
THE REPUBLIC OF TURKEY
BAHCESEHIR UNIVERSITY

AN EXACT SOLUTION ALGORITHM FOR THE

COORDINATED CAPACITATED

LOT-SIZING PROBLEM

Master Thesis

ZEYNEP SEZER

ISTANBUL, 2013

THE REPUBLIC OF TURKEY
BAHCESEHIR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING

AN EXACT SOLUTION ALGORITHM FOR THE

COORDINATED CAPACITATED

LOT-SIZING PROBLEM

Master Thesis

ZEYNEP SEZER

Thesis Supervisor: Asst. Prof. Semra AĞRALI

ISTANBUL, 2013

THE REPUBLIC OF TURKEY
BAHCESEHIR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING

An Exact Solution Algorithm for the

Coordinated Capacitated Lot-Sizing Problem

Zeynep SEZER
January 24th, 2013

The thesis has been approved by the Graduate School of Natural and Applied
Sciences.

Assoc. Prof. Tunç BOZBURA
 Graduate School Director

 Signature

I certify that this thesis meets all the requirements as a thesis for the degree of
Master of Science.

 Asst. Prof. Barış SELÇUK
 Program Coordinator
 Signature

This is to certify that we have read this thesis and we find it fully adequate in
scope, quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Thesis Supervisor
Asst. Prof. Semra AĞRALI -----------------------------------

Member
Asst. Prof. İbrahim MUTER -----------------------------------

Member
Asst. Prof. Fadime ÜNEY-YÜKSEKTEPE -----------------------------------

iii

ABSTRACT

AN EXACT SOLUTION ALGORITHM FOR THE COORDINATED
CAPACITATED LOT-SIZING PROBLEM

Zeynep Sezer

Master of Science in Industrial Engineering

Thesis Supervisor: Asst. Prof. Semra Ağralı

January 2013, 33 pages

In this thesis we study large-scale coordinated capacitated lot sizing problems (CCLSP).
CCLSP is the most general type of lot sizing problems, where (1) multiple items are
involved in the production; (2) each item requires an individual (minor) setup cost in
addition to a production cost; (3) items are grouped into families that share an additional
joint (major) setup cost; (4) demand for an item in a period can be satisfied by
production in any period; however, early and late productions add inventory holding
and backlogging costs, respectively, and (5) production capacity in each period is
limited.

The problem is to determine the production schedule over a time horizon consisting of a
number of fixed-length production periods that minimizes the total production cost
while satisfying a given demand under the capacity constraints.

CCLSP is essentially a mixed integer programming problem. It is known to be NP-hard,
and therefore, most of the existing solution procedures are heuristics. CCLSPs
considered in the literature include a single product family. In this thesis, we extend
CCLSP by considering multiple product families. The goal of this study is to develop an
exact solution algorithm for a large-scale multi-family CCLSP. The algorithm is based
on Benders decomposition method, and it provides an alternative to existing approaches
to solve mixed integer programming problems. The decomposition is based on a natural
partitioning of the decision variables into continuous (production variables) and binary
(major and minor setup variables) sets. The main contribution of this thesis will be the
consideration of multiple product families, their effect on solution times and an exact
algorithm to solve multi-family CCLSPs.

The performance of the algorithm is tested with respect to solution times by comparing
the results with those obtained by solving the standard mixed integer programming
problem without decomposition. Data sets used in comparison are generated to comply
with the benchmark examples available in the literature.

Keywords: Coordinated capacitated lot sizing problem, capacitated lot sizing problem,
joint setup, multiple product families, backlogging.

iv

ÖZET

KOORDİNELİ KAPASİTELİ ÖBEK BÜYÜKLÜĞÜ BELİRLEME PROBLEMİ İÇİN

KESİN SONUÇLU BİR ÇÖZÜM ALGORİTMASI

Zeynep Sezer

Endüstri Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Yrd. Doç. Dr. Semra Ağralı

Ocak 2013, 33 sayfa

Bu tezde büyük ölçekli koordineli kapasiteli öbek büyüklüğü belirleme problemleri
(KKÖBP) incelenmiştir. KKÖBP (1) birden çok ürün ailesini içeren; (2) her ürünün
üretim maliyetine ek olarak küçük kurulum maliyeti gerektirdiği; (3) ürünlerin büyük
kurulum maliyetini paylaştıkları ürün ailelerine gruplandıkları; (4) ürünlerin dönemlik
taleplerinin herhangi bir dönemde karşılanabildiği; ancak daha önceki ya da sonraki
üretim dönemleriyle karşılanan taleplerin sırasıyla envanter tutma maliyeti ve geriye
dönük tedarik maliyeti eklediği; ve (5) dönemlik üretim kapasitesinin sınırlı olduğu en
genel öbek büyüklüğü belirleme problemidir.

Problem sabit-süreli üretim dönemlerinden oluşan bir zaman dilimi boyunca kapasite
kısıtlarını aşmadan ve bilinen talepleri karşılayacak şekilde bütün üretim maliyetlerini
en aza indirgeyen üretim planını belirlemektir.

Esasen KKÖBP karma tamsayılı programlama problemidir. Bu problemler NP-Zor
olduklarından mevcut çözüm yöntemlerinin çoğu sezgiseldir. Literatürde dikkate
alınmış KKÖBP tek bir ürün ailesini kapsar. Bu tezde KKÖBP’nin kapsamı birden çok
ürün ailesini dikkate alarak genişletilmiştir. Bu tezin amacı büyük ölçekli, birden çok
ürün ailesini içeren KKÖBP için kesin sonuçlu bir çözüm algoritması geliştirmektir.
Önerilen çözüm algoritması Benders ayrıştırma yöntemine dayanmaktadır ve karma
tamsayılı programlama problemlerini çözmede kullanılan mevcut yöntemlere alternatif
oluşturmaktadır. Ayrıştırma, karar değişkenlerinin doğal olarak sürekli (üretim,
envanter tutma ve geriye dönük tedarik maliyetleri) ve ikili (küçük ve büyük kurulum
maliyetleri) setlere paylaştırılması temeline dayanmaktadır. Bu tezin başlıca katkısı,
birden çok ürün ailesini içeren KKÖBP için kesin sonuçlu bir çözüm algoritması
geliştirilmesi ve ürün ailelerinin çözüm sürelerine etkilerinin araştırılmasıdır.

Algoritmanın performansı çözüm sürelerinin ayrıştırılma yapılmamış karma tamsayılı
programlama problemlerinin sonuçlarıyla karşılaştırılmasıyla test edilmiştir. Kullanılan veri
setleri literatürde mevcut örneklere uygun olarak oluşturulmuştur.

Anahtar Kelimeler: Koordineli kapasiteli öbek büyüklüğü belirleme problemi,
kapasiteli öbek büyüklüğü belirleme problemi, ortak kurulum, birden çok ürün ailesi,
geriye dönük tedarik.

v

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABBREVIATIONS .. viii

LIST OF SYMBOLS ... ix

1. INTRODUCTION .. 1

1.1. SCOPE ... 2

1.2. OBJECTIVES AND CONTRIBUTIONS ... 3

1.3. ORGANIZATION ... 4

2. LITERATURE REVIEW .. 5

2.1. SINGLE-ITEM UNCAPACITATED LOT-SIZING PROBLEM (ULSP) 6

2.2. MULTI-ITEM UNCAPACITATED LOT-SIZING PROBLEM (MULSP) 7

2.3. SINGLE-ITEM CAPACITATED LOT-SIZING PROBLEM (CLSP) 7

2.4. MULTI-ITEM CAPACITATED LOT-SIZING PROBLEM (MCLSP) 8

2.5. COORDINATED UNCAPACITATED LOT-SIZING PROBLEM (CULSP) 9

2.6. COORDINATED CAPACITATED LOT-SIZING PROBLEM (CCLSP) 11

3. PROBLEM DESCRIPTION AND SOLUTION METHODOLOGY 13

3.1. PROBLEM DESCRIPTION .. 13

3.2. MATHEMATICAL FORMULATION .. 15

3.3. SOLUTION METHODOLOGY .. 16

3.3.1. Benders Partitioning Procedure .. 16

3.3.2. Application of Benders Procedure to CCLSP .. 18

3.4. EXPERIMENTAL DESIGN .. 22

4. COMPUTATIONAL RESULTS & DISCUSSIONS .. 24

5. CONCLUSION AND FUTURE WORK .. 33

REFERENCES .. 34

vi

LIST OF TABLES

Table 3.1: Parameters of data sets ... 23

Table 4.1: Computational results for 5% capacity utilization ... 24

Table 4.2: Computational results for 45% capacity utilization 25

Table 4.3: Computational results for 85% capacity utilization 26

Table 4.4: Improvements with the V.I.’s for problems with J=4, KJ=3 and CU=45% ... 31

Table 4.5: Improvements with the V.I.’s for problems with J=4, KJ=3 and CU=85% ... 31

vii

LIST OF FIGURES

Figure 2.1: Taxonomy of deterministic dynamic lot-sizing problems. 5

Figure 4.1: Solution times for problems with J = 1 and CU = 5%, 45% and 85% 27

Figure 4.2: Solution times for problems with J = 2 and CU = 5%, 45% and 85% 27

Figure 4.3: Solution times for problems with J = 4 and CU = 5%, 45% and 85% 27

Figure 4.4: Solution times for problems with 12 items and CU = 45% 28

Figure 4.5: Solution times for problems with 24 items and CU = 45% 28

Figure 4.6: Solution times for problems with 12 items and CU = 85% 29

Figure 4.7: Solution times for problems with 24 items and CU = 85% 29

Figure 4.8: Solution times with V.I.’s for problems with 12 items and CU=45% 30

Figure 4.9: Solution times with V.I.’s for problems with 12 items and CU=85% 30

viii

ABBREVIATIONS

CCLSP : Coordinated capacitated lot sizing problem

CLSP : Single-item capacitated lot sizing problem

CULSP : Coordinated uncapacitated lot sizing problem

LB : Lower bound

LSP : Single-level, single-resource, big bucket lot-sizing problem with

deterministic, dynamic demand

MCCLSP : Multiple product family, coordinated capacitated lot sizing problem

MCLSP : Multi-item capacitated lot sizing problem

MCULSP : Multiple product family, coordinated uncapacitated lot sizing problem

MULSP : Multi-item uncapacitated lot sizing problem

UB : Upper bound

ULSP : Single-item uncapacitated lot sizing problem

VI : Valid inequality

ix

LIST OF SYMBOLS

T : Number of time periods in the planning horizon, t∈T, t´∈T.

J : Number of product families, j∈J.

Kj : Number of products in product family j, k∈Kj.

dkt´ : Demand for item k∈Kj in time period t∈T.

Sjt : Major setup cost of product family j∈J in time period t∈T.

skt : Minor setup cost of item k∈Kj in time period t∈T.

ckt : Per unit production cost of item k∈Kj in time period t∈T.

hktt´ : Per unit inventory holding cost of item k∈Kj produced in time period

t∈T to supply demand in time period t´∈T, t < t´.

bktt´ : Per unit backlogging cost of item k∈Kj produced in time period t∈T to

supply demand in time period t´∈T, t´ < t.

Cktt´ : The total unit variable cost for item k∈Kj in time period t∈T to serve

demand in time period t´∈T.

Pt : Available production capacity in time period t∈T.

Xktt´ : The fraction of demand for product k∈Kj in time period t´∈T that is

supplied from a production in time period t∈T.

Ykt : binary decision variable that take on the value of 1, if a minor setup is

scheduled for product k∈Kj in time period t∈T and 0 otherwise.

Zjt : binary decision variable that take on the value of 1 if a major setup is

scheduled for any of the products that belong to product family j∈J in

time period t∈T and 0 otherwise.

1

1. INTRODUCTION

Lot sizing problems basically deal with determining an optimal production plan over a

predetermined time horizon. Their objective is to minimize the sum of production, setup

and inventory holding costs while satisfying demand. However, they differ substantially

in terms of the assumptions made on the nature of variables and parameters considered.

In the presence of so many, deciding on “how much to produce” and “when to produce”

becomes a complicated task that has been challenging industry practitioners and

research for the last fifty years.

Due to their wide spectrum of features, lot-sizing problems have been classified,

modeled and solved in different ways throughout the literature. Classification is usually

based on the assumptions made about the following criteria:

i) Planning horizon: Lot sizing problems are modeled by dividing a finite planning

horizon into equal-length time intervals and defining all variables and

parameters in terms of these non-overlapping time periods. When time periods

are long enough to produce more than one item, the problem is referred to as a

big bucket problem, otherwise, a small bucket problem. Big bucket problems, as

opposed to small bucket problems, do not take into account the sequencing

decisions of production lots. In other words, each time period is evaluated

independently without taking into account the savings that can be earned by

discarding setups between consecutive periods.

ii) Nature of demand: One of the most significant features in characterizing lot

sizing problems is the assumptions made on demand. In practice, demand can

either be constant (static) or time varying (dynamic) over a planning horizon.

Static lot sizing problems triggered the evolution of EOQ models which

established the basis for dynamic models. In addition, if demand is assumed to

be known in advance, it is considered to be deterministic, otherwise, it is

considered stochastic.

2

iii) Number of stages: The production systems can be characterized as having

single-level or multi-level structures. In single-level systems, demand is met

through finished products that are manufactured in a lump directly from raw

materials. In multi-level systems, manufacturing process includes sequential

operations where demand at each stage is dependent on subsequent stages.

iv) Number of resources: It is very common in manufacturing systems to use

multiple machines to perform the same task in parallel. Such systems are

structurally more complex, because production lots have to be assigned to

machines.

Distinction made on aforementioned features provided lot sizing literature to branch off

into different problem categories that are studied exclusively. Different model

formulations and solution approaches have been proposed for each category in an effort

to find optimal or near optimal solutions. However, as the size of problems become

larger, computation time necessary to solve them increase tremendously. Existing

optimization software, fall short in coming with satisfactory results. That is the reason

why lot-sizing problems keep on receiving considerable attention. It is crucial to explore

new formulations and methods that will ease the computational burden of solving lot

sizing problems.

1.1. SCOPE

Due to the diversity inherent in lot-sizing problems the context of this study will be

restricted to single-level, single-resource, big bucket lot sizing problems with

deterministic, dynamic demand and will be referred to as LSP. For a comprehensive

review of lot-sizing literature, readers may refer to Rizk and Martel (2001).

LSP’s are essentially discrete-time optimization problems where the planning horizon is

divided into equal length time periods, over each of which all variables and parameters

assume fixed values. The objective is to determine the quantity to be produced at each

time period that will simultaneously satisfy demand at each period and minimize overall

costs incurred throughout the planning horizon.

3

The mathematical structure and complexity of models depend on the specific

characteristics of the production system being modeled. For example, when there is a

restriction on maximum number of items that can be produced in a period, the problem

becomes “capacitated” and when different types of products are grouped into a product

family where they can share a joint (major) setup cost, the problem becomes

“coordinated”. Problem classes and how they relate to each other will be discussed in

more detail in the literature review. However, it is important to acknowledge that with

every additional variable or constraint the problem becomes more complex and thereby

the computation time necessary to solve these problems increase rapidly.

The coordinated capacitated lot sizing problem (CCLSP) is the most complex problem

class of LSP dealing with multiple items that are subject to individual (minor) setups,

joint (major) setups and capacity restrictions. The CCLSP’s are intractable, in the sense

that no polynomial-time solution algorithm is known to exist. Therefore, much of the

research in this field has been devoted to heuristic solution approaches. Although there

is not much research done on the CCLSP class, we are confident that a thorough

investigation of different model formulations and solution approaches proposed for

more specific variations of the LSP will contribute in our attempt to find an exact

solution for the CCLSP. In this study, we will follow an analytical approach by

considering CCLSP within the broader context of its subclasses.

1.2. OBJECTIVES AND CONTRIBUTIONS

The objective of this thesis is to investigate the computational challenges encountered in

solving CCLSP with multiple product families and present an exact solution algorithm

by exploiting Benders decomposition technique. The problem will be modeled using an

arborescent-network-based mixed integer programming (MIP) formulation proposed by

Robinson and Gao (1996). Our contributions lie in two directions: i) Inclusion of

multiple product families in the problem formulation as opposed to previous studies

which considered problems with single product family. This would allow to investigate

the effect of different major setup cost structures on the complexity of the problem. ii)

Developing an exact solution algorithm that can be used as an alternative to mixed

4

integer programming in solving large-scale CCLSP’s. Our goal is to obtain at least a

feasible solution before the program terminates due to memory requirements.

1.3. ORGANIZATION

This thesis is composed of five chapters including the current introductory chapter. In

Chapter 2, related literature on dynamic lot-sizing problems will be presented together

with the drawbacks of various models commonly used and solution methodologies

proposed in the past. In Chapter 3, the mathematical formulation of the problem and the

implementation of Benders partitioning procedure will be explained. The solution

algorithm will also be given in this chapter. The numerical results based on different

data sets and discussions will be given in Chapter 4. Finally, in Chapter 5, conclusions

of the work done will be summarized and projections for future research will be

specified.

5

2. LITERATURE REVIEW

The taxonomy of most frequently studied LSP’s are presented in Figure 1. Problems are

classified according to the number of items produced, capacity restrictions and the setup

structure considered. These characteristics affect the number of variables and

constraints within the model, and hence the mathematical complexity of the model.

Problem classes with more complex structures are generalized versions of their

subclasses. The arcs in the figure denote this structural relationship between classes

from more general problems to more specific ones. Specific problem classes are in fact

relaxed versions of the general problems.

Figure 2.1 - Taxonomy of deterministic dynamic lot-sizing problems.

Numerous studies have been done in the field of LSP to explore better model

formulations and to develop faster solution algorithms specific to each problem class.

Different cost structures have been analyzed along with problem extensions such as

backlogging, remanufacturing, perishable inventory, time windows etc. Having an in-

CCLSP CULSP

MULSP MCLSP

ULSP CLSP

Capacitated

Multi-item

Coordinated

Uncapacitated

Single-item

MCCLSP MCULSP Multiple Product
Families

6

depth knowledge on the subclasses of CCLSP can be very advantageous and time

saving, especially when the problem can be reduced down to one of its subclasses for

which well established approaches are available.

In the next section, a condensed version of the literature on each problem class will be

given. Since the main concern of this research is to develop an exact solution algorithm

for CCLSP, the heuristic approaches (approximation algorithms) will only be mentioned

briefly. For detailed reviews on uncoordinated LSP’s, readers may refer to Brahimi et

al. (2006) and Karimi, Fatemi Ghomi and Wilson (2003) for the single-item and

capacitated problems, respectively.

2.1. SINGLE-ITEM UNCAPACITATED LOT-SIZING PROBLEM (ULSP)

LSP under the dynamic demand assumption was first introduced by Wagner and Whitin

(1958), in which they proposed a dynamic programming algorithm to solve a single-

item LSP without capacity restrictions and demand backlogging. They used a backward

recursive solution procedure that solved the problem in ࣩ(T2) time, where T indicates

the number of time periods in the planning horizon. Later, Zangwill (1966) extended the

model to allow backlogging and Evans (1985) provided an efficient computer

implementation of the W-W model. Several other dynamic programming algorithms

were proposed in an effort to improve upon the computation time. Federgruen and Tzur

(1991), Wagelmans, Van Hoesel and Kolen (1992) and Aggarwal and Park (1993)

presented improved algorithms that were able to solve the problem in ࣩ(T) and ࣩ(T log

T) time.

The heuristic approaches studied in this field lost their appeal with the emergence of

linear time algorithms just mentioned. Nevertheless, for completeness and future

reference, it is worth mentioning the Part Period Balancing (De Matteis and Mendoze,

1968), the Least Unit Cost heuristic (Gorham, 1968), and the Silver-Meal heuristic

(Silver and Meal, 1973) as the most significant heuristic approaches.

7

2.2. MULTI-ITEM UNCAPACITATED LOT-SIZING PROBLEM (MULSP)

Due to lack of joint resources (joint setups and capacity constraint), problems in this

class are solved for each item separately, as independent ULSP’s. Any technique used

for ULSP is applicable to these types of problems.

2.3. SINGLE-ITEM CAPACITATED LOT-SIZING PROBLEM (CLSP)

Adding a capacity constraint to ULSP extends the model into a CLSP. Capacity

limitations indicate a more realistic representation of production systems because they

are caused by scarce resources such as labor, machine capability, storage space etc.

They restrict production levels and complicate the mathematical structure of the

problem, often resulting in NP-hard problems. However, polynomial-time solutions

have been reported for problems with special cost structures and capacity assumptions.

The computational complexity of these problems have been studied by Florian, Lenstra

and Rinnooy Kan (1980) and Bitran and Yanasse (1982).

The constant capacity version of the CLSP has been mostly tackled with dynamic

programming and few polynomial-time algorithms have been developed for their

solutions. For example, Florian and Klein (1971) proposed an ࣩ(T4) time algorithm to

solve CLSP’s with concave cost functions. The algorithm has been based on the shortest

path method and allowed backlogging. Van Hoesel and Wagelmans (1996) improved

upon Florian and Klein’s algorithm and solved the problem in ࣩ(T3) time, under linear

holding cost assumption.

On the other hand, solution approaches proposed to solve non-polynomial problems

under time-varying capacity assumptions, have been usually based on dynamic

programming or branch-and-bound method. Baker et al. (1978) studied the problem

under the assumption of constant costs and suggested a tree search algorithm that runs

in ࣩ(2T) time. They concluded that their algorithm is practical for reasonably sized

problems but less efficient on highly constrained problems. Lambert and Luss (1982)

suggested to define capacity constraints as integer multiples of a common divisor and

8

solved the problem in ࣩ(N2T4) time, where N is the maximum multiplier. Efficient

results were reported for problems with relatively small N’s. Chung, Flynn and Lin

(1994) suggested an approach that combined dynamic programming with branch-and-

bound method.

The most general case of CLSP has been solved by a dynamic programming algorithm

developed by Chen, Hearn and Lee (1994). The problem assumed piecewise linear cost

functions that are neither convex nor concave and has been solved in pseudo-

polynomial time. Their algorithm has been the first to solve problems with more than 24

periods. In a more recent study, the same problem has been studied under general

holding costs assumption. The dynamic programming algorithm developed by Shaw

and Wagelmans (1998) has run in ࣩ(T2ݍത ҧ݀) time, where T is the number of periods, ݀ is

the average demand and ݍ is the average number of linear pieces required to represent

the production cost function.

The heuristic approaches to solve the capacitated LSP’s have been mostly suggested for

multi-item problems. Although some of these procedures can be applied to single-item

problems, they will be mentioned in the following section.

2.4. MULTI-ITEM CAPACITATED LOT-SIZING PROBLEM (MCLSP)

Most solution approaches that have been proposed to solve CLSP employed heuristic

methods since the problem has proved to be NP-hard by Florian, Lenstra and Rinnooy

Kan (1980). Even though the mixed integer programming formulation of these problems

can be solved to optimality using a branch-and-bound method, the computation time

increases significantly with the size of the problem. Therefore, few studies have been

concentrated on the polyhedral structure of the problem in search for stronger

formulations that reduces the solution time. Barany, Van Roy and Wolsey (1984) and

Leung, Magnanti and Vachani (1989) employed cutting plane methods to identify valid

inequalities by which the reformulation of the model has given a good approximation of

the convex hull of feasible solutions. Eppen and Martin (1987) used a variable

redefinition technique to obtain tighter linear relaxation for the MCLSP. Nevertheless,

9

solving the MCLSP optimally has not been sufficient to accelerate computational time,

which led the researchers to seek heuristic approaches.

Heuristic approaches have been classified into two different categories: i) single-

resource (common-sense) heuristics; and ii) mathematical programming based

heuristics. The former category is of greedy type and as suggested by Maes and Van

Wassenhove (1988) mainly include period-by-period heuristics (Eisenhut, 1975;

Lambrecht and Vanderveken, 1979; Dixon and Silver, 1981; Maes and Van

Wassenhove, 1986) and improvement heuristics (Dogramaci, Panayiotopoulos and

Adam, 1981; Karni and Roll, 1982; Gunther, 1987; Selen and Heuts, 1989; Trigeiro,

1989). The latter category use mathematical programming procedures such as

Lagrangian relaxation (Thizy and Van Wassenhove, 1985; Billington, McClain, and

Thomas 1983; Trigeiro, 1987; Trigeiro, Thomas and McClain, 1989; Diaby et al., 1992;

Millar and Yang, 1994) and column generation techniques based on set-covering and

set-partitioning approaches (Chen and Thizy, 1990; Cattrysse et al., 1993). Heuristics in

this category produce better quality solutions compared to the heuristics in single-

resource category and provide lower bound on the optimal solution. On the other hand,

single-resource heuristics are faster and much easier to comprehend.

2.5. COORDINATED UNCAPACITATED LOT-SIZING PROBLEM (CULSP)

The CULSP has been shown to be NP-complete by Arkin, Joneja and Roundy (1989).

Earlier solution approaches suggested for these problems are based on dynamic

programming (Zangwill, 1966; Veinott, 1969; Kalymon, 1972; Kao, 1979). However,

solution times of these algorithms increase significantly with the number of products

and with the number of time periods within the problem. Silver (1976) showed that pure

dynamic programming approaches were only suitable for small sized problems and that

heuristic approaches should be considered for larger problems. Ter Haseborg (1982)

studied the optimality conditions of joint ordering policies in an effort to reduce the

number of time periods considered by the algorithm.

10

Another research stream has been built on solving the problem as a series of

independent single-item W-W type problems that are coupled by major setup costs.

Erenguc (1988) proposed a combined branch-and-bound and dynamic programming

approach that solved problems with 12 time periods and 20 items to optimality. It has

been reported that the solution times were sensitive to major/minor setup cost ratio and

to the length of the planning horizon. Kirca (1995) considered the MIP formulation of

the CULSP introduced by Joneja (1990) and proposed to solve the dual of the LP

relaxation (a primal-dual heuristic) in order to obtain a strong lower bound on the

original problem. The problem is then solved to optimality using branch-and-bound.

Solutions to problems with 24 time periods and 50 items have been reported with this

procedure.

More recently, Robinson and Gao (1996) formulated the problem as an arborescent

fixed charge network programming and proposed a B&B procedure based on the dual

ascent, dual adjustment and primal construction concepts introduced by Erlenkotter

(1978). They have reported optimal solutions to problems with 12 (36) time periods and

40 (20) items. Computational results have shown the superiority of this procedure over

existing approaches.

Heuristic solution approaches that have been proposed to solve CULSP include: Fogarty

and Barringer (1987) which is based on the Silver and Kelle (1988) improvement

procedure; Atkins and Iyogun (1988) which utilized the Silver and Meal (1973)

heuristic; Joneja’s (1990) “cost-covering” heuristic; Iyogun (1991) that extends the part

period balancing method proposed by De Matteis and Mendoza (1968); Federgruen and

Tzur’s (1994) where a new greedy-add heuristic and a partitioning heuristic were

proposed to obtain UB and LB, respectively. The performance of heuristics mentioned

above has been evaluated by Boctor, Laporte and Renaud (2004). The models and

algorithms of CCLSP and CULSP, readers may refer to Robinson et al. (2009).

11

2.6. COORDINATED CAPACITATED LOT-SIZING PROBLEM (CCLSP)

The CCLSP is a generalization of CULSP and MULSP and therefore NP-Hard. No

exact solution procedure has yet been proposed to solve this type of problems.

However, few heuristic methods have been suggested for different model formulations

of CCLSP.

Erenguc and Mercan (1990) have considered a variant of CCLSP in which multiple

families were involved and no backlogging was allowed. They assumed capacity in

terms of time and hence, removed setup costs from the objective function. The proposed

method uses B&B together with a shifting heuristic that shifts the production to earlier

periods to avoid capacity violations.

In his dissertation, Lawrence (1999) have extended Robinson and Gao’s (1996)

arborescent fixed charge network programming formulation and has compared the

performance of two Lagrangian relaxation methods that were used with a B&B

procedure. He has concluded that relaxing the assignment constraint alone gives tighter

lower bounds compared to relaxing the assignment and capacity constraint together.

Altay (2001) proposed a cross decomposition procedure which unifies Benders

decomposition with Lagrangian relaxation. The algorithm works iteratively between the

primal sub-problem, which is generated by fixing the binary variables in the original

problem, and a dual sub-problem, which is obtained by relaxing the demand constraint

of the primal sub-problem, to attain UB and LB on the original problem. He has

concluded that the problem becomes substantially difficult to solve when the ratio of

joint setup cost to total cost increase. Robinson and Lawrence (2004) have also

suggested a Lagrangian heuristic for a single product family CCLSP with backlogging,

however, they were not able to provide satisfactory results. Gao and Robinson (2004)

proposed a Lagrangian dual-ascent based heuristic whose performance dropped with an

increase in capacity utilization and the joint setup cost. Federgruen, Meissner and Tzur

(2004) suggested a strict partitioning (SP) heuristic and a progressive interval/expanding

horizon (EH) heuristic. They have found that the performance of heuristic solutions is

12

sensitive to capacity utilization and time-between-orders (TBO) of both items and

product families.

13

3. PROBLEM DESCRIPTION AND SOLUTION METHODOLOGY

The CCLSP is highly encountered in production, procurement and transportation

problems in which a family of items shares a common resource. Effective coordination

of these resources presents opportunities for cost savings which make the CCLSP an

attractive research area. As stated in previous sections, the CCLSP is a generalization of

CULSP and MCLSP, and therefore, has a more complex structure entitled both to

capacity restrictions and to joint setups. More specifically, the CCLSP demonstrates a

production system in which a major (joint) setup cost is incurred when one or more

items in a product family are produced in addition to minor setup costs incurred for each

item produced. Our research extends the CCLSP by including multiple product families

as opposed to earlier research that considered a single product family.

3.1. PROBLEM DESCRIPTION

A close examination of existing model formulations indicate that the MIP formulation

and the arborescent network structure proposed by Robinson and Gao (1996) provide

more flexibility in including extensions to the problem. By taking advantage of this

property, Lawrence (1999) presented the capacitated version of the model. Since the

CCLSP in our study includes multiple product families and allows backlogging of

demand, we consider the arborescent network formulation to be the most suited to our

case.

The CCLSP in this research includes a set of product families each of which exclusively

consists of a number of items. The quantity and timing decisions for the production of

these items are to be determined over a planning horizon, consisting of a number of

equal-length time periods. Demand for an item belonging to a certain product family is

dynamic and assumed to be known. The production capacity in each time period is

assumed to be limited to a given value. For the sake of feasibility it is further assumed

that the total capacity over all periods is greater than or equal to the total demand. A

major setup cost is incurred when one or more items of a given product family are

14

produced, a minor setup cost is incurred for every item that is produced and a per unit

production cost are incurred individually for each item produced. In addition, when a

demand for an item in a certain period is satisfied from an earlier production period, a

per unit inventory holding cost is incurred and when a demand for an item in some

period is satisfied from a later production period, a per unit backlogging cost is incurred.

The following decision variables and parameters are defined for the problem:

Parameters:

T : Number of time periods in the planning horizon, t∈T, t´∈T.

J : Number of product families, j∈J.

Kj : Number of products in product family j, k∈Kj.

dkt´ : Demand for item k∈Kj in time period t∈T.

Sjt : Major setup cost of product family j∈J in time period t∈T.

skt : Minor setup cost of item k∈Kj in time period t∈T.

ckt : Per unit production cost of item k∈Kj in time period t∈T.

hktt´ : Per unit inventory holding cost of item k∈Kj produced in time period t∈T to

supply demand in time period t´∈T, t < t´.

bktt´ : Per unit backlogging cost of item k∈Kj produced in time period t∈T to supply

demand in time period t´∈T, t´ < t.

Cktt´ : The total unit variable cost for item k∈Kj in time period t∈T to serve demand

in time period t´∈T.

Pt : Available production capacity in time period t∈T.

Decision Variables:

Xktt´ : The fraction of demand for product k∈Kj in time period t´∈T that is supplied

from a production in time period t∈T.

Ykt : 1, if a minor setup is scheduled for product k∈Kj in time period t∈T and 0

otherwise.

Zjt : 1 if a major setup is scheduled for any of the products that belong to product

family j∈J in time period t∈T and 0 otherwise.

15

With these definitions, the total unit variable cost can be stated as

´௞௧௧ܥ ൌ ൜ܿ௞௧ ൅ ݄௞௧௧´ሺݐ´ െ ൏ ݐ ݂݅ ሻݐ ´ݐ
ܿ௞௧ ൅ ܾ௞௧௧´ሺݐ െ ൐ ݐ ݂݅ ሻ´ݐ ´ݐ

3.2. MATHEMATICAL FORMULATION

The problem is to determine which items to produce in each period so that the objective

function, which is the sum of production, setup and inventory holding costs, is

minimized while the demand for each item is satisfied. Thus, the mixed integer

programming formulation of the problem can be given as follows:

ሺPሻ Minimize ෍ ෍ ௝ܵ௧ ௝ܼ௧ ൅ ෍ ෍ ෍ ௞௧ݏ ௞ܻ௧ ൅ ෍ ෍ ෍ ෍ ´௞௧௧´݀௞௧´ܺ௞௧௧ܥ
௧´்א௧்א௞א௄ೕ௝א௃௧்א௞א௄ೕ௝א௃௧்א௝א௃

 Subject to ෍ ܺ௞௧௧´ ൒ ݆ ׊ 1 א ;ܬ ݇ א ;௝ܭ ´ݐ א ܶ (P‐1)
௧்א

 ෍ ෍ ෍ ݀௞௧´ܺ௞௧௧´
௧´்א

൑ ௧ܲ ݐ ׊ א ܶ (P‐2)
௞א௄௝௝א௃

 ܺ௞௧௧´ ൑ ௞ܻ௧ ׊ ݆ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ; ´ݐ א ܶ (P‐3)

 ௞ܻ௧ ൑ ௝ܼ௧ ׊ ݆ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ (P‐4)

 ܺ௞௧௧´ ൒ ݆ ׊ 0 א ;ܬ ݇ א ;௝ܭ ݐ א ܶ; ´ݐ א ܶ (P‐5)

 ௞ܻ௧ א ሼ0, 1ሽ ׊ ݆ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ (P‐6)

 ௝ܼ௧ א ሼ0, 1ሽ ׊ ݆ א ;ܬ ݐ א ܶ (P‐7)

Constraint set (P-1) guarantees that demand for each product in each time period will be

satisfied. Constraint set (P-2) insures total realized production does not exceed the

production capacity in each time period. Constraint set (P-3) prevents a minor setup

from occurring unless a major setup has taken place. Similarly, constraint set (P-4)

prohibits the production of an item unless a minor setup has been made. Constraint sets

(P-5), (P-6), and (P-7) include non-negativity and binary requirements.

We will use Benders partitioning procedure to develop an exact algorithm to solve (P).

16

3.3. SOLUTION METHODOLOGY

Benders (1962) proposed an alternative approach to solve mixed integer problems by

decomposing a given problem into smaller sub-problems by exploiting the natural

partitioning of variables. The basic idea is to solve relatively easier sub-problems

iteratively instead of solving a single large problem. In a mixed integer problem such as

CCLSP, the master problem (MP) and the sub-problem (SP) are readily formulated by

the natural partitioning of the variables into disjoint subsets of integer variables and

continuous variables.

In the following we first provide a brief review of Benders partitioning procedure as

interpreted by Taskin (2010), and then apply it to our problem.

3.3.1. Benders Partitioning Procedure

Consider the linear problem

ሺPሻ Minimize ்݂ݔ ൅ ݕ்݃

 Subject to ݔܣ ൅ ݕܤ ൌ ܾ

ݔ ൒ 0

where ݔ is a p-dimensional vector of continuous variables, and ݕ is a q-dimensional

vector of binary variables. (P) can be rewritten as

ሺMPሻ Minimize ்݃ݕ ൅ ሻݕሺݍ

where (ݕ)ݍ is the optimal value of

ሺSPሻ Minimize ்݂ݔ

 Subject to ݔܣ ൌ ܾ െ ݕܤ

ݔ ൒ 0

17

which defines a decomposition of (P) into a master problem (MP) and a sub-problem

(SP). If (SP) is unbounded for some ݕ, then so are (MP), and hence, (P). We therefore

assume (SP) is bounded for all y. Then (ݕ)ݍ can be found by solving the dual of (SP):

ሺD-SPሻ Maximize ሺܾ െ ሻ்δݕܤ

 Subject to ்ܣδ ≤ ݂

We observe that feasibility of (D-SP) is independent of ݕ, which means that if it is

infeasible for some ݕ, then it is infeasible for all ݕ, and hence (P) is infeasible. Thus we

assume (P), and hence (D-SP) is feasible, and characterize the feasible region of (D-SP)

by its extreme rays ሺρଵ,…,ρோሻ, and extreme points ሺπଵ,…,π௉ሻ. Clearly, if ሺܾ െ

ሻ்ρ௝ݕܤ ൐ 0 for an extreme ray ρ௝, then (D-SP) is unbounded for that particular y; and if

an extreme point π௜ maximizes (D-SP), then (SP) has a finite optimal value. It follows

that (SP) is equivalent to

ሺSPEሻ Minimize ݍ

 Subject to ሺܾ െ ݆ ሻTρ௝ ≤ 0ݕܤ ൌ 1, … , ܴ

 ሺܾ െ ሻTπ௜ݕܤ ݅ ݍ ≥ ൌ 1, … , ܲ

and hence, the original problem (P) is equivalent to

ሺPEሻ Minimize ்݃ݕ ൅ ݍ

 Subject to ሺܾ െ ݆ ሻTρ௝ ≤ 0ݕܤ ൌ 1, … , ܴ

 ሺܾ െ ሻTπ௜ݕܤ ݅ ݍ ≥ ൌ 1, … , ܲ

Benders procedure starts with a small subset of the constraints in (PE), and solves the

corresponding relaxed problem to obtain a candidate solution ሺכݍ, -ሻ. It then solves (Dכݕ

SP) with ݕ replaced by כݕ. Three cases are possible:

18

i) (D-SP) is unbounded. In this case, a new constraint of the type ሺܾ െ ሻ்ρ௝ ≤ 0ݕܤ

is generated, added to the constraint set of the relaxed problem, and the process

is repeated with the augmented constraint set.

ii) (D-SP) has optimal solution ݍሺכݕሻ, and ݍሺכݕሻ ൒ In this case, a constraint of .כݍ

the type ሺܾ െ ሻTπ௜ݕܤ is generated, added to the constraint set of the relaxed ݍ ≥

problem, and the process is repeated with the augmented constraint set.

iii) (D-SP) has optimal solution ݍሺכݕሻ with ݍሺכݕሻ ൌ ,כݍIn this case, ሺ .כݍ ሻ is theכݔ

optimal solution of (SP), and the process is terminated.

Constraints added in cases i) and ii) are known as Benders feasibility cuts and Benders

optimality cuts, respectively. Since there are a finite number of cuts, Benders procedure

converges to an optimal solution in a finite number of steps.

3.3.2. Application of Benders Procedure to CCLSP

When the original problem (P) is decomposed according to Benders partitioning

procedure, the following master problem, containing the integer variables ௞ܻ௧ and ௝ܼ௧, is

obtained:

ሺMPሻ Minimize ෍ ෍ ௝ܵ௧ ௝ܼ௧
௧்א௝א௃

൅ ෍ ෍ ෍ ௞௧ݏ ௞ܻ௧ ൅ ሺܻሻߠ
௧்א௞א௄௝௝א௃

 Subject to Y୩୲ ൑ Z୨୲ ׊ j א J; k א K୨; t א T (MP‐1)

 ௞ܻ௧ א ሼ0, 1ሽ ׊ ݆ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ (MP‐2)

 ௝ܼ௧ א ሼ0, 1ሽ ׊ ݆ א ;ܬ ݐ א ܶ (MP‐3)

ሺܻሻߠ ൒ 0 (MP‐4)

 ሼBender ′s optimality cutሽ ׊ dual extreme point (MP‐5)*

 ሼBender ′s feasibility cutሽ ׊ dual extreme ray (MP‐6)*

where θ ሺܻሻ is a decision variable that is a function of ܻ. The constraint sets (MP-5) and

(MP-6) are generated during iterations and are added later on to the (MP).

19

The ௞ܻ௧ values obtained from the (MP) are fixed to ܻ௞௧ and given as input to (SP). For a

given set of ௞ܻ௧ = ܻ௞௧, the sub-problem reduces to a linear program as shown below.

ሺSPሻ Minimize ෍ ෍ ෍ ෍ ´௞௧௧´݀௞௧´ܺ௞௧௧ܥ
௧´்א௧்א௞א௄௝௝א௃

 Subject to ෍ ܺ௞௧௧´ ൒ ݆ ׊ 1 א ;ܬ ݇ א ;௝ܭ ´ݐ א ܶ (SP‐1)
௧்א

 ෍ ෍ ෍ ݀௞௧´ܺ௞௧௧´
௧´்א

൑ ௧ܲ ݐ ׊ א ܶ (SP‐2)
௞א௄௝௝א௃

 ܺ௞௧௧´ ൑ ܻ௞௧ ׊ ݆ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ; ´ݐ א ܶ (SP‐3)

 ܺ௞௧௧´ ൒ ݆ ׊ 0 א ;ܬ ݇ א ;௝ܭ ݐ א ܶ; ´ݐ א ܶ (SP‐4)

The essence of Benders decomposition is the observation that the feasibility region of

the dual of (SP), denoted as (D-SP), is independent of the ܻ௞௧ passed from the (MP),

and hence, it is much more advantageous to solve the (D-SP) rather than (SP) itself.

Let ߭௞௧´, ߤ௧, and ߱௞௧௧´ be dual variables corresponding to constraint sets (SP-1), (SP-2),

and (SP-3). Then the (D-SP) can be written as follows:

ሺD-SPሻ Maximize ෍ ෍ ෍ ߭௞௧´ െ ෍ ௧ܲߤ௧
௧்א

െ ෍ ෍ ෍ ෍ ܻ௞௧߱௞௧௧´
௧´்א௧்א௞א௄௝௝א௃௧´்א௞א௄௝௝א௃

 Subject to ߭௞௧´ െ ݀௞௧´ߤ௧ െ ߱௞௧௧´ ൑ ݆ ׊ ´௞௧௧´݀௞௧ܥ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ; ´ݐ א ܶ

 ߭௞௧´ ൒ ݆ ׊ 0 א ;ܬ ݇ א ;௝ܭ ´ݐ א ܶ

௧ߤ ൒ ݐ ׊ 0 א ܶ

 ߱௞௧௧´ ൒ ݆ ׊ 0 א ;ܬ ݇ א ;௝ܭ ݐ א ܶ; ´ݐ א ܶ

Observe that for any given set of ܻ௞௧ the (D-SP) always has at least one feasible

solution (υ୩୲´ ൌ 0, μ୲ ൌ 0,ω୩୲୲´ ൌ 0), therefore the solution to a (D-SP) can either be

optimal or unbounded. An optimal solution refers to one of the extreme points

(߭௞௧´
௣ , ௧ߤ

௣, ߱௞௧௧´
௣) defined in constraint set (MP-5) and an unbounded solution refers to one

of the extreme rays (߭௞௧´
௥ , ௧ߤ

௥, ߱௞௧௧´
௥) defined in constraint set (MP-6).

20

When (D-SP) is unbounded for a given set of ܻ௞௧, (SP) is infeasible, thus (P) have no

feasible solution for the assigned set of ܻ௞௧. To avoid progressing in the unbounded

direction in the next iteration the extreme ray obtained from the unbounded (D-SP) is

used to generate the following Benders feasibility cut:

෍ ෍ ෍ ෍ ௞ܻ௧߱௞௧௧´
௧´்א௧்א௞א௄௝௝א௃

 ൒ ෍ ෍ ෍ ߭௞௧´ െ ෍ ௧ܲߤ௧
௧்א௧´்א௞א௄௝௝א௃

When (D-SP) has an optimal solution for a given set of ܻ௞௧, the objective function value

of (D-SP), provides an upper bound for the θ ሺܻሻ value in (P), thus the extreme point

obtained from (D-SP) is used to generate the following Benders optimality cut:

ሺܻሻߠ ൅ ෍ ෍ ෍ ෍ ௞ܻ௧߱௞௧௧´
௧´்א௧்א௞א௄௝௝א௃

 ൒ ෍ ෍ ෍ ߭௞௧´ െ ෍ ௧ܲߤ௧
௧்א௧´்א௞א௄௝௝א௃

Therefore, depending on the solution of the (D-SP) either an optimality cut or a

feasibility cut is generated and inserted to the (MP) iteratively to solve for a new set

of ܻ௞௧. The restricted (MP), called the (R-MP) which includes all the cuts that have

been generated up to that point can be written as follows:

ሺR-MPሻ Minimize ෍ ෍ ௝ܵ௧ ௝ܼ௧
௧்א௝א௃

൅ ෍ ෍ ෍ ௞௧ݏ ௞ܻ௧ ൅ ሺܻሻߠ
௧்א௞א௄௝௝א௃

 Subject to Y୩୲ ൑ Z୨୲ ׊ j א J; k א K୨; t א T

 ௞ܻ௧ א ሼ0, 1ሽ ׊ ݆ א ;ܬ ݇ א ;௝ܭ ݐ א ܶ

 ௝ܼ௧ א ሼ0, 1ሽ ׊ ݆ א ;ܬ ݐ א ܶ

ሺܻሻߠ ൒ 0

ሺܻሻߠ ൅ ෍ ෍ ෍ ෍ ௞ܻ௧߱௞௧௧´
௧´்א௧்א௞א௄௝௝א௃

൒ ෍ ෍ ෍ ߭௞௧´ െ ෍ ௧ܲߤ௧
௧்א௧´்א௞א௄௝௝א௃

݌ ׊ א ܲ

 ෍ ෍ ෍ ෍ ௞ܻ௧߱௞௧௧´
௧´்א௧்א௞א௄௝௝א௃

൒ ෍ ෍ ෍ ߭௞௧´ െ ෍ ௧ܲߤ௧
௧்א

ݎ ׊ א ܴ
௧´்א௞א௄௝௝א௃

where ܲ and ܴ are a subset of all extreme points and all extreme rays of (D-SP),

respectively. The solution obtained from (R-MP) provides a lower bound for the

21

optimal solution of (P). For a given set of ܻ௞௧, lower bound ሺܲሻ௅஻ and upper bound

ሺܲሻ௎஻ values for the optimal solution of (P) can be calculated as follows:

ሺPሻLB ൌ ሺR‐MPሻ୸
୩

ሺPሻUB ൌ ሺR‐MPሻ୸
୩ െ θ൫Y୩൯ ൅ ሺD‐SPሻ୸

୩

where for a specific problem A, ሺܣሻ௭
௞ denotes the optimal objective function value with

a given set of ܻ௞௧. Therefore, when the optimal solution of (D-SP) equals to the value of

θ ሺܻ௞ሻ for a given set of ܻ௞௧, the upper bound equals to lower bound, proving that we

have reached the optimal solution of (P).

The following algorithm represents the Benders approach:

Step 1: Initialization

 Select an optimality tolerance ε

 Set iteration counter k ← 0

 Set ሺPሻLB ← 0 and ሺPሻUB ← ∞

Step 2: Choose an initial pair of vectors ܼ௞ and ܻ௞ and solve (R-MP) to obtain θ ሺܻ௞ሻ

Step 3: Solve (D-SP) at ܻ = ܻ௞

 If (D-SP) is feasible at ܻ, get (SP)୸
୩

 If ሺሺPሻUB െ ሺPሻLBሻ/ሺPሻLB ൏ ε : Stop

 If ሺሺPሻUB െ ሺPሻLBሻ/ሺPሻLB ൐ ε: Generate Benders optimality cut and insert it

to (R-MP), k ← k + 1, go to Step 2.

 If (D-SP) is unbounded at ܻ: Generate Benders feasibility cut and add it to (R-

MP), k ← k + 1, go to Step 2.

22

3.4. EXPERIMENTAL DESIGN

The Bender’s algorithm given in the previous section has been programmed in Java and

run on a PC with Intel Pentium 2.00 GHz processor, 0.99 GB RAM and Windows XP

operating system.

To test the performance of our algorithm random data sets are generated with the

following design variables:

Planning horizon : 12 periods

Capacity utilization levels : 5%, 45%, 85%

Number of product families : J ∈ {1, 2, 3, 4, 6}

Number of items in each family : Kj = KJ, ∀ j ∈ J

 K1 ∈ {2, 4, 6, 8, 12, 16, 24}

 K2 ∈ {2, 3, 4, 6, 8, 12}

 K3 ∈ {2, 4, 8}

 K4 ∈ {2, 3, 4, 6}

 K6 ∈ {2, 4}

Kj’s are chosen such that some total number of items are common to several different

{J, KJ} combinations to provide a comparison of these combinations. For example, J =

2, K1 = K2 = K2 = 8 and J = 4, K1 = K2 = K3 = K4 = K4 = 4, both correspond to the same

total number of items (J * KJ = 16).

For each combination of design parameters, 12 sets of data are generated with

parameters chosen from normal distributions except inventory holding costs and

backlogging costs which are set to 1 and 3, respectively. Mean and standard deviation of

minor setup costs, total unit variable costs and demands, as well as the standard

deviation of major setup costs are the same for each data set, and are given in Table 3.1.

23

Table 3.41- Parameters of data sets

 Mean Standard Deviation

Sjt No. of item-dependent 36

sjkt 60 18

Cjktt´ 4 1

djkt´ 100 20

Means of major setup costs are number-of-items-dependent, and are adjusted so as to

have the same set of major setup cost to minor setup cost ratios as the data used in

Erenguc (1988), Robinson and Gao (1996), and Nezih (2001). This is achieved by using

the linear fit

ܵ ൌ ௃ܭ35 ൅ 50

The solution times of problems solved with Benders algorithm are then compared to

those solved with the standard mixed integer programming.

24

4. COMPUTATIONAL RESULTS & DISCUSSIONS

All problems are run using IBM’s commercial optimization package called ILOG

CPLEX Optimization Studio V12.4. The algorithm is coded using the lazy constraint

callback method of CPLEX which requires the pre-solve option to be turned off to

obtain accurate results. This is the only adjustment made on the default settings.

Table 4.1 - Computational results for 5% capacity utilization

Number of
product
families

Number of
items in J

Total
number
of items

Mean
Major
Setup
Cost

 Solution Time (seconds)

 CPLEX Our
Algorithm Min Max

1 2 2 120 0.1928 0.0703 0.0470 0.1100
1 4 4 190 0.2162 0.1199 0.0940 0.1560

1 6 6 260 0.2512 0.1615 0.1100 0.2500

1 8 8 330 0.2759 0.2175 0.1410 0.3130

1 12 12 470 0.3413 0.4206 0.2810 0.7030

1 16 16 610 0.3686 0.6978 0.4680 1.0940

1 24 24 890 0.5013 1.1263 0.7500 1.4070

2 2 4 120 0.2121 0.1367 0.0930 0.2030

2 3 6 155 0.2383 0.2083 0.1400 0.3120

2 4 8 190 0.2743 0.3149 0.2030 0.4690

2 6 12 260 0.3398 0.5821 0.3750 0.8900

2 8 16 330 0.3803 0.9103 0.5000 1.1710

2 12 24 470 0.4714 1.7108 1.0310 2.3130

3 2 6 120 0.2434 0.2241 0.1720 0.2970

3 4 12 190 0.3280 0.6274 0.3750 0.8600

3 8 24 330 0.4689 1.9099 1.3430 2.6710

4 2 8 120 0.2683 0.3423 1.1870 0.4680

4 3 12 155 0.3048 0.6095 0.3600 0.9220

4 4 16 190 0.3686 1.0664 0.7350 1.3120

4 6 24 260 0.4714 2.0871 0.9210 2.7180

6 2 12 120 0.3020 0.7005 0.4530 0.9840

6 4 24 190 0.4727 2.5323 1.8280 3.5620

CPLEX: Results obtained by solving the standard mixed integer programming problem in
CPLEX without decomposition.

25

Results of computations are given in Tables 4.1, 4.2 and 4.3 for capacity utilization

levels of 5, 45 and 85 percent, respectively. Comparison of the solution times with

respect to total number of items are provided by Figures 4.1, 4.2 and 4.3, respectively.

Table 4.2 - Computational results for 45% capacity utilization

Number of
product
families

Number of
items in J

Total
number
of items

Mean
Major
Setup
Cost

 Solution Time (seconds)

 CPLEX Our
Algorithm Min Max

1 2 2 120 0.2134 0.6602 0.3280 1.1870
1 4 4 190 0.2540 1.5703 0.5780 2.6410

1 6 6 260 0.2458 1.9465 1.2030 2.4990

1 8 8 330 0.2710 14.1984 5.0310 25.2170

1 12 12 470 0.3241 31.3943 10.9840 75.8400

1 16 16 610 0.3894 96.8075 23.4990 205.3960

1 24 24 890 0.4715 73.8791 12.9680 282.6580

2 2 4 120 0.2266 1.1067 0.5000 1.8750

2 3 6 155 0.2462 1.3086 0.7660 2.0780

2 4 8 190 0.2970 6.3891 3.2500 14.4680

2 6 12 260 0.3166 8.6480 3.4210 30.1390

2 8 16 330 0.3814 172.8830 14.2960 741.1490

2 12 24 470 0.4740 110.2091 21.8270 399.6510

3 2 6 120 0.2500 0.9778 0.7030 1.6250

3 4 12 190 0.3243 4.8214 2.0780 7.8590

3 8 24 330 0.4817 23.0703 15.9520 35.9360

4 2 8 120 0.2732 2.7523 1.1250 5.1560

4 3 12 155 0.3243 4.3629 2.9840 8.6870

4 4 16 190 0.3724 21.7281 4.8590 69.7780

4 6 24 260 0.4726 32.1363 13.5460 92.2610

6 2 12 120 0.3333 1.7485 1.3280 2.3280

6 4 24 190 0.4829 7.1884 5.4210 12.0000

CPLEX: Results obtained by solving the standard mixed integer programming problem in
CPLEX without decomposition.

Results indicate that for each fixed level of capacity utilization and fixed number of

product families solution time increases with increasing number of items with only few

exceptions. This result was anticipated since the problem size increases with increasing

number of items, which in turn, increases the time required to solve the problem.

26

A second observation is that for every data set, the solution time increases with

increasing levels of capacity utilization. This is consistent with existing results in the

literature. Low levels of capacity utilization is equivalent to larger production

capacities, as a result the problem approximates an uncapacitated problem. However,

higher levels of capacity utilization put tighter constraints, making the problem more

difficult to solve.

Table 4.3 - Computational results for 85% capacity utilization

Number of
product
families

Number
of items in

J

Total
number
of items

Mean
Major
Setup
Cost

 Solution Time (seconds)

 CPLEX Our
Algorithm Min Max

1 2 2 120 0.3709 2.9959 2.1870 3.9370
1 4 4 190 0.4284 9.8835 4.2180 16.3900

1 6 6 260 0.4220 18.6149 7.7340 75.1210

1 8 8 330 0.5454 30.3213 17.8890 59.1690

1 12 12 470 0.6563 56.0182 15.0000 135.9620

1 16 16 610 0.7617 67.4901 38.9050 92.8860

1 24 24 890 1.0028 97.8205 60.5280 172.0540

2 2 4 120 0.4612 38.5812 4.8120 210.5980

2 3 6 155 0.5220 50.1459 16.7180 138.4620

2 4 8 190 0.6586 137.513 19.3740 717.4000

2 6 12 260 0.7474 165.977 15.1550 543.4410

2 8 16 330 1.1263 233.484 78.6680 447.3830

2 12 24 470 0.8593 869.450 125.4150 2,357.5040

3 2 6 120 0.4946 56.1978 17.5770 125.9940

3 4 12 190 0.7735 433.270 27.5920 1,802.1580

3 8 24 330 1.5441 4,034.47 91.7450 18,985.1830

4 2 8 120 0.8826 219.107 24.2960 1,210.5470

4 3 12 155 0.9298 751.556 41.9510 4,876.5780

4 4 16 190 1.0727 2,554.17 175.8500 6,461.1850

4 6 24 260 1.3034 16,554.8 961.4040 41,790.1440

6 2 12 120 0.8841 769.571 118.2280 2,566.3530

6 4 24 190 1.2083 4,464.27 65.2930 37,339.3740

CPLEX: Results obtained by solving the standard mixed integer programming problem in CPLEX
without decomposition.

27

Figure 4.1 - Solution times for problems with J = 1 and CU = 5%, 45% and 85%

Figure 4.2 - Solution times for problems with J = 2 and CU = 5%, 45% and 85%

Figure 4.3 - Solution times for problems with J = 4 and CU = 5%, 45% and 85%

0.0

20.0

40.0

60.0

80.0

100.0

120.0

2 4 6 8 12 16 24

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Total number of items

CU=5%

CU=45%

CU=85%

0.0

200.0

400.0

600.0

800.0

1,000.0

4 6 8 12 16 24

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Total number of items

CU=5%

CU=45%

CU=85%

0.0

5,000.0

10,000.0

15,000.0

20,000.0

2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Total number of items

CU=5%

CU=45%

CU=85%

28

A third observation is concerned with the number of product families, which is the main

feature that distinguishes this study from earlier work. The comparisons are made on

problem sets with 45 and 85 percent capacity utilizations and for a total of 12 and 24

items. For 45 percent capacity utilization, solution times for problems with a total of 12

items decrease considerably with the division of items into multiple families (see Figure

4.4). A similar result is obtained for problems with a total of 24 items (see Figure 4.5).

Figure 4.4 - Solution times for problems with 12 items and CU = 45%

Figure 4.5 - Solution times for problems with 24 items and CU = 45%

For 45 percent capacity utilization, distributing the same number of items into multiple

families seems to be greatly beneficial. However, the benefit of distributing items into

product families seems to be lost for problems with 85 percent capacity utilization. For

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Number of product families

CPLEX

Our algorithm

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Number of product families

CPLEX

Our algorithm

29

these problems, the solution times increase as the number of product families increases

(see Figures 4.6 and 4.7). To draw a conclusion, a more detailed analysis on larger data

sets is required.

Figure 4.6- Solution times for problems with 12 items and CU = 85%

Figure 4.7 - Solution times for problems with 24 items and CU = 85%

Although the preliminary results obtained are not up to our expectations, solution times

can be improved by making use of valid inequalities that reduces the solution space.

One such inequality is obtained by defining the minimum number of time periods for

which production must take place for each item. It is calculated by dividing the total

demand for an item by the capacity of each period. Following the same logic, this valid

inequality can also be used to define the minimum number of production periods of

0.0

200.0

400.0

600.0

800.0

1,000.0

1 2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Number of product families

CPLEX

Our algorithm

0.0

5,000.0

10,000.0

15,000.0

20,000.0

1 2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Number of product families

CPLEX

Our algorithm

30

each product family. The effect of the valid inequality defined for each item (VI-1) was

tested on problems with a total of 12 items with 45 and 85 percent capacity utilizations.

As can be seen from Figures 4.8 and 4.9, the VI-1 shows improvement with respect to

solution time for all data sets with 45 percent capacity utilization, but for only two data

sets with 85 percent capacity utilization.

Figure 4.8 - Solution times with V.I.’s for problems with 12 items and CU=45%

*VI-1: Minimum number of production periods defined for each item.

**VI-2: Minimum number of production periods defined for each product family.

Figure 4.9 - Solution times with V.I.’s for problems with 12 items and CU=85%

*VI-1: Minimum number of production periods defined for each item.

**VI-2: Minimum number of production periods defined for each product family.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Number of product families

CPLEX

Our algorithm

Our algorithm
with VI‐1*
Our algorithm
with VI‐2**

0.0

500.0

1,000.0

1,500.0

2,000.0

2,500.0

1 2 3 4 6

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Number of product families

CPLEX

Our algorithm

Our algorithm
with VI‐1*

Our algorithm
with VI‐2**

31

Table 4.4 - Improvements with the V.I.’s for problems with J=4, KJ=3 and CU=45%

Problem
Number

 Solution Time (seconds) Percent Improvement
 without VI with VI-1 With VI-2 with VI-1* With VI-2**

1 3.1090 3.3750 2.5000 -8.56% 19.59%
2 5.7350 3.6720 2.0940 35.97% 63.49%
3 2.9840 2.4840 5.6090 16.76% -87.97%
4 4.2500 2.5310 1.8120 40.45% 57.36%
5 3.2340 3.5940 3.0310 -11.13% 6.28%
6 8.6870 4.7970 1.5930 44.78% 81.66%
7 3.3900 3.5310 3.1400 -4.16% 7.37%
8 3.8900 3.9690 2.2500 -2.03% 42.16%
9 6.6400 3.1410 2.5310 52.70% 61.88%

10 3.3440 3.1710 1.7810 5.17% 46.74%
11 4.0460 3.2820 2.3900 18.88% 40.93%
12 3.0460 3.1090 3.4690 -2.07% -13.89%

Average 4.3629 3.3880 2.6833 22.35% 38.50%

*VI-1: Minimum number of production periods defined for each item.

**VI-2: Minimum number of production periods defined for each product family.

Table 4.5 - Improvements with the V.I.’s for problems with J=4, KJ=3 and CU=85%

Problem
Number

 Solution Time (seconds) Percent Improvement
 without VI with VI-1 With VI-2 with VI-1* With VI-2**

1 250.8310 1,378.2100 427.2900 -449.46% -70.35%
2 45.1070 103.2450 101.7450 -128.89% -125.56%
3 779.4750 5,542.8100 1252.8110 -611.10% -60.72%
4 320.0770 408.7760 37.3260 -27.71% 88.34%
5 1,538.6240 601.4540 101.0410 60.91% 93.43%
6 82.6360 95.4950 91.3390 -15.56% -10.53%
7 503.4430 381.2150 607.2810 24.28% -20.63%
8 146.5700 265.7680 60.5290 -81.32% 58.70%
9 4,876.5780 15,227.2630 3273.4260 -212.25% 32.87%

10 41.9510 113.0570 128.3220 -169.50% -205.89%
11 244.1120 274.1270 804.5060 -12.30% -229.56%
12 189.2710 1,189.5950 665.8100 -528.51% -251.78%

Average 751.5563 2,131.7513 629.2855 -183.64% 16.27%

*VI-1: Minimum number of production periods defined for each item.

**VI-2: Minimum number of production periods defined for each product family.

32

On the other hand, the effect of the valid inequality defined for each product family (VI-

2) was tested on problems with 4 product families and a total of 12 items with 45 and 85

percent capacity utilizations. It is observed that the valid inequality defined for each

product family provides greater reductions in solution times than does the valid

inequality defined for each item. The percentage improvements achieved with both

valid inequalities are given in Tables 4.4 and 4.5.

33

5. CONCLUSION AND FUTURE WORK

We have developed an exact solution algorithm for solving CCLSP with multiple

product families. The algorithm utilizes Benders decomposition applied to a mixed

integer programming problem, and can be used as an alternative to the classical one-

shot solution method. In this aspect, work completed in this thesis constitutes a unique

study as all previous studies with respect to CCLSP considered heuristic approaches.

Preliminary results obtained show that our algorithm is not as effective as commercial

optimization software with regard to the solution time. This is partly due to

incorporation of special techniques developed over the years to improve the

performance of the commercial optimization software, namely CPLEX. Additional

valid inequalities may help reduce the solution time by shrinking the feasibility set,

hence cutting off the number of candidate solutions. One such inequality is provided as

an example to show how solution times can be reduced drastically. Further study to

obtain new valid inequalities is warranted. In addition, Benders decomposition

acceleration techniques, such as generating pareto optimal cuts, increasing the density

of the cuts, etc. may be analyzed.

Some practical-size problems prove challenging for CPLEX, mainly in terms of

memory requirements, in that CPLEX terminates without even finding a feasible

solution. By exchanging the burden on memory requirement with the time of going

through several iterations, the solution method proposed in this study may be useful in

obtaining at least a feasible solution, if not the optimal one.

In conclusion, with several possibilities for improvement in sight, our algorithm remains

a promising approach to solving large-scale CCLSP.

34

REFERENCES

Books

Taskin, Z.C., 2010. Benders decomposition. Wiley Encyclopedia of Operations
Research and Management Science. Wiley.

35

Periodicals

Aggarwal, A. and Park, J.K., 1993. Improved algorithms for economic lot sizing.
Operations Research. 41 (3), pp. 549-571.

Arkin, E., Joneja, D. and Roundy, R., 1989. Computational complexity of uncapacitated

multi-echelon production planning problems, Operations Research Letters. 8 (2),
pp. 61-66.

Atkins, D. and Iyogun, P., 1988. A heuristic with lower bound performance guarantee

for the multi-product lot-size problem. IIE Transactions. 20 (4), pp. 369–373.

Baker, K.R., Dixon, P., Magazine, M.J. and Silver, E.A., 1978. An algorithm for the

dynamic lot-size problem with time-varying production capacity constraints.
Management Science. 24, pp. 1710-1720.

Barany, I., Van Roy, T.J. and Wolsey, L.A., 1984. Strong formulations for multi-item

capacitated lot sizing. Management Science. 30 (10), pp. 1255-1261.

Benders, J.F., 1962. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik. 4, pp.238-252.

Billington, P.J., McClain, J.O. and Thomas, L.J. 1983. Mathematical programming

approaches to capacity-constrained MRP systems: review, formulation and
problem reduction. Management Science. 29 (10), pp. 1126-1141.

Bitran, G.R. and Yanasse, H.H., 1982. Computational complexity of the capacitated lot-

size problem. Management Science. 28 (10), pp. 1174-1185.

Boctor, F. F., Laporte, G. and Renaud, J., 2004. Models and algorithms for the

dynamic-demand joint replenishment problem. International Journal of
Production Research. 42 (13), pp. 2667-2678.

Brahimi, N., Dauzere-Peres, S., Najid, N.M. and Nordli, A., 2006. Single item lot sizing

problems. European Journal of Operational Research. 168 (1), pp. 1-16.

Cattrysse, D., Salomon, M., Kuik, R. and Van Wassenhove, L.N., 1993. A dual ascent

and column generation heuristic for the discrete lotsizing and scheduling problem
with setup times. Management Science. 39 (4), pp. 477-486.

Chen, H.D., Hearn, D. and Lee, C.Y., 1994. A new dynamic programming algorithm for

the single item capacitated dynamic lot size model. Journal of Global
Optimization. 4, pp. 285-300.

Chen, W.H. and Thizy, J.M., 1990. Analysis of relaxations for the multi-item

capacitated lot-sizing problem. Annals of Operations Research. 26 (1), pp. 29-72.

36

Chung, C., Flynn, J. and Lin, C.M., 1994. An effective algorithm for the capacitated
single item lot size problem. European Journal of Operational Research. 75, pp.
427-440.

De Matteis, J.J. and Mendoze, A.G., 1968. An economic lot sizing technique. IBM

System Journal. 7, pp. 30-46.

Diaby, M., Bahl, H.C., Karwan, M.H. and Zionts, S., 1992. A Lagrangian relaxation

approach for very-large-scale capacitated lot-sizing. Management Science. 38 (9),
pp. 1329-1340.

Dixon, P.S. and Silver, E.A., 1981. A heuristic solution procedure for the multi-item,

single-level, limited capacity, lot-sizing problem. Journal of Operations
Management. 2 (1), pp. 23-39.

Dogramaci, A., Panayiotopoulos, J.C. and Adam, N.R., 1981. The dynamic lot-sizing

problem for multiple items under limited capacity. AIIE Transactions. 13 (4), pp.
294-303.

Eisenhut, P.S., 1975. A dynamic lot sizing algorithm with capacity constraints. AIIE

Transactions. 7 (2), pp. 170-176.

Eppen, G.D. and Martin, R.K., 1987. Solving multi-item capacitated lot-sizing problems

using variable redefinition. Operations Research. 35 (6), pp. 832-848.

Erenguc, S.S., 1988. Multi-product dynamic lot-sizing model with coordinated

replenishments. Naval Research Logistics. 35 (1), pp. 1-22.

Erenguc, S.S. and Mercan, H.M., 1990. A multifamily dynamic lot-sizing model with

coordinated replenishments. Naval Research Logistics. 37 (4), pp. 539-558.

Erlenkotter, D., 1978. A dual-based procedure for uncapacitated facility location.

Operations Research. 26 (6), pp. 992-1009.

Evans, J.R., 1985. An efficient implementation of the Wagner-Whitin algorithm for

dynamic lot-sizing. Journal of Operations Management. 5 (2), pp. 229-235.

Federgruen, A. and Tzur, M., 1991. A simple forward algorithm to solve general

dynamic lot sizing models with n periods in O(n log n) or O(n) time. Management
Science. 37 (8), pp. 909-925.

Federgruen, A. and Tzur, M., 1994. The joint replenishment problem with the time-

varying costs and demands: Efficient, asymptotic and ߝ-optimal solutions.
Operations Research. 42 (6), pp. 1067–1086.

Federgruen A., Meissner, J. and Tzur, M., 2007. Progressive interval heuristics for
multi-item capacitated lot-sizing problems. Operations Research. 55 (3), pp. 490-
502.

37

Florian, M. and Klein, M., 1971. Deterministic production planning with concave costs
and capacity constraints. Management Science. 18 (1), pp. 12-20.

Florian, M., Lenstra, J.K., Rinnooy Kan, A.H.G., 1980. Deterministic production

planning: algorithms and complexity. Management Science. 26, pp. 669-679.

Fogarty, D. and Barringer, R., 1987. Joint order release decisions under dependent

demand. Production and Inventory Management. 28 (1), pp. 55-61.

Gorham, T., 1968. Dynamic order quantities. Production and Inventory Management.

20, pp. 75-81.

Gunther, H.O., 1987. Planning lot sizes and capacity requirements in a single stage

production system. European Journal of Operational Research. 31 (2), pp. 223-
231.

Iyogun, P., 1991. Heuristic methods for the multi-product dynamic lot size problem.

Journal of the Operational Research Society. 42 (10), pp. 889-894.

Joneja, D., 1990. The joint replenishment problem: new heuristics and worst case

performance bounds. Operations Research. 38 (4), pp. 711-723.

Kalymon, B.A., 1972. A decomposition algorithm for arborescence inventory systems.

Operations Research. 20 (4), pp. 860-874.

Kao, E.P.C., 1979. A multi-product dynamic lot-size model with individual and joint

setup costs. Operations Research. 27 (2), pp. 279-289.

Karimi, B., Fatemi Ghomi, S.M.T. and Wilson, J.M., 2003. The capacitated lot sizing

problem: a review of models and algorithms. Omega. 31 (5), pp. 365-378.

Karni, R. and Roll, Y., 1982. A heuristic algorithm for the multi-item lot-sizing problem

with capacity constraints. AIIE Transactions. 14 (4), pp. 249-256.

Kirca, O., 1995. A primal-dual algorithm for the dynamic lotsizing problem with joint

set-up costs. Naval Research Logistics. 42 (5), pp. 791-806.

Lambert, A. and Luss, H., 1982. Production planning with time-dependent capacity

bounds. European Journal of Operational Research. 9, pp. 275-280.

Lambrecht, M.R. and Vanderveken, H., 1979. Heuristic procedures for the single

operation, multi-item loading problem. AIIE Transactions. 11 (4), pp. 319-326.

Leung, J.M.Y., Magnanti, T.L. and Vachani, R., 1989. Facets and algorithms for

capacitated lot sizing. Mathematical Programming. 45, pp. 331-359.

38

Maes, J. and Van Wassenhove, L.N., 1986. A simple heuristic for the multi item single
level capacitated lotsizing problem. Operations Research Letters. 4 (6), pp. 265-
273.

Maes, J. and Van Wassenhove, L.N., 1988. Multi-item single-level capacitated dynamic

lot-sizing heuristics: a general review. The Journal of the Operational Research
Society. 39 (11), pp. 991-1004.

Millar, H.H. and Yang, M., 1994. Lagrangian heuristics for the capacitated multi-item

lot-sizing problem with backordering. International Journal of Production
Economics. 34 (1), pp. 1-15.

Robinson, E.P. and Gao, L.L., 1996. A dual ascent procedure for multiproduct dynamic

demand coordinated replenishment with backlogging. Management Science. 42
(11), pp. 1556-1564.

Robinson, P., Narayanan, A. and Sahin, F., 2009. Coordinated deterministic dynamic

demand lot-sizing problem: a review of models and algorithms. Omega. 37 (1),
pp. 3-15.

Robinson, E.P.Jr. and Lawrence, F.B., 2004. Coordinated capacitated lot-sizing problem

with dynamic demand: a Lagrangian heuristic. Decision Sciences. 35 (1), pp. 25-
54.

Shaw, D.X. and Wagelmans, A.P., 1998. An algorithm for single-item capacitated

economic lot sizing with piecewise linear production costs and general holding
costs. Management Science. 44 (6), pp. 831-838.

Selen, W.J. and Heuts, R.M., 1989. A modified priority index for Gunther’s lot-sizing

heuristic under capacitated single stage production. European Journal of
Operational Research. 41 (2), pp. 181-185.

Silver, E.A. and Meal, H.C., 1973. A heuristic for selecting lot size quantities for the

case of a deterministic time-varying demand rate and discrete opportunities for
replenishment. Production and Inventory Management. 14, pp. 64-74.

Silver, E.A., 1979. Coordinated replenishment of items under time-varying demand:

dynamic programming formulation. Naval Research Logistics Quarterly. 26 (1),
pp. 141-151.

Silver, E.A. and Kelle, P., 1988. More on ‘Joint order release decisions under dependent

demand’. Production and Inventory Management. 29 (2), pp. 71–72.

Ter Haseborg, F., 1982. On the optimality of joint ordering policies in a multi-product

dynamic lot size model with individual and joint set-up costs. European Journal
of Operational Research. 9 (1), pp. 47-55.

39

Thizy, J.M. and Van Wassenhove, L.N., 1985. Lagrangian relaxation for the multi-item
capacitated lot-sizing problem: a heuristic implementation. IIE Transactions. 17
(4), pp. 308-313.

Trigeiro, W.W., 1987. A dual-cost heuristic for the capacitated lot sizing problem. IIE

Transactions. 19 (1), pp. 67-72.

Trigeiro, W.W., 1989. A simple heuristic for lot sizing with setup times. Decision

Sciences. 20 (2), pp. 294-303.

Trigeiro, W.W., Thomas, L.J. and McClain, J.O., 1989. Capacitated lot sizing with

setup times. Management Science. 35 (3), pp. 353-366.

Van Hoesel, C.P.M. and Wagelmans, A.P.M., 1996. An O(T3) algorithm for the

economic lot-sizing problem with constant capacities. Management Science. 42,
pp. 142-150.

Veinott, A.F.Jr., 1969. Minimum concave-cost solution of Leontief substitution models

of multi-facility inventory systems. Operations Research. 17 (2), pp. 262-291.

Wagelmans, A., Van Hoesel, S. and Kolen, A., 1992. Economic lot sizing: an O(n log n)

algorithm that runs in linear time in the Wagner-Whitin case. Operations
Research. 4 (S1), pp. S145-S156.

Wagner, H.M. and Whitin, T.M., 1958. Dynamic version of the economic lot size

model. Management Science. 5 (1), pp. 89-96.

Zangwill, W.I., 1966. A deterministic multiproduct, multi-facility production and

inventory model. Operations Research. 14 (3), pp. 486-507.

40

Other Publications

Altay, N., 2001. A cross decomposition algorithm for the capacitated dynamic demand
coordinated replenishment problem. Ph.D. dissertation. Texas: Texas A&M
University.

Lawrence, F.B., (1999). A dual solution procedure for the capacitated dynamic demand

coordinated replenishment problem. Ph.D. dissertation, Texas: Texas A&M
University.

Rizk, N. and Martel, A., 2001. Supply chain flow planning methods: a review of the lot-

sizing literature. Working paper, DT-2001-AM-1, Université Laval (Canada).

Gao, L.L. and Robinson, E.P., 2004. A Lagrangian/dual-ascent based heuristic for the

capacitated coordinated replenishment with dynamic demand and backlogging.
Working paper, Hofstra University, Long Island, NY.

	459850_Tez1.pdf
	459850_Tez2.pdf
	459850_Tez.pdf

