

T.C. DOĞUŞ ÜNİVERSİTESİ

INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER ENGINEERING

THE IMPACT OF STATIC ANALYSIS TOOLS ON SOFTWARE QUALITY,

PRODUCTIVITY AND COST

MASTER THESIS

MEHMET YILDIZ

201195002

ADVISOR:

Assist. Prof. Dr. YASEMİN KARAGÜL

Istanbul, 2019

T.C. DOĞUŞ ÜNİVERSİTESİ

INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER ENGINEERING

THE IMPACT OF STATIC ANALYSIS TOOLS ON SOFTWARE QUALITY,

PRODUCTIVITY AND COST

MASTER THESIS

MEHMET YILDIZ

201195002

ADVISOR:

Assist. Prof. Dr. YASEMİN KARAGÜL

Istanbul, 2019

DECLERATION

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or institution. Information derived from the

published or unpublished work of others has been acknowledged in the text and a list of

references is given.

Mehmet Yıldız

Signuture:……………………..

Date : …………………………

iii

PREFACE

In this thesis, the effects of static analysis tools on software quality, productivity and cost

were investigated. This research includes both theorical information and evaluations of

experiment results from real world's IT appliance. I would like to thank my advisor Assist.

Prof. Dr. Yasemin Karagül, for her interest, support and guidance. Furthermore, I would

like to express my gratitude to my dear wife Yasmin Yıldız for her valuable support

during my thesis studies.

Istanbul, 2019 Mehmet Yıldız

iv

ABSTRACT

With the spread of technology, impact and importance of software in our daily life are

increasing considerably. Considering importance of software in our daily life, code

quality, bug-free development and conformance for coding standards are becoming

indispensable. The purpose of this work is to list the advantages for both development

team and software quality by demonstrating the importance of static code analysis for the

software life cycle to obtain software that is reliable, low maintenance, low-cost,

standards-compliant and bug-free (with early error detection and prevention). In order to

develop a standards-compliant software, it’s source code must be written in accordance

with the standards ruleset and analyzed carefully for conformity in the development phase

of software development life cycle (SDLC). The analysis can be performed dynamically

or statically. Static analysis is performed on program source code without actually

executing program but dynamic analysis is performed while executing program source

code. The static analysis made with automatic analysis tools produces reports about

software quality. Static code analysis is often used to find potential errors, detect possible

weaknesses in the program code that may lead to weak points, maintain code quality, or

check compliance with coding standards. In this thesis, the Java source codes of 29

different projects developed by 5 different development teams of a telecommunication

company have been evaluated by SonarQube and the outputs of this evaluation are

discussed. Analysis tool automatically starts the analysis process on the project codes that

is retrieved from the version tracking system (SVN) and finds the possible weak points,

bugs and noncompliant issues in code sections. By correcting the findings and adding the

automatic code analysis step to the development process, early error detection and

preservation of the quality of the software are ensured. Detecting and correcting errors,

increasing productivity, reducing maintenance cost by 21% and generating clean code

before execution in the production environment are the lucrative outputs of this work. As

a result of the study, the improvement reports triggered by the analysis reports not only

provide the quality of the code but also increase the capabilities of the development team.

Keywords: Software analysis, static analysis, code quality, program error checking, code

analysis, code review, software quality, error prevention, early error detection, analysis

tools, maintenance cost.

v

ÖZET

Teknolojinin yaygınlaşmasıyla birlikte günlük yaşamımızda yazılımın etkisi ve önemi

gün geçtikçe artmaktadır. Bu bağlamda yazılımın kod kalitesi, hatasız geliştirilmesi ve

kodlama standartlarına uygunluğu vazgeçilmez unsurlar olmaya başlamıştır. Bu

çalışmanın amacı, güvenilir, bakım maliyeti düşük, standartlara uygun ve hatadan(erken

hata tespiti ve önleme ile) arınmış yazılım elde etmek için statik kod analizinin yazılım

yaşam döngüsü için önemini ortaya koyarak hem geliştirme ekibi hem de yazılım kalitesi

için avantajlarını listelemektir. Standartlara uygun bir yazılım geliştirmek için yazılım

geliştirme yaşam döngüsünün geliştirme aşamasında geliştirilen kaynak kodun standart

kurallara uygun olarak yazılması ve dikkatli bir şekilde analiz edilerek uygunluğu kontrol

edilmelidir. Analiz, dinamik veya statik olarak yapılabilir. Statik analiz program

çalıştırılmadan veya yürütülmeden kaynak kod üzerinde yapılırken, dinamik analiz

gerçek olarak çalışırken yapılır. Otomatik analiz araçları ile yapılan statik analiz yazılım

kalitesiyle ilgili raporlar üretir. Statik kod analizi çoğunlukla potansiyel hataları bulmak,

program kodunda zayıf noktalara yol açabilecek olası zafiyetleri tespit etmek, kod

kalitesini korumak veya kodlama standartlarına uygunluğu kontrol etmek için kullanılır.

Bu tezde bir telekomünikasyon şirketinde 5 farklı geliştirme ekibi tarafından Java ile

geliştirilen toplam 29 proje kaynak kodu üzerinde SonarQube ile çalışılarak elde edilen

çıktılara yer verilmiştir. Analiz aracı ile otomatik olarak sürüm takip sisteminden çekilen

proje kodları üzerinde analiz işlemi başlatılarak projelerdeki hata, zayıf nokta ve kodlama

standartlarına uymayan bölümler için bulgular ortaya çıkarılmıştır. Elde edilen bulguların

düzeltilmesi ve geliştirme sürecine otomatik kod analiz adımının eklenmesiyle yazılımda

erken hata tespiti ve kalitenin devamlılığının korunması sağlanmıştır. Yazılımın üretim

ortamında yürütülmeden önce hataların tespiti ve düzeltilmesi, verimliliği arttırma, bakım

maliyetini %21 oranında düşürme ve temiz kod üretme ise bu çalışmada elde edilen

önemli çıktılarıdır. Çalışma sonucunda analiz raporlarının tetiklediği iyileştirme

faaliyetlerinin yalnızca kod kalitesini sağlamakla kalmayıp aynı zamanda geliştirme

ekibinin kabiliyetlerini arttırması gözlemlediğimiz güzel kazanımlardandır.

Anahtar Kelimeler: Yazılım analizi, statik analiz, kod kalitesi, program hata kontrolü,

kod analizi, kod incelemesi, yazılım kalitesi, hata önleme, erken hata tespiti, analiz

araçları, bakım maliyeti.

vi

TABLE OF CONTENTS

Page no

PREFACE .. iii

ABSTRACT ... iv

ÖZET ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... viii

LIST OF EQUATIONS ... ix

ABBREVIATIONS ... x

1. INTRODUCTION ... 1

1.1 Objective and Scope of The Work ... 2

1.2 Method Of The Study... 4

1.3 Constraints Of The Study ... 4

2. LITERATURE SURVEY ... 6

2.1 Software Quality .. 7

2.2 Coding Standards ... 8

2.3 Code Smells ... 9

3. RESEARH METHOD .. 12

3.1 Analysis Tools and Their Contributions To Software Quality 13

3.2 Software Quality and Static Analysis Tool .. 15

3.3 Method And Detail Of The Work .. 16

4. EXPERIMENT RESULTS AND FINDINGS .. 20

4.1 Evaluation and Feedback Meeting Notes ... 21

4.2 Positive Impacts ... 21

4.2.1 Improvement of development teams, high quality output and productivity 21

4.2.2 Quality measurement, automatic review and early error detection 22

4.3 Negative Impacts .. 22

5. DISCUSSIONS, LIMITATIONS AND THREATS .. 24

6. CONCLUSIONS ... 25

6.1 Quality Measurement And Automation During Software Development 25

6.2 Software Error Prevention System: Early Issue Detection And Benefits 25

vii

6.3 Auto Analysis Tools And The Impact On Maintenance Cost: 26

REFERENCES ... 28

ANNEX .. 31

Annex I: Software Code Quality Requirements ... 31

Annex II: Yazılım Kod Kalitesi Gereksinimleri ... 37

RESUME ... 44

viii

LIST OF TABLES

Sayfa no

Table 1.1 Finding Category And Priority Order of Importance 3

Table 3.1 Analysis Issue Details ... 17

Table 3.2 Effort Details for Detected Errors in Production Environment 19

ix

LIST OF EQUATIONS

Page no

6.1 Effort Saving Rate ... 26

x

ABBREVIATIONS

CLEARCASE : Software configuration management tool

ECLIPSE : Integrated development environment

GIT : A distributed version control system

JENKINS : Continuous integration and continues delivery platform

LDAP : Lightweight directory access protocol

SDLC : Software development life cycle

SONARQUBE : Continuous code quality platform

SVN : Subversion is a version control system

1

1. INTRODUCTION

Especially in recent years, the quality of software has started to gain importance

with the spread of technology. The fact that it touches every aspect of our lives and that

this scope is expanding day by day brings the standards and quality to the foreground in

the software. Because the domain is large and deep, the smallest error in the software

causes major problems. Errors included in the software during the development process

are known to cause the software not to meet expectations. Some of the negativities that

may arise from software failure include endangering human life, stopping and blocking

communication and transmission, erroneous production, loss of honorable customers and

bankruptcy. Nowadays, it is clearly known that due to errors in software, many companies

and indirectly people have been in difficult situation and suffered damage.

The building blocks of a software program consist of lines of code written by

programmers. Considering the importance and impact of software in our daily lives, for

each line of code, the code quality, error-free development and compliance with coding

standards have become indispensable elements. Testing is known as a method to obtain

information about the functionality and quality characteristics of the software and to

determine the errors. However, most of the errors encountered/discovered in the testing

phase are late findings. Because in the production environment and even in the testing

phase, each error causes to re-run the SDLC process from previous stages and must be

fixed and retested respectively. This situation means a significant waste of time and cost.

Early detection of software related errors and to capture and resolve these errors in the

development phase provides significant savings. According to Kumaresh and Baskaran

(2010), in the development process, error prevention provides quality in software by

playing an important role in improving software process quality.

As an outcome of this study, it is expected to increase productivity by improving

software development process with error prevention solutions, increasing quality

awareness in software and obtaining software with high quality, but lower maintenance

and development costs. The objectives of this study are as follows;

 to have reliable, cost-effective, standards-compliant and error-free software

2

 to improve software quality by preventing and correcting errors during software

development

 to improve software development process with early error detection

 to enable developers to develop in accordance with software development standards

and improve their skills

In order to achieve the above objectives, 29 java projects which are developed by 5

teams in a telecommunication company have been analyzed. Aim of the analyzes were to

measure the quality of the projects, to detect problems and to check the compatibility of

the source code with the coding standards (Java Code Conventions, 1997; Java Style

Guide, 2014). In these studies, the SonarQube (Continuous Code Quality Platform, 2017

; Campbell & Papapetrou, 2013) static code analysis tool, which is configured to be

triggered automatically via Jenkins (Armenise, 2015), is used for static code analysis.

1.1 Objective and Scope of The Work

With the rapid development of technology, the importance and impact of software

in our lives is increasing day by day. The number of software products is increasing

rapidly with the expansion of technology in business and everyday life. Considering this

wide scope and impact, it is important that the software complies with the code quality,

error-free development and coding standards. In this study, it is aimed to determine and

solve the problems added by the developers during the development process, improve

the quality by learning from mistakes and ensure the continuity of all these stages as a

part of SDLC. At the end of this process it is aimed to increase productivity by producing

high quality software, low cost in both development and maintenance. In this work,

experimental studies will be done and the findings of the analysis will be examined and

corrected. At the end of this work, positive and negative impacts of applying this process

as a part of SDLC will be evaluated.

As mentioned in the studies by Nagappan & Ball (2005), the quality of the software

is related to the error rate in the software and this data can be used as an indicator to

determine the quality of the software. In this study, in the field of telecommunication, an

analysis of 29 projects developed by java by 5 development teams in the software

development phase was carried out with static analysis tools. The main purpose of the

study is to increase the productivity by detecting the compatibility of the software with

3

the coding standards and the errors it contains. Only 5 projects were included in the study

due to the fact that important and main projects were included in the study. For static code

analysis, SonarQube static code analysis tool is configured to be triggered automatically

via Jenkins (Jenkins, 2017; Armenise, 2015). The default rule list on the tool is used and

the classification details in the findings are as in Table 1.1.

Table 1.1 Finding Category And Priority Order of Importance

Source: SonarQube in Action, 2013,p.30

In the following sections, we will talk about some concepts such as bug, code smell

and vulnerability. We refer them as issue. According to the sonarqube, detailed

explanation of the concepts are as follow;

 Bug: An issue that represents something wrong in the code. If this has not fixed

yet, it will, and probably at the worst possible moment. This needs to be fixed.

Finding

Category

Priority Description

Blocker 1 Operational/security risk: It might make the whole

application unstable in production. For example:

calling garbage collector, not closing a socket, etc.

Critical 2 Operational/security risk: It might lead to an

unexpected behavior in production without affecting

the integrity of whole application. For Example: Null-

Pointer Exception, badly caught exceptions, lack of

unit tests, etc.

Major 3 It might have a substantial impact on productivity. Ex:

too complex methods, package cycles, etc.

Minor 4 It might have a potential and minor impact on

productivity. Ex: naming conventions, Finalizer does

nothing but call superclass finalizer, etc.

Info 5 Unknown or not yet well defined security risk or

impact on productivity

4

 Code Smell: A maintainability-related issue in the code. If it is not fixed, the best

developers will have a harder time while they are making changes to the code. At

worst, they will be so confused by the state of the code that they will introduce

additional errors as they make changes.

 Vulnerability: A security-related issue which represents a backdoor for attackers.

See also Security-related rules.

1.2 Method Of The Study

We have done experimental studies through existing code pools. Some reports have

been generated by analyzing the findings on code automatically with static analysis tools.

In order to eliminate the findings in these reports, code improvement studies were

initiated in coordination with development teams.

In the development phase, analysis report creation process starts with the automatic

triggering of the static analysis tool and a code analysis report is obtained at the end of

the process. This report consists of the findings of the code that do not comply with the

standards and it’s weaknesses. The Software Code Quality Requirements

document[Annex-1], consisting of 80 items, was published in order to avoid the repetition

of the frequently encountered problems as a result of the investigations made according

to these analysis reports. This document is based on Java coding rules published by Sun

Microsystems (Java Code Conventions, 1997) and Google (Java Style Guide, 2017) and

adapted to the corporate culture.

1.3 Constraints Of The Study

In this study, a limited number of java projects and a code of 436846 lines

developed by a total of 5 development teams have been studied in a company operating

in the telecommunications sector. Static code analysis tool was used to analyse the source

code. Analyzes were made in order to measure the quality of the projects, to detect the

problems and to check the compliance with the standards. In these studies,

SonarQube(Continuous Code Quality Platform, 2015; Campbell ve Papapetrou, 2013)

static code analysis tool which is configured to be triggered automatically by Jenkins

(Jenkins, 2017; Armenise, 2015) is used. These tools are preferred because of their

5

practical use in the information technology sector, they are widely accepted, they are

compatiable with different development environments, also java language compatible and

open source. Errors in the production environment are reported by the people in charge

of the system through the application lifecycle management application and this

application has been used for reporting purposes. Findings have been obtained with

experimental studies and studies have been carried out on these findings and errors

detected in real production environment. The limitations of the study are as follows:

 Project codes developed using only java development language

 Data from the 5 largest projects in the 5 projects were included in the evaluation.

The first 5 applications with the highest number of lines of code were selected

from 29 projects. Due to time constraint, high error density in the 5 selected

projects and the fact that this study is a pilot study, projects with a small number

of code lines other than 5 main projects and low number of code lines are not

covered in this study.

 SonarQube analysis tool used as the only analysis tool

 Work on projects developed by a limited number of teams

6

2. LITERATURE SURVEY

Software developed in corporate companies needs are constantly being developed

to meet additional development demands coming from frequently developed software.

The existence of a software's continuous development cycle, new development needs and

maintenance costs increase the future costs of that software. The fact that the software

does not comply with the coding standards and therefore has low quality causes

maintenance costs to increase more deeply. In order to ensure the quality in the software,

to be controlled and to ensure the continuity of the process, academic resources have been

examined and short summaries are given below for the important sources. In recent

researches (Nagappan ve Ball, 2005; McConnel, 2001, s.5-7; Jalote ve Agarwal, 2007;

Fagan, 1976, s.186; Emden ve Moonen, 2002; Catal, 2011) it has been observed that

publications are mainly related with detection of errors but studies on error prevention

and software quality process improvements are limited.

McConnell (2004) is a comprehensive publication on the basics of quality in

software, what characteristic features are the quality indicator in software, and techniques

are proposed to improve the quality of the software. According to Mcconnel, “trying to

improve the quality of software by increasing the frequency and amount of the test is the

same as falling into the misconception that you will lose weight more frequently when

weighed. If you want to lose weight, do not buy a new scale; change the diet. If you want

to improve your software, do not test further; Focus on better development”. The results

of the studies are important points obtained in terms of error detection and inspection.

According to the researches, complexity analyzes with static analysis tools increase the

productivity in the maintenance process by approximately 20% (McConnel, 2004).

Another study by McConnel(2001) the cost of a defect or error detection has grown

exponentially over time and that the cost of fixing errors in early life is cheaper. Code

review methods and automatic tools are recommended for early error detection

(McConnel, 2001).

The study by Jalote and Agarval (2007) investigated the effect of error analysis as

a feedback mechanism to improve quality and productivity in an iterative software

project. The analysis of the errors in a iteration includes the examples of its use and

benefits in a commercial project, which may lead to improvement in quality and

7

productivity by providing feedback in the subsequent iterations to prevent errors. It has

been determined that the failure rate of the following iterations is lower than the previous

iterations. As a result, it is stated that such an analysis will be performed at regular

intervals in large-scale projects and this will increase the quality of the software and

increase productivity. Similarly, the experience gained in other projects is an emphasis

on the fact that structured feedback from a repetition is very effective in improving quality

and productivity in future iterations or new projects (Jalote and Agarwal, 2007).

This study, written by Kumaresh, and Baskaran (2010) on software process quality

improvement and error analysis. An error prevention tool was developed and the results

obtained for this tool were shared. According to the results of the study, it was determined

that the error prevention application was developed by the software developers to learn

the mistakes and to learn the mistakes of others. In addition to this, error prevention work

is the main result of improving product quality while decreasing product cost by

decreasing development time and cost, decreasing customer satisfaction and need of

rework. It is emphasized that the quality of the software provides an important role in the

development of software process quality by preventing error in development process

(Kumaresh & Baskaran, 2010).

2.1 Software Quality

The concept, known as software control or software review, was first introduced in

1976 by Fagan (1976, pp.185-202) and was used to improve software quality. The

software review involves checking the software code, design and documentation for the

detection of potential potential problems (Emden & Moonen, 2002). Detection of

potential problems that are considered to be quality indicators of the software is only

possible with code analysis. In systems developed with object-based architecture, error

discovery rate and distribution is the key indicator for the quality of the software (Booch,

1998; Nagappan & Ball, 2005). In order to predict the errors in the software, it was

emphasized that this process should be automated (Catal, 2011).

The quality of software consists of two basic concepts: internal characteristic and

external characteristic. External quality characteristics of the software are generally the

result of the reflection of the internal characteristics. A quality software can be used with

8

its external features, accurate, efficient, reliable, in integrity, adaptable, consistent and

robust, while it must be sustainable, flexible, portable, reusable, readable, testable and

understandable with its internal features (McConnell, 2004; Bourque and Fairley, 2014).

In order for a software to meet the basic quality requirements, it must be developed

in accordance with the coding standards, free of errors and thoroughly tested. Before

testing, the software must go through a detailled examination to determine that it is

compliant with coding standards and does not contain errors. It is not possible to diagnose

and fix the errors of the software without examining the program's code about whether

the software contains coding errors or not. Although it is possible to reveal these errors

by conducting code reviews through review meetings, it does not bring an effective result

in terms of applicability, continuity, time and cost. In addition, experience, domain

knowledge and focus of the person or people participating in the code review are serious

problems that can vary in the implementation and continuity of this method.

The software is like a prototype moving on the production line into a product. A

fault that is recognized in the next step requires that the product to return one or more

steps and take corrective actions or actions. In order to ensure the quality of the software

and to maintain the continuity of error-free development early error detection is very

important. Because, in the production environment and even in the testing phase, when

an error is detected and the correction of this error is a costly situation because it requires

all stages to be run again. Diagnosing and resolving development-related errors during

the development phase provides significant time and cost savings. As in other areas, the

preventive approach serves to eliminate errors by early intervention, to reduce costs and

to pass through the quality control indicators of the work outputs. In this way, the quality

and quality continuity of the software can be maintained.

2.2 Coding Standards

The most important quality indicator of the software is whether software complies

with the coding standards or not. Coding standards are a set of rules that recommend the

most appropriate coding practices for each aspect of a program written in that language

for a particular programming language. Any software has to be developed in accordance

with the coding standards to meet expected quality. Especially in large-scale software

9

projects, compliance with these standards represents the quality of those projects. During

a code maintainence task, developers often spend most of their time trying to understand

the code. The most important reason for this situation is the code pools developed without

caring the standards. It is very difficult to modify codes with low readability, complex

conditional logic, and repetitive logic (Fowler, Beck, Brant, Opdyke & Roberts, 1999).

Applying the coding standards during the development phase enables to produce

understandable code and then the time spent to understand the code is significantly

reduced. One of the key elements of a development plan that needs to be followed to

obtain a quality software is the coding standards (Kevitt, 2010).

The set of rules in the coding standards are structural quality guidelines for

software. Software developers must follow these guidelines to improve the readability of

the source code, to facilitate software maintenance, and to develop software that conforms

to the standards. Since these standards are not mandatory by the compilers, static analysis

tools are used to understand whether the standards are complied with.

Coding standards make it easy for everyone in the company to understand each

other's codes and work together comfortably. If the code is not written and edited

according to the programming instructions, it is very difficult to develop, integrate and

maintain on a small part of the software, especially in crowded development teams. It is

not always easy to implement compliance with coding standards. While all developers

involved in the project have an obligation to know and evaluate the software guidelines,

such as time constraints, people's reaction to limiting or not accepting the rules, these are

the main factors that make compliance with these guidelines difficult.

In conclusion, ensuring that the code complies with the coding standards improves

the code quality. When this process is supported by automatic conformity check and the

project specific code smells are allowed to be detected, automatic smell sensing becomes

a conformity control process (Emden and Moonen, 2002).

2.3 Code Smells

The code smell, also known as malicious odor in the software code, points to a

problem in the source code of a program, or a more profound problem that is likely to be

severe. According to Fowler, Beck, Brant, Opdyke and Roberts (1999); code smell is

10

often the surface indicator that corresponds to a deeper problem in the system. One of the

main reasons behind the smell of code is the errors in development and design process.

In particular, the failure to comply with coding standards during the development phase

significantly reduces the quality of the code and results in shorter software life. Code

smells which are pointing defects and errors in the code represents the quality of software

systems adversely. They also effect both flexibility and maintenance effort causes serious

problems and difficulties. The common smells in the code can be listed as follows

(Fowler, Beck, Brant, Opdyke & Roberts, 1999):

 Duplicated Code blocks

 Large class, method and function: High number of code lines in class, method and

function

 Complex methods or classes: Code blocks that contain nested conditions and loops.

Overall, the increase in the number of methods in a class makes it more complex and

application-specific (Booch, 1998).

 Long parameter list: Number of method and function parameters (Maximum 7)

 Dependent change chain: A change affects multiple points and needs a dependency

change

 Unregistered code blocks in the class (Feature envy). The code block is related to a

different class than the class it is in.

 Repetitive data sets: Most of the time there are three or more data items at more than

one point. For example, the fields of several classes, parameters in many function

signatures.

 Use of unnecessary complex data structures (primitive obsession): preferring special

classes / complex data structures or objects instead of primitive data types.

 Use of unnecessary switch, condition structures: Use of duplicate switches, condition

and control structures

 Parallel inheritance hierarchies: The requirement to create a subclass of another class

every time you create a subclass of a class

 Unused class, method, field, parameters: Unused code fragments, class, method,

field or parameter stacks

 Missing library class: Frequently used and lack of class in the library

11

 Comments: Comment lines written to describe complex and unclear code structures.

When you feel the need to write a comment, try reconfiguring the code first, so any

comment is unnecessary (Fowler, Beck, Brant, Opdyke & Roberts, 1999).

The design flaws are known to have negative effects on the flexibility and

maintenance of the software systems (D’Ambros, Bacchelli & Lanza, 2010). ; However

even if the design is correct there should not any code smells in the code. If the coding

standards are not followed at the point where the design is put into practice, it is inevitable

that smells will be formed in the code.

12

3. RESEARH METHOD

With the recent development of DevOps (DevOps, 2017) and Agile (Agile, 2017)

software development methods, the software continues its life cycle with successive

versions as a result of rapid development and release cycles. These fast and small changes

can cause problems in the big picture while the software is following a difficult change

process (Goldstein & Mount, 2015). In the development process, if a fault is not detected

and not corrected, it will remain a danger for the life of the software. The longer an error

lives in the software, the greater cost to solve the error will be required. According to

McConnell (1996), if you do not do the job at the time of development that may cause an

error in software, then you should take 10 times more time to correct this error

(McConnell, 1996, p.45).

When an error is detected at the beginning of the development cycle, it is generally

known that the cost of repairing the error is very low. Detecting the fault at this stage is

of great importance. According to Emden and Moonen (2002), one of the advantages of

software review is to analyze the software before testing. This allows the problems to be

identified while at the development stage and to be solved at a very low cost (Emden &

Moonen, 2002). One of the main motivation to start this study is to have quality software

by reducing the cost of end-to-end software and maintenance effort. In addition to this we

want to raise awareness of not risking the future of the software by ensuring the quality

of the software, compliance with the standards, early detection of errors and taking

necessary actions. Because the life, cost, quality and future of the software is just as

important as not being left to the initiative of employees in development and test teams.

In this study, the following questions will be searched in order to ensure the quality

of the software and maintain its continuity:

I. How can quality be measured during software development?

II. Can a software error prevention system be installed? What benefits do you have if

it is installed?

III. Is it possible to detect a possible problem early in the software development stage

by catching some problems before it reaches the test stage with an early diagnosis

13

without being faulted and to correct the problems that are caught in the test phase?

How should it be done if possible?

IV. Code quality control, compliance with standards, code error tracking or code review

can be done automatically?

V. How effective are automated code analysis tools in reducing maintenance costs?

3.1 Analysis Tools and Their Contributions To Software Quality

The technical debt refers to the correction of the design or coding of the software,

or the tasks that need to be done to make the coding complete and accurate (Campbell &

Papapetrou, 2013, p.23). Static analysis is a technique used to identify and analyze

software properties from source code; these can be defined as items such as packages,

classes, relationships, code lines, errors, complexity, coding violations, and others.

Until recently, the analysis tools were weak in terms of their primitive and in-depth

analysis capabilities and could not take place in the software development process.

However, recent assessments of newly developed and updated existing vehicles have

shown that these tools have contributed more than expected to software development

process. According to the researches, complexity analyzes with static analysis tools

increase the productivity of care by 20% (McConnell, 2004, p.778).For example another

study, it is emphasized that productivity will go to zero as the complexity of code

increases over time (Martin, 2008, p.4). These tools can analyze the structure of a program

and suggest reconfiguration that could improve this structure (Fowler, Beck, Brant,

Opdyke & Roberts, 1999). In fact analysis can be done dynamically or statically. Static

analysis is performed on the source code without running or executing the program; In

general, static analysis responds to a wider range of questions than a dynamic analysis

(Bush, Pincus & Sielaff, 2000). In the development period of a software, early errors and

correcting errors not only reduce the cost but also provide error-free software. A software

should be analyzed for validation even if it is developed by expert programmers. Because

the results of the analysis show that the professional programmers may have some

problems in their codes.

Applying unit tests, system tests, quality assurance or manual code inspections,

most errors in code level still cannot be detected. In order to detect these errors in the

development phase auto-runnable static analysis tools developed. By the help of these

14

tools, detecting defects become quickly, analysis time is shortened, error is detected

during the development phase, and on this occasion significant savings are provided in

software development life cycle.

Static analysis tools are able to identify the following conditions (Continuous Code

Quality Platform, 2017; Bougroun, Zeearaoui & Bouchentouf, 2016; Campbell, &

Papapetrou, 2013, p.13-18):

 Program code does not comply with the rules

 Parts of the program that may interfere with the correct operation,

 Some points that do not obey the rules that hinder some non-functional quality

aspects such as maintenance feasibility and complexity

 Non-compliance with the best and safest programming methods

 A large number of topics aimed at traditional (manual) controls

 Piles of dangerous code

 Security-critical code sections

The root cause of critical and blocking errors is the result of bad habits in

programming and directly affects the technical debt. The basic approach to using

SonarQube as a static analysis tool is to propose to developers the use of standards and

maintain a reference criterion that does not increase technical debt, especially when

working with development teams in crowded organizations. The main reasons for

choosing SonarQube analysis tool in this study are as follows (Campbell and Papapetrou,

2013):

 The tool is famous for its controlling the quality and standards of Java projects.

 Plugin support for Findbugs, pmd, checkstyle, cobertura, etc

 Supporting 20+ software development languages. It has large scope from code

smells to security vulnerabilities.

 Supporting open source platform, quality-analysis experts recommend it

 It is compatible with continuous integration tools (eg jenkins, bamboo, Hudson)

 It can work with Sonarlint plug-in with integrated development environment tools

(eclipse, visual studio, intellij-idea etc.) and to guide the developer to the standards

 It is accurate and consistent in the work done and one step ahead of its competitors

in issues such as community support behind the tool

 It is able to run as fully automated analysis and integrations

15

 It supports integrations with external systems such as LDAP, Active Directory,

SVN and GitHub

 Automated and continuous monitoring of code quality with this tool

 To be able to produce reports about duplicated code, unit test status, comments,

errors, vulnerability, code scope and code complexity

 Supports SQALE rating. The quality classification of projects with SQALE

(Letouzey, 2016) rating is directly related to the technical debt ratio of the project

and the Technical Debt Rate is can be described as follows (Letouzey, 2016):

 Technical debt of your project (= debt of all problems)

 Divide by re-write cost estimate(re-write project from scratch)

3.2 Software Quality and Static Analysis Tool

While the quality of the software is based on the internal and external characteristics

of the software, the external quality characteristics of the software are generally the result

of the reflection of the internal characteristics (Lincke, 2007). In this study, the source

code reflecting the internal characteristics of the software was analyzed and improvement

suggestions were obtained. The analysis with the static analysis tool the code review

process can produce analysis reports by working manually or schedule to run

automatically. The result of the analysis includes the quality level of the software. This

level is named as Quality Gates. According to the criteria determined as Quality Gate,

tool reports the result as passed or failed. Since these criteria consist of parameters such

as newly added blocker / critical number of findings, code coverage rate, degree of

maintenance availability, and safety assessment, the quality of the software can easily be

measured in development stage. Thus, This report provides information about the quality

level and the compliancy of coding standards. As a result, the code review process is

performed automatically without any effort and provide information about the quality of

the software and compliancy with the coding standards.

With the analysis tool used in this study some problems can be detected without

entering into the test phase. Fixing the problems within development period enables

blocking an issue to turn into error. In this way, most of the findings identified in the

testing process in the old process do not need to be re-developed after development->

testing. This has reduced the repetitive workload on both the test and development sides.

16

Of course, not all of the errors encountered in the software, it is observed that the errors

that can be detected with the static analysis tool are possible to be diagnosed early and

the effort spent on errors in this context can be saved.

The development leader, software architect, project manager and product responsible

examined static analysis reports. In addition, it is concluded as very beneficial to use

during the development phase as early error detection mechanism and code inspection

tool. Thus, the detection and correction of code fragments that do not meet the standards

that may cause errors can be made at the beginning of the process. This provides a

reduction in the number of repetitive efforts on the development and test source side.

3.3 Method And Detail Of The Work

In the study, we performed automatic analysis studies on the project source codes

with the static code analysis tool to check whether the software development teams

complied with the coding standards and to evaluate the software quality. The number of

findings based on project-based analysis and number of findings that are resolved after

compliance with code standards are as in Table 3.1

According to the results of the project-based analysis, it is possible to identify the

most frequent and dense errors as a result of the number of findings, type and the number

of solved findings. In the light of these data, we provided feedback to the relevant

development team by taking into account the error type, importance level, distribution

rate, and by providing information with code samples. Therefore, development was

achieved and awareness was created in order not to repeat the same kind of findings. In

this study, it was supported to identify the findings and correct them by the developers

and to produce better quality outputs by taking the lessons from their own mistakes.

However, each line of code analyzes by the analysis tool helped keeping the projects'

source code compatible with coding standards. In addition, it provides significant gains

for the future of the organization because it enables the newcomer to adapt faster and

improve self-correction skills that yield to increase the quality to the next level.

17

Table 3.1 Analysis Issue Details

Project

(# of code

line)

Issue

Type

Total

Issue

Count

Issue Detail/Explanation

Fixed

Issue

Count

ProjectA

(61410)

Blocker 12

8 Null pointers should not be dereferenced

2 Throwable and Error should not be caught

2 Conditions should not unconditionally evaluate to

"TRUE" or to "FALSE"

2

Critical 97

94 Exception handlers should preserve original

exception

1 Exit methods shouldn’t be called

2 Lack of multi-threading concept usage

2

Major 1811 ** 25

ProjectB

(117979)

Blocker 913

11 Null pointers should not be dereferenced

274 Throwable and Error should not be caught

628 Conditions should not unconditionally evaluate

to "TRUE" or to "FALSE"

890

Critical 836

483 Fields in a “serializable” class should either be

transient or serializable

342 Exception handlers should preserve the original

exception

11 IndexOf checks shouldn’t be for positive

numbers

828

Major 5825 ** 4394

ProjectC

(40901)

Blocker 323 281 Conditions should not unconditionally evaluate

to “TRUE” or to “FALSE”

4 Access information or credentials shouldn’t be

hard coded

1 Throwable.printStackTrace(...) shouldn’t be

called

1 Static fields should be final

36 Throwable and Error should not be caught

*

Critical 527 509 Fields in a “serializable” class should either be

transient or serializable

8 Exception handlers should preserve original

exception

10 Equality tests should not be made for floating

point values

*

Major 2644 ** *

ProjectD

(136185)

Blocker 525

487 Conditions should not unconditionally evaluate

to "TRUE" or to "FALSE"

22 Throwable and Error should not be caught

16 Null pointers should not be dereferenced

498

Critical 500

318 Fields in a “serializable” class should either be

transient or serializable

18 Equality tests should not be made with floating

point values

164 Exception handlers should preserve original

exception

489

Major 5843 ** 2681

18

Table 3.1 (Continued)

Project

(# of code

line)

Issue

Type

Total

Issue

Count

Issue Detail/Explanation

Fixed

Issue

Count

ProjectE

(80371)

Blocker 467

328 Conditions should not unconditionally evaluate

to "TRUE" or to "FALSE"

78 Resources should be closed

30 Null pointers should not be dereferenced

23 Jump statements should not occur in finally

blocks

4 Throwable and Error should not be caught

2 The class overrides “equals()” and should

therefore also override “hashCode()”

2 equals() should test object type

323

Critical 664

327 Fields in a “serializable” class should either be

transient or serializable

176 Throwable.printStackTrace(...) shouldn’t be

called

17 if /elseif statements shouldn’t contain the same

conditions

42 Exception handlers should preserve original

exception

86 Common static fields should be final

8 Access information or credentials shouldn’t be

hard coded

8 The same operands shouldn’t be used with the

same operator

270

Major 3826 ** 1531
* The project is not included in the improvement process. Since the project will be retired.

** Major faults often encountered::

 Complex methods, function or class

 Nested checks, loops, vb.(if, for, while, try, switch)

 Large class

 Unused method, variable, field, class, local variables or method paramters

 Casting primitive data types

 Unauthorized access to unprotected class

 Nested try-catch blocks

 Unnecessary assignments and duplicated code

 Unnecessarily usage of asynchronous object usage (Using StringBuffer instead of StringBuilder)

In the 5 projects discussed within the scope of the study, a study was carried out for

the errors detected in the production environment between 01.01.2016-01.01.2017 and

followed on the application life cycle management(ALM) application. The aim of the

error analysis in this study is to find the ratio of errors that can be determined by static

analysis tools to all errors. Thus, if these tools are used in the development phase, the

effects on the cost are calculated and their positive and negative aspects are evaluated.

The production errors determined based on the project and the analysis findings detected

in the source codes of the versions where these errors are received are as follows. Detailed

information on the errors detected with the analysis tool is given on Table 3.2.2. Since

19

the aim is to determine how much effort is spent on the errors that can be found with the

analysis tools, the error details are not included since other errors could not be found with

the analysis tool.

Tablo 3.2: Effort Details for Detected Errors in Production Environment

Project

Name

Error

Severity

of

issues

Detected

by

analysis

tool

Paid Effort

(man/day)
Error Detail

Total

Effort **

(man/

day)

Effort

Saving

Rate(%) ***

ProjectA

High 1

86
9/86*100 =

10.46

Medium 3

Low 6 1 9

Error while updating XX

item. An unhandled

exception occurred.

ProjectB

High 1

102
24/102*100

= 23.52

Medium 1

Low 2 1 24

Maximum number of

connections exceeded.

Restart required because of

performance problem.

ProjectC

High * * * *

* * Medium * * * *

Low * * * *

ProjectD

High 2 1 2
Exact fetch returns more than

requested number of rows.

44

(2+2+5+1) /

44 *100 =

22.72

Medium 7 2 2+5

2: Causes to stop the process

at the ProjectD.

5:When pressed the button to

“show the item”, then “An

Error Occurred" exception

was detected. Ex handling

Low 2 1 1

“Function must return a

value” exception was

detected.

ProjectE

High

87

(2+2+20)/87

*100 =

27,58

Medium 8 3 2+2+20

X user cannot logout error.

User hangs logged in and

bash process cannot be

completed.

Low 2

Y connections cannot logout.

In addition, after logout due

to timeout, telnet connection

cannot be re-establisted.

Causes to exceed max.

number of connection.

 319 21

* Due to the decision of retirement of the ProjectC, it was not included in the analysis and improvement

studies and the findings were not corrected.

** Total Exercise (man / day): is the total of man / day spent in the production environment (without the

analysis tool) to correct all detected errors.

*** Effort Saving Rate (%) = (Total Effort Spent on Errors Detected by Analysis Tool) * 100 / (Total

Effort Spent for All Errors)

20

4. EXPERIMENT RESULTS AND FINDINGS

From the findings of the analysis, work plan was prioritized in order of priority, and

tasks were initiated to correct blocking, critical and high priority findings by development

teams, respectively. As a result of the corrections, the reduction in the number of findings

and the improvement in the code quality yielded the following benefits:

 Ensuring that the software to be developed is made in accordance with the coding

standards

 Elimination of hidden findings and errors (48%) in the project codes developed

within the last 5 years

 The development team to learn from the wrong and to make the development of the

same error without re-making (Because a mistake and correction action teach

someone not to do the same error again.). For example; As a result of the efforts to

correct the findings because of the awareness of the original exception not to be

crushed by the whole development team, it was reported by the operation team that

the error root cause analysis resulted in a short time. They remarked that they could

detect the root cause analysis within 7-10 minutes with original exception logs.

 Developing software that does not contain any critical issue.

 Decrease in maintenance costs by 21% due to clear, readable and clean code

improvements.

 Decrease in future development costs by having clean code and eliminating code

readability and key-programmer dependence problems.

 Decrease in error correction requests from the test to the development team with the

decrease in the number of findings in the test. For example; When some errors with

the help of static analysis are considered in the development phase, the test team does

not spend time to find these errors.

According to the data obtained in this study, by using static analysis tools in

software development process, errors can be detected early and this reduces maintenance

costs by about 21%. An additional effort requirement was not taken into account since

the findings identified during the development phase of the analysis tool should be carried

out within the development period of the necessary corrections before the test phase was

started.

21

4.1 Evaluation and Feedback Meeting Notes

Evaluation interviews were organized in order to evaluate objectively positive and

negative aspects of using static analysis tools. In the interviews conducted with 5

development team leaders, 3 project managers and an architectural team manager, the

following questions were asked about the positive / negative aspects of these studies and

the answers were summarized under positive and negative aspects:

Feedback Meeting Questions:

1. What is your opinion about the static analysis work carried out during the software

development phase? In addition, how should it be operate it as a quality

measurement and control point?

2. Do you find it useful to work with the static analysis tool(sonarqube) for detecting

and automating a finding that was included in the development phase before it

becomes a fault?

3. During the development phase of the software, is it possible to detect some

possible problems before they come to the test stage? Before the test phase is it

possible to detect and fix them in the development phase, how should it be done if

possible?

4. Is it possible to do following actions automatically;

 checking code quality

 checking coding standards compliancy

 detection of code error

 performing code review

5. How effective is automatic code analysis tools at the point of reducing

maintenance costs?

6. What do you think about the positive and negative effects of static analysis?

4.2 Positive Impacts

4.2.1 Improvement of development teams, high quality output and productivity

1. If an error was detected and fixed in the development phase, the same type errors

are not reproduced with the help of the static analysis tool. Since the tool notifies

22

developer about problematic code when writing through integrated support with

Eclipse.

2. Informing and educating the developer with the data presented by the analysis

tool together with the examples that are appropriate and non-compliant with the

standards.

3. Providing quality control point by showing how development teams can write

code compliant with standards.

4. Because of the problems that may arise in the codes of the development experts,

it is necessary to take lessons from the mistakes within the team and to spread the

tradition of developing code according to the standards.

5. Because all codes are analyzed, developers are beginning to write code more

carefully.

6. The fact that new experts participating in the development teams work in the code

pool according to the standards increases the person's dedication, code ownership

and job satisfaction.

4.2.2 Quality measurement, automatic review and early error detection

1. To be aware of an error in the development phase that may cause a problem, early

intervention and, as a result, to carry out development activities that are more

appropriate to the standards.

2. Using analysis tools help improving developers skills, experience and self-

confidence (indirectly).

3. The code is checked before development tests, including unit testing in the

development phase is reducing the number of errors captured in tests. The cost of

retesting is significantly reducing after the correction within development phase.

4. It shortens the development time required for additional development and

maintenance of code pools, which pass through the analyzes successfully, as it

controls compliance with the standards.

4.3 Negative Impacts

1. Examination of the analysis reports; some findings need to be checked at architect

/ team leader / expert level

23

2. Loss of time for analysis and updating the rules for false-positive findings in order

not the tool to repeat these findings.

3. Effort for installation and configuration of new projects on the tool and in the

person's own development environment

4. Additional time request for correction of findings as a result of analysis because

it is considered as extra effort and time loss by the developers.

5. Loss of sustainability due to lack of control and sanction pressure unless it is put

into software development process.

6. Some of the findings by the development experts are not accepted as errors. For

example, the fact that some analysis findings related to exception handling are not

considered as errors.

7. There is a risk of malfunctioning of the code that runs properly during the problem

fix operation.

24

5. DISCUSSIONS, LIMITATIONS AND THREATS

In this study, it is aimed to establish quality control structure and decrease

maintenance costs in order to ensure development according to coding standards. The

findings were obtained in the projects which were not compatible with coding standards

and not used any analysis tools. Therefore, the decrease in maintenance costs by 21%

may vary depending on the project, the analysis tool used, the capability of the

development team, the coding habits and compliance level for coding standards. In

addition, because of the failure to comply with the coding standards of the errors

determined by the analysis tool and the assumption that it will be corrected within the

development period, the cost of exertion will not be taken into account here.

The acceptance of the analysis findings by the development experts, the desire and

motivation to develop in accordance with the standards are the basic requirements for the

success of these studies. For example, it is necessary to ensure that the whole team does

not repeat the same mistake by supporting the team in taking the lessons from mistakes

and that there must be sanction to ensure this. All stakeholders need to agree and support

the implementation of new code acceptance to the production environment with a

prerequisite for submission of analysis reports without any evidence. In order to ensure

the effective participation of all stakeholders and to manage the process successfully from

end to end, the management support is critical for the applicability of the process.

25

6. CONCLUSIONS

Errors encountered in the production environment or in the testing phase can cause

many negative consequences because the software is in use or ready to use. In general,

the cost of taking pro-active (foresight) measures and fixing issues at the development

phase before the problems have not yet turned into a fault remain very low comparing

with the cost of correction after the problems encountered as errors.

With this approach, a study has been initiated to ensure quality in software, early

detection, correction and prevention of errors in order to obtain reliable, reduced

maintenance costs, standards-compliant and fault-free software. In this thesis, in the field

of telecommunication, an analysis of 29 projects developed by java by 5 development

teams (in the software development phase) was carried out by using static analysis tools.

The main purpose of the study is to increase the productivity by detecting the

compatibility of the software with the coding standards and the errors it contains.

6.1 Quality Measurement And Automation During Software Development

 In the studies we have done, it has been observed that with the use of static analysis

tools in the software development phase, information about the compliance of the code

with the standards, and the quality level can be easily obtained. In particular, with the

integration of software development editors and instant analysis tools it is possible to see

instant scan of the code and get findings at the time of coding. After development phase,

in order to analyze the codes in code warehouse (svn, git, clearcase, etc) we easily

automated the analysis process by using continues integration tools such as Jenkins. In

this way, it is possible to automatically analyze the developed code and generate analysis

report of source code as quality output.

6.2 Software Error Prevention System: Early Issue Detection And Benefits

 In the scope of this thesis, it is experienced to detect the errors early by the static

analysis studies before testing phase or deployment to the production environment. In our

experiment, firstly, the percentage of the findings opened as defect in the production

26

environment was investigated by using the static analysis tools. Secondly, evaluations

were made on the intersection of the production defects and captured issues by analysis

tools. were used by calculating the effort to eliminate errors that occurred in living

environment. In the evaluation, the rate of effort saving with the use of analysis tools was

determined by the following formula (Eq. 6.1).

Effort Saving Rate (%) =
(Total Effort Spent on Errors Detected by Analysis Tool)∗100

(Total Effort Spent for All Errors)
 Eq. (6.1)

In this study, we have studied how many of the records opened as defect in the

production environment can be detected as issue by static analysis tools. Then, the

evaluations were made on the use of static analysis tools by regarding the paid effort to

eliminate the errors that occurred in the production environment. Here we used real

production errors and their fixing cost in terms of man/day.

6.3 Auto Analysis Tools And The Impact On Maintenance Cost:

 According to the findings obtained in this study, after static analysis tools included

in software development process, maintenance costs are reduced by 21%. The experiment

result in terms of the contribution of static analysis tools to the efficiency, increase in

productivity and quality in software are also supported by the results of studies conducted

by Jalote and Agraval (2007), Kumaresh and Baskaran (2010), Mcconnel (2001) and

(Mcconnel, 2004).

In the software development process, it is a great gain to identify the problems

included in the software by the developers at the development stage. However, during the

development phase, it was possible to fix these findings, and obtain the quality by learning

lessons from the mistakes and ensure the continuity of all these processes. As a result of

these processes, it has been observed that firms can significantly reduce maintenance and

development costs. Some of the important contributions of the static analysis in the

software development process are improving the developer's skill, increasing the

readability (by having standards compliant and clean source code), decreasing the

maintenance cost, directing to development according to the standards and decreasing the

maintenance cost with early detection of issues. With all of these contributions, it is

27

recommended that static analysis should be applied at the development stage of the

software to reduce the cost of effort in development, test, correction and distribution

processes. However, as with most disciplines, tools and techniques only benefit if you use

them at regular intervals.

 In addition to static analysis, it is necessary to evaluate the results obtained from

both static and dynamic analysis. With the combination of on-time analysis (which is also

known as dynamic analysis) and static analysis may guide the development process to be

more accurate and stable. Using the only static analysis may not be sufficient to prioritize

and address issues that are high importance. Because the static analysis is carried out

without actually running the program, the dynamic analysis analyzes the program during

the study and can detect the findings especially at the points in the program flow. In static

analysis, while the program can be monitored in a dynamic analysis, the program is

monitored in a single way during the execution, which can be more efficient in

comparison with static analysis (Ishrat, Saxena & Alamgir 2012).

28

REFERENCES

Agile(2017), http://agilemanifesto.org. Access Date: 30 Mayıs 2017.

Armenise, V. (2015). Continuous Delivery with Jenkins: Jenkins Solutions to Implement

Continuous Delivery. Proc. IEEE/ACM 3rd Int. Workshop Release Eng. Erişi

adresi: https://dl.acm.org/citation.cfm?id=2820701.

Booch G. (1998). Object-oriented analysis and design with application. 2nd edition. ,

Santa Clara, California: Addison-Wesley.

Bougroun, Z., Zeearaoui, A., Bouchentouf, T. (2016). Comparative Study of the Quality

Assessment Tools Based on a Model: Sonar, Squale, EvalMetrics. Journal of

Computer Sciences. Access address:

https://pdfs.semanticscholar.org/bd41/006b17e948a38f1e0bfeffe3f72de678c753.p

df.

Bourque P, Fairley E. R. (2014). Guide to the software engineering body of knowledge

(SWEBOK). version 3.0. Los Alamitos, CA: , IEEE Computer Society Press.

Bush, W. R., Pincus, J.D., Sielaff, D.J. (2000). "A Static Analyzer for Finding Dynamic

Programing Errors, Software-Practice and Experience, 20, 775-802. Access

address: https://ieeexplore.ieee.org/abstract/document/7202950.

Campbell, G., Papapetrou P. (2013). SonarQube in Action. Greenwich: Manning

Publications Co.

Catal, C. (2011). Software fault prediction: A literature review and current trends, Expert

Systems with Applications, 38, 4626–4636.

D’Ambros, M., Bacchelli, A., Lanza M. (2010). On the Impact of Design Flaws on

Software Defects. In QSIC’10: Proceedings of the 2010 10th international

conference on quality software. Washington, DC. Access address:

https://ieeexplore.ieee.org/abstract/document/5562941. .

Emden, E. V., Moonen, L.. (2002). Java quality assurance by detecting code smells Proc.

9th Working Conf. Reverse Engineering, IEEE Computer Society, Access address:

https://ieeexplore.ieee.org/abstract/document/1173068.

Fagan, M. E.. (1976).Design and code inspections to reduce errors in program

development. IBM Systems Journal, 15, 3, 182–211. Access address:

https://search.proquest.com/docview/222415339?pq-origsite=gscholar.

29

Fowler, M., Beck, K., Brant, J., Opdyke, W. Roberts, D. (1999). Refactoring: Improving

the Design of Existing Code. USA: Addison Wesley Professional.

Goldstein, M., Mount, C. (2015). Automatic and continuous software architecture

validation. Proceedings of the 37th International Conference on Software

Engineering.Florence, Italy. Access address:

https://ieeexplore.ieee.org/abstract/document/7202950.

DevOps(2017), https://devops.com. Access date: 30 May 2017.

Eclipse(2017), http://www.eclipse.org/. Access date: 30 May 2017.

Ishrat M., Saxena M., & Alamgir M., Comparison of Static and Dynamic Analysis for

Runtime Monitoring, 2012.

Google Java Style Guide(2017), https://google.github.io/styleguide/javaguide.html.

Access date: 10 April 2017.

Jenkins(2017), https://jenkins.io. Access date: 30 May 2017.

Continuous Code Quality Platform(2017), https://www.sonarqube.org. Access date: 30

May 2017.

Jalote P., Agarwal N. (2007). Using Defect Analysis Feedback for Improving Quality and

Productivity in Iterative Software Development., In proc- ITI 3rd International

Conference on ICT. Access address:

http://people.cse.iitd.ernet.in/~%20jalote/papers/DefectPrevention.pdf.

Java Code Conventions (1997). Sun Microsystems, 2550 Garcia Avenue, California

U.S.A. Access address:

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf.

Kevitt, M. (2010). Best Software Test & Quality Assurance practices in the project life-

cycle: An approach to the creation of a process for improved test & quality

assurance practices in the Project life-cycle of an SME(Master Thesis). Access

Address: http://rian.ie/en/item/view/40440.html.

 Kumaresh, S., Baskaran, R. (2010). Defect analysis and prevention for software process

quality improvement. International Journal of Computer Applications(IJCA), 42-

47 Access address: https://www.ijcaonline.org/archives/volume8/number7/1218-

1759.

Letouzey J. Louis (2016). The SQALE Method for Managing Technical Debt. 2012 Third

International Workshop on Managing Technical Debt (MTD), Zurich, Switzerland.

Access address: https://ieeexplore.ieee.org/abstract/document/6225997 .

https://ieeexplore.ieee.org/abstract/document/7202950
http://www.eclipse.org/
https://google.github.io/styleguide/javaguide.html
https://jenkins.io/
https://www.sonarqube.org/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220397
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220397

30

Lincke, R. (2007). Validation of a Standard and Metric-Based Software Quality Model:

Creating the Prerequisites for Experimentation. (Master Thesis). Access address:

http://arisa.se/files/L-07.pdf.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Upper

Saddle River, NJ: Prentice Hall PTR.

McConnel S. (2001). An ounce of prevention, IEEE Software, s. 5-7.

McConnell, S. (1996). Rapid development: taming wild software schedules. Washington:

Microsoft Press, Redmond.

McConnell, S.(2004). Code Complete. 2nd edn. Redmond: Microsoft Press, s. 514-531,

778.

Nagappan, N., Ball. T. (2005). Static analysis tools as early indicators of pre-release

defect density. In Proceedings of the 27th international conference on Software

engineering. St. Louis, MO, USA. Access address:

https://dl.acm.org/citation.cfm?id=1062558.

31

ANNEX

Annex I: Software Code Quality Requirements

 SOFTWARE CODE QUALITY REQUIREMENTS

The software is defined as the ability of the system or its components to perform the

functions expected in a given environment within a certain time frame. This document is

intended to provide quality in the software developed in-house or in the custom-made

manner. The requirements for quality assurance are listed below.

The requirements for code quality are grouped under 4 headings.

1. Reliability

2. Performance Competence

3. Maintenance Feasibility

4. Security

1. Reliability Requirements:

1.1. Try, Catch, Finally, exception, process or such error handling blocks should not

be empty.

1.2. Exceptions catched with catch blocks should not be thrown out without any

action. Exceptions must be be logged.

1.3. Functions and procedures that contain insert, update, delete, create table, or select

commands to run in the database must perform exception handling.

1.4. The classes that implement the serializable interface must also perform the

serializable method for the class's own and all serializable subdomains.

1.5. Persistent classes must perform hashCode () and equals () methods.

1.6. Applications running on the server should not repeat the capabilities provided by

the application server. For example: Creating a thread in the J2E framework

1.7. Classes with a pointer must perform their own copy methods.

32

1.8. All non-static variables must be given an initial value.

1.9. In an instance, self-deletion should be avoided.

1.10. Type casting should only be carried out for compatible types.

1.11. Data should not be shortened while transporting data in the memory, the data to

be moved to the two ends (source and target) should be guaranteed to be

compatible in terms of type, size and capacity.

1.12. There should be no function with an indefinite number of parameters. The input

parameters received must be used with data structures and for each parameter

should have a specific data structures. For example, if a function that should take

3 parameters, such as id, name and description, should not take all parameters as

a single parameter separated by special characters.

1.13. The return value must be tested in all resource allocation statements. For

example; get memory, get thread, get db connection, and open file etc.

1.14. It should not be tested whether the floating-point numbers are equal.

1.15. Any function should leave back any resources it allocates (in order not to

encounter the Memory Leak Problem.)

1.16. The references given to the buffers should be guaranteed to fit in the dimensions

reserved for the buffer.

1.17. All data access must be via a central data manager (transaction manager).

1.18. If a singleton pattern is applied in multi-thread environments, the locks must be

set up without creating singleton classes.

1.19. Cyclic loop calls should be avoided. For example: If A calls B, B shouldn't call

A.

1.20. Superclass should not be aware of subclasses and should not use sub-classes.

(Superclass should not call/use sub-class method, its attributes or sub-class

name.)

1.21. In special destructor-writeable software languages, classes with virtual methods

must have a virtual destructor

1.22. In special destructor-writeable software languages, master classes must have a

virtual destructor

1.23. In special destructor-writeable software languages, subclasses must implement

virtual destructors in their master class

1.24. The cyclomatic complexity of all modules should be acceptable

33

1.25. Network resources (IP Address, hostname, port, URL, etc.), user codes,

passwords in code shouldn't be hardcoded. Instead, it must be implemented with

encryption algorithm and parametric use.

1.26. Logs should not include password or special details of a customer.

1.27. Modules that use resources should also have statements that clear these blocks.

This means that pieces of code that specify how to clean resources during garbage

collection should also be written.

1.28. There must be a timeout for blocking synchronous calls.

1.29. The access information and passwords of the module / display / sub-programs

in the application should not be left as default assigned values.

1.30. Information written in the log should contain information summarizing the

situation rather than the general expression.

2. Performance Qualification Requirements:

 Under the given conditions, the performance level of a software and the amount of

resources that use it are evaluated.

2.1. Client requests must be centralized to reduce network traffic.

2.2. SQL queries that perform sequential searches should be avoided.

2.3. Very large tables on the complex queries should not be used. For example: many

tables should be joined with each other, too many subqueries should be avoided.

2.4. Usage of excessive index or multiple indexes in a table should be avoided.

2.5. If large tables and indexes are available in the database, partition should be used.

2.6. If memory is limited, the correct parser should be selected. For example, avoiding

the use of the DOM and something like SAX should be used.

2.7. Operations that adversely affect performance (OPEN / CLOSE, object creation,

CREATE, object reset, database connection, remote command call, SQL query,

etc.) should be avoided in the loop.

2.8. Lazy object creation should be done rather than creating a full object in static

blocks.

2.9. It is recommended that the number of SQLs in the middle layer should not be

more than 2.

34

2.10. If the SQL number is more than 2, the store procedure must be used.

2.11. Objects that cannot be changed can also be avoided. For example, it should

not be attempted to create a new string from two strings. In such a case,

StringBuffer / StringBuilder should be used.

2.12. StringBuilder is recommended because it will be faster rather than

StringBuffer if a synchronized structure is not required.

2.13. The reference of unused objects should not be kept. In this case, the object

will remain unclean during garbage collection (garbage collection, cleaning of

unused objects).

2.14. Keeping heavy objects (requiring large amounts of memory) in the session

should be avoided.

2.15. The use of static variables and static objects should be avoided. If it is

necessary to use, it should be used as multi-tread environment.

2.16. Instead of using a static connection, the required connection must be taken

from the connection pool.

2.17. It is necessary to specify the names of the fields to be queried at the point

of querying from the database and query only needed data.

2.18. When bulk data is retreival required from the database, the paging structure

must be used. It is necessary to limit the size of the data to query by the interval.

2.19. A call on the provided webservice or screens is expected to return a

response within 5 seconds (except for the delays caused by the network devices

being accessed).

2.20. For queries written for database operations, prepared statement should be

used.

3. Maintenance Feasibility Requirements:

Expresses the effectiveness and ability of making the desired changes in the

application, software or system.

3.1. Functions / methods that perform data exchange should only be changed with

adjacent layer functions / methods. It should not skip the adjacent layer and make

changes with the other layer.

3.2. Too many horizontal layers should be avoided.

35

3.3. Long code segments should be collected in one place. Copy-paste should prevent

the distribution of these pieces of code (Code duplication issue).

3.4. A class's inheritance depth should be limited.

3.5. The number of classes derived from a class must be limited.

3.6. Multiple inheritance should be avoided. For example, a class should not be

derived from both A, B, and C.

3.7. The data update / insertion features should be able to be stored, restricted, and

encapsulated.

3.8. Data members of classes should not be public.

3.9. A class's use of other classes (fan-out) should be restricted. The threshold value

should be ≤ 5.

3.10. Cyclic loop calls should be avoided. For example, If A calls B, B should

not call A.

3.11. Instead of multiplying the same code snippet by typing at different points,

it should be written to a single point and use from necessary points as reference.

3.12. Instructions should not be closed as comments.

3.13. Files should not contain over 1000 lines of code.

3.14. Indices (counter, index) should not be changed within the loop.

3.15. GO TO, CONTINUE and BREAK should not be used except the switch

cycle.

3.16. Cyclomatic complexity should be limited. It is recommended not to exceed

the complexity value of 12.

3.17. Depending on the number of database / file operations, complexity should

be checked.

3.18. The number of parameters passed by a function / method must be less than

7.

3.19. Other than trivial idioms (literal) should not be hard code.

3.20. All error messages should be kept in a central location. There must be no

development, deployment, or system stop to change an error message.

3.21. Line length should not be more than 80 lines.

3.22. For value assignments, d = (a = b + c) + r; substitute a = b + c; d = a + r;

writing should be applied.

36

3.23. Use of parentheses: if (a == b && c == d) instead of if ((a == b) && (c ==

d)).

3.24. There should not be more than one return statement in the method /

functions.

3.25. There should be no duplicated code fragments.

3.26. All software developers must use the same code editor (code formatter /

beautifier).

3.27. The code must be passed through the code analysis tools and the code

formatter before it is sent to the repository. The code must be sent after the errors

of the analysis are cleared.

3.28. The number of lines of code in Method / Function / Procedures should not

be higher.

3.29. Each class / function / method / procedure should have a brief description

of what the purpose of the piece of code serves.

3.30. Based on the development, all necessary information about how to make

any changes or management by the user or admin during the life cycle including

the initial installation of the application / development should be shared with the

package delivery.

37

Annex II: Yazılım Kod Kalitesi Gereksinimleri

YAZILIM KOD KALİTESİ GEREKSİNİMLERİ

Yazılım, sistem veya bileşenlerinin, belirli bir ortamda, belirli bir zaman dilimi içinde

kendilerinden beklenilen işlevleri yerine getirebilme yeteneği olarak tanımlanmaktadır.

Bu doküman şirket içi veya ısmarlama şekilde geliştirilen yazılımlarda kaliteyi sağlamak

amacıyla hazırlanmıştır. Aşağıda kalitenin sağlanması için gereksinimler sıralanmıştır.

Kod kalitesine ait gereksinimler 4 başlık altında toplanmıştır.

1. Güvenilirlik

2. Performans Yeterliliği

3. Bakım Yapılabilirlik

4. Güvenlik

1. Güvenilirlik Gereksinimleri:

1.1. Try, Catch, Finally, exception gibi veya buna benzer hata yakalama blokları boş

olmamalıdır.

1.2. Catch blokları ile yakalanan hatalar hiçbir işlem yapılmadan rethrow edilmemeli.

Yakalanan hatalar loglanmalıdır.

1.3. Veritabanında çalıştırılacak Insert, Update, Delete, Create Table veya Select

komutlarını içeren fonksiyonlar ve procedürler hata yönetimi (exception

handling) yapmalıdır.

1.4. Serializable arayüzü gerçekleştiren sınıflar aynı zamanda serializable metodunu

sınıfın kendi ve tüm serializable alt alanları için gerçekleştirmelidir.

1.5. Persistent sınıflar hashCode() ve equals() metodlarını gerçekleştirmelidir.

1.6. Sunucu üzerinde çalışan uygulamalar uygulama sunucusu tarafından sağlanan

yetenekleri tekrarlamamalıdır. Örneğin: J2E çatısı içinde thread oluşturmak

1.7. Pointer içeren sınıflar kendi copy metodlarını gerçekleştirmelidirler.

1.8. Tüm non-static değişkenler için bir başlangıç değeri verilmelidir.

1.9. Bir instance içinde kendini silme işleminden kaçınılmalıdır.

1.10. Tip çevrimleri sadece uyumlu tipler için yapılmalıdır.

38

1.11. Hafıza içerisinde data taşınırken kısaltılmamalı, datanın taşınacağı iki

ucun (kaynak ve hedef) uyumlu boyutlarda olması garanti altına alınmalıdır.

1.12. Belirsiz sayıda parametreye sahip herhangi bir fonksiyon olmamalıdır.

Alınan giriş parametreleri veri yapıları üzerinden ve her bir parametreye özel veri

yapıları kullanılmalı. Örneğin, id, name ve description gibi 3 parametre alması

gereken bir fonksiyon tüm parametreleri tek bir string içinde özel karakterlerle

ayrıştırılmış şekilde tek bir parametre olarak almamalıdır.

1.13. Bütün resource allocation ifadelerinde geri dönen değer test edilmeli. Bu

ifadeler get memory, get thread, get db connection ve open file ifadelerini

içermektedir

1.14. Floating point sayılarının eşit olup olmadığı test edilmemelidir.

1.15. Herhangi bir fonksiyon ayırdığı her kaynagı geri bırakmalıdır.(Memory

Leak Problemi ile karşılaşmamak için.)

1.16. Bufferlara verilen referansların buffer için ayrılan boyutlara sığması

garanti altına alınmalıdır.

1.17. Bütün data erişimi, merkezi bir data manager (transaction manager)

üzerinden olmalıdır.

1.18. Multi-thread ortamlarda singleton pattern uygulanıyorsa, locklar singleton

sınıflar oluşturulmadan kurulmalı.

1.19. Dairesel çağrılardan kaçınılmalıdır. Örneğin: A B yi çağırırken B de A yı

çağırmamalıdır.

1.20. Superclass lar subclass lardan haberdar olmamalı ve sub-class ları

kullanmamalı. (Superclass sub-class ın methodunu çağırmamalı, attributelerini

kullanmamalı ve sub-class adını kullanmamalı.)

1.21. Özel destructor yazılabilen yazılım dillerinde, sanal method içeren sınıflar

sanal destructorada sahip olmalıdır

1.22. Özel destructor yazılabilen yazılım dillerinde, ana sınıflar sanal

destructora sahip olmalıdır

1.23. Özel destructor yazılabilen yazılım dillerinde, alt sınıflar ana sınıflarındaki

sanal destructorları implement etmelidir

1.24. Bütün modüllerin cyclomatic complexity leri kabullenilebilir seviyede

olmalı

39

1.25. Network kaynaklarının (IP Adresi, hostname, port, URL vs), kullanıcı

kodları, şifreleri kod içerisinde ve açıkça yazılarak (hard code)

kullanılmamalıdır. Bunun yerine encryption algoritmasından geçirilmeli ve

parametrik kullanım yapılmalıdır.

1.26. Loglara şifre bilgisi veya müşteri özelindeki özel bilgileri yazılmamalıdır.

1.27. Kaynakların kullanıldığı modüllerin ayrıca bu blokları temizleyen

ifadelerinin de olması gerekmektedir. Yani garbage collection sırasında

kaynakların nasıl temizleneceğini belirten kod parçaları da yazılmalıdır.

1.28. Senkron çağrıları engellemede bununla ilgili zamanaşımı olmalıdır.

1.29. Uygulama veya çözüm içerisindeki modül/ekran/alt-programların erişim

bilgileri ve şifreleri default atanan değerler olarak bırakılmamalıdır.

1.30. Loglara yazılan bilgilerde genel ifadeden çok, o durumu özetleyen

açıklama ve bilgiler yer almalıdır.

2. Performans Yeterliliği Gereksinimleri:

Verilen şartlar altında, bir yazılımın performans seviyesi ve kullandığı kaynak

miktarını etkileyen özelliklerin değerlendirilmesidir.

2.1. Ağ trafiğini düşürmek için client istekleri merkezileştirilmelidir.

2.2. Sıralı arama yapan SQL sorgularından kaçınılmalıdır.

2.3. Çok büyük tablolar üzerinde kompleks sorgulamalar yapılmamalı. Örneğin:

birçok tablonun birbiri ile join yapılması, çok fazla alt sorgu olması, joinlerde

performansı düşüren sıralamalar yapılmasından kaçınılmalıdır.

2.4. Aşırı büyük index veya bir tabloda birden fazla index kullanımından

kaçınılmalıdır.

2.5. Veritabanında buyük tablolar ve indexler uygun ise partition yapılmalıdır.

2.6. Hafızanın kısıtlı olması durumunda doğru parser seçimi yapılmalıdır. Örneğin

DOM kullanmaktan kaçınıp SAX gibi bir şey kullanılmalıdır.

2.7. Performansı olumsuz etkileyen operasyonlar (OPEN/CLOSE, nesne yaratımı,

CREATE, obje sıfırlaması, database bağlantı yapılması, uzaktan komut çağrısı,

SQL sorgusu vs) döngü (loop) içinde kullanmaktan kaçınılmalıdır.

40

2.8. Statik bloklar içinde full nesne oluşturulmasından ziyade lazy nesne oluşturması

yapılmalıdır.

2.9. Orta katmandaki SQL'lerin sayısı 2'den fazla olmaması tavsiye edilmektedir.

2.10. SQL sayısı 2'den fazla ise, store procedure kullanılmalıdır.

2.11. Değiştirilemeyen nesnelerden, ayrıca nesne yaratılmasından kaçınılmalı.

Örneğin, javada iki string'den yeni bir string oluşturmaya çalışılmamalıdır. Böyle

bir durumda StringBuffer/StringBuilder kullanılmalıdır.

2.12. Synchronized bir yapı gerekmiyorsa StringBuffer yerine daha hızlı olacağı

için StringBuilder tavsiye edilmektedir.

2.13. Kullanılmayan nesnelerin referansı tutulmamalıdır. Bu durumda o nesne

garbage collection (çöp toplama, kullanılmayan nesnelerin temizlenmesi)

sırasında temizlenmeden kalacaktır.

2.14. Ağır nesnelerin (büyük miktarda memory gerektiren) session'da

tutulmasından kaçınılmalıdır.

2.15. Statik değişken ve statik nesnelerin kullanılmasından kaçınılmalıdır.

Eğer kullanılacaksa bu singleton olarak multi-tread ortamında kullanılmalıdır.

2.16. Statik bağlantı kullanmaktansa, ihtiyaç duyulan bağlantı, bağlantı

havuzundan (connection pool) alınmalıdır.

2.17. Veritabanından veri çekilmesi noktasında çekilecek alanların isimleri

belirtilerek ve ihtiyaca yönelik verilerin çekilmesi gerekmektedir.

2.18. Veritabanından toplu veri çekilirken, sayfalama yapısı kullanılmalıdır.

Aralık verilerek çekilecek olan veri boyutunun sınırlandırılması gerekmektedir.

2.19. Sunulan webservis veya ekranlardaki bir çağrının 5 saniyeden önce cevap

dönmesi beklenmektedir.(Gidilen uç sistemler, erişim sağlanan network

cihazlarından kaynaklanan gecikmeler hariç)

2.20. Kod içerisinde veritabanı işlemleri için yazılan sorgularda prepared

statement kullanılmalıdır.

3. Bakım Yapılabilirlik Gereksinimleri:

Uygulamada, yazılımda ya da sistemde yapılmak istenilen değişikliklerin yapılabilme

etkinliğini ve yeteneğini ifade eder.

41

3.1. Data değişimi yapan fonksiyonlar sadece bitişik katman fonksiyonları ile değişim

yapmalıdır. Bitişik katmanı atlayıp diğer katmanla değişim yapmamalıdır.

3.2. Çok fazla yatay katmanlardan kaçınılmalıdır.

3.3. Uzun kod segmentlerinin bir yerde toplanması sağlanmalıdır. Copy-paste ile bu

kod parçalarının dağıtılması engellenmelidir.(Code duplication sorunu)

3.4. Bir sınıfın kalıtım derinliğini sınırlanmalıdır.

3.5. Bir sınıftan türeyen sınıf sayısı sınırlanmalıdır.

3.6. Çoklu kalıtımdan sakınılmalıdır. Örneğin bir class hem A, hem B, hem de C den

türememelidir.

3.7. Verinin güncellenmesi/eklenmesi özellikleri diğerlerinden saklanabilmeli,

erişim sınırlandırılabilmeli, encapsule olmalıdır.

3.8. Sınıfların veri üyeleri public olmamalıdır.

3.9. Bir sınıfın başka sınıfları kullanma (fan-out) değeri kısıtlanmalıdır. Eşik değeri

≤ 5 olmalıdır.

3.10. Dairesel çağrılardan kaçınılmalıdır. Örneğin: A B yi çağırırken B de A yı

çağırmamalıdır.

3.11. Aynı kod parçacığını farklı noktalara yazarak çoklamak yerine tek bir

noktaya yazılmalı ve diğer noktalar referansını kullanmalıdır.

3.12. Komutlar (instructions) yorum olarak kapatılmamalıdır.

3.13. Dosyalar 1000 satırın üzerinde kod içermemelidir.

3.14. İndisler (sayaç, index) döngü içerisinde değiştirilmemelidir.

3.15. Switch döngüsü dışında GO TO, CONTINUE ve BREAK

kullanılmamalıdır.

3.16. Cyclomatic karmaşıklık limitlenmelidir. Karmaşıklık değeri 12’yi

geçmemesi tavsiye edilmektedir.

3.17. Veritabanı/dosya işlemlerinin sayısına bağlı olarak karmaşıklık kontrol

edilmelidir.

3.18. Bir fonksiyon tarafından geçirilen parametre sayısı 7'den az olmalıdır.

3.19. Önemsiz kalıp deyimler (literal) haricindekiler hard code edilmemelidir.

3.20. Tüm hata mesajları merkezi bir yerde tutulmalıdır. Bir hata mesajının

değiştirilmesi için geliştirme, deployment ya da sistem kesintisi gerekmemelidir.

3.21. Satır uzunluğu(line length) 80’den fazla olmamalıdır.

42

3.22. Değer atamaları için d = (a = b + c) + r; yerine a = b + c; d = a + r; yazım

şekli uygulanmalıdır.

3.23. Parantez kullanımı: if (a == b && c == d) yerine if ((a == b) && (c == d))

şeklinde olmalıdır.

3.24. Method/fonksiyonlarda birden fazla return satırı bulunmamalıdır.

3.25. Duplike kod parçaları bulundurulmamalıdır.

3.26. Yazılım geliştiricilerin tamamı aynı kod düzenleyici (code formatter/

beautifier) kullanmalıdır.

3.27. Kod repository e gönderilmeden önce kod analiz araçlarından ve code

formatter dan geçirilmelidir. Analiz sonucu çıkan hatalar giderildikten sonra kod

gönderilmelidir.

3.28. Method/Fonksiyon/Procedure lerdeki kod satır sayısı yüksek

olmamalıdır.100-120 satırdan daha fazla kod içermemelidir.

3.29. Her class/fonksiyon/method/procedure ile ilgili kod parçasının ne amaca

hizmet ettiği yorum alanında kısaca anlatılmadır.

3.30. Yapılan geliştirmeye istinaden uygulamanın/geliştirmenin ilk kurulumu

dahil olmak üzere hayat döngüsü boyunca kullanıcısı veya admin tarafından

yapılabilecek her türlü değişikliğin ve yönetiminin nasıl yapılacağı ile ilgili

gerekli tüm bilgiler paket teslimi ile birlikte doküman olarak paylaşılmalıdır.

43

44

RESUME

Name Surname : Mehmet Yıldız

Place of Birth : Halfeti/Şanlı Urfa

Date of Birth : 1986

Education : Doğuş University, Computer Eng.(%100 scholarship), Feb.2010

Experiences :

2015-… Solution Development Senior Specialist, Türk Telekom A.Ş

2012-2015 Senior Software Engineer, NETAŞ Telecommunication

2010-2012 Software Engineer, Huawei Telecommunication

