7 i (klp-pl) (48)
oG(p,p") _ik A
— 4H1 (k|pp|)| y A (4.9)

A. Backscattering by a Soft Strip (SBC)

The total field on the surface is zero (u, = 0 ) for non-penetrable soft strip (Dirichlet BC)

and the scattered field is

sct __ ou (P) ) klo=o0Ndp' 4.1
s (p) = [ Z2L2 1 (klp=p ) dp (4.10)
If p', p € C on the surface, 4" = —u’" as follows:
inc i auz(p') [ ’
! (p)=zfca—nHé“(klp—pl)dp @.11)

Necessary MoM equations in this procedure are

N
14 =sznM (4.12)

m
n=1 on
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where ¥, denotes the incident field at matching points (p,,)

V mc (pm ) e —ik(x, cos¢,+y, sing,) (4 1 3)

and the impedance matrix is

H(l)(k|pm -pn|) m#n

i
Z,, =—As, x (4.14)
4 1+l—1 [}/kAS j m=n
Vs

4e

where As, is the n'" segment length, H, (()1) is the first kind Hankel function with order zero,
7 =1.781 is the exponential of the Euler constant, p, and p, show the observer and the

segment source points, respectively. After obtaining unknown coefficients Ou, ( pn)/ on

from (4.12), the scattered fields are calculated using (4.10).

B. Backscattering by a Hard Strip (HBC)

The total field derivative with respect to normal on the surface is zero (du, /0n = 0) for non-

penetrable hard strip (Neumann BC) and the scattered field is

sc ik ; ' ,0-,0' A ,
s (p) == (uz( VHO (k| p'— -an (4.15)
p 4jc pOH" (k|p p|)|p,_p| p

where H 1(1) is the first kind Hankel function with order one. If p’, p € C on the surface,

inc u (p) ik 0 P ,
=2 H’(k n |d, 4.16
w(p) === (u (pOH (k|p' p|)|p | (4.16)
Necessary MoM equations in this procedure are
Vo Z ittz (P2) (4.17)

where V,, denotes the incident field given in (4.13) at matching points ( p,, ) and the

impedance matrix is
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ik PuPn A
—As, 1" (k m P
2 g (Kl p”|)| o] " (4.18)

mn

0.5 m=n

where 71, denotes the unit normal vector of the segment at p, . After obtaining unknown

coefficients u_(p,) from (4.17), the scattered fields are calculated using (4.15).

C. Backscattering by a Soft-Hard Strip (SHBC)

If the left side of the strip is soft and the right side of the strip is hard, then (4.6) should be

considered where the scattered field is

oG(p,p') ou(p’)
on on

u*(p) = jc(u(pv G(p,p')jdp’ (4.19)

The rule is to use u,_, =0 (SBC case) for the left side (x<0) and ou_,/dx=0 (HBC
case) for the right side (x>0) on the strip. The unknown coefficients are Ou, (pn)/ on

and u_(p, ) for the left and right sides of the strip, respectively.

On the left face of the strip (SBC case):

nc a X 1) !
1" (P) <o —4IC%H(I)(klp—pldp)

.k ' (4 20)
14
_= oHO (k dp'
1 [u(p) oH{" (k|p'- ,OI)| 1 jp

On the right face of the strip (HBC case):

inc u X
u ( )x>0 — (p; >0

——j (u(p')poH“)(klp p|)|p /;| Jdp' (4.21)

s
+1[FED 1 (| p-p )

The four-step MoM procedure with SHBC is implemented as follows:

1) Source-excited segment fields are calculated using (4.13),
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2) The impedance matrix system in (4.14) and (4.17) is built with respect to (4.20) and
(4.21),

3) The segment fields and/or its derivatives are calculated numerically from the
solution of the derived system of equations,

4) The segment-scattered fields at the observer are then accumulated using (4.18).

4.3. Examples and Comparisons

MATLAB algorithms are developed for both FDTD- and MoM-based diffraction modeling
and are run for different sets of parameters. Examples given in Figs. 4.4-4.9 present total

and diffracted fields around SBC, HBC, and SHBC strips.

Total Fields Diffracted Fields
— MoM |

HBC 270 270

Total Fields Diffracted Fields

[ MM |

SBC 270 270

Figure 4.4 Total (Left) and diffracted (right) fields around the strip: (Top) HBC, ¢, =60°, (Bottom) SBC,
@=120°(f=30MHz, L =14, p, =84, p="TA4 Solid: MoM, Dashed: FDTD).
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Figure 4.5 Total (Left) and diffracted (right) fields around the SHBC strip: (Top), ¢, =60°, (Bottom),
@, =120°, (f=30MHz, L=14, p, =81, p="TA Solid: MoM, Dashed: FDTD).
In Fig. 4.4, total and diffracted fields around both HBC and SBC strips, computed with
both FDTD and MoM approaches are shown. The strip size is 10 m and this corresponds to
I-wavelength at 30 MHz. The line source is 8-wavelengths away from the origin. The
receivers / observers are located along a circular path having a radius of 7-wavelengths.

The agreement is very good, as observed.

The dominant diffraction occurs along the two critical boundaries incident shadow
boundary (ISB) and Reflection Shadow Boundary (RSB). Note that, FDTD uses 1-cell
thick strip and this causes a strong, non-physical reflections (see, the red line along the

specular reflection direction).
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Figure 4.6 Total (Left) and diffracted (right) fields around the strip: (Top) HBC, @, =30°, (Bottom) SBC,
@, =150°, (f =30MHz , L =24, p, =104, p=34 Solid: MoM, Dashed: FDTD).

Figure 4.5 belongs to the same comparisons but for the SHBC strip. Finally, Figs. 4.6-4.9
belong to simulations for 2-wavelength strip. The effects of SHBC strip are shown in Figs.
4.7 and 4.9 compared to SBC and HBC strip in Figs. 4.6 and 4.8, respectively. The FDTD
diffracted fields for SBC, HBC and SHBC strip are also shown together in Fig. 4.10. As
can be observed from Fig. 4.10, diffraction from hard surfaces is stronger than from soft
surfaces. Using SHBC strip does not change the magnitude of diffracted fields
significantly at the hard side of strip. On the other hand, the magnitude of diffracted fields
at the soft side of strip is almost average of the SBC and HBC diffracted fields.
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Figure 4.7 Total (Left) and diffracted (right) fields around the SHBC strip: (Top), ¢, =30°, (Bottom),
@, =150° (f=30MHz, L=24, p,=104, p=34 Solid: MoM, Dashed: FDTD).

4.4. Conclusions

Diffraction by a strip with one face soft boundary condition and the other hard, is modeled
numerically using the FDTD method. Results are compared against MoM. The very good
agreement observed between proposed model and existing MoM-based model confirms the
validity of proposed model. The advantage of the proposed model over existing MoM-
based model is that broadband diffracted fields can be obtained in a single run. Also

diffraction from SHBC strip can be analyzed in time step by step. Although the strip
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considered does not exist in real life, the results obtained in this section can be used as a

future reference.
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@, =120° (f=30MHz, L =21, p,=84, p=7A Solid: MoM, Dashed: FDTD).
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Figure 4.10 FDTD computed diffracted fields around the SHBC strip: ¢, =60° ( f =30MHz, L =24,
P, =84, p="7A4 Solid: MoM, Dashed: FDTD).
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5. TIME DOMAIN MODELING OF FRINGE WAVES

When electromagnetic wave encounters an object that has different electrical
characteristics from propagating medium, currents are induced in the object body. If the
object is comprised of metallic materials as in case of most realistic targets such as
aircrafts, ships etc. then the currents are concentrated on the surface and referred to surface
currents. These induced currents give rise to scattered field which is formed by diffracted,
reflected and refracted fields. For metallic objects, penetration of field inside object body
can be neglected and scattered field contains only diffracted and reflected fields. Source-
based EM techniques intend to find out induced currents on the scattering objects via the
known incident fields. Once these currents are found, scattered fields are easily calculated

with well-known radiation integrals (also named as Stratton-Chu equations) [14].

Physical optics (PO), introduced by Macdonald in 1912, is a HFA technique used for the
calculations of scattered fields from PEC objects [71]. PO is a source-based technique
where currents are assumed to be induced on an infinite PEC plane tangent to the object.
PO source-induced currents, which are non-zero only on the illuminated side of object’s
surface (away from any discontinuity), are named as uniform currents. PO-based scattered
fields consist of reflected + diffracted fields and yield inaccurate results for the objects
having discontinuities such as sharp edges and/or tips. This is because the magnitude of the
induced currents near a discontinuity is not uniformly distributed. In other words,

diffraction is not modeled properly with PO’s uniform current approximation.

Physical theory of diffraction (PTD) extends PO by introducing fringe (non-uniform)
currents. The PTD scattered fields contain contributions of both uniform (PO) currents and
non-uniform (fringe) currents [5]. The fields radiated from fringe currents are called fringe
waves and they constitute the portion of diffracted fields. Understanding and investigation
of fringe waves are critical in broad range of electromagnetic (EM) problems, such as radar
cross section, propagation, electromagnetic compatibility modeling and simulation. The
canonical wedge structure has long been used for this purpose. For example, exact and
asymptotic formulations of fringe waves are given in [6] for a PEC wedge illuminated by a
plane wave and in [72] for the line source illumination. A novel MoM-based approach also

introduced recently [15].
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More information about both PO and PTD can be found in Chapter 2. In this dissertation, a
novel FDTD method for the extraction of fringe currents on the canonical PEC wedge
structure is proposed. The fringe fields are also computed via Green’s function based on

FDTD-extracted fringe currents.

The geometry of the problem is shown in Fig.5.1. Here, a 2D PEC wedge with apex angle
a is illuminated by a line source located at (0,,9,) . The tip of the wedge is at the origin.
The receivers are located at points (©,¢). The incident EM wave hits the wedge and

induces surface current. This induced current is comprised of uniform (PO) and non-
uniform (Fringe) parts [5]. Non-uniform currents cause fringe fields that constitute the

portion of diffracted fields.

5 1 o S(Po,90)
%
Po
~ - e '\\
0(p,@) + /N
\ ’ \\ o
/ n=a,
— : ‘\(‘Pn \ T Y i
1 P - —>
\ 2Zm—a 979
\
A 7 T
\ > 2
R P i =
- sin(a) d,

—cos(a) d,

Figure 5.1 Geometry of the problem under single side illumination (SSI) illumination Problem Definition

As indicated in Chapter 2, PTD fringe fields are obtained by subtracting PO diffracted
fields from total/exact diffracted fields:

ufrmge — ud,Exact _ud,PO (51)

Here, exact diffracted fields u?*““ can be obtained from both integral and series

summation representations [5, 6, 73]. Below, the integral solution is given for the sake of

completeness for both soft (TM) and hard (TE) boundary condition respectively:

u =V =p+00)—V,(x—p+ )} 52)
Va7 —0—0)=Vy(r—p—9y)}
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uy = V(- =+ ) ~Vy(z =0+ 0} 53)
+ V(=@ =0) Vo (T == 0y)}

where

Vi) =—— [ HP TR (i) —— P 7 (5.4)
27n sy, cosh(z/ n)—cos(f/ n)
with n=a /7 and R(n) = \/ P+ roz +2rrycos(n) . PO diffracted fields are given as [4]:
uliPO (r, @) = ud e 4 udyer (5.5)
where
. krsin(p—q,) ¢ : _dr
w1 (r, ) =L 0 D ) L (5.6
4i 0 Yo
— \/ 2, 2 502
with © =N +r'" +2rr'“cos(p—@,) v
d refl |
u, 7 (r,p) = —Zkrs1n(¢+¢)0)
(5.7

THE Gy + D Uty &
0 p

with p* = \/r2 +r2 + 21" cos(¢+ @) . The term u"" is used for hard BC and expressed

by the opposite of (5.7). Numerical computation of this integral representation is discussed
in [74].

5.1. FDTD Model

The source-induced surface currents are modeled using the tangential magnetic fields. On

the top surface and for the TM, mode, this is expressed by

JrM =G xH =-a H (5.8)

s z X

Here, a is the unit vector. The field components are not collocated because of the
staggered nature of FDTD grid. Hence, spatial averaging can be applied to magnetic fields

for approximating their values on the boundaries. As shown in Fig. 5.2, Hx components are
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positioned a half-cell (Av/2) above and below of top surface; these are used in averaging
source-induced surface currents. The bottom surface is not this simple because the normal
direction changes according to the position of the E-field. For example, the surface normal
is directed along —a_ for the boundary between nodes (i+1,j) and (i+1,j-1). Hence, source-
induced surface current is obtained by averaging four Hy components located around the

boundary, i.e.:

H (i+1/2,j-1)+H (i+1/2,])

: : : : (3.9),
+Hy(l+3/2,]—1)+Hy(l+3/2,])

J M (n,1)=0.25
where n is time index. For TE, mode, H; is used in obtaining source-induced surface
currents on both top and bottom surfaces. As seen in Fig.5.3, spatial averaging is also

required for this mode.
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Figure 5.2 An FDTD model of the problem in the TM, configuration. The magnetic field components used

for calculation of surface currents are circled.

The novel 3-step FDTD approach used for the calculation of fringe currents in the time

domain is as follows:

1) The FDTD simulation is run for the PEC wedge structure and surface currents are
recorded in the time domain. On the top surface, recorded currents contain both
uniform and non-uniform parts; on the bottom surface, recorded currents contain

only non-uniform currents.



88

2) Make the wedge angle 180° (i.e., replace wedge with the half-plane), run the FDTD
simulation again, and record the surface currents only on the top surface of the
wedge. Recorded data contains only uniform (PO) currents.

3) Subtract data recorded in step 2 from step 1 and obtain only non-uniform currents

on the top surface.

Note that, this procedure is for SSI as shown in Fig. 5.1. For the double-side illumination
(DSI), where both faces of wedge is illuminated by incident field, the uniform currents are
also induced on the bottom surface, hence one additional step, which is similar to step 2,
needs to be performed. In this step, the bottom surface of the wedge is extended to infinity
and the time domain currents are recorded. The recorded currents are formed by only
uniform currents and they need to be subtracted from the total currents obtained in step 1

on bottom surface.

Note also that, these non-uniform currents are broadband therefore, FFT is applied to
obtain fringe currents at a specified frequency. Finally, fringe waves are calculated using
the Green’s function representations given, for example, as in (3.84) for the TE and TM

modes.
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>
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*Hz AEy ™ Ex

Figure 5.3 An FDTD model of the problem in the TE, configuration. The magnetic field components used
for calculation of surface currents are circled.
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5.2. Examples and Comparisons

The proposed approach is validated and verified against PTD and MoM through the
examples presented in Figs. 5.4-5.9. Here, different wedge angles (0°,45° and 90°) and
different angle of illuminations are used. The frequency is 30 MHz and MoM and FDTD
fringe fields are normalized to PTD fringe fields. In all examples, A = A/20 resolution is

used for FDTD and A= A4/10 resolution is used for MoM.

In Fig. 5.4, TM, fringe fields around a 90° PEC wedge, illuminated by a line source at
P, =60,¢0, =70°, recorded on a circle with a radius 20 m (2A) from the tip are shown.
Note that, Fig 5.4a shows angular variation of the fringe fields in the frequency domain,

while Fig. 5.4b shows a snapshot during the FDTD simulations (i.e., time domain pulsed

fringe fields).

(b)

Figure 5.4 (a) Fringe fields around the tip of the wedge for TM, polarization (SSI), Dashed: MoM, Solid:
FDTD, Dashed-dotted: PTD, o =270°, p, =60m, ¢, =70°, p=20m, [ =30MHz ; (b) A time domain
snapshot showing broadband fringe fields.

Time domain characteristics of PO and fringe currents, recorded on the top surface of this
wedge at a point 1.5 away from the tip, are shown at Fig.5.5. Frequency domain variations

of the same point are also shown at Fig.5.6 with source’s FFT.
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The total (uniform + non-uniform) and non-uniform currents induced on this PEC wedge
are shown in Fig.5.7. As observed, non-uniform currents concentrate in the vicinity of

edge. Figures 5.8 and 5.9 belong to the same scenario but for the TE, polarization.

The simulations are repeated for 0°and 45° PEC wedges and results are presented in Figs.
5.10 and 5.11. As observed, very good agreement among analytical and numerical methods

are achieved.
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Figure 5.5 Time domain surface currents for TM, polarization of above scenario recorded on top surface at
1.5 A distance from the tip, (Top) PO currents, (Bottom) fringe (non-uniform) currents, & =270°, p, =60m

, 9, =70°, p=20m, f=30MHz.
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Figure 5.6 Frequency domain surface currents for TM, polarization of above scenario recorded on top
surface at 1.5 distance from the tip, (Top) Source’s FFT, (Middle) FFT of PO currents, (Bottom) FFT of

fringe (non-uniform) currents, a =270°, p, =60m, ¢, =70°, p=20m, f=30MHz.
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Figure 5.7 Wedge surface currents for TM, polarization of above scenario, (Top) total currents, (Bottom)
fringe (non-uniform) currents, a =270°, p =20m, f =30MHz Solid: MoM, Dashed: FDTD (left and right
portions belong to the bottom and top surfaces, respectively).

Incident wave

(a) (b)

Figure 5.8 (a) Fringe fields around the tip of the wedge for TE, polarization (SSI), Dashed: MoM, Solid:
FDTD, Dashed-dotted: PTD, « =270°, p, =60m, ¢, =70°, p=20m, f =30MHz; (b) A time domain

snapshot showing broadband fringe fields.



92

Total Currents

in arbitrary units

Magnitude of current density

Non-Uniform Currents
40 v v

=

e

L) v

it

€5 30

E P

3£ 20

53

§:

= 0 :

o -10 -5 0] 5 10
= Bottom face r[Al Top face

Figure 5.9 Wedge surface currents for TEz polarization of above scenario, (Top) total currents, (Bottom)
fringe (non-uniform) currents, o =270°, p, =60m, ¢, =70°, p=20m, f =30MHz Solid: MoM,
Dashed: FDTD (left and right portions belong to the bottom and top surfaces, respectively).

5.3. Conclusions

A novel, FDTD based diffraction modeling procedure is introduced for the simulation of
fringe currents and fringe waves around a PEC wedge. The presented results verified the
validity of proposed method. Note that, using geometric averaging yields better
performance for collocating electric and magnetic fields [75] and the accuracy maybe
increased. Also, the rectangular grid used in the standard FDTD algorithm limits the
accuracy, especially for the TE polarization [76]. This limitation can be removed by using

FDTD algorithms based on conformal cells [30, 77].



93

(b)

(d)

Figure 5.10 Fringe fields around the tip of the wedge (SSI), Dashed: MoM, Solid: FDTD, Dashed-dotted:
PTD, a =360°, p, =70m, @, =45°, p=20m, f =30MHz, (a) and (c) Polar plot for TM, and TE,
mode, (b) and (d) Time domain snapshot for TM, and TE, mode.
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(b)

(d)

Figure 5.11 Fringe fields around the tip of the wedge (SSI), Dashed: MoM, Solid: FDTD, Dashed-dotted:
PTD, a =315°, p, =60m, ¢, =70°, p=5m, f =30MHz, (a)and (c) Polar plot for TM, and TE, mode,
(b) and (d) Time domain snapshot for TM, and TE, mode.
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6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

This thesis contributes to the literature on diffraction theory by presenting three novel
studies. First, double tip diffraction phenomena is studied on 2D PEC structure which is
shown at Fig. 3.3. FDTD based multi-step diffraction model is introduced. The novelty of
this work is that, for the first time in literature, double tip diffracted fields are extracted
from total fields. The validity of the proposed model is proved with MoM simulations
presented in section 3.4. This work is published in IEEE Transactions on Antennas and

Propagation journal [11].

Secondly, diffraction from 2D strip geometry with one face is soft (PEC) BC and the other
hard (PMC) BC is considered. These materials does not exist in nature but the latest
advances in technology enables them to be produced artificially [68], [69]. In this work,
time domain diffraction model for SHBC strip geometry is introduced via FDTD method.
The novelty of this work is that, for the first time in literature, diffracted fields formed
from soft-hard strip structure are extracted from total fields in time domain. Analyzing
diffracted field in time domain helps to understand the physics underlying the diffraction
phenomena. The validity of the proposed model is proved via existing MoM model with
comparisons presented in section 4.3. This work is submitted to IEEE Transactions on

Antennas and Propagation journal for review [12].

Finally, a time domain model is introduced to obtain fringe currents and fringe waves on
canonical 2D PEC wedge geometry. Fringe waves constitute a portion of diffracted fields
and can be seen as correction to the physical optic diffracted fields which are formed by
abrupt termination of induced currents [5]. The novelty of this paper is that, for the first
time in the literature, fringe currents and waves are obtained in time domain with FDTD
method. With the introduced method, the contribution of fringe (non-uniform) currents to
diffracted field can be observed in time domain visually. The validity of the proposed
model is proved via comparisons with existing PTD and MoM solutions presented in
section 5.2. This work is submitted to IEEE Transactions on Antennas and Propagation

journal for review [13].
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6.2. Future Work

The following studies can be carried out in the future:

1)

2)

3)

In this thesis we addressed 2D diffraction models. To handle more realistic
problems, the introduced models should be extended to 3D.

We consider PEC/PMC objects for diffraction modeling. The models can be
extended for objects composed of dielectric materials. Although it is hard to derive
such a model, it may be obtained for specific incident and observation angles. An
instructive work carried on canonical wedge geometry [52].

All diffraction models can be assembled in a Graphical User Interface (GUI) and

made available as a teaching tool for lecturers and students.
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