KORU (ÇANAKKALE) BARİTLİ KURŞUN - ÇİNKO

YATAKLARININ JEOLOJİSİ

GÜLCAN BOZKAYA

DOKTORA TEZİ

JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

2001

. .

KORU (ÇANAKKALE) BARİTLİ KURŞUN-ÇİNKO YATAKLARININ JEOLOJİSİ

GÜLCAN BOZKAYA

DOKTORA TEZİ

JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

2001

CUMHURİYET ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KORU (ÇANAKKALE) BARİTLİ KURŞUN-ÇİNKO YATAKLARININ JEOLOJİSİ

Gülcan BOZKAYA

DOKTORA TEZİ

JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ'NE

Bu çalışma, jürimiz tarafından, Jeoloji Mühendisliği Anabilim Dalı' nda Doktora Tezi olarak kabul edilmiştir.

Prof. Dr. Ahmet GÖKÇE Başkan Prof. Dr. Ahmet SAĞIROĞLU Üye Üye Doç. Dr. Ahmet ŞAŞMAZ Üye Yrd. Doç.Dr. Orhan CERİT Üye (Raportör) Yrd. Doç.Dr. Ahmet EFE

ONAY

Yukarıdaki imzaların, adı geçen öğretim üyelerine ait olduğunu onaylarım.

06./07/2001 FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRÜ Prof. Dr. Necati C

Bu tez, Cumhuriyet Üniversitesi Senatosu' nun 05.01.1984 tarihli toplantısında kabul edilen ve daha sonra 30.12.1993 tarihinde C.Ü. Fen Bilimleri Enstitüsü Müdürlüğünce hazırlanan ve yayınlanan "Yüksek Lisans ve Doktora Tez Yazım Kılavuzu" adlı yönergeye göre hazırlanmıştır.

ÖZET

Doktora Tezi

KORU (ÇANAKKALE) BARİTLİ KURŞUN-ÇİNKO YATAKLARININ JEOLOJİSİ

Gülcan BOZKAYA

Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Ahmet GÖKÇE

Koru (Çanakkale) baritli kurşun - çinko yatakları Biga Yarımadası'nda Tersiyer yaşlı volkanik kayaçlar içinde gözlenenen kurşun - çinko yataklarının tipik örneklerinden birisi olup, günümüzde kurşun - çinko üretimi amacıyla işletilmektedir.

Yatakların yakın çevresinde yüzeyleyen volkanik kayaçlar; Eosen yaşlı Akçaalan andeziti (andezit - bazaltik andezit, ender olarak riyodasit ve dasit bileşimli volkanik kayaçlar), Oligosen yaşlı Adadağı piroklastikleri (trakit, latit, dasit, riyodasit bileşimli tüf ve aglomeralar ile ender olarak andezitik ve dasitik lavlar), Miyosen yaşlı Dededağ dasiti (dasitik yer yerde riyodasitik bileşimli lavlar), Pliyo - Kuvaterner yaşlı Karaömerler bazaltı (bazalt) şeklinde ayrılmışlardır.

İnceleme alanı içindeki cevherleşmeler, Adadağı piroklastikleri içinde BKB -DGD konumlu fay hattı boyunca damar tipi ve üst seviyelerdeki ileri derecede breşleşmiş kesimlerde stockwork tipi oluşumlar şeklindedir. Cevherleşmelerde galenit, sfalerit ve barit hakim mineraller olup, pirit, kalkopirit, fahlerz (tennantit), markazit, kalkosin, kovellin, bornit, tenörit ve kuvars az miktarlarda bileşime katılmaktadır.

Sıvı kapanım incelemeleri sırasında ölçülen T_{FM} , Tm_{ICE} ve T_H değerleri, mineral oluşturucu hidrotermal çözeltiler içinde CaCl₂ ve MgCl₂ gibi tuzların bulunduğunu, baritlerin oluşumu sırasında hidrotermal çözeltilerin tuzluluklarının biraz yüksek, sıcaklıklarının düşük olduğunu (80 °C'den daha düşük), sülfürlü minerallerin oluşumu sırasında tuzluluğun önemli miktarda düştüğünü, sıcaklığın 270 °C'ye kadar yükseldiği, sfaleritlerin 120 - 160 °C sıcaklık aralığında oluştuğunu (sfaleritlerde birincil kapanımlar) göstermektedir. Çözeltiler içinde CaCl₂ ve MgCl₂ gibi tuzların bulunması, mineral oluşturucu hidrotermal çözeltilerin ya deniz suyu kökenli olduklarını veya denizel sedimanlar içinden geçerek ortama geldiklerine işaret etmektedir.

Ana element jeokimyası sonuçlarından; inceleme alanındaki volkanik kayaçların erken evrede (Karaömerler bazaltı hariç) yüksek potasyumlu kalkali bileşimli oldukları, sonraki evrelerde ise orta potasyumlu kalkalkelen karakterli, levha içi bazaltlar (Karaömerler bazaltı) şeklinde oluştukları anlaşılmaktadır

İz element jeokimyası incelemeleri, yatak içinde zenginleşen kurşun ve çinkonun Akçalaan andeziti ile Adadağı piroklastiklerinden, bakırın ise Dededağ dasitinden kaynaklanmış olabileceğini düşündürmektedir. NTE incelemeleri; baritlerin deniz suyunda belirlenmiş değerlere benzediklerini göstermiştir.

Kurşun izotopları jeokimyası incelemeleri baritlerle, sülfürlü (galenit ve sfalerit) minerallerin farklı bileşimlerde kıtasal kabuk malzemelerinden kaynaklandıklarına işaret etmektedir.

Kükürt izotopları jeokimyası incelemelerine göre; baritlerin bileşimlerindeki kükürtün deniz suyu içindeki sülfattan kaynaklandığı, sülfürlü minerallerdekinin ise büyük olasılıkla bölgedeki magmatik kayaçlardan veya bir magmatik rezervuardan ³²S'ce zengin (hafif) kükürtün hidrotermal çözeltilerce çözülüp, cevherleşme ortamına taşınması şeklinde geliştiği kabul edilmiştir.

Oksijen izotopları jeokimyası incelemelerinden; inceleme alanındaki baritlerin S izotopları bileşimi bakımından benzedikleri deniz suyu içindeki sülfatın O izotopları bileşimine ($\delta^{18}O = 0 \%_0$) göre oldukça farklı oldukları ve magmatik kayaçlar için belirlenmiş değerlere benzediği, bu durumun deniz suyunun yöredeki volkanik kayaçlarla ileri derecede etkileşimi sonucu gelişmiş olabileceği düşünülmüştür.

ANAHTAR KELİMELER: Koru, Çanakkale, Biga Yarımadası, kurşun-çinko, barit, sıvı kapanımı, jeokimya, NTE, izotop

ABSTRACT

PhD

GEOLOGY OF KORU (ÇANAKKALE) BARİTE BEARING LEAD-ZINC DEPOSITS

Gülcan BOZKAYA

Cumhuriyet University Institut of Applied and Natural Sciences Geological Engineering Department

Supervisor: Prof. Dr. Ahmet GÖKÇE

Koru (Çanakkale) barite bearing lead-zinc deposits are typical examples of the lead-zinc deposits occurred in the Tertiary volcanic rocks outcropped in the Biga Peninsula, and are being mined for lead-zinc production.

Volcanic rocks around the investigated deposits are distinguished as; Eocene Akçaalan andesite (andesite, basaltic andesite, rarely rhyodacite and dacite types of volcanic rocks), Oligocene Adadağı pyroclastics (tuffs and agglomerates with trachytic, latitic, dacitic and riyolitic compositions and rarely andesitic and dacitic lavas), Miocene Dededağ dacite (dacitic and rarely rhyodacitic lavas) and Plio-Quaternary Karaömerler basalt (basalt).

The investigated deposits hosted by Adadağı pyroclastics and show two different mineralization styles such as; stockwork ore veinlets in the upper parts and ore veins along the fault zones in the depper parts. Galena, sphalerite, barite are the main minerals and accompained by minor amounts of pyrite, chalcopyrite, fahlerz (tennantite), marcasite, chalcosine, covelline, bornite, tenorite and quartz.

 T_{FM} , Tm_{ICE} and T_H values measured during fluid inclusion studies indicate the presence of CaCl₂ and MgCl₂ types of salts in the mineralizing hydrothermal solutions, salinity of the hydrothermal solutions is rather relatively high during barite crystalisation in the early episode of mineralization, while decrased during the sulfide dominated later episode of mineralization. The temperatures of fluids is low (< 80 °C) during the early phase and increased up to 270 °C during the later phase. Sulfide minerals seem to be formed in a temperature range of 120-160 °C according to the primary fluid inclusion in sphalerite crystals. The presence of CaCl₂ and MgCl₂ indicate that the mineralizing hydrothermal solutions are either originated from sea water or circulated trough the marinal sediments.

According to the major element geochemistry, it has been assumed that the volcanic rocks in the study area have high potassic calcalcaline composition in the early stage ,but have medium potassic calcalcaline compositon characteristic for within plate basalts in the later stage (Karaömerler basalt).

Trace elements contents of the various rock units show that lead and zinc may be originated from Akçaalan andesite, while copper from Dededağ dacite. REE studies show that normalised REE values of barites resemble to sea water.

The lead isotope studies show that barites and sulfides (galena and sfalerit) were originated from continental crust materials with different compositions.

According to the sulphur isotope studies, sulfur in the barites is originated from sulphate in the sea water, while sulfur in the galena and sphalerite is probably originated from either igneous rocks in the surrounding area or from a magmatic reservoir by dissolution of sulfur enriched in 32 S (lighter) isotope.

Investigations of oxygene isotope geochemistry show that the oxygene isotope composition of barites resemble to those of igneous rocks, however the oxygene isotope compositon of sea water sulphate was expected to be similar to that of sea water. This compositon may be assumed to have been developped as a result of deep interaction of sea water sulfate with surrounding volcanic rocks.

KEY WORDS: Koru, Çanakkale, Biga Peninsula, lead-zinc, barite, fluid inclusion, geochemistry, REE, isotope

TEŞEKKÜR

C.Ü. Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Ana Bilim Dalı Doktora Programı kapsamında hazırlanmış olan bu doktora tezi, Sayın Prof.Dr. Ahmet GÖKÇE'nin danışmanlığında yürütülmüştür.

Öncelikle; arazi ve laboratuvar çalışmaları sırasında her türlü katkı ve yardımlarını esirgemeyen ve bana bilimsel çalışmanın inceliklerini öğreten değerli danışman hocam Prof.Dr. Ahmet GÖKÇE'ye (C.Ü.),

Yapıcı eleştirileri ve görüşleriyle teze katkı sağlayan Prof. Dr. Ahmet SAĞIROĞLU ve Doç.Dr. Ahmet ŞAŞMAZ'a (F.Ü.),

Cevher mikroskopisi ile ilgili bölümde ve tezin her aşamasında değerli bilgi ve eleştirleri ile yardımcı olan Yrd.Doç.Dr. Ahmet EFE'ye (C.Ü.),

Genel Jeoloji bölümü ile ilgili görüş ve katkılarından dolayı Yrd.Doç.Dr. Orhan CERİT'e (C.Ü.),

Arazi ve laboratuvar incelemeleri sırasında teze mali destek sağlayan C.Ü. Araştırma Fonu'na,

Gerek maden yatağının gerekse çevresinin incelenmesi için lojistik destek sağlayan ve her türlü yardım ve ilgiyi esirgemeyen Şirket Müdürü Yük. Müh. Berkin AKOL ve İşletme Müdürü Maden Müh. Engin ÇETİNBAĞ olmak üzere tüm Çanakkale Madencilik Ltd. Şti. elemanlarına,

Jeokimya çalışmalarının bir kısmının gerçekleşmesini sağlayan C.Ü. Jeoloji Mühendisliği Bölümü elemanları Kimya Müh. Fatma YALÇIN ve Uzman Dr. Ümit ŞENGÜL'e,

İncekesitlerin paleontolojik tayinlerine katkısından dolayı Yrd. Doç.Dr. Nazire ÖZGEN'e (C.Ü.),

İncekesitlerin yapılmasındaki katkılarından dolayı Jeoloji Mühendisliği İncekesit Laboratuvarı personeli Ufuk KUŞ'a, jeolojik haritaların çizimi sırasındaki katkılarından dolayı Veli KAYAOĞLU'na,

Kükürt izotopları analizlerinin yapımını gerçekleştiren Dr. Baruch SPIRO'ya (NERC Isotope Geoscience Lab., Keyworth, Nottingham, UK), NTE, kurşun ve oksijen izotopları analizlerini gerçekleştiren Activation Laboratuvarı (Kanada) elemanlarına,

Akademik hayatım boyunca, bana her konuda destek olan eşim Doç.Dr.Ömer BOZKAYA'ya (C.Ü.),

Tez çalışmalarım sırasında gösterdikleri sabır ve anlayışla bana destek olan aileme,

teşekkür ederim.

Gülcan BOZKAYA 27.04.2001

İÇİNDEKİLER

ÖZET	v
ABSTRACT	vii
TEŞEKKÜR	1X
İÇİNDEKİLER	х
ŞEKİLLER DİZİNİ	xii
ÇİZELGELER DİZİNİ	xviii
EK ÇİZELGELER DİZİNİ	xviii
1. GÍRÍS	1
1.1. Amac ve Kapsam	1
1.2. İnceleme Alanının Tanıtımı	1
1.3. Önceki Calısmalar	ŝ
1.4. Yapılan İncelemeler	4
2. ÎNCELEME ALANININ JEOLOJÎSÎ	6
2.1 Bölgesel Jeoloji	6
2.2. Litostratigrafi	10
2.2.1 Litostratigrafik Dizilim	10
2.2.7. Eliostatigrank Dizinin 2.2.2. Akcaalan andeziti (Taa)	10
a Dağılım ve Dokanak İlişkileri	10
h Litoloji (Petrografi)	10
c. Karsılaştırma ve Vaş	10
2.2.3. Adadağı piroklastikleri (Tad)	15
a Dağılım ve Dokanak İlişkileri	16
h Litoloji (Petrografi)	10
c. Karsilastirma va Vas	17
2.2.4. Dededož dositi (Tdd)	23
2.2.4. Deueuag uasili (Tuu)	23
a. Dagiiiii ve Dokaliak Ilişkileri	23
o. Konsulastumes va Vas	25
C. Karşınaştırma ve Yaş	25
2.2.5. Karaomerier bazain (1kb)	26
a. Dagilim ve Dokanak Ilişkileri	26
b. Litoloji (Petrografi)	26
c. Karşılaştırma ve Yaş	26
2.3. Tektonik	28
2.3.1. Tabakalanma ve Çatlak Duzlemlerinin Konumlari	28
2.3.2. Dokanaklar ve Uyumsuzluklar	31
2.3.3, Faylar	31
2.3.4. Kivrimlar	34
2.3.4. Jeolojik Evrim	34
3. MADEN JEULUJISI.	35
3.1. Yatakiarin Dagilimi ve Isimlendirilmesi	35
3.2. Yatakianma Şekli ve Yapısal Üzellikleri.	36
3.5. Mineralojik Bileşim ve Dokusal Üzellikler	45
3.4. Parajenez ve Suksesyon	61

4. SIVI KAPANIM İNCELEMELERİ
4.1. Örnek Seçimi ve Yöntem
4.2. İlk Erime Sıcaklığı Ölçümleri (T _{FM})
4.3. Son Buz Erime Sıcaklığı Ölcümleri (Tm _{ICF})
4.4. Homojenlesme Sıcaklığı Ölcümleri (T _H)
4.5. Sonucların Değerlendirilmesi
5. JEOKİMYASAL İNCELEMELER
5.1. Yapılan İncelemeler
5.2. Örnek Secimi ve Hazırlanması
5.3. Kayaclarda Majör Element Jeokimyası İncelemeleri
5.3.1. Yöntem
5.3.2. Analiz Sonucları ve Değerlendirilmesi
5.4. İz Element Jeokimyası İncelemeleri
5.4.1. Yöntem
5.4.2. Analiz Sonucları ve Değerlendirilmesi
5.5. Nadir Toprak Element Jeokimvası İncelemeleri
5.5.1. Yöntem
5.5.2. Nadir Toprak Element Jeokimyası Hakkında Özet Bilgi
5.5.3. Benzer Olusumlarda Nadir Toprak Elementleri İncelemeleri
5.5.4. Analiz Sonucları ve Değerlendirilmesi
5.6. Kursun İzotopları Jeokimyası İncelemeleri
5.6.1. Yöntem
5.6.2. Kursun İzotopları Jeokimyası Hakkında Özet Bilgi
5.6.3. Analiz Sonuçları ve Değerlendirilmesi
5.7. Kükürt İzotopları Jeokimyası İncelemeleri
5.7.1. Yöntem
5.7.2. Analiz Sonuçları ve Değerlendirilmesi
5.8. Oksijen İzotopları Jeokimyası İncelemeleri
5.8.1. Yöntem. 102
5.8.2. Analiz Sonuçları ve Değerlendirilmesi
6. SONUÇLAR. 105
7. KAYNAKLAR
8. EK AÇIKLAMALAR
ÖZGEÇMİŞ
EKLER
EK-1. Koru (ÇANAKKALE) Baritli Kurşun-Çinko Yatakları Çevresinin Jeolojik
Haritası ve Kesiti
EK-2 .Koru (ÇANAKKALE) Kurşun-Çinko Yatakları Çevresinin Örnek Yeri
Haritası
EK-3. Koru (ÇANAKKALE) Kurşun-Çinko Yatakları Yakın Çevresinin Litoloji Haritası

ŞEKİLLER DİZİNİ

Şekil 1.1. Şekil 2.1.	İnceleme alanının yer bulduru haritası. Biga ve Gelibolu yarımadalarının basitlestirilmis jeoloji	2
,	haritası (Önem, 1974; Okay ve diğ.'den, 1990 düzenlenmiştir)	7
Şekil 2.2.	İnceleme alanı çevresinde değişik bölgelerde belirlenen stratigrafik dizilimlerin karşılaştırılması	8
Şekil 2.3.	İnceleme alanı ve yakın çevresinin basitleştirilmiş stratigrafi dizilimi.	11
Şekil 2.4.	Akçaalan andezitine ait gri-yeşil renkli andezitler ve beyaz renkli piroklastik seviyeler (Umurbey-Hacıgelen asfalt yol üzeri)	12
Şekil 2.5.	Sert kubbemsi görünümler sunan iki yönlü çatlak sistemlerine sahip gri-kahverenkli andezitler (Koru dere, Koru köyü batı kesimi).	12
Şekil 2.6.	Akçaalan andezitine ait bazaltik andezit örneğinde (KR-309) hipohyalin hamur içerisindeki plajiyoklaz, piroksen (öjit) ve opasitleşmiş biyotit fenokristallerinin çift nikol (a) ve tek nikoldeki (b) ince-kesit görünümü (plj: plajiyoklaz, px: piroksen, bi: biyotit, om: opak mineral)	14
Şekil 2.7.	Akçaalan andezitine ait riyodasit örneğinde (KR-322) silisleşmiş hamur içerisinde zonlu doku ve polisentetik ikizlenmeli plajiyoklaz, karlsbad ikizlenmeli killeşmiş sanidin, karbonatlaşmış piroksen ve kloritleşmiş ve opasitleşmiş biyotit ve kuvars fenokristallerinin çift nikoldeki ince-kesit görünümü (plj: plajiyoklaz, q: kuvars, san: sanidin, px: piroksen, bi: biyotit, ka: kalsit, kl: klorit, om: opak mineral)	15
Şekil 2.8.	Akçaalan andezitine ait andezitik bileşimli litik kül tüf örneğinde (KR-282) silisleşmiş volkan camı içerisindeki bazaltik andezit bileşimli volkanik kayaç parçacıklarının tek nikoldeki ince-kesit görünümü	15
Şekil 2.9.	Sarı-yeşil belirgin tabakalanmalı aglomera-lapilli taşı ve tüf ardalanması (Kuyutaşı tepe batısı)	18
Şekil 2.10.	Kahverengi-bordo renkli silisleşmiş tüf hamurlu aglomeralar (Seferli dere-Koru dere kesişim noktasının 500 m kuzeyhatısı)	18
Şekil 2.11.	Gri-yeşil renkli piroklastik kayaçlarla arakatkılı olarak gözlenen gri-sarı renkli, silisce zengin, aşınmaya dayanıklı	10
Şekil 2.12.	piroklastik kayaçlar (Incirlitaştepe kuzeyı) Sarımsı-beyaz renkli aşırı silisleşmiş tüf bileşenli piroklastik breşler (Koru şantiyesi, Tahtalıkuyu ocağı girişi üst	19
	Seviyelen)	20

•

Şekil 2.13.	Gri-yeşil renkli tüfler içerisinde küresel bozunma gösteren sarı ve beyaz renkli kaolinleşmiş-alunitleşmiş seviyeler (Koru	
Şekil 2.14.	şantiyesi Tahtalıkuyu ocağı girişi üst seviyeleri) Adadağı piroklastiklerine ait litik kül tüf örneğinde (KR-123) silisleşmiş-killeşmiş hamur içerisinde volkanik kayaç parçacıkları ve plajiyoklazların ince-kesit tek nikoldeki görünümü (vkp: volkanik kayaç parçacığı, plj: plajiyoklaz, si: silisleşme)	20
Şekil 2.15.	Adadağı piroklastiklerine ait litik kül tüf örneğinde (KR-271), plütonik kayaç parçacığının ince-kesit tek nikol görünümü (vkp: volkanik kayaç parçacığı, pkp: plütonik kayaç parçacığı, si: silislesme)	21
Şekil 2.16.	Adadağı piroklastiklerine ait riyolit örneğinde (KR-107), kloritleşmiş ve silisleşmiş volkan camı içerisinde yarı-özşekilli kuvars, serizitleşmiş sanidin ve plajiyoklaz fenokristallerinin ince-kesit çift nikol görünümü (q: kuvars, san: sanidin, plj: plajiyoklaz se: serizit)	21
Şekil 2.17.	Adadağı piroklastiklerine ait riyolitik camsı kül tüf örneğinde (KR-323), silisleşmiş volkan camı içerisinde kemirilmiş kuvars kristallerinin ince-kesit tek nikol görünümü (q: kuvars, san: sanidin)	22
Şekil 2.18.	Adadağı piroklastiklerine ait silisce zengin piroklastik kayaç örneğinde (TK-66), ışınsal devitrifikasyon (silisleşme) gösteren volkan camı ve iri kuvarslar tarafından ornatılmış (doldurulmuş plajiyoklaz veya sanidin kristal pseudomorflarının çift nikol (a) ve tek nikoldeki (b) ince-kesit görünümü (a; kuvarş şi; ışınşal şilişleşme)	22
Şekil 2.19.	Dededağı volkanitlerine ait hipohyalin porfirik dokulu dasit örneğinde (KR-248), killeşmiş volkan camı içerisindeki yarı- özşekilli plajiyoklaz ve özşekilli hornblend fenokristallerinin tek nikoldeki görünümü (plj: plajiyoklaz, hb: hornblend, q:	21
Şekil 2.20.	Kuvars) Karaömerler bazaltına ait hipohyalin porfirik dokulu bazalt örneğinde (KR-277) zonlu doku ve polisentetik ikizlenmeli plajiyoklaz ve özşekilli piroksen fenokristallerinin ince-kesit cift nikol görünümü (plj: plajiyoklaz, px: piroksen)	27 27
Şekil 2.21.	İnceleme alanı ve çevresinin MS-uydu fotoğrafı ve başlıca cizgisellikler	29
Şekil 2.22.	Adadağı piroklastiklerinde ölçülen tabaka konumlarından hazırlanmış gül diyagramları	30
Şekil 2.23.	İnceleme alanında belirlenen başlıca fay ve kıvrımların dağılımı	32
Şekil 2.24.	Tahtalıkuyu galerisi giriş kesimindeki Adadağı piroklastikleri içerisinde gelişen eğim atımlı normal fay	33

.

xiv

Şekil 2.25.	Kuyutaşı tepe batısındaki malahit-azurit türü mineralleşmenin gelişimini sağlayan eğim atımlı normal fay	33
Şekil 3.1.	Çalışma alanında yeralan Pb-Zn cevherleşmelerinin konumu.	37
Şekil 3.2.	Tahtalıkuyu yatağının galeri girişi (solda) ve stockwork tipi cevher kesiminin alındığı işletme yarması (İkinci viraj yatağından kuzeye bakış)	38
Şekil 3.3.	Koru baritli kurşun-çinko yataklarının konumu ve yakın çevresinin jeoloji haritası	39
Şekil 3.4.	Adadağı piroklastiklerinden alınan iki kayaç örneğine ait X- ışınları difraktogramı ve mineral içeriği. KR-98 ikinci viraj yarması üst kesimindeki alterasyon zonundan, KR-102 ise	
	Adadağı zirvesindeki yeşil renkli tüflerden alınmıştır)	40
Şekil 3.5.	Adadağı pıroklastiklerine ait aşırı derecede silisleşmiş breşler (Tahtalıkuyu yatağı giriş keşimi)	41
Sekil 3.6.	Tahtalıkuvu vatağına ait galeri haritası ve kesiti	42
Şekil 3.7.	Tahtalıkuyu yatağı galerilerine ait örnek yeri haritası	43
Şekil 3.8.	Tahtalıkuyu yatağında ağsı/stockwork görünümlü ince cevher	
	damarcıkları (130 katı)	44
Şekil 3.9.	Eskikışla yatağına ait işletme haritası ve kesiti	46
Şekil 3.10.	Eskikişla yatağındaki bir topukta damar tipi cevherden bir	4.5
Şekil 3.11.	görünüm. Eskikışla yatağında üst seviyelerdeki piroklastik breşler içinde	47
Şekil 3.12.	Deformasyon etkisi ile parçalanmış ve breşleşmiş sfaleritler (Mikrofoto). Örnek No: TK-82. Çekim: Parlatma, tek nikol,	47
Şekil 3.13.	Breşleşmiş sfalerit ve yan kayaç kırıntıları arasını dolduran galenitler (Mikrofoto). Örnek No: TK-73. Çekim: Parlatma,	49
Şekil 3.14.	Galenitleri ornatarak oluşmuş sfalerit ve kalkopiritler (Mikrofoto). Örnek No: TK-88. Çekim: Parlatma, tek nikol,	49
Şekil 3.15.	Sfaleritler içerisinde kapanımlar şeklinde gözlenen galenitler (Mikrofoto). Örnek No: TK-76. Çekim: Parlatma, tek nikol,	50
Şekil 3.16.	hava ortamı (sph: Sfalerit, ga: Galenit) Kalkopirit kapanımları içeren sfalerit kristali (Mikrofoto). Örnek No: TK-88. Çekim: Parlatma, tek nikol, hava ortamı	50
Şekil 3.17.	(sph: Sfalerit, cpy: Kalkopirit) Sfalerit kristallerini kenarları boynca kuşatan kalkopirit (Mikrofoto) Örnek No: TK 245, Cokim: Parletma tek nikol	51
Şekil 3.18.	hava ortamı (sph: Sfalerit, cpy: Kalkopirit, ga: Galenit) Gang tarafından kuşatılmış kalkopiritler üzerinde rekristalize	51
	staleritler (Mikrofoto). Ornek No: TK-245. Çekim: Parlatma, tek nikol, hava ortamı (sph: Sfalerit, cpy: Kalkopirit)	52

Şekil 3.19.	Sfaleritlere göre daha önce (ga I) ve daha sonra oluşmuş (ga II) galenitler (Mikrofoto). Örnek No: TK-45. Çekim: Parlatma, tek nikol haya ortamı ga: Galenit)	52
Şekil 3.20.	Sfaleritleri ornatan kalkopirit ve sülfotuzu (tennantit) kapanımları içeren galenit (Mikrofoto). Örnek No: TK-91. Çekim: Parlatma, tek nikol, hava ortamı (sph: Sfalerit, ga: Galenit cpy: Kalkopirit, ten: tennantit)	53
Şekil 3.21.	Galenitleri kuşatan geç evre pirit ve gang mineralleri (Mikrofoto). Örnek No: TK-45. Çekim: Parlatma, tek nikol, haya ortamı (ga: Galenit, py: Pirit)	53
Şekil 3.22.	Galenitler içinde yuvarlağımsı ve çubuklar şeklinde gözlenen sülfotuzu (tennantit) ayrışımları (Mikrofoto). Örnek No: EK-5. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, ten:	5.4
Şekil 3.23.	Ağsı cevher zonunda galenitlerin yan kayaç minerallerini ornatarak oluşumu (Mikrofoto). Örnek No: TK-44. Çekim: Parlatma tak pikal haya artamı (ga: Galenit)	54
Şekil 3.24.	Baritler tarafından ornatılan galenit (Mikrofoto). Örnek No: TK-44. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit,	54
Şekil 3.25.	ba: Barit) Galenitlerin arasını dolduran kuvarslar (Mikrofoto). Örnek No: TK-46. Çekim: İncekesit, tek nikol, hava ortamı (ga: Galenit,	55
Şekil 3.26.	q: Kuvars) Gang içindeki özşekilli ve yarıözşekilli piritler (Mikrofoto). Örnek No: SO-259. Çekim: Parlatma, tek nikol, hava ortamı	55
Şekil 3.27.	(py: Pirit) Sfalerit ve galenit kapanımları içeren kalkopiritler (Mikrofoto). Örnek No: TK-245. Çekim: Parlatma, tek nikol, hava ortamı	57
Şekil 3.28.	(ga: Galenit, sph: Sfalerit, cpy: Kalkopirit) Kenarlarından itibaren tenörite dönüşmüş kalkopiritler (Mikrofoto). Örnek No: TK-45. Çekim: Parlatma, tek nikol,	57
Şekil 3.29.	hava ortamı (cpy: Kalkopirit, te:Tenörit) Kalkopiritin çatlaklarında oluşmuş kalkosin ve bornit (Mikrofoto). Örnek No: TK-94. Çekim: Parlatma, tek nikol,	58
Şekil 3.30.	hava ortamı (cpy: Kalkopirit, bo: Bornit) Kırık ve çatlaklarından itibaren tennantit oluşmuş kalkopiritler (Mikrofoto). Örnek No: TK-94. Cekim: Parlatma, tek nikol,	58
Şekil 3.31.	hava ortami (cpy: Kalkopirit, ten: Tennantit) Kalkopiritin kırık ve çatlaklarında oluşmuş kovellinler (Mikrofoto), Örnek No: TD-168, Cekim: Parlatma tek nikol	59
Şekil 3.32.	hava ortami (cpy: Kalkopirit, ko: Kovellin) Piritlerle birlikte gözlenen markazitler (Mikrofoto). Örnek No: TK-82 Cekim: Parlatma tek nikol hava ortami (ny. Pirit mo:	59
	Markazit)	60

xv

Şekil 3.33.	Breşleşmiş gang minerallerini ornatan ve arasını dolduran sfalerit ve galenit (Mikrofoto). Örnek No: TK-82. Çekim: Parlatma tek nikol haya ortamı (ga: Galenit, sph: Sfalerit, g:	
Şekil 3.34.	Gang) Galenitlerin kübik kırıklarına yerleşen geç evre baritler	62
,	(Mikrofoto). Örnek No: TK-82. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, ba: Barit)	62
Şekil 3.35.	İri barit kristalleri arasını dolduran küçük boyutlu barit ve kuvars kristalleri (Mikrofoto). Örnek No: TK-48. Çekim: İnce	62
Şekil 3.36.	Çatlak içinde bakışımlı damar yapısı oluşturacak şekilde oluşmuş baritler (Mikrofoto). Örnek No: TK-43. Çekim: İnce kesit, tek nikol (a), çift nikol (b) (ba: Barit, q: Kuvars, ka:	05
Sekil 4.1.	Kalsit) Barit kristalleri içindeki birincil kapanımlar (Mikrofoto, tek	64
Solcil 4.2	nikol) Barit kristalleri içindeki çatlaklar boyunca gelişmiş ikinçil	66
Şekii 4.2.	kapanım dizileri (Mikrofoto, tek nikol)	66
Şekil 4.3.	(Mikrofoto, tek nikol)	67
Şekil 4.4.	Sfalerit kristali içindeki ikincil kapanımlar (Mikrofoto, tek nikol)	67
Şekil 4.5.	Sıvı kapanımlarında ölçülmüş homojenleşme sıcaklığı değerlerinin frekans dağılım grafiği	70
Şekil 4.6.	Tuzluluk-Homojenleşme sıcaklığı diyagramında değişik	72
Şekil 5.1.	İnceleme alanındaki volkanitlerin Le Maitre ve diğ.(1989) tarafından geliştirilen K_2O -SiO ₂ diyagramındaki konumları (Taa: Akçaalan andeziti Tap: Adadağı piroklastikleri, Tdd;	
Şekil 5.2.	Dededağ dasiti, Tkb: Karaömerler bazaltı) İnceleme alanındaki volknaitlerin Le Maitre ve diğ. (1989) tarafından geliştirilmiş (Na ₂ O+K ₂ O)-SiO ₂ diyagramındaki	78
Sekil 5.3.	konumları (Taa: Akçaalan andeziti, Tap: Adadağı piroklastikleri, Tdd: Dededağ dasiti, Tkb: Karaömerler bazaltı) İnceleme alanındaki bazaltların Pearce ve Cann (1973)	78
y •••••	tarafından geliştirilmiş Zr-Tix10 ⁻² -Yx3 diyagramındaki konumları (Taa: Akçaalan andeziti, Tap: Adadağı piroklaştikleri Tdd: Dededağ daşiti Tkh: Karaömerler bazaltı)	79
Şekil 5.4.	Cevherleşme ile ilgili elementlerin inceleme alanındaki birimlerden seçilmiş örneklerde grafiksel dağılımı (Taa:	
Şekil 5.5.	Akçaalan andeziti, Tap: Adadağı piroklastikleri, Tdd: Dededağ dasiti, Tkb: Karaömerler bazaltı) İnceleme alanından derlenmiş kayaç ve mineral örneklerinin	81
,	kondrite göre normalize edilmiş NTE değerlerinin değişim grafiği (Simge ve kısaltmalar Ek Çiz. 3'deki gibidir)	88

Şekil 5.6. Sekil 5.7	İnceleme alanından derlenen galenit, sfalerit ve barit örnekleri ile değişik barit oluşumları ve hidrotermal sistemlerin kondrite göre normalize edilmiş NTE değerlerinin karşılaştırılmalı değişim grafiği (Simge ve kısaltmalar Ek Çiz. 3'deki gibidir) İnceleme alanından derlenmiş kayaç ve mineral örneklerine ait	88
Şekli 5.7.	normalize değerlerin Ce_N /Yb _N -Yb _N diyagramı üzerinde dağılımı	91
Şekil 5.8.	İnceleme alanındaki birimlerden ve cevherleşmelerden derlenmiş kayaç ve mineral örneklerinin (²⁰⁸ Pb/ ²⁰⁴ Pb)- (²⁰⁶ Pb/ ²⁰⁴ Pb) ve (²⁰⁷ Pb/ ²⁰⁴ Pb)-(²⁰⁶ Pb/ ²⁰⁴ Pb) diyagramları	95
Şekil 5.9.	Değişik jeolojik malzemelerin a. (²⁰⁸ Pb/ ²⁰⁴ Pb)-(²⁰⁶ Pb/ ²⁰⁴ Pb) ve b. (²⁰⁷ Pb/ ²⁰⁴ Pb)-(²⁰⁶ Pb/ ²⁰⁴ Pb) diyagramları üzerindeki dağılım alanları (Doe ve Zartman, 1979'dan derlenmiştir) ve inceleme alanına ait örneklerin konumları (örnek numaraları Çizelge 5.1'deki gibidir; 1-4 Yan kayaç, 5-6 Galenit, 7-8 Sfalerit, 9-10	07
Şekil 5.10.	Barit) Çeşitli cevherleşmelerin a. (²⁰⁸ Pb/ ²⁰⁴ Pb)-(²⁰⁶ Pb/ ²⁰⁴ Pb) ve b. (²⁰⁷ Pb/ ²⁰⁴ Pb)-(²⁰⁶ Pb/ ²⁰⁴ Pb) diyagramları üzerindeki dağılım alanları (Doe ve Zartman, 1979'dan derlenmiştir; CYO: Kıbrıs tipi yat., Epr: Doğu Pasifik Sırtı Cev., ES: East Shasta yat., HP: Halls Peak yat., KO: Kuroko yat., NP: Nazca Plate yat., RO: Rosebury yat., RS: Kızıl Denzi Çökelleri, WS: Weast Shasta yat.) ve inceleme alanına ait örneklerin konumları	97
Şekil 5.11.	(örnek numaraları Çizelge 5.1'deki gibidir; 5-6 Galenit, 7-8 Sfalerit, 9-10 Barit) Değişik kökenli jeolojik malzemelere ait μ (²³⁸ U/ ²⁰⁴ Pb) doğarlari (Zartman ve Doe 1981'den) ve inceleme alanındaki	98
	örneklere ait değerlerin konumu	100

ÇİZELGELER DİZİNİ

Çizelge 5.1.	İnceleme alanından derlenen kayaç ve cevher örneklerinde	
	yapılan majör, iz, NTE ve izotop jeokimyası	
	incelemelerinin formasyon ve yataklara göre dağılımı	74
Çizelge 5.2.	İnceleme alanından derlenmiş kayaç örneklerinin majör	
	oksit analiz sonuçları	77
Cizelge 5.3.	Değişik barit oluşumlarının ve hidrotermal sistemlerin NTE	
, 0	değerleri	85
Cizelge 5.4a.	İnceleme alanından secilmiş kayac ve çevher örneklerinin	
<i>ç.20-80</i> 01.100	kondrite göre normalize edilmis Nte değerleri (NTE	
	değerlerinin normalizasyonu için Boynton 1984 ortalama	
	C1 ve Taylor ve McLennan 1985 ortalama C1 değerleri	
	kullanılmıştır: sembol ve kışaltmalar Fk Cizelge 3'deki	
	gibidir)	86
Cizelge 5.4h	Değişik harit oluşumları ve hidrotermal sistemlerin kondrite	00
Çizeige 5.40.	göre normalize edilmis NTE değerleri	87
Circles 5.5	İnaslama alarından darlanmiş kayas ve minaral örmelderine	0/
Çizeige 5.5.	nicelenie alamidan deneminiş kayaç ve mineral omeklerine	00
C'	all Ce_N , Y D_N ve Ce_N / Y D_N degerieri	90
Çizelge 5.6.	inceleme alanındaki birimlerden ve cevnerleşmelerden	
	seçilen kayaç ve mineral orneklerinin kurşun izotopları	
~	bileşimi	94
Çizelge 5.7.	Inceleme alanındaki cevherleşmelerden seçilen mineral	
	örneklerinin kükürt izotopları bileşimi	101
Çizelge 5.8.	Sfalerit-galenit mineral çifti için hesaplanan izotopsal	
	ayrımlanma ve sıcaklık değerleri	103
Çizelge 5.9.	Barit örneklerinin oksijen izotopları bileşimi	103

EK ÇİZELGELER DİZİNİ

Ek Çizelge 1.	İnceleme alanından alınan kayaç ve cevher örnekleri	
	üzerinde yapılan incelemeler ve optik mikroskob inceleme	
	sonuçları	113
Ek Çizelge 2.	Sıvı kapanımı incelemesi yapılan örneklerde birincil ve	
	ikincil kapanımlara ait çeşitli ölçüm değerleri	122
Ek Çizelge 3.	İnceleme alanından seçilmiş kayaç ve mineral örneklerinin	
	iz ve NTE içerikleri	125

xviii

1. GİRİŞ

1.1. İncelemenin Amacı

İnceleme alanı içerisinde yer alan baritli kurşun - çinko yatakları, Biga Yarımadası kuzey kesiminde çeşitli yerlerde gözlenen çok sayıdaki Pb - Zn cevherleşmelerinden birisidir. Bölgede şu ana kadar yapılmış jeolojik çalışmalar daha önce işletilip terkedilmiş ocakların yüzeysel olarak incelenmesinden ibaret olup, cevherleşmelerin özellikleri, oluşum koşulları ve kökeninin belirlenmesi açısından yetersiz kalmaktadırlar. Bu araştırmanın amacı yöredeki baritli kurşunçinko yatakları ile çevre kayaçların çeşitli saha ve labaroratuvar yöntemleri ile incelenmesi, yatakların sahadaki dağılımları, yataklanma şekilleri, cevher - yan kayaç ilişkileri, mineralojik bileşimleri, yapısal ve dokusal özellikleri gibi özelliklerinin belirlenmesi ve elde edilen bulgularla oluşum koşullarının ve kökenlerinin ortaya konulmasıdır. Sonuçta, bu çalışma ile bölgedeki benzer yatakların oluşumlarına ve yeni yatakların aranmasına ek katkılar sağlanacaktır.

1.2. İnceleme Alanının Tanıtımı

İncelemeye konu olan baritli kurşun - çinko yatakları Çanakkale iline bağlı Lapseki ilçesinin güneydoğusunda, 1 : 25.000 ölçekli Çanakkale H17 a3, d2, b4 ve c1 paftaları üzerinde yer almakta olup, 100 km²'lik bir alanı kapsamaktadır (Şekil 1.1). Koru Baritli Pb-Zn yatağı, Çanakkale ili Lapseki ilçesine bağlı Koru köyünün yaklaşık 4 km kuzeybatısında Koru dere vadisinde yer almaktadır. Çanakkale'den maden işletmesine Umurbey beldesi üzerinden 40 km'si asfalt, 6 km'si stabilize olmak üzere toplam 46 km'lik yol mesafesiyle ulaşılmaktadır.

Yörenin başlıca yükseltileri doğudan batıya doğru Kırılmış tepe (713 m), İncirlitaş tepe (529 m), Avcı tepe (471 m), Kuyutaşı tepe (431 m) ve Ada Dağı (442 m) olup, ortalama yükseklik yaklaşık 500 m'dir. İnceleme alanını güneydoğudan kuzeybatıya doğru kateden Koru dere ve Ulu dere yılın büyük bölümünde su bulunduran en önemli dereler olup, mevsimsel su bulunduran diğer derelerin su toplama alanlarını oluşturmaktadır.

Denizel iklim koşullarının egemen olduğu yörenin, büyük bir bölümü meşe ve çam ağaçlarından oluşan bitki örtüsüyle kaplıdır. İnceleme alanı içerisinde kalan alanlar tarım ve hayvancılığa elverişsiz olduğundan yöre halkının bir bölümü maden işletmelerinde, büyük bir kesimi de orman işletmelerinde çalışarak geçimini sağlamaktadır.

H 18-d4

l 18-a1

ÇAN

H 18-d3

l 18-a2

H 17-c3

117-b2

I 17-b1

Şekil 1.1. İnceleme alanının yer bulduru haritası.

H 17-d4

l 17-a1

I 16-b2

H 17-d3

1 17-a2/

1.3. Önceki Çalışmalar

Bu bölümde, inceleme alanındaki baritli kurşun - çinko yatakları ile ilgili olarak yapılmış ve çoğunluğu maden jeolojisi amaçlı çalışmalar incelenmiş ve bulguları kısaca özetlenmiştir. Yazarların kullandıkları ifadeler mümkün olduğunca değiştirilmemiştir. Doğrudan çalışma alanı ile ilgili olmasalar bile genel jeoloji amaçlı bazı çalışmalara ise bölgesel jeoloji, yerel stratigrafi ve yapısal jeoloji bölümlerinde değinilmiştir.

En eski maden jeolojisi amaçlı çalışma Gjelsvik (1936) tarafından yapılmıştır. Yazar, bölgedeki birimler Paleozoyik yaşlı şist, kuvarsit, mermer, gnays, amfibolit ve granodiyoritler, Mesozoyik şist ve kalkerler, Kretase ve Tersiyer volkanikleri ile sedimanter ve tüflü kayaçlardan oluşan Tersiyer havzaları şeklinde beşe ayırmıştır. Araştırıcıya göre, şistler ve volkanikler NE - SW, faylar ise NE - SW, E - W ve NW - SE yatımlı olup, Koru ve Balcılar madenleri NW -SE zonunda bulunmaktadır. Andezitik lav ve tüflerle kaplı sahadaki cevherleşmelerin galenit, sfalerit ve iri taneli baritlerden oluştuğu ve kuzeye doğru yatımlı 8 metre genişliğindeki bir filon veya dayk şeklinde olduğu, bunları oldukça breşleşmiş silisli kayaçların takip ettiği belirtilmektedir.

Dinçer (1958), cevherleşmelerin ilişkili oldukları tüf ve andezitlerin yaşını Eosen sonrası olarak kabul etmiştir. Tüfler içerisinde yer alan damarlar genellikle sfalerit, galenit, pirit, kalkopirit, barit, kalsit ve kuvars ile ikincil bakır zenginleşmeleri içermektedir. Araştırıcı cevherleşmeleri kuvarslı ve baritli çatlak dolgu tipi şeklinde ikiye ayırmıştır. Barit çatlak dolgulu cevherleşmelerde sfalerit ve galenit bol olup, kuvars çatlak dolgulu olanlara göre daha sığ derinliklerde gözlendiğini belirtmektedir. Araştırıcı bölgede gözlenen çok sayıdaki cevherleşmelerin yarıçapı 5 - 8 kilometre olan bir çember üzerine düştüğünü ileri sürmektedir.

Tolun ve Baykal (1960) inceleme alanındaki cevherleşmelerin çatlak dolgusu şeklinde oluştuğunu söyleyerek, kuvars ve barit dolgulu olarak ikiye ayırmışlardır. Kuvars dolgulu damarların kalınlıkları 5 ila 15 cm arasında değişen ve galen, pirit, kalkopirit, malahit ve bazen de sfalerit içeren damarlar şeklindeyken, barit dolgulu damarların sadece galenit içerdiğini belirtmektedirler. Alpan (1968) cevherleşmelerin yan kayacını trakit tüflerin oluşturduğunu ve yer yer silisleştiklerini ve breş karakteri kazandıklarını söylemektedir. Ayrıca damarların kalınlıklarının 1 cm ile 2 m arasında değiştiği ve çoğunlukla galenit, barit ve kuvars, ender olarak da sfalerit, kalkopirit ve malahit içerdiği belirtilmektedir.

Yanagiya ve Sato'nun (1989) hazırlamış oldukları rapor bölgesel prospeksiyon amaçlı olup, 3400 km²'lik bir alanın Landsat TM imaj yorumuyla alterasyon zonları ayırtlanmıştır. Yapılan jeolojik ve jeokimyasal prospeksiyon çalışmaları sonucunda kıymetli metal zenginleşmeleri için iki hedef saha (A ve B zonları), metalik yataklanma (özellikle porfiri molibden) için bir hedef saha (C zonu) ayırtlanarak detaylı araştırmalara değer bulunmuştur. Araştırıcılara göre mineralizasyonlar geniş şekilde epitermal ve dissemine tipte olup, A zonunda yüksek tenörlü küçük ölçekte gümüş – kurşun – çinko – bakır - barit damarları, B zonunda düşük tenörlü büyük ölçekte altın yatakları, C zonunda ise saçınımlı tip cevherleşmeler gözlenmektedir.

Andiç ve Kayhan (1997) çalışmalarında masif cevher kütlelerinin riyolit ve andezit kontağı boyunca geliştiğini belirlemişlerdir. Tabanda kloritleşmiş, az killeşmiş bol çatlaklarla ağsal görünüm kazanmış andezitlerin bulunduğunu, daha genç ve breşik yapılı riyolitlerin ise dissemine yer yer damar şeklinde cevher içerdiklerini belirtmektedir. Araştırıcılar Cu – Pb – Zn – As – Sb elementlerinin birinin veya birkaçının biraraya gelerek oluşturduğu 6 anomali sahası saptamışlardır. Çalışmada tez sahasının içinde bulunduğu alanın ikinci dereceden öneme sahip olduğu belirtilmiştir.

1.4. Yapılan İncelemeler

Koru baritli kurşun - çinko yataklarının sahadaki dağılımlarının, yataklanma şekillerinin, cevher - yan kayaç ilişkilerinin, mineralojik bileşimlerinin, yapısal ve dokusal özelliklerinin belirlenmesi ve elde edilen bulgularla yatakların jeolojik özelliklerinin, oluşum koşullarının ve kökenlerinin ortaya konulması amaçlanan bu çalışmada aşağıdaki incelemeler yapılmıştır.

4

Genel bir literatür taramasından sonra; inceleme alanı gezilmiş ve bölgesel jeoloji içindeki konumu ve bölgesel jeolojik özellikler çeşitli yerlerde yapılmış genel ve yerel jeolojik amaçlı çalışmalar incelenerek belirlenmeye çalışılmıştır.

Sınırları Ek 1'de görülen 100 km²'lik bir sahanın 1:25.000 ölçekli jeolojik haritası, aynı ölçekte topoğrafik harita üzerine, jeolojik gözlemler işlenerek yapılmış ve yöredeki kayaç türleri, stratigrafik dizilimleri, yapısal özellikleri ve baritli kurşun - çinko yataklarının dağılımları saptanmaya çalışılmıştır.

Saha çalışmaları sırasında bölgede yüzeyleyen tüm birimleri temsil edecek 254 adet kayaç ve 73 adet cevher olmak üzere toplam 327 adet örnek alınmıştır (Ek 2). Kayaç örneklerinde esas olarak petrografik ve jeokimyasal incelemeler yapılmış, ayrıca cevher ve yan kayaçları temsil eden bazı örneklerin X - ışınları kırınımı incelemeleri (35 adet) ile mineralojik analizleri yapılmıştır (Ek Çizelge 1). İncekesit incelemeleri (195 adet) ile kayaçları mineral içeriği, dokusal özellikleri yardımıyla adlandırılmıştır. Ana element ve bazı iz element çözümlemeleri ile volkanik kayaçların (10 adet) jeokimyasal adlamaları ve tektonik ortamları hakkında bilgi edinilmeye çalışılmıştır.

Cevher örneklerinden hazırlanan parlatma blokları (40 adet) üstten aydınlatmalı polarizan mikroskop altında incelenerek parajenez ve dokuları belirlenmiştir. Tahtalıkuyu ve Eskikışla yataklarındaki bazı baritli ve kuvarslı cevher örneklerinde (10 adet) sıvı kapanımı incelemeleri yapılarak cevherleşmeyi oluşturan çözeltilerin bileşimi ve oluşum sıcaklıkları belirlenmeye çalışılmıştır. Diğer taraftan 5 adet kayaç, 2 adet galenit, 2 adet sfalerit ve 2 adet barit örneğinde Pb, S izotop analizleri yaptırılarak; cevherleşmeleri oluşturan metal iyonlarının ve sülfürlü ve sülfatlı minerallerin yapısında bulunan kükürtün kökeni belirlenmeye çalışılmıştır. 3 adet barit örneğinde oksijen izotopu jeokimyası incelemeleri ile oksijenin kökeni araştırılmıştır.

2. İNCELEME ALANININ JEOLOJİSİ

2.1. Bölgesel Jeoloji

Inceleme alanı kuzeyde Gelibolu yarımadası, güneyde Edremit körfezi ile sınırlanan Biga yarımadasınının kuzeybatı kesiminde yer almakta olup, bölgede değişik yaş ve litolojilere sahip plütonik, volkanik - volkanosedimanter ve sedimanter birimler yüzeylemektedir (Şekil 2.1).

İnceleme alanının yakın çevresinde daha önceki araştırıcılarca belirlenmiş jeolojik dikme kesitler karşılaştırmalı olarak Şekil 2.2'de verilmiştir.

Biga yarımadasındaki Permiyen - Triyas yaş aralığındaki kayaçlar kuzeybatıdan güneydoğuya doğru Ezine (meta - sedimanter ve ofiyolit), Ayvacık-Karabiga (eklojit ve ofiyolitli melanj) ve Sakarya (metamorfik kayaçlar ve ofiyolitli kompleks - Karakaya Kompleksi) zonları olmak üzere üç büyük tektonik kuşağa ayrılmıştır (Okay ve diğ., 1990). Bu birimlerin üzerinde sırasıyla kumtaşı - silttaşı - marn (Jura), kristalize kireçtaşı (Üst Jura - Alt Kretase) pelajik kireçtaşları (Üst Kretase) yer almaktadır (Okay ve diğ., 1990).

Tersiyer yaşlı birimler, Üst Kretase - Alt Eosen, Orta Eosen - Oligosen, Miyosen ve Pliyo - Kuvaterner olmak üzere dört zaman aralığında çökelmiştir (Şekil 2.1; Okay ve diğ., 1989). Üst Kretase - Alt Eosen dönemi, Fıçıtepe formasyonu olarak adlandırılan, delta düzlüğü ve flüviyal çökellerle (ince kömür arakatkılı konglomera, kumtaşı, şeyl) temsil edilir (Sfondrini, 1961; Siyako ve diğ., 1989). Alt Eosen kesimini andezitik lavlar ve tüflerden oluşan volkanik birimler (Akçaalan volkanitleri - Siyako ve diğ., 1989 veya Balıklıçeşme volkanitleri - Ercan ve diğ., 1995) oluşturmaktadır. Bunların üzerinde Orta Eosen yaşlı ve Soğucak kireçtaşı olarak adlandırılan kireçtaşları (Holmes, 1966) diskordan olarak yer alırlar. Bu birimlerden sonra Ünal'a (1967) göre Üst Eosen, Siyako ve diğ.'ne (1989) göre Orta Eosen - Oligosen yaşlı yer yer andezitik ve dasitik lavlar içeren türbiditik Ceylan formasyonu izlenir. Daha sonra bölgenin tamamen kara haline geçerek yükselmesi ile yaygın alanlar kaplayan, andezit, dasit ve riyodasit bileşimli lav, tüf ve aglomeralardan oluşan karasal volkanizma (Alt - Orta Miyosen yaşlı Doyran ve Ezine volkanitleri) egemen olmuştur (Siyako ve diğ., 1989). Aynı volkanitler Ercan ve diğ. (1995) tarafından Çan volkanitleri

6

Şekil 2.1. Biga ve Gelibolu yarımadalarının basitleştirilmiş jeoloji haritası (Önem, 1974; Okay ve diğ.'den; 1990 düzenlenmiştir).

Sekil 2.2. İnceleme alanı çevresinde değişik bölgelerde belirlenen stratigrafik dizilimlerin karşılaştırılması

olarak adlandırılmış ve yaşlarının Orta - Üst Oligosen olduğu ifade edilmiştir. Daha sonra bu volkanitleri keserek bazaltik ve trakiandezitik türde küçük yüzlekler veren Üst Oligosen yaşlı Kirazlı volkanitlerinin yüzeylediği belirtilmiştir (Ercan ve diğ., 1995). Alt - Orta Miyosen'de yoğun bir volkanizma etkin olmuş ve andezit, dasit, riyodasit, latit bileşimli lav, tüf, aglomera ve ignimbiritler (Behram volkanitleri) oluşmuştur (Ercan ve diğ., 1995). Behram volkanitlerinin son evrelerinde bunları keserek dayklar ve lav akıntıları şeklinde küçük yüzlekler veren yeni bir evre ile oluşan bazalt ve trakiandezit bileşimli Orta Miyosen yaşlı volkanitler saptanmış olup, Hüseyinfakı volkanitleri olarak adlandırılmıştır (Ercan ve diğ., 1995). Biga Yarımadasında volkanizma sırasında oluşmuş genellikle granodiyorit bileşimli sığ sokulumlar da bulunmaktadır. Bu sokulumların yaşları izotopik olarak Üst Oligosen - Alt Miyosen olarak belirlenmiştir (Eybek Granodiyoriti - Krushensky, 1976; Kestanbol Siyeniti -Fytikas ve diğ., 1976; Ilıca - Şamlı Granodiyoriti - Zimmermann ve diğ., 1989). Ancak Altunoluk graniti gibi Üst Kretase - Paleosen yaşlı ve daha eski plütonların varlığı da bildirilmektedir (Ercan ve Türkecan, 1984).

Alt-Orta Miyosen'de kalkalkalen volkanizma ile eş zamanlı olarak faylarla havzalarında linyit sınırlanmış göl şeyl, silttaşı ve (Küçükkuyu formasyonu:Siyako ve diğ., 1989) çökelmiştir. Bu birimler üzerinde Üst Miyosen yaşlı sığ denizel çakıltaşı – kumtaşı - şeyllerden oluşan Gazhanedere formasyonu (Kopp, 1964; Saltık, 1974) bulunmakta olup, düşey ve yanal olarak, kumtaşlarından oluşan Kirazlı formasyonuna (Saltık, 1974) geçiş göstermektedir. Kirazlı formasyonunu meydana getiren kumtaşları sığ ortamlarda çökelmiş olup sarımsı boz renkli, yumuşak ve seyrek olarak şeyl arakatkılıdırlar (Siyako ve diğ., 1989). Gazhanedere ve Kirazlı formasyonları ile yanal ve düşey geçişli çakıltaşıkumtaşı-şeyl-marn ve oolitik kireçtaşlarından oluşan Alçıtepe formasyonu (Onem, 1974) ile bölgede Üst Miyosen devri sona ermektedir. Üst Miyosen sonlarına doğru bölgede yeni bir volkanik evre egemen olmuş ve genç fay zonları boyunca alkali nitelikli bazaltik lavlar meydana gelmiştir. Bazaltik lavlar Siyako ve diğ. (1989) tarafından Taştepe Bazaltı, Ercan ve diğ. (1995) tarafından ise Ezine bazaltı olarak adlandırılmıştır. Pliyo - Kuvaterner dönemi; akarsu çökelleri ve gölsel karbonatlar (Bayramiç formasyonu) ile temsil olunmaktadır.

2.2. Litostratigrafi

2.2.1. Litostratigrafik Dizilim

Saha çalışmaları sırasında inceleme alanında yüzeyleyen birimler Eosen yaşlı Akçaalan andeziti, Oligosen yaşlı Adadağı piroklastikleri, Miyosen yaşlı Dededağ dasiti, Pliyo - Kuvaterner yaşlı Karaömerler bazaltı ve Kuvaterner alüvyonlar şeklinde ayrılmışlardır (Ek – 1, Şekil 2.3).

2.2.2. Akçaalan andeziti (Taa)

a. Dağılım ve Dokanak İlişkileri

Birim, inceleme alanının batı kesiminde Akçaalan ve Hacıgelen köyleri arasında, güney kesiminde ise Hacıgelen ve Koru köyleri arasında oldukça geniş bir alanda yüzeylemektedir.

İnceleme alanı içerisinde Akçaalan andezitinin tabanı gözlenememiştir. Birim Adadağı piroklastikleri tarafından uyumsuzlukla örtülmektedir.

b. Litoloji (Petrografi)

Akçaalan andeziti; başlıca andezit - bazaltik andezit, ender olarak riyodasit ve dasit bileşimli volkanik kayaçlardan oluşmaktadır. Volkanik kayaçların yanı sıra üst seviyelere doğru piroklastik arakatkılar ve kireçtaşı arabantları da gözlenmektedir. Andezitlerin bir kısmı alterasyona uğramış olup, arazide gri, grimsi yeşil, grimsi siyah ve bordo - kahverengi renklerde gözlenmektedir (Şekil 2.4). Sert ve aşınmaya dayanıklı olmaları nedeniyle yer yer kubbemsi görünümler sergileyen andezitler, gelişen çatlaklarla kesilmiş ve blok görünümü kazanmışlardır (Şekil 2.5). Andezitik tüfler genellikle grimsi yeşil renklerde olup, andezitler arasında tabakalı görünüm sergilemeleriyle göze çarparlar. Umurbey şantiye asfaltı üzerindeki yol yarmasında andezitik tüfler içinde gri renkli, fosilli kireçtaşı arabantları gözlenmiştir.

Andezitler, ince kesit incelemelerinde, hipohyalin porfirik dokulu olup, volkan camı ve mikrokristallerden oluşan hamur içinde başlıca plajiyoklaz ve ojitegirinojit türü piroksen ile daha az miktarda biyotit ve hornblend fenokristalleri içermektedir (Şekil 2.6). Plajiyoklazların sönme açılarına göre anortit içerikleri

ÜST SİSTEM	SISTEM		seri	LİTOLOJİK BİRİMLER	KALINLIK	LİTOLOJİ	LİTOLOJİK AÇIKLAMA	FOSİL İÇERİĞİ	
	KUVAT		ERNER	Qal			Alüvyon		
			Pliyosen	Karaömerler Bazaltı (Tkb)			Koyu gri-siyah renkli bazaltik lav ve aglomera		
¥			Miyosen	Dededağı Dasiti (Tdd)		× × × × × × × × × × × × × × × × × × ×	Gri-kahve-bordo renkli dasit ve riyodasit		
SENOZOYİ	TERSIYER	TERSIYER	NEOJEN	Oligosen	Adadağı Piroklastikleri (Tap)	1000 m		Damar tipi Pb-Zn cevherleşmeleri Riyolit, dasit ve andezit bileşimli sarı-beyaz ve gri- yeşil renkli tüf (litik ve camsı kül tüf) ve aglomera Silisce zengin tüflü arakatkılar	
		PALEOJEN	O.Eosen	Akçaalan Andeziti (Taa)			Gri-yeşil renkli andezit ve kireçtaşı arabantları içeren andezitik tüfler	Gypsina sp Assilina sp Rotalidae Gastropod kavkı kırıkları Alg	

Şekil 2.3. İnceleme alanı ve yakın çevresinin basitleştirilmiş stratigrafi dizilimi (5/aclan)

Şekil 2.4. Akçaalan andezitine ait gri-yeşil renkli andezitler ve beyaz renkli piroklastik seviyeler (Umurbey-Hacıgelen asfalt yol üzeri).

Şekil 2.5. Sert kubbemsi görünümler sunan iki yönlü çatlak sistemlerine sahip gri-kahverenkli andezitler (Koru dere, Koru köyü batı kesimi).

(18 örnek, 48 ölçüm) % 26 - 54 (ortalama % 36) arasında değişmekte olup, başlıca andezin (An₃₂₋₄₈) daha az oligoklaz (An₂₆₋₂₈), ve ender olarak da labrador (An₅₄) bileşimlidirler. Hamurun büyük bir kısmı killeşmiş ve kloritleşmiştir. Fenokristallerde karbonatlaşmanın yanı sıra, plajiyoklazlarda serizitleşme, hornblendlerde kloritleşme ve opaklaşma türü bozunmalar gelişmiştir. Bazı örneklerde amfiboller tümüyle karbonatlaşmış ve opaklaşmış olup, yalnızca pseudomorflar biçiminde görülmektedir.

Ender olarak gözlenen riyodasitler silisleşmiş - kloritleşmiş hamur içerisinde başlıca polisentetik ikizlenmeli ve zonlu dokulu serizitleşmiş plajiyoklaz, karlsbad ikizlenmeli killeşmiş sanidin, kemirilmiş kuvars, karbonatlaşmış piroksen ve opaklaşmış biyotit fenokristalleri içermektedir (Şekil 2.7).

Vitroklastik porfirik dokulu tüflerin büyük bir çoğunluğu andezitik bileşimli olup, Schmid (1981) sınıflamasına göre çoğunlukla litik kül tüf, daha az bir kesimi ise camsı kül tüflerden oluşmaktadır. Tüfler silisleşmiş hamur içerisinde başlıca volkanik kayaç parçacıkları (Şekil 2.8) ile plajiyoklaz, piroksen ve amfibol fenokristalleri içermektedir. Plajiyoklazlarda karbonatlaşma ve serisitleşme, piroksenlerde karbonatlaşma, amfibollerde kloritleşme ve opaklaşma türü bozunmalar gözlenmektedir.

Kireçtaşı ara bantları yer yer sığ denizel ortamların geliştiğine de işaret etmekte olup, mikroskopik incelemesinde mikritik hamur içerisinde bol fosil ve daha az da intraklast türü allokemler belirlenmiştir. Kireçtaşları Folk (1968) sınıflamasına göre intraklastlı biyomikrit olarak adlandırılmışlardır.

c. Karşılaştırma ve Yaş

İnceleme alanı içerisinde yeralan andezitler tipik olarak gözlendikleri Akçaalan Köyü göz önüne alınarak 'Akçaalan andeziti' olarak adlandırılmıştır. Birim, bölgede daha önce çalışan araştırıcılar tarafından farklı adlamalar kullanılarak tanımlanmıştır. Ercan ve diğ. (1995) Balıklıçeşme Volkanitleri olarak adlandırdıkları birimin Ofiyolitli melanj birimleri ile yaşı fosillerle saptanmış Orta Eosen yaşlı Soğucak kireçtaşı arasında bulunduğunu ve yaşının ise Alt Eosen

(a)

(b)

Şekil 2.6. Akçaalan andezitine ait bazaltik andezit örneğinde (KR-309) hipohyalin hamur içerisindeki plajiyoklaz, piroksen (öjit) ve opasitleşmiş biyotit fenokristallerinin çift nikol (a) ve tek nikoldeki (b) ince-kesit görünümü (plj:plajiyoklaz, px: piroksen, bi: biyotit, om: opak mineral).

Şekil 2.7. Akçaalan andezitine ait riyodasit örneğinde (KR-322) silisleşmiş hamur içerisinde zonlu doku ve polisentetik ikizlenmeli plajiyoklaz, karlsbad ikizlenmeli killeşmiş sanidin, karbonatlaşmış piroksen ve kloritleşmiş ve opasitleşmiş biyotit ve kuvars fenokristallerinin çift nikoldeki ince-kesit görünümü (plj: plajiyoklaz, q: kuvars, san:sanidin, px: piroksen, bi: biyotit, ka: Kalsit, kl: klorit, om: opak mineral).

Şekil 2.8. Akçaalan andezitine ait andezitik bileşimli litik kül tüf örneğinde (KR-282) silisleşmiş volkan camı içerisindeki bazaltik andezit bileşimli volkanik kayaç parçacıklarının tek nikoldeki ince-kesit görünümü.

olduğunu belirtmektedir. Araştırıcılara göre Orta Eosende bölgede önemli bir transgresyon başlamış ve sığ denizel kireçtaşları (Soğucak kireçtaşı) çökelmiş ve bu sırada Eosen volkanizması da etkinliğini sürdürmüş ve andezitik türde lavlar ve tüfler oluşmuştur. Siyako ve diğ. (1989) birimi Akçaalan Volkanitleri olarak tanımlamışlar ve volkanizmanın Paleosen de başladığını ileri sürmüşlerdir. Önal ve Yılmaz (1983) volkanitlerin Üst Eosen yaşlı olduklarını belirterek, tanımlamış oldukları fliş nitelikli 'Burgaz Formasyonu'nun' 'Karaağaç Üyesi' içinde diğer çökel birimleriyle ardalanmalı olarak tüf düzeylerinin yer aldığını saptamışlardır. Önal (1986) 'Gelibolu Volkanitleri' olarak adladığı Üst Eosen yaşlı volkanik kayaçların andezit ve dasit türde olduklarını belirtmiştir. Sümengen ve diğ. (1987) 'Burgaz Formasyonu' olarak adladıkları birim içinde de tüf düzeyleri saptamış ve bunların Orta Eosen yaşta olduklarını belirlemişlerdir. Yanagiya ve Sato (1989) tarafından 'Çamyayla Volkanitleri' olarak adlandırılan birimin yaşının Eosen olduğu belirtilmiştir. Ercan ve diğ.'nin (1995) 'Balıklıçeşme Volkanitleri' olarak adlandırdıkları birimde yapmış oldukları radyometrik yaş ölçümlerinde birimin yaşı Üst Eosen sonu olarak bulunmuştur.

Akçaalan andeziti içerisinde yeralan kireçtaşlarında *Gypsina* sp., *Assilina* sp., Rotalidae, Gastropod kavkı kırıkları ve alg fosilleri belirlenmiş ve Orta Eosen yaşı verilmiştir. Bu verilere göre birimin yaşı Orta Eosen olarak benimsenmiştir.

2.2.3. Adadağı piroklastikleri (Tad)

a. Dağılım ve Dokanak İlişkileri

İnceleme alanının en geniş yayılıma sahip birimidir. Bütün metalik cevherleşmeler ve muhtemel endüstriyel hammadde kaynaklarını da içerisinde bulundurmaktadır. Kuzeyde Damlalı Köyü, güneyde Adadağı (430 m) ve Asmalı Köyü, doğuda ise Örencik Tepe (582 m) ile sınırlı bir alanda yüzeylemektedir.

Adadağı piroklastikleri Akçaalan andeziti üzerinde uyumsuz olarak yeralmakta, Dededağ dasitine ait lavlar tarafından uyumsuz olarak örtülmektedir.
b. Litoloji (Petrografi)

Adadağı piroklastikleri trakit, latit, dasit, riyodasit bileşimli tüf ve aglomeralar ile ender olarak andezitik ve dasitik lavlardan meydana gelmektedir. Tüfler beyaz, sarı, bordo ve koyu griden koyu yeşile kadar değişen renklerde gözlenmektedir. Tüfler aglomeralarla ardalanmalı olduğu seviyelerde, aşınma farklılıkları nedeniyle daha belirgin tabakalı ve basamaklı bir görünüm sergilemektedir (Şekil 2.9). Alt seviyeleri temsil eden kesimlerde ortaya çıkan andezitik ve dasitik bileşimli volkanik kayaç arakatkıları ise grimsi - yeşil renklidir. Aglomeralar silisce zengin tüf hamuru içerisinde çapı 15 cm'ye kadar ulaşan bomba ve blok görünümlü dasitik ve riyolitik bileşimli lav ve pomza bileşenleri içermektedir (Şekil 2.10). Tüflerle gerek arakatkılar şeklinde, gerekse en üst seviyelere karşılık gelen kesimlerde silisce zengin zonlar da yeralmaktadır (Şekil 2.11). Aglomeraların yanısıra, silisce zengin (riyolitik) seviyelerde köşeli bileşenlerden oluşan piroklastik breşler de gözlenmektedir (Şekil 2.12). Pb - Zn cevherleşmelerinin bulunduğu kesimlerde tüflerde silisleşme ve kaolinleşme türü alterasyonlar yaygındır (Şekil 2.13).

İnce kesit incelemelerinde tüfler trakit - andezit ile riyolit - dasit arasında olmak üzere geniş bir bileşim aralığına sahip olup, büyük bir bölümü aşırı silisleşme göstermektedir. Tüfler, Schmid (1981) sınıflamasına göre başlıca litik kül tüf, ender olarak da camsı kül tüf olarak adlandırılmıştır. Litik kül tüfler başlıca volkanik kayaç parçacıkları (Şekil 2.14), daha az da volkanik cam kıymıkları ve pomza ile plajiyoklaz, sanidin, kuvars, biyotit, ender amfibol pseudomorfları içermektedirler. Tüflerde piroklastik bileşenlerin yanı sıra epiklastik bazaltik andezitik ve granitik kayaç parçacıkları da yer almaktadır (Şekil 2.15). Plajiyoklazlarda silisleşme, serizitleşme ve karbonatlaşma, sanidinlerde serizitleşme, biyotit ve hornblendlerde opaklaşma ve kloritleşme gözlenen genel bozunma türlerini oluşturmaktadır. Silisleşmenin az veya gözlenmediği riyolitik bileşimli tüflerde özşekilli - yarı özşekilli veya kemirilmiş dokuya sahip kuvarslar ile serizitleşmiş sanidin fenokristalleri tipiktir (Şekil 2.16 ve 2.17).

Şekil 2.9. Sarı-yeşil renkli belirgin tabakalanmalı aglomera-lapilli taşı ve tüf ardalanması (Kuyutaşı tepe batısı).

Şekil 2.10. Kahverengi-bordo renkli silisleşmiş tüf hamurlu aglomeralar (Seferli dere-Koru dere kesişim noktasının 500 m kuzeybatısı).

Şekil 2.11. Gri-yeşil renkli tabakalı piroklastik kayaçlarla arakatkılı olarak gözlenen gri-sarı renkli, silisce zengin, aşınmaya dayanıklı piroklastik kayaçlar (İncirlitaştepe kuzeybatısı).

Şekil 2.12. Sarımsı-beyaz renkli aşırı silisleşmiş tüf bileşenli piroklastik breşler (Koru şantiyesi, Tahtalıkuyu ocağı girişi üst seviyeleri).

Şekil 2.13. Gri-yeşil renkli tüfler içerisinde küresel bozunma gösteren sarı ve beyaz renkli kaolinleşmiş-alunitleşmiş seviyeler (Koru şantiyesi Tahtalıkuyu ocağı girişi üst seviyeleri).

Şekil 2.14. Adadağı piroklastiklerine ait litik kül tüf örneğinde (KR-123) silisleşmiş-killeşmiş hamur içerisinde volkanik kayaç parçacıkları ve plajiyoklazların ince-kesit tek nikoldeki görünümü (vkp: volkanik kayaç parçacığı, plj: plajiyoklaz, si: silisleşme).

Şekil 2.15. Adadağı piroklastiklerine ait litik kül tüf örneğinde (KR-271) plütonik kayaç parçacığının ince-kesit teknikol görünümü (vkp: volkanik kayaç parçacığı, pkp: plütonik kayaç parçacığı, si: silisleşme).

Şekil 2.16. Adadağı piroklastiklerine ait riyolit örneğinde (KR-107), kloritleşmiş ve silisleşmiş volkan camı içerisinde yarı-özşekilli kuvars, serizitleşmiş sanidin ve plajiyoklaz fenokristallerinin ince-kesit çift nikol görünümü (q: kuvars, san: sanidin, plj: plajiyoklaz, se:serizit).

Şekil 2.17. Adadağı piroklastiklerine ait riyolitik camsı kül tüf örneğinde (KR-323) silisleşmiş volkan camı içerisinde kemirilmiş kuvars kristallerinin incekesit teknikol görünümü (q: kuvars, san: sanidin).

Silisce zengin piroklastik kayaçlar cevherleşme zonu dışındaki alanlarda da yer almakla birlikte, cevherleşme zonu ve yakın kesimdeki tüflerde daha da artmaktadır. Cevherleşme zonundaki tüflerin gerek hamuru gerekse fenokristalleri aşırı silisli bir görünüm sunmaktadır. Bazı kayaçlarda ışınsal silisleşmeye uğramış hamur içerisindeki plajiyoklaz fenokristalleri tümüyle kuvars kristalleri ile doldurulmuştur (Şekil 2.18). Işınsal olarak gelişen silisleşmiş ve killeşmiş volkan camının gözenek ve çatlaklarında gelişen iri kristalli kuvarslar daha sonraki bir evreyi temsil etmektedir.

c. Karşılaştırma ve Yaş

İnceleme alanı içerisinde yeralan piroklastikler tipik olarak gözlendikleri Adadağı göz önüne alınarak bu çalışmada, 'Adadağı piroklastikleri' olarak adlandırılmıştır. Adadağı Piroklastikleri inceleme alanı dışında değişik yerlerde yapılmış çalışmalarda; ilk olarak Krushensky (1976) tarafından. Hallaçlar formasyonu olarak tanımlanmış ve Oligosen yaşı verilmiştir. Dayal (1984) Yenice dolaylarındaki andezitik lavlarda yapmış olduğu radyometrik yaş ölçümlerinde Üst Oligosen Volkanizmasının varlığını ortaya çıkarmıştır. Sümengen ve diğ.'nin (1987) 'Hisarlıdağ Volkaniti' olarak adlandırdıkları volkanitlerde yapılan radyometrik yaş ölçümü Alt Oligosen yaşını vermiştir. Siyako ve diğ. (1989) 'Doyran Volkanitleri' olarak adlandırdıkları birimin yaşını Alt Miyosen olarak kabul etmişlerdir. Ercan ve diğ. (1995) tarafından 'Çan Volkanitleri' olarak adlanan birimde yapılan radyometrik yaş ölçümleri sonucunda volkanitlerin Alt Oligosen sonlarından itibaren etkin olduğu saptanmıştır.

Birim içerisinde yaş verebilecek fosil belirlenememekle birlikte önceki araştırmacılarca verilen Oligosen yaşı bu çalışmada da benimsenmiştir.

2.2.4. Dededağ dasiti (Tdd)

a. Dağılım ve Dokanak İlişkileri

Dededağ dasiti inceleme alanının doğu kesiminde yaklaşık 6 km²'lik bir alanda yüzeylemektedir. Birim, topoğrafik olarak yüksek kesimlerde yeralmaktadır. Adadağı piroklastikleri üzerinde örtü şeklinde gözlenmekte,

(a)

(b)

Şekil 2.18. Adadağı piroklastiklerine ait silisce zengin piroklastik kayaç örneğinde (TK-66), ışınsal devitrifikasyon (silisleşme) gösteren volkan camı ve iri kuvarslar tarafından ornatılmış/doldurulmuş plajiyoklaz veya sanidin kristal pseudomorflarının çift nikol (a) ve tek nikoldeki (b) ince-kesit görünümü (q: kuvars, si: ışınsal silisleşme). inceleme alanında sınır ilişkisi gözlenmemekle birlikte, kronostratigrafik olarak Pliyo - Kuvaterner yaşlı Karaömerler bazaltı tarafından uyumsuz olarak örtülmektedir.

b. Litoloji (Petrografi)

Dededağ dasiti içinde dasitik bileşimin yanı sıra ender olarak riyodasit bileşimli lavlar da bulunmaktadır. Birim arazide gri, grimsi kahverenkli ve bordo renklerde izlenmektedir.

İnce kesitlerde hipohyalin porfirik dokulu olup, silisleşmiş ve killeşmiş bir hamur içerisinde fenokristal olarak serisitleşmiş, killeşmiş ve karbonatlaşmış plajiyoklaz, hornblend, opaklaşmış biyotit, sanidin ve kuvars içermektedir. Hornblendler biyotitlere göre daha bol olup, bozunma göstermeyen özşekilli (Şekil 2.19) veya opaklaşmış, biyotitleşmiş ve kloritleşmiş yarı özşekilli prizmatik kristaller biçiminde gözlenirler. Dededağ dasitleri'nin mineralojik bileşimleri Adadağı piroklastikleri'ne benzerlik sunmakta olup, aynı volkanizmanın piroklastik püskürmeyi izleyen lav evresini temsil ettiği düşünülebilir.

c. Karşılaştırma ve Yaş

İnceleme alanı içerisinde yeralan dasitler tipik olarak gözlendikleri Dededağı göz önüne alınarak 'Dededağı dasiti' olarak adlandırılmıştır. Kuzeybatı Anadolu' da bu birimle benzer özellikler gösteren volkanitler, Akyürek ve Soysal (1983) tarafından Bergama güneyinde 'Yuntdağ volkanitleri' olarak adlandırılmış ve Alt – Orta Miyosen yaşı verilmiştir. Dikili, Edremit – Korucu ve Bigadiç dolaylarında Ercan ve diğ. (1984a,b,c) tarafından, Ayvacık çevresinde ise Gevrek ve diğ. (1986) tarafından aynı isimle tanımlanmış ve incelenmiştir. Biga yarımadasında Alt - Orta Miyosen volkanizması Siyako ve diğ. (1989) tarafından 'Ezine volkanitleri' olarak adlandırılmış, ancak yaşlarının Orta - Üst Miyosen olduğu öne sürülmüştür. Buna karşın yapılan tüm radyometrik yaş belirlemeleri 21.5 ile 16.8 milyon yıl arasında (Borsi ve diğ., 1972) Alt - Orta Miyosen yaşını vermektedir. Ercan ve diğ. de (1995) 'Behram volkanitleri' olarak adlandırdıkları birimde yaptıkları radyometrik yaş ölçümlerinde birimin yaşını Alt - Orta Miyosen olarak belirlemişlerdir.

Dededağı dasitinin yaşı, Adadağı piroklastikleri üzerinde örtü şeklinde gözlenmesi ve önceki çalışmalarda belirlenen yaşlar dikkate alınarak bu çalışmada Miyosen olarak kabul edilmiştir.

2.2.5. Karaömerler Bazaltı (Tkb)

a. Dağılım ve Dokanak İlişkileri

Birim inceleme alanının kuzeydoğusunda Karaömerler köyü çevresinde ve batıda Eskikışla köyü çevresinde yüzeylemektedir. Karaömerler bazaltı Adadağı piroklastiklerini keser konumdadır.

b. Litoloji (Petrografi)

Karaömerler bazaltına ait yüzlekler, arazide koyu griden siyaha kadar değişen renklerde ve oldukça taze görünümlüdürler.

Birimden alınan örneklerin petrografik incelemelerinde, hipohyalin hamur içerisinde başlıca plajiyoklaz ve piroksen (ojit ve egirin ojit) fenokristalleri içerdikleri belirlenmiştir (Şekil 2.20). Plajiyoklazların sönme açılarına göre ölçülen anortit içerikleri (3 örnek, 8 ölçüm) % 54 - 62 (ortalama % 56) arasında değişmekte olup labrador bileşimini yansıtmaktadır. Piroksenlerde ve hamurda ender de olsa karbonatlaşma ve kloritleşmeler gözlenmektedir.

c. Karşılaştırma ve Yaş

İnceleme alanı içerisinde yeralan bazaltlar tipik olarak gözlendikleri Karaömerler Köyü göz önüne alınarak 'Karaömerler bazaltı' olarak adlandırılmıştır. Birimin yaşı hakkında bölgede çalışan araştırıcılarca farklı görüşler ortaya atılmıştır. Borsi ve diğ. (1972) tarafından yapılan radyometrik yaş belirlemesiyle 9.7 milyon yıllık bir değer (Üst Miyosen) elde edilmiştir. Buna karşın Bingöl ve diğ. (1973), bu bazaltların Kuvaterner yaşta olduklarını öne sürmüşler, ayrıca Siyako ve diğ. (1989) ile Ertürk ve diğ. (1990) gibi bazı araştırıcılar, bu birimleri 'Taştepe Bazaltı' olarak adlamış ve Pliyo - Kuvaterner

Şekil 2.19. Dededağı volkanitlerine ait hipohyalin porfirik dokulu dasit örneğinde (KR-248) killeşmiş volkan camı içerisindeki yarı-özşekilli plajiyoklaz ve özşekilli hornblend fenokristallerinin tek nikoldeki görünümü (plj: plajiyoklaz, hb: hornblend, q: kuvars).

Şekil 2.20. Karaömerler bazaltına ait hipohyalin porfirik dokulu bazalt örneğinde (KR-277) zonlu doku ve polisentetik ikizlenmeli plajiyoklaz ve özşekilli piroksen fenokristallerinin ince-kesit çift nikol görünümü (plj: plajiyoklaz, px: piroksen). yaşlı olabileceklerini belirtmişlerdir. Yanagiya ve Sato (1989) birimi 'Balaban Bazaltı' olarak adlamış ve yaşının ise Holosen olduğunu ileri sürmüşlerdir. Ercan ve diğ. (1995) tarafından 'Ezine Bazaltı' olarak adlandırılan birimde yapılan radyometrik yaş ölçümleri birimin yaşını Üst Miyosen olarak vermiştir.

Karaömerler bazaltı bu çalışmada, Akaçaalan andeziti ve Adadağ piroklastiklerini uyumsuz olarak örtmesi ve Dededağ volkanizmasından daha genç bir volkanizmayı temsil etmesi nedeniyle Pliyo-Kuvaterner yaşlı olarak değerlendirilmiştir.

2.3. Tektonik

İnceleme alanı Ketin (1966) tarafınan tanımlanmış olan Anatolitler Tektonik Birliği içerisinde yeralmaktadır. Saha Okay ve diğ. (1990) tarafından ayırtlanan Tersiyer öncesi tektonik zonlardan Ezine ve Sakarya zonu arasında bulunmaktadır.

İnceleme alanında gözlenen ve farklı volkanik evreleri temsil eden birimler çeşitli tektonik faaliyetlerin etkisi altında kalmıştır. Çalışma alanındaki ana yapısal unsurlar, başlıca faylar, kıvrımlar, eklem sistemleri ve uyumsuzluklardan oluşmaktadır.

İnceleme alanının içinde bulunduğu bölgenin uydu fotoğraflarından elde edilen verilere göre bölgedeki ana kırık hatlarının DKD - BGB doğrultulu olduğu görülmüştür (Şekil 2.21).

2.3.1. Tabakalanma ve Çatlak Düzlemlerinin Konumları

Adadağı piroklastiklerinden ölçülen (69 adet) tabaka konumu verileri ile oluşturulan gül diyagramlarında (Şekil 2.22) doğrultu değerleri DB ve BKB -DGD, eğim yönleri ise genellikle KKB ve KKD yönünde yoğunlaşmaktadır. Eğim miktarları düşük olup 10 - 20° arasında değişen değerler sunmaktadır.

Adadağı piroklastiklerinden ölçülen çatlak sistemleri genellikle K 70 - 80 B ve K 40 - 50 D doğrultulu, dik veya 80° GB ve KD'ya eğimlidir.

Adadağı piroklastiklerine ait tabaka ve eklem konumlarına göre inceleme alanı yaklaşık olarak KKD - GGB yönlü bir sıkışmaya maruz kalmıştır.

Şekil 2.21. İnceleme alanı ve çevresinin MS-uydu fotoğrafı ve başlıca çizgisellikler (Beyaz kareile çevrelenmiş alan inceleme alanını, siyah kalın çizgiler belirgin çizgisellikleri, kesikli çizgiler ise olasılı çizgisellikleri işaret etmektedir).

Şekil 2.22. Adadağı piroklastiklerinde ölçülen tabaka konumlarından hazırlanmış gül diyagramları. a) Doğrultu, b) Eğim yönü, c) Eğim miktarı.

Akçaalan andezitinden ölçülen eklem konumları (K 15 - 20° B ve K 55 - 60° D, 70 - 90° GB ve GD) Adadağı piroklastiklerine göre farklılık sunmaktadır. Bu farklılık andezitlerdeki eklem sistemlerinin tektonizmanın yanı sıra, soğuma mekanizması ile de ilişkili olmasından kaynaklanmaktadır.

2.3.2. Dokanaklar ve Uyumsuzluklar

İnceleme alanındaki birimler farklı volkanik evreleri temsil etmeleri nedeniyle uyumsuz ilişkiler sunmaktadır. Eosen dönemindeki volkanizmayı temsil eden Akçaalan andeziti üzerinde, Oligosen ve Miyosen dönemindeki volkanizmayı temsil eden Adadağı piroklastikleri uyumsuzlukla yer alır. Dededağ dasiti, Adadağ piroklastiklerine ait volkanizmanın daha sonraki bir evresini temsil etmekte ve uyumsuz bir sınır ilişkisi sergilemektedir. İnceleme alanındaki en genç volkanik evre ürünü olan Karaömerler bazaltı daha yaşlı olan tüm birimlerle uyumsuz sınır ilişkisi sunmaktadır.

2.3.3. Faylar

İnceleme alanında başlıca KKD - GGB, daha az da KKB - GGD eğim atımlı normal faylar gözlenmektedir. Fayların en önemlileri Tahtalı Kuyu Fayı, Kuyutaşı Tepe Fayı ve Seferli Dere Fayı olarak adlandırılan faylardır (Şekil 2.23).

Tahtalıkuyu Fayı (K 10° B, 45° GB) Adadağı piroklastikleri içerisinde gelişmiş olup, şu anda işletilen galeri ağzından başlayarak galeri derin kesimlerine kadar devam etmektedir (Şekil 2.24).

Kuyutaşı tepe Fayı (K 30° D, 75° KB) Kuyutaşı Tepe'nin üst kesimlerinden başlayarak cevher hazırlama tesislerinin olduğu yere kadar devam etmektedir. Fay zonunda yeşilimsi sarı renkli alterasyon yüzeyleri ve bunlar içerisinde azurit, malahit türü bakır cevherleşmeleri gözlenmektedir (Şekil 2.25).

Seferli dere fayı (K 30° D, 85° KB) Seferli dere ile Koru derenin kesiştiği kesimde gözlenmiş olup 4 km'den fazla uzunluğa sahiptir.

Ayrıca, inceleme alanı içerisinde yukarda belirtilen faylara benzer durumlu haraitalanamayacak ölçekte çok sayıda faylar bulunmaktadır.

Şekil 2.23. İnceleme alanında belirlenen başlıca fay ve kıvrımların dağılımı.

Şekil 2.24. Tahtalıkuyu galerisi giriş kesimindeki Adadağı piroklastikleri içerisinde gelişen eğim atımlı normal fay.

Şekil 2.25. Kuyutaşı tepe batısındaki malahit-azurit türü mineralleşmenin gelişimini sağlayan eğim atımlı normal fay.

2.3.4. Kıvrımlar

İnceleme alanında kuzeyden güneye doğru İncirlitaştepe Senklinali, Avcıtepe Antiklinali ve Kuyutaşı tepe Senklinali olarak adlandırılan kıvrımlar gözlenmektedir (bkz. Şekil 2.23). İncirlitaş Senklinali ve Avcıtepe Antiklinalinin eksenleri DGD-BKB, Kuyutaşı tepe Senklinali ise DKD-BGB doğrultularına sahiptir. Kıvrım eksenlerinin egemen doğrultuları, tabaka ve eklem durumlarında da olduğu gibi inceleme alanının yaklaşık KKD-GGB yönlü bir sıkışmanın etkisinde kaldığını göstermektedir.

2.3.5. Jeolojik Evrim

İnceleme alanı Biga Yarımadası'nda, metamorfik kayaçlar ve ofiyolitli kompleksten oluşan Sakarya Zonu'nun en batı ucunda yer almaktadır. İnceleme alanında tümüyle Eosen-Pliyosen dönemine ait volkanik-volkanosedimanter kayaçlar yüzeylemektedir. En yaşlı birim olan Akçaalan andeziti'nin çökeldiği Eosen döneminde bölgede etkin olan önemli bir transgresyonun meydana geldiği ve yükselim alanlarında neritik karakterli kireçtaşlarının çökeldiği belirtilmistir (Siyako ve diğ., 1989). İnceleme alanında Eosen döneminde bazaltik andezit bileşimli lavlar ve piroklastik kayaçlar ile kireçtaşı mercekleri oluşmuştur. Oligosen döneminde gerilme kuvvetlerinin etkisiyle oluşan faylarla havza derinleşmiş ve Akçalaan andezitine ait epiklastik bileşenleri de içeren, lav arakatkılı piroklastik kayaçlar (Adadağı piroklastikleri) cökelmiştir. Adadağı piroklastiklerinin belirgin bir tabakalanma sunması sulu (denizel) bir ortamda çökeldiğini işaret etmektedir. Piroklastik kayaçlarda kloritleşme ve zeolitleşme türü bozunmaların gözlenmesi, volkan camının deniz suyu ile reaksiyona girerek bozunmaya uğradığını işaret etmekte olup, piroklastik kayaçların sulu bir ortamda çökeldiği görüşünü desteklemektedir.

Miyosen döneminde piroklastik volkanizmanın yerini lav ürünlü volkanizma almış ve Dededağı dasiti olarak adlandırılan dasit ve riyodasit bileşimli volkanik kayaçlar oluşmuştur. Pliyo - Kuvaterner döneminde Karaömerler bazaltına ait tümüyle bazaltik lav ve aglomeralar meydana gelmiştir.

3. MADEN JEOLOJİSİ

3.1. Yatakların Dağılımı ve İsimlendirilmesi

İnceleme alanı içerisinde baritli kurşun - çinko cevherleşmeleri oldukça fazla olup, bunlar kuzeyden güneye doğru; Eskikışla, Tahtalıkuyu, İkinci viraj, Bakır kuyusu, Derin Dere, Kuyutaşı Tepe, Sarıoluk ve Tesbih Dere mevkilerinde bulunmaktadır. Yatakların ve cevherleşmelerin isimlendirilmesinde yörede kullanılan isimler aynen kullanılmıştır.

i. Eskikışla yatağı: Koru Dere ile Seferli Dere'nin birleştiği noktanın 500 m güneybatısında bulunan ve işletilen bir yatakdır.

ii.Tahtalıkuyu - Sulu Mağara yatağı: Eskikışlanın 1 km güneydoğusunda yeralan ve işletilen bir yatakdır.

iii. İkinci viraj cevherleşmesi: Tahtalıkuyu'nun güneybatı yamacında şantiye yolu üzerinde bulunan ve önceden işletilmiş ancak şimdi terkedilmiş bir ocaktır. Ocak içi su ile dolu olduğu için inceleme yapmak mümkün olamamıştır.

iv. Bakır kuyusu cevherleşmesi: Diğer cevherleşmeler ile aynı doğrultu üzerinde; cevher zenginleştirme tesislerinin birkaç metre doğusunda yer almaktadır. Bakırca zengin minerallerin yüzlek verdiği yerde yarma açılarak cevherin devamlılığı araştırılmıştır.

v. Derin Dere bakır yatağı: Derin Dere'nin güneydoğusunda yeralan ve daha önce işletilen bir yatakdır. Ocak içine girilmesi ve cevherleşmelerin izlenmesi göçükler nedeniyle mümkün olamamıştır.

vi. Kuyutaşı Tepe cevherleşmesi: Kuyutaşı Tepe'nin batı yamacında KD -GB doğrultulu normal faylarla ilişkili olarak bakırca zengin minerallerin gözlendiği bir oluşumdur. Geçmiş yıllarda arama amaçlı çalışmalar yapılmış ama cevherleşmenin devamlılığının az olduğu için işletilememiştir.

vi. Sarıoluk yatakları: Çamlı Tepe kuzeydoğusunda yeralan bu yataklar birbirine paralel üç adet arama galerisi sürülerek incelenmiştir. Şu an terkedilmiş olan ocaklara girilmesi ve cevherleşmelerin izlenmesi göçükler nedeniyle mümkün olamamıştır.

vii. Tesbih Dere yatakları: Tesbih Dere'nin kuzeydoğusunda yeralan birden fazla arama ve işletme galerisinden oluşmaktadır. Uzunca bir süre önce terkedilen ocaklar içine göçükler nedeniyle girilerek inceleme yapmak mümkün olamamıştır.

Bu oluşumların hemen hemen hepsi BKB - DGD doğrultulu bir hat üzerinde yeralmaktadır (Şekil 3.1).

3.2. Yataklanma Şekli ve Yapısal Özellikleri

İnceleme alanı içerisinde hem işletilebilme hem de ocak içinde çalışılabilme açısından Eskikışla ve Tahtalıkuyu (Sulu Mağara) yatakları dışındaki yataklarda ayrıntılı inceleme yapılamamıştır. Bu yataklar Çanakkale Madencilik Ltd.Şti. tarafından işletilmektedir.

Tahtalıkuyu Yatağı, Kuyutaşı Tepe'nin (431 m) yaklaşık bir kilometre kuzeybatısında ve Koru dere'nin kuzeybatıya yöneldiği yerde yer almaktadır (Şekil 3.2).

Cevherleşmelerin çevresinde Adadağı piroklastikleri'ne ait piroklastik kayaçlar yüzeylemektedir (Şekil 3.3 ve Ek – 3) . Alt seviyeleri andezitik lav arakatkılı aglomera – lapilli taşı - tüf, orta seviyeleri riyolitik silisleşmiş breş, üst seviyeleri ise silisleşmiş riyolitik tüf ağırlıklıdır. Tüfler cevherleşmelere yakın yerlerde ileri derecede breşleşmiş, silisleşmiş, kaolinleşmiş, kloritleşmiş ve karbonatlaşmıştır (Şekil 3.4 ve 3.5).

Tahtalıkuyu yatağı yeraltı işletme yöntemiyle 159 m kotundan açılan bir galeri ile işletilmektedir (Şekil 3.6). Galeri önce düz olarak gitmekte, daha sonra spiral şeklinde kıvrımlar yaparak aşağıya doğru inmektedir. Saha çalışmaları sırasında galeri içinden cevherleşmenin ve yan kayacın mineralojik bileşimini belirleyebilmek için çok sayıda örnek alınmıştır (Şekil 3.7).

Tahtalıkuyu yatağında iki farklı tip cevherleşme gözlenmektedir. Bunlardan birincisi yüzeye yakın kesimlerdeki stockwork tipi (ağsı) cevherleşmelerdir. Bu cevherleşmeler aglomeratik kayaç parçaları ve piroklastik breşler arasındaki boşluklarda ince damar ve damarcıklar şeklindedir (Şekil 3.8). Bu cevherleşmeden alınan el örneklerinde galenit ve sfalerit gibi cevher mineralleri ile barit ve kuvars gibi gang mineralleri gözlenmektedir.

Şekil 3.1.Çalışma alanında yeralan Pb-Zn cevherleşmelerinin konumu.

Şekil 3.2. Tahtalıkuyu yatağının galeri girişi (solda) ve stockwork tipi cevher kesiminin alındığı işletme yarması (İkinci viraj yatağından kuzeye bakış).

Şekil 3.3. Koru baritli kurşun-çinko yataklarının konumu ve yakın çevresinin litoloji haritası.

Şekil 3.4. Cevherleşmeye yakın yerlerden alınmış Adadağı piroklastiklerine ait iki kayaç örneğinin X - ışınları Difraktogramı ve mineral içeriği (KR - 98 ikinci viraj yarmasının 10 m üst kesimindeki alterasyon zonundan, KR -102 ise ikinci viraj yarmasının yaklaşık 100 m üst kesimindeki yeşil tüflerden alınmıştır).

Şekil 3.5. Adadağı piroklastiklerine ait ileri derecede silişleşmiş riyolitik breşler (Tahtalıkuyu yatağı giriş kesimi).

Şekil 3.6. Tahtalıkuyu yatağında cevherleşmenin konumu

Şekil 3.7. Tahtalıkuyu yatağı galerilerine ait örnek yeri haritası

Şekil 3.8. Tahtalıkuyu yatağında ağsı/stockwork görünümlü ince cevher damarcıkları (130 katı). İkinci tip cevherleşmeler Adadağı piroklastikleri içinde, kırık hatlarını dolduracak şekilde gelişmiş damar tipi oluşumlar şeklindedir. Cevher damarı yaklaşık olarak K 60 B; 50 GB konumlu bir fay boyunca oluşmuştur (Şekil 3.3). Değişik kotlarda kat galerileri oluşturularak işletilmektedir. Cevher damarı yer yer KD - GB doğrultulu normal faylarla kesilmektedir. Damarın doğrultu ve eğim değerleri ile kalınlıkları sık sık değişmektedir. Cevher damarının kalınlığı 20 cm ile 5 m arasında değişmektedir. Makroskopik olarak sfalerit ve galenit ile kuvars ve barit görülmektedir. Cevherleşmelerde breş dolgusu tipi yapı hakimdir. Derinlere inildikçe galenit, barit ve kuvarsların kristal boyutları büyümektedir.

Tahtalıkuyu yatağında gözlenen KB doğrultulu damarın yüzeydeki devamı, cevherleşme sonrası bölgede gelişen KD doğrultulu eğim atımlı faylarla ötelenerek yaklaşık 500 metre güneybatısında Koru dere ile Seferli derenin birleştiği yerdeki Eskikışla yatağında işletilmektedir. Bu yatakta da stockwork ve damar tipi olmak üzere iki farklı tip cevherleşme gözlenmektedir (Şekil 3.9). Üst seviyelerdeki stockwork tipi cevherleşme açık işletme yöntemiyle, alt seviyelerdeki damar tipi cevherleşme ise kapalı işletme yöntemi ile bir süre işletilmiştir. Bırakılan topuklarda ki cevher izlerine rastlanılmaktadır (Şekil 3.10). Stockwork tipi cevherleşmede aglomeratik kayaç parçaları veya piroklastik breşler arasındaki boşluklarda gözlenen dolgu tipi yapılar yaygındır (Şekil 3.11). Alt seviyelerdeki damar tipi cevherleşmede ise minerallerin kenar yüzeylerden ortadaki boşluğa doğru büyümesi şeklinde gelişmiş tarak / crustiform yapısı görülmektedir.

3.3. Mineralojik Bileşim ve Dokusal Özellikler

Tahtalıkuyu ve Eskikışla yataklarından alınan gang ve cevher minerallerinin mineralojik ve petrografik özelliklerini belirlemek amacıyla incekesit ve parlatma kesitleri hazırlanmıştır. İnce kesitlerin mikroskopta incelenmesi sonucunda gang minerali olarak barit ve kuvars belirlenmiştir. Cevher örneklerinden hazırlanan parlatma bloklarında cevher minerali olarak sfalerit, galenit, pirit, kalkopirit, fahlerz (tennantit), markazit, kovellin ve bornit; gang minerali olarak ise barit ve kuvars gözlenmiştir. Bu mineraller birbirleriyle olan ilişkileri gözönüne alınarak I (erken evre) ve II (geç evre) şeklinde anlatılmışlardır.

Şekil 3.9. Eskikışla yatağında cevherleşmenin konumu.

Şekil 3.10. Eskikışla yatağındaki bir topukta damar tipi cevherden bir görünüm.

Şekil 3.11. Eskikışla yatağındaki üst seviyelerde, piroklastik breşler içindeki stockwork tipi cevherden bir görünüm.

Sfaleritler; yaygın olarak özşekilsiz nadiren yarı özşekilli kristaller halindedirler. Sfalerit kristalleri yer yer açık sarı renk tonlarında gözlenmekte ve çift nikolde şiddetli iç yansıma göstermektedirler. Mikroskopik incelemelere dayanılarak galenitlerle olan ilişkilerine göre farklı evrelerde oluşmuş sfaleritler (I ve II) tanımlanmıştır. Sfaleritler (I) deformasyon etkisi ile parçalanmış, kırılmış ve breşik bir doku kazanmışlardır (Şekil 3.12). Parçalanmış sfalerit (I) ve yan kayaç kırıntıları arasını galenit (II) doldurmuştur (Şekil 3.13). Geç evre sfaleritleri (II) galenitleri (I) ornatmışlar ve kapanımlar şeklinde kuşatmışlardır (Şekil 3.14, 3.15). Galenitle sfaleritin sınırları boyunca kalkopirit oluşumları yaygın olarak gözlenmektedir. Sfaleritlerin (II) yer yer kalkopirit (I) kapanımları içerdikleri (Şekil 3.16) görülmekle birlikte; kristal kenarları boyunca ikincil kalkopiritler tarafından kuşatıldığıda görülmektedir. (Şekil 3.17). Yaygın olmamakla birlikte gang tarafından kuşatılmış kalkopiritler üzerinde rekristalize sfaleritler (II) de görülmektedir (Şekil 3.18). Ender olarak dilinim düzlemleri boyunca birbirlerine paralel dizilmiş iğnecikler şeklinde idait ayrışımları içermektedir.

Galenitler; çoğunlukla özşekilsiz, nadiren de yarı özşekilli kristaller halinde gözlenmektedir. Parlatma kesitlerinde yapılan incelemelerde; sfaleritlerle olan ilişkileri gözönüne alınarak erken (I) ve geç (II) evre oluşumları şeklinde iki farklı galenit oluşumu belirlenmiştir (Şekil 3.19). II. tip galenitler genellikle sfaleritleri (I) ornatmış ve kapanımlar şeklinde sarmış olarak gözlenmektedir (Şekil 3.20) Ender olarak parçalanmış sfaleritlerin (I) arasını dolduran galenitlerde (II) gözlenmektedir. Genellikle piritler tarafından kuşatılmıştır (Şekil 3.21). Galenitler içerisinde yuvarlağımsı veya çubuğumsu şekilli fahlerz (tennantit veya freiberjite) oluşumları gözlenmektedir (Şekil 3.22). Stocwork tipi cevher seviyelerinden alınan örneklerde, galenitlerin boş hacimde kristallenme yerine, yan kayaç kırıntılarını ornatarak oluştuğu görülmektedir (Şekil 3.23). Daha sonra oluşmuş baritler (II), galenitleri (I) ornatırken (Şekil 3.24), kuvarslar yan kayaç kırıntıları ve galenitlerin arasını doldurmaktadır (Şekil 3.25).

Şekil 3.12. Deformasyon etkisi ile parçalanmış ve breşleşmiş sfaleritler (Mikrofoto). Örnek No : TK-82. Çekim : Parlatma, tek nikol, hava ortamı, (sph : Sfalerit, ga : Galenit).

Şekil 3.13. Breşleşmiş sfalerit ve yan kayaç kırıntıları arasını dolduran galenitler (Mikrofoto). Örnek No : TK-73. Çekim : Parlatma, tek nikol, hava ortamı, (sph : Sfalerit, ga : Galenit).

Şekil 3.14. Galenitleri ornatarak oluşmuş sfalerit ve kalkopiritler (Mikrofoto). Örnek No : TK-88. Çekim : Parlatma, tek nikol, hava ortamı, (ga : Galenit, sph: Sfalerit, cpy : Kalkopirit).

Şekil 3.15. Sfaleritler içerisinde kapanımlar şeklinde gözlenen galenitler (Mikrofoto). Örnek No : TK-76. Çekim : Parlatma, tek nikol, hava ortamı, (sph : Sfalerit, ga : Galenit).

Şekil 3.16. Kalkopirit kapanımları içeren sfalerit kristali (Mikrofoto). Örnek No : TK-88, Çekim : Parlatma, tek nikol, hava ortamı, (sph : Sfalerit, cpy : kalkopirit).

Şekil 3.17. Sfalerit kristallerini kenarları boyunca kuşatan kalkopirit (Mikrofoto). Örnek No : TK-245. Çekim : Parlatma, tek nikol, hava ortamı, (sph : Sfalerit, cpy : Kalkopirit, ga : galenit).

Şekil 3.18. Gang tarafından kuşatılmış kalkopiritler üzerinde rekristalize sfaleritler (Mikrofoto). Örnek No: TK-245. Çekim: Parlatma, tek nikol, hava ortamı (sph: Sfalerit, cpy: Kalkopirit).

Şekil 3.19. Sfaleritlere göre daha önce (ga I) ve daha sonra oluşmuş (ga II) galenitler (Mikrofoto). Örnek No: TK-45. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit).

Şekil 3. 20. Sfaleritleri ornatan, kalkopirit ve tennantit kapanımları içeren galenit (Mikrofoto). Örnek No: TK-91. Çekim:Parlatma, tek nikol, hava ortamı (sph: Sfalerit, ga: Galenit, cpy: Kalkopirit, ten:Tennantit).

Şekil 3. 21. Galenitleri kuşatan geç evre piritler (Mikrofoto). Örnek No: TK-45. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, py: Pirit).

Şekil 3. 22. Galenitler içinde yuvarlağımsı ve çubuklar şeklinde gözlenen tennantit ayrışımları (Mikrofoto). Örnek No: EK-5. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, ten: Tennantit).

Şekil 3. 23. Ağsı cevher zonunda galenitlerin yan kayaç minerallerini ornatarak oluşumu (Mikrofoto). Örnek No: TK-44. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit)

Şekil 3. 24. Baritler tarafından ornatılan galenit (Mikrofoto). Örnek No: TK-44. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, ba: Barit).

Şekil 3. 25. Galenitlerin arasını dolduran kuvarslar (Mikrofoto). Örnek No: TK-46. Çekim: İnce kesit, tek nikol, hava ortamı (ga: Galenit, q: Kuvars). **Piritler;** yaygın olarak özşekilli nadiren de yarı özşekilli kristaller halinde gözlenmektedir. Pirit, cevherleşmenin tüm evrelerinde gözlenmekle birlikte; erken evrede (I) oluşanlar oldukça özşekilli, geç evrede (II) oluşanlar ise özşekilsiz ve çatlak dolgusu şeklindedir (Şekil 3.21 ve 3.26). Deformasyon etkisi nedeniyle özellikle erken evre piritlerde parçalanmalar ve kırılmalar gözlenmektedir.

Kalkopiritler; özşekilsiz kristaller şeklinde ve genellikle sfalerit ve galenit minerallerinin sınırları boyunca görülmektedir. Galenit (II) ve sfaleritleri (I) kuşatan kalkopiritler (I) (Şekil 3.27) gözlendiği gibi; sfaleritlerin (II) kırık ve çatlaklarında oluşmuş kalkopiritler (II) de gözlenmektedir. Gang tarafından kuşatılmış kalkopiritler üzerinde rekristalize sfaleritler (II) ender de olsa görülmektedir (Şekil 3.18). Kenarlarından ve çatlaklarından itibaren tenörit ve bornite dönüşmüştür (Şekil 3.28 ve 3.29). Kalkopirit ve fahlerz (tennantit veya freiberjit) beraberliği kesitlerde yaygın olarak görülmekte ve kalkopiritlerin çoğunda kırık ve çatlaklarından itibaren tennantit oluşumları gözlenmektedir (Şekil 3.30). Kalkopirit içindeki çatlaklarda kovellin ve kalkosin oluşumları da sıkça görülmektedir (Şekil 3.31).

Markazit; Markazitler bazen gang mineralleri arasındaki boşluklarda yeralmakta, yer yer ise piritlerle birlikte gözlenmektedir (Şekil 3.32).

Fahlerz (Tennantit veya freiberjit); incelenen tüm parlatma bloklarında 2.5 ila 55 μm arasında değişen boyutlarda ve yeşilimsi gri refleksiyon rengi ile orta derecede refleksiyon göstermektedir. Çoğunlukla kalkopiritlerin kırık ve çatlakları boyunca ve galenit kristalleri içinde yuvarlağımsı ve çubuğumsu oluşumlar şeklinde gözlenmektedir. Yeşilimsi gri grişim renkleri nedeniyle ve kimyasal analizlerde Ag içeriğinin düşük olması nedeniyle tennantit oldukları kabul edilmiştir. Ancak bazılarının freiberjit olması da mümkündür.

Kalkozin ve Kovellin; genellikle kalkopiritin kenarları ve kırık - çatlaklarında görülmektedir. Nadiren de olsa sfalerit ve kalkopiritlerin sınırları boyunca gelişen reaksiyon kuşaklarında da kovelline rastlanılmaktadır.

Şekil 3. 26. Gang içindeki özşekilli ve yarıözşekilli piritler (Mikrofoto). Örnek No: SO-259. Çekim: Parlatma, tek nikol, hava ortamı (py : Pirit)

Şekil 3. 27. Sfalerit ve galenit kapanımları içeren kalkopiritler (Mikrofoto). Örnek No: TK-245. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, sph: Sfalerit, cpy: Kalkopirit)

Şekil 3. 28. Kenarlarından itibaren tenörite dönüşmüş kalkopiritler (Mikrofoto).Örnek No: TK-45. Çekim: Parlatma, tek nikol, hava ortamı (cpy: Kalkopirit, te: Tenörit).

Şekil 3. 29.Kalkoipiritin çatlaklarında oluşmuş kalkosin ve bornit (Mikrofoto).Örnek No: TK-94. Çekim: Parlatma, tek nikol, hava ortamı (cpy: Kalkopirit, bo: Bornit).

Şekil 3.30. Kırık ve çatlaklarından itibaren sülfotuzu (tennatit) oluşmuş kalkopiritler (Mikrofoto). Örnek No: TK-94. Çekim: Parlatma, tek nikol, hava ortamı (cpy: Kalkopirit, ten: Tennantit).

Şekil 3.31. Kalkopiritin kırık ve çatlaklarında oluşmuş kovellinler (Mikrofoto). Örnek No: TD-168. Çekim: Parlatma, tek nikol, hava ortamı (cpy: Kalkopirit, ko:Kovellin).

Şekil 3.32. Piritlerle birlikte gözlenen markazitler (Mikrofoto). Örnek No: TK-82. Çekim: Parlatma, tek nikol, hava ortamı (py : Pirit, ma: Markazit). Bornit; kalkopiritlerin kenarlarında ve çatlaklarında gözlenmektedir.

Tenörit; çoğunlukla kalkopiritin kenarları ve kırık-çatlaklarında özşekilsiz dolgular şeklinde görülmektedir.

Barit ve kuvarslar; kesitlerde çoğunlukla breşleşmiş olarak, nadiren de özşekilli olarak gözlenmektedir. Breşleşmiş barit (I) ve kuvarsların arasını genellikle sfalerit (I) ve galenitler (II) doldurmuştur (Şekil 3.33). Galenitleri (II) ornatarak oluşmuş baritler (II) görüldüğü gibi galenitlerin kübik şekilli kırıklarına yerleşerek oluşmuş baritlere de rastlanılmaktadır (Şekil 3.34). Alt katlara inildikçe barit ve kuvarsların kristal boyutlarının arttığı görülmektedir. İri barit (I) kristallerinin arasını küçük boyutlu barit (II) ve kuvars kristalleri doldurmaktadır (Şekil 3.35 a ve b). Çok yaygın olmamakla birlikte çatlak içerisinde bakışımlı damar yapısı oluşturan baritler de görülmektedir (Şekil 3.36 a ve b).

3.4. Parajenez ve Süksesyon

Parlatma blokları ve incekesitlerde gözlenen cevher ve gang minerallerinin oluşum evreleri ve sıralarının aşağıda görüldüğü gibi yorumlamak mümkündür :

Minoral	F	Yüzeysel		
winera	I. Evre	II. Evre	III. Evre	IV. Evre
Barit				
Pirit		(1)	(11)	
Galenit		(1)	(11)	
Sfalerit		(1)	(11)	
Kalkopirit		(1)	(11)	
Fahlerz				
Bornit				
Markazit				
Kuvars				
Kalkosin				
Kovellin				
Tenörit				

Şekil 3.33. Breşleşmiş gang minerallerini ornatan ve arasını dolduran sfalerit ve galenit (Mikrofoto). Örnek No: TK-82. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, g: Gang, sph: Sfalerit).

Şekil 3.34. Galenitlerin kübik kırıklarına yerleşen geç evre baritler (Mikrofoto). Örnek No: TK-82. Çekim: Parlatma, tek nikol, hava ortamı (ga: Galenit, ba: Barit).

(a)

- (b)
- Şekil 3.35. İri barit kristalleri arasını dolduran küçük boyutlu barit ve kuvars kristalleri (Mikrofoto). Örnek No: TK-48. Çekim: İnce kesit, tek nikol (a), çift nikol (b) (ba: Barit, q: Kuvars).

(a)

(b)

Şekil 3.36. Çatlak içinde bakışımlı damar yapısı oluşturacak şekilde oluşmuş baritler (Mikrofoto). Örnek No: TK-43. Çekim: İnce kesit, tek nikol (a), çift nikol (b) (ba: Barit, q: Kuvars, ka: Kalsit)

4. SIVI KAPANIM İNCELEMELERİ

Sıvı kapanımları, mineraller oluşurken kristal yapı içinde hapsolmuş çözelti damlacıklarıdır. Mineral oluşturucu çözeltileri temsil edici örnekler oldukları için, sıcak veya soğuk sulu çözeltilerden itibaren oluşmuş minerallerin ve/veya cevherleşmelerin oluşum koşullarının ve kökenlerinin araştırılmasında oldukça yararlı bilgiler ortaya koymaktadır.

4.1. Örnek Seçimi ve Yöntem

Tahtalıkuyu ve Eskikışla yataklarının değişik kesimlerinden cevherleşmeleri temsil edecek şekilde alınmış örnekler arasından 10 adet örnek seçilmiş ve iki yüzü parlatılmış ince kesitleri hazırlanmıştır. Bu kesitlerde barit kristallerindeki sıvı kapanımlarının çok sayıda ve değişik boyutlarda; sfalerit ve kuvars kristallerinde ki sıvı kapanımlarının ise çok az sayıda ve küçük boyutlu kapanımlar halinde bulundukları gözlenmiştir.

Sıvı kapanım içeren kesitler, C.Ü. Jeoloji Müh. Bölümü'nde bulunan ve NIKON Labophot - Pol tipi polarizan araştırma mikroskobuna monte edilmiş LINKAM THMS - 600 ve TMS 92 tipi soğutma ve ısıtma sistemleri ile incelenmiş ve ilk erime (T_{FM}), son erime (T_m) ve homojenleşme (T_H) sıcaklığı ölçümleri yapılmıştır (Ek Çizelge 2). Her üç ölçümde de hata payı ± 0.5 °C'den daha azdır.

İncelenen kapanımlar; (i). Barit kristalleri içindeki birincil kapanımlar, (ii). Barit kristalleri içindeki ikincil kapanımlar, (iii). Sfalerit kristalleri içindeki birincil kapanımlar, (iv). Sfalerit kristalleri içindeki ikincil kapanımlar ve (v). Kuvars kristalleri içindeki birincil kapanımlar şeklinde beş farklı oluşum göstermektedirler. Baritlerdeki birincil kapanımlar, genellikle gaz kabarcığı içermeyen, yalnızca sıvı faz içeren tek fazlı kapanımlar halindedirler. Bunlardan bazıları küçük boyutlu olmakla birlikte, genellikle iri boyutludurlar (Şekil 4.1). Baritlerdeki ikincil kapanımlar, genellikle tek nadiren de iki fazlı kapanımlar halindedirler (Şekil 4.2). Bu kapanımlar birincil kapanımlara göre daha yaygın, küçük boyutlu kapanımlar halindedirler (Şekil 4.3). Sfalerit kristalleri içindeki birincil ve ikincil kapanımlar çok küçük boyutlu ve az sayıdadırlar (Şekil 4.4). Kuvars kristalleri içindeki birincil kapanımlar çok nadir, oldukça küçük boyutlu ve genellikle tek fazlıdırlar.

Şekil 4.1. Barit kristalleri içindeki birincil kapanımlar (Mikrofoto, tek nikol)

Şekil 4.2. Barit kristalleri içindeki çatlaklar boyunca gelişmiş ikincil kapanım dizileri (Mikrofoto, tek nikol).

Şekil 4.3. Barit kristalleri içindeki tek sıvı fazlı ikincil kapanımlar (Mikrofoto, tek nikol).

Şekil 4.4. Sfalerit kristali içindeki ikincil kapanımlar (Mikrofoto, tek nikol).

4.2. İlk Erime Sıcaklığı Ölçümleri (T_{FM})

Yukarıda belirtilen farklı kapanım türlerinin hepsinde - 55.0 °C ile - 49.5 °C (n = 46; ort = 54.64) arasında değişen T_{FM} değerleri ölçülmüştür. Bilindiği gibi, T_{FM} değerleri su içinde çözülü tuz cinsi hakkında bilgi vermekte olup, ölçülen bu sıcaklık değerleri çeşitli su-tuz sistemlerinin ötektik sıcaklıkları ile karşılaştırıldıklarında, çözelti içinde NaCl yanında CaCl₂ ve MgCl₂ gibi tuzların da bulunduğuna işaret etmektedir (H₂O - NaCl - CaCl₂ sistemi için ötektik sıcaklık; - 55.0 veya - 52.0 °C, H₂O - MgCl₂ - CaCl₂ sistemi için ötektik sıcaklık ;- 52.2 °C, H₂O - CaCl₂ sistemi için ötektik sıcaklık; - 49.5 °C; Shepherd ve diğ.'den, 1985). Mineral oluşturucu hidrotermal çözeltiler içinde CaCl₂ ve MgCl₂ gibi tuzların varlığı, çözeltilerin ya deniz suyu kökenli olduklarına veya denizel sedimanlar içinden geçerek ortama geldiklerine işaret sayılmaktadır. Farklı zamanlarda oluşmuş kapanımlarda, benzer T_{FM} değerlerinin ölçülmüş olması çözeltilerdeki tuz bileşiminin zamanla değişmediğini göstermektedir.

4.3. Son Buz Erime Sıcaklığı Ölçümleri (Tm_{ICE})

Yapılan incelemeler sırasında; barit kristallerindeki yalnızca sıvı faz içeren (gaz kabarcığı içermeyen) birincil kapanımlarda Tm_{ICE} sıcaklığı değerleri ölçülememiş, gaz kabarcıklı birincil kapanımlarda - 7.5 °C ile - 3.7 °C arasında değişen Tm_{ICE} değerleri, barit kristalleri içindeki ikincil kapanımlarda; - 6.3 °C ile - 0.3 °C arasında değişen Tm_{ICE} değerleri, sfalerit kristalleri içindeki birincil kapanımlarda ise; - 6.6 ile -1.2 arasında değişen Tm_{ICE} değerleri ölçülmüştür.

Bilindiği gibi, son buz erime sıcaklığı değerleri, çözeltilerin tuzluluğu hakkında bilgi vermekte olup, Bodnar (1993) tarafından geliştirilmiş tuzluluk hesaplama eşitliği yardımıyla, belirtilen sınır değerleri dikkate alınarak, barit kristalleri içindeki birincil kapanımlar için, % 11.09 ile 6.02 aralığında (n = 2, ort = 8.55), barit kristalleri içindeki ikincil kapanımlar için; % 9.47 ile 0.88 aralığında (n = 21, ort = 4.32), sfalerit kristalleri içindeki birincil kapanımlarda ise; % 9.99 ile 2.07 aralığında (n = 4, ort = 6.8) değişen NaCl eşdeğeri tuzluluk değerleri hesaplanmıştır. Bazı kapanımlarda + 4 °C'ye kadar varan son buz ergime sıcaklıkları ölçülmüş olup, bu kapanımların CO_2 içerdiği düşünülmüştür. Ancak bu kapanımlarda homojenleşme sıcaklığı ve tuzluluk ölçülememiştir.

Baritlerdeki birincil kapanımlara ait tuzluluk değerleri; baritlerin oluşumu sırasında hidrotermal çözeltilerin tuzluluklarının biraz yüksek olduğunu, baritlerdeki ikincil kapanımlar ile sfaleritlerdeki birincil kapanımlara ait tuzluluk değerleri ise; sülfürlü minerallerin oluşumu sırasında tuzluluğun önemli miktarda düştüğünü göstermektedir.

4.4. Homojenleşme Sıcaklığı Ölçümleri (T_H)

İncelemeler sırasında, barit kristallerindeki yalnızca sıvı faz içeren (gaz kabarcığı içermeyen) birincil ve ikincil kapanımlarda T_H sıcaklık değerleri ölçülememiştir. Baritler içindeki gaz kabarcıklı birincil kapanımlarda; 54.3 °C ile 79.8 °C arasında (n = 6, ort = 71.3 °C) değişen T_H değerleri, barit kristalleri içindeki ikincil kapanımlarda; 92.8 °C ile 224.9 °C arasında (n = 129, ort = 151.2 °C) değişen T_H değerleri, sfalerit içindeki birincil kapanımlarda 129.7 °C ile 159.3 °C arasında (n = 7, ort = 145 °C) değişen T_H değerleri ölçülmüştür. Bir örnekte kuvars kristali içindeki birincil kapanımda 117.1 °C T_H değeri ölçülmüştür. Ölçülen homojenleşme sıcaklığı değerlerinin frekans dağılımı Şekil 4.5'te görülmekte olup, baritlerdeki birincil kapanımların diğer kapanımlardan belirgin bir şekilde ayrıldığı gözlenmektedir.

Bilindiği gibi homojenleşme sıcaklığı değerleri, mineral oluşturucu hidrotermal çözeltilerin ve/veya minerallerin oluşum sıcaklığı hakkında bilgi vermekte olup, ölçülen değerlerden; baritlerin oluşumu sırasında çözeltilerin sıcaklıklarının düşük olduğu, ancak daha sonra, sülfürlü minerallerin oluşumu sırasında 270 °C'ye kadar yükseldiği, sfaleritlerin ise 129.7 ile 159.3 °C sıcaklık aralığında oluştuğu anlaşılmaktadır.

Şekil 4.5. Sıvı kapanımlarında ölçülmüş homojenleşme sıcaklığı değerlerinin frekans dağılım grafiği.

4.5. Sonuçların Değerlendirilmesi

Oluşum olarak; baritler içindeki birincil kapanımların barit kristallerinin oluşum koşullarını ve/veya baritleri oluşturan çözeltileri, baritlerdeki ikincil kapanımlar ile sfalerit ve kuvars kristalleri içindeki birincil kapanımların ise baritlere göre daha sonra oluşmuş kuvarsların ve sülfürlü minerallerin oluşum koşullarını ve/veya bu mineralleri oluşturan çözeltileri temsil ettikleri kabul edilmiştir. Ölçülen sıcaklık değerleri ve çözeltiler için belirlenen tuz bileşimi ve tuzluluk değerleri bu yaklaşımı desteklemektedir.

Kapanımlarda ölçülen ve - 55.0 ile - 49.5 °C arasında değişen T_{FM} değerleri mineral oluşturucu hidrotermal çözeltiler içinde CaCl₂ ve MgCl₂ gibi tuzların varlığını göstermekte olup, çözeltilerin ya deniz suyu kökenli olduklarına veya denizel sedimanlar içinden geçerek ortama geldiklerine işaret etmektedir. Farklı zamanlarda oluşmuş kapanımlarda, benzer T_{FM} değerlerinin ölçülmüş olması çözeltilerdeki tuz bileşiminin zamanla değişmediğini göstermektedir.

Ölçülen Tm_{ICE} sıcaklığı değerlerinden itibaren hesaplanmış, baritlerdeki birincil kapanımlara ait tuzluluk değerleri (NaCl eşdeğeri olarak), baritlerin oluşumu sırasında hidrotermal çözeltilerin tuzluluklarının biraz yüksek olduğunu (% 11.09 ile 6.02 aralığında; ort = 8.55), baritlerdeki ikincil kapanımlar (% 9.47 ile 0.88 aralığında; ort = 4.32) ile sfaleritlerdeki birincil kapanımlara (% 9.99 ile 2.07 aralığında; ort = 6.8) ait tuzluluk değerleri ise; sülfürlü mineralleri oluşumu sırasında tuzluluğun önemli miktarda düştüğünü göstermektedir.

Ölçülen T_H değerlerinden; baritlerin oluşumu sırasında çözeltilerin sıcaklıklarının düşük olduğu (80 °C'den daha düşük) ancak daha sonra, sülfürlü minerallerin oluşumu sırasında (baritlerde ikincil kapanımlar) sıcaklığın 270 °C'ye kadar yükseldiği, sfaleritlerin ise 120-160 °C arasında oluştuğu (sfaleritlerde birincil kapanımlar) anlaşılmaktadır.

Tuzluluk ve homojenleşme sıcaklığı değerleri birlikte değerlendirildiğinde; baritlerin oluşumu sırasında çözeltilerin tuzluluklarının yüksek, sıcaklıklarının düşük olduğu, sülfürlü minerallerin oluşumu sırasında ise tuzluluklarının düşük, sıcaklıklarının yüksek olduğu sonucu çıkarılmaktadır (Şekil 4.6).

Şekil 4.6. Tuzluluk-Homojenleşme sıcaklığı diyagramında değişik kapanım gruplarının dağılımı.

5. JEOKİMYASAL İNCELEMELER

5.1. Yapılan İncelemeler

Jeokimyasal incelemeler cevherleşmelerin kökenlerinin araştırılmasında yaygın bir şekilde kullanılmakta ve oldukça yararlı sonuçlar elde edilmektedir. Bu incelemelerde elementlerin yan kayaçlardaki ve cevher minerallerindeki bollukları, elementlerin ikili veya üçlü kombinasyonlar halindeki dağılımları ve korelasyonları incelenmekte, olası köken kayaçlarının belirlenmesi yanısıra tek bir kaynaktan mı, yoksa farklı kaynaklardan mı geldikleri belirlenmeye çalışılmaktadır.

Bu çalışmada jeokimyasal incelemeler olarak; kayaç örneklerinde majör element analizi; cevher örneklerinden ayrılmış galenit, sfalerit ve barit örnekleri ile kayaç örneklerinde iz element ve nadir toprak elementleri (NTE) jeokimyası, Pb izotopları jeokimyası, ayrıca cevher örneklerinde ayrılmış galenit, sfalerit ve barit örneklerinde S izotopları jeokimyası ve barit örneklerinde O izotopları jeokimyası incelemeleri yapılmıştır.

5. 2. Örnek Seçimi ve Hazırlanması

Ana, iz ve NTE analizleri cevherleşmeler çevresinde yüzeyleyen birimlerden seçilmiş temsili kayaç örneklerinde ve cevher örneklerinden ayrılmış sfalerit, galenit ve barit mineral fraksiyonları üzerinde gerçekleştirilmiştir. Kayaç örnekleri cevherleşmelerin yakın çevresinde yüzeyleyen Eosen yaşlı Akçaalan andezitinden ana element analizi için 4, iz ve NTE analizi için 1 adet, Oligosen yaşlı Adadağı piroklastiklerinden ana element analizi için 2, iz ve NTE analizi için 1 adet, Miyosen yaşlı Dededağ dasitinden ana element analizi için 2, iz ve NTE analizi için 1 adet ve Pliyosen yaşlı Karaömerler bazaltından ana element analizi için 2, iz ve NTE analizi için 1 adet olacak şekilde seçilmiştir. Cevher örnekleri ise bir tanesi Eskikışla, beş tanesi ise Tahtalıkuyu yatağından olacak şekilde seçilmiş ve sfalerit, galenit ve barit mineral fraksiyonları ayrılmıştır (Çizelge 5.1).

Kayaç örneklerinden seçilmiş temsili örnekler doğrudan öğütülüp toz haline getirilerek analiz edilmişlerdir. Cevher örnekleri ise kırılıp öğütüldükten Çizelge 5.1. İnceleme alanından derlenen kayaç ve cevher örneklerinde yapılan majör, iz, NTE ve izotop jeokimyası incelemelerinin formasyon ve yataklara göre dağılımı.

Kayaç Örnekleri									
Örnek No	Formasyon	Majör Element	İz Element	NTE	İzotop (Pb)				
KR-247	Tad	+	<u> </u>		······································				
KR-248	Tad	+	+	+	+				
KR-253	Taa	+	+	+	+				
KR-268	Tdd	+							
KR-277	Tkb	+							
KR-292	Tkb	+	+	+	+				
KR-309	Таа	+							
KR-311	Taa	+	+	+	-				
KR-318	Таа	÷							
KR-322	Tad	+							

Cevher Örnekleri										
Örnek No	V-4-l-	Minoral	İz Element + NTE	İzotop						
	Tatak	Mineral		Pb	S	0				
EK-6	Fskikisla	Galenit	+	+	+					
	ESKIKIŞIA	Sfalerit	+	+	+					
TK-45	Tahtalıkuyu	Galenit			+					
		Sfalerit			+					
TV 61	Tahtalıkuyu	Galenit	+	+	+					
		Barit	+	+	+	+				
ТК-73	Tahtahkuvu	Galenit			+					
11.75	Tuntunkuyu	Sfalerit	+	+	+					
TK-75	Tahtalıkuyu	Barit			+	+				
TK-83	Tahtalıkuyu	Barit	+	+	+	+				

sonra tüm minerallerin serbestleşmiş görüldüğü -250 - +125 mikron tane boyu aralığı elenip yıkanarak temizlenmiş, barit, galenit ve sfalerit mineral fraksiyonları stereo mikropskop altında elle seçilerek saf mineral farksiyonları ayrılmıştır. Baritler içine karışmış olabilecek kuvars ve kalsit gibi mineraller ayrılmış örnekler ağır sıvıdan (Metilen İodat; d= 3.31 gr / cm³) geçirilerek temizlenmişlerdir.

Ayırma işlemleri sırasında cevher mikroskopisi incelemelerinde gözlenen farklı evrelerde oluşmuş sfalerit ve galenit mineralleri ile kalkopirit iç büyümeleri içeren sfaleritleri ayırmak mümkün olamamıştır.

Pb ve S izotop analizleri, iz ve NTE analizlerinin yapıldığı aynı kayaç ve mineral örnekleri üzerinde yapılmıştır.

Oksijen izotopları analizleri ise; yukarıda belirtilen 3 adet barit örneğinde yapılmıştır.

5.3. Kayaçlarda Majör Element Jeokimyası İncelemeleri

5.3.1 Yöntem

Majör element analizleri; Cumhuriyet Üniversitesi Jeoloji Mühendisliği Bölümü'nde Rigaku 3270 - E (WDS) tipi ve Rh (rodyum) tüplü X - Işınları Floresans Spektrometresinde (XRF) yapılmıştır. Analiz için yaklaşık 10 gr öğütülmüş örnek üzerine %5 polivinil prolidin (bağlayıcı olarak) içeren 10 damla saf su damlatılarak 100 cc'lik bir beher içerisinde spatul ile karıştırıldıktan sonra alüminyum kapsüle konularak hidrolik pres altında 10 - 12 tonluk bir basınç ile tablet haline getirilmiş ve analiz edilmiştir.

5.3.2. Analiz Sonuçları ve Değerlendirilmesi

Majör element jeokimyası incelemeleri, petrografik ve petrolojik araştırmalarda kayaçların sınıflandırılmasında ve adlandırılmasında oldukça sık kullanılmaktadır. Majör element analizlerinde Si, Al, Fe, Mn, Mg, Ca, Na ve K ile Ti ve P analiz edilmekte olup, sonuçlar oksit cinsinden % ağırlık olarak gösterilmektedir. Majör element oksitlerinin toplamının %100'e yakınlığı analizin güvenilirliğinin ölçütü olarak kullanılmaktadır. İz elementler kayaçta %0.1'den daha düşük (milyonda 1000'den daha düşük) konsantrasyondaki elementleri kapsamakta olup, ppm cinsinden ifade edilmektedir. Cevherleşmeler çevresinde yüzeyleyen birimlerden seçilmiş 13 adet temsili kayaç örneğine ait analiz sonuçları Çizelge 5.2.'de görülmektedir.

Le Maitre ve diğ. (1989) tarafından geliştirilen diyagramlarda K₂O ve SiO₂ içeriklerine göre Karaömerler bazaltının orta K'lu kalkalkali bölgeye, Akçaalan andeziti ve Dededağı dasitinin yüksek K'lu kalkalkali bölgeye, Adadağı piroklastiklerinin ise şoşonitik bölgeye düştüğü gözlenmiştir (Şekil 5.1). (Na₂O+K₂O) ve SiO₂ içeriklerine göre yapılan sınıflamada Eosen yaşlı Akçaalan andezitinin andezit, Oligosen yaşlı Adadağı piroklastiklerinin dasit, traki - dasit, Miyosen yaşlı Dededağ dasitinin traki - dasit, dasit, Pliyo - Kuvaterner yaşlı Karaömerler bazaltına ait örneklerin ise bazalt ve andezit alanları içerisine düştüğü görülmektedir (Şekil 5.2).

Pearce ve Cann (1973) tarafından hazırlanan Tix10⁻² – Zr - Yx3 diyagramı üzerinde Karaömerler bazaltına ait örnekler plaka içi bazaltlar alanına düşmektedir (Şekil 5.3).

Majör element jeokimyası incelemelerinden elde edilen bulgulara göre inceleme alanındaki volkanik kayaçlar, Karaömerler bazaltı hariç yüksek potasyumlu kalkalkali seriyi temsil etmektedirler. Bu da gerilme sitemiyle kabuk incelmesi sonucu oluşan volkanik kayaçların kıta kabuğundan malzeme alarak kirlenmeye maruz kaldığını göstermektedir. Orta potasyumlu kalkalkalen karakterli levha içi bazaltların ise daha sonraki dönemde kıta kabuğunun normal kalınlığa dönmesi sırasında kirlenmeden yeryüzüne ulaştığını göstermektedir.

Elde edilen bu sonuçlar; inceleme alanının yakın çevresinde daha önce çalışan Ercan ve diğ.'nin (1995) Tersiyer volkanizmasına ait verileri ile de benzerlik sunmaktadır.

5.4. İz Element Jeokimyası İncelemeleri

5.4.1. Yöntem

İz element analizleri Activation Laboratuvarlarında (Kanada) ICP - MS yöntemiyle yapılmıştır. Analizlerin dedeksiyon limiti ve hassasiyeti araştırma kalitesinde (4B2 - Research) olup, uluslararası yayınlarda kabul edilebilir niteliktedir.

	Akçaalan andeziti				Adadağı pir	oklastikleri	Dededa	ğı dasiti	Karaömerler bazaltı	
% oksit	KR-309	KR-311	KR-318	KR-253	KR-322	KR-247	KR-248	KR-268	KR-292	KR-277
SiO ₂	59.17	59.26	57.17	60.94	62.88	64.08	62.98	56.78	50.14	60.10
ΓiO ₂	0.73	0.81	0.72	0.66	0.56	0.45	0.47	0.70	0.85	0.91
Al ₂ O ₃	16.92	17.40	16.62	17.64	18.42	18.03	16.74	16.00	19.62	17.48
$Fe_2O_3(t)$	6.42	7.18	6.53	5.58	3.56	3.22	4.29	6.60	8.30	5.30
MnO	0.10	0.09	0.13	0.22	0.08	0.18	0.10	0.12	0.15	0.14
MgO	3.24	3.13	3.99	2.76	1.88	1.26	1.78	4.60	4.08	1.38
CaO	4.84	4.24	5.87	1.88	3.27	1.33	2.45	4.96	9.90	4.63
Na ₂ O	3.10	3.12	2.59	2.89	3.57	5.46	3.97	2.53	3.35	4.87
K₂O	2.41	3.01	2.45	4.05	4.48	4.39	3.19	2.68	0.99	1.69
P ₂ O5	0.14	0.16	0.15	0.16	0.13	0.10	0.11	0.14	0.18	0.23
IOL	1.60	2.07	3.48	3.90	2.15	2.19	2.45	3.88	1.00	1.83
oplam	98.67	100.47	99.70	100.68	100.90	100.69	98.53	98.99	98.56	98.56

Çizelge 5.2. İnceleme alanından derlenmiş kayaç örneklerinin major oksit analiz sonuçları.

Şekil 5.1. İnceleme alanındaki volkanitlerin Le Maitre ve diğ. (1989) tarafından geliştirilen K₂O - SiO₂ diyagramındaki konumları (Taa: Akçaalan andeziti, Tap: Adadağı piroklastikleri, Tdd: Dededağ dasiti, Tkb: Karaömerler bazaltı).

Şekil 5.2. İnceleme alanındaki volkanitlerin, Le Maitre ve diğ. (1989) tarafından geliştirilmiş (Na₂O+K₂O) - SiO₂ diyagramındaki konumları (Taa: Akçaalan andeziti, Tap: Adadağı piroklastikleri, Tdd: Dededağ dasiti, Tkb: Karaömerler bazaltı).

Şekil 5.3. İnceleme alanındaki bazaltların Pearce ve Cann (1973) tarafından geliştirilmiş Zr - Tix10⁻² - Yx3 diyagramındaki konumları (Tkb: Karaömerler bazaltı).

5.4.2. Analiz Sonuçları ve Değerlendirilmesi

Analiz edilen iz element sonuçları ve dedeksiyon limitleri ile ilgili bilgiler Ek Çizelge 3'de toplu halde görülmektedir. Cevher örneklerinin iz element içeriklerinin çok düşük olması nedeniyle birbirleriyle ve yan kayaçlarla karşılaştırma ve değerlendirme yapılması mümkün olamamıştır. Cevherleşme ile ilgili bazı elementlerin (Pb, Zn, Cu, Ba, Bi) inceleme alanındaki birimlerden seçilmiş örneklerdeki grafiksel dağılımları Şekil 5.4'de görülmektedir. Bu verilere göre kurşun, çinko, bizmut ve baryumun Akçaalan andeziti (Taa) ve Adadağı piroklastiklerinde (Tap), bakırın ise Dededağ dasitinde (Tdd) diğer birimlere göre daha yüksek değerlerde bulundukları anlaşılmaktadır.

Yalnızca iz element dağılımı dikkate alındığında, yatak içinde zenginleşen kurşun ve çinkonun Akçaalan andeziti ile Adadağı piroklastiklerinden, bakırın ise Dededağ dasitinden kaynaklanmış olabileceği düşünülebilir.

5.5. Nadir Toprak Element Jeokimyası İncelemeleri

5.5.1. Yöntem

NTE analizleri Activation Laboratuvarlarında (Kanada) ICP - MS yöntemiyle yapılmıştır. Analizlerin dedeksiyon limiti ve hassasiyeti araştırma kalitesinde (4B2 - Research) olup, uluslararası yayınlarda kabul edilebilir niteliktedir.

5.5.2. Nadir Toprak Element Jeokimyası Hakkında Özet Bilgi

Periyodik cetvel üzerinde atom numaraları 57 ile 71 arasında değişen ve lantandan lutenyuma kadar olan elementler nadir toprak elementleri (REE veya NTE) olarak adlanmaktadır. Ayrıca Y, bu aralıkta bulunmadığı halde, benzer özellikler gösterdiği için bu elementlerle birlikte değerlendirilmektedir. Diğer yandan bu grup içinde La'dan Eu'ya kadar olan elementler hafif nadir toprak elementleri (LREEs), Gd'dan Lu'ya kadar olan elementler ise ağır nadir toprak elementleri (HREEs) şeklinde tanımlanmaktadır. Ayrıca, yaygın olmamakla birlikte Pm ile Ho arasında bulunan elementlerin bazı kaynaklarda orta ağır nadir toprak elementleri (MREE) şeklinde tanımlandıkları görülmektedir.

Şekil 5.4. Cevherleşme ile ilgili elementlerin inceleme alanındaki birimlerden seçilmiş örneklerde grafiksel dağılımı (Taa: Akçaalan andeziti, Tap: Adadağı piroklastikleri, Tdd: Dededağ dasiti, Tkb: Karaömerler bazaltı).

Nadir toprak elementleri, benzer fiziksel ve kimyasal özelliklere sahip olduklarından jeolojik olaylar sırasında dağılım beraberlikleri göstermektedirler. Miktarlarında azalma veya çoğalma olmakla birlikte oransal bollukları ve/veya dağılım grafikleri, kaynak malzeme içindekine benzediği için özellikle maden yataklarındaki mineralleri oluşturan elementlerin kökenlerinin araştırılmasında oldukça yararlı olabilmektedir.

NTE analiz sonuçları değerlendirilirken, genellikle condrit örneklerine göre veya bazı temel kayaçlara (Kuzey Amerika Şeyli - NASC, Avrupa Şeyli gibi) ait değerlere göre normalize edilmekte (Normalize edilmiş değerler N simgesi ile işaretlenmekte) ve sonuçlar X ekseninde elementlerin atom numaralarına göre dizildiği, Y ekseninde ise logaritmik olarak normalize edilmiş değerlerin bulunduğu X - Y dağılım diyagramları hazırlanmakta, dağılım eğrilerindeki gidişler (pattern) çeşitli referans verilerle karşılaştırılarak yorumlanmaya çalışılmaktadır.

Hidrotermal çözeltilerin sahip olduğu fizikokimyasal şartlar nadir toprak elementleri ile de desteklenmektedir. Nadir toprak elementlerinden Eu ve Ce bu amaçla kullanılabilen iki elementdir. Eu indirgen ortamlarda 2+ değerlikli iyon halinde bulunurken, Ce oldukça yükseltgen ortamlarda 4+ değerlik göstermektedir (Sverjensky, 1984; Meen, 1990; Wood, 1990).

Normalize Eu değerleri Sm ve Gd değerlerinin ortalaması alınarak hesaplanan Eu* değeri ile karşılaştırılarak aradaki farklılık Eu anomalisi olarak tanımlanmakta, Eu/Eu* > 1 ise anomali pozitif, Eu/Eu* < 1 ise negatif şeklinde ifade edilmektedir (Henderson, 1984).

5.5.3. Benzer Oluşumlarda Nadir Toprak Elementleri İncelemeleri

Hidrotermal oluşumlarla ilgili çalışmalarda NTE incelemeleri çok yaygın olup, özellikle ürünlerin kökenlerinin araştırılmasında önemli yararlar sağlamaktadır. Tez konusu ile yakından ilişkili bazı çalışmalara ait bulgular aşağıda özetlenmeye çalışılmıştır.

Guichard ve diğ. (1979), çeşitli denizel ve karasal ortamlarda oluşmuş barit oluşumlarının NTE dağılımlarını incelemiş ve derin denizel baritlerin NTE konsantrasyonlarının diğer otijenik minerallere göre daha yüksek olduğunu, kondrite göre normalize edilmiş Eu değerlerinin minimum olduğunu, fakat deniz sularında gözlenen Ce anomalisinin bulunmadığını belirlemiştir. Çoğu karasal, bazıları ise sığ denizel ortamlarda oluşmuş diğer barit oluşumlarında ise NTE konsantrasyonlarının düşük olduğu gözlenmiş olup, saptanan pozitif Eu anomalilerinin indirgeyici sedimanter ortam ve metamorfizma koşullarına işaret ettiği belirtilmektedir.

Morgan ve Wandless (1980), anhidrit, barit, siderit ve galenit kristallerinin yapısında NTE bolluklarını ve kristallografik özelliklerin dağılıma etkilerini incelemiş olup, kabuk değerlerine göre normalize edilmiş NTE bolluklarının bu minerallerin yapısında bulunan majör katyonların iyon yarıçapları ile doğru ilişkili olarak değiştiğini belirlemişlerdir. Eu'un barit içinde anomali derecesinde zenginleşirken, Fe gibi +3 değerlikli olmasına ve benzer iyon yarıçapına sahip olmasına rağmen siderit içinde az bulunması aykırı bir durum olarak belirtilmiştir.

Baar ve diğ. (1985), Pasifik ve Atlantik okyanuslarının sularında NTE dağılımının, su derinliğine, oksijen içeriğine, opal ve kalsiyum karbonat içeriğine ve asılı partiküllerin adsorplanma yeteneğine bağlı olarak değiştiğini saptamışlar ve özellikle asılı partiküllerin adsorplanma yeteneklerinin NTE dağılımını etkileyen en önemli parametre olduğu sonucuna varmışlardır.

Ruhllin ve Owen (1985), Doğu Pasifik Sırtı (East Pasific Rise) çevresindeki hidrotermal çökellerin NTE dağılımını incelemişler ve sırt ekseninden uzaklaştıkça çökellerin NTE değerlerinin deniz suyununkine yaklaştığını belirlemişlerdir. Bu araştırıcılar hidrotermal bileşenlerdeki NTE dağılımının deniz suyundan etkilendiği sonucuna varmışlardır.

Michard ve Albarade (1986), Doğu Pasifik Sırtı üzerinde 13° ve 21° N enlemleri üzerindeki su altı hidrotermal faaliyetleri ile Bulgaristan ve Tibet'teki sıcak su çıkışlarında NTE dağılımlarını incelemişler ve DPS çevresindeki hidrotermal çözeltilerde NTE konsantrasyonlarının deniz suyundakine göre belirgin bir artış gösterdiğini, pH ve alkaliniteye bağlı olarak biraz farklılık gözlenmekle birlikte Bulgaristan ve Tibetteki sıcak sularda NTE içeriklerinin düşük olduğunu belirlemişlerdir. İnceleme alanındaki barit ve galenitlere ait değerleri karşılaştırabilmek amacıyla bu çalışmalardan derlenmiş bazı barit oluşumlarına ve hidrotermal sistemlere ait NTE değerleri Çizelge 5.3'de görülmektedir.

5.5.4. Analiz Sonuçları ve Değerlendirilmesi

İnceleme alanından alınan yan kayaç ve cevherleşmeye ait barit ve galenit örnekleri ile literatürden derlenmiş benzer oluşumlara ait NTE değerleri, Boynton (1984) tarafından belirlenmiş C1 kondrit ortalaması (Avg. C1 Chondrite) değerlerine göre normalize edilmiş olup, normalize NTE değerleri Çizelge 5.4 a ve 5.4 b'de birlikte görülmektedir.

Normalize edilmiş NTE değerlerinin atom numarasına karşılık logaritmik dağılım diyagramları Şekil 5.5 ve 5.6'da görülmekte olup, bu diyagramlardan yararlanılarak aşağıdaki yorumlar yapılmıştır.

- Farklı örneklere ait dağılım eğrilerinin gidişleri basitçe; negatif Eu anomalilerine sahip, birbirlerine benzer ve/veya paralel gidişli eğriler şeklindedir.
- Çevredeki kayaçlara ait örneklerin normalize NTE değerleri birbirleriyle karşılaştırıldıklarında; en yüksek değer Karaömerler bazaltına ait olup (TK - 92;Tkb), bunu sırasıyla Adadağı piroklastikleri (TK - 253; Tap), Akçaalan andeziti (TK - 311; Taa) ve Dededağ dasiti (TK - 248; Tdd) izlemektedir. Volkanik kayaçların değişim grafiklerindeki paralellikler, volkanitlerin aynı magma odasından geldikleri şeklinde yorumlanabilir.
- 3. Galenit, sfalerit ve barit örneklerinde normalize NTE değerleri birbirine çok yakın olduğundan her mineral için ortalamaları hesaplanarak diyagrama aktarılmıştır. Bu minerallere ait değerler kayaç örneklerine göre oldukça düşük olup, kısmen birbirine yakın oldukları söylenebilir. Barit örneklerinde (TK - 61, TK - 83) La, Pr ve Gd değerlerinde yüksek pikler oluşturacak şekilde oldukça zikzaklı bir gidiş izlenmekle birlikte diğer elementlere ait değerler düşüktür.
- 4. Galenit, sfalerit ve barit örneklerinde La, Ce ve Pr gibi hafif NTE'de değişim grafikleri birbirine paralellik göstermektedir. Ancak, diğer

Element	Deniz	MB2	MB9	CB3	Tibet	Bulg.	Bulg.	EPR 21	Salton	Kondrit
	Suyu	(1)	(1)	(1)	Ort.	Ort.	Ort	Ort.	Denizi	x1000
	(1)				(2)	(2)	(2)	(2)	(3)	(4)
La	3,1	13	143	75	-		-	-	-	310,0
Ce	1,2	3,5	309	103	62,5	21,4	46,3	331,5	706	808,0
Pr	0,64	-	12,5	-	-	-	-	-	-	122,0
Nd	2,5	-	-	-	21,5	8,9	16,8	102,5	226	600,0
Sm	0,43	0,38	7,4	0,98	4,65	1,75	3,2	19	22,6	195,0
Eu	0,12	0,1	1,7	0,45	0,3	0,55	0,4	32,5	305	73,5
Gd	0,65	-	-	-	3,5	3,75	2,4	25	25	259,0
Tb	0,14	-	-	-	-	-	-	-	-	47,4
Dy	0,82	0,54	14	1	3,2	5,95	2	19,2	17,3	322,0
Ho	0,22	0,18	5,7	-	-	-	-	-	-	71,8
Er	0,68	-	18	-	2,2	4,1	1,2	11,7	10,6	210,0
Tm	0,15	-	-	-	-	-	-	-	-	32,4
Yb	0,63	-	26	-	2,2	4,2	1,25	13,3	9,33	209,0
Lu	0,17	-	-	-	-	-	-	-	-	32,2
Y	-	-		-	-	-		-	-	2,10*

Çizelge 5.3. Değişik barit oluşumlarının ve hidrotermal sistemlerin NTE değerleri

Referanslar

Guichard ve diğ. (1979)
Michard ve Albarede (1986)
Michard (1989)
Boynton (1984)
Taylor ve McLennan (1985)

Barit Örnekleri MB2 Pelajik barit MB9 Diajenetik barit CB3 Hidrotermal damar tipi barit Hidrotermal Çözeltilerdeki Örnekler

Tibet Ort. Ortalama Tibet AH-9&AH-35 değerleri Bulg.Ort.1Ort.Bulg. BU-14&BU-13 değ. (pH<7,5) Bulg.Ort.2 Ort.Bulg.BU-26,BU-04,BU-21 değ.(pH>7,5) EPR21 Ort. Ort.East Pasific Rise; 21° N,SW 1149-2,1157-2 58

Cizelge 5.4a. İnceleme alanından seçilmiş kayaç ve cevher örneklerinin kondrite göre normalize edilmiş NTE değerleri (NTE değerlerinin normalizasyonu için Boynton, 1984 ortalama C1 ve Taylor ve Mclennan, 1985 ortalama C1 değerleri kullanılmıştır; sembol ve kısaltmalar Ek Çizelge 3'deki gibidir).

	1	2	3	4	5	6	7	8	9	10
Element	(TK-311)	(TK-253)	(TK-248)	(TK-292)	(EK-6)	(TK-61)	(EK-6)	(TK-73)	(TK-61)	(TK-83)
	(Taa)	(Tap)	(Tdd)	(Tkb)	Galenit	Galenit	Sfalerit	Sfalerit	Barit	Barit
LaN	0,1168	0,1103	0,0452	0,1003	0,0011	0,0009	0,0002	0,0002	0,0051	0,0133
CeN	0,0079	0,0084	0,0042	0,0085	0,00007	0,00006	0,00001	0,00001	0,00002	0,0001
PrN	0,0526	0,0557	0,0277	0,0566	0,0005	0,0004	0,0001	0,0001	0,0002	0,0007
NdN	0,0397	0,0443	0,0253	0,0477	0,0004	0,0004	0,0001	0,0002	0,0001	0,0001
SmN	0,0209	0,0266	0,0188	0,0309	0,0002	0,0003	0,0001	0,0004	0,0001	0,0001
EuN	0,0134	0,0174	0,0161	0,0184	0,0001	0,0002	0,0001	0,0001	0,0001	0,0001
GdN	0,0139	0,0197	0,0144	0,0208	0,0002	0,0005	0,00004	0,00002	0,00004	0,0013
TbN	0,0127	0,0179	0,0133	0,0198	0,0002	0,0004	0,0002	0,0002	0,0002	0,0002
DyN	0,0109	0,0147	0,0114	0,0158	0,0001	0,0003	0,00003	0,0001	0,0001	0,0001
HoN	0,0104	0,0142	0,0111	0,0143	0,0014	0,0003	0,0001	0,0001	0,0001	0,0003
ErN	0,0116	0,015	0,011	0,0149	0,0001	0,0002	0,00005	0,0001	0,0001	0,0003
TmN	0,0126	0,0145	0,0106	0,0153	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002
YbN	0,0126	0,0142	0,0102	0,0144	0,00005	0,00019	0,00005	0,00014	0,00010	0,00019
LuN	0,0139	0,0146	0,0107	0,0139	0,00006	0,00012	0,00006	0,00019	0,00006	0,00006
YN	10,7143	15,905	10,667	13,905	0,2381	0,619	0,2381	0,2381	0,7143	1

Element	Deniz Suyu (1)	MB2 (1)	MB9 (1)	CB3 (1)	Tibet Ort. (2)	Bulg. Ort. (2)	Bulg. Ort (2)	EPR 21 Ort. (2)	Salton Den. (3)
La	10,00	41,94	461,29	241,94	-		_	•	-
Ce	1,49	4,33	382,43	382,43	77,35	26,49	57,30	410,27	873,76
Pr	5,25	-	102,46	102,46	-	-	-	-	-
Nd	4,17	-	-	-	35,83	14,83	28,00	170,83	376,67
Sm	2,21	1,95	37,95	37,95	23,85	8,97	16,41	97,44	115,90
Eu	1,63	1,36	23,13	23,13	4,08	7,48	5,44	442,18	4149,66
Gd	2,51	-	-	-	13,51	14,48	9,27	96,53	96,53
Tb	2,95	-	-	-	-	-	-	-	-
Dy	2,55	1,68	43,48	43,48	9,94	18,48	6,21	59,63	53,73
Но	3,06	2,51	79,39	79,39	-	-	-	-	-
Er	3,24	-	85,71	85,71	10,48	19,52	5,71	55,71	50,48
Tm	4,63	-		-	-	-	-	**	-
Yb	3,01	-	124,40	124,40	10,53	20,10	5,98	63,64	44,64
Lu	5,28	-	-	-	-	-		-	-
Y	-	-	-	-	-	-	-	-	-

Çizelge 5.4b. Değişik barit oluşumları ve hidrotermal sistemlerin kondrite göre normalize edilmiş NTE değerleri.

1) Guichard ve diğ. (1979)

2) Michard ve Albarede (1986)

5

3) Michard (1989)

Şekil 5.5. İnceleme alanından derlenmiş kayaç ve mineral örneklerinin kondrite göre normalize edilmiş NTE değerlerinin değişim grafiği (Simge ve kısaltmalar Ek Çiz.3'deki gibidir).

Şekil 5.6. İnceleme alanından derlenen galenit,sfalerit ve barit örnekleri ile değişik barit oluşumları ve hidrotermal sistemlerin kondrite göre normalize edilmiş NTE değerlerinin karşılaştırmalı değişim grafiği (Simge ve kısaltma-
elementlere ait kesimlerde paralellik olduğunu söylemek zordur. Barit ve sfalerit arasındaki en önemli farkılık normalize Gd değerlerinde gözlenmekte olu, bu değer baritlerde yüksek sfaleritlerde düşüktür.

- 5. Sfaleritlere ait değerler, diyagram üzerindeki en düşük değerler olup oldukça zikzaklı bir gidiş izlenmektedir. La, Pr, Sm ve Ho değerlerindeki yükseklik dışında, galenitlerle sfaleritler arasında benzerlik bulunmamaktadır. Sfalerit ve galenit örnekleri özellikle hafif NTE değerlerindeki değişim bakımından (Ce değerinin La ve Pr değerlerine göre daha düşük oluşu) paralellik göstermektedir. Bu durum, galenit ve sfaleritlerin köken bakımından birbirleriyle ilişkili olabileceği şeklinde yorumlanabilir.
- 6. İnceleme alanına ait örneklerinin değişim diyagramları, deniz suyu, çeşitli hidrotermal sistemler ve barit oluşumları ile karşılaştırıldıklarında baritlerin deniz suyuna kısmen benzerlik gösterdikleri söylenebilir.
- 7. İnceleme alanına ait örneklerle çeşitli hidrotermal sistemlere ve barit oluşumlarına ait değerler ile birlikte Ce_N / Yb_N Yb_N diyagramı üzerinde incelendiklerinde; sfalerit, galenit ve baritlerin volkanik kayaçlar arasında ve deniz suyuna yakın bir yerde kümelendikleri görülmektedir. (Çizelge 5.5 ve Şekil 5.7). Bu diyagramdan yararlanılarak sfalerit, galenit ve baritlerin olasılıkla deniz suyunca volkanik kayaçlardan çözülen elementlerin zenginleşmesi sonucu oluştukları söylenebilir.

5.6. Kurşun İzotopları Jeokimyası İncelemeleri

5.6.1. Yöntem

Pb izotop analizleri, Activation Laboratuvarları'nda (Kanada) ICP - MS yöntemiyle yapılmıştır. Kayaç örnekleri (çamurtaşı ve kireçtaşı) HNO₃ + H₂O₂ karışımı ile çözülerek, galenit örnekleri kral suyu (aqua regia; 3 HCl + 1 HNO₃ karışımı) ile çözülerek, barit örnekleri ise derişik asit karışımı (HCl + HNO₃ + H₂SO₄) ile çözülerek ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları analiz edilmiştir. Analizler sırasında NIST - SRM 981 standartı kullanılmış olup, bu standart için ²⁰⁶Pb/²⁰⁴Pb değeri; 16.9374, ²⁰⁷Pb/²⁰⁴Pb değeri; 15.4916, ²⁰⁸Pb/²⁰⁴Pb

Element	KR-248	KR-253	KR-292	KR-311	EK-6	TK-61	EK-6	TK-73	TK-61	TK-83	Deniz S.	MB9	T.Ort.	B.Ort.1	B.Ort.2	DPS 21A	Salton D.
	Tdd	Тар	Tkb	Таа	Galenit	Galenit	Sfalerit	Sfalerit	Barit	Barit							
Ce	0,0079	0,0084	0,0042	0,0085	0,00007	0,00006	0,00001	0,00001	0,00002	0,0001	1,49	382,43	77,35	26,49	57,3	410,3	873,76
Yb	0,0126	0,0142	0,0102	0,0144	0,00005	0,00019	0,0005	0,00014	0,0001	0,00019	3,01	124,40	10,53	20,10	5,98	63,64	44,64
Ce/Yb	0,627	0,5915	0,4118	0,5903	1,4	0,31579	0,02	0,07143	0,2	0,52632	0,495	3,0742	7,346	1,318	9,582	6,447	19,5735

Çizelge 5.5. İnceleme alanından derlenmiş kayaç ve mineral örneklerine ait Ce_N, Yb_N ve Ce_N/Yb_N değerleri

Şekil 5.7. İnceleme alanından derlenmiş kayaç ve mineral örneklerine ait normalize değerlerin Ce_N / Yb_N - Yb_N diyagramı üzerinde dağılımı.

16

değeri ise; 36.7219 şeklindedir. Bu değerler için 8 saatlik süre içinde tekrarlanabilirlik ve hassasiyet (hata payları; $\% \pm RSD$) sırasıyla; $\% \pm 0.27$, $\% \pm 0.20$ ve $\% \pm 0.17$ olarak belirlenmiştir. Hatalar 1 sigma mertebesindedir.

5.6.2.Kurşun İzotopları Jeokimyası Hakkında Özet Bilgi

Pb izotopları jeokimyası incelemeleri, Pb mineralleri içeren cevherleşmelerde zenginleşen kurşunun kökeninin araştırılmasında kullanılan en yararlı yöntemdir. Cevherleşmeler içindeki diğer metallerin kökeni için de Pb ile birlikte aynı kaynaktan geldikleri düşünülerek yaklaşımlarda bulunulmaktadır.

Pb, atom numarası 82 olan bir element olup, kütle numaraları 190 ile 214 arasında değişen 24 izotopu bulunmaktadır. ²⁰⁸Pb, ²⁰⁷Pb, ²⁰⁶Pb ve ²⁰⁴Pb izotopları, doğada en bol bulunan Pb izotoplarıdır. ²⁰⁴Pb izotopu oluşumu tamamlanmış bir izotop olarak kabül edilmekte olup, ²⁰⁶Pb izotopunun, ²³⁸U'un radyoaktif bozunması sonucu , ²⁰⁷Pb izotopunun, ²³⁸U'un radyoaktif bozunması sonucu , ²⁰⁸Pb izotopunun ise ²³² Th izotopunun bozunması sonucu oluştuğu ve U ve Th içeren mineraller ve/veya kayaçlar içinde, belirtilen bozunma reaksiyonları sonucu oluşumlarının hâla devam ettiği düşünülmektedir.

Jeokimyasal incelemeler sırasında; ²⁰⁸Pb / ²⁰⁴Pb, ²⁰⁷Pb / ²⁰⁴Pb ve ²⁰⁶Pb / ²⁰⁴Pb izotop oranları analiz edilmekte ve sonuçlar (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) ve (²⁰⁷Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) ikili diyagramları hazırlanarak yaş tayini ve köken açısından değerlendirilmeye çalışılmaktadır.

Yaş tayini incelemelerinde U ve Th içeriği yüksek (zirkon gibi) mineraller, köken incelemelerinde ise U ve Th içeriği çok düşük (zamanla radyojenik Pb üretimi sonucu izotopsal bileşimi değişmeyen) galenit gibi mineraller kullanılmaktadır.

Jeolojik malzemeler içinde radyojenik Pb'nun gelişimi; tek evreli oluşum (single stage model) ve iki evreli oluşum (two stage model) şeklinde iki farklı şekilde incelenmektedir. Tek evreli oluşum modelinde, yer kürenin oluşumundan günümüze kadar, kurşun izotopları bileşiminin U ve Th izotoplarının bozunmasına bağlı olarak düzenli bir şekilde değiştiği ve radyoaktif reaksiyonlarla üretilen kurşunun sistemden ayrılmadığı kabul edilmektedir. Bu şekilde gelişmiş Pb izotopları bileşimleri düzgün bir eğri oluşturmaktadır. İki evreli oluşum modelinde ise zamanla sistemin izotopsal dengesinin bozulduğu ve sistemden radyojenik kökenli kurşunun ayrıldığı kabul edilmektedir. İki evreli oluşum modelinde değişik zamanlarda sistemden ayrılan kurşun izotopları bileşimine ait noktalar, yukarıda belirtilen ikili diyagramlar üzerinde doğrular oluşturacak şekilde konumlanmakta olup, bu doğrular izokron olarak tanımlanmaktadır. İzokronların, tek evreli gelişim eğrisini kestiği noktalar Pb'nun sistemden ayrıldığı ve yeniden tutuklandığı zamanları belirlemektedir.

Diğer yandan, tek evreli oluşum modeli ile oluşmuş ve genellikle volkanik ada yayları üzerindeki sedimanter ve volkanosedimanter kayaçlar içinde bulunan yataklarda gözlenen, alt kabuk veya manto kökenli olduğu düşünülen kurşun izotopları bileşimi "olagan (ordinary) kurşun" olarak, kıtasal kabuk içindeki radyojenik kurşunla karışmış (kirletilmiş), tek evreli oluşum modeline uymayan ve pek çok yatakta gözlenen kurşun ise "anamoli (anomalous) kurşun olarak tanımlanmaktadır. Anomali kurşun izotopları bileşimine sahip yataklarda daha fazla miktarda radyojenik Pb bulunduğu için negatif (gelecekte oluşacak) yaş değerleri ile karşılaşılabilmektedir.

5.6.3. Analiz Sonuçları ve Değerlendirilmesi

İnceleme alanından derlenen kayaç, barit ve galenit örneklerine ait değerler Çizelge 5.6'da toplu halde görülmekte olup, bu değerlerin (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) ve (²⁰⁷Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) ikili diyagramları üzerindeki dağılımları Şekil 5.8'de görülmektedir.

Galenit, sfalerit ve barit örneklerinde U ve Th içerikleri çok düşük olduğundan, kurşun izotopları bileşimlerinin oluşum anındaki kaynağın izotopsal bileşimini yansıttığı ve zamanla radyojenik Pb üretimi olmadığı için izotopsal bileşimin değişmediği kabül edilebilir. Kayaç örneklerinin ise U ve Th içerikleri farklı değerlerde olduğu için ilksel bileşimlerine göre Pb izotopları bileşimlerinin zamanla değiştiği ve bu değerlerin gerek kayaçların gerekse cevherleşmelerin oluşumu ve kökeni açısından değerlendirilmeleri mümkün gözükmemektedir.

Örnek No	Litoloji	206 _{Pb/} 204	Pb %RSD	207 _{Pb/} 204 _{Pb}	%RSD	208 _{Pb/} 204	Pb %RSD	$\mu = 238 U/204 Pb$	Tmod (S&K) M.Y.
1 (TK-292)	Bazalt (Tkb)	18.78	± 0. 4	15.69	± 0.5	38.71	± 0.5	9.987	73
2 (TK-248)	Dasit (Tdd)	18.79	± 0.5	15.66	± 0.5	38.81	± 0.4	9.856	2.0
3 (TK-253)	Tüf (Tap)	18.79	± 0.4	15.72	± 0.5	38.68	± 0.4	10.11	128
4 (TK-311)	Andezit (Taa)	18.75	± 0.4	15.73	± 0.4	38.92	± 0.5	10,17	178
5 (EK-6)	Galenit	18.78	± 0.2	15.65	± 0.2	38.83	± 0.3	9.815	-12
6 (TK-61)	Galenit	18.84	± 0.4	15.80	± 0.3	38.95	± 0.4	10.45	251
7 (EK-6)	Sfalerit	18.78	± 0.5	15.66	± 0.4	38.82	± 0.4	9.858	10
8 (TK-73)	Sfalerit	18.67	± 0.5	15.66	± 0.4	38.56	± 0.5	9.81	92
9 (TK-61)	Barit	18.98	± 0.5	16.05	± 0.5	39.74	± 0.4	11.55	600
10 (TK-83)	Barit	18.88	± 0.4	16.04	± 0.6	39.46	± 0.4	11.54	647

Çizelge 5.6. İnceleme alanındaki birimlerden ve cevherleşmelerden seçilen kayaç ve mineral örneklerinin kurşun izotopları bileşimi.

Şekil 5.8. İnceleme alanındaki birimlerden ve cevherleşmelerden derlenmiş kayaç ve mineral örneklerinin (²⁰⁸Pb/²⁰⁴Pb)-(²⁰⁶Pb/²⁰⁴Pb) ve (²⁰⁷Pb/²⁰⁴Pb)-(²⁰⁶Pb/²⁰⁴Pb)

Baritlerin, galenit ve sfaleritlerden (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) diyagramı üzerinde farklı alanlarda yeralmaları, farklı kökenli malzemelerden kaynaklandıklarına işaret etmektedir (Şekil 5.8). Baritler, ²⁰⁸Pb (thorogenic) bakımından daha zengin bir kaynaktan gelmiş olmalıdırlar. Galenit ve sfaleritlere ait noktaların birbirlerine yakınlığı ise, bu minerallerdeki kurşunun aynı kaynaktan geldiği ve kaynağın Pb izotopları bileşiminin homojen olduğunu göstermektedir.

İnceleme alanından derlenmiş örneklere ait değerler, değişik ortamlarda oluşmuş malzemelerle karşılaştırıldıklarında; (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) diyagramında (Şekil 5.9) baritlerin belirgin bir şekilde kıtasallaşmış kabuk malzemesi alanı içinde, kayaç, galenit ve sfalerit örneklerinin ise kıtasallaşmış ve kıtasallaşmamış kabuk malzemeleri ile pelajik sedimanlara ait ortak alan içinde konumlandıkları görülmektedir. Bu diyagram üzerindeki değerlendirmeye göre galenit ve sfalerit içindeki kurşunun aynı kaynaktan geldiği söylenebilir.

İnceleme alanındaki cevherleşmelere ait barit, galenit ve sfalerit değerler, değişik ortamlarda oluşmuş cevherleşmelerle örneklerine ait karşılaştırıldıklarında; (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) diyagramında (Şekil 5.10) galenit ve sfaleritlere ait değerlerin pelajik sedimentler içindeki cevherleşmelere ait (PS) alan içinde Kızıl Deniz tabanındaki hidrotermal oluşumlara (RS) yakın bir alanda yeraldıkları baritlerin ise farklı bir alanda konumlandıkları görülmekte olup, bu diyagram üzerindeki konumları Şekil 5.9'daki konumları ile birlikte düşünüldüklerinde cevherleşmelerin orojenez etkisinde kalmış kıtasal kabuk içinde galenit ve sfaleritlerin derin denizel (pelajik) bir ortam içinde Kızıl Deniz benzeri derin kırıklar boyunca gelişen hidrotermal çözeltilerce oluşturulduğu düşünülebilir. Ancak değerlerin okyanusal volkanik kayaç alanlarından farklı alanlarda oluşabilen okyanusal volkanik faaliyetler ile farklı ilişkili olmadıklarını göstermektedir. Barit örneklerinin sfalerit ve galenitlerden oldukça farklı yerlerde konumlanmış olması, oluşum süreci ve köken olarak farklı şekilde oluştuklarına işaret sayılabilir. Yer küre üzerinde; manto, alt kabuk, üst kabuk ve orojenik bölgelere ait malzemeler µ (²³⁸U / ²⁰⁴Pb) değerleri bakımından oldukça farklı bileşimler gösterebilmekte olup, incelemeler sırasında hesaplanan µ değerleri bu

Şekil 5.9. Değişik jeolojik malzemelerin a. (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) ve b. (²⁰⁷Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) diyagramları üzerindeki dağılım alanları (Doe ve Zartman'dan, 1979 derlenmiştir) ve inceleme alanına ait örneklerin konumları (örnek numaraları Çizelge 5.1' deki gibidir; 1-4 Yan kayaç, 5-6 Galenit, 7-8 Sfalerit, 9-10 Barit)

Şekil 5.10. Çeşitli cevherleşmelerin a. (²⁰⁸Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) ve b. (²⁰⁷Pb / ²⁰⁴Pb) - (²⁰⁶Pb / ²⁰⁴Pb) diyagramları üzerindeki dağılım alanları (Doe ve Zartman'dan, 1979 derlenmiştir; CYO: Kıprıs Tipi Yat., EPR: Doğu Pasifik Sırtı Cev., ES: East Shasta Yat., HP: Halls Peak Yat., KO: Kuroko Yat, NP: Nazca Plate Yat., RO: Rosebury Yat., RS: Kızıl Deniz Çökelleri, WS: West Shasta Yat.) ve inceleme alanına ait örneklerin konumları (örnek numaraları Çizelge 5.1'deki gibidir; 5-6 Galenit, 7-8 Sfalerit, 9-10 Barit)

ana malzemeler için belirlenmiş değerler ile karşılaştırılarak kökenleri hakkında yaklaşımlarda bulunulabilmektedir. Inceleme alanındaki volkanik kayaçlarla cevherleşmelerdeki galenit, sfalerit ve barit örnekleri için hesaplanmış μ (²³⁸U / ²⁰⁴Pb) değerleri, orojenik bölgelerdeki üst kabuk malzemelerine benzemekte olup, böyle bir kaynaktan geldiği, ayrıca galenit ve sfaleritlerdeki kurşunun, baritlerdekine göre daha derinde yerleşmiş kabuk malzemesinden kaynaklandığı söylenebilir (Şekil 5.11).

5.7. Kükürt İzotopları Jeokimyası İncelemeleri

5.7.1. Yöntem

S izotop analizleri NERC Isotope Geosciences Laboratory (NIGL)'de (Keyworth, İngiltere) VG SIRA 10 kütle spektrometresinde yaptırılmıştır. Sülfürlü mineraller Robinson ve Kusakabe (1975), sülfatlı mineraller ise Coleman ve Moore (1978) metodlarına göre hazırlanarak analiz edilmiştir. Sonuçlar CDT standartından sapma (o/oo δ^{34} S) değerleri şeklinde ifade edilmiş olup, yöntemin hassasiyeti ve tekrarlanabilirliğinin o/oo ± 0.2'den daha iyi olarak belirlenmiştir.

5.7.2. Analiz Sonuçları ve Değerlendirilmesi

İnceleme alanındaki birimlerden alınan cevher örneklerinin kükürt izotopları bileşimi (δ^{34} S) – 0.1 ile 17.3 o/oo arasında değişmektedir (Çizelge 5.7).

 δ^{34} S değerleri, sfaleritlerde – 3,0 ile – 0,1 o/oo aralığında (n = 3, ort = -1,6 o/oo), galenitlerde – 5,2 ile – 1,9 o/oo aralığında (n = 4, ort = -3,62 o/oo), baritlerde ise + 14,9 ile + 17,3 o/oo aralığında (n = 3, ort = + 16,47 o/oo) değişmektedir.

Baritlerin δ^{34} S değerleri (+ 14,9 o/oo'lik bir değer dışında), deniz suyundaki sülfatın kükürt izotopları bileşimine yakın olup bileşimlerindeki kükürtün deniz suyu içindeki sülfattan kaynaklandığı söylenebilir. + 14,9 o/oo'lik δ^{34} S değeri ise deniz suyundaki sülfatın izotopsal bileşimine göre daha hafiftir.

Sülfürlü minerallerin yapısında bulunan kükürtün izotopsal bileşimi – 5,2 ile – 0,1 o/oo arasında değişmekte olup, magmatik kökenli kükürte (0,0 o/oo) göre biraz hafif değerler halindedirler. Diğer yandan, + 14,9 ile + 17,3 o/oo aralığında izotopsal bileşime sahip bir deniz suyundan inorganik indirgenme reaksiyonları

Şekil 5.11. Değişik kökenli jeolojik malzemelere ait μ (²³⁸U / ²⁰⁴Pb) değerleri (Zartman ve Doe'dan, 1981) ve inceleme alanındaki örneklere ait değerlerin konumu.

δ ³⁴ S (CDT)									
Örnek No	Sfalerit	Galenit	Barit						
EK-6	-3.0	-1.9	_						
TK-45	-0.1	-3.4	-						
TK-61	-	-5.2	+17.2						
TK-73	-1.7	-4.0	-						
TK-75	-	-	+17.3						
TK-83	-	-	+14.9						

Çizelge 5.7. İnceleme alanındaki cevherleşmelerden seçilen mineral örneklerinin kükürt izotopları bileşimi

sonucu + 5 ile + 7 o/oo civarında δ^{34} S değerleri, bakteriyel indirgenme sonucunda ise - 5,1 ile - 2,7 o/oo aralığında δ^{34} S değerleri beklenir. Analiz edilen δ^{34} S değerleri, deniz suyu içindeki sülfatın bakteriyel indirgenme süreçleriyle oluşacak izotopsal bileşimle çakışmakta olup, yalnızca kükürt izotopları bileşimi dikkate alındığında sülfürlü minerallerin yapısında bulunan kükürtün, deniz suyu içindeki SO⁼₄'ten bakteriyel indirgenme süreçleriyle üretildiği düşünülebilir. Ancak ortamda volkanik faaliyetlerin hakim olması, cevherleşmelerin doğrudan deniz tabanıyla temas halinde olmaması ve hidrotermal çözeltilerin sıcaklıklarının 100 °C'nin üzerinde olması (Ort T_H = 151,2 °C) nedeniyle bakteriyel faaliyetlerin ve bakteriyel indirgenme süreçlerinin gelişiminin zorluğu dikkate alındığında, bu bileşimde kükürt izotopları bileşiminin bölgedeki magmatik kayaçlardan veya bir magmatik rezervuardan ³²S'ce zengin (hafif) kükürtün hidrotermal çözeltilerce çözülüp, cevherleşme ortamına taşınması şeklinde gelişmesi de mümkündür. İkinci olasılık yöredeki yataklar için daha uygun gözükmektedir.

Sfalerit ve galenit arasında sınırlı da olsa bir izotopsal dengenin varlığı düşünülmüş olup, bir örnek dışında sfalerit-galenit çifti için kükürt izotopları ayrımlanma termometresine göre oluşum sıcaklığı ortalama 240°C olarak hesaplanmıştır (Çizelge 5.8).

5.8. Oksijen İzotopları Jeokimyası İncelemeleri

5.8.1. Yöntem

O izotop analizleri; Clayton ve Mayeda (1963) tarafından geliştirilmiş florlama yöntemiyle analiz edilmiş olup, örnekler nikel tüpler içinde, yaklaşık olarak 650 °C sıcaklıkta, BrF₅ ile muamele edilerek baritlerin bileşimindeki O'ler önce O₂ gazına daha sonra da saf ve sıcak karbon çubuklar yardımıyla CO₂ gazına çevrilerek Finnigan MAT Deşta tipi, çift püskürtmeli kütle spektrometresinde analiz edilmişlerdir. Sonuçlar δ ¹⁸O o/oo SMOW değerleri şeklinde ifade edilmiştir. Yöntemin hassasiyeti ve tekrarlanabilirliği o/oo ± 0.19 (1 sigma)'dan daha iyi olarak belirlenmiştir.

5.8.2. Analiz Sonuçları ve Değerlendirilmesi

Yukarıda belirtilen çeşitli kimyasal incelemelerin ve Pb ve S izotopları bileşimlerinin incelendiği 3 adet barit örneğinin ayrıca oksijen izotopları bileşimi de analiz edilmiştir. Oksijen izotopları analiz sonuçları Çizelge 5.9'da görülmekte

	δ ³⁴ S (CDT)	Mt	Δ	T°C
Örnek No	Sfalerit	Galenit	Sfaleri	t-Galenit
EK-6	-3.0	-1.9	1.1	536
TK-45	-0.1	-3.4	3.3	194
TK-61	-	-5.2	_	-
TK-73	-1.7	-4.0	2.3	286

Çizelge 5.8. Sfalerit – galenit mineral çifti için hesaplanan izotopsal ayrımlanma ve sıcaklık değerleri

Çizelge 5.9. Barit örneklerinin oksijen izotopları bileşimi

Örnek No	Örneklerin Özellikleri	δ ⁻¹⁸ O (SMOW)
TK - 61	Saf barit kristali	7,8
TK - 75	Saf barit kristali	7,4
TK - 83	Saf barit kristali	7,4

olup, birbirlerine oldukça yakın değerler elde edilmiştir. Bu izotopsal bileşim, magmatik kayaçlar için belirlenmiş değerlere ($\delta 18 \text{ O} = 5 -10 \text{ o/oo}$; Campbell ve Larson'dan, 1998) benzerlik göstermektedir. Denizel SO⁴⁼'ın yapısındaki oksijen izotopları bileşiminin deniz suyunun oksijen izotopları bileşimine ($\delta^{18}\text{O} = 0$) benzemesi beklenir. Magmatik kayaçlar için belirlenmiş değerlere benzer değerlerin elde edilmesi deniz suyu içindeki SO⁴⁼'ın oksijen izotopları bileşiminin magmatik yan kayaçlarla etkileşim sonucu izotopsal bileşiminin ağırlaştığı şeklinde yorumlanabilir.

Barit - H₂O arasında, oksijen izotoplarının izotopsal ayrımlanma durumlarına ait deneysel veriler bulunamadığından, baritlerin izotopsal bileşiminden yararlanılarak, denge halindeki suyun izotopsal bileşimi hesaplanamamış olup, cevherleşmeleri oluşturan suyun izotopsal bileşimi ve kökeni hakkında kesin birşey söylenememektedir.

6. SONUÇLAR

Koru (Çanakkale) baritli kurşun - çinko yatağı, Biga Yarımadası'nda Tersiyer yaşlı volkanitler içinde yaygın olarak gözlenenen kurşun - çinko yataklarının tipik örneklerinden birisi olup, günümüzde kurşun - çinko üretimi amacıyla işletilmektedir.

Yatakların yakın çevresinde yüzeyleyen volkanik kayaçlar Eosen yaşlı Akçaalan andeziti, Oligosen yaşlı Adadağı piroklastikleri, Miyosen yaşlı Dededağ dasiti, Pliyo - Kuvaterner yaşlı Karaömerler bazaltı şeklinde ayrılmışlardır. Bu birimler yer yer kuvaterner yaşlı alüvyonlar tarafından örtülmektedir. Akçaalan andeziti; başlıca andezit - bazaltik andezit, ender olarak riyodasit ve dasit bileşimli volkanik kayaçlardan oluşmaktadır. Volkanik kayaçların yanısıra piroklastik arakatkılar ve kireçtaşı mercekleri de gözlenmektedir. Akçaalan andeziti üzerinde uyumsuz olarak yer alan Adadağı piroklastikleri trakit, latit, dasit, riyodasit bileşimli tüf ve aglomeralar ile ender olarak andezitik ve dasitik lavlardan meydana gelmektedir. Adadağı piroklastiklerinin tabakalanmalı olması ve analsim gibi volkan camının sulu bir ortamda bozunduğunu işaret eden minerallerin belirlenmesi denizel bir ortamda çökeldiğini işaret etmektedir. Dededağ dasiti Adadağı piroklastikleri tarafından uyumsuz olarak örtülmekte olup, dasitik yer yerde riyodasitik bileşimli lavlardan oluşmaktadır. Karaömerler bazaltı Dededağ dasiti üzerinde uyumsuz olarak bulunmakta ve bazaltlardan meydana gelmektedir.

İnceleme alanı içindeki cevherleşmeler, Adadağı piroklastikleri içinde, BKB - DGD konumlu fay hattı boyunca damar tipi ve üst seviyelerdeki ileri derecede breşleşmiş kesimlerde stockwork tipi oluşumlar şeklindedir. Cevherleşmelerde galenit, sfalerit ve barit hakim mineraller olup, pirit, kalkopirit, fahlerz (tennantit), markazit, kalkosin, kovellin, bornit, tenörit ve kuvars az miktarlarda bileşime katılmaktadır.

Sıvı kapanım incelemeleri sırasında ölçülen T_{FM} , Tm_{ICE} ve T_H değerleri, mineral oluşturucu hidrotermal çözeltiler içinde CaCl₂ ve MgCl₂ gibi tuzların bulunduğunu, baritlerin oluşumu sırasında hidrotermal çözeltilerin tuzluluklarının biraz yüksek olduğunu, sülfürlü minerallerin oluşumu sırasında tuzluluğun önemli miktarda düştüğünü, baritlerin oluşumu sırasında çözeltilerin sıcaklıklarının düşük olduğunu (80 °C' den daha düşük), ancak daha sonra sülfürlü minerallerin oluşumu sırasında (baritlerde ikincil kapanımlar) sıcaklığın 270 °C'ye kadar yükseldiğini, sfaleritlerin ise 120-160 °C sıcaklık aralığında oluştuğunu (sfaleritlerde birincil kapanımlar) göstermektedir. Çözeltiler içinde CaCl₂ ve MgCl₂ gibi tuzların bulunması, mineral oluşturucu hidrotermal çözeltilerin ya deniz suyu kökenli olduklarını veya denizel sedimanlar içinden geçerek ortama geldiklerine işaret etmektedir.

Olağan magmatik hidrotermal sistemlerde önce yüksek sıcaklıklarda oluşan mineraller daha sonra ise düşük sıcaklıklarda oluşan minerallerin çökeldiği görülür. Yöredeki cevherleşmelerde; önce düşük sıcaklıkta kristallenen baritlerin oluşması, daha sonra yüksek sıcaklıklarda kristallenen minerallerin (galenit, sfalerit, kalkopirit) oluşması olağan dışılık göstermektedir. Bu durum; sığ derinliklere inerek az ısınmış deniz suyunun bariti oluşturacak Ba²⁺ ve SO⁴⁼ iyonlarını çözüp getirdiğini ve erken evrede çökelttiğini, derinlere inerek daha fazla ısınmış deniz suyunun ise Pb++, Zn++ ve Cu++ gibi iyonları çözerek daha uzun zaman sonra ortama getirdiği şeklinde yorumlanabilir.

Ana element jeokimyası incelemelerinden; inceleme alanındaki volkanik kayaçların erken evrede (Karaömerler bazaltı hariç) yüksek potasyumlu kalkali bileşimli oldukları, sonraki evrelerde ise orta potasyumlu kalkalkelen karakterli, levha içi bazaltlar (Karaömerler bazaltı) şeklinde oluştukları anlaşılmaktadır.

İz element jeokimyası incelemelerinde kurşun, çinko, bizmut ve baryumun Akçaalan andezit ve Adadağı piroklastiklerinde, bakırın ise Dededağ dasitinde diğer birimlere göre daha yüksek değerlerde bulundukları görülmektedir. Diğer veriler dikkate alınmadan yalnızca iz element dağılımı dikkate alındığında yatak içinde zenginleşen kurşun ve çinkonun Akçalaan andeziti ile Adadağı piroklastiklerinden, bakırın ise Dededağ dasitinden kaynaklanmış olabileceği düşünülebilir.

Normalize edilmiş NTE değerleri incelendiğinde; farklı örneklere ait dağılım eğrilerinin gidişleri basitçe; negatif Eu anomalilerine sahip, birbirine benzer ve/veya paralel gidişli eğriler şeklinde tanımlanabilir. İnceleme alanındaki örneklerinin değişim diyagramları çeşitli hidrotermal sistemlerle karşılaştırldıklarında baritlerin deniz suyuna kısmen benzerlik gösterdikleri söylenebilir. İnceleme alanına ait örneklerin $Ce_N / Yb_N - Yb_N$ diyagramı üzerindeki konumları incelendiğinde; galenit, sfalerit ve baritlerin volkanik kayaçlar arasında ve deniz suyuna yakın bir yerde kümelendikleri görülmektedir. Bu durum da, galenit, sfalerit ve baritlerin olasılıkla deniz suyunca volkanik kayaçlardan çözülen elementlerin zenginleşmesi sonucu oluştukları söylenebilir. Kurşun izotopları jeokimyası incelemelerinde, baritlerin galenit ve sfaleritlerden farklı kökenli malzemelerden kaynaklandığı, baritlerin kurşun izotopları bileşiminin kıtasallaşmış kabuk malzemesine, galenit ve sfaleritlerin kurşun izotopları bileşiminin ise kıtasallaşmış ve kıtasallaşmamış kabuk malzemeleri ile pelajik sedimanlara benzediği belirlenmiştir. Barit, galenit ve sfalerit örneklerine ait değerler değişik ortamlarda oluşmuş cevherleşmelerle karşılaştırıldıklarında inceleme alanındaki cevherleşmelerin orojenez etkisinde kalmış kıtasal kabuk içinde galenit ve sfaleritlerin derin denizel (pelajik) bir ortam içinde Kızıl Deniz benzeri derin kırıklar boyunca gelişen hidrotermal çözeltilerce oluşturulduğu düşünülebilir. Ayrıca, inceleme alanındaki volkanik kayaçlarla cevherleşmelerdeki galenit, sfalerit ve barit örnekleri için hesaplanmış μ (238U / 204Pb) değerleri, orojenik bölgelerdeki üst kabuk malzemelerine benzemekte olup, böyle bir kaynaktan geldiği ve galenit ve sfaleritlerdeki kurşunun baritlerdekine göre daha derinde yerleşmiş kabuk malzemesinden kaynaklanmış olabileceği söylenebilir.

incelemelerine Kükürt izotopları jeokimyası göre; baritlerin bileşimlerindeki kükürtün deniz suyu içindeki sülfattan kaynaklandığı, sülfürlü minerallerdekinin ise deniz suyu içindeki sülfatın bakteriyel indirgenme sürecleriyle oluşacak izotopsal bileşimle çakışmakta olduğu belirlenmiştir. Yalnızca kükürt izotopları bileşimi dikkate alındığında sülfürlü minerallerin yapısında bulunan kükürtün, deniz suyu içindeki SO⁻₄'ten bakteriyel indirgenme süreçleriyle üretildiği düşünülebilir. Ancak; ortamda volkanik faaliyetlerin hakim olması, cevherleşmelerin doğrudan deniz tabanıyla temas halinde olmaması ve hidrotermal çözeltilerin sıcaklıklarının 100 °C'nin üzerinde olması (Ort. T_H = 151,2 °C) nedeniyle bakteriyel faaliyetlerin ve bakteriyel indirgenme süreçlerinin gelişiminin zorluğu dikkate alındığında, bu bileşimde kükürt izotopları bileşiminin bölgedeki magmatik kayaçlardan veya bir magmatik rezervuardan ³²S'ce zengin (hafif) kükürtün hidrotermal çözeltilerce çözülüp, cevherleşme ortamına taşınması şeklinde gelişmesi de mümkündür. İkinci olasılık yöredeki yataklar için daha uygun gözükmektedir.

Oksijen izotopları jeokimyası incelemelerinden; inceleme alanındaki barit örneklerinin magmatik kayaçlar için belirlenmiş değerlere benzerlik göstermesi, $\delta 180 = 0$ °/_{oo} civarında olması beklenen izotopsal bileşimin; deniz suyunun magmatik yan kayaçlardan etkilenmesi sonucu değişikliğe uğradığına işaret etmektedir.

7. KAYNAKLAR

- Alpan, T., 1968. Koru-Balcılar (Çanakkale) köyleri civarının jeoloji etüdü. M.T.A. Raporu, No: 6840, 28 s.
- Akyürek, B. ve Soysal, Y., 1980. Biga Yarımadası ve güneyinin 1/100.000 ölçekli komplikasyonu. M.T.A. Raporu, No: 7847, 13 s.
- Akyürek, B. ve Soysal, Y., 1983. Biga Yarımadası güneyinin (Savaştepe-Kırkağaç-Bergama-Ayvalık) temel jeolojik özellikleri, M.T.A. Enst. Dergisi, 95/96, 1-13.
- Andiç, T. ve Kayhan, F., 1997. Çanakkale-Lapseki yöresinin genel jeokimyasal etüt raporu. M.T.A. Raporu, No: 10059.
- Baar, H.W., Bacon, M.P. ve Brewer, P.G., 1985. Rare earth elements in the Pasific and Atlantic Oceans. Geochim. Cosmochim. Acta, 49, 1943-1959.
- Batchelor, B. ve Bowden, P., 1985. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology, 48, 43-55.
- Bingöl, E., Akyürek, ve Korkmazer, B, 1973. Biga yarımadasının jeolojisi ve Karakaya formasyonunun bazı özellikleri: Cumhuriyetin 50. yılı Yerbilimleri Kongresi Tebliğleri kitabı, 70-76.
- Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H₂O-NaCl solutions. Geochim. Cosmochim. Acta, 57, 683-684.
- Borsi, S., Ferrara, C, Innocenti, F. ve Mazzuoli, R., 1972. Geochronology and petrology of recent volcanics of Eastern aegean Sea: Bull. Volc., 36, 473-496.
- Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Rare earth element geochemistry, P.Henderson (ed.), Elsevier, 63-114.
- Campbell, A., ve Larson, P., 1998. Introduction to stable isotope applications in hydrothermal systems. In: Techniques in hydrothermal ore deposits geology. J.P. Richards ve P.B. Larson (eds.), Revews in Economic Geology. 10, 173-193.
- Clayton, R.N., ve Mayeda, T.K., 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta, 27, 43-52.

- Coleman, M. ve Moore, M.P., 1978. Direct reduction of sulfates to sulfur dioxide for isotopic analysis. Analyt. Chem., 50, 1594-1578.
- Dayal, A., 1984. Yenice (Çanakkale) granitinin petrografisi ve buna bağlı cevherleşmeler: Doktora tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir (yayınlanmamış).
- Dinçer, H., 1958. Çanakkale vilayeti Lapseki kazası Umurbey nahiyesi civarındaki barit cevherleşmeleri. M.T.A. Raporu.
- Doe, B.R. ve Zartman, R.E., 1979. Plumbotectonics, The Phanerozoic. In: Geochemistry of hydrothermal ore deposits. H.L. Barnes (ed.), 2nd. ed., John Wiley & Sons. Inc., 22-70.
- Ercan, T. ve Türkecan, A., 1984. Batı Anadolu, Ege adaları, Yunanistan ve Bulgaristan'daki plütonların gözden geçirilişi: T.J.K. Ketin Sempozyumu Kitabı, 189-208.
- Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E., Adıs, C., Walter, H. ve Yıldırım, T., 1995. Biga Yarımadası ile Gökçeada, Bozcaada ve Tavşan adalarındaki (KB Anadolu) Tersiyer volkanizmasının özellikleri. M.T.A. Dergisi, 117, 55-86.
- Ercan, T., Günay, E. ve Türkecan, A., 1984a. Edremit-Korucu yöresinin (Balıkesir) Tersiyer stratigrafisi, magmatik kayaçların petrolojisi ve kökensel yorumu. T.J.K. Bülteni, 27, 1,21-30.
- Ercan, T., Türkecan, A., Akyürek, B., Günay, E., Çevikbaş, A., Ateş, M., Can, B., Erkan, M. ve Özkirişçi, C., 1984b. Dikili-Bergama-Çandarlı (Batı Anadolu) yöresinin jeolojisi ve magmatik kayaçların petrolojisi. Jeoloji Mühendisliği Dergisi, 20, 47-60.
- Ercan, T., Çevikbaş, A., Ateş, M, Can, B, Küçükayman, A. ve Erkan, M., 1984c. Bigadiç çevresinin (Balıkesir) jeolojisi ve magmatik kayaçların petrolojisi. Türkiye Jeoloji Kurultayı Bildiriler Kitabı, 75-85.
- Ertürk, O., Dinçöz, E. ve Alaygut, D., 1990. Petrology of the Cenozoic volcanics in the Biga Peninsula, NW Turkey: International Earth Sciences Congress on Aegean Region, Proceedings, II, 368-384.

- Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G. ve Mazzuoli, R., 1976. Geochronological data on recent magmatism of the Aegen Sea, Tectonophysics, 31, 29-34.
- Gevrek, A.İ., Şener, M., ve Ercan, T., 1986. Çanakkale-Tuzla jeotermal alanının hidrotermal alterasyon etüdü ve volkanik kayaçların petrolojisi: M.T.A. Dergisi, 103/104, 55-81.
- Gjelsvik, T., 1956. Türkiye'nin batısında Biga yarımadası bölgesinde Alpin volkanizmaya bağlı maden yatakları üzerinde aramalar. M.T.A. Raporu No: 2480.
- Guichard, F., Church, T., Treuil, M. ve Jaffrezic, H., 1979. Rare erths in barites: Distribution and effects on aqueous partitioning. Geochim. Cosmochim. Acta, 43, 7, 983-997.
- Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements. In: Rare Earth Element Geochemsitry. Henderson, P. (ed.), Developments in Geochemsitry 2, Elsevier, 1-32.
- Holmes, A.W., 1966. 1. Bölge Trakya'nın jeolojik etüdü ve stratigrafisi: T.P.A.O. Arama Grubu Raporu, No: 368.
- Ketin, İ., 1966. Anadolu'nun tektonik birlikleri. M.T.A. Dergisi, 66, 20-34.
- Kopp, K.O., 1964. Geologie thrakiens II; Die inseln und der chersone:: N.Jb. Geol. Pale. Abh., 119,172-214.
- Krushensky, R.D., 1976. Neogene calc-alkaline extrusive and intrusive rocks of the Karalar-Yeşiller area, Northwest Anatolia. Bull.Volc., 40, 336-360.
- Le maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorenson, H., Streckeissen, A., Wooley, A.R. ve Zanettin, B., 1989. A classification of igneous rocka nad golssary of terms: Blackwell Scientific Publications, Oxford, 208 p.
- Meen, J. K., 1990. Negative Ce anomalies in Archean amphibolites andLaramide granitoids, southwestern Montana, U.S.A., Chemical Geology, 81, 199-207.
- Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta, 53, 745-750.

- Michard, A. ve Albarede, F., 1986. The REE content some hydrothermal fluids. Chemical Geology, 55, 51-60.
- Morgan, J.W. ve Wandless, G.A., 1980. Rare earth elemet distribution in some hydrothermal minerals: Evidence for crystallographic control. Geochim. Cosmochim. Acta, 44, 973-980.
- Okay, A.İ., Siyako, M. ve Bürkan, K.A., 1990. Biga yarımadasının jeolojisi ve tektonik evrimi. T.P.J.D. Bülteni, 2/1, 83-121.
- Önal, M., 1986. Gelibolu yarımadasındaki iki ana kayanın organik jeokimyası ve kil mineralleri ile incelenmesi. T.J.K. Bülteni, 29/1, 97-104.
- Önal, M. ve Yılmaz, H., 1983. Gelibolu yarımadasında iki ana farklı yaşta fliş fasiyesindeki kil mineralleri ve gömülme derinliğine ait bazı ipuçları. Jeoloji Mühendisliği Dergisi, 18, 23-30.
- Önem, S., 1974. Gelibolu yarımadası ve Çanakkale dolaylarının jeolojisi. T.P.A.O. Arama Grubu Raporu, No: 877.
- Perace, J., A. ve Cann, J.R., 1973. Tectonic setting of basic volcanic rocks, determined using trace element analyses. Earth Planet Scien. Lett., 19, 290-300.
- Perce, J.A., Harris, N.B.W. ve Tindlei A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
- Robinson, B. W. ve Kusakabe, M., 1975. Quantitative preparation of sulfur dioxide for ³⁴S /³²S analysis from solfides by combustion with cuprous oxide: Analyt. Chem., 47, 1179-1181.
- Ruhllin, D.E., ve Owen, M., 1986. The rare earth element geochemsitry of hydrothermal sediments from the East Pasific Rise: Examination of a seawate scavenging mechanism. Geochim. Cosmochim. Acta, 50, 393-400.
- Saltık, O., 1974. Şarköy-Mürefte sahaları jeolojisi ve petrol olanakları. T.P.A.O. Arama Grubu Raporu, No: 879.
- Schmid, R., 1981. Descriptive nomecalture and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcomission on the Systematics of Igneous Rocks, Geology, 9, 41-43.

- Siyako, M, Bürkan, K.A. ve Okay, A.İ., 1989. Biga ve Gelibolu yarımadalarının Tersiyer jeolojisi ve hidrokarbon olanakları. T.P.J.D. Bülteni, 1/3, 183-199.
- Sfondrini, G., 1961., Surface geological report on Ar/TPAO/1/538 and 537. T.P.A.O. Arama Grubu, Rapor No: 1429.
- Shepperd, T.J., Ranklin, A.H. ve Alderton, D.H.M., 1985. A pratical guide to fluid inclusion studies. Glasgow, Blackie, 239 p.
- Sümengen, M., Terlemez, İ., Şentürk, K. ve Karaköse, C., 1987. Gelibolu yarımadası ve güneybatı Trakya havzasının stratigrafisi, sedimantolojisi ve tektoniği. M.T.A. Raporu.
- Sverjensky, D. A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67, 70-78.
- Taylor, S.R. ve McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell, Oxford, 312 p.
- Tolun, E. ve Baykal, F., 1960. Çanakkale-Lapseki-Umurbey-Koru Deresi Cu-Pb-Zn yataklarına ait rapor. M.T.A. Rap. No: 456.
- Ünal, O., 1967. Trakya jeolojisi ve petrol imkanları. T.P.A.O. Arama Grubu Raporu, No: 391.
- Wood, S. A., 1990. The aqueous geochemistry of the rare earth elements and ytrium: Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure. Chemical Geology, 88, 99-125.
- Yaltırak, C., Alpar, B. ve Yüce, H., 1998.Tectonic elements controlling the evolution of the Gulf of Saros (northeastern Aegan Sea, Turkey). Tectonopyhsics. 300, 227-248.
- Yanagiya, K. ve Sato, J., 1989. Report on the mineral exploration in the Çanakkale area Republic of Turkey. M.T.A. Raporu, No: 8999. Phase I-II. 132 p.
- Zartman, R.E. and Doe, B.R., 1981. Plumbotectonics The Model: Tectonophysics, 75, 135-162.
- Zimmerman, J. L., Saupe, F., Öngen, S. ve Anıl, M., 1989. Oligocene-Miocene K-Ar ages of the quartz-monzonite stocks from Nevruz-Çakıroba (Yenice, Çanakkale, Northwest Turkey), Fifth Meeting of the Eureopan Union Geosciences (EUG V), Terra Cognito, 354-355.

8. EK AÇIKLAMALAR

Ek Çizelge 1. İnceleme alanından alınan kayaç ve cevher örnekleri üzerinde yapılan incelemeler ve optik mikroskop inceleme sonuçları

Örnek No	Pafta	Fm	MO	CM	SK	XRD	KA	Mineral İçeriği	Özellikler	Kayaç Adı
EK-1	H17-d2	Тар	+					Plj+Snd+Q+Vkp	Volkan camında silisleşme ve serisitleşme	Silisleşmiş litik kül tüf (Riyolitik)
EK-2	H17-d2	Tap	+					Plj+Snd+Q+Vkp+Om		Litik kül tüf (Riyolitik)
EK-3	H17-d2	Tap	-							Breşik cevher
EK-4	H17-d2	Тар	+	+				Snd+Vkp+Q (İkincil)		Silisleşmiş litik kül tüf (Riyolitik)
EK-5	H17-d2	Тар	-	+						Masif cevher
EK-6	H17-d2	Tap	-	+			+			Masif cevher
EK-7	H17-d2	Tap	-	+						Masif cevher
EK-8	H17-d2	Tap	-							Masif cevher
EK-9	H17-d2	Tap	-							Masif cevher
EK-10	H17-d2	Тар	-							Silisleşmiş volkanik kayaç
EK-11	H17-d2	Тар	-							Silisleşmiş volkanik kayaç
EK-12	H17-d2	Tap	+	+				Q+Ba+Ka+Om		Baritli cevher
EK-13	H17-d2	Tap	+			+		Plj+Snd+Q+Vkp+Po	Volkan camı silisleşmiş	Litik kül tüf Riyolitik)
EK-14	H17-d2	Тар	+					Plj+Vc	Volkan camında ışınsal Silis mineralleri	Silisleşmiş volkanik kayaç
EK-15	H17-d2	Тар	+					Plj+Snd+Q+Vkp+Po	Volkan camında ve pomzalarda silisleşme	Litik kül tüf
EK-16	H17-d2	Tap	-							Breşik cevher
EK-17	H17-d2	Tap	+					Q+Ba+Vkp		Cevherli litik kül tüf
EK-18	H17-d2	Тар	+					Ka+Q		Karbonatlı kayaç
EK-19	H17-d2	Tap	+					Ka+Q+Vkp+Ba		Litomikrosparit (?)
EK-20	H17-d2	Тар	-							Baritli cevher
EK-21	H17-d2	Tap	+					Q+Ba+Vkp		Silisli-baritli kayaç
EK-22	H17-d2	Тар	-							Cevher
EK-23	H17-d2	Тар	+			+		Plj+Vck	V.camı kıymıklarında ışınsal silisleşmeler	Silisleşmiş volkanik kayaç
EK-24	H17-d2	Тар	+					Plj+Snd+Vkp+Vck	Hamur silisleşmiş, v. camı kıymıklarında ışınsal silisleşmeler	Litik kül tüf
EK-25	H17-d2	Тар	+			+		Vkp+Po	Volkan camında kloritleşme	Litik kül tüf
EK-26	H17-d2	Tap	-	+						Litik kül tüf
TK-27	H17-c1	Тар	+			+		Plj+Snd+Vkp+Vck+Q	V. camı kıymıklarında ışınsal silisleşmeler	Litik kül tüf
TK-28	H17-c1	Тар	+					Vkp+Po	Hamur silisleşmiş, v. camı kıymıklarında ışınsal silisleşmeler	Litik kül tüf
TK-29	H17-c1	Tap	-							Tüf
TK-30	H17-c1	Tap	-							Tüf
TK-31	H17-c1	Tad	-			+				Tüf
TK-32	H17-c1	Tap	-			+				Tüf
TK-33	H17-c1	Tap	+					Vkp+Po+Plj+Snd	Pomzalarda silisleşme	Litik kül tüf
TK-34	H17-c1	Тар	+					Vkp+Plj+Snd		Litik kül tüf
TK-35	H17-c1	Tap	-							Breşik cevher
TK-36	H17-c1	Tap	+					Vkp+Q (İkincil)	Hamurda aşırı silisleşme	Silisleşmiş litik kül tüf
TK-37	H17-c1	Tap	+					Ba+Q		Silisli barit
TK-38	H17-c1	Tap	+					Ba+Q+Ka+Om		Cevherli barit
TK38-1	H17-c1	Тар	+					Vkp+Plj+Snd+Om+ Vck+Po	V. camı kıymıklarında ve pomzalarda ışınsal silis.	Litik kül tüf

Ek	Cize	ge	1.	devam	edivor
LIL	YILCI	50		ac ruin	001 01

TK-39	H17-c1	Тар	-							Breşik cevher
TK-40	H17-c1	Тар	+					Ba+Q+Om		Baritli silis
TK-41	H17-c1	Тар	+					Plj+Bi+Snd+Vkp		Silisleşmiş litik kül tüf
TK-42	H17-c1	Тар	+					Plj+Bi+Snd+Vkp		Litik kül tüf
TK-43	H17-c1	Тар	+					Ba+Q+Ka+Om		Baritli cevher örneği
TK-44	H17-c1	Тар	+	+	+			Ba+Q		Kuvarslı barit
TK-45	H17-c1	Tap	-	+			+	Ga+Sph+Cpy		Breşik cevher
TK-46	H17-c1	Tap	+	+				Ba+Q+Cvh+Vkp	Hamurda silisleşmeler	Cevherli litik kül tüf
TK-47	H17-c1	Tap	+	+			-	Q+Cvh+Ka		Cevherli silisik kayac
TK-48	H17-c1	Tap	+	-	-	_		Ba+O+Vkp		Cevherli litik kül tüf
TK-49	H17-c1	Тар	+			+		Vkp+Vck	Hamur silisleşmiş, v. camı kıymıklarında ışınsal silisleşmeler	Litik kül tüf
TK-50	H17-c1	Tap	-							Baritli cevher
TK-51	H17-c1	Tap	-							Baritli cevher
TK-52	H17-c1	Тар	+					Plj+Bi+Snd+Vkp+Q+ Ba		Cevherli litik kül tüf
TK-53	H17-c1	Tap	+		+			Q+Ba+Ka		Baritli silis
TK-54	H17-c1	Tap	-							Baritli cevher
TK-55	H17-c1	Tap	+					Q+Ba		Baritli silis
TK-56	H17-c1	Tap	+		+			Q+Ba		Baritli silis
TK-57	H17-c1	Тар	+					Vkp+Vck	Hamur silisleşmiş, yer yer karbonatlaşmalar; v. camı kıymıklarında ışınsal silisleşmeler	Silisleşmiş litik kül tüf
TK-58	H17-c1	Tap	+			+		Vkp+Ka+Ba+Q	Hamurda silisleşme	Silisleşmiş litik kül tüf
TK-59	H17-c1	Tap	+					Vkp+Plj+Snd	Hamurda silisleşme	Silisleşmiş litik kül tüf
TK-60	H17-c1	Tap	+		+			Q+Ba+Cvh		Baritli silis
TK-61	H17-c1	Тар	+		+			Q+Ba+Cvh		Baritli silis
TK-62	H17-c1	Tap	+					Q+Cvh		Silisleşmiş tüf
TK-63	H17-c1	Tap	-	1	-					Tüf
TK-64	H17-c1	Tap	-		-	+				Altere tüf
TK-65	H17-c1	Tap	-	1	-		-			Bresik cevher
TK-66	H17-c1	Тар	+					Plj+Q (İkincil)	Volkan camında devitrifikasyon dokusu	Silisleşmiş volkanik kavac
TK-67	H17-c1	Тар	+			+		Plj+Snd		Silisleşmiş volk/piroklastik kayaç
TK-68	H17-c1	Tap	-							Masif cevher
TK-69	H17-c1	Tap	-							Masif cevher
TK-70	H17-c1	Tap	-	1	1					Masif cevher
TK-71	H17-c1	Tap	-		-					Masif cevher
TK-72	H17-c1	Tap	+			+		Q (İkincil)		Silisleşmiş volkan camı
TK-73	H17-c1	Tap	-	+	1	-	+	Ga+Sph		Masif cevher
TK-74	H17-c1	Tap	-			-				Masif cevher
TK-75	H17-c1	Tan	+	+	+		+	Ba		Barit
TK-76	H17-c1	Tan	+	+	-		-	Ba+Ga+Sph		Barit
TK-77	H17-c1	Тар	+	İ		+		Plj+Bi+Snd+Vkp+Q(İ kin-cil)	Volkan camı silisleşmiş	Silisleşmiş litik kül tüf
TK-78	H17-c1	Tap	-	+						Cevher
TK-79	H17-c1	Tap	+	+	-			Q+Ba+Ka		Baritli silis
TTV 00	1117 1	T	t.	1			\vdash		Hamur tümüyle	Silislesmis piroklastik
TK-80	H17-c1	Tap	+	+++++++++++++++++++++++++++++++++++++++	-	-		Vkp+Plj+Sph	silisleşmiş	kayaç Cevher
112-01	H17-c1	Tan	-	+	-	-	\vdash	Sph+Ga		Cevher
TK 92	H17 ol	Tap	-	F	-	-	+	O+Ba		Baritli silis
TV 04	H17-01	Tap	T L	1	-	-	F	Q+Ba O+Ba		Daritli silis
TV 05	117-01	Tap	T	T	-	-		Q+Da O+Pa		Daritli silis
11-00	117-01	rap	T	1	1			Q'Da	1	Darith Shis

Ek	Cizel	ge	1.	devam	edivor
	T	0-			

TK-87 H17-c1 Tap + + + Vkp+Q+TBa+Yan Notifying Down TK-88 H17-c1 Tap + + Vkp+Q+TBa+Yan Silislegmig inick kut utf TK-88 H17-c1 Tap + - Like kayac Silislegmig piroklastik TK-90 H17-c1 Tap + - Like kut off Kayac Silislegmig piroklastik TK-90 H17-c1 Tap + - Like kut off Cevber TK-91 H17-c1 Tap + - Cevber Silislegmig piroklastik TK-92 H17-c1 Tap + + Pij-Snd+Vkp Bariti cevber TK-94 H17-d2 Tap + + Pij-Snd+Vkp Camskali uffoz uf KR-97 H17-d2 Tap + + Pij-Q+Vkp Volkan cam Silislegmig inkkali uf KR-100 H17-d2 Tap + + Pij-Vkp Volkan cam Silislegmig sinkali uf KR-102 H17-d2 Tap + + Vkp+Pi Vkpma Silisl	TK-86	H17-c1	Тар	+					Plj+Snd+Vkp	Hamur tümüyle	Silisleşmiş piroklastik kayaç
TK-88 H17-c1 Tap + Vkp+ $(-p)$ Bar Yan kayac Silislegmis litik kal tuf TK-89 H17-c1 Tap + Vkp+ $(-p)$ Bar Yan kayac Silislegmis litik kal tuf TK-89 H17-c1 Tap + Vkp+ $(-p)$ Barritic Silislegmis piroklastik kayac TK-91 H17-c1 Tap + Vkp+ $(-p)$ Barritic cvher Cevher TK-93 H17-c1 Tap + Vkp+ $(-p)$ Silislegmis piroklastik kayac Silislegmis piroklastik kayac TK-94 H17-c1 Tap + + Pip+Sht+Vkp Cevher KR-96 H17-d2 Tap + + Pip+Sht+Vkp Camar kal ta/foz tuf KR-96 H17-d2 Tap + + Pip+Vkp Volkan camat Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis piroklastik kayac Silislegmis pirokl	TK-87	H17-c1	Тар	-	+			-		sinsicșiniș	Tüf
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK-88	H17-c1	Тар	+	+				Vkp+Q+Ba+Yan kayaç		Silisleşmiş litik kül tüf
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TK-89	H17-c1	Тар	+					Q+Ba+Yan kayaç Litik kül tüf		Silisleşmiş piroklastik kayaç
TK-91H17-c1Tap+IVep+Pij+Snd+QCevherTK-92H17-c1Tap++Vkp+Pij+Snd+QSilislesmis pirklastik kayaq.KR-93H17-c1Tap++Vkp+Pij+Snd+QSilislesmis pirklastik kayaq.KR-95H17-d2Tap++Pij+Snd+VkpCanst kolt uf/oz uffKR-96H17-d2Tap++PijCanst kolt uf/oz uffKR-97H17-d2Tap++PijCanst kolt uf/oz uffKR-98H17-d2Tap++Pij+Q+VkpVolkan cami silislesmis pirklastik kayag.KR-98H17-d2Tap++Pij+Q+VkpVolkan cami silislesmis pirklastik kayag.KR-99H17-d2Tap++Pij+Vkp+PoPomzalarda silislesmis silislesmis pirklastik kayag.KR-100H17-d2Tap++Pij+Vkp+PoSilislesmis pirklastik kayag.KR-102H17-d2Tap++Pij+Vkp+BiHamurda kloritlepre, karbonatlasmaKR-103H17-d2Tap++Pij+Vkp+BiKilislesmis kloritlesme karbonatlasmaAltere volkanit (kndezit?)KR-103H17-d2Tap+Pij+Vkp+BiHamurda kloritlepre, karbonatlasmaCamst kolt uffKR-103H17-d2Tap+Pij+Vkp+BiKilislesmis pio-title karbonatlasmaCamst kolt uffKR-104H17-d2Tap+Pij+Vkp+BiKilislesmis<	TK-90	H17-c1	Тар	-	+						Cevher
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TK-91	H17-c1	Tap	-	+						Cevher
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK-92	H17-c1	Tap	-	+						Baritli cevher
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK-93	H17-c1	Тар	+			+		Vkp+Plj+Snd+Q (İkincil)		Silisleşmiş piroklastik kayaç
KR-95H17-d2Tap++Pj+Snd+VkpSilisleşmiş inik kul tüfKR-96H17-d2Tap++PjCams kul tüf/oz tüfKR-97H17-d2Tap++Vkp+Pij+Q+VckVolkan camSilisleşmiş litik kul tüfKR-98H17-d2Tap++Pj+Q+VckVolkan camSilisleşmiş litik kul tüfKR-99H17-d2Tap++Pj+Q+VckVolkan camSilisleşmiş litik kul tüfKR-100H17-d2Tap++Pj+VkpVolkan camSilisleşmiş piroklastik kayaçKR-101H17-d2Tap++Pj+VkpMamur tümöyleSilisleşmiş piroklastik kayaçKR-102H17-d2Tap++Pj+VkpHamur tümöyleSilisleşmiş piroklastik kayaçKR-103H17-d2Tap++Pj+Vkp+BiHamur tümöyleRijolitk litik/cams kul tüfKR-103H17-d2Tap+-Pj+K1Altere velkanit (Andezir?)Altere velkanit (Andezir?)KR-103H17-d2Tap++Pj+Bi+PoPlaijvoklazlarda karbonatlaşmaCams kul tüfKR-104H17-d2Tap++Pj+Hi+PoPlaijvoklazlarda (Andezir?)Cams kul tüfKR-106H17-d2Tap++Pj+Hi+PoPlaijvoklazlarda karbonatlaşmaCams kul tüfKR-104H17-c1Tap++Pj+Q+Snd HeOpaklaşmiş ve kloritleşmiş birovitlerRiyolit/Riyolitik tüf<	TK-94	H17-c1	Тар	-	+				Cpy+Py+Ka+Bo+Fh		Cevher
KR-96H17-d2Tap++PljCamsi kal tuöťoz tafKR-97H17-d2Tap++Vkp+Plj+Q+VckVolkan camiSilisleşmiş litik kal tafKR-98H17-d2Tap++Pj+Q+VkpVolkan camiSilisleşmiş litik kal tafKR-98H17-d2Tap++Pj+VkpVkp+PoSilisleşmiş litik kal tafKR-102H17-d2Tap++Pj+VkpPomzalarda silisleşmiceSilisleşmiş piroklastik kayaçKR-101H17-d2Tap++Pj+VkpSilisleşmiş piroklastik kayaçKR-102H17-d2Tap++Pj+Vkp+Snd+Bi+PoSilisleşmiş piroklastik kayaçKR-103H17-d2Tap++Pj+Vkp+Snd+Bi+PoRiyolitik litik/camsi kal tufKR-104H17-d2Tap++Pj+K1Alter volkanit (Andezit?)KR-105H17-d2Tap++Pj+Bi+PoRiyolitik litik/camsi kal tufKR-106H17-d2Tap++Pj+Hi+PoRiyolitik kalonatagmaKR-107H17-c1Tap++Pj+Hi+PoRiyolitik kalonatagmaKR-108H17-c1Tap++Pj+Q+Snd+BiOpaklagmay ev kloritlegmis biyo-titlerKR-108H17-c1Tap++Pj+Q+Snd+BiOpaklagmay ve kloritlegmis biyo-titlerKR-109H17-c1Tap++Pj+Q+Snd+BiOpaklagmay ve kloritlegmis biyo-titlerKR-110 <td>KR-95</td> <td>H17-d2</td> <td>Tap</td> <td>+</td> <td></td> <td></td> <td>+</td> <td></td> <td>Plj+Snd+Vkp</td> <td></td> <td>Silisleşmiş litik kül tüf</td>	KR-95	H17-d2	Tap	+			+		Plj+Snd+Vkp		Silisleşmiş litik kül tüf
KR-97H17-d2Tap++Vkp+Plj+Q+VckVolkan camu tumuklarnda sunsal silisleşmişSilisleşmiş litik kul tüfKR-98H17-d2Tap++Plj+Q+VkpVolkan camu tumuklarnda sunsal silisleşmişSilisleşmiş piroklastik kayaçKR-99H17-d2Tap++Vkp+PoPomzalarda silisleşmelerSilisleşmiş inik kul tüfKR-100H17-d2Tap++Vkp+PoPomzalarda silisleşmielSilisleşmiş cansı tüfKR-101H17-d2Tap+++VkpHamur tümuyle silisleşmiş mixklaktik kayaçSilisleşmiş piroklastik kayaçKR-102H17-d2Tap+++Plj+Vkp+Shd+Bi+PoHamur tümuyle sersit-leşme, pomzalarda kult fürSilisleşmiş piroklastik kayaçKR-103H17-d2Tap++Plj+Vkp+Bi klaunda kloritleşme, kaltoritleşme karbonatlaşmaAltere volkanit (Anterevit)KR-104H17-d2Tap++Plj+K1Camsı kul tüfKR-105H17-d2Tap++Plj+Q+Snd Hamurda kloritleşme, kloritleşmis biyo-titlerCamsı kul tüfKR-106H17-c1Tap++Plj+Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerCamsı kul tüfKR-108H17-c1Tap++Plj+Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolitik tüfKR-109H17-c1Tap++Plj+Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolitik tüfKR-111 <td>KR-96</td> <td>H17-d2</td> <td>Tap</td> <td>+</td> <td></td> <td></td> <td>+</td> <td></td> <td>Plj</td> <td></td> <td>Camsı kül tüf/toz tüf</td>	KR-96	H17-d2	Tap	+			+		Plj		Camsı kül tüf/toz tüf
KR-98H17-d2Tap+++Plj+Q+VkpVolkan cam tūmūyle silisleşmişKayac KayacKR-99H17-d2Tap++Vkp+PoPomzalarda silisleşmelerSilisleşmiş itik kul tufKR-100H17-d2Tap++Plj+VkpHamurda kloritleşme kayacSilisleşmiş ramsı tufKR-101H17-d2Tap+++Plj+VkpHamurda kloritleşme kayacRiyolitik litik/camsı kul tufKR-102H17-d2Tap+++Plj+Vkp+Snd+Bi+PoHamurda kloritleşme karbonatlaşmaRiyolitik litik/camsı kul tufKR-103H17-d2Tap++Plj+Vkp+Snd+Bi+PoHamurda kloritleşme, karbonatlaşmaLitik kul tufKR-104H17-d2Tap++Plj+Vkp+BiHamurda kloritleşme, karbonatlaşmaLitik kul tufKR-104H17-d2Tap++Plj+KlCamsi kul tufCamsi kul tufKR-105H17-d2Tap++Plj+Bi+PoCamsi kul tufCamsi kul tufKR-106H17-d2Tap++Plj+Q+Snd+Bi Vgr er silisleşmeCamsi kul tufKarlonatlaşmaCamsi kul tufKR-107H17-c1Tap++Plj+Q+Snd+Bi Vgr er silisleşmeCamsi kul tufKarlonatlaşmaCamsi kul tufKR-108H17-c1Tap++Plj+Q+Snd+Bi Vgr Snitki KufOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tufKR-110H17-c1Tap+ <td>KR-97</td> <td>H17-d2</td> <td>Тар</td> <td>+</td> <td></td> <td></td> <td>+</td> <td></td> <td>Vkp+Plj+Q+Vck</td> <td>Volkan camı kıymıklarında ışınsal silisleşmeler</td> <td>Silisleşmiş litik kül tüf</td>	KR-97	H17-d2	Тар	+			+		Vkp+Plj+Q+Vck	Volkan camı kıymıklarında ışınsal silisleşmeler	Silisleşmiş litik kül tüf
KR-99H17-d2Tap++Vkp+PoPomzalarda silisleşmelerSilisleşmiş litik kul tufKR-100H17-d2Tap++Pij+VkpHamur tumuşleSilisleşmiş piroklastik kayaçKR-101H17-d2Tap++VkpHamur tumuşle silisleşmiş serisit-leşme, pomzalarda kloritleşmeSilisleşmiş piroklastik kayaçKR-102H17-d2Tap+++Pij+Vkp+Snd+Bi+PoFisik-leşme, pomzalarda kloritleşmeRiyolitik litik/camsı kul 	KR-98	H17-d2	Тар	+		+	+		Plj+Q+Vkp	Volkan camı tümüyle silisleşmiş	Silisleşmiş piroklastik kayaç
KR-100H17-d2Tap++Pij+VkpSilisleşmiş çansı tüfKR-101H17-d2Tap++VkpHamur tümüyle silisleşmiş kayaçSilisleşmiş kayaçKR-102H17-d2Tap+++Pij+Vkp+Snd+Bi+PoHamur tümüyle serisit-leşme; pomzalarda kloritleşme karbonatlaşmaRiyolitik litik/camsı kul tüfKR-103H17-d2Tap+++Pij+Vkp+BiHamurda kloritleşme, karbonatlaşmaRiyolitik litik/camsı kul 	KR-99	H17-d2	Tap	+			+		Vkp+Po	Pomzalarda silisleşmeler	Silisleşmiş litik kül tüf
KR-101H17-d2Tap++ Vkp Hamur tümüyle silisleşmiş klastes silisleşmiş Hamurda kloritleşme ve serisi-leşme; pomzlada kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme kloritleşme klisleşmiş erisi-leşme; pomzlada karbonatlaşmaSilisleşmiş piroklastik kayaç dividit litik/camsı kul tikk kul tufKR-103H17-d2Tap+IPij+Vkp+Bi Pij+Vkp+Bi kleşme ve karbonatlaşmaLitik kul tuf (Andezit?)KR-104H17-d2Tap+IPij+Bi+Po Pij+Bi+Po karbonatlaşmaAltere volkanit (Andezit?)KR-105H17-d2Tap+IPij+Bi+Po Pij+Q+Snd Pij+Q+Snd+Bi Opaklaşmış ve kloritleşmiş ve kloritleşmiş ve kloritleşmiş viyo-titlerRiyolit/Riyolitik tüfKR-108H17-c1Tap+IPij+Q+Snd+Bi Pij+Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap+IVkp (Bi+Snd+Q) Pij-Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap+IVkp (Bi+Snd+Q) Pij-Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap+IPij+Q+Snd+Bi Pij-Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap+IPij+Q+Snd+Di Pij+Q+Snd+Di Vkp (Bi+Snd+Q)Lapilit tüf	KR-100	H17-d2	Tap	+			+		Plj+Vkp		Silisleşmiş camsı tüf
KR-102H17-d2Tap+++Plj+Vkp+Snd+Bi+PoHanurda kloritleşme ve serisit-leşme, pomzalarda kloritleşmeRiyolitik litik/camsı kül tüfKR-103H17-d2Tap+Plj+Vkp+BiHanurda kloritleşme, killeşme ve karbonatlaşmaAltere volkanit (Andezit?)KR-104H17-d2Tap+Plj+K1Altere volkanit (Andezit?)KR-105H17-d2Tap+Plj+Bi+PoPlajiyoklazlarda karbonatlaşmaCamsı kül tüfKR-106H17-d2Tap++Plj+Bi+PoCamsı kül tüfKR-107H17-c1Tap++Plj+Q+SndHanurda kloritleşme ve yer yer silisleşmeRiyolit/Riyolitik tüfKR-108H17-c1Tap++Plj+Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap++Plj+Q+Snd+Bi Opaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap+Vkp (Bi+Snd+Q)Hanurda silisleşmelerLitik kül tüfKR-110H17-c1Tap+Vkp (Bi+Snd+Q)Lapilli tüfLapilli tüfKR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmiş piroklastik kayaçSilisleşmiş piroklastik kayaçKR-113H17-c1Tap++PljPlajiyoklazlar tamamen silisleşmiş piroklastik kayaçSilisleşmiş piroklastik kayaçKR-116H17-c1Tap++Snd+Vkp+Vc+Q	KR-101	H17-d2	Тар	+			+		Vkp	Hamur tümüyle silisleşmiş	Silisleşmiş piroklastik kayaç
KR-103H17-d2Tap+Plj+Vkp+BiHamurda kloritleşme, killeşme ve karbonatlaşmaLitik kul ufKR-104H17-d2Tap+Plj+KlAltere volkanit (Andezit?)KR-105H17-d2Tap+Plj+Bi+PoPlajiyoklazlarda karbonatlaşmaCamsı kul ufKR-106H17-d2Tap++Plj+Bi+PoCamsı kul ufKR-106H17-d2Tap++Plj+Bi+PoCamsı kul ufKR-107H17-c1Tap++Plj+Q+Snd Plj+Q+Snd+BiQpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tufKR-108H17-c1Tap++Plj+Q+Snd+Bi 	KR-102	H17-d2	Тар	+		+	+		Plj+Vkp+Snd+Bi+Po	Hanurda kloritleşme ve serisit-leşme; pomzalarda kloritleşme	Riyolitik litik/camsı kül tüf
KR-104H17-d2Tap+Plj+K1Altere volkanit (Andezi?)KR-105H17-d2Tap+Plj+Bi+PoPlajiyoklazlarda karbonatlaşmaCamsı kül tüfKR-106H17-d2Tap++Plj+Bi+PoCamsı kül tüfKR-107H17-c1Tap++Plj+Q+Snd Plj+Q+SndRiyolitKR-108H17-c1Tap++Plj+Q+Snd+Bi Vpr yer silisleşme ver yer silisleşmi ver kloritteşmiş biyo-titler kloritteşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap++Plj+Q+Snd+Bi Vkp (Bi+Snd+Q)Opaklaşmış ve kloritteşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik kül tüfKR-111H17-d2Tap+Vkp (Bi+Snd+Q)Lapilli tüfSilisleşmiş piroklastik 	KR-103	H17-d2	Тар	+					Plj+Vkp+Bi	Hamurda kloritleşme, killeşme ve karbonatlaşma	Litik kül tüf
KR-105H17-d2Tap+Plj+Bi+PoPlajiyoklazlarda karbonatlaşmaCamsı kül tüfKR-106H17-d2Tap++Plj+Bi+PoCamsı kül tüfKR-107H17-c1Tap++Plj+Q+SndHamurda kloritleşme v yer yer silisleşmeRiyolitKR-108H17-c1Tap++Plj+Q+Snd+Bi kloritleşmiş ve kloritleşmiş ve kloritleşmiş ve kloritleşmiş ve 	KR-104	H17-d2	Тар	+					Plj+Kl		Altere volkanit (Andezit?)
KR-106H17-d2Tap++Plj+Bi+PoCamsı kül tüfKR-107H17-c1Tap++Plj+Q+SndHamurda kloritleşme ve yer yer silisleşmeRiyolitKR-108H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve 	KR-105	H17-d2	Тар	+					Plj+Bi+Po	Plajiyoklazlarda karbonatlaşma	Camsı kül tüf
KR-107H17-c1Tap++Plj+Q+SndHamurda kloritleşme ve yer yer sitisleşmeRiyolitKR-108H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve 	KR-106	H17-d2	Tap	+			+		Plj+Bi+Po		Camsı kül tüf
KR-108H17-c1Tap++Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-109H17-c1Tap+Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap+Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik küt tüfKR-111H17-c1Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik küt tüfKR-112H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap++PljVkpSilisleşmişCamsı kül tüfKR-115H17-c1Tap++Snd+Vkp+Vc+QVolkan camında killeşme ve kloritleşmeCamsı kül tüfKR-117H17-c1Tap++Snd+Vkp+Vc kVolkan camında killeşme ve silisleşmiş litik kül tüfKR-119H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmiş litik kül tüfKR-120H17-c1Tap++Plj+Snd+Vkp+Vc kVolkan camında killeşme ve silisleşmiş camsı kül tüfKR-121H17-c1Tap++Plj+Snd+Vkp+Vc kVolkan camı tünüyle silisle	KR-107	H17-c1	Тар	+			+		Plj+Q+Snd	Hamurda kloritleşme ve yer yer silisleşme	Riyolit
KR-109H17-c1Tap+Plj+Q+Snd+BiOpaklaşmış ve kloritleşmiş biyo-titlerRiyolit/Riyolitik tüfKR-110H17-c1TapRiyolit/Riyolitik tüfKR-111H17-c1Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik kül tüfKR-112H17-d2Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik kül tüfKR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap++PljSilisleşmişSilisleşmiş piroklastik 	KR-108	H17-c1	Тар	+			+		Plj+Q+Snd+Bi	Opaklaşmış ve kloritleşmiş biyo-titler	Riyolit/Riyolitik tüf
KR-110H17-c1Tap-Riyolitik tufKR-111H17-c1Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik kül tüfKR-112H17-d2Tap+Vkp (Bi+Snd+Q)Lapilli tüfLapilli tüfKR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik 	KR-109	H17-c1	Тар	+					Plj+Q+Snd+Bi	Opaklaşmış ve kloritleşmiş biyo-titler	Riyolit/Riyolitik tüf
KR-111H17-c1Tap+Vkp (Bi+Snd+Q)Hamurda silisleşmelerLitik kül tüfKR-112H17-d2Tap+Vkp (Bi+Snd+Q)Lapilli tüfKR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik 	KR-110	H17-c1	Tap	-							Riyolitik tüf
KR-112H17-d2Tap+Vkp (Bi+Snd+Q)Lapilli tüfKR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap++Bi+VkpBreşik cevherKR-115H17-c1Tap++Bi+VkpSilisli litik kül tüfKR-116H17-c1Tap++Snd+Vkp+Vc+QVolkan camında killeşme ve kloritleşmeCamsı kül tüfKR-117H17-c1Tap-Altere tüfKR-118H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-119H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Wkp+PoPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Wkp+Vc+PoVolkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmişLitik kül tüfKR-124H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı k	KR-111	H17-c1	Tap	+					Vkp (Bi+Snd+Q)	Hamurda silisleşmeler	Litik kül tüf
KR-113H17-d2Tap++PljPlajiyoklazlar tamamen silisleşmişSilisleşmiş piroklastik kayaçKR-114H17-d2Tap-Breşik cevherKR-115H17-c1Tap++Bi+VkpSilisli litik kül tüfKR-116H17-c1Tap++Snd+Vkp+Vc+QVolkan camında killeşme ve kloritleşmeCamsı kül tüfKR-117H17-c1Tap-Altere tüfKR-118H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-119H17-c1Tap++Snd+Vkp+Q (İkincil)SilisleşmişKR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Bi+Vkp+PoVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Bi+VcPoVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-123H17-c1Tap++Plj+Snd+Bi+VcPoSilisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmişLitik kül tüfKR-124H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmişLitik kül tüf	KR-112	H17-d2	Tap	+					Vkp (Bi+Snd+Q)		Lapilli tüf
KR-114H17-d2Tap-BresikBresikBresikBresikRevherKR-115H17-c1Tap++ $Bi+Vkp$ Silisli litikKül tüfKR-116H17-c1Tap++ $Snd+Vkp+Vc+Q$ VolkanCamsı kül tüfKR-117H17-c1TapAltereCamsı kül tüfKR-118H17-c1TapAltereAltere tüfKR-119H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Bi+Vkp+Po kPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Bi+Vc+PoVolkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmiş Litik kül tüfKR-124H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmiş yer yer silisleşmeler	KR-113	H17-d2	Тар	+			+		Plj	Plajiyoklazlar tamamen silisleşmiş	Silisleşmiş piroklastik kayaç
KR-115H17-c1Tap++Bi+VkpSilisli litik kül tüfKR-116H17-c1Tap++ $Snd+Vkp+Vc+Q$ Volkan camında killeşme ve kloritleşmeCamsı kül tüfKR-117H17-c1Tap-Altere tüfKR-118H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-119H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Bi+Vkp+Po kPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Bi+Vc+PoSilisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmiş 	KR-114	H17-d2	Tap	-							Breşik cevher
KR-116H17-c1Tap++Snd+Vkp+Vc+QVolkan camında killeşme ve kloritleşmeCamsı kül tüfKR-117H17-c1Tap-Altere tüfKR-118H17-c1Tap-Altere tüfKR-119H17-c1Tap++Snd+Vkp+Q (İkincil)KR-120H17-c1Tap++KR-121H17-c1Tap++Plj+Snd+Bi+Vkp+VcVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Bi+Vkp+PoPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Bi+Vc+PoVolkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiKR-124H17-c1TapLapilli taşı	KR-115	H17-c1	Tap	+			+		Bi+Vkp		Silisli litik kül tüf
KR-117H17-c1Tap-Altere tüfKR-118H17-c1Tap-Altere tüfKR-119H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Wkp+Po kPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Wkp+Po kPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Bi+Vc+Po silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+Bi Volkan camı kloritleşmiş Litik kül tüfLapilli taşı	KR-116	H17-c1	Тар	+			+		Snd+Vkp+Vc+Q	Volkan camında killeşme ve kloritleşme	Camsı kül tüf
KR-118H17-c1Tap-Altere tüfKR-119H17-c1Tap++Snd+Vkp+Q (İkinci)Silisleşmiş litik kül tüfKR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Vkp+Po kPomzalarda 	KR-117	H17-c1	Tap	-							Altere tüf
KR-119H17-c1Tap++Snd+Vkp+Q (İkincil)Silisleşmiş litik kül tüfKR-120H17-c1Tap++ $Plj+Snd+Bi+Vkp+Vc$ kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++ $Plj+Snd+Vkp+Po$ kPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++ $Plj+Snd+Vkp+Po$ Plj+Snd+Bi+Vc+PoVolkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++ $Plj+Snd+Vkp+Vc+Bi$ Volkan camı kloritleşmiş Litik kül tüfLitik kül tüfKR-124H17-c1Tap-Lapilli taşı	KR-118	H17-c1	Tap	-							Altere tüf
KR-120H17-c1Tap++Plj+Snd+Bi+Vkp+Vc kVolkan camında killeşme ve silisleşmeCamsı kül tüfKR-121H17-c1Tap++Plj+Snd+Vkp+PoPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Vkp+PoVolkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmiş Litik kül tüfKR-124H17-c1TapLapilli taşı	KR-119	H17-c1	Tap	+			+		Snd+Vkp+Q (İkincil)		Silisleşmiş litik kül tüf
KR-121H17-c1Tap++Plj+Snd+Vkp+PoPomzalarda kloritleşmelerCamsı kül tüfKR-122H17-c1Tap++Plj+Snd+Bi+Vc+PoVolkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmelerSilisleşmiş camsı kül tüfKR-123H17-c1Tap++Plj+Snd+Vkp+Vc+BiVolkan camı kloritleşmiş Litik kül tüfKR-124H17-c1TapLapilli taşı	KR-120	H17-c1	Тар	+			+		Plj+Snd+Bi+Vkp+Vc k	Volkan camında killeşme ve silisleşme	Camsı kül tüf
KR-122 H17-c1 Tap + + Plj+Snd+Bi+Vc+Po Volkan cami tümüyle silisleşmiş, pomzalarda yer yer silisleşmeler Silisleşmiş camsı kül tüf KR-123 H17-c1 Tap + + Plj+Snd+Vkp+Vc+Bi Volkan cami kloritleşmiş Litik kül tüf KR-124 H17-c1 Tap - Image: Comparison of the plane	KR-121	H17-c1	Тар	+			+		Plj+Snd+Vkp+Po	Pomzalarda kloritleşmeler	Camsı kül tüf
KR-123 H17-c1 Tap + Plj+Snd+Vkp+Vc+Bi Volkan camı kloritleşmiş Litik kül tüf KR-124 H17-c1 Tap - Lapilli taşı	KR-122	H17-c1	Тар	+			+		Plj+Snd+Bi+Vc+Po	Volkan camı tümüyle silisleşmiş, pomzalarda yer yer silisleşmeler	Silisleşmiş camsı kül tüf
KR-124 H17-c1 Tap - Lapili tası	KR-123	H17-c1	Tap	+			+		Plj+Snd+Vkp+Vc+Bi	Volkan camı kloritleşmiş	Litik kül tüf
	KR-124	H17-c1	Tap	-							Lapilli taşı

Ek Cizelge 1. devam ediyor

				2		 		
KR-125	H17-c1	Тар	+			Plj+Snd+Vkp+Vc+Bi	Volkan camı tümüyle silislesmis	Silisleşmiş litik kül tüf
TK-126	H17-c1	Тар	-	+		Ga+Cpy+Sph+Py		Masif cevher
TK-127	H17-c1	Тар	-					Altere tüf
TK-128	H17-c1	Тар	-					Cevherli tüf
TK-129	H17-c1	Тар	-					Tüf
TK-130	H17-c1	Тар	-					Silisleşmiş tüf
TK-131	H17-c1	Тар	-					Tüf
TK-132	H17-c1	Tap	-	+		Ga+Sph		Masif cevher
TK-133	H17-c1	Тар	-	+		Ga+Sph+Cpy		Cevher
TK-134	H17-c1	Tap	-	+		Ga+Cpy+Sph		Cevher
TK-135	H17-c1	Tap	-	+		Ga+Cpy		Breşik cevher
TK-136	H17-c1	Тар	-	+		Ga+Py		Masif cevher
TK-137	H17-c1	Тар	-	+		Ga+Sph		Breşik cevher
TK-138	H17-c1	Тар	+			Plj+Snd+Vkp	Volkan camında silisleşme	Silisleşmiş litik kül tüf
TK-139	H17-c1	Tap	-					Tüf
TK-140	H17-c1	Тар	+			Vck	Hamur tümüyle silislesmis	Tüf
KR-141	H17-d2	Тар	+			Vkp+Vc+Po	Volkan camında ve pomzalarda silisleşmiş	Camsı kül tüf
KR-142	H17-d2	Тар	+			Plj+Px	Hipohyalin porfirik doku plj ve px'lerde karbonat- laşma ve kloritleşme	Andezit
KR-143	H17-d2	Tap	+			Plj+Snd+Vkp+Q+Bi		Camsı kül tüf
KR-144	H17-d2	Тар	-					Tüf
KR-145	H17-d2	Tap	+			Plj+Snd+Vc	Volkan camında killeşme ve silisleşme	Camsı kül tüf (Dasitik)
KR-146	H17-d2	Тар	+			Plj+Snd+Bi+Vkp+Cv	Volkan camı ve hamurda silisleşme	Silisleşmiş camsı kül tüf
KR-147	H17-d2	Тар	-					Tüf
KR-148	H17-d2	Тар	+			Plj+Bi+Hb+Q (İkincil)	Hamurda akma dokusu, hb'de karbonatlaşma ve opaklaşma, plj'da silis- lesme ve karbonatlaşma	Altere dasit
KR-149	H17-d2	Тар	+			Plj+Bi+Hb+Q	Plajiyoklazlarda aşırı karbonatlasma	Dasit
KR-150	H17-d2	Tap	+	1		Plj+Bi+Vkp	Hamurda silisleşme	Silisleşmiş litik kül tüf
KR-151	H17-d2	Тар	+	T		Plj+Snd+Vkp+Vc+Q+ Bi	Volkan camında ışınsal silislesme	Silisleşmiş litik kül tüf
KR-152	H17-d2	Тар	+			Vkp+Vc+Bi+Q (İkincil)	Volkan camında killeşme	Silisleşmiş camsı kül tüf
KR-153	H17-d2	Тар	+	T		Snd+Vc+Bi+Q	Volkan camında silislesme	Silisleşmiş trakit
KR-154	H17-d2	Тар	+			Plj+Snd+Bi+Vc	Volkan camında ışınsal	Silisleşmiş camsı kül tüf
KR-155	H17-d2	Tan	+	+		Pli+Snd+Vkp+Vc+Bi	stristeşine	Silislesmis camsı kül tüf
KR-156	H17-d2	Тар	+			Plj+Snd+Vc+Bi	Plj'da serisitleşme ve karbonatlaşma, biyotit- lerde opaklaşma. V.ca- mında ışınşal silişleşme	Silisleşmiş camsı kül tüf
KR-157	H17-d2	Tap	-	T	1		,	Cevher
KR-158	H17-c1	Ta	+			Plj+Hb+Px		Kristal kül tüf (Andezitik)
KR-159	H17-c1	Та	+			Plj+Hb+Px (Ojit)	Hipohyalin dokulu, gözeneklerde kloritlesme	Andezit
KR-160	H17-c1	Ta	+			Plj+Vkp+Hb+Px (Ojit)		Litik kül tüf (Andezitik)
KR-161	H17-c1	Та	+			Plj+Vkp+Hb+Px (Ojit)	Hipohyalin porfirik dokulu	Andezit
KR-162		T	1.	+	1	Pli+Bi		Altere enderit
1111-102	H17-c1	la	+			I IJ DI		Allele andezh

1 1	^ ! 1		-	1	1.
110	1170	ma		douom	Adivor
L'A		PC.	1.1	uevani	EUIVOI
	Y				

KR-164	H17-c1	Td	+				1	Plj+Bi+Snd+Q	Hamurda devitrifikasyon	Rivodasit
104	1117-01	m			-		-	(İkincil)	hipohyalin porfirik doku	Riyodash
KR-165	H17-c1	Td	-		_	-	_			Dasit
KR-166	H17-c1	Td	-		_	_	-			Dasit
KR-167	H17-c1	Td	-		_	_	_			Dasit
TD-168	H17-c1	Td	-	+	_	-		Ср+Со+Ру		Cevher
TD-169	H17-c1	Td	+				1	Plj+Hb+Bi	PI) da karbonatlaşma, serisitleşme, kloritleşme; hamurda killeşme ve kloritleşme	Altere andezit
TD-170	H17-c1	Td	+				1	Plj+Hb+Bi	Pljiyoklazlarda karbonatlaşma ve serisitleşme	Altere andezit
TD-171	H17-c1	Тар	+				1	Plj+Vc+Q	Hamurda kloritleşme, v. camı ve plajiyoklazlar tümüyle silisleşmiş	Silisleşmiş volkanik kayaç
TD-172	H17-c1	Тар	-	+						Cevher
TD-173	H17-c1	Тар	-	+						Cevher
TD-174	H17-c1	Tap	-							Cevher
KR-175	H17-c1	Tap	-							Tüf
KR-176	H17-c1	Тар	+					Plj+Vc	Hamur silisleşmiş,volkan camında silisleşme ve serisitleşme	Altere volkanik kayaç
KR-177	H17-c1	Тар	+					Plj+Vc+Vkp+Bi+Snd	Volkan camında silisleşme	Litik kül tüf
KR-178	H17-c1	Tap	-							Tüf
KR-179	H17-c1	Тар	+					Plj+Snd+Vkp+Bi	Plajiyoklazlarda serisitleşme	Silisleşmiş litik kül tüf
KR-180	H17-c1	Tap	-	+				Ga+Cpy+Py		Cevher
KR-181	H17-d2	Тар	+					Plj+Snd+Bi	Silisleşme ve devitrifikasyon dokuları	Aşırı silisleşmiş volkanik kayac
KR-182	H17-d2	Тар	-							Silisleşmiş volkanik kayaç
KR-183	H17-d2	Tap	-							Tüf
KR-184	H17-c1	Tap	+					Vkp+Snd		Litik kül tüf
KR-185	H17-c1	Tap	-							Tüf
KR-186	H17-c1	Тар	+					Plj+Vkp+Po	Plj'daserisitleşme ve karbonatlaşma; pomza- larda silisleşme ve karbonatlaşma	Camsı kül tüf
KR-187	H17-c1	Tap	-							Silisleşmiş volkanik kayaç
KR-188	H17-c1	Tap	-							Altere volkanik kayaç
KR-189	H17-c1	Тар	-							Silisleşmiş volkanik kayaç
KR-190	H17-c1	Тар	+					Plj+Snd+Bi	Hamurda ışınsal silisleşme	Silisleşmiş camsı kül tüf
KR-191	H17-d2	Та	-							Andezitik kayaç
KR-192	H17-d2	Та	-							Andezitik kayaç
KR-193	H17-d2	Ta	+							Aşırı silisleşmiş kayaç
KR-194	H17-d2	Ta	+	-						Bazalt
KR-195	H17-d2	Та	+	-						Granodiyorit
KR-196	H17-d2	Ta	-	1						Andezitik kayac
KR-197	H17-d2	Thg	+			-	+		Grafik doku	Granodiyorit
KR-198	H17-d2	Thg	-			-	+			Granodivorit
KR-199	H17-d2	The	-	1		-	1			Granodivorit
KR-200	H17-d2	The	-	1						Granodivorit
KR-201	H17-d2	The	-	-						Granodivorit
KR-202	H17-d2	The	-	1		-	-			Granodivorit
KR-203	H17-c1	Tan	-	1		-				Cevher
	1	1	-	1		_			1	

118	

Ek Çizelge 1. devam ediyor

KR-204	H17-c1	Тар	-							Cevher
KR-205	H17-c1	Тар	-							Cevher
KR-206	H17-c1	Тар	-							Cevher
KR-207	H17-c1	Тар	-							Altere tüf
KR-208	H17-c1	Тар	-							Cevher
KR-209	H17-c1	Тар	-							Cevher
KR-210	H17-c1	Тар	-							Cevher
KR-211	H17-c1	Тар	-							Altere tüf
KR-212	H17-c1	Tap	-							Kuvarslı cevher
KR-213	H17-c1	Тар	-							Kuvarslı cevher
KR-214	H17-c1	Tap	-							Kuvarslı cevher
KR-215	H17-c1	Тар	-							Kuvarslı cevher
KR-216	H17-c1	Tap	-							Kuvarslı cevher
KR-217	H17-c1	Tap	-							Altere tüf
KR-218	H17-c1	Tap	-							Cevher
KR-219	H17-c1	Тар	-							Cevher
KD 220	U17 d2	Tan								Silisleşmiş volkanik
KR-220	111/-u2	rap	-							kayaç
KR-221	H17-d2	Тар	+					Snd+Vkp+Vc+Bi	Volkan camında ışınsal silisleşmeler	Trakitik camsı kül tüf
KR-222	H17-d2	Тар	-					Vkp+Vc+Po+Q	Volkan camında ve pomzalarda silisleşme	Silisleşmiş camsı kül tüf
KR-223	H17-d2	Тар	-							Silisleşmiş volkanik kayaç
KR-224	H17-d2	Tap	-							Tüf
KR-225	H17-d2	Tap	-							Tüf
KR-226	H17-d2	Tap	-							Tüf
KR-227	H17-d2	Tap	-							Altere tüf
KR-228	H17-d2	Tap	-							Aglomera
KR-229	H17-d2	Тар	+					Plj+Snd+Vc+Po+Bi+ Q	Volkan camında ışınsal silisleşmeler,pomzalarda silisleşme	Silisleşmiş camsı kül tüf
KR-230	H17-c1	Tap	-							Altere tüf
KR-231	H17-c1	Tap	-							Cevherli tüf
KR-232	H17-c1	Tap	+					Plj+Px	Hipokristalin doku, Px'lerde karbonatlaşma ve kloritleşme	Altere andezit
KR-233	H17-c1	Тар	+					Plj+Snd+Vc+Bi+Q	V.camında silisleşme	Silisleşmiş camsı kül tüf
KR-234	H17-c1	Тар	-							Altere tüf
KR-235	H17-c1	Тар	+					Plj	Hipohyalin porfirik doku	Andezit
KR-236	H17-c1	Тар	-							Riyolitik tüf
KR-237	H17-d2	Tap	-							Riyolitk tüf
KR-238	H17-d2	Tap	-							Riyolitik tüf
KR-239	H17-d2	Tap	-							Cevher
KR-240	H17-d2	Тар	+					Plj+Snd	Işınsal silisleşmeler	Silisleşmiş volkanik kayaçlar
KR-241	H17-d2	Тар	-							Silisleşmiş volkanik kayaç
KR-242	H17-d2	Tap	-							Silileşmiş volkanik kayaç
TK-243	H17-d2	Tap	-							Cevherli tüf
TK-244	H17-d2	Tap	-							Altere tüf
TK-245	H17-d2	Tap	-	+				Ga+Sph+Cpy+Py		Cevher
KR-246	H17-c1	Tap	+					Q+Plj+Vc+Po	V. camında silisleşme	Silisleşmiş camsı kül tüf
KR-247	H17-c1	Tdd	+				+	Plj+Bi+Hb+Q	Hb'de karbonatlaşma ve kloritleşme, v.camında silisleşme	Dasit
1			-	-	-	_	-			
KR-248	H17-c1	Tdd	+				+	Plj+Hb+Bi	Hipohyalin porfirik doku	Andezit

Ek Çizelge 1. devam ediyor

KR-250	H17-c1	Тар	-							Altere tüf
TD-251	H17-c1	Tap	-							Riyolititk tüf
TD-252	H17-c1	Tap	-							Riyolitik tüf
KR-253	H17-d2	Tap	+				+	Vkp+Vc	Volkan camında silisleşme ve kloritleşme	Litik kül tüf
KR-254	H17-d2	Taa	+					Plj+Px+Hb	Hipohyalin porfirik doku yaygın kloritleşme ve karbonatlaşma,	Andezit
KR-255	H17-d2	Таа	+					Plj+Vkp	Plj'da karbonatlaşma, v. camı kloritleşme ve silisleşme, gözeneklerde ikincil silis oluşumları	Camsı kül tüf
KR-256	H17-d2	Тар	-							Silisleşmiş volkanik kayaç
KR-257	H17-c1	Тар	+					Plj+Snd+Vc+Q (İkincil)	Volkan camında ışınsal silis mineralleri	Silisleşmiş trakitik camsı kül tüf
SO-258	H17-c1	Tap	+	+				Ga+Sph+Py+Plj+Snd		Riyodasit
SO-259	H17-c1	Tap	+	+				Ga+Sph+Py+Cpy		Riyodasit
SO-260	H17-c1	Тар	+					Plj+Snd+Vkp		Riyodasit
SO-261	H17-c1	Tap	-							Cevherli tüf
SO-262	H17-c1	Tap	+		Γ			Plj+Snd+Vkp+Q		Litik kül tüf
KR-263	H17-c1	Tap	-							Aleter e tüf
KR-264	H17-d2	Taa	+					Vc	Volkan camında killeşme ve kloritleşme	Aşırı kloritleşmiş camsı kül tüf
KR-265	H17-d2	Taa	+					Vc	V. camında silisleşme killeşme ve kloritleşme	Toz tüf / camsı kül tüf
KR-266	H17-d2	Taa	+					Plj+Hb	Hipohyalin porfirik doku yaygın kloritleşme ve karbonatlaşma, gözenek- lerde ikincil silisler	Andezit
KR-267	H17-d2	Taa	-		T					Andezit
KR-268	H17-d2	Taa	+				+	Plj+Hb+Px (Ojit)	Hipohyalin porfirik doku	Andezit
KR-269	H17-d2	Tap	-							Altere andezit
KR-270	H17-d2	Taa	+					Plj+Bi+Hb+Q (lkincil)	Plj yaygın serisitleşme, karbonatlaşma, hb'de kloritleşme	Altere andezit
KR-271	H17-d2	Тар	-+-					Vkp+Pkp	Vkp'da ışınsal silisleşme	Litik kül tüf
KR-272	H17-d2	Tap	+					Plj+Vkp		Altere litik kül tüf
KR-273	H17-d2	Tap	-	T				}		Altere tüf
KR-274	H17-d2	Tkb	+					Plj+Bi	Hipohyalin porfirik doku	Andezit
KR-275	H17-d2	Tap	+	T						Bazaltik camsı kül tüf
KR-276	H17-d2	Tap	-			Γ				Riyolitik tüf
KR-277	H17-d2	Tkb	+	1			+	Plj+Px	Hipohyalin dokulu	Bazalt
KR-278	H17-d2	Taa	+					Plj+Px (Ojit/Egirinojit)	Hipohyalin porfirik doku plj'da serisitleşme ve karbonatlaşma, px'de karbonatlaşma	Andezit
KR-279	H17-d2	Taa	-	\uparrow	1					Andezit
KR-280	H17-d2	Taa	+					Plj+Px (Ojit/Egirinojit)+Hb	Hipohyalin porfirik doku biyotitleşmiş amfibol pseudomorfları, gözeneklerde ışınsal biyotit ve kloritler	Andezit
KR-281	H17-d2	Taa	+					Plj+Hb	Plj'da serisitleşme, karbonatlaşma, kloritleş- miş hb pseudomorfları	Andezit
KR-282	H17-d2	Taa	+					Plj+Vkp+Q (İkincil)	Plajiyoklazlarda serisitleşme	Litik kül tüf
KR-283	H17-d2	Taa	+		_			Plj+Q+Bi	Plj'da karbonatlaşma, biyotitlerde kloritleşme	Dasit
KR-284	H17-d2	Taa	+			L_	1			İnt. biyomikrosparit
KR-285	H17-c1	Tap	+	1	1	1	1	Q		Aşırı ışınsal silisli kavac

Ek Çizelge 1. devam ediyor

KR-286	H17-c1	Tap	-					Riyolitik tüf
KR-287	H17-c1	Тар	+			Vkp		Lapilli taşı
KR-288	H17-a3	Tkb	-					Bazalt
KR-289	H17-a3	Tkb	-					Bazalt
KR-290	H17-b4	Tkb	-					Bazalt
KR-291	H17-b4	Tkb	-					Bazalt
KR-292	H17-c1	Tkb	+		+	Plj+Px(egirinojit)	Hipohyalin porfirik dokulu	Bazalt
KR-293	H17-c1	Tkb	-					Bazalt
KR-294	H17-c1	Тар	-					Tüf
KR-295	H17-b4	Тар	+			Plj+Po+Vkp	Plj'da karbonatlaşma, pomzalarda kloritleşme ve silisleşme	Camsı kül tüf
KR-296	H17-c1	Tap	-					Lapilli tüf
KR-297	H17-c1	Тар	+			Plj+Snd+Bi	Işınsal silisleşme	Silisleşmiş riyolitik camsı kül tüf
KR-298	H17-c1	Tap	-					Tuf
KR-299	H17-c1	Тар	+			Snd+Vc+Bi+Q	V. camında silisleşme	Altere riyolit
KR-300	H17-c1	Тар	+			Plj+Kl+Vc	Hipohyalin doku,volkan camında kloritleşme ve killeşme, plj'da karb.	Altere andezit
KR-301	H17-c1	Tap	+			Plj+Snd+Po+Vkp	Pomzalarda kloritleşme	Trakitik litik kül tüf
KR-302	H17-c1	Taa	+			Plj+Q+Bi	Vitroklastik dokulu, plj' larda karbonatlaşma ve serisitleşme	Litik kül tüf
KR-303	H17-c1	Taa	+			Plj+Q+Bi	Hipohyalin porfirik doku hamurda silisleşme	Dasit
KR-304	H17-c1	Taa	-					Andezit
KR-305	H17-c1	Tap	-					Tüf
KR-306	H17-c1	Tap	-					Tüf
KR-307	H17-c1	Тар	-					Tüf
KR-308	H17-c1	Tap	-					Tüf
KR-309	H17-c1	Taa	+		+	Plj+Px (Egirinojit)	Plj'da epidotlaşma, serisitleşme biyotitleşmiş amfibol pseudomorfları	Andezit
KR-310	H17-c1	Taa	+			Plj+Px (Egirinojit)	Plj'da karbonatlaşma ve serisitleşme	Andezit
KR-311	H17-c1	Taa	+		+	Plj+Px (Egirinojit)		Andezit
KR-312	H17-c1	Taa	-					Bazalt
KR-313	H17-c1	Tap	+			Plj+Snd+Vkp+Po	Plj'da karbonatlaşma	Camsı kül tüf
KR-314	H17-c1	Tap	-					Tüf
KR-315	H17-c1	Tap	-					Tüf
KR-316	H17-c1	Tap	+			Plj+Vkp+Q (İkincil)	Işınsal klorit oluşumu	Litik kül tüf
KR-317	H17-d2	Taa	+			Plj+Px	Px'de karbonatlaşma	Andezit
KR-318	H17-d2	Taa	+		+	Plj+Px +Hb	Hornblendlerde kloritleşme	Andezit
KR-319	H17-d2	Taa	+			Plj+Px	Hipohyalin dokulu	Andezit
KR-320	H17-d2	Тар	+				Plj'da karbonatlaşma ve serisitleşme,v. camında kloritleşme	Litik kül tüf
KR-321	H17-c1	Tap	-					Altere tüf
KR-322	H17-d2	Tap	+		+	Plj+Snd+Px+Bi+Q	Biyotitlerde kloritleşme	Riyodasit
KR-323	H17-d2	Тар	+			Plj+Snd+Vkp+Q	Kuvarslarda kemirilme dokusu	Riyolitik camsı kül tüf
KR-324	H17-d2	Taa	+			Plj+Px+Hb	Karbonatlaşmış piroksen pseudömorfları, kloritleş- miş ve karbonatlaşmış amfibol pseudömorfları	Andezit

Ek Çizelge 1. devam ediyor

KR-325	H17-d2	Taa	+		Plj+Px+Hb	Plj'da karbonatlaşma, serisitleşme,karbonatlaş mış px pseudemorfla- rı,kloritleşmiş hornblend pseudomorfları	Andezit	
KR-326	H17-d2	Тар	+		Plj+Vkp+Bi	Işınsal silis oluşumu	Litik kül tüf	

Açıklamalar: Taa: Akçaalan andeziti, Tap: Adadağı piroklastikleri, Tkb: Karaömerler bazaltı, Tdd: Dededağ dasiti, OM: Optik Mikroskop incelemeleri, CM: Cevher Mikroskopisi incelemeleri, SK: Sıvı Kapanım incelemeleri, XRD: X-Işınları Difraksiyonu incelemeleri, KA: Kimyasal Analiz incelemeleri, Plj: Plajiyoklaz, Q: Kuvars, Snd: Sanidin, Vkp: Volkanik kayaç parçacığı, Om: Opak mineral, Ba: Barit, Ka: Kalsit, Vc: Volkan camı, Vck: Volkan camı kıymıkları, Po: Pomza, Bi: Biyotit, Kl: Klorit, Px: Piroksen, Hb: Hornblend, Ga: Galenit, Sph: Sfalerit, Cpy: Kalkopirit, Cvh: cevher, Fh: Fahlerz.

Örnek	Minanal	Biri	ncil Kapa	nım	İkincil Kapanım			
No	Willeral	T _{FM}	T _{mICE}	T _H	T _{FMv}	T _{mICE}	T _H	
				70,2				
	Barit			79,8				
			1.2	71,5				
		-55	-1,2	142,4			73,2	
		-55	-1,0	147,5				
TK-44	Sfalerit	-35	-0,2	159.3				
	Sharenn	-55	0.3	131.5				
			0,0	129.7				
				150,6				
· · · · · ·					-55	-1,5	154,3	
	Barit				-55	-1,3	162,6	
				(= 0			163,7	
				67,8			115,2	
							126,6	
							126,4	
							151.8	
							158.8	
							134,3	
	Barit						145,4	
TK 53-1							144,9	
110 35-1							189,8	
							208,3	
			1				212,8	
							243,3	
							251,2	
					-55	-0.3	203,9	
					-55	7 4	152.7	
					-55	-4.7	149.7	
							124,3	
							128,1	
							129,2	
							130,8	
					-49,5	-2,7	127	
					-55	-2	129,7	
							97,2	
							135.7	
TTV (1	Barit						142.3	
1K-01					-55	3,4	155,1	
					-55	8,3	158,2	
							131,7	
							186,4	
							140,4	
							141,7	
							154,3	
					55	5.5	125.5	
					-55	-0.5	133.5	

Ek Çizelge 2. Sıvı kapanımı incelemesi yapılan örneklerde birincil ve ikincil kapanımlara ait çeşitli ölçüm değerleri.

Ek Çizelge 2. devam ediyor

Örnek	A.f.:	Bir	incil Kapa	nım	İkincil Kapanım			
No	Wineral	T _{FM}	T _{mICE}	T _H	T _{FM}	T _{mICE}	T _H	
					-55	6,3	125,1	
					-55	0,3	161,2	
					-55	6,2	127,9	
					-55	-1,7	192,4	
TK-61	Barit						129,3	
					-55	5,6	144,1	
					-55	5,1	134,4	
					-55	5,8	117,6	
					-55	6,1	112,9	
			-				146,9	
		-55	-7,5	68,7	-55	-0,8	151,4	
					-55	-5	153,1	
			:		-55	-6,2	149,1	
					-55		153,5	
					-55	-1,6	153,8	
					-55		154,4	
					-55		150,3	
					-55		157,1	
					-55	-3,4	160,4	
							175,8	
TK-83	Barit				-55	-6,3	129,7	
					-55	-6,5	163,3	
							151,7	
							228,5	
							113,8	
					1		92,8	
							141,8	
							143,9	
							145,2	
			}]			146,4	
							170,7	
					55	0.6	172,3	
		55	27	40.8	-33	-0,6	105,1	
		-55	3,7	09,8			124,6	
TK-60	Barit						128,1	
							133,7	
	Kuvars	-55	-3.8	1171			138,2	
			5,0	73.4			93.8	
TK-75	Barit			54 3			94.2	
				58.7			97.6	
		1			1		165.7	
							171.2	
						4	184 3	
							113.4	
							99.5	
}							145.9	
TK-56	Barit						155.1	
							158.7	
							159.1	
							148,5	
					ł		198 5	
							1/0,5	
		1					165,4	

Örnek	Minoral	Biri	incil Kapa	nım	İkincil Kapanım			
No	Winciai	T _{FM}	T _{mICE}	Т _Н	T _{FM}	T _{mICE}	T _H	
							224,9	
							163,4	
							189,9	
							210,2	
							217,3	
							141,7	
							177,6	
							138,4	
							216,7	
							142,3	
							170,8	
							167,4	
							131,1	
							157,4	
							138,9	
							165,3	
TK-56	Barit						172,1	
							173,2	
							174,6	
							196,3	
							198,7	
					-55	3,1	139,8	
							204,3	
							196,4	
					-55	2,7	145,6	
					l I		153,8	
					-55	-1,5	174,4	
							170,7	
							181,5	
							144,3	
					-55	-2,3	161,1	
					-55	-1,9	151,9	
			1		-55	-0,7	162,8	
l		l			-55	1,2	142,7	

Ek Çizelge 2. devam ediyor

Açıklamalar: T_{FM} : İlk Erime Sıcaklığı, Tm_{ICE} : Son Buz Erime Sıcaklığı, T_H : Homojenleşme Sıcaklığı.
Ek Çizelge 3. İnceleme alanından seçilmiş kayaç ve mineral örneklerinin iz ve NTE içerikleri (Tdd: Miyosen yaşlı Dededağ dasiti, Tap:Oligosen yaşlı Adadağı piroklastikleri, Tkb:Pliyosen yaşlı Karaömerler bazaltı, Taa:Eosen yaşlı Akçaalan andeziti).

Örnek No:	La	Ce	Pr	Nd	Sm	Eu	Gď	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Ta	w	TI	Pb	Bi	Th	U
KR-198 (Thg)	38,7	76,3	7,86	29,7	5,64	1,14	4,93	0,81	4,47	0,96	2,93	0,473	3	0,493	5,1	1,39	569	0,71	13	0,4	31,6	7,68
KR-248 (Tdd)	36,2	62,1	6,42	23,8	4,08	0,988	3,61	0,6	3,52	0,75	2,43	0,407	2,63	0,448	7,1	0,89	274	0,11	-5	-0,1	19,9	5,12
KR-253 (Tap)	34,2	63,3	6,8	26,6	5,19	1,28	5,11	0,85	4,74	1,02	3,14	0,471	2,97	0,469	5,5	0,86	195	1,12	12	0,3	14,8	3,49
KR-292 (Tkb)	14	29,2	3,38	15,2	3,66	1,18	3,72	0,63	3,67	0,8	2,32	0,344	2,14	0,345	2	0,2	149	-0,05	-5	-0,1	3,9	1,1
KR-311 (Taa)	31,1	62,1	6,9	28,6	6,02	1,35	5,39	0,94	5,08	1,03	3,13	0,495	3,01	0,446	5	0,9	241	0,11	-5	-0,1	12,5	3,59
EK-6 (Galenit)	0,33	0,45	0,06	0,21	0,03	0,007	0,04	-0,01	0,04	-0,01	0,02	-0,005	0,01	0,002	-0,1	0,01	0,9	-0,05	>1000	0,1	0,11	0,09
TK-61 (Galenit)	0,28	0,39	0,05	0,22	0,06	0,014	0,12	0,02	0,11	0,02	0,05	0,007	0,04	0,004	-0,1	-0,01	-0,5	-0,05	>1000	0,4	0,09	0,1
EK-6 (Sfalerit)	-0,05	-0,05	-0,01	-0,05	0,02	-0,005	-0,01	-0,01	-0,01	-0,01	-0,01	-0,005	-0,01	-0,002	-0,1	-0,01	0,6	-0,05	436	-0,1	0,05	-0,01
TK-73 (Sfalerit)	-0,05	0,05	0,01	0,1	0,07	-0,005	0,05	-0,01	0,03	-0,01	0,02	-0,005	0,03	0,006	-0,1	-0,01	0,6	-0,05	440	-0,1	0,07	0,02
TK-61 (Barit)	1,58	-0,05	0,02	-0,05	-0,01	-0,005	-0,01	-0,01	0,03	-0,01	0,02	-0,005	0,02	-0,002	0,4	1,01	-0,5	-0,05	80	-0,1	-0,05	0,06
TK-83 (Barit)	4,11	-0,05	0,09	-0,05	-0,01	-0,005	0,33	-0,01	0,13	0,02	0,07	-0,005	0,04	-0,002	0,3	0,5	-0,5	-0,05	34	-0,1	-0,05	0,03
Blank	-0,05	-0,05	-0,01	-0,05	-0,01	-0,005	-0,01	-0,01	-0,01	-0,01	-0,01	-0,005	-0,01	-0,002	-0,1	-0,01	-0,5	-0,05	-5	-0,1	-0,05	-0,01
Standard MAG1	42,6	86,2	9,6	36,9	7,29	1,49	6,03	0,96	5,14	0,96	2,82	0,432	2,6	0,372	3,7	1,1	1,7	0,25	22	-0,1	12,4	2,78
Certified MAG1	43*	88*	9,3	38*	7.5*	1.55*	5.8*	0.96*	5.2*	1.02*	3	0.43*	2.6*	0.40*	3.7*	1,1	1,4	(0.59)	24*	0,34	11.9*	2.7*
Standard BIR1	0,68	1,94	0,37	2,32	1,09	0,538	1,79	0,4	2,5	0,55	1,74	0,268	1,66	0,256	0,6	0,03	-0,5	-0,05	-5	-0,1	0,18	0,03
Certified BIR1	0.62*	1.95*	0.38*	2.5*	1.1*	0.54*	1.85*	0.36*	2.5*	0.57*	1.7*	0.26*	1,65	0.26*	0.6*	0,04	0,07	(0.01)	3	(0.02)	0,03	0,01
Standard DNC1	3,5	8,3	0,99	4,53	1,35	0,578	1,88	0,4	2,59	0,58	1,9	0,299	1,87	0,295	1	0,06	-0,5	-0,05	8	-0,1	0,25	0,06
Certified DNC1	3.8*	10,6	1,3	4.9*	1.38*	0.59*	2	0.41*	2,7	0,62	2*	(0.33)	2.01*	0.32*	1.01*	0.098*	(0.2)	(0.026	6,3	(0.02)	(0.2)	(0.1)
Standard GXR-2	26	53,2	5,47	20	3,74	0,684	3,27	0,52	2,95	0,59	1,83	0,288	1,83	0,286	7,5	0,79	2,1	0,72	664	0,6	8,8	2,97
Certified GXR-2	25,6	51,4		-19	3,5	0,81	(3.3)	0,48	3,3			(0.3)	2,04	(0.27)	8,3	0,9	1,9	1,03	690	(0.69)	8,8	2,9
Standard LKSD-3	48,3	90,7	11,3	42,8	7,94	1,48	6,47	0,92	5	0,99	2,95	0,46	2,83	0,429	4,5	0,61	1,1	0,88	26	-0,1	10,8	4,39
Certified LKSD-3	52	90		44	8	1,5		1	4,9				2,7	0,4	4,8	0,7	(<4)		29		11,4	4,6
Standard MICA-Fe	181	392	43,8	163	30,4	0,619	20,3	2,35	9,4	1,31	3,02	0,477	2,7	0,528	25,4	36,6	15,9	16	8	0,4	159	76,5
Certified Mica Fe	200*	420*	49*	180*	33*	0.7*	21*	2.7*	11*	1.6*	3.8*	0.48*	3.5*	0.5*	26*	35*	15	16	13*	2	150*	80*
Standard GXR1	7,9	15,6	1,95	18,9	3,16	0,65	4,42	0,9	4,43	1,02	3,09	0,46	2,07	0,309	1	0,26	155	0,54	747	1.380	2,6	35,1
Certified GXR1	7,5	17		-18	2,7	0,69	4,2	0,83	4,3			(0.43)	1,9	0,28	0,96	0,175	164	(0.39)	730	1.380	2,44	34,9
Standard SY3	1.340	2.220	223	674	110	17,1	105	18	118	29,7	68,4	11,7	62,3	7,96	12,8	28,8	1,8	1,66	139	0,7	1.000	650
Certified SY3	1340*	2230*	223*	670	109	17*	105*	18	118	29.5*	68	11.6*	-62	7,9	9,7	30*	1.1*	1,5	133*	(0.8)	1003*	650*
Standard STM-1	151	259	19,9	80,4	12,6	3,67	9,09	1,51	8,14	1,5	4,41	0,713	4,38	0,615	29,4	18,6	3,3	0,1	10	0,1	33,8	9,1
Certified STM-1	150*	259*	19*	79*	12.6*	3.6*	9.5*	1.55*	8.1*	1,9	4.2*	0,69	4.4*	0,6	28*	18.6*	3.6*	0,26	17.7*	0,13	31*	9.06*
Standard IFG-1	2,79	4,03	0,44	1,81	0,41	0,355	0,68	0,12	0,81	0,2	0,66	0,098	0,58	0,098	-0,1	0,18	220	-0,05	-5	-0,1	0,17	0,14
Certified IFG-1	2.8*	4*	0.4*	0,2	0.4*	0.39*	0.74*	0.11*	0.8*	0.2*	0.63*	0.09*	0.6*	0.09*	0,04	0,2	220	0,02	4		0,1	0,02

Ek Çizelge 3. devam ediyor.

Örnek No:	v	Cr	Co	Ni	Cu	Zn	Ga	Ge	As	Rb	Sr	Y	Zr	Nb	Mo	Ag	In	Sn	Sb	Cs	Ba
KR-198 (Thg)	97	-20	74	-20	16	138	14	1,5	-5	124	374	29,4	180	14,3	-2	-0,5	-0,1	2	0,5	6,2	683
KR-248 (Tdd)	51	56	31	186	24	-30	15	-0,5	-5	83	359	22,5	290	10,1	-2	-0,5	-0,1	1	0,7	0,6	800
KR-253 (Tap)	78	-20	25	-20	-10	153	16	-0,5	-5	98	225	33,4	213	10,9	-2	-0,5	-0,1	2	0,6	3,9	1.170
KR-292 (Tkb)	255	-20	31	-20	47	41	15	-0,5	-5	17	553	22,4	69	3	-2	-0,5	-0,1	-1	0,2	0,3	342
KR-311 (Taa)	169	24	36	-20	31	-30	17	2,2	7	88	352	29,2	168	10,7	-2	-0,5	-0,1	2	0,6	1,8	629
EK-6 (Galenit)	13	-20	-1	-20	-10	69	-1	-0,5	-5	25	-2	-0,5	3	0,3	-2	-0,5	-0,1	-1	0,3	1,6	14
TK-61 (Galenit)	13	-20	-1	-20	-10	101	-1	-0,5	-5	2	2	1,3	-1	1,1	-2	-0,5	-0,1	-1	-0,2	-0,1	171
EK-6 (Sfalerit)	-5	-20	4	-20	-10	>10000	21	-0,5	-5	1	-2	-0,5	-1	-0,2	-2	-0,5	0,3	-1	-0,2	-0,1	39
TK-73 (Sfalerit)	-5	-20	4	-20	-10	>10000	10	-0,5	-5	1	3	-0,5	1	-0,2	-2	-0,5	-0,1	-1	-0,2	-0,1	217
TK-61 (Barit)	-5	-20	-1	-20	-10	-30	-1	-0,5	-5	6	5.510	1,5	-1	-0,2	-2	-0,5	-0,1	-1	-0,2	0,1	6.248
TK-83 (Barit)	-5	-20	-1	-20	-10	174	-1	-0,5	-5	-1	7.320	2,1	-1	-0,2	-2	-0,5	-0,1	-1	-0,2	-0,1	18.248
Blank	-5	-20	-1	-20	-10	-30	-1	-0,5	-5	-1	-2	-0,5	-1	-0,2	-2	-0,5	-0,1	-1	-0,2	-0,1	-3
Standard MAG1	133	97	21	53	28	121	19	2,5	10	145	137	27,7	113	14,5	-2	-0,5	-0,1	3	1,2	8,2	466
Certified MAG1	140*	97*	20.4*	53*	30*	130*	20.4*		9,2	149*	146*	28*	126*	12	1,6	0,08	(0.18)	3,6	0.96*	8.6*	479*
Standard BIR1	309	377	51	161	122	74	15	2,1	-5	-1	106	16,1	14	1,1	-2	-0,5	-0,1	-1	0,8	-0,1	7
Certified BIR1	313*	382*	51.4*	166*	126*	71*	16	1,5	(0.4)	0.25*	108*	16*	15,5	0,6	(0.5)	(0.036)		0,65	0,58	0,005	7
Standard DNC1	143	260	54	259	100	66	13	1,2	-5	4	137	17,5	37	1,7	-2	-0,5	-0,1	1	1,1	0,2	108
Certified DNC1	148*	285*	54.7*	247*	96*	66*	15	(1.3)	(0.2)	(4.5)	145*	18*	41*	3	(0.7)	(0.027)			0.96*	(0.34)	114*
Standard GXR-2	54	38	9	-20	80	574	39	0,9	26	82	159	19,3	259	11	-2	16,5	-0,1	2	49	5,7	2.260
Certified GXR-2	52	36	8,6	21	76	530	37		25	78	160	17	269	11	(2.1)	17	(0.252)	1,7	49	5,2	2.240
Standard LKSD-3	81	80	32	44	36	150	16	1	26	79	250	32,2	163	7,4	-2	2,1	-0,1	2	1,4	2,5	675
Certified LKSD-3	82	87	30	47	35	152			27	78	240	30	178	8	(<5)	2,7		3	1,3	2,3	680
Standard MICA-Fe	131	82	25	33	-10	1.320	94	3,3	-5	2.110	4	46,4	760	270	2	-0,5	0,6	70	0,4	174	139
Certified Mica Fe	135*	90 *	23*	35*	5*	1300*	95*	3,2	3	2200*	5*	48*	800*	270*	1,2		0,6	70*		180*	150*
Standard GXR1	83	-40	9	45	1.110	689	14	5	426	14	301	36	33	4	18	31	0,8	59	114	3,1	697
Certified GXR1	80	12	8,2	41	1.110	760	13,8		427	-14	275	32	-38	(0.8)	18	31	0,77	54	122	3	750
Standard SY3	50	-40	8	-40	20	264	30	2	20	210	309	721	353	141	-4	-1	-0,2	8	1,1	2,8	440
Certified SY3	50	-11	8,8	11	17	244*	27*	1,4	18,8	206*	302*	718*	320	148	(1.0)	(1.5)		(6.5)	0,31	2,5	450
Standard STM-1	-5	-20	-1	-20	-10	225	32	1	-5	113	659	46	1.240	245	• 4	-0,5	-0,1	6	1,3	1,3	566
Certified STM-1	(8.7)	(4.3)	0,9	-3	(4.6)	235*	36*	(1.4)	4,6	118*	700*	46*	1210*	268*	5,2	0.079*	(0.12)	6,8	1.66*	1.54*	560*
Standard IFG-1	-5	-20	27	-20	13	-30	1	24,1	-5	2	4	9,3	-1	-0,2	-2	-0,5	-0,1	-1	1	0,1	5
Certified IFG-1	2	4	29*	22,5	13*	20*	0,7	24	1,5	0,4	3	9*	1	0.1*	0,7		0,2	0,3	0,63	0,06	1,5

126

ÖZGEÇMİŞ

1972 yılında Antalya'da doğan Gülcan BOZKAYA, ilk, orta ve lise öğrenimini Afyon'da tamamlamıştır.1989 yılında Cumhuriyet Üniversitesi Jeoloji Mühendisliği Bölümü'nü kazanmış ve 1993 yılında bölüm birincisi olarak mezun olmuştur. Aynı yıl C.Ü. Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü'nde Araştırma Görevlisi olarak çalışmaya başlamış ve Eylül-1993'de C.Ü. Fen Bilimleri Enstitüsü Yüksek Lisans Programı Jeoloji Mühendisliği Anabilim Dalı'na kayıt yaptırmıştır. Şubat-1996'da Yüksek Lisans Tezi'ni tamamlamış ve Eylül-1996'da Doktora eğitiminine başlamıştır. Doktora tez çalışmalarını henüz tamamlamış olup, akademik çalışmalarına devam etmektedir. Evli ve bir çocuk annesidir.

> Gülcan BOZKAYA 27.04.2001