T.C. DOGUS UNIiVERSITESI
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER ENGINEERING

THE IMPACT OF STATIC ANALYSIS TOOLS ON SOFTWARE QUALITY,
PRODUCTIVITY AND COST

MASTER THESIS

MEHMET YILDIZ

201195002

ADVISOR:

Assist. Prof. Dr. YASEMIN KARAGUL

Istanbul, 2019



=
=
=

A
",
= .
=
o\ _/
.

L)
|

e
s

ﬁ——h
Log.
. i
N
M1 |

T.C. DOGUS UNIiVERSITESI
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER ENGINEERING

THE IMPACT OF STATIC ANALYSIS TOOLS ON SOFTWARE QUALITY,
PRODUCTIVITY AND COST

MASTER THESIS

MEHMET YILDIZ

201195002

ADVISOR:

Assist. Prof. Dr. YASEMIN KARAGUL

Istanbul, 2019



1%

YUKSEK LISANS TEZ SINAV TUTANAGI | Revizyon Tarihi 1.11.2017

g onlvey Pokiiman No FR.1.26
¢¢. . Yiinirlik Tarihi 1.11.2007

Revizyon Na 1

S

A &
Txmut Savifa 171

SOSYAL BILIMLER / FEN BILIMLERI ENSTITUSU

Tarih :03/02/201%

Anabilim/Anasanat Dals Bl 9. ‘.'35.'4...!r!f.{.kf.,':'!f.'ki?.';n.t.':%.l. ..................
Orencinin Adi Soyad: Mehine £ b&id.-'!-.‘h ..............................
Ogrenci No 2HAGEQOZ e

Tez Damigmanimn Adi Soyad: J' - &6 [JJ'E"J'- L{Q S, .J("{“fb 1
Ikinci Tez Damtsmaninin Adi Soyadi  ©. .o g e e crra s e e rsssiiiasissannnang
Tezin Baslii @.“ﬁﬁ—,u(!f‘.‘?. i @L—f@!}f? fene Jdug .-.m:’.zb.ﬂ’ﬁ (o

Dogus Universitesi Lisansiistii Egitim-Ogretim ve Sinav Y&netmeligi'nin 32 Maddesi uyarinca
yapilan degerlendirmeler sonunda;

& tezin kabul (] tezde diizeltme [] tezin
edilmesine verilmesine reddedilmesine

oy birligl)/ oy goklugu ile karar verilmistir.Geregi igin arz olunur.

Damgman Uye

"Dr-.{}‘%f.k:'.&m' Yosetnn o KW::-::._-‘JJ A

Reofass ~ D G- r.
Sebimn }(L;—-huﬁi D‘Fuléjﬂ*&d Z(/(

Anabilim/Anasanat Dah Baskam Dna}-;:

Dos-Dr. W

The tfeect OF Stotie Malysis Tlod s an

-L.

[Form No: FR-001, Reviryon Tafihi:30.09.2016, Revizyon No:00)



DECLERATION

| declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or institution. Information derived from the
published or unpublished work of others has been acknowledged in the text and a list of

references is given.

Mehmet Yildiz



PREFACE

In this thesis, the effects of static analysis tools on software quality, productivity and cost
were investigated. This research includes both theorical information and evaluations of
experiment results from real world's IT appliance. | would like to thank my advisor Assist.
Prof. Dr. Yasemin Karagul, for her interest, support and guidance. Furthermore, | would

like to express my gratitude to my dear wife Yasmin Yildiz for her valuable support

during my thesis studies.

Istanbul, 2019 Mehmet Yildiz



ABSTRACT

With the spread of technology, impact and importance of software in our daily life are
increasing considerably. Considering importance of software in our daily life, code
quality, bug-free development and conformance for coding standards are becoming
indispensable. The purpose of this work is to list the advantages for both development
team and software quality by demonstrating the importance of static code analysis for the
software life cycle to obtain software that is reliable, low maintenance, low-cost,
standards-compliant and bug-free (with early error detection and prevention). In order to
develop a standards-compliant software, it’s source code must be written in accordance
with the standards ruleset and analyzed carefully for conformity in the development phase
of software development life cycle (SDLC). The analysis can be performed dynamically
or statically. Static analysis is performed on program source code without actually
executing program but dynamic analysis is performed while executing program source
code. The static analysis made with automatic analysis tools produces reports about
software quality. Static code analysis is often used to find potential errors, detect possible
weaknesses in the program code that may lead to weak points, maintain code quality, or
check compliance with coding standards. In this thesis, the Java source codes of 29
different projects developed by 5 different development teams of a telecommunication
company have been evaluated by SonarQube and the outputs of this evaluation are
discussed. Analysis tool automatically starts the analysis process on the project codes that
is retrieved from the version tracking system (SVN) and finds the possible weak points,
bugs and noncompliant issues in code sections. By correcting the findings and adding the
automatic code analysis step to the development process, early error detection and
preservation of the quality of the software are ensured. Detecting and correcting errors,
increasing productivity, reducing maintenance cost by 21% and generating clean code
before execution in the production environment are the lucrative outputs of this work. As
a result of the study, the improvement reports triggered by the analysis reports not only

provide the quality of the code but also increase the capabilities of the development team.

Keywords: Software analysis, static analysis, code quality, program error checking, code
analysis, code review, software quality, error prevention, early error detection, analysis

tools, maintenance cost.



OZET

Teknolojinin yayginlasmasiyla birlikte gilinliik yasamimizda yazilimin etkisi ve 6nemi
giin gectikgce artmaktadir. Bu baglamda yazilimin kod kalitesi, hatasiz gelistirilmesi ve
kodlama standartlarina uygunlugu vazgeg¢ilmez unsurlar olmaya basglamistir. Bu
calismanin amaci, giivenilir, bakim maliyeti diisiik, standartlara uygun ve hatadan(erken
hata tespiti ve dnleme ile) arinmis yazilim elde etmek igin statik kod analizinin yazilim
yasam dongiisii i¢in dnemini ortaya koyarak hem gelistirme ekibi hem de yazilim kalitesi
icin avantajlarini listelemektir. Standartlara uygun bir yazilim gelistirmek i¢in yazilim
gelistirme yasam dongilisliniin gelistirme asamasinda gelistirilen kaynak kodun standart
kurallara uygun olarak yazilmas1 ve dikkatli bir sekilde analiz edilerek uygunlugu kontrol
edilmelidir. Analiz, dinamik veya statik olarak yapilabilir. Statik analiz program
calistirllmadan veya yiiriitiilmeden kaynak kod ftizerinde yapilirken, dinamik analiz
gercek olarak calisirken yapilir. Otomatik analiz araglari ile yapilan statik analiz yazilim
kalitesiyle ilgili raporlar iiretir. Statik kod analizi cogunlukla potansiyel hatalar1 bulmak,
program kodunda zayif noktalara yol agabilecek olasi zafiyetleri tespit etmek, kod
kalitesini korumak veya kodlama standartlarina uygunlugu kontrol etmek i¢in kullanilir.
Bu tezde bir telekomiinikasyon sirketinde 5 farkli gelistirme ekibi tarafindan Java ile
gelistirilen toplam 29 proje kaynak kodu iizerinde SonarQube ile ¢alisilarak elde edilen
ciktilara yer verilmistir. Analiz araci ile otomatik olarak siiriim takip sisteminden cekilen
proje kodlar1 iizerinde analiz islemi baslatilarak projelerdeki hata, zayif nokta ve kodlama
standartlarina uymayan boliimler i¢in bulgular ortaya ¢ikarilmistir. Elde edilen bulgularin
diizeltilmesi ve gelistirme siirecine otomatik kod analiz adiminin eklenmesiyle yazilimda
erken hata tespiti ve kalitenin devamlilifinin korunmasi saglanmaistir. Yazilimin iretim
ortaminda yiiriitilmeden 6nce hatalarin tespiti ve diizeltilmesi, verimliligi arttirma, bakim
maliyetini %21 oraninda diisiirme ve temiz kod iiretme ise bu ¢alismada elde edilen
onemli ¢iktilaridir. Caligma sonucunda analiz raporlarmin tetikledigi iyilestirme
faaliyetlerinin yalnizca kod kalitesini saglamakla kalmayip ayn1 zamanda gelistirme

ekibinin kabiliyetlerini arttirmasi gézlemledigimiz giizel kazanimlardandir.

Anahtar Kelimeler: Yazilim analizi, statik analiz, kod kalitesi, program hata kontroli,
kod analizi, kod incelemesi, yazilim kalitesi, hata Onleme, erken hata tespiti, analiz

araclari, bakim maliyeti.



TABLE OF CONTENTS

Page no

PREFACE ... ettt e et e e e e e e aaaaaraaan ii
A B S T R A T oo e et e e e e e e e et e e e e e e e ——————aaaaaaan iv
O T e e et et e —— Y
TABLE OF CON T ENT S ettt ettt e ettt e e e e e e e e e e e e e e e aaan Vi
LIST OF TABLES ... ettt ea s viii
LIST OF EQUATIONS. ... .ottt ettt st saa e s be et ba e snee s iX
ABBREV AT IONS ...ttt e e e e e e e et eeaeeeaan X
1. INTRODUCTION ..t e et e e e e e e e e e eeeeas 1
1.1  Objective and Scope Of The WOTK ........cccceiuiiiriiieiiiie e 2
1.2 Method OF THe STUAY......ccviiieiiee e 4
1.3 Constraints Of The StUAY ........ccciiiiiiieieee e 4
2. LITERATURE SURVEY ..ot ettt et e e e e e e eeeaea s 6
2.1 SOftware QUANITY ......couoiiiiii e 7
2.2 CodiNg STANCAITS .....cuveiiiiieieie e 8
2.3 C00E SMEIIS .. e 9
3. RESEARH METHOD ...ttt ettt e e e e e e 12
3.1  Analysis Tools and Their Contributions To Software Quality ........................ 13
3.2 Software Quality and Static Analysis TOO...........ccccvveviiiieiiee e, 15
3.3 Method And Detail Of The WOTK ..., 16
4. EXPERIMENT RESULTS AND FINDINGS. .....ooooo it eeeies 20
4.1 Evaluation and Feedback Meeting NOTES..........cccevvereiieirere e 21
4.2 POSITIVE IMPACES ..ot 21
4.2.1 Improvement of development teams, high quality output and productivity.... 21
4.2.2 Quality measurement, automatic review and early error detection.................. 22
4.3 NEQatiVe IMPACES......ceoiiieiie et e e ne e 22
5. DISCUSSIONS, LIMITATIONS AND THREATS ..., 24
B. CON CLUSIONS ... e, 25
6.1  Quality Measurement And Automation During Software Development......... 25
6.2  Software Error Prevention System: Early Issue Detection And Benefits........ 25

Vi



6.3  Auto Analysis Tools And The Impact On Maintenance Cost: ............ccccvenene. 26

REFERENGES ...ttt na e e e e e nee e 28
ANNEX ..ottt ettt r e b bbbt R ettt renr et neene s 31
Annex |: Software Code Quality ReqUIreMEeNtS.........ccoveieiveieiiie e 31
Annex II: Yazilim Kod Kalitesi GereKSinimleri ........cccoovvevriieniiieniieesniie e 37
RESUMIE ...ttt e et e e et e e e ae e e e saeeenaeeaseeeas 44

vii



LIST OF TABLES

Sayfa no
Table 1.1 Finding Category And Priority Order of Importance............c.ccoevvvreiienenn, 3
Table 3.1 Analysis ISSUe DEtails ..........ccoviiieiiieiiiie e 17
Table 3.2 Effort Details for Detected Errors in Production Environment................... 19

viii



6.1 Effort Saving Rate

LIST OF EQUATIONS



ABBREVIATIONS
CLEARCASE : Software configuration management tool
ECLIPSE : Integrated development environment
GIT : A distributed version control system
JENKINS : Continuous integration and continues delivery platform
LDAP : Lightweight directory access protocol
SDLC : Software development life cycle
SONARQUBE : Continuous code quality platform
SVN : Subversion is a version control system



1. INTRODUCTION

Especially in recent years, the quality of software has started to gain importance
with the spread of technology. The fact that it touches every aspect of our lives and that
this scope is expanding day by day brings the standards and quality to the foreground in
the software. Because the domain is large and deep, the smallest error in the software
causes major problems. Errors included in the software during the development process
are known to cause the software not to meet expectations. Some of the negativities that
may arise from software failure include endangering human life, stopping and blocking
communication and transmission, erroneous production, loss of honorable customers and
bankruptcy. Nowadays, it is clearly known that due to errors in software, many companies

and indirectly people have been in difficult situation and suffered damage.

The building blocks of a software program consist of lines of code written by
programmers. Considering the importance and impact of software in our daily lives, for
each line of code, the code quality, error-free development and compliance with coding
standards have become indispensable elements. Testing is known as a method to obtain
information about the functionality and quality characteristics of the software and to
determine the errors. However, most of the errors encountered/discovered in the testing
phase are late findings. Because in the production environment and even in the testing
phase, each error causes to re-run the SDLC process from previous stages and must be
fixed and retested respectively. This situation means a significant waste of time and cost.
Early detection of software related errors and to capture and resolve these errors in the
development phase provides significant savings. According to Kumaresh and Baskaran
(2010), in the development process, error prevention provides quality in software by

playing an important role in improving software process quality.

As an outcome of this study, it is expected to increase productivity by improving
software development process with error prevention solutions, increasing quality
awareness in software and obtaining software with high quality, but lower maintenance
and development costs. The objectives of this study are as follows;

= to have reliable, cost-effective, standards-compliant and error-free software



= to improve software quality by preventing and correcting errors during software
development
= to improve software development process with early error detection
= to enable developers to develop in accordance with software development standards
and improve their skills
In order to achieve the above objectives, 29 java projects which are developed by 5
teams in a telecommunication company have been analyzed. Aim of the analyzes were to
measure the quality of the projects, to detect problems and to check the compatibility of
the source code with the coding standards (Java Code Conventions, 1997; Java Style
Guide, 2014). In these studies, the SonarQube (Continuous Code Quality Platform, 2017
; Campbell & Papapetrou, 2013) static code analysis tool, which is configured to be

triggered automatically via Jenkins (Armenise, 2015), is used for static code analysis.

1.1 Objective and Scope of The Work

With the rapid development of technology, the importance and impact of software
in our lives is increasing day by day. The number of software products is increasing
rapidly with the expansion of technology in business and everyday life. Considering this
wide scope and impact, it is important that the software complies with the code quality,
error-free development and coding standards. In this study, it is aimed to determine and
solve the problems added by the developers during the development process, improve
the quality by learning from mistakes and ensure the continuity of all these stages as a
part of SDLC. At the end of this process it is aimed to increase productivity by producing
high quality software, low cost in both development and maintenance. In this work,
experimental studies will be done and the findings of the analysis will be examined and
corrected. At the end of this work, positive and negative impacts of applying this process

as a part of SDLC will be evaluated.

As mentioned in the studies by Nagappan & Ball (2005), the quality of the software
is related to the error rate in the software and this data can be used as an indicator to
determine the quality of the software. In this study, in the field of telecommunication, an
analysis of 29 projects developed by java by 5 development teams in the software
development phase was carried out with static analysis tools. The main purpose of the

study is to increase the productivity by detecting the compatibility of the software with



the coding standards and the errors it contains. Only 5 projects were included in the study
due to the fact that important and main projects were included in the study. For static code
analysis, SonarQube static code analysis tool is configured to be triggered automatically
via Jenkins (Jenkins, 2017; Armenise, 2015). The default rule list on the tool is used and

the classification details in the findings are as in Table 1.1.

Table 1.1 Finding Category And Priority Order of Importance

Finding | Priority Description
Category
Blocker 1 Operational/security risk: It might make the whole

application unstable in production. For example:

calling garbage collector, not closing a socket, etc.

Critical 2 Operational/security risk: It might lead to an
unexpected behavior in production without affecting
the integrity of whole application. For Example: Null-
Pointer Exception, badly caught exceptions, lack of

unit tests, etc.

Major 3 It might have a substantial impact on productivity. Ex:

too complex methods, package cycles, etc.

Minor 4 It might have a potential and minor impact on
productivity. Ex: naming conventions, Finalizer does

nothing but call superclass finalizer, etc.

Info 5 Unknown or not yet well defined security risk or

impact on productivity
Source: SonarQube in Action, 2013,p.30

In the following sections, we will talk about some concepts such as bug, code smell
and vulnerability. We refer them as issue. According to the sonarqube, detailed
explanation of the concepts are as follow;

= Bug: An issue that represents something wrong in the code. If this has not fixed

yet, it will, and probably at the worst possible moment. This needs to be fixed.



= Code Smell: A maintainability-related issue in the code. If it is not fixed, the best
developers will have a harder time while they are making changes to the code. At
worst, they will be so confused by the state of the code that they will introduce
additional errors as they make changes.

= Vulnerability: A security-related issue which represents a backdoor for attackers.
See also Security-related rules.

1.2 Method Of The Study

We have done experimental studies through existing code pools. Some reports have
been generated by analyzing the findings on code automatically with static analysis tools.
In order to eliminate the findings in these reports, code improvement studies were

initiated in coordination with development teams.

In the development phase, analysis report creation process starts with the automatic
triggering of the static analysis tool and a code analysis report is obtained at the end of
the process. This report consists of the findings of the code that do not comply with the
standards and it’s weaknesses. The Software Code Quality Requirements
document[Annex-1], consisting of 80 items, was published in order to avoid the repetition
of the frequently encountered problems as a result of the investigations made according
to these analysis reports. This document is based on Java coding rules published by Sun
Microsystems (Java Code Conventions, 1997) and Google (Java Style Guide, 2017) and
adapted to the corporate culture.

1.3 Constraints Of The Study

In this study, a limited number of java projects and a code of 436846 lines
developed by a total of 5 development teams have been studied in a company operating
in the telecommunications sector. Static code analysis tool was used to analyse the source
code. Analyzes were made in order to measure the quality of the projects, to detect the
problems and to check the compliance with the standards. In these studies,
SonarQube(Continuous Code Quality Platform, 2015; Campbell ve Papapetrou, 2013)
static code analysis tool which is configured to be triggered automatically by Jenkins

(Jenkins, 2017; Armenise, 2015) is used. These tools are preferred because of their



practical use in the information technology sector, they are widely accepted, they are
compatiable with different development environments, also java language compatible and
open source. Errors in the production environment are reported by the people in charge
of the system through the application lifecycle management application and this
application has been used for reporting purposes. Findings have been obtained with
experimental studies and studies have been carried out on these findings and errors
detected in real production environment. The limitations of the study are as follows:
e Project codes developed using only java development language
e Data from the 5 largest projects in the 5 projects were included in the evaluation.
The first 5 applications with the highest number of lines of code were selected
from 29 projects. Due to time constraint, high error density in the 5 selected
projects and the fact that this study is a pilot study, projects with a small number
of code lines other than 5 main projects and low number of code lines are not
covered in this study.
e SonarQube analysis tool used as the only analysis tool

e Work on projects developed by a limited number of teams



2. LITERATURE SURVEY

Software developed in corporate companies needs are constantly being developed
to meet additional development demands coming from frequently developed software.
The existence of a software's continuous development cycle, new development needs and
maintenance costs increase the future costs of that software. The fact that the software
does not comply with the coding standards and therefore has low quality causes
maintenance costs to increase more deeply. In order to ensure the quality in the software,
to be controlled and to ensure the continuity of the process, academic resources have been
examined and short summaries are given below for the important sources. In recent
researches (Nagappan ve Ball, 2005; McConnel, 2001, s.5-7; Jalote ve Agarwal, 2007;
Fagan, 1976, s.186; Emden ve Moonen, 2002; Catal, 2011) it has been observed that
publications are mainly related with detection of errors but studies on error prevention

and software quality process improvements are limited.

McConnell (2004) is a comprehensive publication on the basics of quality in
software, what characteristic features are the quality indicator in software, and techniques
are proposed to improve the quality of the software. According to Mcconnel, “trying to
improve the quality of software by increasing the frequency and amount of the test is the
same as falling into the misconception that you will lose weight more frequently when
weighed. If you want to lose weight, do not buy a new scale; change the diet. If you want
to improve your software, do not test further; Focus on better development”. The results
of the studies are important points obtained in terms of error detection and inspection.
According to the researches, complexity analyzes with static analysis tools increase the
productivity in the maintenance process by approximately 20% (McConnel, 2004).
Another study by McConnel(2001) the cost of a defect or error detection has grown
exponentially over time and that the cost of fixing errors in early life is cheaper. Code
review methods and automatic tools are recommended for early error detection
(McConnel, 2001).

The study by Jalote and Agarval (2007) investigated the effect of error analysis as
a feedback mechanism to improve quality and productivity in an iterative software
project. The analysis of the errors in a iteration includes the examples of its use and

benefits in a commercial project, which may lead to improvement in quality and



productivity by providing feedback in the subsequent iterations to prevent errors. It has
been determined that the failure rate of the following iterations is lower than the previous
iterations. As a result, it is stated that such an analysis will be performed at regular
intervals in large-scale projects and this will increase the quality of the software and
increase productivity. Similarly, the experience gained in other projects is an emphasis
on the fact that structured feedback from a repetition is very effective in improving quality

and productivity in future iterations or new projects (Jalote and Agarwal, 2007).

This study, written by Kumaresh, and Baskaran (2010) on software process quality
improvement and error analysis. An error prevention tool was developed and the results
obtained for this tool were shared. According to the results of the study, it was determined
that the error prevention application was developed by the software developers to learn
the mistakes and to learn the mistakes of others. In addition to this, error prevention work
is the main result of improving product quality while decreasing product cost by
decreasing development time and cost, decreasing customer satisfaction and need of
rework. It is emphasized that the quality of the software provides an important role in the
development of software process quality by preventing error in development process
(Kumaresh & Baskaran, 2010).

2.1 Software Quality

The concept, known as software control or software review, was first introduced in
1976 by Fagan (1976, pp.185-202) and was used to improve software quality. The
software review involves checking the software code, design and documentation for the
detection of potential potential problems (Emden & Moonen, 2002). Detection of
potential problems that are considered to be quality indicators of the software is only
possible with code analysis. In systems developed with object-based architecture, error
discovery rate and distribution is the key indicator for the quality of the software (Booch,
1998; Nagappan & Ball, 2005). In order to predict the errors in the software, it was
emphasized that this process should be automated (Catal, 2011).

The quality of software consists of two basic concepts: internal characteristic and
external characteristic. External quality characteristics of the software are generally the

result of the reflection of the internal characteristics. A quality software can be used with



its external features, accurate, efficient, reliable, in integrity, adaptable, consistent and
robust, while it must be sustainable, flexible, portable, reusable, readable, testable and

understandable with its internal features (McConnell, 2004; Bourque and Fairley, 2014).

In order for a software to meet the basic quality requirements, it must be developed
in accordance with the coding standards, free of errors and thoroughly tested. Before
testing, the software must go through a detailled examination to determine that it is
compliant with coding standards and does not contain errors. It is not possible to diagnose
and fix the errors of the software without examining the program's code about whether
the software contains coding errors or not. Although it is possible to reveal these errors
by conducting code reviews through review meetings, it does not bring an effective result
in terms of applicability, continuity, time and cost. In addition, experience, domain
knowledge and focus of the person or people participating in the code review are serious

problems that can vary in the implementation and continuity of this method.

The software is like a prototype moving on the production line into a product. A
fault that is recognized in the next step requires that the product to return one or more
steps and take corrective actions or actions. In order to ensure the quality of the software
and to maintain the continuity of error-free development early error detection is very
important. Because, in the production environment and even in the testing phase, when
an error is detected and the correction of this error is a costly situation because it requires
all stages to be run again. Diagnosing and resolving development-related errors during
the development phase provides significant time and cost savings. As in other areas, the
preventive approach serves to eliminate errors by early intervention, to reduce costs and
to pass through the quality control indicators of the work outputs. In this way, the quality

and quality continuity of the software can be maintained.

2.2 Coding Standards

The most important quality indicator of the software is whether software complies
with the coding standards or not. Coding standards are a set of rules that recommend the
most appropriate coding practices for each aspect of a program written in that language
for a particular programming language. Any software has to be developed in accordance

with the coding standards to meet expected quality. Especially in large-scale software



projects, compliance with these standards represents the quality of those projects. During
a code maintainence task, developers often spend most of their time trying to understand
the code. The most important reason for this situation is the code pools developed without
caring the standards. It is very difficult to modify codes with low readability, complex
conditional logic, and repetitive logic (Fowler, Beck, Brant, Opdyke & Roberts, 1999).
Applying the coding standards during the development phase enables to produce
understandable code and then the time spent to understand the code is significantly
reduced. One of the key elements of a development plan that needs to be followed to

obtain a quality software is the coding standards (Kevitt, 2010).

The set of rules in the coding standards are structural quality guidelines for
software. Software developers must follow these guidelines to improve the readability of
the source code, to facilitate software maintenance, and to develop software that conforms
to the standards. Since these standards are not mandatory by the compilers, static analysis
tools are used to understand whether the standards are complied with.

Coding standards make it easy for everyone in the company to understand each
other's codes and work together comfortably. If the code is not written and edited
according to the programming instructions, it is very difficult to develop, integrate and
maintain on a small part of the software, especially in crowded development teams. It is
not always easy to implement compliance with coding standards. While all developers
involved in the project have an obligation to know and evaluate the software guidelines,
such as time constraints, people's reaction to limiting or not accepting the rules, these are
the main factors that make compliance with these guidelines difficult.

In conclusion, ensuring that the code complies with the coding standards improves
the code quality. When this process is supported by automatic conformity check and the
project specific code smells are allowed to be detected, automatic smell sensing becomes

a conformity control process (Emden and Moonen, 2002).

2.3 Code Smells

The code smell, also known as malicious odor in the software code, points to a
problem in the source code of a program, or a more profound problem that is likely to be
severe. According to Fowler, Beck, Brant, Opdyke and Roberts (1999); code smell is



often the surface indicator that corresponds to a deeper problem in the system. One of the

main reasons behind the smell of code is the errors in development and design process.

In particular, the failure to comply with coding standards during the development phase

significantly reduces the quality of the code and results in shorter software life. Code

smells which are pointing defects and errors in the code represents the quality of software

systems adversely. They also effect both flexibility and maintenance effort causes serious

problems and difficulties. The common smells in the code can be listed as follows
(Fowler, Beck, Brant, Opdyke & Roberts, 1999):

Duplicated Code blocks

Large class, method and function: High number of code lines in class, method and
function

Complex methods or classes: Code blocks that contain nested conditions and loops.
Overall, the increase in the number of methods in a class makes it more complex and
application-specific (Booch, 1998).

Long parameter list: Number of method and function parameters (Maximum 7)
Dependent change chain: A change affects multiple points and needs a dependency
change

Unregistered code blocks in the class (Feature envy). The code block is related to a
different class than the class it is in.

Repetitive data sets: Most of the time there are three or more data items at more than
one point. For example, the fields of several classes, parameters in many function
signatures.

Use of unnecessary complex data structures (primitive obsession): preferring special
classes / complex data structures or objects instead of primitive data types.

Use of unnecessary switch, condition structures: Use of duplicate switches, condition
and control structures

Parallel inheritance hierarchies: The requirement to create a subclass of another class
every time you create a subclass of a class

Unused class, method, field, parameters: Unused code fragments, class, method,
field or parameter stacks

Missing library class: Frequently used and lack of class in the library

10



= Comments: Comment lines written to describe complex and unclear code structures.
When you feel the need to write a comment, try reconfiguring the code first, so any

comment is unnecessary (Fowler, Beck, Brant, Opdyke & Roberts, 1999).

The design flaws are known to have negative effects on the flexibility and
maintenance of the software systems (D’ Ambros, Bacchelli & Lanza, 2010). ; However
even if the design is correct there should not any code smells in the code. If the coding
standards are not followed at the point where the design is put into practice, it is inevitable

that smells will be formed in the code.

11



3. RESEARH METHOD

With the recent development of DevOps (DevOps, 2017) and Agile (Agile, 2017)
software development methods, the software continues its life cycle with successive
versions as a result of rapid development and release cycles. These fast and small changes
can cause problems in the big picture while the software is following a difficult change
process (Goldstein & Mount, 2015). In the development process, if a fault is not detected
and not corrected, it will remain a danger for the life of the software. The longer an error
lives in the software, the greater cost to solve the error will be required. According to
McConnell (1996), if you do not do the job at the time of development that may cause an
error in software, then you should take 10 times more time to correct this error
(McConnell, 1996, p.45).

When an error is detected at the beginning of the development cycle, it is generally
known that the cost of repairing the error is very low. Detecting the fault at this stage is
of great importance. According to Emden and Moonen (2002), one of the advantages of
software review is to analyze the software before testing. This allows the problems to be
identified while at the development stage and to be solved at a very low cost (Emden &
Moonen, 2002). One of the main motivation to start this study is to have quality software
by reducing the cost of end-to-end software and maintenance effort. In addition to this we
want to raise awareness of not risking the future of the software by ensuring the quality
of the software, compliance with the standards, early detection of errors and taking
necessary actions. Because the life, cost, quality and future of the software is just as

important as not being left to the initiative of employees in development and test teams.

In this study, the following questions will be searched in order to ensure the quality

of the software and maintain its continuity:

I. How can quality be measured during software development?
I1. Can a software error prevention system be installed? What benefits do you have if
it is installed?
I11. Is it possible to detect a possible problem early in the software development stage

by catching some problems before it reaches the test stage with an early diagnosis

12



without being faulted and to correct the problems that are caught in the test phase?
How should it be done if possible?

IV. Code quality control, compliance with standards, code error tracking or code review
can be done automatically?

V. How effective are automated code analysis tools in reducing maintenance costs?

3.1 Analysis Tools and Their Contributions To Software Quality

The technical debt refers to the correction of the design or coding of the software,
or the tasks that need to be done to make the coding complete and accurate (Campbell &
Papapetrou, 2013, p.23). Static analysis is a technique used to identify and analyze
software properties from source code; these can be defined as items such as packages,

classes, relationships, code lines, errors, complexity, coding violations, and others.

Until recently, the analysis tools were weak in terms of their primitive and in-depth
analysis capabilities and could not take place in the software development process.
However, recent assessments of newly developed and updated existing vehicles have
shown that these tools have contributed more than expected to software development
process. According to the researches, complexity analyzes with static analysis tools
increase the productivity of care by 20% (McConnell, 2004, p.778).For example another
study, it is emphasized that productivity will go to zero as the complexity of code
increases over time (Martin, 2008, p.4). These tools can analyze the structure of a program
and suggest reconfiguration that could improve this structure (Fowler, Beck, Brant,
Opdyke & Roberts, 1999). In fact analysis can be done dynamically or statically. Static
analysis is performed on the source code without running or executing the program; In
general, static analysis responds to a wider range of questions than a dynamic analysis
(Bush, Pincus & Sielaff, 2000). In the development period of a software, early errors and
correcting errors not only reduce the cost but also provide error-free software. A software
should be analyzed for validation even if it is developed by expert programmers. Because
the results of the analysis show that the professional programmers may have some

problems in their codes.

Applying unit tests, system tests, quality assurance or manual code inspections,
most errors in code level still cannot be detected. In order to detect these errors in the

development phase auto-runnable static analysis tools developed. By the help of these

13



tools, detecting defects become quickly, analysis time is shortened, error is detected
during the development phase, and on this occasion significant savings are provided in

software development life cycle.

Static analysis tools are able to identify the following conditions (Continuous Code
Quality Platform, 2017; Bougroun, Zeearaoui & Bouchentouf, 2016; Campbell, &
Papapetrou, 2013, p.13-18):

= Program code does not comply with the rules

Parts of the program that may interfere with the correct operation,

Some points that do not obey the rules that hinder some non-functional quality
aspects such as maintenance feasibility and complexity

Non-compliance with the best and safest programming methods

A large number of topics aimed at traditional (manual) controls

Piles of dangerous code

Security-critical code sections

The root cause of critical and blocking errors is the result of bad habits in
programming and directly affects the technical debt. The basic approach to using
SonarQube as a static analysis tool is to propose to developers the use of standards and
maintain a reference criterion that does not increase technical debt, especially when
working with development teams in crowded organizations. The main reasons for
choosing SonarQube analysis tool in this study are as follows (Campbell and Papapetrou,
2013):

= The tool is famous for its controlling the quality and standards of Java projects.

= Plugin support for Findbugs, pmd, checkstyle, cobertura, etc

= Supporting 20+ software development languages. It has large scope from code
smells to security vulnerabilities.

= Supporting open source platform, quality-analysis experts recommend it

= |t is compatible with continuous integration tools (eg jenkins, bamboo, Hudson)

= |t can work with Sonarlint plug-in with integrated development environment tools
(eclipse, visual studio, intellij-idea etc.) and to guide the developer to the standards

= |tis accurate and consistent in the work done and one step ahead of its competitors
in issues such as community support behind the tool

= |tis able to run as fully automated analysis and integrations

14



= |t supports integrations with external systems such as LDAP, Active Directory,
SVN and GitHub

= Automated and continuous monitoring of code quality with this tool

= To be able to produce reports about duplicated code, unit test status, comments,
errors, vulnerability, code scope and code complexity

= Supports SQALE rating. The quality classification of projects with SQALE
(Letouzey, 2016) rating is directly related to the technical debt ratio of the project
and the Technical Debt Rate is can be described as follows (Letouzey, 2016):

e Technical debt of your project (= debt of all problems)

¢ Divide by re-write cost estimate(re-write project from scratch)

3.2 Software Quality and Static Analysis Tool

While the quality of the software is based on the internal and external characteristics
of the software, the external quality characteristics of the software are generally the result
of the reflection of the internal characteristics (Lincke, 2007). In this study, the source
code reflecting the internal characteristics of the software was analyzed and improvement
suggestions were obtained. The analysis with the static analysis tool the code review
process can produce analysis reports by working manually or schedule to run
automatically. The result of the analysis includes the quality level of the software. This
level is named as Quality Gates. According to the criteria determined as Quality Gate,
tool reports the result as passed or failed. Since these criteria consist of parameters such
as newly added blocker / critical number of findings, code coverage rate, degree of
maintenance availability, and safety assessment, the quality of the software can easily be
measured in development stage. Thus, This report provides information about the quality
level and the compliancy of coding standards. As a result, the code review process is
performed automatically without any effort and provide information about the quality of

the software and compliancy with the coding standards.

With the analysis tool used in this study some problems can be detected without
entering into the test phase. Fixing the problems within development period enables
blocking an issue to turn into error. In this way, most of the findings identified in the
testing process in the old process do not need to be re-developed after development->

testing. This has reduced the repetitive workload on both the test and development sides.

15



Of course, not all of the errors encountered in the software, it is observed that the errors
that can be detected with the static analysis tool are possible to be diagnosed early and

the effort spent on errors in this context can be saved.

The development leader, software architect, project manager and product responsible
examined static analysis reports. In addition, it is concluded as very beneficial to use
during the development phase as early error detection mechanism and code inspection
tool. Thus, the detection and correction of code fragments that do not meet the standards
that may cause errors can be made at the beginning of the process. This provides a
reduction in the number of repetitive efforts on the development and test source side.

3.3 Method And Detail Of The Work

In the study, we performed automatic analysis studies on the project source codes
with the static code analysis tool to check whether the software development teams
complied with the coding standards and to evaluate the software quality. The number of
findings based on project-based analysis and number of findings that are resolved after

compliance with code standards are as in Table 3.1

According to the results of the project-based analysis, it is possible to identify the
most frequent and dense errors as a result of the number of findings, type and the number
of solved findings. In the light of these data, we provided feedback to the relevant
development team by taking into account the error type, importance level, distribution
rate, and by providing information with code samples. Therefore, development was
achieved and awareness was created in order not to repeat the same kind of findings. In
this study, it was supported to identify the findings and correct them by the developers
and to produce better quality outputs by taking the lessons from their own mistakes.
However, each line of code analyzes by the analysis tool helped keeping the projects’
source code compatible with coding standards. In addition, it provides significant gains
for the future of the organization because it enables the newcomer to adapt faster and

improve self-correction skills that yield to increase the quality to the next level.

16



Table 3.1 Analysis Issue Details

Project
(# of code
line)

Issue
Type

Total
Issue
Count

Issue Detail/Explanation

Fixed
Issue
Count

ProjectA
(61410)

Blocker

12

8 Null pointers should not be dereferenced

2 Throwable and Error should not be caught

2 Conditions should not unconditionally evaluate to
"TRUE" or to "FALSE"

Critical

97

94 Exception handlers should preserve original
exception

1 Exit methods shouldn’t be called

2 Lack of multi-threading concept usage

Major

1811

*%*

25

ProjectB
(117979)

Blocker

913

11 Null pointers should not be dereferenced

274 Throwable and Error should not be caught

628 Conditions should not unconditionally evaluate
to "TRUE" or to "FALSE"

890

Critical

836

483 Fields in a “serializable” class should either be
transient or serializable

342 Exception handlers should preserve the original
exception

11 IndexOf checks shouldn’t be for positive
numbers

828

Major

5825

**

4394

ProjectC
(40901)

Blocker

323

281 Conditions should not unconditionally evaluate
to “TRUE” or to “FALSE”

4 Access information or credentials shouldn’t be
hard coded

1 Throwable.printStackTrace(...) shouldn’t be
called

1 Static fields should be final

36 Throwable and Error should not be caught

Critical

527

509 Fields in a “serializable” class should either be
transient or serializable

8 Exception handlers should preserve original
exception

10 Equality tests should not be made for floating
point values

Major

2644

**

ProjectD
(136185)

Blocker

525

487 Conditions should not unconditionally evaluate
to "TRUE" or to "FALSE"

22 Throwable and Error should not be caught

16 Null pointers should not be dereferenced

498

Critical

500

318 Fields in a “serializable” class should either be
transient or serializable

18 Equality tests should not be made with floating
point values

164 Exception handlers should preserve original
exception

489

Major

5843

*%

2681

17




Table 3.1 (Continued)

Project lssue Total Fixed
(# of code T Issue Issue Detail/Explanation Issue
line) YPE | count Count
328 Conditions should not unconditionally evaluate
to "TRUE" or to "FALSE"
78 Resources should be closed
30 Null pointers should not be dereferenced
Blocker | 467 ﬁlsoilli;np statements should not occur in finally 323
4 Throwable and Error should not be caught
2 The class overrides “equals()” and should
therefore also override “hashCode()”
2 equals() should test object type
327 Fields in a “serializable” class should either be
ProjectE transient or serializable
(80371) 176 Throwable.printStackTrace(...) shouldn’t be
called
17 if /elseif statements shouldn’t contain the same
conditions 270
Critical | 664 | 42 Exception handlers should preserve original
exception
86 Common static fields should be final
8 Access information or credentials shouldn’t be
hard coded
8 The same operands shouldn’t be used with the
same operator
Major | 3826 *x 1531

* The project is not included in the improvement process. Since the project will be retired.

** Major faults often encountered::
e Complex methods, function or class

Large class

In the 5 projects discussed within the scope of the study, a study was carried out for
the errors detected in the production environment between 01.01.2016-01.01.2017 and
followed on the application life cycle management(ALM) application. The aim of the
error analysis in this study is to find the ratio of errors that can be determined by static
analysis tools to all errors. Thus, if these tools are used in the development phase, the
effects on the cost are calculated and their positive and negative aspects are evaluated.
The production errors determined based on the project and the analysis findings detected
in the source codes of the versions where these errors are received are as follows. Detailed
information on the errors detected with the analysis tool is given on Table 3.2.2. Since

Nested checks, loops, vb.(if, for, while, try, switch)

Unused method, variable, field, class, local variables or method paramters
Casting primitive data types

Unauthorized access to unprotected class

Nested try-catch blocks

Unnecessary assignments and duplicated code

Unnecessarily usage of asynchronous object usage (Using StringBuffer instead of StringBuilder)

18




the aim is to determine how much effort is spent on the errors that can be found with the

analysis tools, the error details are not included since other errors could not be found with

the analysis tool.

Tablo 3.2: Effort Details for Detected Errors in Production Environment

Detected

Total

Project | Error # of by Paid Effort . Effort ** Effqrt
. - . Error Detail Saving
Name Severity [issues |analysis | (man/day) (man/ Rate(0h) ***
ate(%)
tool day)
High 1
Medium 3 *100 =
ProjectA Error while updating XX 86 %826100 -
Low 6 1 9 item. An unhandled '
exception occurred.
High 1
Medium 1
ProjectB Maximum number of 102 34/102*100
connections exceeded. =23.52
Low 2 1 24 .
Restart required because of
performance problem.
High P
ProjectC | Medium * * *
Low o
High 5 1 5 Exact fetch returns more than
requested number of rows.
2: Causes to stop the process
at the ProjectD.
. 5:When pressed the button to (2+2+5+1) /
Projectp | Medium |7 2 2+5 “show thz item”, then “An 44 |44%100 =
Error Occurred" exception 22.72
was detected. Ex handling
“Function must return a
Low 2 1 1 value” exception was
detected.
High
X user cannot logout error.
Medium 8 3 242420 User hangs logged in and
bash process cannot be
completed. (2+2+20)/87
ProjectE Y connections cannot logout. 87 *100 =
In addition, after logout due 27,58
Low 2 to timeout, telnet C(_)nnection
cannot be re-establisted.
Causes to exceed max.
number of connection.
319 21

* Due to the decision of retirement of the ProjectC, it was not included in the analysis and improvement

studies and the findings were not corrected.

** Total Exercise (man / day): is the total of man / day spent in the production environment (without the

analysis tool) to correct all detected errors.

*** Effort Saving Rate (%) = (Total Effort Spent on Errors Detected by Analysis Tool) * 100 / (Total

Effort Spent for All Errors)

19




4. EXPERIMENT RESULTS AND FINDINGS

From the findings of the analysis, work plan was prioritized in order of priority, and
tasks were initiated to correct blocking, critical and high priority findings by development
teams, respectively. As a result of the corrections, the reduction in the number of findings
and the improvement in the code quality yielded the following benefits:

= Ensuring that the software to be developed is made in accordance with the coding
standards

= Elimination of hidden findings and errors (48%) in the project codes developed
within the last 5 years

= The development team to learn from the wrong and to make the development of the
same error without re-making (Because a mistake and correction action teach
someone not to do the same error again.). For example; As a result of the efforts to
correct the findings because of the awareness of the original exception not to be
crushed by the whole development team, it was reported by the operation team that
the error root cause analysis resulted in a short time. They remarked that they could
detect the root cause analysis within 7-10 minutes with original exception logs.

= Developing software that does not contain any critical issue.

= Decrease in maintenance costs by 21% due to clear, readable and clean code
improvements.

= Decrease in future development costs by having clean code and eliminating code
readability and key-programmer dependence problems.

= Decrease in error correction requests from the test to the development team with the
decrease in the number of findings in the test. For example; When some errors with
the help of static analysis are considered in the development phase, the test team does

not spend time to find these errors.

According to the data obtained in this study, by using static analysis tools in
software development process, errors can be detected early and this reduces maintenance
costs by about 21%. An additional effort requirement was not taken into account since
the findings identified during the development phase of the analysis tool should be carried
out within the development period of the necessary corrections before the test phase was
started.

20



4.1 Evaluation and Feedback Meeting Notes

Evaluation interviews were organized in order to evaluate objectively positive and
negative aspects of using static analysis tools. In the interviews conducted with 5
development team leaders, 3 project managers and an architectural team manager, the
following questions were asked about the positive / negative aspects of these studies and

the answers were summarized under positive and negative aspects:

Feedback Meeting Questions:

1. What is your opinion about the static analysis work carried out during the software
development phase? In addition, how should it be operate it as a quality
measurement and control point?
2. Do you find it useful to work with the static analysis tool(sonarqube) for detecting
and automating a finding that was included in the development phase before it
becomes a fault?
3. During the development phase of the software, is it possible to detect some
possible problems before they come to the test stage? Before the test phase is it
possible to detect and fix them in the development phase, how should it be done if
possible?
4. Is it possible to do following actions automatically;

= checking code quality

= checking coding standards compliancy

= detection of code error

= performing code review
5. How effective is automatic code analysis tools at the point of reducing
maintenance costs?

6. What do you think about the positive and negative effects of static analysis?

4.2 Positive Impacts

4.2.1 Improvement of development teams, high quality output and productivity
1. If an error was detected and fixed in the development phase, the same type errors

are not reproduced with the help of the static analysis tool. Since the tool notifies

21



developer about problematic code when writing through integrated support with
Eclipse.

2. Informing and educating the developer with the data presented by the analysis
tool together with the examples that are appropriate and non-compliant with the
standards.

3. Providing quality control point by showing how development teams can write
code compliant with standards.

4. Because of the problems that may arise in the codes of the development experts,
it is necessary to take lessons from the mistakes within the team and to spread the
tradition of developing code according to the standards.

5. Because all codes are analyzed, developers are beginning to write code more
carefully.

6. The fact that new experts participating in the development teams work in the code
pool according to the standards increases the person's dedication, code ownership

and job satisfaction.

4.2.2 Quality measurement, automatic review and early error detection

1. To be aware of an error in the development phase that may cause a problem, early
intervention and, as a result, to carry out development activities that are more
appropriate to the standards.

2. Using analysis tools help improving developers skills, experience and self-
confidence (indirectly).

3. The code is checked before development tests, including unit testing in the
development phase is reducing the number of errors captured in tests. The cost of
retesting is significantly reducing after the correction within development phase.

4. It shortens the development time required for additional development and
maintenance of code pools, which pass through the analyzes successfully, as it

controls compliance with the standards.

4.3 Negative Impacts

1. Examination of the analysis reports; some findings need to be checked at architect

/ team leader / expert level

22



2. Loss of time for analysis and updating the rules for false-positive findings in order
not the tool to repeat these findings.

3. Effort for installation and configuration of new projects on the tool and in the
person's own development environment

4. Additional time request for correction of findings as a result of analysis because
it is considered as extra effort and time loss by the developers.

5. Loss of sustainability due to lack of control and sanction pressure unless it is put
into software development process.

6. Some of the findings by the development experts are not accepted as errors. For
example, the fact that some analysis findings related to exception handling are not
considered as errors.

7. There is a risk of malfunctioning of the code that runs properly during the problem

fix operation.

23



5. DISCUSSIONS, LIMITATIONS AND THREATS

In this study, it is aimed to establish quality control structure and decrease
maintenance costs in order to ensure development according to coding standards. The
findings were obtained in the projects which were not compatible with coding standards
and not used any analysis tools. Therefore, the decrease in maintenance costs by 21%
may vary depending on the project, the analysis tool used, the capability of the
development team, the coding habits and compliance level for coding standards. In
addition, because of the failure to comply with the coding standards of the errors
determined by the analysis tool and the assumption that it will be corrected within the

development period, the cost of exertion will not be taken into account here.

The acceptance of the analysis findings by the development experts, the desire and
motivation to develop in accordance with the standards are the basic requirements for the
success of these studies. For example, it is necessary to ensure that the whole team does
not repeat the same mistake by supporting the team in taking the lessons from mistakes
and that there must be sanction to ensure this. All stakeholders need to agree and support
the implementation of new code acceptance to the production environment with a
prerequisite for submission of analysis reports without any evidence. In order to ensure
the effective participation of all stakeholders and to manage the process successfully from
end to end, the management support is critical for the applicability of the process.

24



6. CONCLUSIONS

Errors encountered in the production environment or in the testing phase can cause
many negative consequences because the software is in use or ready to use. In general,
the cost of taking pro-active (foresight) measures and fixing issues at the development
phase before the problems have not yet turned into a fault remain very low comparing
with the cost of correction after the problems encountered as errors.

With this approach, a study has been initiated to ensure quality in software, early
detection, correction and prevention of errors in order to obtain reliable, reduced
maintenance costs, standards-compliant and fault-free software. In this thesis, in the field
of telecommunication, an analysis of 29 projects developed by java by 5 development
teams (in the software development phase) was carried out by using static analysis tools.
The main purpose of the study is to increase the productivity by detecting the

compatibility of the software with the coding standards and the errors it contains.

6.1 Quality Measurement And Automation During Software Development

In the studies we have done, it has been observed that with the use of static analysis
tools in the software development phase, information about the compliance of the code
with the standards, and the quality level can be easily obtained. In particular, with the
integration of software development editors and instant analysis tools it is possible to see
instant scan of the code and get findings at the time of coding. After development phase,
in order to analyze the codes in code warehouse (svn, git, clearcase, etc) we easily
automated the analysis process by using continues integration tools such as Jenkins. In
this way, it is possible to automatically analyze the developed code and generate analysis

report of source code as quality output.

6.2 Software Error Prevention System: Early Issue Detection And Benefits

In the scope of this thesis, it is experienced to detect the errors early by the static
analysis studies before testing phase or deployment to the production environment. In our

experiment, firstly, the percentage of the findings opened as defect in the production

25



environment was investigated by using the static analysis tools. Secondly, evaluations
were made on the intersection of the production defects and captured issues by analysis
tools. were used by calculating the effort to eliminate errors that occurred in living
environment. In the evaluation, the rate of effort saving with the use of analysis tools was

determined by the following formula (Eqg. 6.1).

. (Total Effort Spent on Errors Detected by Analysis Tool)*100
%) =
Effort Saving Rate (%) (Total Effort Spent for All Errors) Eq. (6.1)

In this study, we have studied how many of the records opened as defect in the
production environment can be detected as issue by static analysis tools. Then, the
evaluations were made on the use of static analysis tools by regarding the paid effort to
eliminate the errors that occurred in the production environment. Here we used real

production errors and their fixing cost in terms of man/day.

6.3 Auto Analysis Tools And The Impact On Maintenance Cost:

According to the findings obtained in this study, after static analysis tools included
in software development process, maintenance costs are reduced by 21%. The experiment
result in terms of the contribution of static analysis tools to the efficiency, increase in
productivity and quality in software are also supported by the results of studies conducted
by Jalote and Agraval (2007), Kumaresh and Baskaran (2010), Mcconnel (2001) and
(Mcconnel, 2004).

In the software development process, it is a great gain to identify the problems
included in the software by the developers at the development stage. However, during the
development phase, it was possible to fix these findings, and obtain the quality by learning
lessons from the mistakes and ensure the continuity of all these processes. As a result of
these processes, it has been observed that firms can significantly reduce maintenance and
development costs. Some of the important contributions of the static analysis in the
software development process are improving the developer's skill, increasing the
readability (by having standards compliant and clean source code), decreasing the
maintenance cost, directing to development according to the standards and decreasing the

maintenance cost with early detection of issues. With all of these contributions, it is

26



recommended that static analysis should be applied at the development stage of the
software to reduce the cost of effort in development, test, correction and distribution
processes. However, as with most disciplines, tools and techniques only benefit if you use

them at regular intervals.

In addition to static analysis, it is necessary to evaluate the results obtained from
both static and dynamic analysis. With the combination of on-time analysis (which is also
known as dynamic analysis) and static analysis may guide the development process to be
more accurate and stable. Using the only static analysis may not be sufficient to prioritize
and address issues that are high importance. Because the static analysis is carried out
without actually running the program, the dynamic analysis analyzes the program during
the study and can detect the findings especially at the points in the program flow. In static
analysis, while the program can be monitored in a dynamic analysis, the program is
monitored in a single way during the execution, which can be more efficient in

comparison with static analysis (Ishrat, Saxena & Alamgir 2012).

27



REFERENCES

Agile(2017), http://agilemanifesto.org. Access Date: 30 Mayis 2017.

Armenise, V. (2015). Continuous Delivery with Jenkins: Jenkins Solutions to Implement
Continuous Delivery. Proc. IEEE/ACM 3rd Int. Workshop Release Eng. Erisi
adresi: https://dl.acm.org/citation.cfm?id=2820701.

Booch G. (1998). Object-oriented analysis and design with application. 2nd edition. ,
Santa Clara, California: Addison-Wesley.

Bougroun, Z., Zeearaoui, A., Bouchentouf, T. (2016). Comparative Study of the Quality
Assessment Tools Based on a Model: Sonar, Squale, EvalMetrics. Journal of

Computer Sciences. Access address:
https://pdfs.semanticscholar.org/bd41/006b17e948a38f1e0bfeffe3f72de678c753.p
df.

Bourque P, Fairley E. R. (2014). Guide to the software engineering body of knowledge
(SWEBOK). version 3.0. Los Alamitos, CA: , IEEE Computer Society Press.
Bush, W. R., Pincus, J.D., Sielaff, D.J. (2000). "A Static Analyzer for Finding Dynamic
Programing Errors, Software-Practice and Experience, 20, 775-802. Access

address: https://ieeexplore.ieee.org/abstract/document/7202950.

Campbell, G., Papapetrou P. (2013). SonarQube in Action. Greenwich: Manning
Publications Co.

Catal, C. (2011). Software fault prediction: A literature review and current trends, Expert
Systems with Applications, 38, 4626-4636.

D’Ambros, M., Bacchelli, A., Lanza M. (2010). On the Impact of Design Flaws on
Software Defects. In QSIC’10: Proceedings of the 2010 10th international
conference on quality software. Washington, DC. Access address:
https://ieeexplore.ieee.org/abstract/document/5562941. .

Emden, E. V., Moonen, L.. (2002). Java quality assurance by detecting code smells Proc.
9th Working Conf. Reverse Engineering, IEEE Computer Society, Access address:
https://ieeexplore.ieee.org/abstract/document/1173068.

Fagan, M. E.. (1976).Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15, 3, 182-211. Access address:
https://search.proguest.com/docview/222415339?pg-origsite=gscholar.

28



Fowler, M., Beck, K., Brant, J., Opdyke, W. Roberts, D. (1999). Refactoring: Improving
the Design of Existing Code. USA: Addison Wesley Professional.

Goldstein, M., Mount, C. (2015). Automatic and continuous software architecture
validation. Proceedings of the 37th International Conference on Software
Engineering.Florence, Italy. Access address:
https://ieeexplore.ieee.org/abstract/document/7202950.

DevOps(2017), https://devops.com. Access date: 30 May 2017.

Eclipse(2017), http://www.eclipse.org/. Access date: 30 May 2017.

Ishrat M., Saxena M., & Alamgir M., Comparison of Static and Dynamic Analysis for
Runtime Monitoring, 2012.

Google Java Style Guide(2017), https://google.github.io/styleguide/javaguide.html.
Access date: 10 April 2017.

Jenkins(2017), https://jenkins.io. Access date: 30 May 2017.

Continuous Code Quality Platform(2017), https://www.sonarqube.org. Access date: 30
May 2017.

Jalote P., Agarwal N. (2007). Using Defect Analysis Feedback for Improving Quality and
Productivity in Iterative Software Development., In proc- ITI 3rd International
Conference on ICT. Access address:
http://people.cse.iitd.ernet.in/~%?20jalote/papers/DefectPrevention.pdf.

Java Code Conventions (1997). Sun Microsystems, 2550 Garcia Avenue, California
US.A. Access address:
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf.

Kevitt, M. (2010). Best Software Test & Quality Assurance practices in the project life-
cycle: An approach to the creation of a process for improved test & quality
assurance practices in the Project life-cycle of an SME(Master Thesis). Access
Address: http://rian.ie/en/item/view/40440.html.

Kumaresh, S., Baskaran, R. (2010). Defect analysis and prevention for software process
quality improvement. International Journal of Computer Applications(lJCA), 42-
47 Access address: https://www.ijcaonline.org/archives/volume8/number7/1218-
1759.

Letouzey J. Louis (2016). The SQALE Method for Managing Technical Debt. 2012 Third
International Workshop on Managing Technical Debt (MTD), Zurich, Switzerland.

Access address: https://ieeexplore.ieee.org/abstract/document/6225997 .

29


https://ieeexplore.ieee.org/abstract/document/7202950
http://www.eclipse.org/
https://google.github.io/styleguide/javaguide.html
https://jenkins.io/
https://www.sonarqube.org/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220397
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220397

Lincke, R. (2007). Validation of a Standard and Metric-Based Software Quality Model:
Creating the Prerequisites for Experimentation. (Master Thesis). Access address:
http://arisa.se/files/L-07.pdf.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Upper
Saddle River, NJ: Prentice Hall PTR.

McConnel S. (2001). An ounce of prevention, IEEE Software, s. 5-7.

McConnell, S. (1996). Rapid development: taming wild software schedules. Washington:
Microsoft Press, Redmond.

McConnell, S.(2004). Code Complete. 2" edn. Redmond: Microsoft Press, s. 514-531,
778.

Nagappan, N., Ball. T. (2005). Static analysis tools as early indicators of pre-release
defect density. In Proceedings of the 27th international conference on Software
engineering. St. Louis, MO, USA. Access address:
https://dl.acm.org/citation.cfm?id=1062558.

30



ANNEX

Annex I: Software Code Quality Requirements

SOFTWARE CODE QUALITY REQUIREMENTS

The software is defined as the ability of the system or its components to perform the

functions expected in a given environment within a certain time frame. This document is

intended to provide quality in the software developed in-house or in the custom-made

manner. The requirements for quality assurance are listed below.

The requirements for code quality are grouped under 4 headings.

1
2
3.
4

Reliability
Performance Competence
Maintenance Feasibility

Security

1. Reliability Requirements:

1.1.

1.2.

1.3.

1.4.

1.5.
1.6.

1.7.

Try, Catch, Finally, exception, process or such error handling blocks should not
be empty.

Exceptions catched with catch blocks should not be thrown out without any
action. Exceptions must be be logged.

Functions and procedures that contain insert, update, delete, create table, or select
commands to run in the database must perform exception handling.

The classes that implement the serializable interface must also perform the
serializable method for the class's own and all serializable subdomains.
Persistent classes must perform hashCode () and equals () methods.
Applications running on the server should not repeat the capabilities provided by
the application server. For example: Creating a thread in the J2E framework
Classes with a pointer must perform their own copy methods.

31



1.8. All non-static variables must be given an initial value.

1.9. In an instance, self-deletion should be avoided.

1.10. Type casting should only be carried out for compatible types.

1.11. Data should not be shortened while transporting data in the memory, the data to
be moved to the two ends (source and target) should be guaranteed to be
compatible in terms of type, size and capacity.

1.12. There should be no function with an indefinite number of parameters. The input
parameters received must be used with data structures and for each parameter
should have a specific data structures. For example, if a function that should take
3 parameters, such as id, name and description, should not take all parameters as
a single parameter separated by special characters.

1.13. The return value must be tested in all resource allocation statements. For
example; get memory, get thread, get db connection, and open file etc.

1.14. 1t should not be tested whether the floating-point numbers are equal.

1.15. Any function should leave back any resources it allocates (in order not to
encounter the Memory Leak Problem.)

1.16. The references given to the buffers should be guaranteed to fit in the dimensions
reserved for the buffer.

1.17. All data access must be via a central data manager (transaction manager).

1.18. If a singleton pattern is applied in multi-thread environments, the locks must be
set up without creating singleton classes.

1.19. Cyclic loop calls should be avoided. For example: If A calls B, B shouldn't call
A.

1.20. Superclass should not be aware of subclasses and should not use sub-classes.
(Superclass should not call/use sub-class method, its attributes or sub-class
name.)

1.21. In special destructor-writeable software languages, classes with virtual methods
must have a virtual destructor

1.22. In special destructor-writeable software languages, master classes must have a
virtual destructor

1.23. In special destructor-writeable software languages, subclasses must implement
virtual destructors in their master class

1.24. The cyclomatic complexity of all modules should be acceptable

32



1.25. Network resources (IP Address, hostname, port, URL, etc.), user codes,
passwords in code shouldn't be hardcoded. Instead, it must be implemented with
encryption algorithm and parametric use.

1.26. Logs should not include password or special details of a customer.

1.27. Modules that use resources should also have statements that clear these blocks.
This means that pieces of code that specify how to clean resources during garbage
collection should also be written.

1.28. There must be a timeout for blocking synchronous calls.

1.29. The access information and passwords of the module / display / sub-programs
in the application should not be left as default assigned values.

1.30. Information written in the log should contain information summarizing the

situation rather than the general expression.

Performance Qualification Requirements:

Under the given conditions, the performance level of a software and the amount of

resources that use it are evaluated.

2.1. Client requests must be centralized to reduce network traffic.

2.2. SQL queries that perform sequential searches should be avoided.

2.3. Very large tables on the complex queries should not be used. For example: many
tables should be joined with each other, too many subqueries should be avoided.

2.4. Usage of excessive index or multiple indexes in a table should be avoided.

2.5. If large tables and indexes are available in the database, partition should be used.

2.6. If memory is limited, the correct parser should be selected. For example, avoiding
the use of the DOM and something like SAX should be used.

2.7. Operations that adversely affect performance (OPEN / CLOSE, object creation,
CREATE, object reset, database connection, remote command call, SQL query,
etc.) should be avoided in the loop.

2.8. Lazy object creation should be done rather than creating a full object in static
blocks.

2.9. It is recommended that the number of SQLs in the middle layer should not be
more than 2.

33



2.10. If the SQL number is more than 2, the store procedure must be used.

2.11. Objects that cannot be changed can also be avoided. For example, it should
not be attempted to create a new string from two strings. In such a case,
StringBuffer / StringBuilder should be used.

2.12. StringBuilder is recommended because it will be faster rather than
StringBuffer if a synchronized structure is not required.

2.13. The reference of unused objects should not be kept. In this case, the object
will remain unclean during garbage collection (garbage collection, cleaning of
unused objects).

2.14. Keeping heavy objects (requiring large amounts of memory) in the session
should be avoided.

2.15. The use of static variables and static objects should be avoided. If it is
necessary to use, it should be used as multi-tread environment.

2.16. Instead of using a static connection, the required connection must be taken
from the connection pool.

2.17. It is necessary to specify the names of the fields to be queried at the point
of querying from the database and query only needed data.

2.18. When bulk data is retreival required from the database, the paging structure
must be used. It is necessary to limit the size of the data to query by the interval.

2.19. A call on the provided webservice or screens is expected to return a
response within 5 seconds (except for the delays caused by the network devices
being accessed).

2.20. For queries written for database operations, prepared statement should be

used.
Maintenance Feasibility Requirements:
Expresses the effectiveness and ability of making the desired changes in the

application, software or system.

3.1. Functions / methods that perform data exchange should only be changed with
adjacent layer functions / methods. It should not skip the adjacent layer and make
changes with the other layer.

3.2. Too many horizontal layers should be avoided.

34



3.3. Long code segments should be collected in one place. Copy-paste should prevent
the distribution of these pieces of code (Code duplication issue).

3.4. A class's inheritance depth should be limited.

3.5. The number of classes derived from a class must be limited.

3.6. Multiple inheritance should be avoided. For example, a class should not be
derived from both A, B, and C.

3.7. The data update / insertion features should be able to be stored, restricted, and
encapsulated.

3.8. Data members of classes should not be public.

3.9. A class's use of other classes (fan-out) should be restricted. The threshold value
should be <5.

3.10. Cyclic loop calls should be avoided. For example, If A calls B, B should

not call A.

3.11. Instead of multiplying the same code snippet by typing at different points,
it should be written to a single point and use from necessary points as reference.

3.12. Instructions should not be closed as comments.

3.13. Files should not contain over 1000 lines of code.

3.14. Indices (counter, index) should not be changed within the loop.

3.15. GO TO, CONTINUE and BREAK should not be used except the switch
cycle.

3.16. Cyclomatic complexity should be limited. It is recommended not to exceed

the complexity value of 12.

3.17. Depending on the number of database / file operations, complexity should
be checked.

3.18. The number of parameters passed by a function / method must be less than
7.

3.19. Other than trivial idioms (literal) should not be hard code.

3.20. All error messages should be kept in a central location. There must be no

development, deployment, or system stop to change an error message.
3.21. Line length should not be more than 80 lines.
3.22. For value assignments, d = (a=b + ¢) + r; substitutea=b +c;d=a+r;

writing should be applied.

35



3.23. Use of parentheses: if (a == b && ¢ ==d) instead of if ((a == b) && (c ==

d)).

3.24. There should not be more than one return statement in the method /
functions.

3.25. There should be no duplicated code fragments.

3.26. All software developers must use the same code editor (code formatter /
beautifier).

3.27. The code must be passed through the code analysis tools and the code

formatter before it is sent to the repository. The code must be sent after the errors

of the analysis are cleared.

3.28. The number of lines of code in Method / Function / Procedures should not
be higher.
3.29. Each class / function / method / procedure should have a brief description

of what the purpose of the piece of code serves.

3.30. Based on the development, all necessary information about how to make
any changes or management by the user or admin during the life cycle including
the initial installation of the application / development should be shared with the

package delivery.

36



Annex

1l: Yazilim Kod Kalitesi Gereksinimleri

YAZILIM KOD KALITESI GEREKSINIMLERI

Yazilim, sistem veya bilesenlerinin, belirli bir ortamda, belirli bir zaman dilimi iginde

kendilerinden beklenilen islevleri yerine getirebilme yetenegi olarak tanimlanmaktadir.

Bu dokiiman sirket i¢i veya 1smarlama sekilde gelistirilen yazilimlarda kaliteyi saglamak

amactyla hazirlanmigtir. Asagida kalitenin saglanmasi i¢in gereksinimler siralanmustr.

Kod kalitesine ait gereksinimler 4 baslik altinda toplanmustir.

1
2
3.
4

Guvenilirlik
Performans Yeterliligi
Bakim Yapilabilirlik

Guvenlik

1. Guvenilirlik Gereksinimleri:

1.1.

1.2.

1.3.

1.4.

1.5.
1.6.

1.7.
1.8.
1.9.

Try, Catch, Finally, exception gibi veya buna benzer hata yakalama bloklar1 bos
olmamalidir.

Catch bloklar ile yakalanan hatalar higbir islem yapilmadan rethrow edilmemeli.
Yakalanan hatalar loglanmalidir.

Veritabaninda calistirilacak Insert, Update, Delete, Create Table veya Select
komutlarint iceren fonksiyonlar ve procediirler hata yonetimi (exception
handling) yapmalidir.

Serializable arayiizii ger¢eklestiren siiflar ayn1 zamanda serializable metodunu
siifin kendi ve tiim serializable alt alanlar1 i¢in gerceklestirmelidir.

Persistent siniflar hashCode() ve equals() metodlarin1 gergeklestirmelidir.
Sunucu lizerinde ¢alisan uygulamalar uygulama sunucusu tarafindan saglanan
yetenekleri tekrarlamamalidir. Ornegin: J2E catis1 iginde thread olusturmak
Pointer igeren siniflar kendi copy metodlarin1 gergeklestirmelidirler.

TUm non-static degiskenler i¢in bir baslangi¢ degeri verilmelidir.

Bir instance i¢inde kendini silme isleminden kaginilmalidir.

1.10. Tip ¢evrimleri sadece uyumlu tipler i¢in yapilmalidir.

37



1.11. Hafiza igerisinde data tasinirken kisaltilmamali, datanin tasinacagi iki
ucun (kaynak ve hedef) uyumlu boyutlarda olmasi garanti altina alinmalidir.
1.12. Belirsiz sayida parametreye sahip herhangi bir fonksiyon olmamalidir.
Alinan giris parametreleri veri yapilari tizerinden ve her bir parametreye 6zel veri
yapilar1 kullanilmali. Ornegin, id, name ve description gibi 3 parametre almasi
gereken bir fonksiyon tum parametreleri tek bir string icinde 6zel karakterlerle

ayristirilmis sekilde tek bir parametre olarak almamalidir.

1.13. Biitiin resource allocation ifadelerinde geri dénen deger test edilmeli. Bu
ifadeler get memory, get thread, get db connection ve open file ifadelerini
icermektedir

1.14. Floating point sayilarinin esit olup olmadig test edilmemelidir.

1.15. Herhangi bir fonksiyon ayirdigi her kaynagi geri birakmalidir.(Memory
Leak Problemi ile karsilagsmamak igin.)

1.16. Bufferlara verilen referanslarin buffer igin ayrilan boyutlara sigmasi
garanti altina alinmalidir.

1.17. Biitiin data erisimi, merkezi bir data manager (transaction manager)
tizerinden olmalidur.

1.18. Multi-thread ortamlarda singleton pattern uygulaniyorsa, locklar singleton

siniflar olusturulmadan kurulmali.

1.19. Dairesel ¢agrilardan kagmilmalidir. Ornegin: A B yi ¢agirirken B de A y1
cagirmamalidir.
1.20. Superclass lar subclass lardan haberdar olmamali ve sub-class lari

kullanmamali. (Superclass sub-class in methodunu ¢agirmamali, attributelerini
kullanmamal1 ve sub-class adini1 kullanmamali.)

1.21. Ozel destructor yazilabilen yazilim dillerinde, sanal method iceren siniflar
sanal destructorada sahip olmalidir

1.22. Ozel destructor yazilabilen yazilim dillerinde, ana smiflar sanal
destructora sahip olmalidir

1.23. Ozel destructor yazilabilen yazilim dillerinde, alt siniflar ana siniflarindaki
sanal destructorlar1 implement etmelidir

1.24. Butlin modullerin cyclomatic complexity leri kabullenilebilir seviyede

olmali

38



1.25. Network kaynaklarinin (IP Adresi, hostname, port, URL vs), kullanici
kodlari, sifreleri kod igerisinde ve agikca yazilarak (hard code)
kullanilmamalidir. Bunun yerine encryption algoritmasindan gecirilmeli ve
parametrik kullanim yapilmalidir.

1.26. Loglara sifre bilgisi veya miisteri 6zelindeki 6zel bilgileri yazilmamalidir.

1.27. Kaynaklarin kullanildigi modiillerin ayrica bu bloklar1 temizleyen
ifadelerinin de olmas1 gerekmektedir. Yani garbage collection sirasinda
kaynaklarin nasil temizlenecegini belirten kod pargalar1 da yazilmalidir.

1.28. Senkron ¢agrilar1 engellemede bununla ilgili zamanagimi olmalidir.

1.29. Uygulama veya ¢6zum icerisindeki modil/ekran/alt-programlarin erigim
bilgileri ve sifreleri default atanan degerler olarak birakilmamalidir.

1.30. Loglara yazilan bilgilerde genel ifadeden c¢ok, o durumu G&zetleyen

aciklama ve bilgiler yer almalidir.

Performans Yeterliligi Gereksinimleri:

Verilen sartlar altinda, bir yazilimin performans seviyesi ve kullandigi kaynak

miktarini etkileyen 6zelliklerin degerlendirilmesidir.

2.1. Ag trafigini diistirmek i¢in client istekleri merkezilestirilmelidir.

2.2. Sirali arama yapan SQL sorgularindan kagiilmalidir.

2.3. Cok biiyiik tablolar iizerinde kompleks sorgulamalar yapilmamali. Ornegin:
bircok tablonun birbiri ile join yapilmasi, ¢ok fazla alt sorgu olmasi, joinlerde
performansi diigiiren siralamalar yapilmasindan kaginilmalidir.

2.4. Asirt biiylik index veya bir tabloda birden fazla index kullanimindan
kaginilmalidir.

2.5. Veritabaninda buyiik tablolar ve indexler uygun ise partition yapilmalidir.

2.6. Hafizanin kisith olmasi durumunda dogru parser segimi yapilmalidir. Ornegin
DOM kullanmaktan kaginip SAX gibi bir sey kullanilmalidir.

2.7. Performansi olumsuz etkileyen operasyonlar (OPEN/CLOSE, nesne yaratimi,
CREATE, obje sifirlamasi, database baglant1 yapilmasi, uzaktan komut c¢agrisi,

SQL sorgusu vs) dongu (loop) iginde kullanmaktan kaginilmalidir.

39



2.8. Statik bloklar i¢inde full nesne olusturulmasindan ziyade lazy nesne olusturmasi
yapilmalidir.

2.9. Orta katmandaki SQL'lerin sayis1 2'den fazla olmamasi tavsiye edilmektedir.

2.10. SQL sayis1 2'den fazla ise, store procedure kullanilmalidir.

2.11. Degistirilemeyen nesnelerden, ayrica nesne yaratilmasindan kaginilmali.
Ornegin, javada iki string'den yeni bir string olusturmaya calisiimamalidir. Boyle
bir durumda StringBuffer/StringBuilder kullanilmalidir.

2.12. Synchronized bir yap1 gerekmiyorsa StringBuffer yerine daha hizli olacagi
icin StringBuilder tavsiye edilmektedir.

2.13. Kullanilmayan nesnelerin referansi tutulmamalidir. Bu durumda o nesne
garbage collection (¢op toplama, kullanilmayan nesnelerin temizlenmesi)
sirasinda temizlenmeden kalacaktir.

2.14. Agir nesnelerin (blyik miktarda memory gerektiren) session'da
tutulmasindan kaginilmalidir.

2.15. Statik degisken ve statik nesnelerin kullanilmasindan kag¢inilmalidir.
Eger kullanilacaksa bu singleton olarak multi-tread ortaminda kullanilmalidir.

2.16. Statik baglanti kullanmaktansa, ihtiya¢ duyulan baglanti, baglanti
havuzundan (connection pool) alinmalidir.

2.17. Veritabanindan veri ¢ekilmesi noktasinda cekilecek alanlarin isimleri
belirtilerek ve ihtiyaca yonelik verilerin ¢ekilmesi gerekmektedir.

2.18. Veritabanindan toplu veri ¢ekilirken, sayfalama yapis1 kullaniimalidir.
Aralik verilerek cekilecek olan veri boyutunun siirlandirilmasi gerekmektedir.

2.19. Sunulan webservis veya ekranlardaki bir cagrinin 5 saniyeden 6nce cevap
donmesi beklenmektedir.(Gidilen ug sistemler, erisim saglanan network
cihazlarindan kaynaklanan gecikmeler harig)

2.20. Kod igerisinde veritabani islemleri i¢in yazilan sorgularda prepared

statement kullanilmalidir.
Bakim Yapilabilirlik Gereksinimleri:

Uygulamada, yazilimda ya da sistemde yapilmak istenilen degisikliklerin yapilabilme

etkinligini ve yetenegini ifade eder.

40



3.1. Data degisimi yapan fonksiyonlar sadece bitisik katman fonksiyonlari ile degisim
yapmalidir. Bitisik katmani atlayip diger katmanla degisim yapmamalidir.

3.2. Cok fazla yatay katmanlardan kaginilmalidir.

3.3. Uzun kod segmentlerinin bir yerde toplanmasi saglanmalidir. Copy-paste ile bu
kod pargalarinin dagitilmasi engellenmelidir.(Code duplication sorunu)

3.4. Bir sinifin kalitim derinligini sinirlanmalidir.

3.5. Bir smiftan tiireyen sinif sayisi sinirlanmalidir.

3.6. Coklu kalitimdan sakinilmalidir. Ornegin bir class hem A, hem B, hem de C den
tirememelidir.

3.7. Verinin guncellenmesi/eklenmesi  ozellikleri  digerlerinden saklanabilmeli,
erisim sinirlandirilabilmeli, encapsule olmalidir.

3.8. Simniflarin veri tiyeleri public olmamalidir.

3.9. Bir smifin bagka siniflar1 kullanma (fan-out) degeri kisitlanmahidir. Esik degeri

<5 olmalidir.

3.10. Dairesel ¢agrilardan kagmilmalidir. Ornegin: A B yi ¢agirirken B de A y1
cagirmamalidir.

3.11. Ayni kod pargacigimi farkli noktalara yazarak ¢oklamak yerine tek bir
noktaya yazilmali ve diger noktalar referansini1 kullanmalidir.

3.12. Komutlar (instructions) yorum olarak kapatilmamalidir.

3.13. Dosyalar 1000 satirin tizerinde kod igermemelidir.

3.14. Indisler (sayag, index) déngii igerisinde degistirilmemelidir.

3.15. Switch dongiisi disinda GO TO, CONTINUE ve BREAK

kullanilmamalidir.
3.16. Cyclomatic karmagiklik limitlenmelidir. Karmagiklik degeri 12’yi
ge¢cmemesi tavsiye edilmektedir.
3.17. Veritabani/dosya islemlerinin sayisina bagli olarak karmasiklik kontrol
edilmelidir.
3.18. Bir fonksiyon tarafindan gegirilen parametre sayist 7'den az olmalidir.
3.19. Onemsiz kalip deyimler (literal) haricindekiler hard code edilmemelidir.
3.20. Tiim hata mesajlar1 merkezi bir yerde tutulmalidir. Bir hata mesajinin

degistirilmesi i¢in gelistirme, deployment ya da sistem kesintisi gerekmemelidir.

3.21. Satir uzunlugu(line length) 80’den fazla olmamalidir.

41



3.22. Deger atamalarticind =(a=b+c¢) +1; yerinea=b +c; d =a + r; yazim
sekli uygulanmalidir.
3.23. Parantez kullanimai: if (a == b && ¢ ==d) yerine if ((a ==b) && (c == d))

seklinde olmalidir.

3.24. Method/fonksiyonlarda birden fazla return satirt bulunmamalidir.
3.25. Duplike kod pargalart bulundurulmamalidir.
3.26. Yazilim gelistiricilerin tamami ayni kod diizenleyici (code formatter/

beautifier) kullanmalidir.

3.27. Kod repository e gonderilmeden Once kod analiz araglarindan ve code
formatter dan gecirilmelidir. Analiz sonucu ¢ikan hatalar giderildikten sonra kod
gonderilmelidir.

3.28. Method/Fonksiyon/Procedure  lerdeki kod satir sayist  yiiksek
olmamalidir.100-120 satirdan daha fazla kod i¢ermemelidir.

3.29. Her class/fonksiyon/method/procedure ile ilgili kod par¢asinin ne amaca
hizmet ettigi yorum alaninda kisaca anlatilmadir.

3.30. Yapilan gelistirmeye istinaden uygulamanin/gelistirmenin ilk kurulumu
dahil olmak iizere hayat dongiisii boyunca kullanicis1 veya admin tarafindan
yapilabilecek her tiirlii degisikligin ve yonetiminin nasil yapilacag: ile ilgili

gerekli tiim bilgiler paket teslimi ile birlikte dokiiman olarak paylagilmalidir.

42






RESUME

Name Surname : Mehmet Yildiz

Place of Birth : Halfeti/Sanh Urfa

Date of Birth  : 1986

Education : Dogus University, Computer Eng.(%100 scholarship), Feb.2010

Experiences
2015-... Solution Development Senior Specialist, Tiirk Telekom A.S
2012-2015 Senior Software Engineer, NETAS Telecommunication
2010-2012 Software Engineer, Huawei Telecommunication

44



