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ABSTRACT 

 

In this thesis, analytical and numerical solutions of the electromagnetic wave 

propagation in certain environments loaded with metamaterial (MTM) are presented. 

Finite Difference Time Domain (FDTD) algorithm is one of the most popular 

numerical techniques applicable to this problem area provided that it is augmented with 

Auxiliary Differential Equation (ADE) or Partial Linear Recursive Convolution (PLRC) 

methods to account for the dispersive characteristics of the MTM. To investigate the 

electromagnetic wave propagation in dispersive media Maxwell’s curl and wave equation 

based FDTD algorithms are developed. 

FDTD update equations are obtained using ADE and also PLRC FDTD 

formulations for MTM medium described by Lorentz models. Numerical results obtained 

using the proposed FDTD algorithm are compared with the analytical results. FDTD 

algorithm based on the wave equation for double-negative (DNG) medium is also 

obtained using ADE approach, and its performance in terms of computational time and 

memory requirements is compared with the curl equation based formulations.  

Another issue discussed in this thesis is the novel formulation of Mur’s ABC 

developed for truncating the DNG media for 1D and 2D problems using PLRC-FDTD 

algorithm. Efficient and simple FDTD update equations for first and second order Mur’s 

absorbing boundary conditions (ABC) are obtained from frequency domain one-way 

wave equation using PLRC method and coefficient parameters are given for both Lorentz 

and Drude models. To demonstrate the validity and stability of the proposed Mur 

formulations, its absorption performance and computational advantages are compared 

with modified Uniaxial Perfectly Matched Layer (UPML). 

Finally, electromagnetic wave propagation is investigated in a rectangular 

waveguide partially loaded with DNG materials along a transverse or along the axial 

directions. Properties of eigen-solutions in waveguide environments partially loaded with 

Lorentz type DNG materials, modelled by lossless/lossy, identical/non-identical electric 

and magnetic parameters are investigated. The phase and group velocities are calculated 

and drawn for several problem scenarios. Modal cutoff phenomena associated with 

surface waves, transitions between evanescent/propagating, forward/backward waves and 
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their dependence on frequency, filling factor and material parameters are also 

investigated. Novel conditions are given for existence of surface waves and for emergence 

of complex eigenvalues in the absence of losses. Analytic solutions of reflection and 

transmission coefficients are obtained for single mode supporting waveguide sections 

fully/partially loaded with DNG slabs in one transverse direction using Mode Matching 

Method. Floquet mode formalism is extended and applied to description of propagating 

fields in a waveguide loaded along the axial direction with air-DNG slabs in a quasi-

periodic fashion. Eigenvalue and band-edge equations are obtained and representative 

solutions for dispersion and band edge diagrams are presented. Scattering characteristics 

and their dependence on the number of unit cells and the termination strategy used in the 

truncated structure are also investigated. Frequency dependence of reflection and 

transmission factors are calculated using frequency domain approach and compared with 

the results obtained from FDTD method. 
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ÖZET 

 

Bu tezde, metamalzeme ile yüklenmiş ortamlardaki elektromanyetik dalga 

yayılımının analitik ve nümerik çözümleri verilmiştir.  

Maxwell denklemlerini çözmenin bilinen en popüler sayısal tekniklerinden biri olan 

Zaman Bölgesinde Sonlu Farklar (Finite Difference Time Domain, FDTD) metodu, 

Yardımcı Diferansiyel Denklem (Auxiliary Differential Equation, ADE) ve Parçalı 

Doğrusal İteratif Konvolüsyon (Piecewise Linear Recursive Convolution, PLRC) 

yöntemleri kullanılarak Maxwell dönel ve dalga denklemleri dispersif ortamlarda 

elektromanyetik dalga yayılımını incelemek için kullanılmıştır.  

Lorentz modeliyle tanımlanan Epsilon Negatif (ENG) ortamda elektromanyetik 

dalga yayılımı, dalga denklemi tabanlı dispersif FDTD algoritmalarından ADE ve PLRC 

yöntemleri kullanılarak incelenmiş, sayısal sonuçlar analitik sonuçlarla karşılaştırılmış ve 

dalganın ENG malzeme ile yüklü ortamdaki saçılma karakteristiği gösterilmiştir. Çift 

negatif malzeme (Double Negative Material, DNG) ile yüklü ortam için ise ADE 

yaklaşımı kullanılarak dalga denklemi tabanlı FDTD algoritması elde edilmiş ve dalga 

denklemi kullanılarak elde edilen FDTD algoritmasının bilgisayar bellek/hesaplama 

zamanı gereksinimleri açısından Maxwell dönel denklemleriyle elde edilen algoritmaya 

göre artıları ve eksileri ortaya konulmuştur. 

Bu tezde ele alınan bir diğer konu ise bir ve iki boyutlu DNG malzeme ile yüklü bir 

ortamın Mur tipi emici sınır koşul ile sonlandırılması için yeni bir formülasyonun 

geliştirilmiş olmasıdır. Tek yönlü dalga denklemlerinden elde edilen FDTD denklemleri, 

DNG ortamlar için PLRC yöntemi yardımıyla birinci ve ikinci mertebeden Mur tipi sınır 

koşulu için tekrar düzenlenmiş ve. tüm denklem katsayıları sırasıyla Lorentz ve Drude 

model parametreleri için ayrı ayrı verilmiştir. Geliştirilen DNG-Mur tipi ABC’nın 

geçerliliği ve doğruluğu literatürde verilen DNG ortama uyarlanmış Tek Eksenli 

Mükemmel Uyumlu Tabaka (Uniaxial PML, UPML) tipi ABC ile soğurma performansı 

ve bellek/hesaplama zamanı gereksinimi açısından karşılaştırılmıştır. 

Son olarak, enine ve aynı zamanda eksenel yönler boyunca kayıpsız/kayıplı, 

özdeş/özdeş olmayan frekansa bağlı elektriksel-manyetik parametrelerle tanımlanmış 

DNG malzeme ile yüklü dikdörtgen dalga kılavuzundaki yayılma problemi incelenmiştir. 
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Lorentz tipi DNG malzeme ile enine tabakalanmış bölgelerde geçerli özdeğer denklemi 

kullanılarak sönen, yayılan ve kompleks dalgalara yönelik çözümler elde edilmiştir. Bu 

çözümlerden yola çıkılarak farklı özelliklere sahip modal alanlar arasında geçişleri 

karakterize eden “kesme” olayları incelenmiş, yüzey dalgaları, sönen/ilerleyen dalgalar 

ve ileri/geri giden dalgalar arasındaki ilişki belirlenmiş, faz ve grup hızlarındaki 

değişiklikler hesaplanmıştır. Elde edilen sonuçların frekansa, doluluk faktörüne ve 

dispersif malzeme parametrelerine olan bağımlılıkları değişik örneklerle açıklanmıştır. 

Yüzey dalgalarının oluştuğu ve kayıpsız parametreler kullanıldığında karmaşık 

özdeğerlerin ortaya çıktığı koşullar da ayrıca belirtilmiştir. Iletim/yansıma katsayıları ise 

Mod Eşleştirme Yöntemi kullanılarak kayıplı ve kayıpsız DNG malzemeler için 

hesaplanmıştır. Eksenel yönde periyodik olarak hava-DNG tabakaları ile yüklü dalga 

kılavuzundaki elektromanyetik dalga yayılım karakteristiğini incelemek için uygun 

biçimde genişletilmiş Floquet dalgaları dikkate alınmıştır. Böylece özdeğer ve bant-kenar 

denklemleri elde edilmiş, dispersiyon ve bant kenarı için nümerik çözümler sunulmuştur. 

Saçılma karakteristiğinin birim hücre sayısına, sonlandırılmış yapıdaki birim hücre 

sayısına ve sonlandırma stratejisine bağlılığı örneklerle açıklanmış, hesaplanan 

yansıma/iletim katsayısı FDTD metodu sonuçları ile karşılaştırılmıştır. 
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1. INTRODUCTION 

 

1.1 Background on Metamaterials  

The materials with negative permittivity and permeability was first theoretically 

introduced by Veselago (Veselago, 1968), where it was pointed out that these kinds of 

materials would have unusual characteristics, such as negative index of refraction and 

backward wave propagation which are not observed readily in nature. After decades, 

Pendry et al., experimentally demonstrated that a composite medium of periodically 

placed thin metallic wire structures exhibit negative permittivity () (Pendry et al., 1996; 

1998) and periodic metallic split ring resonators (SRR) exhibit negative effective 

permeability () over a certain frequency band (Pendry et al., 1999; 2002a; 2002b). In 

2000, Smith et al. combined these two structures in a single configuration to create a 

material possessing negative index of refraction for a band of frequency in the GHz range 

(Smith & Kroll, 2000; Schultz et al., 2000). The experimental verification of first negative 

refractive index materials was performed at microwave frequency by Shelby et al. 

(Shelby, Smith, & Schultz, 2001). 

Recently, many researchers have studied various shapes of split ring resonators 

(SRRs) (such as axially symmetric rings, triangular, S-shaped, V-shaped, omega 

shaped…etc.) other than the circular or rectangular rings to generate effective dispersive 

permeability. Hence, new double-negative (DNG) structures are realized from the 

arrangement of these SRRs and wires as in Smith’s design or SRRs alone printed on each 

side of circuit board to achieve negative refractive index (Sabah, 2010; Chen, Ran, 

Huangfu, Zhang, & Chen, 2004; Kishor, Baitha, Sinha, & Lahiri, 2014; Li, Aydin, & 

Ozbay, 2010). Although the SRRs and wires geometry has become very widely used in 

microwave regime, this configuration has certain disadvantages at infrared and optical 

regimes due to required micron and submicron length-scale structures. Therefore, 

alternative designs are developed to achieve simultaneously negative permittivity and 

permeability at THz and optical frequencies (Shalaev et al., 2005; Zhou et al., 2006; 

Gundogdu et al., 2008; Kafesaki et al., 2007; Zhang et al., 2005; Chettiar et al., 2007; 

Jakšić, Dalarsson, & Maksimović, 2006). 
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Since these kinds of materials have unusual characteristics, such as, inverse Snell 

effect, inverse Doppler effect and backward Cerenkov radiation, DNG materials opened 

a wide potential for applications in diverse areas such as cloaking, imaging, acoustics, 

absorbers, antennas and guiding structures. In 2000, Pendry (Pendry, 2000) showed that 

the property of negative - refraction index can be used in making perfect lenses. A perfect 

lens may be described as an optical or electromagnetic element which forms image using 

both propagating and evanescent modes, resulting in an almost perfect image of the 

original. Moreover, Schurig et al. (Schurig et al., 2006) suggested cloaking materials 

which bend electromagnetic waves around objects so that the object appears invisible. 

The trick is to continuously change the material parameters  and , as a function of the 

radius. This process can be seen as a coordinate transform that stretches and compresses 

space in order to introduce a place where no electromagnetic radiation can go. Thus 

objects inside the cloak cannot be seen from the outside.  

On the other hand, since the wave in Left Handed Metamaterials (LHMs) 

propagates in the backward direction LHMs can be employed to design a phase shifter, 

which exhibits a linear phase response with frequency (Antoniades & Eleftheriades, 

2003). Especially, the phase of the wave can be kept unchanged after the wave passes 

through one double-positive (DPS) slab and one DNG slab that have the same thickness 

and same absolute value of refractive index but opposite sign. This property may be 

applied to construct zero phase delay transmission line to feed antenna arrays. In antenna 

applications (Ziolkowski & Kipple, 2003; Mittra, Rajab, & Lanagan, July 2005), 

anisotropic metamaterial cover is used to improve the performance of the antenna by 

providing high directivity, good matching with an input source, and a tunable operational 

frequency. Thus, an electrically small antenna can be obtained with large radiated power.  

Detailed overview of various geometries used in metamaterial design and their 

applications in microwave, optical and terahertz regions are given in (Capolino, 2009; 

Eleftheriades & Engheta, Metamaterials: Fundamental, 2011; Tretyakov et al., 2017). 
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1.2 Motivations and Original Contributions 

This thesis is concerned with the numerical and analytical studies on DNG media 

such as: i) applying dispersive finite difference time domain (FDTD) approaches to DNG 

media (i.e. to terminate the DNG boundary and obtain the minimum computational 

time/memory requirements during the simulation) ii) analysis of rectangular waveguide 

filled with DNG slab (i.e. to investigate the dispersion diagrams and cut-off transitions 

properties, scattering characteristics in single and periodic loaded structures). In the 

following motivations and contributions of each issue is explained in details.  

The boundary conditions play an important role in FDTD calculations, as it is 

necessary to terminate the computational domain that ideally absorbs the incident field 

without producing any reflections. The most widely used boundary conditions are Mur 

(Mur, 1981) and perfectly matched layer (PML) absorbing boundary conditions (ABCs) 

first introduced in (Berenger, 1994). Although PML performance yields significantly 

better results than Mur’s ABC for a wider range of incident angles, Mur’s ABC may be 

preferred due to its computational efficiency and the simplicity of its implementation 

whenever the level of reflections can be tolerated. However, in the presence of DNG 

media special care is required in implementing ABCs to ensure stability. In literature, one 

can find several studies on the use of PML in DNG media. The contribution of this thesis 

to this area is the formulation of first and second order Mur’s ABC, developed from 

frequency domain one-way wave equations using piecewise linear recursive convolution 

(PLRC) FDTD algorithm for truncating the DNG media characterized by Lorentz or 

Drude model. The numerical examples for a domain filled entirely with Lorentz type 

DNG material are also presented to demonstrate the stability and accuracy of the proposed 

formulations which show that reflections effectively reduce about -50dB. 

The second contribution to the dispersive FDTD formulations is the wave equation 

based FDTD and supporting numerical results for epsilon-negative (ENG) and DNG 

media described by Lorentz model. (Ozakın & Aksoy, 2013) developed a wave equation 

based FDTD formulation involving only Debye model and recursive convolution (RC) 

approach. However, auxiliary differential equation (ADE) and PLRC FDTD formulations 

for ENG medium described by Lorentz model, using wave equation was first established 

by (Pekmezci, Topuz, & Sevgi, 2016) and the numerical results of the proposed approach 

will be expressed and discussed. In this thesis, FDTD algorithm based on the wave 
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equation for DNG medium is obtained using ADE approach, and its performance is 

compared with the curl equation based formulations. For both simulations, computational 

domain is entirely filled with Lorentz type DNG medium and terminated by the proposed 

DNG-Mur’s ABC. 

The contributions made to the investigation of the characteristics of modal fields 

supported by a parallel plate waveguide partially or fully loaded with a homogeneous 

DNG slab are listed below. There are several reports in the literature investigating 

propagation characteristics and potential applications of metamaterial loaded planar and 

rectangular waveguides (Alu & Engheta, 2004; Engheta, 2002; Nefedov & Tretyakov, 

2003; Cory & Shtrom, 2004; Baccarelli et al., 2005; Yongmei & Shanjia, 2009). It has 

already been shown that, in certain frequency and parameter regions such environments 

support forward, backward and surface wave type solutions and yield complex values of 

propagation constant in the absence of losses. These investigations are focused on 

problems dealing with specific applications or propagation characteristics, often using the 

rather restrictive assumption of nondispersive DNG media. Alu and Engheta (Alu & 

Engheta, 2004) presented a comprehensive analytical analysis and numerical results for 

the modes propagating in bilayer parallel plate waveguide loaded with pairwise 

combinations of lossless single negative (>0, <0 or <0, >0), DPS and DNG slabs of 

arbitrary thicknesses at fixed frequency (i.e., for constant values of constitutive 

parameters). Nefedov and Tretyakov (Nefedov & Tretyakov, 2003) investigated DPS-

DNG slab combinations with several layer thicknesses and presented numerical results 

for dispersion characteristics of propagating modes over wide frequency bands assigning 

constant values to material parameters. Cory and Shtrom (Cory & Shtrom, 2004) 

addressed DPS-DNG slab configuration in a parallel plate waveguide of given plate 

separation and presented numerical results of modal dispersion for different values of 

geometrical loading factor (t/a in Figure 4.1b) over wide frequency bands, also using 

constant values for material parameters. Using Drude-Lorentz models Baccarelli et.al. 

(Baccarelli et al., 2005) presented a detailed analysis of surface waves on grounded 

metamaterial (MTM) slabs, and Yongmei and Shanjia (Yongmei & Shanjia, 2009) 

investigated complex modes in MTM loaded parallel plate waveguide. In this thesis a 

holistic approach is presented for investigating the effects of the geometrical filling factor, 

medium dispersion and losses. Novel contributions are made on the existence conditions, 

dispersive properties of evanescent, propagating and complex modes supported by the 
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parallel plate waveguide partially loaded along x-direction and on the properties of 

different types of modal cut-off transitions. The equations for obtaining reflection and 

transmission characteristics are desired for X-band rectangular waveguide fully/partially 

loaded in the cross-section with Lorentz type DNG media, and numerical results are 

presented. Another contribution made to the propagation characteristics of loaded 

waveguide is the investigation of the structures containing alternating DPS/DNG regions 

in the axial direction. In this context emphasis is given on “periodic-like” (truncated 

periodic) structures. It is shown that both Floquet eigenvalue and the band-edge equations 

need to be appropriately modified to account for the presence of DNG media, and 

numerical results are presented.  

 

1.3 Brief Overview of the Thesis 

This thesis focuses on the study of propagation of electromagnetic waves in the 

presence of metamaterials (MTMs) using Finite Difference Time Domain (FDTD) 

algorithm for addressing certain features directly in the time domain and exact analytical 

approach for investigating salient properties of wave fields in MTM loaded canonical 

waveguide environments in the frequency domain. Comparison of results obtained via 

analytical and numerical methods are also presented for certain scenarios, the former 

providing benchmark solutions for validating the latter. 

Following this introducing chapter, in Chapter 2 we present a brief review of the 

characteristics of single and double negative media. Definitions and relations needed in 

the subsequent chapters such as those for the refractive index, wave impedance, wave 

number and dispersion models are given together with the unique properties of waves in 

DNG materials. 

In Chapter 3, non-dispersive FDTD update equations based on Maxwell’s curl and 

wave equation and two of dispersive FDTD algorithms (ADE and PLRC) applicable to 

electromagnetic wave propagation through DNG media are reviewed. We then present 

formulation utilizing wave equation in DNG media based on ADE-FDTD approach and 

pros/cons of proposed formulation over FDTD algorithm based on curl equations. Finally, 

modified formulation of first and second order Mur’s absorbing boundary conditions 

(ABCs) for terminating DNG media obtained from frequency dependent one-way wave 

equations using piecewise linear recursive convolution (PLRC) method are presented. 
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The validity and stability of the proposed DNG-Mur formulations are demonstrated via 

numerical examples considering 1D and 2D problems entirely loaded with Lorentz type 

DNG media, and also its advantages over uniaxial perfectly matched layer (UPML) in 

terms of computational time and memory requirements. 

In Chapter 4, exact frequency domain formulations are derived for eigenwaves 

supported in uniform, 1D reducible waveguide environments and partially loaded with 

DNG media along a transverse or along the axial directions. Numerical results for β/ko 

diagrams are presented for lossless/lossy DNG slab modelled by identical/non-identical 

Lorentz type permittivity and permeability. The phase and group velocities are calculated 

and drawn for several problem scenarios. Cut-off transitions between evanescent, 

propagating, complex and surface wave type solutions are investigated and novel 

conditions are obtained for emergence of complex and surface wave type eigensolutions. 

Analytic solutions of reflection and transmission coefficients are obtained for single mode 

supporting waveguide sections fully/partially loaded with DNG slabs in one transverse 

direction and also for axially periodically arrangement. Numerical results obtained from 

analytical formulations are compared with the FDTD simulations. 

The final chapter, Chapter 5, provides a summary of the results obtained and the 

contributions made in this work, and concludes with suggestions of future areas of 

research which stand out as promising follow-up paths of this thesis.  
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2. FUNDAMENTALS OF METAMATERIALS 

 

2.1 Definition 

Metamaterials (MTMs) are periodic structures which are artificially constructed to 

exhibit extraordinary electromagnetic properties that cannot be found in nature. In a 

lossless medium, electromagnetic properties are determined by the macroscopic 

parameters, permittivity and permeability of materials (Ramakrishna, 2005). Therefore, a 

medium can be classified in four groups depending on their constitutive parameters as 

shown in Figure 2.1 (Engheta & Ziolkowski, 2006).  

 

 

Figure 2.1 Material classification. 

 

Medium with positive permittivity and permeability is referred to as double-

positive medium (DPS) and most of the materials in nature are in this group.  The 

propagation of electromagnetic waves is possible in such materials. Medium possessing 

at least one negative constitutive parameter is referred to as single-negative medium 

(SNG) and classified into two subcategories namely epsilon-negative (ENG) and mu-

negative (MNG) media. The propagation of electromagnetic waves is not possible in such 

media. In certain frequency regimes, many plasmas and noble metals (such as gold and 

silver) exhibit negative permittivity behavior, and ferromagnetic materials exhibit 

negative permeability behavior. Some artificial materials can also be constructed to 

exhibit DPS, ENG, and MNG properties (Hao & Mittra, 2009). Propagation of 

electromagnetic waves is also possible in the last group composed of simultaneously 
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negative permittivity and permeability is named as double-negative medium (DNG), and 

such a material have not been discovered yet in nature. Hence, this class of materials has 

only been constructed artificially. 

 

2.2 Refractive Index, Wave Impedance and Wave Number of Metamaterials 

The general definition of refractive index  n , wave impedance   and wave 

number  k are given as : 

 

r r
n    (2.1) 

 

o r o r o r r
             (2.2) 

 

o r o r o
k nk n c            (2.3) 

 

where f  2  is the angular frequency, 
o o o

    is the free space impedance, 

o
k c  is the free space wave number, 1

o o
c    is the speed of light, 

r o
    and 

r o
    are the relative permittivity and permeability, respectively. 

In a dispersive medium with 
j te 

 time dependence assumption, the constitutive 

parameters are expressed in complex domain and can be written in polar form as 

 

; me j

r r

j

r r
e je j


               (2.4) 

 

Using the preceding expressions given in Equation (2.4), refractive index and wave 

impedance of a dispersive medium can be defined as  

 

    
1 2 1 2 /2/2 /2 e me m n

jj j j

r r r r r r
n e e e n e

        


     (2.5a) 
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 (2.5b) 

 

where  

 
1

;
2

r r n e mn         (2.6a) 

 

 
1

;
2

r

m e

r




   


     (2.6b) 

 

The definitions of refractive index and wave impedance involves square roots, the 

sign of which should be defined properly so as to satisfy causility and Poynting theorem 

in a linear dispersive medium. This choice is investigated in detail in (Veselago et al., 

2006; Heyman & Ziolkowski, 2001; Ircı, 2007; Alu & Engheta, 2005) for all types of 

media (DPS, SNG and DNG) and the proper branch which gives the physically correct 

solution is determined. Definitions for constitutive parameters, square roots of refractive 

index and normalized wave impedance in the complex plane, Equations (2.4-2.5), are 

illustrated in Figure 2.2 and arguments of , ,n  and for different types of media are 

given in Table 2.1.  

 

 

                                           (a)                                                               (b) 

Figure 2.2 Definitions in the complex plane for (a) ,
r r

j j              and (b) square roots of 

wave impedance and refractive index for DNG media. 
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Table 2.1 Arguments of , ,n   and   in each medium. 

 

 

From the table given above, one can conclude that all lossless conventional 

materials (DPS) with positive r  and r  (where 0
e m
   ) yield positive refractive 

index and wave impedance. In the case of medium possessing at least one negative 

constitutive parameter (ENG or MNG), the refractive index and wave impedance have 

imaginary values, resulting in imaginary wave vectors and evanescent waves. However,  

for DNG materials in which real part of r  and r  (where 
e m
     ) are 

simultaneously negative, refractive index has opposite sign relative to DPS materials 

(Veselago, 1968). Consequently, these materials are  denoted as Negative Index Materials 

(NIM) and the expression of n  for a lossless DNG material is: 

 

j j

r r r r r rn e e         2  (2.7) 

 

2.3 Unique Properties of DNG Metamaterials 

The media with simultaneously negative permittivity and permeability must have 

negative refractive index as noted in the previous section. This causes some unusual 

characteristics such as backward wave propagation, reversed Snell’s law, reversed 

Doppler effect, etc. In the following, brief explanation about these basic properties will 

be presented. 
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2.3.1 Backward waves 

In DPS media, electric field (E), magnetic field (H) and wave vector (k) form a right 

handed set of vectors, and are also named as Right-handed Medium (RHM). However, in 

DNG media, negative refractive index causes a reversal wave vector using Equation (2.3), 

and E, H and k form a left-handed triplet coined by Veselago (Veselago, 1968) as Left-

handed Medium (LHM).  

 

 

                                                   a)                                          (b)    

Figure 2.3 Configuration of a) RH triplets and b) LH triplets in terms of E, H, S and k. 

 

Although E, H and k form a left handed triplet, E, H and Poynting vector (S) always 

maintain a right handed relationship (Veselago, 1968). Thus, the wave vector is 

antiparallel to the Poynting vector in a LHM. Illustration of right and left hand relations 

between E, H, S and k are given in Figure 2.3. Since the direction of the wave vector 

coincides with the direction of phase velocity and that of the Poynting’s vector with the 

group velocity, waves propagating in LHM materials are called backward waves. 

 

2.3.2 Reversed Snell’s Law 

The sign of the refraction index has an important role to fulfil the passage of rays 

through one medium to another. Applying the usual Snell’s law, refracted angel is 

obtained as (Veselago, 1968) 

 

sin sin sin sini t t i

n
n n

n
     
    

 

1 1
1 2

2

 (2.8) 
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Here, ,n n1 2  are the refractive indices of two media and ,
i t
   are the incident and 

refracted angles, respectively. If both n1  and n2  are positive valued then t
  is positive, 

while n 1 0  and n 2 0 , then t  is negative. Although the direction of reflected ray is the 

same independent of the refractive index sign, the refracted wave in NIM is bent on the 

opposite side to that observed in DPS medium. In Figure 2.4, comparison of ray 

propagation in a NIM to that in a DPS medium is illustrated with ray paths where the path 

1-4 corresponds to positive refraction and the path 1-3 is negative refraction. Therefore, 

the negative refraction at the interface of two media having opposite sign of refractive 

indices can also be thought to be a consequence of reversed Snell’s law.  

 

 

Figure 2.4 Snell’s law for DPS and DNG media: Ray propagation through two different media. 

1) incident ray; 2) reflected ray; 3) refracted ray if n2<0; 4) refracted ray if n2>0. 

 

2.3.3 Reversed Doppler Effect 

The Doppler effect is a fundamental frequency shift phenomenon that occurs 

whenever a wave source and an observer are moving with respect to one another. The 

frequency detected by the observer can be calculated simply as 

 

of f n
c

 
  

 
1 1  (2.9) 

 

where c  is the speed of light in a vacuum and   is the relative velocity between source 

and observer with a positive sign as the observer is going away from the source. If the 
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refractive index ( n ) of the medium is positive (DPS), detected frequency ( f1 ) by the 

observer is smaller than the source frequency ( f0 ), while if the media has negative 

refractive index (DNG), then one encounters the opposite behavior. This means that, 

observer which is receding from the source detects higher frequency than the source 

frequency. The experimental observation of the inverse Doppler shift can be found in 

(Seddon & Bearpark, 2003; Chen et al., 2011). 

 

2.3.4 Reversed Vavilov-Cerenkov Radiation 

The Vavilov-Cerenkov radiation occurs as a charged particle moves in a medium 

faster than the speed of light in that medium and the radiated spherical wave fronts travel 

forward making an angle   with the particle velocity  . The expression of this radiation 

angle is given by 

 

cos
c n




  (2.10) 

 

where c n  is the velocity of light in that medium and   is the velocity of the particle. In 

an ordinary medium where n0 , this angle is always positive. However, if the medium 

has a negative refractive index n0 , the radiation angle should be in the region of 

 / , 2  and resulting wave fronts travel backward with an obtuse angle relative to the 

direction of the particle. Details about reversed Cerenkov Radiation can be found in 

(Eleftheriades & Grbic, 2002; Lu et al., 2003; Chen & Chen, 2011; Duan, Wu, Chen, Xi, 

& Chen, 2009; Galyamin & Tyukhtin, 2010). 

 

2.3.5 Frequency dispersion 

For a non-dispersive medium in which the refractive index does not change with 

frequency, the energy density has the following form: 
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 W E H  
2 21

2
 (2.11) 

 

For simultaneously negative   and   the total energy density calculated from 

Equation (2.11) would be negative, in conflict with the conservation law of energy. 

Therefore, Veselago (Veselago et al, 2006) stated that a DNG medium should be 

dispersive. When frequency dispersion exists, the energy density relation must be 

modified as 

 

     
d d d d

W E H E H E H
d d d d

   
 

   

    
         

   

2 2 2 2 2 21 1

2 2
 (2.12) 

 

According to this expression, positive energy density is obtained for simultaneously 

negative   and  , as long as their partial derivatives with respect to the frequency are 

sufficiently greater than zero. Hence, one can conclude that for the possibilities of 

practical realization of materials with negative   and  , it is necessary to consider that 

such materials must possess frequency dispersion. In the following section, commonly 

used dispersive models for both   and   to characterize realistic DNG materials are 

briefly reviewed.  

 

2.4 Dispersive material models 

The correlation between electric field intensity E and electric flux density D, and 

similarly magnetic field intensity H and magnetic flux density B is described by the 

constitutive parameters. In free space the electric field and magnetic field are directly 

proportional to the electric and magnetic flux density by a factor of the free-space 

permittivity ( o )  and permeability ( o ), respectively. When an electromagnetic field 

interacts with matter it induces electric/magnetic dipole moments in the material, and 

creates electric/magnetic polarization which are functions of electric/magnetic 

susceptibilities. Hence, in a non-dispersive medium the constitutive equations can be 

expressed as: 
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o r oD E E E P        (2.13a) 

 

o r oB H H H M        (2.13b) 

 

where 

 

r e r m;      1 1  (2.14) 

 

o e o mP E ; M H      (2.15) 

 

Here, r  and r  are the relative permittivity and permeability, P  and M are the electric 

and magnetic polarizations, e  and m  are the electric and magnetic susceptibilities, 

respectively. 

However, since the permittivity     and permeability     are frequency 

dependent parameters in dispersive media, the constitutive equations are also frequency 

dependent and expressed as in the following form: 

 

             o r oD E E E P                (2.16a) 

 

             o r oB H H H M                (2.16b) 

 

where  

 

       r e r m;               (2.17) 

 

           o e o mP E ; M H            (2.18) 
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Here,  r  and  r  are the frequency dependent relative permittivity and 

permeability,  and  denote the limiting values of the relative permittivity and 

permeability at high frequencies,  e  and  m   are the frequency dependent electric 

and magnetic susceptibility functions, respectively. In the following an overview of 

Lorentz, Drude and Debye type dispersion models are given. Details of their physical 

foundation can be found in (Ramakrishna & Grzegorczyk, 2001). 

 

Lorentz Model:  

The basic single pole Lorentz model is defined with the following relations: 

 

, ( )


 
  


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2

2 2

pe

e L

oe ej
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
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2
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m L

om mj
 (2.19b) 

 

where pe
and  pm

are the plasma frequencies, oe and om are the resonance frequencies, 

and  e  and m  are the damping coefficients, respectively. Inserting Equation (2.19a) into 

Equation (2.18), frequency and time domain relation between the polarization field and 

electric field is obtained as, 

 

   


  
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
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2

2 2
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 (2.20a) 

 

    
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2 2
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d d
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dt dt
 (2.20b) 
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The first, second and third terms on the left of Equation (2.20b) account for the 

acceleration of the charges, the damping mechanisms of the system with the damping 

coefficient  e , and the restoring forces with the resonance frequencyoe . In this model, 

permittivity and permeability have negative real parts (hence, the material exhibits 

negative refraction property) if the operating frequency is between 

2 2

oe,om oe,om pe,pm,   
 

. 

 

Drude Model: 

Lorentz model yields the Drude model given below: 

 

 ,


 
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 

2
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ej
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 ,
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 (2.21b) 

 

when the restoring force is negligible, and yields negative values for frequencies below 

the plasma frequency  , pe pm . 

 

Debye Model: 

Finally, one obtains the Debye model when the acceleration term is very small compared 

to the others: 
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2.5 Phase velocity and group velocity 

The general description of phase velocity (
p ) and group velocity (

g ) in a medium 

are given as: 

 

andp g

d

k dk

 
    (2.23) 

 

Using the expression of k  given in Equation (2.3), phase and group velocities can also 

be defined as  

 

1 1
and

p

g p

c

k n

dk n dn dn

d c c d c d




 

    
        (2.24) 

 

Hence, in a medium wherein the refractive index is frequency independent, phase 

and group velocities are equal to each other  p g   with same sign. However, in a 

frequency dispersive medium with negative refractive index, phase velocity is always 

negative and group velocity can be greater or smaller than the phase velocity depending 

to the dispersion relation  dn d . For identical electric and magnetic parameters using 

lossless Lorentz model given in Equation (2.19), refractive index is expressed as 

       r r r
n        . Then, the group and phase velocities yield 

 

 
   1

;
r r

g

p

r

d

c c d

c    

 


 
   (2.25) 

 

with  

 

 
 

 

2 2

22 2 2 2

2
1 and

p pr

r

o o

d

d

  
 

    
  

 
 (2.26) 



19 

Using the parameters that exhibit refractive index about -1 at s  , phase and group 

velocties are tabulated in Table 2.2.  

 

Table 2.2 Different Lorentz parameters which yield NIM about n=-1 at s        

 p s   
o s   g c  

g  
p  

Parameter1 1 2-1/2 0.142 7
g

c   

 
p

r
s

c
c

 


 



    
Parameter2 (3/2)1/2 2-1 0.230 3 13

g
c   

Parameter3 4/3 3-1 0.285 2 7
g

c   

Parameter4 (48/25)1/2 5-1 0.315 6 19
g

c   

 

For the parameters given in Table 2.2, variation in refractive index versus frequency and 

corresponding phase/group velocities are displayed in Figure 2.5, respectively. These 

figures show that, for a DNG material where   0n   , 
p  is opposite to 

g . 

 

 

(a)                                                    (b)                                                      

 

(c) 

Figure 2.5 a)Refractive index, b) Phase velocity and c) Group velocity versus frequency for the 

parameters given in Table 2.2. 
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3. WAVE PROPAGATION IN DNG ENVIRONMENTS USING FINITE 

DIFFERENCE TIME DOMAIN (FDTD) ALGORITHM 

 

3.1 Introduction 

Finite difference time domain (FDTD) formulation is a convenient tool for solution 

of electromagnetic (EM) wave problems. The basic algorithm of Finite Difference Time 

Domain (FDTD) was first proposed by K. S. Yee in 1966 (Yee, 1966). Yee’s FDTD 

algorithm deals with both electric and magnetic fields in time and space using the 

Maxwell’s curl equations, which are replaced by a set of finite-difference equations. Since 

then, FDTD has been applied to a broad range of electromagnetic (EM) problems.  

In the following, FDTD algorithm based on a central difference approximation of 

the spatial and time derivations of Maxwell’s curl equations and wave equation for three-

dimensional (3D) case are reviewed in source-free and non-dispersive media (Inan & 

Marshall, 2011). 

 

m

B
E H

t



   


 (3.1a) 

 

0D   (3.1b) 

 

e

D
H E

t



  


 (3.1c) 

 

0B   (3.1d) 

 

where e ,m  is the electric and magnetic conductivity. In a source-free, isotropic and 

lossless medium, Maxwell’s curl equations in rectangular coordinates yield:  
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(3.2) 
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H

t z x t

H H E

x y t



 


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
 

    
   

  
 

  

 
(3.3) 

 

The system of six coupled partial differential equations of Equation (3.2) and 

Equation (3.3) forms the basis of the FDTD numerical algorithm for electromagnetic 

wave interactions with general three-dimensional (3D) objects. Placement of electric and 

magnetic field components in a Yee cell are described in (Inan & Marshall, 2011) and 

given in Figure 3.1.  

 

 

Figure 3.1 Positions of the field components in a unit cell of the Yee’s lattice 
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With the Yee cell so defined, the spatial derivatives of various quantities and the 

derivatives in time are evaluated using the simple two-point centered difference 

approximations; a staggered spatial mesh is used for interleaved placement of the electric 

and magnetic fields and leapfrog integration in time is used to update the fields. The 

stability of FDTD algorithm is determined by Courant-Friedrich-Levy (CFL) stability 

condition which depends on the mesh size of spatial discretization (∆x, ∆y, ∆z) and the 

time step of the integration (∆t). In three dimensions, the Courant factor, defined as 

S c t r   where 2 2 2r 1/ x  11 ( ) ( ) ( )/ y  1/ z        and c is the velocity of light, must 

be smaller than one to guarantee the stability of the algorithm. Therefore, a fine spatial 

mesh size ∆r requires a fine time step ∆t to maintain the desired accuracy.  Hence the 

explicit finite difference approximations of Maxwell’s equations are: 

 

   

   

   

1 2 1 21 2, 1 2 1 2, 1 2
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t
E i, j+ k E i, j+ ,k

μ z
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(3.4a) 
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
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(3.4b) 
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(3.4c) 
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(3.5a) 
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(3.5b) 
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(3.5c) 

 

Taking the curl of the first Equation (3.2), and inserting the Equation (3.3), the coupled 

Maxwell’s curl equations are combined to obtain the wave equations in the form of: 

 

2 2 2 2 2
2

2 2 2 2 2 2 2

1 1
0

u u u u u
u

c t x y z c t

    
      

    
 (3.6) 

 

where u is any scalar field component (Ex, Ey, Ez, Hx, Hy, and Hz). Using the central finite 

difference approximation for the spatial and time derivatives in Equation (3.6), FDTD 

update equation for E-field is obtained as in the following: 
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 (3.7) 

 

3.2 Dispersive Finite Difference Time Domain (FDTD) Algorithms 

The FDTD algorithm is simple to implement for isotropic and non-dispersive media 

but requires significant modification for the inclusion of dispersive media whose 

permittivity and/or permeability are functions of the frequency. The existing frequency 
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dispersive FDTD algorithms are known as Recursive Convolution (RC) method, 

Auxiliary Differential Equation (ADE) method and Z-transform method (Luebbers et al. 

1990; Luebbers, Hunsberger, & Kunz, 1991; Luebbers & Hunsberger, 1992; Kelley & 

Luebbers, 1996; Kashiwa & Fukai, 1990; Sullivan, 1992; 1995). The detailed information 

on dispersive FDTD algorithm can be found in our review paper (Pekmezci & Sevgi, 

2014) and also in (Bilotti & Sevgi, 2012). 

The first frequency dependent FDTD formulation was published by Luebbers in 

1990 (Luebbers et al., 1990) named as Recursive Convolution (RC). This technique 

utilized a recursive convolution scheme to model Debye media which relates the electric 

flux density (D) to the electric field through a convolution integral and discretizes the 

integral as a running sum. Then, Luebbers et. al. improved this technique using piecewise 

linear integration to obtain better accuracy in 1996 which is called as Piecewise Linear 

Recursive Convolution (PLRC) (Kelley & Luebbers, 1996). In 1990, Kashiwa presented 

a more general approach to the problem of dispersive media in FDTD by introducing the 

auxiliary differential equation (ADE) method (Kashiwa & Fukai, 1990). In this method, 

the frequency-domain constitutive relation between the electric flux density and electric 

field is expressed in time domain utilizing inverse Fourier transformation. This technique 

is very straightforward to implement but requires an additional storage variable for the 

flux density. In 1992, an alternative to the RC and ADE methods was proposed by 

Sullivan (Sullivan, 1992) based on the z-transform (ZT) where the relationship between 

the electric flux density (D) and the electric field intensity (E) has been formulated using 

z-transform.  

In the following, dispersive FDTD algorithms (ADE and PLRC) are reviewed for 

1D Maxwell’s curl equations where there is no variation in two dimensions, namely, both 

y and z ( / 0y   and / 0z   ). The process of simulations using dispersive FDTD 

approaches are also presented for a scenario wherein a Lorentz model DNG medium 

inserted in free space. The algorithm developed by ADE approach for 1D case can easily 

be expanded into 2D case (see Appendix A), and formulations based on Lorentz model 

are reduced to Drude model’s formulation by setting resonance frequency ( o
 ) as zero. 

Hence the following update equations developed for Lorentz type DNG media are also 

acceptable for Drude model simulations.  
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3.2.1 Piecewise Linear Recursive Convolution (PLRC) 

Multiplication in the frequency domain corresponds to the convolution integral in 

the time domain which can be discretized as a running sum. Then, the time form of the 

constitutive equation      D E    yields 

 

           o o eD t t E t E t t E t            (3.8) 

 

where  e t  is the inverse Fourier transform of  e  . Since the fields should be zero 

prior to t=0 (causality), Equation (3.8) can be discretized as 

 

   
0

n t

n n

o o eD E E n t d      

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where 
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n q E E
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t
 

  
 

     


 for   1q t q t      (3.10) 

 

The RC-FDTD presented in (Luebbers et al., 1990; Luebbers, Hunsberger, & Kunz, 

A, 1991; Luebbers & Hunsberger, 1992) assumed that all field components are constant 

over each time interval t , while PLRC-FDTD (Kelley & Luebbers, 1996) uses a linear 

approximation in expressing fields over a given time interval   1q t, q t    which yields 

a better accuracy than the RC-FDTD approach. Thus, when the value of q

e  parameter (in 

Equation 3.12b) is taken as zero, the PLRC formulation can easily reduce to constant RC 

formulation. In the following discrete form of D is produced by substituting Equation 

(3.10) into Equation (3.9). 
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where 
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Since the discrete form of Ampere’s law given in Equation (3.1) can be written as in the 

following, the value of D at the next time step is needed: 
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Combining Equation (3.11) and Equation (3.14) one obtains: 
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Substituting Equation (3.15) and Equation (3.16) into Equation (3.13) yields an update 

equation for the electric field in a DNG medium as follows: 
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where n

e  is known as the recursive accumulator and given by 
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For the Lorentz model, electric susceptibility function in time domain  e t  can be 

obtained via the inverse Fourier transform of Equation (2.19):  
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where 2e e /   , 2 2 4e oe e    , and 2

e pe e   . However, the time domain electric 

susceptibility function in Equation (3.19) is not in an appropriate form in updating the 

corresponding RC. For this reason, complex time domain susceptibility is defined as: 
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with the related real quantities  
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Substitution of  e,c t into Equation (3.12) and Equation (3.18) yields the complex 

quantities 
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Finally, the complex recursive accumulator is obtained as: 

 

 
1

1

0

n
n n q q n q n q q

e,c e,c e,c

q

E E E  


   



     
   (3.22a) 

 

 1 1 0 0 0 e ej tn n n n

e,c e,c e,c e,c e,cE E e
 

    
             (3.22b) 

 

 1 1n n

e e,cRe    (3.22c) 

 

Note that, in the PLRC-FDTD algorithm, the complex recursive accumulator is 

updated using Equation (3.22b) and the real part in Equation (3.22c) is used in FDTD E-

field update equations. The same also applies for the H-fields. 

The steps for implementing PLRC-FDTD are listed below and the corresponding 

flow-chart is given in Figure 3.2. 
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Figure 3.2 Flow chart of PLRC-FDTD procedure 

 

3.2.2 Auxiliary Differential Equations (ADE) 

ADE method converts the frequency domain equation of the Lorentz model into a 

time domain differential equation using j t   and t   2 2 2 . This will yield 

 

     z o z kD E S       (3.23a) 

 

     y o y kB H J       (3.23b) 

 

where 

 

   
2

2 2

pe

k o z

oe e

S E
j


  

  


  
 (3.24a) 

 

   
2

2 2

pm

k o y

om m

J H
j


  

  


  
 (3.24b) 

 

The inverse Fourier transform of Equation (3.24) yields: 

1) Update free-space E-fields. 

2) Insert source. 

3) Update DNG E-fields using the previous values of 

E,H and real part of recursive accumulator, e . 

4) Update complex recursive accumulator e,c  in 

DNG region using the updated E and previous 

value of e,c . 

5) Insert absorbing boundary conditions. 

6) Repeat the steps for the H-fields. 
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   
   
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2 2

2

k k

e oe k o pe z

S t S t
S t E t

t t
  
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 (3.25a) 

 

   
   

2
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2
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J t J t
J t H t

t t
  

 
  

 
 (3.25b) 

 

The discrete form of Equation (3.25) is given as: 

 

       o pen n n noe e
k k k z
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tt . t
S i S i S i E i

. t . t . t

  
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       
              
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 (3.26a) 
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 (3.26b) 

 

These can then be used in iterative form and FDTD loops can be formed accordingly: 

 

       n n n / n /

z z y y

t
D i D i H i H i

x

  
      

1 1 2 1 21 2 1 2  (3.27a) 

 

       n / n / n n

y y z z

t
B i B i E i E i

x

   
       

1 2 1 2 1 11 2 1 2 1  (3.27b) 

 

1 1
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
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
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1/2 1

1/2
( 1 2) ( 1 2)

( 1 2)

n n

y kn

y

o

B i J i
H i

 

 





  
   (3.27d) 

 

The steps for implementing ADE-FDTD are listed below and the corresponding flow-

chart is given in Figure 3.3. 
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Figure 3.3 Flow chart of ADE-FDTD procedure 

 

3.3 Dispersive ADE-FDTD Algorithm for Wave Equation 

Although the wave equation has the simplest form in non-dispersive media (Sadiku, 

2001), it becomes significantly more complicated in dispersive media where the 

constitutive parameters are frequency dependent. In such cases, we may not able to move 

  and   directly outside of the time derivatives. For instance, the multiplication of 

simultaneously frequency dependent   and   in wave equation corresponds to 

convolution in time domain which leads to extracting additional recursive accumulators 

to evaluate the discrete time convolution of   and  . Therefore, utilizing PLRC approach 

for wave equation in DNG media is more challenging than ADE approach where the 

constitutive parameters and fields (E or H) are expressed by auxiliary equations. For this 

reason, we develop ADE approach for DNG medium based on wave equation and present 

update equations for 2D case.  

However, in SNG media (one of the constitutive parameters is constant), there exist 

only one recursive accumulator. Hence, PLRC approach can easily be employed in SNG 

media using wave equation. On the other way, ADE formulations for SNG media can 

simply converted from DNG media’s by choosing the magnetic and electric plasma 

frequencies as zero for ENG and MNG media, respectively. Both ADE and PLRC 

1) Update 
k

S  using the previous values of 
z

E and 
k

S  

2) Update
z

E in free space and insert excitation source. 

3) Update z
D in DNG medium using the previous 

values of 
z

D and 
y

H . 

4) Update
z

E in DNG medium using the present value 

of z
D and 

k
S . 

5) Apply the absorbing boundary conditions at the 

terminating nodes. 

6) Repeat the whole steps for the magnetic fields  

( , ,
k y y

J B H ). 
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formulations using wave equation in Lorentz type ENG media can be found in (Pekmezci, 

Topuz, & Sevgi, 2016). Hence, only numerical results validated with analytical solutions 

will be presented in the numerical results section.  

In DNG media where both medium parameters depend on frequency and are 

simultaneously negative, the wave equation becomes: 

 

             
2

2 2 2 2 2

2
0 withE k E k n

c


               (3.28) 

 

where  

 

       ;o e o m                       (3.29) 

 

Here, 
  and   are the relative permittivity and permeability at higher frequencies 

and    e m,    , are the electric and magnetic susceptibility functions of the dispersive 

medium which are defined for Lorentz model. Then, inserting Equation (3.29) into 

Equation (3.28) and modifying the equation we can obtain, 

 

   
2

2

2
0E D

c


     (3.30) 

 

where 

 

     D G Q      (3.31a) 

 

     mQ G     (3.31b) 

 

     G E P      (3.31c) 

 

     eP E     (3.31d) 
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In two-dimensional (2D) case under the assumptions 0z   , frequency dependent 

wave equation obtained in Equation (3.30) is converted into a time domain differential 

equation using ADE approach by inserting the following conversion j t  and 

t   2 2 2 .  

 

2 2 2

2 2 2 2

1
0

E E D

x y c t

  
 

  
  (3.32) 

 

Taking the central difference approximations both for spatial and time derivatives, 

and provide the discrete form of wave equation in Equation (3.32). 
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   
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   



  (3.33) 

 

Substitution of  e  and  m  functions into Equation (3.31) and taking inverse 

Fourier transforms yield the time domain equations and then the discrete form of time 

domain equations is obtained as: 

 

     n n n
i, j i, j i, jD G Q  

 1 1 1  (3.34a) 
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     n n n
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P i, j P i, j P i, j E i, jp p p 

  1 1

1 2 3
 (3.34d) 
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Making some mathematical manipulations and rearranging Equation (3.33) using 

equations given in Equation (3.34) yield the FDTD update equation based on 2D wave 

equation in DNG medium: 

 

           
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It should be noted that although wave equation based FDTD can be used in 

homogeneously DNG filled regions, it has severe stability problems when applied to 

environments involving DNG-DPS mixed media as noted in (Aoyagi, Lee, & Mittra, 

1993). 

 

3.4 Termination of DNG Media with Mur’s ABC 

Simulating wave propagation from scattering, antennas, or waveguides requires an 

unbounded domain or a domain large enough so that waves do not reflect off the domain 

boundaries back into the computational domain and interfere with the wave propagation 

being analyzed. The computational requirements for making a domain large enough to 

prevent these reflections would be nearly computationally impossible, or at least highly 

undesirable, in most cases. Therefore, to simulate the infinite space, absorbing boundary 

conditions (ABCs) are needed. The development of efficient and accurate ABCs is very 

important for the FDTD method and several types of ABC have been proposed which are 

grouped into two major approaches, analytical and perfect matched layer (Taflove & 

Hagness, 2005).  

The most popular absorbing boundary condition in analytical group was derived by 

Enguida-Majda (Engquist & Majda, 1977) and the optimal FDTD implementation was 

given by Mur in 1981 (Mur, 1981). In contrast to this, Berenger introduced another 
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popular absorbing boundary condition named as perfectly matched layer (PML) in 1994 

(Berenger, 1996). It is designed by setting the outer boundary of the model space to an 

absorbing material layer, which absorb most of the impinging waves and have low 

reflection. The innovation of Berenger's PML is that its quality does not depend on 

incidence angle, polarization or frequency and can be used as an absorbing boundary to 

terminate domains comprised of inhomogeneous, dispersive, anisotropic, and even 

nonlinear media, which was previously not possible with analytically derived ABCs. For 

this reason, PML provide significantly better accuracy than most other analytical ABC's 

(Liao, Wong, Yang, & Yuan, 1984; Higdon, 1986; Gedney & Zhao, 2010). Soon after, 

Chew and Weedon (Chew & Weedon, 1994) obtained a perfectly matched layer by 

introducing complex coordinate stretching into Maxwell's equations. This work led to the 

development of PML schemes that did not require the splitting of fields. Researchers 

presenting these types of formulations include Veihl and Mittra (Veihl & Mittra, 1996), 

Gedney (Gedney, 1996a), Zhao and Cangellaris (Zhao & Cangellaris, 1996) and Sullivan 

(Sullivan, 1997). An alternative approach for avoiding the field splitting was originally 

suggested by Sacks et al. (Sacks, Kingsland, Lee, & Lee, 1995), who used anisotropic 

material having both magnetic and electric permittivity tensors to describe the absorbing 

layer and applied this technique to the frequency domain based finite element methods. 

Based on Sacks's work, Gedney firstly introduced the Uniaxial PML (UPML) into the 

FDTD method and demonstrated the effectiveness of this approach for both free space 

(Gedney, 1996a) and dispersive medium (Gedney, 1996b).  

Nonetheless implementation of either Mur or PML to DNG media for terminating 

the FDTD computational domain without any modification results in instability. In 

literature one can find several works on truncation of DNG media using PML Boundary 

Conditions in DNG media (Gedney, 1996b; Roden & Gedney, 2000; Fan & Liu, 2000; 

(Cummer, 2003; 2004; Zheng, Tam, Ge, & Xu, 2009; Li & Dai, 2006; Lu L. , 2006). 

Review of formulation and implementation of modified UPML is also presented in 

Appendix B. One of the disadvantages of those formulations is that they require both 

electric and magnetic fields which increases the computational time and memory 

requirements. For this reason, Kosmas et al. presented an ABC based on Mur’s approach 

using dispersive media with a single pole conductivity z-transform model in 2004 

(Kosmas & Rappaport, 2004). As distinct from Kosmas’s work, we have developed a 

modified formulation of Mur’s ABC for terminating the DNG media which are obtained 
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from frequency dependent one-way wave equations using PLRC method presented in 

(Pekmezci, Topuz, & Sevgi, 2018). In the following we briefly outline the formulations 

of first and second order DNG-Mur ABC using PLRC-FDTD algorithm based on 

(Pekmezci, Topuz, & Sevgi, 2018) and list the parameters used in the update equations 

both for Drude and Lorentz models in Table 3.1 and Table 3.2.  

In a linear, isotropic, and homogenous DNG media where both medium parameters 

depend on frequency and are simultaneously negative, the wave equation presented in 

Equation (3.28) can be rewritten in Cartesian coordinates for three-dimensional case as 

in the following form: 

 

   
2 2 2 2

2

2 2 2 2
0n

x y z c
E


 

   
   

   
  (3.36) 

 

Defining the differential operators as , , ,x y z cD x D y D z D j           

and 2 2 2D c   to express the first and second derivatives of space and frequency and 

inserting into the Equation (3.36) yields 

 

        2 2 2 2 2 2 2 2 2 20 withx y z x y zD D D D n LE L D D D D nE             (3.37) 

 

Here, L is the wave operator including partial differential equations and frequency terms 

that can be factored as in the following: 

 

    0L L LE E     (3.38) 

 

where L  and L  define the right and left going waves, respectively and can be written 

for x, y and z directions as in (Taflove, Oskooi, & Johnson, 2013). 
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       2 20 1 ; 1x x x x x xat x L D D n S at x h L D D n S            (3.39a) 

 

       2 20 1 ; 1y y y y y yat y L D D n S at y h L D D n S            (3.39b) 

 

       2 20 1 ; 1z z z z z zat z L D D n S at z h L D D n S            (3.39c) 

 

with 
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 

 
 
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2 2 2 2 2 2
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y z x z x y

x y z

D D D D D D
S S S

D n D n D n    

  
    (3.40) 

 

Using the Taylor series expansion to approximate the square roots in Equation 

(3.39), one can define the order of DNG-Mur’s absorbing boundary condition as 1st and 

2nd order (Engquist & Majda, 1977). The simplest approximation known as 1st order Mur-

type ABC is obtained by keeping only the unity term in 21 S , whereas the second order 

uses 2 21 1 2S S   . In the following section, modified formulations of both 

approximations for using in truncation of DNG media are presented. 

 

3.4.1 First-order DNG-Mur's ABCs 

Considering 1D case and wave propagation along x-direction where / 0y    and

/ 0z   , right and left going waves in Equation (3.37) can be defined as: 

 

              2 2 2 0x x x x xD D n L L D D n D D n EE E              (3.41) 

 

For left and right going waves, Equation (3.41) must satisfy the backward/forward wave 

condition and substituting xD
x





 and 
j

D
c




  into Equation (3.41) yields: 
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      0n n E
x x

j j

c c
  

    
    

   
 (3.42) 

 

Here,  n   is the frequency dependent refractive index and expressed as

           1 1
r r e m

n             . The functional form of  n  complicates 

inverse Fourier transform of the operators in Equation (3.42). A convenient way of 

avoiding this complication is to approximate geometric mean in  n   by its arithmetic 

mean. This approach is found to be rather effective when source spectrum is centered 

close to the intersection point of the  e   and  m  . However, for purposes of brevity, 

we present the formulations for the case of identical models for  r
  and  r

  to write 

the refractive index as    1 en     . Then the left going waves in Equation (3.42) 

yields: 

 

 
         0 with eE P P E

x

E j j

c c


     

 
   


 (3.43) 

 

The inverse Fourier transform of Equation (3.42) yields 

 

     
     0 with

1 1
e

E E P

x t t

t t t
P t t E t

c c


  
   

  
  (3.44) 

 

where ‘ ’ denotes the convolution. To drive FDTD algorithm for Equation (3.44), two 

point centered difference discretization is used at mesh point i+1/2 and at time index 

n+1/2:  

 

1 1

1 1

( ) ( 1) ( 1) ( )

( 1) ( 1) ( ) ( )

n n n n

n n n n

c t x
E i E i E i E i

c t x

x
P i P i P i P i

c t x

 

 

  
           

 
            

 (3.45) 
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Here, i and n are the indices of discrete space and time variables, x and t are 

spatial and temporal discretization step sizes, respectively. The discrete form of nP is 

obtained by using PLRC method following the steps presented in Section 3.2.1. Then P 

terms in the right side of Equation (3.45) can then be expressed as:  

 

   1 1 0 0 1 0 0 1

0 0

( 1) ( 1) ( ) ( ) ( 1) ( )

( 1) ( )

( 1) ( )

n n n n n n

e e e e

n n

e e

n n

e e

P i P i P i P i E i E i

E i E i

i i

   

 

 

            

  

  

 (3.46) 

 

where n

e  is known as the recursive accumulator and given by 

 

       
1

1

1
1

0

with
q q q

e e e

q q q

e e e

n
n q q n q q n q

e e e e

q

i E i E i
  
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   






  



 

  


      
   (3.47) 

 

Substituting Equation (3.46) into Equation (3.45) and rearranging the discrete equation, 

FDTD update equations for left (at i=1) and right (at i=Kx) boundaries yield as:  

 

       1 1

1 2 3 4
1 2 2 1 (2) (1)

n n n n n n

e e
E a E a E a E a  

 
        (3.48a) 

 

       1 1

1 2 3 41 1 ( 1) ( )n n n n n n

x x x x e x e xE K a E K a E K a E K a K K              (3.48b) 

 

with   

 

 0 0 01 2 3 2 4 1 2 4 2

1 2 3 4 1 2 3 4

2 3 2 3 2 3 2 3

1
; ; ; ; ; ; ;

1 1 1 1
e e e

c c c c c c c c c c t x x
a a a a c c c c

c c c c c c c c c t x c t x
  

               
                   

                 

. 

 

The proposed formulation given in Equation (3.48) can be used easily for Drude 

and Lorentz model by modifying the parameters q

e , q

e , q

e , q

e and 1n

e  as indicated 

in Table 3.1. 
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Table 3.1 Parameters for Drude and Lorentz Model in 1st order DNG-Mur ABC 
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3.4.2 Second-order DNG-Mur's ABCs: 

The first-order DNG-Mur’s boundary is suitable for 1D problem, where the wave 

is propagating normal to the leftward and rightward boundaries. In more general 

problems, wave propagates toward boundaries at an arbitrary angle. In those cases, 2nd 

order approximations have been found to be useful to reduce the reflection according to 

the 1st order approximation. Here, 2D TM case ( / 0z   ) is considered where only the 

Ez field components impinge on four walls (i.e., on x=0, x=h, y=0 and y=h boundaries). 

First, propagation of left and right going waves along x direction are discussed and the 

wave equation in Equation (3.36) is factored using Equation (3.39a) as in the following: 
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 (3.49) 

 

where  
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, , , and

y

y x x
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
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

 
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 (3.50) 

 

Using the two-term Taylor series expansion to define the square root term as 

2 21 1 2x xS S    and substituting 2

xS  and      1r en         into Equation (3.49) one can 

write the one-way wave equation which satisfies the backward wave condition along x-

direction as:  
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(3.51) 

 

where 
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     eP E     (3.52a) 
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E
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
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
 (3.52b) 

 

     eQ R     (3.52c) 

 

Taking the inverse Fourier of Equation (3.51) yields 

 

     
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where 

  

     eP t t E t   (3.54a) 

 

 
 

 
2

2

E t
R t Q t

y


 


 (3.54b) 

  

     eQ Rt t t   (3.54c) 

 

where ‘ ’ denotes the convolution. Similar to first order DNG-Mur’s approach, discrete 

forms of P , Q  and R  are obtained applying PLRC algorithm to Equation (3.54): 
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1 1 1 1

1 2 3
,

2 ( , ) ( , ) ( , ) ( , )n n n n n n n

e
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with      0 0 1 1 0 0 1 0

1 2 3; 2 3 ; 2e e e e e e e ep p p               . Here,
n

e  and n

e are known as 

the recursive accumulator and given by 
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In order to obtain an FDTD update equation for E field to implement the 2nd order 

DNG-Mur’s ABC on leftward DNG boundary along x-direction (where i=1), Equation 

(3.53) is discretized using central-difference expressions for the space and time 

derivatives (Mur, 1981) and then discrete form of P , Q  and R  from Equation (3.55) are 

substituted, which yields: 
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Similar approaches are applied for the backward waves along y direction as in the 

following:  

   

   
 
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where 
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     y y eQ R    (3.59c) 

 

Then, applying PLRC algorithm to time equivalent of Equations (3.59) yield the discrete 

form of
n

y
P ,

n

y
Q  and 

n

yR  as  
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with      0 0 1 1 0 0 1 0

1 2 3; 2 3 ; 2e e e e e e e ep p p               .  
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Here, n

e  and n

ey are known as the recursive accumulator and presented in Equation (3.56a) 

and Equation (3.61). 
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Then discretizing of time equivalent of Equation (3.58) using central-difference 

expressions for the space and time derivatives and substituting discrete form of 
y

P , 
y

Q

and
y

R given in Equation (3.60), we can derive the FDTD update equation for 1nE   on 

backward boundary along y-direction (where j=1): 
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 (3.62) 

 

with  
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42 2 2 2 2 2
. 

 

The DNG-Mur ABC on the other edges both for x and y directions can be found in 

a similar way presented above and parameters for both Drude and Lorentz model are 

listed in Table 3.2. 
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Table 3.2 Parameters for Drude and Lorentz Model in 2nd order DNG-Mur ABC 
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3.5 Numerical Results 

In this section, numerical results are presented which are obtained by using 1D and 

2D ADE-FDTD algorithm based on Maxwell’s curl equations for Lorentz material. The 

accuracy and absorbing performance of the proposed DNG Mur’s ABC are also displayed 

and compared with DNG-UPML ABCs in terms of memory usage and computational 

time. Numerical results are also given for ADE-FDTD algorithm based on wave 

equations when the computational domain is entirely loaded with Lorenz type DNG 

medium and terminated with the 1st and 2nd order DNG-Mur’s ABC in 1D and 2D cases. 

The comparison of memory/computation time requirements for FDTD simulations based 

on wave and curl equations are presented. The ADE and PLRC-FDTD approaches for 

ENG media are given in (Pekmezci, Topuz, & Sevgi, 2016). Another simple way of 

obtaining ADE-FDTD formulations for Lorentz type-ENG media using wave and curl 

equations is to select the plasma frequency (wpm) of magnetic permeability as zero in the 

formulations developed for DNG media.  

 

3.5.1 On propagation characteristics of DNG media 

In Figure 3.4, numerical results are given, obtained by using ADE FDTD algorithm 

based on Maxwell’s curl equations described in Section 3.2.2 for Lorentz material with 

the parameters 0 1591
oe om

f f . GHz  , 1 1027
pe pm

f f . GHz   and 8
1 10 rad s    which 

has negative real part of permittivity and permeability in the range of 9 9
1 10 7 10, rad s.   

One-dimensional (1D) problem space is taken to be 400 cells along x-direction and a 

DNG slab extends from cell 160 to cell 240 where the outside of this range is free space. 

A sinusoidal source with a center frequency about 0.75GHz is launched in the free space 

region at a node 80 cells from the left boundary and both ends of the problem space is 

terminated with first order Mur-type absorbing blocks. Cell size is chosen as 40x /   

and the corresponding time step is calculated using 0 95t . x / c    where   is free space 

wavelength and c is speed of light, respectively. In Figure 3.4, snapshot of the spatial 

electric field distribution at the 630th time step and the behavior of wave propagation in 

DNG region are presented. As seen in Figure 3.4a, wave propagates in the reverse 

direction in DNG region, but retains its normal propagation when it exits the DNG region. 

It can also be seen by comparing early and late time responses in the DNG region as given 
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in Figure 3.4b and Figure 3.4c. Time histories of the waves are recorded at three different 

nodes inside the DNG region which are labeled according to their distance to the source. 

The first node is 20 cells before the center node; the second node is the center node; and 

the last one is 20 cells after the second node. Normally, waves will reach the first node 

first, then the second node and finally the third node as observed in Figure 3.4b. This 

shows early time responses and the causality in the direction of the wave propagation is 

preserved in DNG region as reported in (Heyman & Ziolkowski, 2001). However, as 

shown in Figure 3.4c, the late time responses are different than the early time response 

due to the result of negative refractive index of DNG region.  

 

 

                             (a)                                                     (b)                                                       (c)                       

Figure 3.4 Plot of E-field vs. position and time at  three different nodes using 1D ADE-FDTD algorithm 

a) E -field at a given time instant, b) Early time response and c) Late time response 

 

In 2D scenario, simulations of ADE-FDTD approach are used to observe focusing 

and direction of propagation of a Gaussian beam when the refractive index of DNG slab 

is -1. DNG slab is modelled by identical Lorentz parameters for  
r
  and  

r
   where 

8 3081pe pmf   . zf MH  , 1 1992oe om .f zf MH  and 0e m     as used in (Pekmezci & Sevgi, 

2014). The computational domain has 400x400 grid points (on xy-plane) and DNG slab 

with 360x120 cells (Kx1=20, Kx2=380, Ky1=120, Ky2=240) is inserted in free space region 

as illustrated in Figure 3.5. A sinusoidal source at a center frequency of 6
o

f MHz  is used 

in the simulations and source is injected at xs=200 and ys=60. The cell size is the same in 

both directions that equals to 40x y /     and time step is calculated about 

2 79. nst   considering the Courant-Friedrichs-Lewy (CFL) stability condition. The 

FDTD grid of free space region is terminated with second order Mur’s ABC (Mur, 1981).  
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Figure 3.5 The 2D FDTD scenario and the location of the metamaterial region 

 

   

                                                     (a)                                                               (b) 

Figure 3.6 Propagation through DNG slab with n=-1 a) Focusing and b) Direction of propagation 

 

In Figure 3.6a, perfect focusing is demonstrated when a localized source with 

sinusoidal time variation is normally incident on a lossless DNG slab. Since the slab 

thickness is d2=120Δy in the direction of propagation and source-to-slab distance is 

d1=60Δy<d2, re-focusing occur inside the DNG slab (at 60 cells away from the front face) 

and in free space region at 60 cells behind the slab. This is agreement with the perfect 

focusing condition for the case of n=-1 as reported in (Pendry, 2000), where the first focus 

occurs inside the slab at df1=d1, and second focus at df2=d2-d1 beyond the slab. In Figure 

3.6b, an array of sources having Gaussian beam-type spatial variation and sinusoidal time 

dependence (Çakır, Çakır, & Sevgi, 2008) are used to create an obliquely propagating 

wave at an angle of 20° with y axis to show the backward wave propagation in DNG slab. 

As seen in figure the wave propagates in the reverse direction in the DNG region, but 

retains its normal propagation when it exits the DNG region. Hence, one can clearly 

observe the inverse Snell effect consulting the arrows that show the direction of the beam 

propagation. 

d2 

d1 



50 

3.5.2 On effectives of developed DNG-Mur ABC 

In this section, numerical results are presented both for 1D and 2D cases where the 

problem space is filled entirely with DNG medium modelled by identical Lorentz 

parameters for    ,
r r
     and boundaries on both sides are terminated with proposed 

DNG-Mur ABCs. In all simulations, a tapered sinusoidal pulse (5-10-5 pulse described 

in (Heyman & Ziolkowski, 2001)) is used as excitation with a center frequency of 

7.5 GHz
s

f  and inserted at the center of the FDTD grid. Time – frequency domain 

variation of the source signal is shown in Figure 3.7. 

 

 

                                               (a)                                                            (b)      

Figure 3.7 The time history and frequency spectrum of the electric field Ez (Einc) measured at the 

center of the computational grid 

 

The Lorentz type medium parameters are chosen as 48 25pe pm s    , 

5oe om s     and 200e m s    which yields a refractive index about -1 at the center 

frequency  2
s s

f  . FDTD grid parameters are 60 0.067x    cm for 1D case and

20 0.2x y     cm for 2D case with a time step of 0.5 times the Courant limit, 

respectively. Total FDTD domain is chosen as 1000 grid and 400x400 grid for 1D and 

2D scenarios, respectively. With these parameters, the developed 1st and 2nd order DNG-

Mur algorithms are stable for at least 100,000 time steps and stability of the proposed 2D 

DNG-Mur algorithm is demonstrated in Figure 3.8 at different time steps. Here, a line 

source is located at mid- point of the 2D FDTD space. As observed, late time response 

does not have any discernable reflections.  
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                               (a)                                               (b)                                               (c)                                

Figure 3.8 Snapshots of Ez field using 2nd order DNG-Mur at time-steps: a)1250, b)2500 and c)10000  

 

The absorbing performance of the proposed formulations in 1D and 2D cases are 

illustrated via calculating the reflections from the DNG-Mur boundaries. The reflection 

coefficient at an observation point is determined by calculating the test and reference field 

strength versus time using proposed FDTD formulations given in Section 3.2.2. The 

calculations are done in two steps as suggested in (Zheng, Tam, Ge, & Xu, 2009). In the 

first step, the test field (Etest) is calculated at an observation point 2-cells away from the 

DNG-Mur boundary. In the second step, incident field (Einc) is obtained by repeating the 

same calculations, but now considering a larger domain so that boundary reflected fields 

cannot reach the observation point during the time window of step one. The reflected field 

can then be obtained as Eref (t)=Etest(t)-Einc(t). Then, the reflection coefficient at each 

frequency is calculated by dividing the discrete Fourier transforms (DFT) of reflected 

field and incident fields. In Figure 3.9a, frequency spectrum of the incident field is shown 

together with reflection coefficients obtained using DNG-Mur ABCs in 1D and 2D 

scenarios. For comparison purposes the reflection coefficients obtained using 10-cell 

thick DNG-UPML ABCs are also plotted.  Our numerical results show that 1D and 2D 

DNG-Mur ABCs effectively reduce reflections to about -60dB and -50dB level over the 

7.1−7.9 GHz band under the main lobe, which may be acceptable in many applications 

and provide stable results. We have also calculated the reflection coefficients 

performance of proposed DNG-Mur ABCs for the case of non-identical Lorentz models 

using arithmetic mean approach outlined in Section 3.3.2. The results obtained with the 

same parameters for  
e
  , but pm s  , 2om s   and 200m s   for  

m
   are found to 

differ less than ±3 dB from those shown in Figure 3.9a, over the entire frequency range. 

Ez in a spatial domain at N = 1250
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In Figure 3.9b, the relative error performance of the proposed 1D and 2D DNG-Mur is 

given together with that of the 10-cell thick DNG-UPML and the computation time and 

memory requirements for both approaches are listed in Table 3.3 which indicate that the 

DNG-Mur provides definite advantages both in memory and computation time (less 

memory and computational time) over DNG-UPML. The proposed algorithm based on 

Mur’s ABC is faster than the UPML ABC, and requires less memory usage. 

 

     

                                             (a)                                                                               (b)                                        

Figure 3.9 Comparison of DNG-Mur and DNG-UPML for 1D and 2D scenarios 

a) Frequency spectrum of incident field and reflection coefficients, b) Relative error in dB versus time 

 

Table 3.3 Memory usage and computation time in FDTD simulations  

both for DNG-Mur and DNG-UPML ABCs 

FDTD grid  Time(s) Memory(MB) 

2D Case (1000x1000 cells) 

t=5000∆t 

Mur 1693.9 244.45 

UPML 3881.5 516.98 

1D Case (1000 cells) 

t=10000∆t 

Mur 1.73 0.72 

UPML 2.65 0.87 

 

As a second 2D test a DNG slab is considered with a thickness along y-direction 

about 100y imbedded in air, extending infinitely in x, z, and excited by a z-directed line 

source. We have used 50-1000-50 cycle source at 7.5 GHz
s

f  . This yields near-perfect 

match conditions as steady-state conditions set up, and the refractive index of the slab 

approaches to -1. In order to demonstrate the effectiveness of the proposed extension of 

Mur formalism to DNG media we performed two simulation runs, one using DNG-Mur 

and the other using Standard-Mur at slab boundaries. For the first simulation, boundaries 
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of the 400x400 grid size computational domain are terminated with standard 2D Mur 

ABC for air, and with 2D DNG-Mur ABC for the DNG slab boundaries at y-grid points 

between 150 and 250 (See Figure 3.10a). For the second simulation, standard 2D Mur 

ABC is used at all boundaries (both air and DNG slab, See Figure 3.11a). The line source 

is placed at the point x=200x, y=100y, i.e. at a distance 50y from the DNG slab for 

both simulations, and typical outputs are depicted in Figure 3.10 and Figure 3.11, 

respectively.  

 

  

                                   (a)                                                                                (b)                                          

Figure 3.10 a)Snapshot of propagation and b) E field recorded at an observation point when DNG slab 

boundaries are truncated with DNG - Mur. 

 

   

                                          (a)                                                                                (b)                                              

Figure 3.11 a)Snapshot of propagation and b) E field recorded at an observation point when DNG slab 

boundaries are truncated with Standard Mur. 
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The snapshot given in Figure 3.10a clearly shows the cylindrical wave fronts 

emanating from the source, as well as from the anticipated image locations (Heyman & 

Ziolkowski, 2001; Pendry, 2000) inside and behind the slab. In Figure 3.10b the time 

history of the E field at an observation point located between source and slab is given 

which demonstrates the stability of the code when terminating slab boundaries with DNG-

Mur. Figure 3.11a and Figure 3.11b correspond to similar outputs obtained when, at slab 

boundaries, DNG-Mur is replaced with standard Mur. Figure 3.11 show that reflections 

from improperly terminated boundaries of the DNG slab results in instability after about 

10,000 time steps, and completely corrupts field distribution inside the computational 

domain by about 15,000 time steps, as shown in Figure 3.11a. 

 

3.5.3 On wave equation based FDTD algorithm 

In order to perform the accuracy and performance of the 1D and 2D ADE-FDTD 

algorithm based on wave equation we compare the results obtained via wave equation 

based FDTD with Maxwell’s curl equation based. In all simulations 1D and 2D domains 

are entirely filled with DNG medium modelled by Lorentz type material and boundaries 

are truncated with the 1st order and 2nd order DNG-Mur ABCs, respectively. A 

sinusoidal source (5-10-5 pulse) is used as excitation with a center frequency of 

7.5
s

f GHz  and DNG medium parameters are defined as /
pe pm p s

      48 5 ,

/
oe om o s

      5 and /
e m s

    200  which yield a negative refractive index about -

1 at 
s

f . Total 1D computational domain is 1000Δx cells and electric field waveforms are 

recorded at an observation point that is 10 cells away the left DNG-Mur boundary. 

Simulations are performed for 10,000 time steps. Length of each cell ( / 60x   ) and 

time step ( t ) which satisfies Courant-Friedrichs-Lewy (CFL) condition are calculated 

as 0.0667 cm and 1.1ps, respectively. For 2D computational domain, FDTD grid is chosen 

as 400x400 along x and y directions and grid parameters are chosen as / 20x y    

with a time step of 0.5 times the Courant limit. For both 1D and 2D cases the numerical 

results obtained using wave equation and curl equation based FDTD algorithms are in 

perfect agreement. Hence, E field intensity obtained by curl equation (solid line) and wave 

equation (dashed line) is presented only for 1D case in Figure 3.12. The significant 

difference between FDTD simulations based on wave and curl equations is seen in 
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comparison of memory and time requirements. As listed in Table 3.4, wave equation 

based formulation needs approximately %30 less computation time and memory 

requirements in 2D case, whereas requirements are almost identical in 1D case. 

 

 

Figure 3.12 Comparison of 1D FDTD algorithm based on wave and curl equations in Lorentz type 

DNG medium. 

 

Table 3.4 Memory / time requirements of FDTD simulations based on  wave and curl equations 

FDTD grid  Time(s) Memory(MB) 

2D Case (400x400 cells) 

t=5000∆t 

2Dcurl_ADE 185.5 39.37 

2Dwave_ADE 128 30.82 

1D Case (1000 cells) 

t=10000∆t 

1Dcurl_ADE 6.36 0.74 

1Dwave_ADE 5.14 0.71 

 

In order to demonstrate the validity and accuracy of wave equation based ADE and 

PLRC formulations for reflection of waves normally incident at free space-ENG interface 

one dimensional problem space is considered consisting of 600 cells out of which the first 

299 cells are free space and the remaining 301 cells are ENG medium. The ENG medium 

is modeled by Lorentz-type material with the parameters of 0 1591oef . GHz ,

1 1027pef . GHz and damping factor 81 10e rad s   . The problem parameters considered 

here are identical to the ones reported in (Pekmezci, Topuz, & Sevgi, 2016). Spatial length 

and temporal step sizes are 6.3mm and 10.47ps, respectively. Gaussian pulse inserted at 

60th cell is used as excitation and the propagation of normally incident wave toward the 
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ENG medium and reflection from the free space-ENG interface at two time instants is 

depicted in Figure 3.13. As seen in figure, ENG medium almost perfectly reflects the 

incident wave, since it does not support propagating waves as noted in Section 2.2.  

The corresponding reflection coefficient at an observation point (two cells in front 

of the interface) is determined by calculating the incident and reflected field strength 

versus time using proposed wave equation based FDTD formulations (Pekmezci, Topuz, 

& Sevgi, 2016) in two steps. First calculation is performed to obtain the incident field by 

considering the free space parameters for the entire problem space. Second calculation is 

performed to obtain total field at the observation point. The reflected field is obtained by 

subtracting the incident field result from the total field result. Then, the reflection 

coefficient at each frequency is calculated by dividing the DFT of reflected field and 

incident fields. In Figure 3.14a, relative permittivity of ENG medium is drawn in two 

different frequency regions. First region (   90 4 10 rad/s) contains the transition of the 

real part of permittivity from positive to negative (at    91 10  rad/s) values, and the 

second region (   9 94 10 12 10 rad/s), displays its transition from negative to positive (at 

   97 10 rad/s) values. 

 

 

Figure 3.13 The Gaussian pulse propagating toward the ENG medium (at t=500∆t) and reflecting 

from the free space-ENG medium interface (at t=1000∆t) 
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                                            (a)                                                                                (b) 

Figure 3.14 a) Real and imaginary part of permittivity, b) Reflection coefficients vs. frequency  

 

With the aid of Figure 3.14a, one can physically interpret the variation of the 

reflection coefficient shown in Figure 3.14b. As expected the wave is almost perfectly 

reflected from the interface in the frequency region where the medium exhibits ENG 

characteristics and does not support transmission, whereas reflection decreases in region 

exhibiting DPS characteristics supporting propagation of wave. In Figure 3.14b, 

numerical results obtained via FDTD algorithm based on ADE, PLRC, and RC 

approaches are compared with the exact solution of the reflection coefficient which can 

be obtained using Equation (4.31a) and Equation (4.33) with r 2 1  and r 2  by the 

Lorentz model given above. As seen from this figure, ADE and PLRC formulations yield 

much better accuracy than the RC-FDTD formulation and an excellent agreement is 

observed with the analytical solution.  
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4. ANALYTICAL SOLUTIONS OF WAVE PROPAGATION IN A 

RECTANGULAR WAVEGUIDE LOADED WITH DNG SLABS  

 

4.1 Introduction 

 

For some waveguide configurations, such as partially filled waveguides with the 

material interface perpendicular to the x or y axis, TE or TM modes (with respect to the 

axial coordinate z) cannot satisfy the boundary conditions of the structure. However, field 

configurations that are combinations of TE and TM modes do of course satisfy the 

boundary conditions of such a partially filled waveguide. On the other hand, wave fields 

in these structures can also be expressed with single mode types having TE or TM 

characteristics with respect to one transverse coordinate which are referred to as 

longitudinal section electric (LSE) or longitudinal section magnetic (LSM) modes 

(Balanis, 2012).  

There are several reports in the literature investigating propagation characteristics 

and potential applications of metamaterial loaded planar and rectangular waveguides (Alu 

& Engheta, 2004; Nefedov & Tretyakov, 2003; Cory & Shtrom, 2004; Kim, 2009; 

Siakavara, 2007; Baccarelli et al., 2005; Yongmei & Shanjia, 2009). It has already been 

shown that, in certain frequency and parameter regions such environments support 

forward, backward and surface wave type solutions and yield complex values of 

propagation constant in the absence of losses. These investigations are focused on 

problems dealing with specific applications or propagation characteristics, often using the 

rather restrictive assumption of nondispersive DNG media (Nefedov & Tretyakov, 2003; 

Cory & Shtrom, 2004; Kim, 2009; Siakavara, 2007). It is well known that causality 

dictates the satisfaction of Kramers-Kroning relations by the constitutive medium 

parameters (Jackson, 1998), hence, except when considering single frequencies (as in 

(Alu & Engheta, 2004)) or sufficiently narrow frequency bands one needs to refer to DNG 

medium models which account for medium dispersion and losses, such as the Lorentz 

and Drude models introduced in Chapter 2.  

 



59 

In this chapter analytic solution of rectangular waveguide partially and fully loaded 

with DNG slab is presented. Derivation of eigenvalue equation in a rectangular 

waveguide loaded with three-layer DNG slab is reviewed and then reduced to two-layer 

and single layer slab equations. In all numerical calculations Lorentz model is used for 

DNG medium, and the eigenvalue equation obtained for two-layer slab for investigating 

the dispersive properties of evanescent, propagating and complex modes and determining 

the modal cutoff transitions leading to novel contributions regarding the existence 

conditions.  

 

4.2 Eigen Solutions in DNG Loaded Regions  

The structure under consideration is shown in Figure 4.1. It consists of a rectangular 

waveguide of cross section ab, partially loaded with DNG slabs fully extending along 

the direction of the narrow wall, y. The length of slab along z-direction is denoted by l

and position along x-direction by it  (i=1,2).  

 

 

                  (a)                                                 (b)                                                  (c)                                 

Figure 4.1 Configuration of rectangular waveguide filled with a) three-layers (front view),  b) two-layers 

and c) single layer where regions (I-III) are free space and region (II) is DNG slab (top view). 

 

Considering TEx type solutions which do not depend on y, i.e., / y  0 and x
E 0 , 

pertaining field components yield: 

 

y yz
x y z

E EE
E j H j H a a a

z x x
 

 
       

  
 (4.1) 
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y yxz

x y z

H HHH
H j E j E a a a

z x z x
 

  
        

    
 (4.2) 

 

Since xE 0 , yH  0 and zE  0 , the non-vanishing field components appear as 

,y xE H and zH . Hence the modes can also be classified as mTE 0 .We further note that the 

continuity of field components parallel to medium interfaces implies that the x and z 

derivatives of yE will be discontinuous at these interfaces as illustrated in Figure 4.2. 

 

 

Figure 4.2 Continuity and discontinuity of fields at air-slab interfaces 

 

For three-layer DNG slab configuration depicted in Figure 4.1a, z-dependence in 

slab regions are identical and suppressed in deriving the eigenvalue equation for the 

modal solutions in  , lz 0 . Then the mode functions are defined as: 

 

 

   

 

sin ;

sin cos ;

sin ;

x

y x x

x

A k x x t

E B k x C k x t x t

D k a x t x a







   

 

   

  

1 1

2 2 1

3 2

0

2  (4.3) 

 

 

   

 

cos ;

cos sin ;

cos ;

x
x

r

y x
z x x

o r

x
x

r

k
A k x x t

E kj j
H B k x C k x t x t

x
k

D k a x t x a



  








   



   


 


    



   

1
1 1

1

2
2 2 1

2

3
3 2

3

0

2  (4.4) 

 



61 

Imposing continuity of yE  and zH on ,x t t 1 2  boundaries, the eigenvalue equation is 

obtained as, 

 

   
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 (4.5) 

 

where ; , , ; ; /
xi ri ri

k k B i k B k         
2

0 0 0 0 2 0
1 2 3 . The mode index of the 

normalized eigenvalue B  of the axial (z) component of the propagation factor is 

suppressed and the above eigenvalue equation can be solved for modal axial separation 

constant B .  

For two-layer slab configuration denoting , ,
x x r r

t t t k k     
1 2 2 3 2 3 , Equation (4.5) reduces to 

 

       cos sin sin cosx x

x x x x

r r

k k
k t k a t k t k a t

 
   1 2

1 2 1 2

1 2

0  (4.6) 

 

It should be noted that although the form of Equation (4.6) is identical with that of the 

well-known eigenvalues equation for DPS-DPS stratification (Balanis, 2012). This is 

illusory since the negative permeability of the DNG introduces a sign change, which 

together with the dispersive nature of medium parameters results in drastically different 

characteristics for modal fields as will be evident in the following sections. For single 

slab configuration, i.e., for a waveguide completely filled with DNG material, using 

, ,x x x x r r rt t a k k k k         1 2 1 2 3 1 2 3
 the eigenvalue equation in Equation (4.5) reduces to a 

form identical to that of the empty waveguide 

  

 sin
x

k a 0  (4.7) 
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In the following section, two-layer DNG slab problem illustrated in Figure 4.1b will 

be considered. Nondispersive medium (layer 1 with 
1 1, 0r r   ) will be assumed to be air, 

and dispersive DNG medium (layer 2 with 
2 2, 0r r   ) whose electric and magnetic 

parameters are modeled with a single pole Lorenz model given in Equation (2.19). We 

will further assume that a so called “perfect match” condition is obtained at a reference 

frequency fS, i.e, r2(fS)=r2(fS)= -1. Although in most of the numerical calculations r2(f) 

is taken equal to r2(f) to display some salient features of the modes using minimum 

number of parameter values, effect of non-identical parameters are also presented. The 

normalized values of the two sets of parameters used in numerical calculations are listed 

in Table 4.1, where se,sm denote reference frequencies, which in the lossless case yield 

r2(se)=-1 and r2(sm)=-1, respectively. 

 

Table 4.1 Lorentz Model Parameters 

 

 

 

The variation of the refractive index for Scenario I is given in Figure 4.3 for fs=9 

GHz and 13 GHz. It has to be noted that the medium exhibits DNG behavior over the 

frequency band 7-12 GHz, which will generally be used in subsequent calculations. 

 

 

Figure 4.3 Real part of relative permittivity versus frequency which has refractive index about -1 for 

Scenario I at fs=9GHz and fs=13GHz. 

Parameter pe  
e0  e  

pm  m0  m  

Scenario I /se 48 5  /se 5  ; /se0 200  
/sm 48 5  /sm 5  ; /sm0 200  

Scenario II /se 48 5  /se 5  ; /se0 200  /sm 4 3  /sm 3  ; /sm0 200  
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4.3 Determination of Modal Cut-off Frequencies  

At modal cut-off frequencies (fc) defined by 2(fc)=0, we have 

2 2

1 0 1 1 2 0 1 1x r r r rk k k        for 1 1, 0r r    and 2 2

2 0 2 2 2 0 2 2x r r r rk k k        

for 2 2, 0r r   . Noting that 
2 2 0 2 2/x r r rk k   , the eigenvalue equation given in 

Equation (4.6) reduces to Equation (4.8). Then, the solutions of Equation (4.8) for 

Scenario I of Table 4.1 is shown in Figure 4.4 for two reference frequencies (9 and 13 

GHz). In the following figure, horizontal line (green) indicates the intersection of cut-off 

frequency curves with reference frequencies at different DNG slab thicknesses. 

 

       1 2

0 0 2 2 0 0 2 2

1 2

cos sin ( ) sin cos ( ) 0r r

r r r r

r r

k t k a t k t k a t
 

   
 

     (4.8) 

 

 

(a)       (b) 

Figure 4.4 Variation of cut-off frequencies versus t/a for Scenario I where a) fse=fsm=fs=9 GHz  and 

b)fse=fsm=fs=13 GHz (horizontal line). 

 

4.4 Properties of Dispersion Diagrams  

In this section properties of eigen solutions are investigated. Dispersion diagrams, 

phase and group velocities of propagating and evanescent modes (without/with loss) are 

plotted for different values of t (thickness of air region) and fs, and the cut-off transitions 

are investigated in detail. Complex solutions of β are also presented which may exist for 

certain parameter values in lossless media. 
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4.4.1 Propagating and Evanescent Waves (Lossless and Lossy Cases) 

Propagating and evanescent modes are calculated for Lorentz model DNG slab with 

identical r and r parameters where /
pe pm p s

      48 5 , /
oe om o s

      5 and 
e m

     . 

In this section, reference frequency (fs) is chosen as 9 GHz, where a negative refractive 

index of about -1 is obtained. In Figure 4.5, dispersion graphs at various DNG slab 

thicknesses in the lossless case (=0) are presented.  Real and imaginary parts of /k0 are 

plotted in the same dispersion diagrams to facilitate displaying modal cut-off transitions 

between evanescent and propagating wave fields. Positive values are assigned to real, and 

negative values to imaginary values of /k0, representing phase progression and decay of 

the modal fields in the increasing z direction. Effect of loss in propagating modes when 

=s/1000 and =s/200 are also illustrated in Figure 4.6 and Figure 4.7, at the frequency 

region smaller/greater than the reference frequency and around center frequency, 

respectively. 

In a rectangular waveguide fully loaded with DNG slab, one obtains 2 cutoff 

frequencies in the specified frequency range lower than the cutoff frequency of DPS slab. 

The reason is that as the frequency decreases, the negative refraction index value of DNG 

slab increases which leads to higher orders of propagating modes. However, in the 

presence of a DPS slab the cutoff frequencies and assigned indices to propagating modes 

display an ascending order. One can easily see in Figure 4.5a that for a DNG slab, the 

cut-off frequency of 1st mode of the waveguide loaded with the DNG slab is greater than 

the 2nd mode. In Figure 4.5b, dispersion diagram versus frequency is plotted when the 

thickness of layer 1 (air) is taken as t=a/4. In this illustration, first two modes having 

modal cutoff frequencies at 8.26 GHz and 10.95GHz are in the negative refractive index 

region, and the 3rd cutoff (fc3=14.65GHz) is in the positive index region. Hence, 1st and 

2nd propagating modes correspond to DNG/DPS stratification, whereas the 3rd 

propagating mode behaves as a mode of conventional DPS/DPS case. Similar features 

are obtained for t=a/3 and illustrated in Figure 4.5c. For this reason, the operating 

frequency band 7-12 GHz has been used in most calculations, wherein the refractive index 

has negative values independent of the DNG slab thickness. These two samples are given 

for the case where the DNG slab is thicker than air. In both cases propagating mode 

having modal cutoff frequency greater than the reference frequency exhibits surface wave 

mode characteristics.  
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                               (a)                    (b)    

 

     

                               (c)                                                                                (d)                           

                               

    

                                          (e)                                 (f) 

Figure 4.5 Dispersion diagrams of TE modes for a) fully loaded DNG slab (t=0) and partially loaded 

DNG slab when the thickness of air (t) is equals to b) a/4, c) a/3, d) a/2, e)3a/4 and f)2a/3 
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However, surface wave type modes will not be supported in the special case t=a/2 

and propagating fields appear only for modes with cut-off frequencies away from fS as 

indicated in Figure 4.5d. When the DNG slab thickness is chosen smaller than the air 

thickness, propagating modes (see in Figure 4.5e and Figure 4.5f) exhibit features as in 

DPS slab and surface wave type mode occurs for the first cutoff frequency smaller than 

the reference frequency. More details about surface wave type modes will be discussed 

in Section 4.4.4. 

 

                                    

                                   (a)                        (b) 

Figure 4.6 Dispersion diagrams of propagating modes in lossy case for (a) f<fs , around fc=8.26GHz 

and (b) for f>fs , around fc=10.95GHz 

 

 
 

Figure 4.7 Dispersion diagrams of propagating modes in lossy case around fs. 
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It as to be noted that the dispersion diagrams given for the lossless Lorenz model 

are only slightly modified by inclusion of small losses to the model.  Indeed, the 

differences between dispersion diagrams are not discernable in the scale of the figures, 

except for the vicinities of cut-off transitions about 8.26GHz and 10.95GHz as shown in 

Figure 4.6a and Figure 4.6b, respectively. Figure 4.7 shows the effects of losses for the 

surface wave type mode which is supported around the reference frequency. Inspecting 

the presented numerical solutions, one is tempted to conclude that the value of β/ko is 

purely real or imaginary for lossless case, having complex values only when the damping 

factor () inserted to the electric and magnetic susceptibility functions. However, in some 

exceptional case, even if the medium is lossless eigenvalue equation has complex valued 

solutions for β/ko in certain parameter regions. Causes and consequences of this situation 

will be explained in details in the following section. 

 

4.4.2 Complex eigenvalues in lossless case 

The existence of complex eigenvalues in certain lossless waveguiding 

environments has been reported as early as 1965 (Clarricoats & Slinn, 1965) and has been 

an area of active research  ever since, and there are numerous investigations in the 

literature, dealing with their properties and existence conditions (Rozzi et al., 1998). 

Numerical results for complex eigenvalues in metamaterial loaded waveguide is also 

presented (Cory & Shtrom, 2004), but under the assumption of frequency independent 

negative index materials.  However, to the best of authors knowledge our approach is the 

first one which casts physical insight into the mechanism leading to emergence of 

complex eigenvalues in metamaterial loaded waveguides including dispersion effects, 

and provides a very convenient means for determining their originating points, thereby 

substantially facitating their computation and elimination of spurious numerical artifacts.  

It is well known that, a single complex mode cannot exist, but two complex waves having 

complex conjugate propagation constants form a pair which as a whole behaves as an 

ordinary mode below cut-off carrying purely reactive power. Hence, complex modes may 

need to be taken into account in the characterization of discontinuities as they contribute 

in pairs with complex conjugate propagation constants to local power storage (Rozzi & 

Farina, 1999). 
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                                          (a)                                                                                 (b) 

Figure 4.8 a) Propagating mode turns at a certain frequency which yields complex eigenvalues around 

that turning point, b) Real and imaginary parts of one of the complex . 

 

In Figure 4.8a, propagating and evanescent modes are presented for DNG slab with 

the parameters of Scenario I (see Table 4.1) as in previous section but for the case when 

the reference frequency which yields negative refractive index -1 is chosen at fs=13GHz. 

It is clearly observed that if there are more than one propagating mode below the reference 

frequency, the mode with modal cutoff frequency near to reference frequency forms a 

surface wave type mode in a lossless medium whereas the one with the smallest cutoff 

frequency exhibits a distinctly different behavior. In Figure 4.8a, there exist two 

propagating wave solutions one of them being of the forward wave and the other 

backward wave type at all frequencies between the cutoff frequency (6.96 GHz) and the 

turning point frequency (8.41 GHz), beyond which both solutions disappear. That’s why, 

particular attention should be paid to the behavior of the propagation coefficient at this 

point since the complex valued conjugate pairs of solutions for  emerge around that 

turning point. One of the complex conjugate pair is depicted in Figure 4.8b wherein the 

horizontal axis corresponds to real and imaginary part of beta, left vertical axis 

corresponds to ko, and right vertical axis corresponds to frequency. 

Clearly, the frequency domain analysis in this chapter is applicable for any given 

data set for DNG constitutive parameters.  To demonstrate this and provide a test case for 

assessing the accuracy of our codes, we have calculated the dispersion diagram given in 

(Cory & Shtrom, 2004), Figure 3 with the same parameters, i.e., a=2.286cm, d=(a-t)=a/4, 

r1=r1=1, r2=-9, r2=-1. Thus, for calculation of the values plotted in Figure 4.9 the DNG 
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slab is modelled as non-dispersive, lossless medium. Comparing our results depicted in 

Figure 4.9 with Figure 3 of (Cory & Shtrom, 2004), one observes that the dispersion 

curves of both propagating and complex modes are in perfect agreement over the 

frequency range considered, kod ∈ 0.3-3, f ∈ 2.5-25 GHz.  

 

 

Figure 4.9 Dispersion diagram calculated with parameters (see text) given in (Cory & Shtrom, 2004): 

Propagating (blue solid) and one of the complex waves: real part (black dash) and imaginary part (red dot). 

 

4.4.3 Phase and Group Velocities 

The general description of phase velocity (
pv ) and group velocity (

gv ) in an 

unbounded non-dispersive medium is mentioned in Section 2.5. In a finite dispersive 

medium, dispersion diagrams provide a convenient means for visually assessing the 

dependence of phase velocity on frequency, the relative value of phase velocity at any 

frequency is just the inverse of the value read from the dispersion curve, / / ( / ).pv c k 01

We begin by writing the eigenvalue equation in Equation (4.6) as, 

 

   ( , ) cot cot
r r

k k
F k t k d 

 
  1 2

1 2

1 2

0

 
(4.9) 

 

where d a t  , /k c
0

and ; ,
i ri ri

k k i    
2 2

0
1 2 . The group velocity can be 

calculated in a straightforward manner (Eleftheriades, Iyer, & Kremer, 2002) as outlined 

below: 



70 

g

F F d F
dF d d v

d F

 
 

   

   
     

   
0

 
(4.10) 

 

In the following we will assume that medium 1 is non-dispersive (i.e., 1, 1 are 

constants; r1= r1=1) and medium 2 is DNG, characterized by single pole Lorentz model 

with identical electric and magnetic parameters: (2, 2)=( 0, 0) p

j



  

  
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2

2 2

0

1  with 

constant p , 0 and , and the latter will be assumed to be zero at this point (i,e,. lossless 

DNG). We then have the following solutions for Equation (4.10) to obtain the group 

velocity at desired frequency. 
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 (4.11c) 

 

In the following, dispersion diagrams in (,k0) axes are given for DNG slab with a 

ratio of t/a equals to 0 (fully loaded), 1/4 and 3/4. Identical permittivity and permeability 

parameters that yield n=-1 at fs=9 GHz are used, and no loss is considered. The plots of 

dispersion diagrams given in Figures 4.10a, 4.10b and 4.10c can be used for visually 

assessing the dependence of group velocity on frequency where the slope of the curve at 

any point is equal to the value of relative group velocity at the corresponding frequency, 

cvddk g //0  . When the rectangular waveguide is fully loaded with DNG slab, the 

group and phase velocities illustrated in Figure 4.10d, are in opposite directions for both 
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modes over the plotted frequency ranges of propagation. This behavior, typical in DNG 

media, is denoted as “contra-directional” flow as opposed to “co-directional” flow typical 

in DPS media, where phase and group velocities are in the same directions (Veselago et 

al., 2006). Similarly, from Figure 4.10e, we immediately infer that for t=a/4 wherein the 

layer 2 (DNG slab) is thicker than layer 1 (air), phase and group velocities are in opposite 

directions. However, if the thickness of DNG slab is smaller than the air region (t=3a/4), 

the results given in Figure 4.10f clearly show that in this case phase and group velocities 

are in same directions which indicates that the propagating modes exhibit a forward wave 

behavior similar to propagation in DPS media. 

 

 

               (a)                                                    (b)                                                  (c) 

    

                           (d)                  (e)                                                   (f) 

Figure 4.10 Dispersion diagram and phase/group velocities in a rectangular waveguide loaded with 

DNG slab with a ratio of t/a=0, 1/4 and 3/4. 

 

Co-directional - contra-directional flow transitions are presented in Figure 4.11. 

Same data for propagating modes given in Figure 4.11a is used and phase/group velocities 

are plotted in Figure 4.11b. As shown in the figure there is a modal cutoff frequency at 

about 6.96 GHz, where the phase velocity goes to infinity  pv  and the group velocity 

goes to zero  gv 0  as expected. However, since there are two solutions at all 
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frequencies between 6.96 GHz and 8.41 GHz, group and phase velocities exhibits 

different characteristics for both branches such as co-directional (2nd branch) for one, and 

contra-directional (1st branch) for the other. Moreover, group velocities for both branches 

passes through zero at the turning point, while the phase velocity has a finite value.  This 

can be regarded as a non-conventional cut-off frequency. Clearly, we expect that the 

dominant part of the transmitted power resides in the DPS (air) medium for co-directional 

case and in the DNG medium for contra-directional case.  This is demonstrated in Figure 

4.11c where the variation of the modal field Ey for the two solutions is plotted at 7.5 GHz.  

 

  

                (a)             (b)                                                       (c)                         

Figure 4.11 (a) Propagating mode turns at a certain frequency (b) group /phase velocities for complex 

 solutions and (c) E-field distribution along x-axis where DNG slab has n=-1 at fs=13GHz and t=3a/4. 

 

4.4.4 Surface Wave Type Solutions 

Wave fields which “cling” to a surface, i.e. decay exponentially as one moves away 

from the surface, while propagating without loss (in case material losses are omitted) are 

called surface waves. Clearly, such solutions can exist only in parameter regions wherein 

one has solutions characterized by real values of , together with imaginary values of 

both k1 and k2 (Kalluri, 2012; Davidson, 2011). This leads to the condition,  

 

max( , )r r r rb
k


     1 1 2 2

0  
(4.12) 
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Defining imaginary values of k1 and k2 as, 

 

r r r rk k b k k b      2 2

1 0 1 1 2 0 2 2  
(4.13) 

 

The eigenvalue equation reduces to  

 

 tanh tanh where and
r

r

k
k t A k d A d a t

k





     
 

21 1
1 2

1 2  
(4.14) 

 

At this point we would like to introduce the assumption that the dielectric and 

magnetic parameters of the DNG media satisfy r2(fs)=r2(fs)=-1 at the common 

“reference frequency” fs. We further assume DPS medium is air, i.e., r1(f)=r1(f)=1. One 

can then conclude that for satisfaction of the condition in Equation (4.12) the frequency 

has to be in the vicinity fs.  Let us denote the cutoff frequency of the propagating mode 

which in a certain frequency range exhibits surface wave behavior as fc and consider the 

two possible cases separately in the vicinity fs: 

fs > fc : In this frequency range we have as ffs , |r2(f)| > r1 ; k k2 1  and A>1.  

Hence, Equation (4.14) has a solution only if d<t.  Hence the mode will exhibit surface 

wave behavior in the frequency range fo – fs where ( )k f 
1 0

0 . 

fs < fc : In this frequency range we have as ffs , |r2(f)| < r1 ; k k2 1  and A<1.  

Hence, Equation (4.14) has a solution only if d>t.  Hence the mode will exhibit surface 

wave behavior in the frequency range fo – fs where ( )k f 
2 0

0 . 

The conditions for the existence of surface wave type solutions in the partially loaded 

waveguide can be summarized as: 

1. In the frequency range considered the two media should be of the types DPS – 

DNG, and f has to be in the vicinity of fs. 

2. If fs > fc then the condition d<t has to be satisfied. 

3. If fs < fc then the condition d>t has to be satisfied. 
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The presence of much larger fields along the DNG-air interface, characterizing 

surface waves for identical parameters clearly seen in Figure 4.12. Surface wave type 

modes are also presented in Figure 4.13 for lossless DNG slab with non-identical 

parameters when the t/a ratio is equal to ¼ and ¾, respectively.  

 

 
                                      (a)                                                          (b) 

Figure 4.12 Surface waves along DNG-air interface along x-axis for (a) t=a/4 and (b) t=3a/4 where 

DNG slab has negative refractive index about -1 at fs=9GHz. 

 

 
                                       (a)                                                                    (b) 

 
                                                   (c)                           (d) 

Figure 4.13 Dispersion diagrams of propagating modes for non-identical parameters when t=a/4 and 3a/4. 
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As seen in Figure 4.13 and Figure 4.14, propagation constant of surface modes 

increases asymptotically at fs when DNG medium has identical electric and magnetic 

parameters, whereas when the parameters are non-identical the asymptote shifts to the 

immediate vicinity of the frequency where the relative permeability equals to -1.  

 

 

                                            (a)                                                            (b) 

Figure 4.14 Dispersion diagrams of propagating modes for Scenario I and II 

(a)lossless identical parameters given in Scenario I: fse= fsm= fs= 9GHz where n=-1 at f=9 GHz, (b)lossless 

non-identical parameters given in Scenario II: blue solid for fse= 9GHz, fsm=10GHz and red dot for fse= 

10GHz, fsm=9GHz where n=-1 at about f=9.45GHz. Refractive indices (n) are indicated with vertical 

dashed line. 

 

4.5 Mode Matching Solution of Scattering from Partially Loaded Sections 

In this section we investigate reflection and transmission characteristics of the 

structure shown in Figure 4.1b. Following assumptions are made: 

i- TE10 mode is incident from the left of the loaded section and geometry is 

invariant along y. 

ii- Waveguide is match terminated on the right of the loaded section. 

iii- 
j te 

 time dependence is assumed and suppressed. 

Under these simplifying assumptions, analytic solutions in the spectral domain can 

conveniently be obtained using a mode matching approach involving the modes of the 

loaded section obtained in previous section. This technique is usually applied to the 

analysis of waveguide structures with various discontinuities in many applications for 
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decades (Wexler, 1967; Wessel, Sieverding, & Arndt, 1999; Balaji & Vahldieck, 1998; 

Chan & Judah, 1998; Schmidt & Russer, 1995). The fields on both sides of the 

discontinuity are described by a superposition of waveguide modes, and then the 

appropriate continuity conditions are imposed at the interface to yield a system of 

equations (Golio & Golio, 2008; Helszajn, 2000). The modal expressions for transverse 

field components (Ey and Hx) in Region I, II and III (see Figure 4.1b) can be written as: 

 

z0  (Region I): dominant mode is propagating along z-direction 
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,z d0 (Region II): including DNG slab 

 

, ,

II

n

II
n

N N

II II jk z II

y n n n n

n n

jk z
E B f e F f e for x t

 


    1 1 1

1 1

0  (4.17a) 

 

, ,

II II
n n

II IIN N
II II jk z II jk zn n

x n n n n

n no o

k k
H B f e F f e for x t

 



 

    1 1 1

1 1

0

 
(4.17b) 



77 

 

, ,

II II
n n

N N
II II jk z II jk z

y n n n n

n n

E B f e F f e for t x a


 

    2 2 2

1 1  

(4.18a) 

 

, ,

II II
n n

II IIN N
II II jk z II jk zn n

x n n n n

n no r o r

k k
H B f e F f e for t x a

   



 

    2 2 2

1 12 2  

(4.18b) 

 

where  

 

   , , , ,

,

, , , ,

,

,

, , , ,

,

,

where

where

sin ; sin ( ) ; sin

; ;

; ;

n n n n n n n n

nII

n n o n n o

oII

n n

nII

n n o r r n n o r r

o r

n

o

n

o

f A k x f A C k a x C k

Y k k k k x t

k

Y k k k k t x a

k

k








    

 





   

      

 

      

  
  
  

  
  

 

1 1 2 2

2

2 2 2

1 2 1 1

2
2

2 2 2

2 2 2 2 2 2 2 2

2

2

2

1 0

   , ,
sin ( )

n n
t k a t

1 2

 

(4.19) 

 

z d  (Region III): only first dominant mode is transmitted, and the other modes are 

evanescent. 
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Applying boundary conditions and making some mathematical manipulations we obtain 

the following matrix equation:  

 

U QP SR

QR SP

 

 0
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Then the solution of Equation (4.22) yields the column vectors of R and P which are used 

to calculate the reflection and transmission coefficients as in Equation (4.28): 
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4.6 Scattering Characteristics of Fully Loaded Sections 

In this case the incident TE10 mode meets all boundary conditions in x, hence also 

the loaded waveguide will be mono-modal, and we only need to impose the additional 

conditions in z, on z=0 and on z=d ports. Clearly, the problem depicted as in Figure 4.1c 

may then be thought to reduce to a transmission line discontinuity. 

The x-dependent part of the propagation factor (kx) and the modal function 

f(x)=sin(x/a) are common in all regions.  Thus, we can suppress the x dependence and 

write the transverse field components in all region as: 
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where R and T are used to represent, respectively, the reflection and transmission 

coefficients at the interface in lossless case. The losses in DPS/DNG medium are 

negligible one should have R T 
2 2

1 and using continuity of Ey and Hx on z=0, d 

surfaces which are the free-space/slab interfaces (with the normalization Einc=1), we 

obtain  
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Through straightforward elimination one then obtains: 
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where  
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R and T are reflection and transmission coefficients referred to planes z=z1=0 and 

z=z2=d, respectively. When reference planes are shifted by L towards left (for R) and 

right (for T) we have ;
j L j L

R Re T T e
  

 1 12 . For the special case where 
e m   , 

impedance matching occurs  II I

TE TEZ Z  at 
sf f  and  0 . Then the total input 

reflection and transmission coefficients reduce to ;
j d

R T e


  20 . In problems 

wherein waveguide sections on both sides of the discontinuity are identical (same cross-

section, same dielectric, i.e. identical TE10 mode impedances) and if the discontinuity 

region has a symmetry plane, then the scattering matrix can be written in terms of 

reflection (R) and transmission (T) as, 
R T

S
T R

 
   

. However, in DNG loaded waveguide 

problems scattering matrix is quite different from DPS loaded problems. Relation 

between S-parameters are defined for two-port circuits fully loaded with DPS/DNG slab 

are given in Appendix C (Şimşek, Işık, & Topuz, 2011). 

 

4.7 Numerical Results for Reflection-Transmission Characteristics 

In this section an X-band (7–12 GHz) rectangular waveguide with dimensions 

a=2.286 cm and b=1.016 cm is fully loaded along x-direction with Lorentz model DNG 

medium as shown in Figure 4.1c. In Figure 4.15, reflection and transmission coefficients 

are calculated using Equation (4.28) and presented for the rectangular waveguide fully 

loaded with single DNG slab which has identical electric r and magnetic parameters r 

defined by single pole Lorentz models with  /
pe pm p s

      48 5 , /
oe om o s

      5  and 

e m
      0  for fs=9GHz and different lengths (l) of DNG slab along z-direction (l=0.75a, 

l=a and l=2a). Loss affect is illustrated in Figure 4.16 while the damping factor is =0 

and =s/200 for DNG slab with length of l=0.75a, and it can be clearly seen that a 
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reduction occurs in the absolute values of the reflection and transmission coefficients. 

The analytic results in lossless case for the example given in Figure 4.16a are compared 

with FDTD solutions which can be obtained by one of the dispersive FDTD algorithms 

given in Chapter 3. In the calculations presented in Figure 4.16b, we preferred to use the 

ADE approach due to its simplicity. For FDTD simulations 3-5-3 sinusoidal pulse with a 

center frequency of fs=9GHz is used as excitation, FDTD grid cell along x and z directions 

are chosen as 0.2286 mm and time step is 0.2694 ps. The length of rectangular waveguide 

is chosen as 5a and observation points wherein the reflected and transmitted waves are 

recorded is as 50 cells away the back and front faces of DNG slab. Hence, as seen in 

figure the performance of analytic and simulation results is in very close agreement. 

 

 

                            (a)                                                       (b)                                                       (c)  

Figure 4.15 Reflection and transmission coefficients of DNG slab for a) l=0.75a, b) l=a and c) l=2a 

along z-direction 

 

 

                                              (a)                                                                   (b)                                                 

Figure 4.16 a)Analytic solution, b) FDTD solution of scattering parameters with/without losses for 

fully loaded single DNG slab with a length of l=0.75a 
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As another example given in Figure 4.17, analytic and FDTD numerical solutions 

of scattering characteristics of rectangular waveguide loaded with cascade connected 

double DNG slabs having length of l1=0.558cm and l2=0.5292cm are plotted. The 

problem scenario considered in this example is identical with the one reported in (Cimen, 

Cakir, & Sevgi, 2010). It consists of two directly cascadded DNG slabs of lengths l1, l2 

represented by different Lorentz models with parameters listed in Table 4.2. DNG regions 

completely fill the cross-section of the waveguide. In FDTD simulations, a (1-3-1) 

sinusoidal pulse is used as excitation with a center frequency of fs=10GHz. As seen in the 

figure, this structure yields two stop bands in the frequency band 7−12GHz and FDTD 

simulation is almost same with analytic results. Moreover, our simulations results are also 

in very good agreement with those reported in (Cimen, Cakir, & Sevgi, 2010). It should 

be noted that the composite structure, as well as each one of the loaded sections do not 

exhibit DNG behavior over the entire frequency band considered, due to the different 

Lorentz models used in representing 
r  and 

r . This is clearly seen from Figure 4.17a 

depicting the frequency variation of the refractive indices, which becomes purely 

imaginary in about 8−8.5GHz and 10.5−11GHz bands. Hence, one infers that unless l1 

and l2 are not much smaller than signal wavelength, there would be negligible 

transmission within these frequency intervals.  

 

  

                            (a)                                                  (b)                                                   (c) 

Figure 4.17 a)Refractive index and reflection/transmission coefficient in a rectangular waveguide 

loaded with double DNG slab calculated with b) Analytic solution and c) FDTD solution  

 
Table 4.2 Lorentz Model Parameters for DNG Media 

 DNG-slab1 (l1=0.5880cm) DNG-slab2 (l2=0.5292cm) 

wpe,oe 53.40 x109 rad/s 65.97 x109 rad/s 

wpm,om 56.54 x109 rad/s 69.11 x109 rad/s 

Γe,m 0 0 
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The last numerical example is presented for the partially loaded DNG slab which 

has same parameters used in the single DNG slab scenario. Reflection and transmission 

coefficients are obtained using the analytical equations obtained by the mode matching 

technique given in Equations (4.27−4.28) and plotted in Figure 4.18 for DNG slab 

thicknesses of 3a/4 and a/4, respectively. The scattering characteristics shown in Figure 

4.18 are consistent with the dispersion diagrams presented in Figure 4.5b and Figure 4.5e 

of Section 4.4.1. In Figure 4.19, an extended section of Figure 4.18a is given in the 

frequency region between 7−8GHz to distinguish the effect of loss for reflection and 

transmission. On the other hand, the accuracy of analytical solutions is of course 

dependent on the number of modes used in the expansions, which was taken as 30 in the 

calculations. As can be seen from Figure 4.19b reflection and transmission coefficients 

rapidly converge with increasing mode number used in the calculations, hence the 

accuracy obtained by using 30 modes is quite satisfactory. 

 

 

                                          (a)           (b) 

Figure 4.18 Reflection and transmission coefficients for lossless/lossy cases when a) t=a/4 and b) t=3a/4. 

 

   

                                             (a)              (b) 

Figure 4.19 a)Reflection and transmission coefficients for lossless and lossy cases between 7-8GHz 

and b) mode convergence for lossless case at 8GHz. 
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4.8 Multiple DNG Loaded Sections Along Axial Direction 

In the previous section partial DNG loading in the cross section of a rectangular 

waveguide and its effects on the propagation characteristics of the dominant TE10 were 

investigated. In this section we will focus on propagation characteristics of the rectangular 

waveguide loaded with multiple DNG sections along axial direction. Although the 

presented analysis is also applicable in more general problems, for the sake of 

simplification here we will only consider the case wherein the DNG loaded sections 

extend over the cross section of the waveguide and the propagation of the dominant TE10 

mode. The problem can then be formulated as a cascade connection of two ports with 

transmission line representations, as shown in Figure 4.20, consisting of DPS-DNG 

loaded regions of electrical lengths 1, 2, impedances Z1, Z2 and propagation factors 1, 

2 at fixed frequency. 

 

 

Figure 4.20 Transmission line representation for TE10 mode of DPS/DNG loaded rectangular 

waveguide  

 

Taking into account the relations given in Section 2.2 in obtaining transmission line 

representations for DPS and DNG loaded sections, the S matrix elements of the 

symmetric two-port in Figure 4.20 can be obtained in unified forms with the square root 

defined as the principle value in keeping with the convention adopted in the MATLAB 

code used in the calculations: 
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where , k0 denote wavelength and wavenumber in air, p is the period of the periodic 

structure, and d2=d, d1=p-d are the lengths of regions 2 and 1, respectively. Note that t1, 

t2, 1 and 2 >0 and 1  for waves propagating in both media. S matrix representation 

for cascades of such two-ports can be obtained from equations given in Appendix C. 

When the cascaded two-ports are identical one will have a quasi-periodic structure, i.e., 

a periodic structure terminated at N periods, which are of special interest, since they lead 

to closed form solutions for the transfer characteristics, thereby enabling the designer to 

gain a fairly complete understanding on the effects of the various electrical and 

geometrical parameters of the structure in determining its frequency (and time) response. 

We will therefore investigate periodic structures as depicted in Figure 4.21 in more detail. 

 

 

Figure 4.21 Periodic Structure and its Symmetric Unit Cell (UC)  

 

Consider the symmetric unit cell (UC) of the periodic structure shown in Figure 

4.21, represented by the scattering matrix elements given in Equation (4.34). By Floquet 

theorem the fields at the ports of the UC are required to be identical except for a constant 

factor,  as, 1 2

1 2

a b

b a

   
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. One then obtains,  
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 (4.35) 

 

We note that the two eigenvalues 1, 2 are related to the determinant and trace of M as, 

 

21 12 21 11 22
1 2 1 2

12 12

1
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Denoting 1,2

j pe    , where  is the propagation constant of the periodic structure, one 

obtains the eigenvalue equation for Floquet waves as, 
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2 2

12 21 11 22 12 11

12 12

1 1
cos

2 2

S S S S S S
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(4.37a) 

 

When the structure is lossless S matrix is unitary and Equation (4.37a) reduces to 
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Substituting from Equation (4.34a) into Equation (4.37b) one obtains the eigenvalue 

equation of the waves (Floquet modes) supported by the periodic structure: 
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(4.38) 

 

It should be noted Equation (4.38) differs from the well-known eigenvalue equation 

in DPS-DPS stratified periodic structures (Yeh, Yariv, & Hong, 1977), but can be 

obtained therefrom by the simple transformation 2-2, to account for co-directional 

and contra-directional flow in DPS, DNG regions, respectively. It should however, be 

noted that this sign change together with the dispersive nature of DNG medium will be 

shown to result in drastically different characteristics for Floquet modes. A remark which 

is similar to the one made in connection with the eigenvalue equation in Equation (4.6). 

Defining  as =p, pass/stop bands will be obtained for cos( ) 1  , and cos( ) 1  , 

respectively. The band edge frequencies for given period can be determined as a function 

of filling factor d/p using the condition |cos(p)|=1 which yields four families as, 
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A band edge diagram calculated for identical Lorentz models with the normalized 

parameters where a=2.286; c=30; fs=9; s =2πfs ,pe= 5/48 , oe=1/5 and p=3.3 is 

depicted in Figure 4.22a as a function of filling factor d/p. The band diagram for d/p=0.3 

is also given in Figure 4.22b to demonstrate the stop-pass band frequency intervals. For 

given material parameters and period, band edge diagrams provide a very convenient 

means for determining, in one glance, the value of the loading factor d/p, and the resulting 

stopband (band gap), passband (which fill in the voids between the band gaps) 

characteristics of the periodic structure. For example, the value of d/p=0.3 shown in 

Figure 4.22a yields the limiting frequencies of three stop bands as shown in Figure 4.22b. 

One infers that there will be three passbands for f (GHz)<7.7, 8.1<f (GHz)<9.6 and 10.3<f 

(GHz)<11.25 in the frequency region (7-12 GHz) and three stopbands in 7.7<f 

(GHz)<8.1, 9.6<f (GHz)<10.3 and 11.25<f (GHz) in the frequency region (7-12 GHz).  

 

 

                                             (a)                                                                  (b) 

Figure 4.22 a) Band edge diagram and b) Stop-Pass band frequency intervals for d/p=0.3. 

 

Supposing that d/p is equal to 1, which means the unit cell is fully loaded with DNG 

slab, propagating waves are supported in the waveguide at frequencies below 9.8 GHz 

but not above that frequency. In this case, one can say that 9.8 GHz is cutoff frequency 

for fully loaded structures and hence, band edge diagram plotted in Figure 4.22a is 

consistent with dispersion diagram given in Figure 4.5a. On the other hand, as can easily 

be seen from Figure 4.22a, when d/p is equal to 0, which means the waveguide is empty, 

no band gaps occur and as a result the wave propagates along the waveguide over the 

frequency band 7−12 GHz. 
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In the absence of losses, a strictly periodic structure would yield a binary 0/1 

reflection (R) and transmission (T) characteristic, with R=1, T=0 in stop bands and R=0, 

T=1 in pass bands. This characteristic can only be achieved in case the structure is not 

terminated (infinite), which is non-physical, or in case it is terminated in its characteristic 

impedance, the Bloch impedance (ZB), which is not possible due to wildly varying nature 

of ZB, in the presence of stop/pass bands (Foroozesh & Shafai, 2008). Therefore, the 

transfer characteristics of truncated periodic structures, obtained by terminating the 

periodic structure after a number of periods (N), in some appropriate way, are of more 

interest. The S parameters of a cascade of N unit cells (UC’s) can easily be calculated 

using the S matrix elements of the UC in Equation (4.34) and the equations given in 

Equation (C.11) of Appendix C. Thus, when the superscript N is used for the S parameters 

of the cascade of N UC’s, and the structure is terminated into empty waveguide without 

taking some additional measures one would have 11 21andN NR S T S  .  However, for 

this termination strategy one can use the closed form expression derived for the power 

reflection coefficient |R|2 of N cascaded DPS-DPS UC’s in (Yeh, Yariv, & Hong, 1977), 

but can be shown to be directly applicable also to the DPS-DNG UC’s, which translated 

into our notation as, 
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 (4.40) 

 

where 11

UCS is given in Equation (4.34) and, in the lossless case |T|2 is obtained from power 

conservation relation simply as |T|2=1-|R|2. Power reflection (R) and transmission (T) 

coefficients through a single UC and a cascade of 15 UC’s terminated in air region 

without tapered sections are illustrated in Figures 4.23a and 4.23b, which clearly show 

the evolution of the transfer characteristic of a strictly periodic structure given in Figure 

4.22 as the number of the UC’s is increased. The effects of (abrupt) termination of a 

periodic structure can readily be inferred from Equation (4.40) which shows that the 

reflectivity |R|2 (and hence |T|2) will fluctuate increasingly faster for higher values of N, 

in the pass bands, wherein  is real, due to the rapidly varying character of the second 

term in the denominator. This term will however decay exponentially in the stop bands, 
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wherein  is imaginary. Hence, |R|2 of the truncated structure will quickly approach to 

that of the strictly periodic structure as N is increased. This behavior is clearly seen in 

Figure 4.23c obtained for p=3.3, d/p=0.3, fs=9GHz and N=15. 

 

 
                             (a)                                                    (b)                                                 (c) 

Figure 4.23 Power Reflection Transmission Characteristics of a) Unit Cell (UC), b) 5 cascaded UC’s and 

c) 15 cascaded UC’s (Parameter values used in the calculations are same as those used for Figure 4.22) 

 

 
                                            (a)                                                                  (b) 

Figure 4.24 Transmission coefficient for a) lossless case and b) lossy case 

 

In Figure 4.24, transmission coefficients of waveguide filled with 5 cascade 

connected DNG slabs (with identical Lorentz models and same unit cell size) are plotted 

for both lossless (Γ=0) and lossy (Γ=1/200) cases and the analytical solutions are 

compared with the results of the FDTD simulations. In FDTD simulations problem space 

is taken to be 100 cells along x-direction and 1200 cells along z-direction. The first unit 

cell extends from cell 200 to cell 345 in the z direction and the other unit cells are 

connected cascade. FDTD grid parameters are chosen as Δx=Δz=a/100 and the time step 

is taken as 0.95 times the Courant limit. A sinusoidal source (1-3-1 pulse) is used as 

excitation with a center frequency about 9GHz and launched before the first unit cell in 
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free space region. Problem space is terminated with second order Mur-type ABC for 

sufficient absorption. The transmitted field is recorded at an observation point behind the 

periodic structure and then the transmission coefficient at each frequency is calculated as 

described in Section 3.5.2. As seen from this figure, numeric results obtained 

with/without loss exhibit perfect agreement with the analytical results over the frequency 

range 7.5−11GHz.  

 

 
                                            (a)                                                              (b) 

Figure 4.25 Power Reflection Transmission Characteristics of 15 cascaded UC’s a) without tapering 

and b) with 3 tapering section on each side. 

 

As noted above truncating a periodic structure imperfectly, without using some 

impedance matching approach, has pronounced adverse effects mainly in the bandpass 

regions which are due to interference of multiply reflected wave constituents arising from 

the discontinuities at the termination boundaries. The reflection-transmission 

characteristic of a truncated structure would better mimic that of a strictly periodic one 

only when terminated in some more appropriate way, rather than abruptly as was done 

above. The determination of the optimal termination method is problem specific, and 

beyond the scope of this general investigation. It would however be instructive to give an 

example of possible improvement that can be achieved by using a simple tapering 

technique. A plot obtained using this approach is given in Figure 4.25, where the truncated 

structure is identical to the one considered in Figure 4.23c, except that the loading factors 

of three elements on the sides of input and output ports have been reduced by factors of 

(0.4), (0.4)2 and (0.4)3 in moving away from the ports. As can be seen, even this simple 

measure is quite effective in substantially decreasing the ripples in the transmission band 

observed in Figure 4.25a caused by the discontinuity introduced due to abrupt truncation.  
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5. CONCLUSIONS 

 

In the last two decades the unconventional characteristics of electromagnetic waves 

propagating in metamaterials (MTM) has grown to be an area of intensive theoretical and 

applied research. 

The work reported in this thesis addresses some lesser investigated numerical and 

analytical problems of the area. These being related to some implementational aspects of 

the Finite Difference Time Domain (FDTD) algorithm, and to eigen-waves in certain 

uniform wave guiding structures loaded with DNG media. In both fields, the results 

presented in the thesis provide some contributions to the existing literature.  

This concluding chapter is organized under three headings. In the first one we 

present a summary of the work performed in the thesis. This is followed by a list of the 

main contributions together with related published and pending work. The final part 

contains suggestions for follow-up problems for future research. Necessarily, there will 

be some overlapping between the material covered in the first two sections, and that of 

the Introduction Chapter of this thesis, which, however, will be kept at a minimum. 

 

Summary of the work done  

Analytic formulation problems of electromagnetic wave propagation are only 

possible in certain idealized environments, yielding so-called canonical problems. 

Problems involving MTM media produce some extra complications due to the resonant 

behavior of their frequency dispersion and to inhomogeneity and anisotropy resulting 

from production methods of these artificial dielectrics, which generally involve 

periodically arranged discontinuities having sub-wavelength dimensions. The commonly 

adopted approaches in the literature are either to resort to available full-wave 

electromagnetic simulators such as HFSS and CST for number-cranking; or, more often, 

to introduce the simplifying assumptions of homogeneous and isotropic MTM medium 

having dispersive characteristics described by some functional form. The second 

approach is used in this thesis.  

The formulations applicable to media having negative values of constitutive 

parameters which are relevant for the numerical and analytical investigations performed 
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in the thesis are summarized in Chapter 2. These include dispersion models, proper branch 

cuts for refractive index and wave impedance. 

FDTD algorithm is chosen for numerically investigating wave characteristics in the 

presence of MTM media in the problem domain. The outputs obtained via FDTD 

approach provide physical insight for the time-evolution of reflected and transmitted 

wave fields through transient into steady-state regimes. The dispersive nature of MTM’s 

requires substantial modifications of the well-known FDTD algorithms developed for 

nondispersive media. We have, therefore, derived the formulations of all codes used in 

the thesis and implemented them. Chapter 3 of the thesis is devoted to the work done in 

this context. This chapter contains formulations of Maxwell’s curl and wave equation 

based FDTD update equations, Auxiliary Differential Equation (ADE) and Piecewise 

Linear Recursive Convolution (PLRC) methods for incorporating dispersion, comparison 

of and contributions to the Absorbing Boundary Conditions (ABC) used in terminating 

computational domains, together with representative examples of computed results. 

Frequency domain approaches may provide advantages in attacking 

electromagnetic wave propagation problems involving frequency dispersive media or/and 

waveguide environments, since all dispersive parameters reduce to constants at fixed 

frequencies. Hence, for canonical problems one can work out exact analytical 

formulations which when superposed yield benchmark solutions for the frequency 

dependence of wave fields. 

In Chapter 4 of this thesis we considered the canonical problem of propagation in a 

rectangular waveguide loaded fully or partially with MTM media along a transverse and 

also along the axial directions. For brevity, but without loss of generality, we considered 

the problem geometries wherein wave equations effectively involve a single spatial 

coordinate, and hence result in significant simplification of formulations and calculations. 

This chapter contains the solutions for the evanescent, propagating and complex eigen-

waves in regions transversely stratified with MTM media as depicted in Figure 4.1 

(partially loaded in cross-section), including complete and unified analysis of the 

existence conditions for, and cut-off transitions between supported wave types, and also 

their dependence on the problem parameters and frequency.  Representative numerical 

results are provided for dispersion diagrams, for variation of phase and group velocities 

of forward, backward and surface wave type fields and also for the transmission-reflection 
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characteristics of such sections as a function of their axial extent.  Truncated periodic type 

DPS-DNG stratifications along the axial direction, shown in Figure 4.21, are also 

investigated in Chapter 4. In this context eigenvalue and band-edge equations for Floquet 

waves are obtained, representative solutions are presented for dispersion and band edge 

diagrams. Reflection-transmission characteristics and their dependence on the number of 

unit cells and the termination strategy used in the truncated structure are also investigated. 

Frequency dependence of reflection and transmission is calculated using both the 

frequency domain approach and also FDTD and are shown to be in excellent agreement. 

 

Contributions and outcomes  

 The outcomes of the preparatory investigations on the modeling of the dispersive 

characteristics of homogeneous, isotropic MTM media and implementations of 

these into FDTD algorithms for demonstrating some salient features of the 

electromagnetic waves supported in MTM environments are reported as a tutorial 

review in (Pekmezci & Sevgi, 2014). 

 Most, if not all, of the existing literature on FDTD solutions for problems 

containing MTM media use update algorithms based on Maxwell’s curl equations. 

We have also worked out FDTD update equations based on scalar wave equation 

and shown in (Pekmezci, Topuz, & Sevgi, 2016) that it yields computational 

advantages in addressing propagation problems in uniform MTM environments. 

 In performing FDTD calculations involving structures imbedded in extended 

homogeneous regions one needs to introduce artificial boundaries for terminating 

the computational domain and use Perfectly Matched Layer (PML) or Mur type 

Absorbing Boundary Conditions (ABC) for suppressing spurious reflections from 

these terminations. We have derived FDTD update equations for 2D Mur type 

ABC’s and shown that in dealing with MTM loaded 2D problems investigated in 

this thesis it provides definite computational advantages and suppresses boundary 

reflections by more than 40dB. A performance which is perfectly acceptable for 

our calculations, although its inferior to that obtainable via the PML approach. 

The outcomes of these investigations are reported in (Pekmezci, Topuz, & Sevgi, 

2018).  
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 Different types of modal fields may be supported by waveguides transversely 

loaded with MTM media. In the absence of losses there may be evanescent, 

forward/backward propagating, surface and complex waves. Considering the 

canonical problem of propagation in DPS/DNG layered planar waveguides the 

existence conditions of and the transitions between these wave types are 

investigated via exact frequency domain analysis and numerical results are 

obtained as functions of the geometrical parameters using identical/non-identical, 

lossless/lossy Lorentz models for the MTM slab. Novel conditions are obtained 

for the existence conditions of complex and surface wave type modal fields. The 

outcomes of these investigations are submitted for publications. 

 

Suggestions for follow-up work  

During the course of this work several problem areas have been identified as 

deserving further attention. These problem areas are listed below as suggestions for 

follow-up work. 

 Implementation of FDTD algorithm to waveguides layered in the transverse or 

axial directions with single negative (Epsilon Negative: ENG or Mu Negative: 

MNG), double negative (DNG) and double positive (DPS) media. This work 

involves working out FDTD update equations for addressing dispersive media 

models as well as for the transition conditions at the various boundaries of the 

problem domain. To the best of our knowledge, an accurate and stable algorithm 

has not yet been reported in the literature. 

 Formulation of FDTD update equations of 3D Mur type ABC’s for dispersive 

media. This work involves an extension of the 2D Mur update equations presented 

in Chapter 3. It is expected that 3D Mur will provide some advantages over the 

alternative approach of 3D PML type ABC, in requiring less computational 

resources. 

 

Determination of propagation characteristics of waves in waveguides loaded in the 

transverse or axial directions with combinations of ENG, MNG, DNG and DPS type 

layers. Although the exact frequency domain analysis presented in Chapter 4 for 

DNG/DPS stratifications is, in principle, also applicable to problems involving ENG, 
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MNG layers, the resulting wave characteristics will exhibit distinctly different features 

from the ones treated in the thesis. As discussed in Chapter 2 propagating waves are not 

supported in ENG, MNG layers. Since propagation phenomena in such mixed media 

structures involves tunneling of evanescent fields, a separate, detailed analysis is needed 

for determining its dependence on medium dispersion models and the geometrical 

problem parameters for both transversely and axially stratified structures.  
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APPENDICES 

 

Appendix A. ADE-FDTD Update Equations in Two Dimension (2D) 

 

We assume plane wave propagation along z-axis and TMz polarization in working 

out the formulation of ADE-FDTD algorithm for Lorentz type DNG media.  
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The inverse Fourier transform of these two are: 
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The discrete forms of Equations (A.3) are given as: 
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n / n / n /om m
x x x

m m

o pm n /

x

m

t . t
J i, j / J i, j / J i, j /

. t . t

t
H i, j /

. t



 

  



       
       

        

 
  

    

2 2
1 2 1 2 3 2

2 2

1 2

2 05 1
1 2 1 2 1 2

1 05 05 1

1 2
1 05

 

 

(A.4b) 

     

 

n / n / n /om m
y y y

m m

o pm n /

y

m

t . t
J i / , j J i / , j J i / , j

. t . t

t
H i, j

. t



 

  



       
       

        

 
  

    

2 2
1 2 1 2 3 2

2 2

1 2

2 05 1
1 2 1 2 1 2

1 05 05 1

1 05

 

 

(A.4c) 

 

These can then be used in iterative form and FDTD loops can be formed accordingly: 

 

   

   

   

1 2 1 2

1

1 2 1 2

1/ 2, 1/ 2,

, ,
, 1/ 2 , 1 2

n n

y y

n n

z z n n

x x

H i j H i - j

x
D i j D i j t

H i j H i j

y

 



 

  
 

   
   
 

 

 (A.5a) 

       1 2 1 21 2 1 2 1n n n n

x x z z

t
B i, j B i, j E i, j+ E i, j

y

  
      

 (A.5b) 

       1 2 1 21 2, 1 2, 1, ,n n n n

y y z z

t
B i j B i j E i+ j E i j

x

  
      

 (A.5c) 
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1 1
1 ( , ) ( , )
( , )

n n
n z
z

o

D i j P i j
E i j

 

 





  (A.6a) 

1/2 1/2
1/2 ( , 1/ 2) ( , 1/ 2)

( , 1/ 2)
n n

n x x
x

o

B i j J i j
H i j

 

 




  
   (A.6b) 

1/2 1/2

1/2
( 1/ 2, ) ( 1/ 2, )

( 1/ 2, )

n n

y yn

y

o

B i j J i j
H i j

 

 





  
   (A.6c) 

 

When the resonance frequency 
oe  is taken as zero, the ADE-FDTD formulation in 

Equation (A.4) based on Lorentz model is reduced to Drude model’s formulation. Hence 

the following process developed for Lorentz type DNG media simulations is also 

acceptable for Drude model simulations: 

1. Update 1nP   using the previous values of n
E and 1,n nP P  . 

2. Update nE 1  in free space and insert excitation source. 

3. Update nD 1  in DNG medium using the previous values of n
D and 

n n

x yH ,H . 

4. Update nE 1  in DNG medium using the present value of nD 1and nP 1 . 

5. Apply the absorbing boundary conditions at the terminating nodes. 

6. Repeat the whole steps for the magnetic fields ( , ,J B H ). 
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Appendix B. Modified UPML in DNG media (DNG- UPML) 

 

For a matched condition (Berenger, 2007) the time-harmonic Maxwell's curl 

equations in the UPML can be written in their most general form as (Taflove & Hagness, 

2005). 

 

H j s E   (B.1a) 

 

E j s H    (B.1b) 

 

where s  is the diagonal tensor defined by 

 

1 1

1 1

1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

x y z y z x

x y z x y z x z y

x y z x y z

s s s s s s

s s s s s s s s s s

s s s s s s

 

 

 

      
      

        
           

 (B.2) 

 

and the diagonal elements of s are given by 

 

1 ; 1 ; 1
yx z

x y z

o o o

s s s
j j j

 

  
       (B.3) 

 

The conductivity 
i (where , ,i x y z ) is the loss parameter that controls the wave 

attenuation rate along the x, y or z axis in the UPML. However, DNG media have 

simultaneously negative permittivity and permeability and negative refractive index, if 

one still assumes 0i  , the wave will grow exponentially in UPML, which results in 

instability. Consequently, some modifications on the original UPML method are required 

to yield a stable solution for DNG media as in the following: 
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       
1 1

m

m x x x

x x

or r o r r

s
j j

  


        
       (B.4a) 

 

       
1 1

m

y y ym

y y

or r o r r

s
j j

  


        
       (B.4b) 

 

       
1 1

m

m z z z
z z

or r o r r

s
j j

  


        
       (B.4c) 

   

where ,m m

x y   and m

z  are the modified conductivities in the x, y and z directions, 

respectively. Applying this modification to DNG media results in a DNG-UPML that can 

attenuate the electric and magnetic fields in each direction. One can find the choices of 

loss parameters and spatial grading of the PML loss parameters in Berenger’s study 

(Berenger, 1994). 

The FDTD approximation is derived from the time-harmonic Maxwell's curl 

equations and modified conductivities within the DNG-UPML medium, as defined in 

(B.4). Formulations can be implemented in One-Dimensional (1D), Two-Dimensional 

(2D) and Three-Dimensional (3D) cases. In the following section, 2D TM case is 

considered under / 0z   assumption that involves only Ez, Hx and Hy field 

components. Since the DNG-UPML can attenuate waves in both x and y direction, the 

diagonal tensor yields x ys s s . Thus, the Maxwell equations in (B.1) can be reduced to a 

set of three equations as follows: 

 

   y x
x y z o r x y z

H H
j s s E j s s E

x y
    

 
  

 
 (B.5a) 

 

   y yz
x o r x

x x

s sE
j H j H

y s s
    


   


 (B.5b) 

 

   x xz
y o r y

y y

s sE
j H j H

x s s
    


 


 (B.5c) 
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where  r   and  r  are the relative permittivity and permeability of DNG media, 

respectively. Considering the identical models for  r  and  r  , xs  and 
ys can be 

rewritten as  

 

   
1 ; 1

yx

x y

o r o r

s s
j j



     
     (B.6) 

 

To derive an equivalent system of time domain differential equations for (B.5), some 

auxiliary field variables are introduced as in (Lu L. , 2006). 

 

       z o r x y z x zD s s E s P        (B.7a) 

 

         y

x o r x o r x

x

s
B H Q

s
           (B.7b) 

 

         x
y o r y o r y

y

s
B H Q

s
           (B.7c) 

 

where 

 

     z o r y zP s E      (B.8a) 

  

   y

x x

x

s
Q H

s
   (B.8b) 

 

   x
y y

y

s
Q H

s
   (B.8c) 
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Substituting (B.7) into (B.5), the Maxwell equations yield: 

 

y x
z

H H
j D

x y


 
 

 
 (B.9a) 

 

z
x

E
j B

y



 


 (B.9b) 

 

z
y

E
j B

x






 (B.9c) 

 

Applying the second-order FDTD discretization both in space and time to equations 

(B.9a) leads to a time-stepping expression for Dz : 

 

   

       

1 2 1 2 1 2 1 2

1/2, 1/2, , 1/2 , 1 21

, ,

n n n n

y y x xi j i- j i j i jn n

z zi j i j

H H H H
D D t

x y

   

  

  
    
  
 

 (B.10) 

 

Substituting xs  in (B.5a) into (B.6a) yields 

 

 
1 x

z x z z

o r

D s P P
j



  

 
    

 
 (B.11) 

 

Multiplying  rj   on both sides of (B.11) and using Lorentz type model, one obtains  

 

pe pe x
z z z

oe e oe e o

j D j P P
j j

  
 

      

   
                 

2 2

2 2 2 2
1 1  (B.12) 
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Here 
oe is set to zero as in (Cummer, 2004) to avoid the third order differential equation 

in time for simplicity in implementation of FDTD scheme. Then (B.12) can be 

represented as follows: 

 

     x
e pe z e pe z e z

o

j D j P j P


      


         2 2 2 2
 (B.13) 

 

Taking the inverse Fourier transform of (B.13) yields 

 

x x e
e pe z e pe z

o o

d d d d
D P

dt dt dt dt

 
 

 

      
              

      

2 2
2 2

2 2  (B.14) 

 

Applying a centered second-order finite difference approximation to equation (B.14) and 

grouping like terms produces 

 

   , ,

n n n n n n

z z z z z zi j i j
P a P a P b D b D b D         

1 1 1 1

1 2 0 1 2  (B.15) 

 

where  

 

     

   

;

; ;

o x e o pe x o e o x e o pe

o o e pe o o pe o o o e pe o

o x o e x e o pe

t t t
a a

AB AB

t t t t t
b b b

AB AB AB

AB t t

         

          

     

          
 

           
  

        

2 2 2 2

1 2

2 2 2 2 2 2

0 1 2

2 2

8 2 2 4

4 2 2 8 4 2

4 2

 

 

Let    zz y zE s E  , then (B.8a) can be rewritten as 

 

              z o r zz o e zz o zz kzP E E E S                    (B.16a) 
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where 

 

     kz o e zzS E      (B.16b) 

 

Applying ADE approach, we obtain FDTD update equations for kzS and zzE  as: 

 

       o pen n n noe e
kz kz kz zz

e e e

tt . t
S i, j S i, j S i, j E i, j

. t . t . t

  
       

       
              

2 22 2
1 12 05 1

1 05 05 1 1 05
 (B.17) 

 

n n
n z kz
zz

o

P S
E

 

 







1 1
1  (B.18) 

 

Finally, substituting 
ys given in (B.6b) into the equality of    zz y zE s E  and 

applying same procedure for Pz ( see D.11) , we obtain the next step values of zE . 

 

 
1

y

zz y z z

o r

E s E E
j



  

 
    

 

 (B.19) 

 

   , ,

n n n n n n

z z z zz zz zzi j i j
E c E c E d E d E d E

   

   
      

1 1 1 1

1 2 0 1 21 2 1 2 1 2 1 2
 (B.20) 

 

where 

 

     

   

;

; ;

o y e o pe y o e o y e o pe

o o e pe o o pe o o o e pe o

o y o e y e o pe

t t t
c c

CD CD

t t t t t
d d d

CD CD CD

CD t t

         

          

     

          
 

           
  

        

2 2 2 2

1 2

2 2 2 2 2 2

0 1 2

2 2

8 2 2 4

4 2 2 8 4 2

4 2

 



115 

 

Similarly, the explicit time-stepping expressions for the components Bx, Qx ,Hx  and By, 

Qy , Hy are given by 

 

     

 

n / n / n /om m
x x x

m m

o pm n /

x

m

t . t
J i, j / J i, j / J i, j /

. t . t

t
H i, j /

. t



 

  



       
       

        

 
  

    

2 2
3 2 1 2 1 2

2 2

1 2

2 05 1
1 2 1 2 1 2

1 05 05 1

1 2
1 05

 (B.21) 

 

       

3 2 1 2 1 1

1 2 1 2 1

n n n n

x x z zi, j i, j i, j i, j

t
B B E E

y

   

  

    
  

 (B.22) 

 

n / n /
n / x x
x

o

B J
Q

 

 







3 2 3 2
3 2  (B.23) 

 

   

n / n / n / n / n / n /

x x x x x xi , j i , j
H k H k H m Q m Q m Q     

 
      

3 2 1 2 1 2 3 2 1 2 1 2

1 2 0 1 21 2 1 2
 (B.24) 

 

where  

 

     

     

   
   

;

;

;

o y e o pe y o e o y e o pe

o x o e x e o pe x e o pe o

o x o e x e o pe

o y o e y e o pe

t t t
k k

KM KM

t t t
m m

KM KM

t t
m KM t t

KM

         

         

     
     

          
 

           
 

       
         

2 2 2 2

1 2

2 2 2 2

0 1

2 2

2 2

2

8 2 2 4

4 2 2 8

4 2
4 2
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The process of UPML-DNG simulations using the above equations are: 
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Appendix C. S-Matrix Representation 

 

C1. S-Matrix Representation of Fully Loaded Single Two-Port Circuit: 

We note that when the empty waveguide is assumed to be lossless the phases of R 

and T depend on the location of the reference planes used in their definitions, but their 

amplitudes do not.  Moreover, in case the absorption losses within scattering region tend 

to zero the sum of the squared magnitudes of R and T approach to unity (power 

conservation). 

 

 

; ; ;

a a a a

b S S a b b b b
S S S S

b S S a a a a a
   

     
     
     
     

2 2 1 1

1 11 12 1 1 2 1 2

11 21 12 22

2 21 22 2 1 1 2 20 0 0 0

 (C.1) 

 

When we deal with a lossless problem then the power entering the region should be equal 

to the power exiting from the region: 

 

         * ** * t t

enter exit i i

t t
P P a b a I a b ba a b b                  

2 21 1

2 2
 (C.2) 

 

where          
*

** * *

*
; and

t t

i

b
b b b b b b b b b I S S
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  

 
    
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

2 1

1 2 1 1 2 2

2

. If the problem 

is reciprocal we should also have    
t

S S . Then,  
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           1 2

11 11 22 11 22 12 12 , 

then the angle relation between S parameters are found as: 
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In special case of symmetric regions (both geometry and electrical parameters) no 

distinction can be made between port 1 and 2. Thus, indices 1 and 2 are interchangeable. 

S matrix will then have the form 
S S

S S

 
 
 

11 12

12 22

 and from above it follows /     1 2 2  

which yields: 

 

e ; e /
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Now we consider the relations obtained for a section of waveguide completely-filled with 

DNG material. 
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where  
j d j

e De
 

  2
22

1 . 
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This relation between S11  and S12  is true if and only if S S11 22
 and their angles. So, 

we can say that the DNG system can be assumed symmetric. Thus, when  2  is real 

(region lossless) the phase relationship between S11  and S12 are satisfied. When Lorentz 

model contains no loss term we have:  r r ok a    
2

2 0 2 2 2 for dominant mode. Thus, 

2 is purely imaginary at frequencies above cutoff   r r o a  
2

2 2 2 . Since T will then 

decrease exponentially, the positive sign should be selected to amplify wave 

exponentially. 

 

C2. S-Matrix Representation of Fully Loaded Cascade Connected Two-Port 

Circuit: 

The total scattering matrix of the system is defined by the S-matrix of each circuit 

as given in (Şimşek, Işık, & Topuz, 2011): 
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where    
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(C.11) 

 

S-parameters of each circuit can be obtained by using Equation (C.12). 
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(C.12) 

 

where ; ; ; ; ; ,i o i o
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