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ABSTRACT 

EFFICIENT COMBINATIONAL CIRCUITS FOR CONSTANT DIVISION 

Bayram, Anıl 

Electrical and Electronics Engineering 

Thesis Supervisor: Assoc. Prof. H. Fatih Uğurdağ 

 

September 2013, 54 Pages 

Division by an integer constant is an operation that occurs so often to justify a 

customized implementation for it. Many systems that require such divisions mostly 

demand exact integer quotient and exact integer remainder results instead of a single 

fractional result. Besides, the constant division operations are usually required to 

process rapid and repeated calculations in the system, so the performance parameters 

for constant division gets more importance. This study examines the division circuits 

for constant integer dividers yielding an integer quotient with an integer remainder (i.e. 

Euclidean division) and proposes a fast Look-Up Table (LUT) based combinational 

constant division method with a binary tree like approach. Although general division 

is a laborious arithmetic operation, constant integer division provides us the luxury of 

knowing the divisor at compile time. For integer division, the division circuit is 

uniquely generated for division with a single integer constant. Given the divisor 

beforehand, LUTs can be used to store the results at compile time. But as the dividend 

bit-width increases, the LUT sizes increase exponentially, thus resulting an area-

inefficient solution. This research introduces a binary tree approach to LUT-based 

integer division models. The method greatly reduces calculation time, increasing the 

run-time efficiency. The timing improves over 30% for input bit widths of  24 bits 

when compared to the latest LUT-based method and gets better as the bit width 

increases. The study also includes a detailed comparison between LUT based methods 

and other known integer division methods.  

Keywords:  Computer Arithmetic, HDL, Logic Synthesis, RTL Generation, Constant 

Division, LUT 
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ÖZET 

SABİT SAYILARLA BÖLME İÇİN ETKİN BİRLEŞİMSEL DEVRELER 

Bayram, Anıl 

Elektrik - Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. H. Fatih Uğurdağ 

 

Eylül, 54 Sayfa 

Sabit sayılarla bölme işlemi, özel bir işlem operatörü aranmasını gerektirecek kadar 

sıklıkla karşılaşılan bir problemdir. Bu işlemi gerektiren sistemlerin çoğu işleyiş 

açısından kesirli tek bir sonuç yerine ayrı birer bölüm ve kalan içeren sonuçlar 

gerektirirler. Bununla beraber, sabit sayılarla bölme işlemlerinin sistem içerisinde 

genellikle hızlı ve tekrarlı bir şekilde çalışıyor olmaları beklenir. Bu çalışma, sabit tam 

sayılarla bölme ve sonuç olarak yine bir tamsayı bölüm ve tamsayı kalan elde eden 

sistemleri konu alır ve bunun yanında sayı tablosu tabanlı yeni bir sabit sayılarla bölme 

metodu sunar. Genel bölme işlemi her ne kadar zahmetli olsa da, sabit sayılarla bölme 

durumu bize bölen sayısını önceden biliyor olma lüksünü sağlayıp buna bağlı 

performans iyileştirmelerine olanak tanır. Dijital ortamda sayı tabloları, karmaşık 

hesaplamalardan kurtulabilmek için derleme zamanında yapılabilecek olan 

hesaplamaları önceden yaparak hafızada saklayabilmemizi sağlar. Sabit sayılarla 

bölme durumunda da bölen sayıyı biliyor olduğumuz için sonuçları sayı tablolarında 

saklama seçeneğimiz vardır. Fakat bütün olası girdiler için bölüm sonucunu sayı 

tablolarında saklamak devre kaynakları kullanımını olumsuz bir şekilde arttıracak, ve 

özellikle geniş bit uzunluğunda olan devreler için bu yöntemin uygulanabilirliğini 

imkansız kılacaktır. Bu çalışmada, geniş bit genişliklerinde de sayı tabloları 

yönteminin hızından faydalanabilmek için yeni bir yöntem sunuyor ve bu yöntemle en 

yakın rakip yönteme kıyasla 30% oranında bir hız artışı sağlabildiğini, devre 

kaynakları kullanımının ise hala makul seviyelerde tutulabildiğini gösteriyoruz. Son 

olarak değer aralıkları arasında seçim yapabilen, en uygun donanım tanımlama dili 

kodunu oluşturan bir RTL üreteci sunuyoruz. 

Anahtar Kelimeler : Bilgisayar Aritmetiği, Donanım Tanımlama Dilleri, Lojik 

Sentezi, RTL üreteçleri, Sabit sayılara bölme, Başvuru Çizelgesi  
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1. INTRODUCTION 

Division is the most laborious of all basic arithmetic operations. It is encountered in 

almost every algorithm, therefore achieving optimal division circuits has been subject 

to numerous studies. On the other hand, constant integer division is a special form of 

division where the divisor is known at compile time. Constant integer dividers divide 

their input dividend only by one constant divisor that they are built for. 

The division operation is often encountered as a “division by an integer constant” form 

and such divisions are usually rapid and repeated sequence of operations. Therefore, 

the timing performance is more important in constant division circuits, justifying the 

necessity for a special operator for it. 

Many types of special purpose systems require rapid and repeated division by a set of 

known constant divisors. Some are; 

i. Base conversions, 

ii. Scaling for Normalization, 

iii. Exponent alignment in non-binary bases, 

iv. Address mappings, 

v. Interleaved memory schemes (usually with prime number of modules), 

vi. Element locating in multidimensional lists, 

vii. Mathematical equations in many algorithms (i.e. algorithms for network traffic 

processing) 

Almost all systems that require division by a constant integer use it for data sorting or 

mapping, therefore they require the output in the form of an integer quotient with an 

integer remainder instead of a single fractional result with an accuracy up to a specified 

digit. Many studies in the literature output fractional results; there are other studies 

that is focused on correctly rounding the numbers to get the quotient and the remainder, 

introducing an extra burden to the overall timing performance. The best timing results 

are achieved in LUT based methods, but as the dividend gets larger, the access time of 

LUTs increases and their chip area becomes unreasonably large.  
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1.1 SCOPE 

In this thesis we analyze the constant integer division algorithms with exact integer 

quotient and remainder results. The constant division system that is considered in this 

study is shown in Figure 1.1.  

 

 

  

 

 

 

 

A constant division algorithm is introduced which outputs an integer quotient and an 

integer remainder with an efficient use of Look-Up Tables (LUT)  by a binary tree like 

approach. The proposed method is named as “Binary Tree Based Constant Division” 

(BTCD). 

Some constant division algorithms with fractional results are also considered and 

mentioned as long as their outputs can be further processed to form an exact quotient 

and an exact remainder. 

The HDL generators for constant division methods and optimization techniques with 

generators are also included in the scope of this study. 

 

 

𝑁𝑞 
𝑁𝑑  

Dividend Quotient 

Remainder 

𝑁𝑟  

Division Circuit 

by ′𝒅′ 

Figure 1.1 The Division System by "d" 
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1.2 GOAL OF THE THESIS 

The main purpose of this study is to introduce a LUT based constant division method 

which has better timing performance than its competitors especially in divisions of 

dividends with large bit widths. The important thing is that while achieving a smaller 

clock period, we must assure that the occupied chip area remains reasonable. 

Along with the algorithm, this study will introduce a different type of categorization 

for constant integer division methods together with a good comparison in the selected 

category. 

The last aim of this study to set a new method for HDL generators where the HDL 

generator can be programmed to select an optimal implementation of the method 

within a given flexibility range.  

1.3 OUTLINE OF THE THESIS 

Chapter 2 consists of a literature survey. Brief explanations of some selected methods 

are given. A detailed explanation of our only competitor, the Table Based Constant 

Division Method (TBCD) is given. 

In Chapter 3, our suggested method, BTCD is presented.  

Chapter 4 is about how we implemented, verified, and synthesized the circuits. The 

HDL generators scripts, verification scripts, and our iterative synthesis script will be 

explained in detail. 

Chapter 5 includes the results that we gathered with comparisons of BTCD and TBCD 

methods in terms of area and timing. In Chapter 5, the experimental results are 

discussed. 

The last chapter concludes the overall process and includes suggestions on how to 

choose the right constant division method as well as possible future work about the 

subject.  
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2. PREVIOUS WORK 

Division by a constant integer in hardware has always been considered as an issue and 

the search for a special operator for it has always been an active research area. This is 

because the systems that require constant division usually need rapid calculations 

which usually exceed maximum speeds in case a regular division scheme is used. On 

the other hand, the designer has the advantage of knowing the divisor at compile time, 

so all the studies are based on this advantage. 

The problem has been examined in many studies so far with good surveys (Srinivasan 

and Petry, 1994; Doran, 1995; Schwarzbacher, 2000), but comparisons of these studies 

in means of timing, area, or power consumption have been left unclear because of the 

classification problem of these methods. Every method processes a constant division, 

but their output formats and effective bit width ranges are different.  

2.1 CLASSIFICATION OF CONSTANT DIVISION ALGORITHMS 

A DSP system may require constant integer division with a fractional output, having a 

pre-specified error tolerance. On the other hand, an address mapping operation may 

require an address generation solution with rapid constant divisions in which case an 

exact quotient and an exact remainder will be desired as the output. The desired output 

format of the constant division system is therefore an important property.  

Certain methods can be more efficient in a specific input bit-width range, but they lose 

their effectiveness outside that range. Likewise, there can be better methods for a 

specific divisor, or for a property that a group of divisors possess. 
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The performance of each method may differ for the requirements of the process that it 

will be used in. These requirements are: 

i. The format and the error tolerance of the desired output, 

ii. The input bit-width of the system (dividend size), 

iii. The divisor itself. 

Getting a fractional result with an error margin (previously known and accepted) is an 

easier job than getting exact quotient and remainder results. (i. e. Euclidean division) 

There are some algorithms that promise to give exact quotients but not exact 

remainders. The remainders for such systems can be obtained with reverse 

multiplication by the quotient and subtraction from the dividend; but it will introduce 

an extra delay to the circuit. Therefore the format of the output is important and must 

be carefully analyzed when conducting performance comparisons.  

As the input bit-width increases the methods tend to become slower. But some methods 

are targeted for larger bit-widths and some are targeted for small width operations. The 

performance comparison of an algorithm must be evaluated within a specific input    

bit-width range for a healthier judgment. 

The pre-determined constant divisor itself also has effect on the performance. Some 

algorithms are applicable for all integer divisors. But some methods are only for a 

single divisor or a set of divisors that share a specific property. The simplest example 

to this would be a divisor that is a power of 2. In such a case we would just shift the 

dividend to right by the amount of power. Another example is the divisors of the form 

2𝑛 ± 1, which will be mentioned later.  
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There are many constant division algorithms based on different methods. All have 

different performance results but they are all suited for different purposes. Figure 2.1 

shows the main bases of methods for constant divisors. 

 

Figure 2.1 Constant Division Methods 

  

Methods that use multiplication by inverse and methods that use series expansion 

techniques are usually well suited for systems where a fractional result with an error 

tolerance is acceptable. On the other hand, LUT based systems are good for exact 

quotient and remainder results with zero error tolerance. 
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2.2 METHODS 

In this section some of the selected works are represented. The works will be briefly 

summarized and their results will be commented on. 

Srinivasan and Petry (1994) presented a survey on constant division algorithms, 

covering 7 different methods that are shown in Table 2.1. They mostly focused on 

methods that are applicable to divisors with specific properties, especially the ones in 

form 2𝑛 ± 1 and the divisor 10 which is used for BCD conversion. The main 

contribution of this work is the suggested comparison technique which is shown in 

Table 2.1. 

Table 2.1 Comparison Table of Srinivasan and Petry 

REF. 
Divisor 

Domain 

Quotient 

Determination for 

nonzero remainders 

Remainder 

Determination 

Order of quotient 

digit generation 

(high/low-order 

digits first) 

[1] 𝑑 = 10 Exact divides only Not computed Low to high 

[2] 𝑑 = 10 
Single subtraction of 

transformed remainder 

Must decode 

transformed 

remainder 

Low to high 

[3] 2𝑛 ± 1 
Single subtraction of 

transformed remainder 

Must decode 

transformed 

remainder 

Low to high 

[4] 2𝑛 ± 1 
Maximum of 𝑑 

subtractions required 

Count of actual 

subtractions 
Low to high 

[5] 
2𝑛 − 1, 

𝑑 > 0 
No additional steps 

𝑅/𝑑 computed, 

multiply by 𝑑 
High to low 

[6] 𝑑 = 10 No additional steps 𝑅 computed directly High to low 

[7] 2𝑛 ± 1 No additional steps 𝑅 computed directly 
Convergence /  

High to low 

 

[1] Sites (1974) 

[2] Petry (1983) 

[3] Johannes et al. (1980) 

[4] Artzy et al. (1976) 

[5] Jacobsohn (1973) 

[6] Schreiber and Stefanelli (1978) 

[7] Ci Yun Guei et al. (1985) 

 

 

Source: Srinivasan and Petry (1994) 
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The comparison in Table 2.1, compares the methodology of the algorithms. The 

performance results and comparisons of these algorithms are not considered in the 

scope of their study.  

Another survey study was done by Schwarzbacher (2000) where the constant divider 

structures with the form 2𝑛 ± 1 was examined. However, the methods that are 

observed in this study are not limited to the methods that are only applicable to divisors 

in 2𝑛 ± 1 form, but LUT based methods are also considered and analyzed. The most 

important part of this study is that it concludes that the LUT based methods are the 

fastest among others. 

Jacobsohn (1973) approach was based on the multiplication by inverse method. The 

proposed method requires the inverse of the divisor to be a repeating binary of value 

less than 1. The results are in the form of a quotient and a remainder, where quotient 

is an exact integer value while the generation of the remainder is not trivial and has an 

error tolerance. 

Yen and Li (1985) presented an algorithm that turns the technique of approximation 

via an infinite product into a method of computing the precise value of the quotient 

without computing the remainder. The remainder than, later be calculated by reverse 

operation by the quotient. This is of course introducing another delay to the system. 

2.2.1 TABLE BASED DIVISION METHOD (TBCD) 

Dinechin and Didier (2012) introduced a table based division technique in their paper 

“Table based division by small integer constants”. The algorithm can be operated in 

different radices and at each iteration a portion of the dividend is calculated with a 

partial dividend, partial remainder and some digits of the quotient. It outputs an exact 

integer binary quotient and an exact binary integer remainder, which in our case is a 

competitor with our BTCD. We will compare our performance with TBCD method, 

since it is the most recent and fastest LUT based method, aimed to achieve a fast 

operation. 
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The method is an adaptation of the regular paper and pencil algorithm in case of small 

divisors. An example of paper – pencil division is shown in Figure 3.1. The algorithm 

outputs results 𝑞 and 𝑟0 of the high radix Euclidean division of the dividend 𝑥 by the 

constant 𝑑. At each step, the partial dividend 𝑦𝑖, the partial remainder 𝑟𝑖 and one radix 

2∝ digit of the quotient is computed. The alpha constant ∝, determines the radix that 

the operation will be conducted. The steps of the algorithm can be observed in Figure 

2.2. 

 

Figure 2.2 The Steps of TBCD Algorithm 

 

The partial results are stored in LUTs to avoid the actual division calculation. The 

timing complexity grows linearly with the dividend bit-width 𝑁. If we increase the 

radix, we get less calculation steps, therefore we get a faster circuit while the chip area 

will be badly affected. 

Source: Dinechin and Didier (2012) 
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3. BINARY TREE BASED CONSTANT DIVISION (BTCD) 

3.1 BASIC IDEA AND APPROACH 

The motivation behind our work is to achieve a fast constant division method that is 

especially reasonable for dividends with large bit widths. Our aim is to be able to run 

simultaneous calculations on different bit portions of the dividend with our “divide 

and conquer” approach and to take advantage of the LUTs for each calculation so that 

we can avoid the burden of division. Therefore, we will achieve a fast constant integer 

division circuit with a reasonable use of the chip resources. 

In a constant division system, the only input parameter is the dividend. This limits the 

number of possible input combinations to the system by only the possible values of 

the dividend. We can consider this as our advantage. For small dividend bit-widths, 

we can store all possible results in a single LUT, but as the bit-width of the dividend 

gets larger, this “brute force” method becomes inefficient since both the occupied chip 

area and the access time of the LUT increase. 

Our approach is to partition the dividend into chunks of bits and treat each chunk as a 

separate dividend. We create LUTs to store all possible results for each chunk and 

combine them with a binary tree like structure to have the final result of the division. 

This way we make the resource consumption reasonable while achieving the best 

timing for large input bit-widths.  

If we process the division from the most significant chunk to the least significant one 

as we do in regular division techniques, we lose the advantage of using LUTs since 

each LUT will have to wait for the outcome of its leftmost chunk. To overcome this 

issue, we have introduced a new parallelized division method where these each chunk 

is calculated simultaneously. With this new division method, we aimed to reduce 

timing complexity and have better use of the LUTs. 
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3.2 A NEW PARALLEL DIVISION METHOD 

In some division methods, like the regular paper and pencil division, the operation is 

carried digit by digit starting from the leftmost one. At each division of the dividend 

digits, a partial remainder and a partial quotient are gathered. The partial quotients are 

used to construct the digits of the final quotient, while the partial remainders are inputs 

for the calculation of the next digits. Figure 3.1 shows a sample process of a regular 

paper and pencil division in base 10. 

 

Figure 3.1 Base 10 Regular Division Example 

 

The number of steps to reach the result for this method is 8 which is calculated as: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑑𝑖𝑔𝑖𝑡𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑑𝑖𝑔𝑖𝑡𝑠 

Dinechin and Didier (2012) used LUTs to implement the same paper and pencil 

division that is shown in Figure 3.1. They pre-calculated each possible division result 

for each step and stored them inside LUTs in compile time. 

This method looks easier from a human point of view since small portion of digits are 

calculated at each step. But for the sake of ease, we make the less significant bits of 

the dividend wait until the results from the leftmost bits to arrive. This is a waste of 

time from hardware point of view. 

Dividend       = 1234567890 
Divisor         = 15 
Quotient       = 82304526 
Remainder    = 0 
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We propose a new method that uses divide and conquer approach by partitioning the 

dividend into chunks of digits beforehand. The method simultaneously runs 

calculations on every bit chunk of the dividend. The quotient and remainder outputs 

for each chunk are the partial results and processed at the same time. The chunks are 

then combined 2 by 2 at each step to create the final result. Figure 3.2 shows this 

method with same variables as in Figure 3.1 for easier comparison. 

 

Figure 3.2 Parallelized Implementation of the Regular Division 

 

In Figure 3.2, the dividend is partitioned into 5 chunks, each having 2 digits. Each 

partition is treated as a separate dividend and the resulting quotients and remainders 

from their division by 15 is written in the first line. In the following steps the 

remainders on the left side are grouped 2 by 2 to construct other quotients until a single 

remainder that is smaller than 15 is reached. For the last step the resulting quotients on 

the right side are added to get the final quotient. 

For human point of view, this method is a complex one. It requires simultaneous 

calculations of each chunk of bits at each step. But from a computer point of view, we 

can pre-calculate results for each bit chunk of the dividend and store them inside LUTs. 

Furthermore, at each combination step, we can fill up transfer LUTs that store the 

results for possible remainder combinations from the 2 parent LUTs. 

Dividend       = 1234567890 
Divisor         = 15 
Quotient       = 82304526 
Remainder    = 0 

5 

steps 
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This new division method gives us the opportunity of having parallel calculations 

which reduces the timing complexity and provides a base for using reasonable sized 

LUTs to avoid the burden of actual division operation. 

In the case of parallelized implementation of the regular division, the number of 

calculation steps are calculated as: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 = 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(# 𝑜𝑓 𝑐ℎ𝑢𝑛𝑘𝑠)) + 2 

The timing complexities and detailed explanations on the implementation are 

discussed in Chapter 3.4.
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3.3 THE ALGORITHM 

In an Euclidean division, the division of the number 𝐴, by the number 𝑑 has the results  

𝑄 and 𝑅, having the mathematical relation shown in Eq. 3.1. 

𝐴

𝑑
= 𝑄 + 

𝑅

𝑑
 

In Eq. 3.1, the values 𝐴, 𝑄, 𝑅, 𝑑 are nonnegative integers and  𝑑 is also nonzero. They 

are all unsigned binary numbers (base 2), since we use unsigned arithmetic in our 

implementations. In constant division, the divisor 𝑑 and the bit-width of the dividend, 

𝑁 is known beforehand and they are constants. 

Assume 𝐴 is composed of 𝑘 chunks of 𝑛𝑙 bits where, 𝑘 − 1 >  𝑙 > 0 and 𝑙 ∈  Z+.  

Each chunk 𝐶𝑙 has an arbitrary portion of the dividend as shown in Figure 3.3. The 

partition may be done from most significant bit to least significant or vice versa.  

 

𝐴 =  𝑎𝑁−1 𝑎𝑁−2 … . … . … . . … . … . . … . … . ….   𝑎𝑛1+𝑛0−1 … . … . ….    𝑎𝑛0−1 … . … . 𝑎1 𝑎0 

                        𝐶𝑘−1               … … … … … … … …                  𝐶1                                  𝐶0 

 

 

The total bit-width of the input dividend is simply the sum of all chunk widths 

𝑁 = ∑ 𝑛𝑙

𝑘−1

𝑙=0

 

where, 𝑁 ≥  𝑛𝑙 > 0 and 𝑛𝑙  ∈  Ζ. 

 

 

 
 (3.1) 

……. …… …… 

Figure 3.3 Chunks of the dividend 

(3.2) 
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Each chunk of bits 𝐶𝑙, is an 𝑛𝑙 bits wide binary. The dividend 𝐴 can be reconstructed 

by these bit groups with the following equation: 

𝐴 = 𝐶0 + ∑ 𝐶𝑗 2
( ∑ 𝑛𝑙 

𝑗−1
𝑙=0 )

𝑘−1

𝑗=1

 

We treat each chunk of bits 𝐶𝑙 as a separate dividend. The chunks can be expressed in 

terms of the divisor 𝑑, partial quotient 𝑄𝑙 and a partial remainder 𝑅𝑙 as in Eq. 3.4. 

𝐶𝑙 = 𝑄𝑙𝑑 +  𝑅𝑙 

To reach to the final quotient and remainder, these partial results for each chunk must 

be combined altogether. The combination of 2 neighboring chunks can be visualized 

as in Figure 3.4 which shows the group 𝐴′ and the chunks 𝐶0 and 𝐶1 that generate it 

 

 

 

 

   

 

 

Mathematically 𝐴′ can be expressed as in Eq. 3.5 since the order of the most significant 

chunk will be higher. 

𝐴′ = 𝐶12𝑛0 + 𝐶0 

 

InitLUT[𝑑]𝑁[𝑛0] InitLUT[𝑑]𝑁[𝑛1] InitLUT[𝑑]𝑁[𝑛𝑘−1] 

       𝑎𝑁−1 … … . … . ….      . … . . … . … . . .   𝑎𝑛1+𝑛0
   … . … … … . . 𝑎𝑛0

   … … … … . 𝑎1  𝑎0 

           𝑟𝑘−1            𝑞𝑘−1     𝑟𝑘−2                     𝑞2          𝑟1                 𝑞1         𝑟0                 𝑞0 

𝐴′ 

𝐶1 𝐶0 

(3.3) 

(3.4) 

Figure 3.4 Combination of 2 Chunks 

(3.5) 
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Assume that the division of 𝐴′with the constant divisor 𝑑, has the results 𝑄′ and 𝑅′. 

By placing Eq. 3.5 in Eq. 3.1, we construct Eq. 3.6; 

 

𝐴′

𝑑
=  𝑄′ +  

𝑅′

𝑑
= (

𝐶1

𝑑
)2𝑛0 +

𝐶0

𝑑
  

 

Replacing the 𝐶1 and 𝐶0 terms in Eq. 3.6 with their values in Eq. 3.4 we express the 

equation in terms of the partial results as in Eq. 3.7 

 

𝑄′ +  
𝑅′

𝑑
= ( 𝑄0 + 𝑄12𝑛0  ) + ( 

𝑅12𝑛0 + 𝑅0 

𝑑
 )  

The partial results 𝑄0, 𝑅0, 𝑄1 and 𝑅1 are pre-calculated values that are stored in 

memory blocks called the initial LUTs.  The details of the implementation will be 

given in the next section. 

In Eq. 3.7, the term 𝑅12𝑛0 + 𝑅0 has to be further examined. It is possible that the result 

of this addition will be a larger number than the divisor 𝑑, therefore it is best to 

represent this term as in Eq. 3.8. 

 

𝑅12𝑛0 + 𝑅0 

𝑑
=  

𝑄2𝑑 + 𝑅′

𝑑
=  𝑄2 + 

𝑅′

𝑑
 

 

To prove the validity of this representation in Eq. 3.8 we can check the summation on 

the maximum possible values of the remainders. Notice that the maximum value of 𝑅1 

is equal to the maximum value of 𝑅0 and equals 𝑑 − 1 since both are remainders after 

division by 𝑑. The maximum value of the term 𝑅12𝑛0 + 𝑅0 is given as 

max(𝑅12𝑛0 + 𝑅0) =  𝑅1𝑚𝑎𝑥
2𝑛0 +  𝑅0𝑚𝑎𝑥

 

                              = (2𝑛0 + 1)𝑑 − 2   

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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where, 𝑛0 ≥ 1 , so for any divisor 𝑑 ≥ 2, the maximum value of the expression is 

greater than the divisor 𝑑. 

So placing Eq. 3.8 in Eq. 3.7 we have; 

𝑄′ +  
𝑅′

𝑑
= (𝑄0 + 𝑄12𝑛0 + 𝑄2) +

𝑅′

𝑑
 

The values 𝑄2 and 𝑅′ are pre-calculated and stored in another kind of LUT blocks 

which we call transfer LUTs. The details of transfer LUTs will be discussed in the next 

section along with the initial LUTs. 

Eq. 3.10 clearly shows that the quotient 𝑄′ in above equation can be reached after a 

shift operation and an addition operation of 𝑄0, 𝑄1, and 𝑄2. Notice that to get the final 

quotient we only process a single addition operation since 𝑄0 + 𝑄12𝑛0 is a simple 

concatenation because their digits do not overlap. 

To reach the final results we have to treat the combined chunks 𝐴′ as the new chunks 

and do the combination process until we reach a single group containing all 𝑁 bits of 

the dividend. 

 

 

 

 

 

 

(3.10) 
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3.4 HARDWARE IMPLEMENTATION 

The constant division system should be constructed such that it will take dividend 𝐴, 

from its 𝑁𝐴 bit input port, carry the division process by 𝑑 in its pre-configured 

combinational hardware and output the results as an 𝑁𝑄𝑚𝑎𝑥
 bit quotient 𝑄, and an 

𝑁𝑅𝑚𝑎𝑥
 bit remainder 𝑅. In our case we are not interested in any fractional results since 

our focus is the Euclidean division. The system is outlined in Figure 3.5. 

  

 

 

 

 

The basis of our method is to take advantage of knowing the divisor beforehand by 

simply pre-calculating all possible input combinations at compile time and store them 

inside a LUT. That way we can save the time by not actually running calculations for 

the laborious division operation during run time. Instead we will only experience the 

access delay of the LUT as the only factor for timing. 

The size of this LUT will be calculated as  

2𝑁𝐴( 𝑁𝑄𝑚𝑎𝑥
+  𝑁𝑅𝑚𝑎𝑥

) 

Where 𝑁𝐴 is the input dividend bit length and 𝑁𝑄𝑚𝑎𝑥
, 𝑁𝑅𝑚𝑎𝑥

 are the bit lengths of the 

maximum possible quotient and remainder respectively. Notice that this is a brute 

force use of the LUT method and as the dividend bit length gets larger, both the access 

time of the LUT and the occupied area will dramatically increase and cause an 

inefficient consumption of the chip resources.  

Dividend A 𝑁𝐴 bit 

Input Port 

Divide by 𝒅 
Circuit 

𝑁𝑄𝑚𝑎𝑥
 bit 

Output Port 

𝑁𝑅𝑚𝑎𝑥
 bit 

Output Port 

Quotient Q 

Remainder R 

Figure 3.5 Block model of the division by d circuit 

 (3.11) 
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Figure 3.6 shows the exponential increase of the number of stored bits in the LUT as 

the bit-width gets larger. (for 𝑑 = 3) 

 

Figure 3.6 Number of Stored Bits for different Bit-widths 

 

Most systems that require a constant division operate on dividends of large bit widths, 

usually greater than 16 bits. Due to the excessive amount of bits to store for such bit 

widths, brute force LUT method cannot be used, or simply is not preferred. 

Our algorithm suggests that by partitioning the dividend into chunks of bits and storing 

all possible results of the division for each group, we can reduce the total storage area 

and with a binary tree like combination method, we can reconstruct the final results 𝑄 

and 𝑅. 
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3.4.1 PROPERLY PARTITIONING THE DIVIDEND 

The first step of the design is to properly partition the dividend 𝐴 into chunks of bits. 

The algorithm is valid for any combination of partitioning, but selection of the chunk 

widths will affect the overall performance with trade-offs between timing and area 

consumption. 

If we select the chunks widths too small, then the resulting binary tree in the 

combination process will have more calculation steps until it reaches the final results. 

On the other hand, selecting large chunk widths will result in bigger LUTs for storing 

possible partial results of each chunk therefore we will have a larger chip area. The 

number of calculation steps will be reduced but since the LUTs will get bigger, their 

access time will be worse.  

We have selected the chunk sizes to be 4 bits each for general purpose. However, we 

assign a maximum initial chunk width constraint, 𝑛𝑚𝑎𝑥, which is used when there are 

some remaining ungrouped bits after the partition. This remaining bit (or bits) is added 

to the least significant chunk if doing so will decrease the number of calculation steps 

and if 𝑛𝑚𝑎𝑥 will not be exceeded for any chunk. Figure 3.7 shows a case where 

optimization is held reducing the number of calculation steps for 𝑁 = 9. 
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Case 1:  
𝑵 = 4 
𝒏𝒎𝒂𝒙 = 4 
# of calculation steps = 3 

Case 2:  
𝑵 = 4 
𝒏𝒎𝒂𝒙 = 5 
# of calculation steps = 2 

Figure 3.7 Optimization for Dividend Partitioning 
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3.4.2 INITIAL LUT BLOCKS (iLUT) 

We treat each chunk of bits as a separate dividend and construct LUTs for each one. 

Each LUT stores the pre-calculated results of division by 𝑑 for the whole range of 

possible bit combinations of that chunk. We call these the initial LUTs (iLUTs). For 

each chunk of bits 𝐶𝑙, there exists an iLUT which takes the bits of that group as its 

input. Figure 3.4 shows the initial LUTs with the corresponding chunks. Figure 3.8 

shows the structure of an iLUT. 

 

 

 

 

 

 

 

The number of bits that are stored in each iLUT is given in Eq. 3.12, 

𝑠𝑖𝑧𝑒( 𝑖𝐿𝑈𝑇𝑙 ) = 2𝑛𝑙( 𝑁𝑄𝑙_𝑚𝑎𝑥
+  𝑁𝑅𝑙_𝑚𝑎𝑥

) 

where , 𝑁𝑄𝑙_𝑚𝑎𝑥
 and 𝑁𝑅𝑙_𝑚𝑎𝑥

 are the bit lengths of the maximum possible quotient and 

remainder. 

 

 

 

 

𝑸(𝑵𝑸𝒍_𝒎𝒂𝒙
−𝟏)  ….  𝑸𝟎  𝑹(𝑵𝑹𝒍_𝒎𝒂𝒙

−𝟏) … 𝑹𝟎 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑛𝑙 𝑁𝑄𝑙_𝑚𝑎𝑥
 

Quotient 𝐶𝑙 

Depth: 2𝑛𝑙  

Remainder 
𝑁𝑅𝑙_𝑚𝑎𝑥

 

Figure 3.8 Initial LUT Block 

(3.12) 
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3.4.3 COMBINING THE CHUNKS 

The combination process of the partial results are done by combining 2 parent LUTs 

at a time. The combined block (cBLK) is then treated as the parent LUT for the next 

combining step. Each cBLK includes 2 parent LUTs, 1 transfer LUT (tLUT), an 

addition operation and a shift operation. cBLKs are generated at each step until a single 

cBLK covering the whole input bit-width is reached. The mathematical background 

for the combination of 2 chunks is explained in Section 3.3.  

These combination steps construct a binary tree like structure as shown in figure 3.9.  

 

 

   

   

  

 

  

 

 

 

 

Focusing on each combination step we observe 3 basic blocks, an addition and a shift 

operation. This can be observed in Figure 3.11 where the overall process of division 

with 16 bit input is shown. 

 

iLUT3 iLUT2 iLUT1 iLUT0 

cBLK1 cBLK0 

cBLK2 

𝐶0 𝐶1 𝐶2 𝐶3 

𝑄 𝑅 

Figure 3.9 The Binary Tree Based Combination 
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The 3 basic blocks of the implementation are: 

i. Parent LUTs 

Parent LUTs store the partial results for each chunk that is being combined. Initial 

LUTs, that are explained above are the first parent LUTs in the beginning of the binary 

tree. The combined blocks are then treated as the parent LUTs for the following steps. 

ii. Transfer LUTs (tLUT) 

When combining the parent LUTs, the remainders from each LUT construct a value 

𝑅12𝑛0 + 𝑅0 which is explained in Eq. 3.8. This value is presented as 𝑄2𝑑 +  𝑅′ in 

which case the calculation of the values 𝑄2 and 𝑅′ is also another division operation.  

tLUTs store all possible values of 𝑄2 and 𝑅′ so that there won’t be any time lost for 

their calculation. The block diagram of a tLUT is shown in Figure 3.10. 

 

 

 

 

 

 

 

 

The size of the transfer block is calculated as in equation 3.13.  

𝑠𝑖𝑧𝑒( 𝑡𝐿𝑈𝑇𝑙 ) = 𝑑2( 𝑁𝑄2_𝑚𝑎𝑥
+  𝑁𝑑−1) 

𝑄2                        𝑅′ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑁𝑄𝑙_𝑚𝑎𝑥
 

𝑁𝑅𝑙_𝑚𝑎𝑥
 

𝑄2 

𝑅′ 

𝑅0 

Depth: (𝑑 − 1)2 

𝑁𝑅𝑙_𝑚𝑎𝑥
 

𝑁𝑅𝑙_𝑚𝑎𝑥
 

𝑅1 

Figure 3.10 The transfer LUT 

(3.13) 
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The important thing here is that we don’t have to cover the whole input range since 

the input is simply the concatenation of the remainders 𝑅0 and 𝑅1. Therefore the depth 

of the tLUT is 𝑑2. 

iii. Combined Blocks (cBLK) 

A Combined block is the resulting block after combination of 2 parent LUTs. They 

include 2 parent LUTs, 1 transfer LUT, an addition and a shift operation inside. Figure 

3.11 shows the hardware for division of a 16-bit input, where 3 combined blocks, XN4, 

XN8, and XN16 are presented. (In this notation, X is the divisor and 4,8 and 16 are 

dividend bit-widths.) 

 

Figure 3.11 The generation of the XN16 cBLK  
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4. RTL GENERATION AND SYNTHESIS METHODOLOGY 

 

The theoretical description of BTCD method has been explained in the previous 

section. The next step is to implement the method to validate our claim.  

This chapter issues the methodology for implementation, verification, and synthesis of 

BTCD method as well as the competitor; TBCD method, to prove their applicability 

and to compare their performance with each other. TBCD method is selected as the 

closest competitor since it is the most recent study that takes advantage of LUTs. We 

only compared our results with LUT based works since the timing performance of 

other methods are proven to be much worse as Schwarzbacher (2000) has also 

suggested in his survey. 

Our design flow starts with proper creation of the RTL design and ends with the 

extraction of synthesis results. At each step we have implemented detailed mechanisms 

to catch possible errors and create error logs. Another important thing about the design 

flow is that it is completely automated with a single script, which processes the overall 

flow for a range of given divisors and for a range of input bit widths for each divisor. 

The flow diagram is shown in Figure 4.1. 
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Figure 4.1 Design and Synthesis Flow 
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4.1 HDL GENERATION 

RTL of the designs are described in Verilog HDL. While implementing constant 

divisor systems as in Figure 3.2, each combination of the 2 parameters, constant divisor 

𝑑 and the input bit width 𝑁, the resulting RTL varies. (Different LUTs are constructed, 

output 𝑞 and 𝑟 bit-widths change, etc.) Besides, there are design parameters for each 

implementation such as the number of bits in partitioned chunks of the dividend, or 

the alpha constant (∝) in TBCD method. These parameters cause performance 

tradeoffs in the design, altering the RTL at each variation.  

Manually writing a Verilog code for every combination of design specifications would 

be extremely time consuming. Since the LUT based designs require pre-calculations 

for filling the contents of the LUTs, getting each result and coding them inside the 

RTL one by one would be painful. In addition, it would make the design more error 

prone since there wouldn’t be any standardization, so more human errors would be 

likely to interfere. 

Instead of manually coding the design RTL in Verilog, we write HDL generator scripts 

that generate Verilog sources for given parameters. The HDL generators are written in 

Perl scripting language. 

HDL generators are unique for each method. They are dedicated to create the RTL of 

the system in Figure 3.2 with the method that it is coded for. The input arguments for 

the HDL generator scripts are the constant divisor 𝑑, the dividend bit width 𝑁 and the 

design parameters. The divisor and the input bit-width are necessary for system calls 

of each HDL generator script. The design parameters, however, are unique for each 

method and they specify how the method will function. These design parameters are 

assigned a default value so if they are not specified in the system call, the default values 

are used. 
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The generated files are: 

Design RTL: Verilog code describing the RTL for the given inputs. 

The naming format of the file is as: [methodName]_[divisor]_N_[dividendBitwidth].v 

Testbench: Verilog code for functional verification. It feeds all possible inputs to the 

design and compares the results.  

The naming format is as: tb_[methodName]_[divisor]_[dividendBitwidth].v 

Wrapper: Verilog code for synthesis operation. It instantiates the design between flip-

flops so that all top module inputs are fed from flip-flops and all top model outputs are 

sunk by flip-flops.  

The naming format is as: wrapper_[divisor]_[dividendBitwidth].v 

Log File: After each run of the HDL Generator weather the generation is successful 

of not, a log file is created. This log file explains errors if the generation was not 

successful. After a successful generation, it includes explanations on the design such 

as the number of total stored bits in LUTs and selected design preferences in the 

implementation.  

The naming format is as: [methodName]_[divisor]_[dividendBitwidth].log 

The inputs and the generated files are shown in Figure 4.2. 
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Figure 4.2 The HDL Generator 

 

4.2 PRE-SYNTHESIS FUNCTIONAL VERIFICATION 

The generated RTL should be functionally verified before the running the synthesis 

operation. Usually the HDL generators provide a standardization in the generated RTL 

and once a design generated with an HDL generator passes the functional verification, 

all variations generated by the same HDL are supposed to pass. However, this is not 

the case, since some bugs may not appear for certain set of parameters while they do 

for others. We functionally verify all our RTL code before synthesis in order to ensure 

functional correctness. 
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The testbench file that is generated by HDL generator is used for pre-synthesis 

verification. The verification script runs the testbench on Icarus Verilog tool. 

Reference outputs are generated in the testbench to compare results with the design 

under test (DUT). The test input generator mechanism generates all possible inputs if 

the range is reasonable. For the DUTs with larger input bit widths, the testbench 

generates random test inputs to save time. 

If the design is verified for all test inputs, the verification script returns ‘1’ to signal 

that we can proceed to the synthesis operation. In case of an unexpected behavior, the 

script returns ‘0’ and creates a log file which identifies the details on the error(s).  

4.3 SYNTHESIS 

The synthesis tool we use is Synopsys DC version 2010.12. Our synthesis script is 

written in TCL scripting language. Perl scripts are used to invoke Synopsys DC, run 

the TCL synthesis script and gather the outputs. 

In the synthesis process, our aim is to obtain the circuit with the smallest possible clock 

period. To do this, we supply the synthesis tool a desired target value for the clock 

period. For the best results, the target value should be selected close to the best value. 

Unfortunately, we cannot know the optimum clock period beforehand.  

To solve this problem we use a binary search based iterative synthesis script. It 

synthesizes each design 4 times in total in an effort to get the best possible timing result 

regardless of the area constraint. In the initial synthesis the target clock period is set to 

0.1 ns (which corresponds to 10 GHz and is impossible to meet) to see how close the 

design can reach this value. For the second and third iterations, the largest period that 

is failed to achieve so far and the achieved clock of the previous iteration is averaged 

and set as the new desired clock target. The last iteration is to check if any minor 

adjustments are available to the timing that has met. The last met clock is multiplied 

by 0.9 and set as the target clock.  After all iterations are finished, the best achieved 

clock period, area and the resulting netlist files are logged. Our experience showed us 

that if we process more than 4 iterations we cannot improve the timing more, instead 
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we lose a lot of our computation time since we run the synthesis for many different 

combinations of the inputs. 

The combinational RTL is instantiated inside a wrapper module before the synthesis. 

This wrapper consists of input and output flip-flops (FFs). The inputs are flopped 

before being supplied to our combinational logic cloud, and the outputs of our block 

are also flopped.  The start point of a path is clock input of the initial FFs and the end 

point is the data input of the output FFs. 

To obtain timing results, the synthesis tool runs a static timing analysis which checks 

the timing of all possible paths. When data are launched at the start point, the time 

elapsed until the end point determines the timing of a path. The path with the largest 

arrival data travel time is called the critical path and it defines the timing of the whole 

circuit.  

The synthesis script is targeted for obtaining the best possible timing, so the area 

results are the corresponding areas for the circuits with the best possible timings. Also, 

since we use the wrapper module only for timing purposes, the synthesis script does 

not report the area for the FFs of the wrapper. For each iteration, our iterative synthesis 

script only reports the area of our design RTL in square microns. 

4.4 POST-SYNTHESIS VERIFICATION 

After the synthesis, we obtain a gate-level netlist that corresponds to the same RTL 

with our design. The gate-level netlist consists of cells of our standard cell library 

constructing the RTL that is described in the original design file. Verifying this design 

is important to check the output of the synthesis tool. The same method described in 

Section 4.2 is applied replacing the DUT with the gate level netlist. 
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5. EXPERIMENTAL WORK 

In this chapter the results and comparisons will be presented. As our competitor, we 

implemented Dinechin and Didier’s work (TBCD) presented in paper “Table based 

division by small integer constants” in 2012. The method is described in detail in 

Chapter 2. We have successfully implemented TBCD method, coded a generator for 

it and put it through our synthesis design flow.  

5.1 EXPERIMENTAL SETUP 

Synthesis results are not the same for every test environment. Along with the results, 

the environment variables that the tests had been conducted with has to me mentioned. 

These variables are;  

i. The synthesis tool and its version, 

ii. Synthesis parameters, 

iii. Target technology, 

iv. The cell library, 

v. The wire load model (WLM) that is used. 

In our experimental work, we used Synopsys Design Compiler (DC) version 2010.12 

with ARM-Artisan TSMC 180 nm worst-case standard-cell library and a WLM for 

wire load and wire propagation delay considerations.  

We used the Verilog HDL for our implementation. The Verilog code is generated by 

HDL generators written in Perl scripting language. Also the automation process for 

generation, verification, and synthesis are controlled by Perl scripts. For the functional 

simulations and other verifications, we used Icarus Verilog. 
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5.2 RESULTS AND COMPARISON 

The comparisons are held with the TBCD method and our BTCD method. The reason 

that we have chosen the TBCD method as our competitor is its similarities to our work. 

This method is also LUT based and outputs exact quotient and remainder results. Also 

the method can be applied to all integer divisors without limitation as ours.  

We carefully examined the TBCD method and successfully implemented it. We have 

written HDL generators that also generates testbenches along with the code. Scripts 

for generation, verification, and synthesis follow the same methodology with our own 

work. 

The experiments cover the divisor range [3,15]. For each divisor, the dividend bit-

widths of range [4, 24] are covered so that we can compare results with small dividend 

bit-widths to the ones with large input bit-widths. Important point here is that the 

divisors 2, 4, and 8 are inside our divisor range, but they are excluded because of the 

obvious reason that they are powers of 2 and binary divisions with such numbers can 

simply be accomplished by a shift operation to right side 

The discussed results in this sections are for the divisors 3, 10, and 15. The results for 

the whole range can be found in Appendix A. 

5.2.1 TIMING RESULTS 

The timing comparisons have the key importance since division by a constant is a 

fundamental problem that demands speed. Our synthesis scripts are targeted to achieve 

the best possible timing for the two methods without any concern on the area 

constraints. Therefore, the timing results are the minimum available clock periods in 

nanoseconds regardless of any area concern. 

The timing values are for FF-to-FF values since all inputs are fed from FFs and all 

outputs are sunk by FFs. The resulting values therefore include clock-to-Q delays and 

setup times of the FFs with the delay of the critical path in our design. 



34 

 

Timing results for the smallest integer divisor in our range, 3 are presented in Table 

5.1. It shows the best achieved timing results for both our BTCD method and TBCD 

method when divisor is selected as 3. The notation, [divisor]N[dividend_bitwidth], in 

the leftmost column represents a unique constant division circuit.  

Table 5.1 The Best Clock Periods for 𝒅 = 3 

 
TIMING RESULTS (ns) for d = 3 

Our BTCD Method TBCD Method Our improvement 

3N4 1,08 1,13 4,43% 

3N5 1,36 1,36 0,37% 

3N6 1,86 1,60 -16,20% 

3N7 2,01 1,79 -11,98% 

3N8 2,13 2,02 -5,45% 

3N9 2,13 2,18 2,20% 

3N10 2,81 2,44 -14,81% 

3N11 2,84 2,68 -5,97% 

3N12 2,95 2,90 -1,72% 

3N13 2,98 3,09 3,40% 

3N14 3,00 3,35 10,45% 

3N15 3,09 3,52 12,07% 

3N16 3,33 3,84 13,19% 

3N17 3,33 3,95 15,70% 

3N18 4,11 4,29 4,01% 

3N19 4,21 4,59 8,28% 

3N20 4,19 4,76 11,97% 

3N21 4,14 5,02 17,45% 

3N22 4,17 5,14 18,87% 

3N23 4,20 5,36 21,60% 

3N24 4,09 5,76 29,09% 

 

The best timings at each row is marked bold. The improvements column in Table 5.1 

shows the percentage of improvement of our algorithm over the TBCD method. 

Table 5.1 shows that when the input bit-width is 13 bits or larger, we have better results 

and as the bit-width gets larger, our timing performance gets much better than our 

competitor. For a 24-bit input dividend, our method can achieve a clock period of 4,09 

ns (which corresponds to 245 MHz clock frequency) while TBCD method remains at 

5,76 ns (174 MHz).  



35 

 

To better visualize the variations of clock periods versus the increasing bit-width 

values, the graph in Figure 5.1 can be observed. 

 

 

Figure 5.1 Dividend Bit-widths versus Timings (ns) for 𝒅=3  

 

The second observations are for 𝑑 = 10. The timing results for 𝑑 = 10 is given in Table 

5.2.  The important point here is that we have better results for bit-widths larger than 

9 for this case. The improvement rate for larger bit-widths are also increased.   
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Table 5.2 The Best Clock Periods for 𝒅 = 10 

 
TIMING RESULTS (ns) for d = 10 

Our BTCD Method TBCD Method Our improvement 

10N4  0,74 0,74 0,00% 

10N5  1,15 1,03 -11,65% 

10N6  1,40 1,38 -1,22% 

10N7  1,57 1,67 5,69% 

10N8  2,08 1,99 -4,92% 

10N9  2,13 2,23 4,58% 

10N10 2,36 2,59 9,06% 

10N11 2,57 2,91 11,51% 

10N12 3,09 3,16 2,13% 

10N13 3,17 3,42 7,37% 

10N14 3,24 3,85 15,71% 

10N15 3,28 4,08 19,51% 

10N16 3,47 4,43 21,67% 

10N17 3,49 4,72 26,12% 

10N18 3,44 4,98 30,82% 

10N19 3,50 5,22 33,05% 

10N20 4,35 5,63 22,77% 

10N21 4,46 5,91 24,48% 

10N22 4,38 6,22 29,55% 

10N23 4,43 6,50 31,75% 

10N24 4,61 6,76 31,75% 

 

Figure 5.2 shows clearly that for the divisor 10, we have achieved better results for 

smaller bit-widths than we have achieved when 𝑑 = 3, and the improvements on large 

bit-widths are also increased. 
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Figure 5.2 Dividend Bit-widths versus Timings (ns) for 𝒅 = 10 

 

Further observations are done with the divisor being set to 15. Table 5.3 and the 

corresponding graph in figure 5.3 shows that we have stable better results for even 

smaller bitwidths and the improvement percentages are slightly improved again. 

It is clear that we are getting better timing results for large input bit-widths. This is 

because by separating the dividend into partitions we process parallel computations on 

each partition at a time. This is why our timing results are increasing in 𝑙𝑜𝑔(𝑁) rate, 

while the timing for TBCD method increases linearly with 𝑁. 
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Table 5.3 The Best Clock Periods for 𝒅 = 15 

 
TIMING RESULTS (ns) for d = 15 

Our BTCD Method TBCD Method Our improvement 

15N4  0,78 0,78 0,00% 

15N5  1,30 0,99 -31,19% 

15N6  1,52 1,51 -0,66% 

15N7  1,72 1,73 0,58% 

15N8  2,21 2,25 2,00% 

15N9  2,44 2,48 1,65% 

15N10 2,68 2,93 8,53% 

15N11 2,90 3,17 8,43% 

15N12 3,41 3,62 5,77% 

15N13 3,57 3,85 7,24% 

15N14 3,59 4,33 17,20% 

15N15 3,66 4,60 20,43% 

15N16 3,76 5,09 26,08% 

15N17 3,76 5,30 28,97% 

15N18 3,89 5,73 31,98% 

15N19 4,05 5,98 32,20% 

15N20 4,87 6,53 25,36% 

15N21 4,94 6,79 27,25% 

15N22 4,96 7,15 30,60% 

15N23 5,00 7,41 32,52% 

15N24 5,01 7,86 36,24% 

 

Figure 5.3 Dividend Bit-widths versus Timings (ns) for 𝒅=15 
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5.3.2 AREA RESULTS 

As we previously mentioned, all synthesis scripts and methodology are built to achieve 

the best possible timing results. The area values, on the other hand, are the 

corresponding areas that the circuits with best clock periods occupy.  

When comparing the occupied areas for the two methods, it is not a wise decision to 

compare the areas of the circuits with best possible timings. This is because synthesis 

tools sacrifice area to achieve faster clock frequencies, which makes the area and 

timing costs inversely proportional with themselves. If the circuits with the best 

timings are re-synthesized with more relaxed timing constraints, their areas will shrink; 

resulting a different area constraint for a relatively slower circuit. 

To be able to compare occupied areas by two different methods, we must also take 

their best timing values in consideration. To do so, we introduced an area-timing 

product (ATP) that is simply the product of the best clock period and the corresponding 

area result for it. We consider the ATP of the two methods when comparing areas. 

Furthermore, we normalize the ATP by dividing all the results with the maximum area 

value of all. That way, we adjust the range of ATP values between 0 and 1. From there 

we can stretch the range within 0 and any value K, by multiplying the whole set of 

results by K. In our case, normalized ATP is calculated as in Eq. 5.1 

 

𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑨𝑻𝑷 =
𝑨𝑻𝑷

𝐦𝐚𝐱 (𝑨𝑻𝑷𝑻𝑩𝑪𝑫, 𝑨𝑻𝑷𝑩𝑻𝑪𝑫)
 𝒙 𝟏𝟎𝟎  

 

The area results when divisor is set to 3, 10, and 15 are shown in Table 5.4, 5.5 and 

5.6. The corresponding graphs for these values are in Figure 5.4, 5.5 and 5.6. The 

results show that our area results are around 2 times the area of TBCD method. This 

is expected since we are using more resources for the sake of parallel calculations. 

However, area results are tolerable since there seems to be an exact proportion of 2 

between the area constraints. 

(5.1) 
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Table 5.4 Comparison of areas when 𝒅 = 3 

 

AREA RESULTS for d = 3 

Our BTCD Method TBCD Method  

AREA Norm.ATP AREA Norm.ATP 

3N4 841 0,29 821 0,29  

3N5 1247 0,54 1147 0,50  

3N6 1866 1,10 1397 0,71  

3N7 3366 2,15 1563 0,89  

3N8 4094 2,77 2251 1,44  

3N9 4380 2,96 2278 1,58  

3N10 5288 4,72 2844 2,21  

3N11 5767 5,20 3209 2,73  

3N12 5767 5,41 3459 3,19  

3N13 6972 6,61 3915 3,84  

3N14 10544 10,05 4005 4,26  

3N15 11748 11,55 4567 5,10  

3N16 10052 10,66 4760 5,81  

3N17 10674 11,29 4869 6,11  

3N18 12563 16,44 5312 7,24  

3N19 11838 15,83 5322 7,76  

3N20 13022 17,34 6071 9,18  

3N21 14829 19,54 6410 10,23  

3N22 15381 20,38 6593 10,76  

3N23 14589 19,48 7045 11,99  

3N24 16808 21,83 7458 13,66  

 

 

Figure 5.4 Normalized ATP Results for 𝒅 = 3 
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Table 5.5 Comparison of areas when 𝒅 = 10 

 

AREA RESULTS for d = 10 

Our BTCD Method TBCD Method  

AREA Norm.ATP AREA Norm.ATP 

10N4  209 0,05 209 0,05  

10N5  731 0,26 745 0,24  

10N6  1353 0,60 1307 0,57  

10N7  2760 1,38 1663 0,88  

10N8  4104 2,72 2807 1,77  

10N9  5019 3,40 3336 2,37  

10N10 5022 3,76 3555 2,93  

10N11 6360 5,20 4177 3,86  

10N12 10102 9,93 5385 5,41  

10N13 10864 10,96 5854 6,37  

10N14 10943 11,28 6646 8,13  

10N15 12340 12,87 6912 8,96  

10N16 14067 15,51 7720 10,86  

10N17 14659 16,25 8359 12,54  

10N18 16525 18,09 8635 13,66  

10N19 19675 21,88 9719 16,14  

10N20 19945 27,56 10298 18,43  

10N21 22579 32,03 10830 20,34  

10N22 22785 31,74 11792 23,32  

10N23 22283 31,41 11765 24,30  

10N24 23108 33,88 13002 27,93  

 

 

Figure 5.5 Normalized ATP Results for 𝒅 = 10 
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Table 5.6 Comparison of areas when 𝒅 = 15 

 

AREA RESULTS for d = 15 

Our BTCD Method TBCD Method  

AREA Norm.ATP AREA Norm.ATP 

15N4  389 0,10 405 0,10  

15N5  1004 0,41 1134 0,35  

15N6  2637 1,27 2591 1,24  

15N7  4327 2,36 3392 1,86  

15N8  9849 6,91 5046 3,61  

15N9  12853 9,98 5658 4,46  

15N10 14293 12,18 7005 6,52  

15N11 16532 15,27 8322 8,39  

15N12 21096 22,89 8888 10,23  

15N13 21325 24,23 10065 12,33  

15N14 23644 26,97 11003 15,16  

15N15 23763 27,63 11815 17,27  

15N16 32778 39,22 13804 22,34  

 15N17 36620 43,84 14968 25,23  

15N18 39574 48,99 16043 29,20  

15N19 44660 57,58 16641 31,65  

15N20 45764 70,93 18291 37,98  

15N21 46147 72,44 18734 40,42  

15N22 47890 75,51 21262 48,30  

15N23 48621 77,25 20740 48,83  

15N24 53997 86,05 21525 53,79  

 

 

Figure 5.6 Normalized ATP Results for 𝒅 = 15
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6. CONCLUSIONS AND FUTURE WORK 

In this study we have dealt with constant divider circuits and presented a new, faster 

LUT based constant integer division method. The proposed method has a divide and 

conquer approach with an ability to process parallel computations, which makes it 

faster with an applicable chip area occupation when compared to competitors. 

The systems that require constant divisor operators usually require rapid and repeated 

division operations where timing is critical. (i. e. address mapping) In such a problem 

where timing is critical, our method suggests the fastest solution with a timing 

complexity of 𝑙𝑜𝑔(𝑁) where 𝑁 is the dividend bit-width. We possess this advantage 

since we avoid the burden of laborious division calculation by pre-storing the results 

in LUTs and by partitioning the dividend into chunks of bits to run parallel 

computations on each partition. 

The synthesis results for timing analysis show that we achieve much more efficient 

timings when compared to TBCD method and the results get better (reaches up to 35% 

improved clock period for N = 15) as the bit-width 𝑁 increases.  

The area results, have to be compared by considering the timing value of the 

corresponding area because each area value is a result of a corresponding synthesis 

operation with a best timing target. Therefore, when the target clock period is relaxed 

in the synthesis strategy, area result tend to shrink to a better value. To make area 

results comparable we introduced ATP, which is considered a comparable area result.  

The occupied chip resources have to remain in logical borders so that the proposed 

method can be applicable. Our results show that the area constraints are around 1.1 to 

2 times larger than our competitor within the considered range. This is expected and 

definitely acceptable especially when the timing superiority of our method is 

considered. 

For the future work, our intention is to design a smart HDL generator for our algorithm 

that will group the input bits in the best possible way with the best possible grouping 

option at each step. The combination process of the LUTs can be accomplished in 
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variable amounts of items at each step so this property will be deeply examined and 

implemented into the HDL generator. Also the LUT sizes can be reduced by observing 

redundancies at each generation step. 

We have conducted a detailed literature survey for this study and implemented some 

of the proposed methods. As a future work, we will implement an HDL Generator that 

will choose the most efficient method for the given constraints and implement that. 

This generator is necessary for the fact that each constant division algorithm can be 

good for a specific range of divisors or for specific input bit-widths. A generator that 

chooses between the algorithms can have the ability to always achieve the best 

available result for given constraints. 
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APPENDIX A 

 

Table A.1 Results for 𝒅=3 

 

Our BTCD Method 

 

TBCD Method 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

 

3N4 1,078 841,5791 0,288285 

 

1,128 821,6207 0,294503 

3N5 1,360 1247,4000 0,539080 1,365 1147,6080 0,497777 

3N6 1,865 1866,1104 1,105923 1,605 1397,0880 0,712537 

3N7 2,010 3366,3168 2,150106 1,795 1563,4080 0,891755 

3N8 2,130 4094,7984 2,771539 2,020 2251,9728 1,445518 

3N9 2,132 4380,8688 2,967948 2,180 2278,5840 1,578448 

3N10 2,810 5288,9760 4,722661 2,447 2844,0720 2,211934 

3N11 2,840 5767,9776 5,205360 2,680 3209,9760 2,733666 

3N12 2,956 5767,9776 5,417973 2,906 3459,4560 3,194569 

3N13 2,985 6972,1344 6,613311 3,090 3915,1728 3,844309 

3N14 3,000 10544,6880 10,052263 3,350 4004,9856 4,263386 

3N15 3,095 11748,8448 11,554860 3,520 4567,1472 5,108537 

3N16 3,338 10052,3808 10,662625 3,845 4760,0784 5,815932 

3N17 3,330 10674,4176 11,295288 3,950 4869,8496 6,112537 

3N18 4,118 12563,8128 16,440562 4,290 5312,2608 7,241784 

3N19 4,210 11838,6576 15,837748 4,590 5322,2400 7,762757 

3N20 4,190 13022,8560 17,339203 4,760 6070,6800 9,182336 

3N21 4,148 14829,0912 19,546192 5,025 6409,9728 10,235313 

3N22 4,170 15381,2736 20,381551 5,140 6592,9248 10,768373 

3N23 4,202 14589,5904 19,483173 5,360 7045,3152 11,999802 

3N24 4,088 16808,2992 21,834514 5,765 7457,7888 13,662125 
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Table A.2 Results for 𝒅= 5 and 𝒅=6 

 

Our BTCD Method 

 

TBCD Method 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

 

5N4   1,0250 944,6976 0,3077 

 

1,0600 804,9888 0,2711 

5N5   1,3650 1453,6368 0,6305 1,3950 1423,6992 0,6311 

5N6   1,6660 1849,4784 0,9791 1,6700 1746,3600 0,9267 

5N7   2,0400 3752,1792 2,4323 2,0260 2770,8912 1,7839 

5N8   2,2750 5036,1696 3,6407 2,2550 3166,7328 2,2692 

5N9   2,3140 5601,6576 4,1190 2,6400 4154,6736 3,4854 

5N10  2,3450 6197,0832 4,6178 2,9250 4167,9792 3,8740 

5N11  3,0250 8202,9024 7,8850 3,1725 5175,8784 5,2179 

5N12  3,0475 8661,9456 8,3882 3,4250 5521,8240 6,0097 

5N13  3,1350 9686,4768 9,6497 3,7900 6323,4864 7,6156 

5N14  3,2050 11602,4833 11,8165 4,0175 7328,0592 9,3552 

5N15  3,2950 14559,6528 15,2446 4,4700 7241,5728 10,2861 

5N16  3,4800 15188,3425 16,7957 4,6720 7936,7904 11,7830 

5N17  3,4425 15617,4481 17,0841 4,9500 8884,8144 13,9753 

5N18  3,4600 16365,8881 17,9939 5,2500 9413,7120 15,7047 

5N19  4,1400 21016,1953 27,6480 5,6640 10814,1264 19,4636 

5N20  4,3140 18358,4017 25,1666 5,9020 10348,4304 19,4081 

5N21  4,1950 19555,9057 26,0687 6,2900 11838,6576 23,6626 

5N22  4,2600 21960,8929 29,7282 6,4160 12071,5057 24,6113 

5N23  4,3050 23145,0913 31,6622 6,7960 12666,9312 27,3548 

5N24  4,3100 22852,3681 31,2981 7,0500 12962,9809 29,0404 

 

6N4   0,9060 365,9040 0,1053  0,9000 325,9872 0,0932 

6N5   1,1900 578,7936 0,2189 1,1400 881,4960 0,3193 

6N6   1,3650 1224,1152 0,5310 1,3400 1087,7328 0,4632 

6N7   1,8300 2601,2448 1,5127 1,6140 1596,6720 0,8189 

6N8   2,0400 3991,6800 2,5876 1,7850 1935,9648 1,0981 

6N9   2,1450 3426,1920 2,3353 2,0520 2431,5984 1,5855 

6N10  2,0950 5002,9056 3,3305 2,2040 2508,1056 1,7566 

6N11  2,8100 5162,5728 4,6098 2,4300 2757,5856 2,1293 

6N12  2,9550 6596,2512 6,1939 2,6900 2890,6416 2,4709 

6N13  3,0600 6642,8208 6,4593 2,9080 3209,9760 2,9662 

6N14  2,9900 8349,2640 7,9328 3,1550 3422,8656 3,4316 

6N15  3,0800 10155,4992 9,9394 3,3480 4024,9440 4,2821 

6N16  3,2340 11625,7681 11,9473 3,5650 4593,7584 5,2040 

6N17  3,2200 11775,4560 12,0488 3,8300 4740,1200 5,7690 

6N18  3,2150 13069,4257 13,3520 4,0100 5145,9408 6,5572 

6N19  3,9700 15254,8705 19,2446 4,3020 5229,1008 7,1484 

6N20  4,0200 15876,9073 20,2815 4,4520 5265,6912 7,4494 

6N21  4,0800 13488,5521 17,4878 4,6620 6034,0896 8,9391 

6N22  4,0900 16009,9633 20,8076 4,9450 6030,7632 9,4765 

6N23  4,2000 16166,3041 21,5759 5,1780 6067,3536 9,9832 

6N24  4,0700 18069,0049 23,3689 5,3650 6925,5648 11,8068 
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Table A.3 Results for 𝒅=7 and 𝒅=9 

 

Our BTCD Method 

 

TBCD Method 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

 

7N4   0,9500 685,2384 0,2069 

 

0,9500 748,4400 0,2259 

7N5   1,4450 1094,3856 0,5025 1,3500 1683,1584 0,7221 

7N6   1,6200 2195,4240 1,1302 1,6950 2128,8960 1,1467 

7N7   2,0200 4174,6320 2,6797 2,0050 3499,3728 2,2295 

7N8   2,2500 6237,0000 4,4593 2,3300 3748,8528 2,7756 

7N9   2,3300 6862,3632 5,0809 2,7250 4913,0928 4,2543 

7N10  2,5150 7757,1648 6,1994 2,9580 5242,4064 4,9276 

7N11  3,1100 9822,8593 9,7075 3,4000 6283,5696 6,7888 

7N12  3,2400 11043,6480 11,3702 3,6080 6775,8768 7,7686 

7N13  3,2400 12809,9664 13,1887 3,9800 8276,0832 10,4669 

7N14  3,3200 13668,1777 14,4197 4,2525 8492,2992 11,4757 

7N15  3,3720 15983,3521 17,1263 4,6800 9280,6560 13,8017 

7N16  3,4900 18488,1313 20,5035 4,9400 9902,6928 15,5449 

7N17  3,5575 17510,1697 19,7945 5,3550 10764,2304 18,3169 

7N18  3,5700 19945,0945 22,6263 5,6700 10973,7936 19,7719 

7N19  4,3800 21165,8833 29,4591 6,0000 12763,3969 24,3347 

7N20  4,4800 22769,2081 32,4142 6,2825 13282,3153 26,5164 

7N21  4,4040 23607,4609 33,0374 6,7250 13871,0881 29,6423 

7N22  4,4260 23361,3073 32,8562 6,9200 14433,2496 31,7380 

7N23  4,4660 26777,5201 38,0013 7,3400 16272,7489 37,9547 

7N24  4,4700 27935,1073 39,6795 7,5700 16036,5745 38,5759 

 

9N4   0,8580 415,8000 0,1134  0,8400 455,7168 0,1216 

9N5   1,3620 1077,7536 0,4665 1,1450 1510,1856 0,5495 

9N6   1,6350 2182,1184 1,1337 1,6600 2232,0144 1,1774 

9N7   1,7460 3346,3584 1,8566 1,8740 3632,4288 2,1631 

9N8   2,1640 6779,2032 4,6617 2,3580 3802,0752 2,8489 

9N9   2,3640 8276,0832 6,2170 2,5500 5678,1648 4,6011 

9N10  2,5300 9417,0384 7,5708 3,0800 6210,3888 6,0782 

9N11  2,7050 9952,5888 8,5548 3,3100 7477,7472 7,8652 

9N12  3,2100 13538,4480 13,8097 3,7500 8196,2496 9,7669 

9N13  3,4220 14556,3264 15,8285 3,9700 9939,2832 12,5388 

9N14  3,4500 14290,2145 15,6663 4,4300 9456,9552 13,3126 

9N15  3,4900 18165,4705 20,1456 4,7050 11053,6273 16,5262 

9N16  3,6560 22217,0257 25,8108 5,0700 12394,1664 19,9680 

9N17  3,6550 23401,2241 27,1791 5,3825 14463,1872 24,7376 

9N18  3,7140 25659,8497 30,2834 5,9000 14040,7345 26,3239 

9N19  3,7550 27978,3505 33,3842 6,0640 15251,5440 29,3888 

9N20  4,5820 30423,2545 44,2965 6,5280 15324,7248 31,7894 

9N21  4,6475 29125,9585 43,0139 6,8340 17629,9201 38,2855 

9N22  4,7140 31404,5426 47,0426 7,1700 18581,2704 42,3354 

9N23  4,7700 31271,4865 47,3997 7,6100 19076,9041 46,1319 

9N24  4,8080 33506,8274 51,1925 7,8680 19935,1153 49,8416 
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Table A.4 Results for 𝒅=10 and 𝒅=11 

 

Our BTCD Method 

 

TBCD Method 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

 

10N4  0,7450 209,5632 0,0496 

 

0,7450 209,5632 0,0496 

10N5  1,1500 731,8080 0,2674 1,0300 745,1136 0,2439 

10N6  1,4050 1353,8448 0,6044 1,3880 1307,2752 0,5766 

10N7  1,5750 2760,9120 1,3818 1,6700 1663,2000 0,8826 

10N8  2,0880 4104,7776 2,7235 1,9900 2807,4816 1,7753 

10N9  2,1350 5019,5376 3,4054 2,2375 3336,3792 2,3722 

10N10 2,3600 5022,8640 3,7668 2,5950 3555,9216 2,9322 

10N11 2,5750 6360,0768 5,2041 2,9100 4177,9584 3,8634 

10N12 3,0950 10102,2768 9,9355 3,1625 5385,4416 5,4120 

10N13 3,1750 10864,0224 10,9608 3,4275 5854,4640 6,3764 

10N14 3,2450 10943,8560 11,2848 3,8500 6646,1472 8,1309 

10N15 3,2840 12340,9440 12,8784 4,0800 6912,2592 8,9617 

10N16 3,4700 14067,3456 15,5114 4,4300 7720,5744 10,8683 

10N17 3,4900 14659,4448 16,2574 4,7240 8359,2432 12,5483 

10N18 3,4450 16525,5553 18,0906 4,9800 8635,3344 13,6652 

10N19 3,5000 19675,6561 21,8830 5,2280 9719,7408 16,1473 

10N20 4,3500 19945,0945 27,5698 5,6325 10298,5344 18,4326 

10N21 4,4650 22579,6033 32,0366 5,9125 10830,7584 20,3488 

10N22 4,3850 22785,8401 31,7500 6,2240 11792,0880 23,3222 

10N23 4,4360 22283,5537 31,4112 6,5000 11765,4769 24,3014 

10N24 4,6150 23108,5009 33,8885 6,7620 13002,8977 27,9399 

 

11N4  0,8580 372,5568 0,1016  0,8660 289,3968 0,0796 

11N5  1,4000 1350,5184 0,6008 1,1400 1570,0608 0,5688 

11N6  1,6025 3199,9968 1,6295 1,6060 2870,6832 1,4650 

11N7  1,9200 5708,1024 3,4826 1,8460 4434,0912 2,6010 

11N8  2,2560 8192,9232 5,8734 2,3450 5275,6704 3,9312 

11N9  2,5080 11715,5808 9,3368 2,5600 6433,2576 5,2333 

11N10 2,7000 13212,4608 11,3359 3,0900 7361,3232 7,2281 

11N11 3,0080 15527,6353 14,8420 3,3000 8189,5968 8,5879 

11N12 3,4450 18105,5953 19,8203 3,8160 9446,9760 11,4554 

11N13 3,4540 18115,5745 19,8831 4,0300 11419,5312 14,6239 

11N14 3,5700 21265,6753 24,1244 4,5600 12177,9504 17,6461 

11N15 3,7180 24392,4913 28,8187 4,7625 13292,2944 20,1161 

11N16 3,8200 29066,0834 35,2825 5,2600 14419,9440 24,1023 

11N17 3,8600 32282,7121 39,5974 5,5200 16518,9025 28,9754 

11N18 3,9480 34464,8306 43,2377 6,0700 16967,9665 32,7286 

11N19 4,1900 38030,7314 50,6358 6,2900 18188,7553 36,3549 

11N20 4,8300 41247,3602 63,3071 6,7300 18837,4033 40,2851 

11N21 4,8520 40056,5090 61,7594 6,9940 19708,9201 43,8023 

11N22 5,0300 39018,6722 62,3662 7,4800 21847,7953 51,9300 

11N23 5,0640 42844,0322 68,9434 7,7540 22582,9297 55,6436 

11N24 5,2140 46024,0706 76,2544 8,2350 23451,1201 61,3672 
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Table A.5 Results for 𝒅=12 and 𝒅=13 

 

Our BTCD Method 

 

TBCD Method 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

 

12N4  0,6200 76,5072 0,0151 

 

0,6200 76,5072 0,0151 

12N5  0,9540 302,7024 0,0918 0,9200 335,9664 0,0982 

12N6  1,0800 751,7664 0,2580 1,1100 801,6624 0,2828 

12N7  1,3050 1493,5536 0,6194 1,3250 1150,9344 0,4846 

12N8  1,8550 2528,0640 1,4902 1,5580 1450,3104 0,7180 

12N9  1,9050 3346,3584 2,0257 1,7250 1696,4640 0,9299 

12N10 1,9400 3678,9984 2,2680 1,9750 2105,6112 1,3215 

12N11 2,1475 4324,3200 2,9509 2,1140 2820,7872 1,8949 

12N12 2,7225 6250,3056 5,4073 2,4000 2834,0928 2,1614 

12N13 2,8500 7371,3024 6,6757 2,5775 3193,3440 2,6155 

12N14 3,0980 6732,6336 6,6279 2,8650 3256,5456 2,9648 

12N15 3,0875 8429,0976 8,2698 3,0340 3170,0592 3,0563 

12N16 3,1100 9826,1856 9,7108 3,3000 3742,2000 3,9242 

12N17 3,1200 10245,3120 10,1575 3,4100 3698,9568 4,0081 

12N18 3,1100 11472,7536 11,3380 3,6720 5189,1840 6,0550 

12N19 3,1450 11369,6353 11,3626 3,8600 4520,5776 5,5449 

12N20 4,0940 14103,9360 18,3484 4,1350 5475,2544 7,1943 

12N21 4,0950 14406,6385 18,7467 4,2820 5272,3440 7,1740 

12N22 4,1600 13382,1073 17,6900 4,4800 6493,1328 9,2436 

12N23 4,1300 14639,4865 19,2125 4,7650 5980,8672 9,0560 

12N24 4,4400 14223,6865 20,0680 4,9700 6217,0416 9,8186 

 

13N4  0,8250 419,1264 0,1099  0,8150 412,4736 0,1068 

13N5  1,3640 1417,0464 0,6142 1,1200 1417,0464 0,5043 

13N6  1,6580 2867,3568 1,5107 1,6325 3356,3376 1,7411 

13N7  1,8450 6872,3424 4,0291 1,9140 4716,8352 2,8688 

13N8  2,3900 10444,8960 7,9325 2,4500 6336,7920 4,9334 

13N9  2,6900 12813,2929 10,9527 2,7600 6812,4672 5,9748 

13N10 2,9340 16272,7489 15,1715 3,3275 9590,0112 10,1402 

13N11 3,1200 19359,6481 19,1938 3,5750 9822,8592 11,1589 

13N12 3,6650 23091,8689 26,8932 4,1150 11379,6144 14,8801 

13N13 3,7400 25167,5425 29,9103 4,3700 12829,9249 17,8162 

13N14 3,7425 26198,7265 31,1567 4,9000 14310,1728 22,2818 

13N15 3,8720 30047,3713 36,9701 5,1000 16143,0192 26,1616 

13N16 4,0100 35725,5361 45,5231 5,7375 17716,4064 32,3003 

13N17 4,0300 37278,9649 47,7395 5,9900 18747,5905 35,6846 

13N18 4,1700 41523,4514 55,0223 6,5575 21185,8417 44,1462 

13N19 4,4250 44730,1010 62,8959 6,8000 22147,1713 47,8560 

13N20 5,1300 47477,7074 77,3955 7,3580 23540,9329 55,0418 

13N21 5,1700 52573,7522 86,3711 7,6200 25300,5985 61,2625 

13N22 5,1540 53318,8659 87,3241 8,1600 25649,8705 66,5096 

13N23 5,3000 52803,2738 88,9294 8,4160 26710,9921 71,4339 

13N24 5,3200 59153,3715 100,0000 9,0250 28354,2337 81,3156 
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Table A.6 Results for 𝒅=14 and 𝒅=15 

 

Our BTCD Method 

 

TBCD Method 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

Best 
Timing 

(ns) 
Area 

Normalized 
ATP 

 

14N4  0,7300 96,4656 0,0224 

 

0,7300 96,4656 0,0224 

14N5  1,1350 585,4464 0,2112 0,9540 718,5024 0,2178 

14N6  1,3540 1639,9152 0,7056 1,3660 1596,6720 0,6931 

14N7  1,5300 3306,4416 1,6075 1,6000 2162,1600 1,0993 

14N8  2,1080 6173,7984 4,1355 2,0350 3199,9968 2,0693 

14N9  2,2600 7644,0672 5,4896 2,2600 3918,4992 2,8141 

14N10 2,4880 8771,7168 6,9350 2,7600 4816,6272 4,2244 

14N11 2,6200 10085,6449 8,3968 2,9360 4943,0304 4,6117 

14N12 3,3000 15224,9328 15,9653 3,3900 5954,2560 6,4141 

14N13 3,4350 14759,2369 16,1101 3,5950 6346,7712 7,2504 

14N14 3,4875 17822,8513 19,7515 4,0850 7447,8096 9,6678 

14N15 3,5075 19609,1281 21,8557 4,3300 7690,6368 10,5818 

14N16 3,6740 22938,8545 26,7806 4,6950 8748,4320 13,0519 

14N17 3,6300 24941,3473 28,7697 4,9550 9367,1424 14,7489 

14N18 3,6400 26521,3873 30,6765 5,3950 10039,0752 17,2105 

14N19 3,7275 28670,2417 33,9592 5,5800 10893,9600 19,3165 

14N20 4,6325 33556,7234 49,3974 6,0550 11858,6160 22,8169 

14N21 4,7100 34837,3873 52,1405 6,3200 12001,6512 24,1028 

14N22 4,7980 33796,2242 51,5273 6,7200 13002,8976 27,7663 

14N23 4,7900 35366,2849 53,8312 6,9550 13967,5537 30,8693 

14N24 4,8400 38090,6066 58,5831 7,4050 14486,4720 34,0876 

 

15N4  0,7875 389,1888 0,0974  0,7875 405,8208 0,1016 

15N5  1,3040 1004,5728 0,4163 0,9940 1134,3024 0,3583 

15N6  1,5200 2637,8352 1,2741 1,5100 2591,2656 1,2434 

15N7  1,7200 4327,6464 2,3653 1,7300 3392,9280 1,8652 

15N8  2,2100 9849,4704 6,9169 2,2550 5046,1488 3,6159 

15N9  2,4450 12853,2097 9,9862 2,4860 5658,2064 4,4698 

15N10 2,6825 14293,5408 12,1840 2,9325 7005,3984 6,5280 

15N11 2,9075 16532,2081 15,2742 3,1750 8322,6528 8,3968 

15N12 3,4160 21096,0289 22,8996 3,6250 8888,1408 10,2383 

15N13 3,5760 21325,5505 24,2330 3,8550 10065,6864 12,3304 

15N14 3,5900 23644,0513 26,9727 4,3360 11003,7312 15,1614 

15N15 3,6600 23763,8017 27,6380 4,6000 11815,3728 17,2709 

15N16 3,7660 32778,3458 39,2262 5,0950 13804,5600 22,3499 

15N17 3,7680 36620,3377 43,8472 5,3050 14968,8001 25,2337 

15N18 3,8960 39574,1809 48,9936 5,7280 16043,2273 29,2014 

15N19 4,0580 44660,2466 57,5893 5,9850 16641,9792 31,6503 

15N20 4,8780 45764,6114 70,9382 6,5350 18291,8736 37,9850 

15N21 4,9400 46147,1474 72,4404 6,7900 18734,2849 40,4218 

15N22 4,9620 47890,1810 75,5113 7,1500 21262,3489 48,3088 

15N23 5,0000 48621,9889 77,2523 7,4100 20740,1040 48,8358 

15N24 5,0150 53997,4514 86,0504 7,8650 21525,1345 53,7964 
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