T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

DIRAC DENKLEMİNDE TAM ORTONORMAL ORBİTALLER TOPLUMLARI KULLANILARAK ATOM ÖZELLİKLERİNİN İNCELENMESİ DOKTORA TEZİ

Ali BAĞCI

Fizik Anabilim Dalı Tezin Sunulduğu Tarih: **03/07/2012**

Tez Danışmanı: PROF. DR. Ramazan AYDIN PROF. DR. İsrafil HUSEYİN

ÇANAKKALE

DOKTORA TEZİ SINAV SONUÇ FORMU

Ali BAĞCI tarafından Prof. Dr. Ramazan AYDIN yönetiminde hazırlanan "DIRAC DENKLEMİNDE TAM ORTONORMAL ORBİTALLER TOPLUMLARI KULLANILARAK ATOM ÖZELLİKLERİNİN İNCELENMESİ" başlıklı tez tarafımızdan okunmuş, kapsamı ve niteliği açısından bir doktora tezi olarak kabul edilmiştir.

> Prof. Dr. Ramazan AYDIN Danışman

> Prof. Dr. İsrafil HÜSEYİN Eş Danışman

Prof. Dr. İsmail TARHAN Jüri Üyesi Prof. Dr. Selehattin YILMAZ Jüri Üyesi

Yrd. Doç. Dr. Nurşen Seçkin GÖRGÜN Jüri Üyesi Yrd. Doç. Dr. Mustafa KURT Jüri Üyesi

Sıra No: Tez Savunma Tarihi:03/07/2012 Prof. Dr. İsmet KAYA Müdür Fen-Bilimleri Enstitüsü

Hazırlanan bu Doktora tezi ÇÖMÜ-BAP tarafından 2010/184 no'lu projeden desteklenmiştir.

İNTİHAL (AŞIRMA) BEYAN SAYFASI

Bu tezde görsel, işitsel ve yazılı biçimde sunulan tüm bilgi ve sonuçların akademik ve etik kurallara uyularak tarafımdan elde edildiğini, tez içinde yer alan ancak bu çalışmaya özgü olmayan tüm sonuç ve bilgileri tezde kaynak göstererek belirttiğimi beyan ederim.

Ali BAĞCI

TEŞEKKÜR

Tez çalışmaları sırasında danışmanlığını benden esirgemeyen, bilgi ve deneyimlerini paylaşan Sayın Prof. Dr. İsrafil HÜSEYİN'e ve Sayın Prof. Dr. Ramazan AYDIN'a teşekkürlerimi sunarım. Sayın Prof. Dr. Ramazan AYDIN'a danışmanlığı sırasında çağdaş bilimsel yöntem, bilimsel kimlik öğretileri için ayrıca şükranlarımı sunarım.

Bununla birlikte, Sayın Prof. Dr. Jacek KARWOWSKI ve Grzegorz PESTKA'ya atom ve moleküllerin göreli kuantum mekaniksel incelenmesinde kullanılan baz fonksiyonlarının yapısı ve bu baz fonksiyonlarında kinetik balans koşulunun detayları ve önemi hakkındaki görüşleri, Sayın Prof. Dr. Radoslaw SZMYTKOWSKI'ye göreli kuantum mekaniğinde tam ortonormal baz fonksiyonlarının yapısı hakkındaki görüşleri, Sayın Prof. Dr. Anatoly NIKITIN'e yüksek spine sahip sistemler için Dirac denkleminin hangi yöntemlerle ve nasıl elde edilmesi gerektiği hakkındaki görüşleri için teşekkürlerimi sunarım.

İnsani kimliği, bilimsel birikimi ile tanımaktan şeref duyduğum Sayın Prof. Dr. Leszek MEISSNER'e Polonya'da olduğum süre içerisinde sağladığı bilimsel ortam, verdiği destek için çok teşekkür ederim.

Çanakkale Onsekiz Mart Üniversite'sinde maddi ve manevi destekten yoksun olmasına rağmen atom ve molekül fiziği çalışma grubunun çalışmalarının ilerlemesinde, gelişmesinde harcadıkları çabalardan dolayı çalışma arkadaşlarım Dr. Murat ERTÜRK ve Dr. Ercan ŞAHİN'e teşekkürlerimi sunarım. Zira imkanlardan yoksun olarak çalışan bu grubun tüm bu koşullara rağmen Türkiye'de ve uluslararası düzeyde kendini tanıtmayı başardığı yadsınamaz bir gerçektir.

Çalışmalarım süresince herkesten fazla, her zaman maddi ve manevi desteklerini gördüğüm anneme şükranlarımı sunarım.

Ali BAĞCI

IV

SİMGELER VE KISALTMALAR

S	Spin kuantum sayısı
n	Baş kuantum sayısı
l	Yörüngesel kuantum sayısı
j	Toplam açısal momentum kuantum sayısı
Ζ	Atom numarası – Çekirdek yükü
ζ	Perdelenme sabiti-Orbital parametresi
\hat{h}_D^s	Dirac işlemcisi
$a^s_{ljm}(\lambda)$	Genelleşmiş Clebsch-Gordan katsayıları
$C^{L}(l,m;l',m')$	Gaunt Katsayıları
$Y^{s}_{ljm}ig(heta, arphiig)$	Spinör-tipli küresel tensörler
$Y_{lm_{l}}\left(heta, arphi ight)$	Kompleks skaler küresel harmonikler
$S_{_{lm_{l}}}ig(heta, arphiig)$	Reel skaler küresel harmonikler
$\Psi^s_{\mathit{nljm}}ig(\zeta,ec rig)$	Yarım spin spinör orbitalleri
$S^s_{nljm,n'l'j'm'}(\zeta,\zeta')$	Örtme integrali
$V^s_{nljm,n'l'j'm'}(\zeta,\zeta',\eta,\eta')$	Potansiyel enerji integrali
$\Pi^{s}_{\textit{nljm},n'l'j'm'}(\zeta,\zeta')$	Kinetik enerji integrali
$I_{bd}^{s,ac}$	Statik etkileşme integrali
$d^{s,L}(j,m;j',m')$	Statik etkileşme katsayısı
$\hat{F}^{\mu u}_{pq}$	Fock işlemcisi
$F^{\mu u}_{pq}$	Fock matrisi
$J_{pq}^{\mu u}$	Coulomb etkileşme matrisi
$K^{\mu u}_{pq}$	Exchange etkileşme matrisi
C^{μ}_{qi}	Doğrusal bileşim katsayıları
GDD	Genelleşmiş Dirac Denklemi
HF	Hartree-Fock
LCAO	Atom orbitallerinin doğrusal bileşimi

HFR	Hartree-Fock-Roothaan
DHF	Dirac-Hartree-Fock
KED	Kuantum Elektrodinamiği
TSDD	Tam spine sahip parçacıkların dalga denklemi
YSDD	Yarım spine sahip parçacıkların dalga denklemi
DHFR	Dirac-Hartree-Fock-Roothaan
SCF	Öz uyumlu alan yöntemi
KD	Kinetik denge
STKT	Spinör-Tipli Küresel Tensörler
YSSO	Yarım Spin Spinör Orbitalleri
GTO	Gauss-tipi orbital
STF	Slater-tipi orbital
ETO	Exponansiyel-tipli orbital
CEEK	Coulomb elektrostatik etkileşim katsayıları
EEEK	Exchange elektrostatik etkileşim katsayıları

ÖZET

DIRAC DENKLEMİNDE TAM ORTONORMAL ORBİTALLER TOPLUMLARI KULLANILARAK ATOM ÖZELLİKLERİNİN İNCELENMESİ

Ali BAĞCI

Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Doktora Tezi Danışmanlar: Prof. Dr. Ramazan AYDIN, Prof. Dr. İsrafil HÜSEYİN 03/07/2012, 131

Bu çalışmada rölativistik etkileri dikkate alan Dirac-Hartree-Fock-Roothaan denklemleri, rölativistik olmayan Hartree-Fock-Roothan denklemlerinden faydalanılarak yarım spinli parçacıklar için önerilen Slater tipli ve tam ortonormal spinör orbital toplumları kullanılarak çözülmüştür.

Yarım spinli parçacıklar için önerilen Slater tipli ve tam ortonormal spinör orbital toplumlarının radyal ve açısal kısımları analiz edilmiş, Dirac-Hartree-Fock-Roothaan denklemlerinde ortaya çıkan matris elemanlarının analitik ifadeleri tam ve kesirli başkuantum sayılı Slater tipli ve tam ortonormal spinör orbital toplumları için elde edilmiş, bilgisayar programı yapılmış ve atom numarasının değiştiği H-, He- ve Be-benzer atomlar için hesaplamalar yapılarak özel rölativite teorisinin atomlar üzerindeki etkisi, atomların fiziksel özelliklerinde ortaya çıkan değişiklikler, kullanılan baz fonksiyonlarının hassasiyeti incelenmiş, sonuçlar literatürle karşılaştırılmıştır.

Anahtar Sözcükler: Özel rölativite teorisi, Dirac-Hartree-Fock-Rothaan Yöntemi, Hartree-Fock-Rothaan Yöntemi, Slater tipli spinör orbitaller ve Tam ortonormal spinör orbital toplumları

ABSTRACT

INVESTIGATION OF SOME ATOMIC PROPERTIES USING COMPLETE SETS OF ORTHONORMAL ORBITALS IN DIRAC EQUATION

Ali BAĞCI

Çanakkale Onsekiz Mart University Natural and Applied Sciences Chair for Physics Thesis of Ph.D. Advisors: Prof. Dr. Ramazan AYDIN, Prof. Dr. İsrafil HÜSEYİN 03/07/2012, 131

In this study, with help of nonrelativistic Hartree-Fock-Roothaan equations the Dirac-Hartree-Fock-Roothaan equations have been solved using Slater type spinor orbitals and complete orthonormal sets of relativistic spinor orbitals.

The radial part and spherical parts of Slater type spinor orbitals and complete orthonormal sets of relativistic spinor orbitals are investigated. The matrix elements occurring in Dirac-Hartree-Fock-Roothaan equations have been obtained for Slater type spinor orbitals in case of integer and noninteger principal quantum number and complete orthonormal sets of relativistic spinor orbitals. The constructed computer programs have been used to investigate effect of the special relativity in atoms, physical properties of atoms and efficiency of used basis functions. The calculations have been performed for H-, He-, Be- like atoms. The obtained results have been compared with literature.

Keywords: Theory of special relativity, Dirac-Hartree-Fock-Roothaan method, Hartree-Fock-Roothaan method, Slater type spinor orbitals, Complete orthonormal sets of spinor orbitals

İÇERİK

Say	/fa
DOKTORA TEZİ SINAV SONUÇ FORMU	II
İNTİHAL (AŞIRMA) BEYAN SAYFASI	.III
TEŞEKKÜR	IV
SİMGELER VE KISALTMALAR	V
ÖZET	VII
ABSTRACTV	ΊΠ
BÖLÜM 1-GİRİŞ	1
BÖLÜM 2-ÖNCEKİ ÇALIŞMALAR	10
2.1. H-benzer Sistemler	.10
2.2. Çok-Elektronlu Problem ve DHFR yöntemi	17
2.2.1. Hartree-Fock yaklaşımı	.18
2.2.2. Roothaan lineer varyasyon yöntemi	.24
2.3. İki-bileşenli DHFR denklemleri ve Kinetik Denge (Balance) Koşulu	.27
2.4. Göreli Baz Fonksiyonlarının Yapısı	31
2.4.1. Tam ortonormal baz fonksiyonları	31
2.4.2. Tam olmayan baz fonksiyonları	.33
BÖLÜM 3-MATERYAL VE YÖNTEM	34
3.1. Dirac Denkleminin Genelleştirilmesi	.34
3.2. Yarım Spin Spinör Orbitalleri	.37
3.2.1. Spinör-tipli küresel tensörler	.37
3.2.2 STKT'lerin toplama formülleri	.41
3.2.3. Yarım spin spinör orbitallerinin genel yapısı	ve
özellikleri	43

3.3. Matris Elemanları49
3.3.1. Örtme ve potansiyel enerji integralleri50
3.3.2. Kinetik enerji integrali52
3.3.3. Radyal integrallerin çözüm yöntemleri54
3.3.4. Ψ^{α} – <i>ETO</i> tam ortonormal orbital toplumlar1
3.3.5. STO kullanılarak örtme potansiyel enerji ve kinetik enerji matris
elemanlarına ait radyal integraller ve çözümleri60
3.3.6. Tam ortonormal orbital toplumları kullanılarak örtme potansiyel
enerii ve kinetik enerii matris elemanlarına ait radval integraller ve
cözümleri 62
3.3.7. Bir-merkezli etkileşme integralleri
BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA74
4.1. Yarım Spin Spinör Orbitallerinin Analizi75
4.2. Coulomb ve Exchange Etkileşim Katsayıları94
4.3. Bir-elektronlu Atomik Sistemlerin İncelenmesi97
4.4. Çok-elektronlu Atomik Sistemlerin İncelenmesi111
BÖLÜM 5- SONUÇ VE ÖNERİLER121
KAYNAKLAR124
ÇizelgelerI
ŞekillerIV
ÖzgeçmişV

BÖLÜM 1 GİRİŞ

Atom ve moleküllerin elektronik yapı hesaplamaları, Rutherford atom modeline ve Planck kuantumlaşma fikrine dayanarak bir-elektronlu atomlar için Bohr (1913) tarafından geliştirilen teori ile başlamıştır. Teorinin, bir-elektronlu atomlara uygulamaları başarılı sonuçlar verse de çok-elektronlu sistemler göz önüne alındığında Bohr'un yarı-klasik teorisi yeterli olmamıştır. Heisenberg (1925) ve Schrödinger (1926) De Broglie'nin dalga kuramını dikkate alarak Kuantum mekaniğini (Dalga mekaniği) geliştirmesi ile birlikte çok-elektronlu atomik ve moleküler sistemleri tanımlamak için genel bir yöntem Hartree (1928a,b, 1957) tarafından öne sürülmüştür. Perdelenmiş alan yaklaşımı olarak adlandırılan bu yöntemde çokelektronlu problem bir-elektronlu probleme indirgenerek çözüm aranır. Dikkate alınan elektron dışında diğer tüm elektronların çekirdeğin yükünü azalttığı varsayılarak bir-elektron için denklem çözülür. Dalga fonksiyonu ise birbirinden bağımsız elektronlar modeline dayalı olarak bir-elektronlu dalga fonksiyonlarının çarpımıyla oluşturulur. Ne var ki Hartree'nin önerdiği dalga fonksiyonu Pauli (1925) ilkesini sağlamamaktadır, diğer bir değisle antisimetrik değildir. Fock (1930) perdelenmiş alan yaklaşımında sistemin dalga fonksiyonunun determinant şeklinde yazılmasını önererek bu problemi ortadan kaldırmıştır. Buna göre determinant seklinde yazılan dalga fonksiyonları özdeş parçacıkların seçilmezliği (Indistinguishability of Identical Particles) daha özelde Pauli, elektronlar sisteminin dalga fonksiyonunun anti-simetrik olması gerektiği, ilkesini sağlamaktadır. Çok-elektronlu sistemlerin incelenmesi sırasında ortaya çıkan problemler Hartree ve Fock tarafından ortadan kaldırılmış olsa da denklemlerin çözülmesi ve hesaplamaların yapılması oldukça zor olduğu gibi çok fazla zaman almaktadır. Dolayısı ile bu aşamadan sonra çalışmalar, matematiksel olarak ortaya çıkan bu zorlukları aşmak, hesaplama süresini azaltmak için yapılmıştır. Slater (1929, 1930a,b, 1960) sistemin dalga fonksiyonlarını determinant şeklinde yazarak Hartree-Fock (HF) denklemlerini yeniden üretmiş ve hesaplamalarda kolaylık sağlayacak şekilde basitleştirmiştir. Roothaan (1951) sistemin dalga fonksiyonunu ifadesi bilinen atom orbitallerinin (Schrödinger denkleminin H atomu icin tam cözümünden elde edilen dalga fonksiyonu dikkate alınarak yaklaşık olarak elde edilir) doğrusal bileşimi (Linear combination of atomic orbitals, LCAO) seklinde olusturmus böylece HF denklemlerinin analitik cözümünü mümkün kılmıştır. Roothaan'ın önerdiği yöntem, çok-elektronlu sistemlerin elektronik yapılarının hesaplanması açısından kolaylık sağlamış üstelik sistemin fiziksel titreşim, rotasyon, moment gibi özelliklerinin incelenmesini de olanaklı hale getirmiştir. Roothaan'ın atom ve moleküllerin elektronik yapı hesaplamaları üzerine yaptığı bu önemli katkıdan sonra çalışmaların seyri, sistemin özelliklerini daha iyi temsil edebilecek atom orbitalleri, ve bu atom orbitallerine göre ortaya çıkan integrallerin analitik ifadesini bulmak, fiziksel özellikler için doğru ve hassas sonuçlar almak, hesaplama süresini azaltmak, Hartree-Fock-Roothaan (HFR) teorisinde hesaba katılmayan korelasyon (bir çarpanın diğeri ile etkileşimi) etkilerini dikkate almak vb... olarak devam etmiştir.

Ne var ki, Schrödinger teorisine dayalı olarak geliştirilen HF denklemlerinin sayısal çözümünden veya analitik çözümü olanaklı hale getiren HFR denklemlerinde yapılan iyileştirmelerden elde edilen sonuçlar incelenen atomik veya moleküler sistem için, çekirdek yükü artıkça deneyden git gide uzaklaşmaktadır (Şekil 1). Sonuçların çekirdek yüküne bağlı olarak ortaya çıkan tutarsızlığı çok-elektronlu sistemlerin teorisinde tamamlanmasını gereken esksikliklerin olduğunu ortaya koymuştur. Klasik mekaniğin temel prensiplerine dayalı olarak düzeyde güvenilir olduğu göz önüne alındığında denklemlere göreli (relativistic) düzeltmelerin dahil edilmesi dışında başka bir seçeneğin olmadığı görülür.

Şekil 1. H-benzer sistemlerin çekirdek yüküne bağlı olarak atomik birimlerde göreli (Dirac $-\varepsilon_D$) ve göreli olmayan (Schrödinger $-\varepsilon_s$) orbital enerjileri arasındaki fark $(\Delta \varepsilon = \varepsilon_D - \varepsilon_s)$

Einstein (1905, 1915) görelilik (relativity) teorisini Planck, Heisenberg ve Schrödinger'in kuantum teorisi ile yaklaşık olarak aynı dönemlerde elde etmiş olmasına rağmen, iki teori farklı menşee sahiptir, uygulama alanları da birbirinden farklıdır. Buna rağmen görelilik teorisi düşük hızlarda $\left(\frac{v}{c} \ll 1\right)$, kuantum teorisi ise Planck sabitinin sıfıra yaklaştığı durumda ($\hbar \approx 0$) aynı şekilde klasik fizik yasalarını vermektedirler. Limit durumlarında benzer sonucları veren birbirinden bağımsız bu iki teorivi birlestirme cabası ilk olarak Sommerfeld (1916) tarafından sarf edilmis, basarılı bicimde Bohr atom modelinde göreli etkileri dikkate alarak yörünge ve enerji düzeltmesi yapılmıştır. Yine de ne Sommerfeld'in teorisi ne de daha sonra Darwin (1920) tarafından yapılan denemeler göreliliğin temel ilkesi olan Lorentz dönüşümleri altında değişmez kalan denklemlerin bulunması için yeterli olmamıştır. Kuantum mekaniğinin ortaya çıkışından sonra Klein (1926), Gordan (1927) Schrödinger denklemini göreli etkileri icerecek sekilde genellestirmeyi denemiştir. Klein-Gordon denkleminin ise istenilen koşulları (süreklilik denklemi ve Lorentz dönüsümü) sağlamasına rağmen, spin etkilesimlerini doğrudan icermemesi ve zamana göre alınan türevinin ikinci dereceden olmasından dolayı uygulama alanları sınırlı olmakla beraber elde edilen bir takım sonuçlarının deneyle uyum içerisinde olmadığı anlaşılmıştır. Klein-Gordon denkleminde ortaya çıkan sorunlara bağlı olarak Dirac (1928, 1958) süreklilik denklemi ve Lorentz dönüşümünü sağlayan, spin etkileşimini doğrudan iceren ve Schrödinger denklemine benzer olarak zamanın birinci türevine göre denklem önermiştir.

Schrödinger denkleminin birden fazla elektron içeren sistemler için genelleştirilmesi sırasında geliştirilen yöntemler ve elde edilen deneyimler yol göstermiş olmasına rağmen Dirac denkleminin çok-elektronlu sistemler için genelleştirilmesi kolay olmamıştır. Göreli etkilerin dikkate alınması ile sistemin fiziksel özelliklerinde meydana gelen değişiklikler bir-elektronlu atomların detaylı incelenmesini ve HF denklemlerinin ortaya çıkan yeni fiziksel özellikler ve parametrelere göre elde edilmesini zorunlu kılmıştır (Bethe ve Salpeter, 1957). Dolayısı ile bu etkilerin ilk olarak doğrudan Bohr yarıçapında daralmaya ikinci olarak ise dolaylı biçimde çekirdekten uzak orbitallerin elektronik enerji düzeylerinde genişlemenin görülmesine neden olduğu söylenebilir. Bununla birlikte çekirdeğe yakın elektronik enerji düzeylerinde de bir daralma oluşmaktadır. Üçüncü ekti ise spin-orbit çiftlenişindedir. Manyetik spin-orbit çiftlenişi çekirdek yükü hafif atomlar için elektron-elektron elektrostatik etkileşimine göre oldukça küçük olmakta, orbital ve spin açısal momentumları Hamilton işlemcisi ile komütatif olmaktadır. Dolayısı ile kuantum mekaniksel sistemin özelliklerini tanımlayan zamanla

değişmeyen hareket sabiti veya kuantum sayıları olarak kalmaktadırlar. Çekirdek yükü ağır atomlar göz önüne alındığında ise göreli etkilerin hesaba katılması ile spin-orbit çiftlenişinin etkisi büyümekte, spin ve açısal momentum işlemcileri Hamilton işlemcisi ile komutatif olmamaktadır. Yalnız toplam açısal momentum Hamilton işlemcisi ile komutatif olmakta ve zamanla değişmeyen bir hareket sabiti veya kuantum sayısı olarak kalmaktadır.

Teorinin ortaya koyduğu önemli sonuçlardan bir diğeri ise, göreli etkileri dikkate alan Dirac denklemlerinin elektronla aynı kütlede ama zıt yükte bir parçacığın (pozitron) varlığını öngörmesidir (Şekil 2).

Şekil 2. Göreli (Dirac) ve Göreli olmayan (Schrödinger) elektronik sistemlerin enerji tayflarının şeması

Dirac-Hartree-Fock (DHF) denklemlerinin elde edilmesi üzerine ilk çalışmalar Swirles (1935, 1936) tarafından yapılmıştır. 1935' teki makalesinde, varyasyon prensibine dayalı olarak Dirac denklemlerini çok-elektronlu sistemler için genelleştirmiş, sistemin dalga fonksiyonunu Slater ve Fock'un önerilerine göre tanımlamıştır. 1936'daki makalesinde ise DHF denklemlerinde ortaya çıkan bir- ve iki-elektronlu etkileşme integrallerinin analitik ifadelerini ve bu etkilesmelerin DHF teorisinde nasıl hesaplanması gerektiğini incelemiştir. Daha sonra yapılan çalışmalar Swirles tarafından öngörülmeyen bir takım özel durumların ortava cıktığını göstermiştir. Bu özel durumların göz önüne alınması neticesinde sadece elektronların Coulomb elektrostatik etkileşiminin DHF denklemlerinin çözümünde doğrudan hesaplanabileceği görülmüştür. Breit (1929a,b) tarafından ifade edilmiş daha sonra Kuantum Elektrodinamik (KED) etkiler olarak adlandırılan elektronların manyetik momentleri arasında gerçekleşen manyetik etkileşimin, elektronun elektromanyetik alanının ışık hızının sonlu olmasından kaynaklanan yayılmasındaki gecikmenin (retardation) beklenen değerinin ise DHF denklemlerinin çözülmesi ile bulunan sistemin toplam enerjisine eklenmesi gerektiği anlaşılmıştır. Swirles'in çalışmalarına ek olarak daha sonra Mayers (1957), Cohen (1960), Synek (1964), Grant (1961, 1965, 1970, 1986), Kim (1967) yaptığı çalışmalarla birlikte DHF teorisi Rothaan'ın LCAO yöntemi de hesaba katılarak tamamlanmış olur. Genel olarak atomların elektronik yapısının hesaplanması üzerine olan bu calısmalardan sonra göreli olmayan HFR teorisine benzer olarak baz fonksiyon seçimi, hesaplamaların daha hassas sonuçlar vermesi için yapılan düzeltmeler, hesaplama süresinin azaltılması, korelasyon etkilerinin incelenmesi gibi çalışmalar yapılmıştır (Desclaux, 1975; Grant ve ark., 1980; McKenzie ve ark., 1980; Dyall ve ark., 1989; Parpia ve ark., 1996; Matsuoka ve Watanabe, 2001). Göreli etkilerin dahil edilmesi ile atom ve molekülün kuantum mekaniğinde yapılan düzeltmeler oldukça önemli teorik bir eksikliği gidermiş ve ağır atomların daha hassas ve doğru hesaplanmasını sağlamış olsa da hesaplamalar sırasında ortaya çıkan problemler, özel durumlar göreli olmayan teoriye göre cok daha fazla ve cözülmesi daha zor olmustur. Brown-Ravenhall hastalığı (Brown ve Ravenhall, 1951), kinetik balans koşulunun (Kutzelnigg, 1984) gereği olarak baz fonksiyonlarında radyal bileşenlerin sayısının birden fazla olması, bağ durumlarını (Şekil 2) temsil eden öz-değerlerin en-iyileştirilmesi, Breit etkileşimini tanımlayan matris elemanlarının analitik ifadelerinin elde edilmesi... vb ortaya çıkan belli başlı sorunlar olmuştur.

Spin etkileşimini doğrudan içeren Dirac denklemi, özel görelilik teorisi ve kuantum mekaniğinin tüm gerekli ve yeterli koşullarını karşılamakta, elektronun davranışını da en iyi şekilde temsil etmekte, elektronik yapı hesaplamalarında başarılı biçimde uygulanmakta,

spinin sıfır olduğu durumda Klein-Gordon ve göreli olmayan limit durumda Schrödinger-Pauli denklemlerini sağlamaktadır. Dirac denkleminin ortaya koyduğu bu tutarlılık çokelektronlu sistemlerin incelenmesinin ötesinde hem bilinen hem de ilerde keşfedilme ihtimali olan atom altı parçacıkları için genel bir denklem elde etme fikrini de beraberinde getirmiştir. Bu yöndeki ilk çalışmalar yine Dirac (1936), ve daha sonra Fierz ve Pauli (1939) tarafından yapılmıştır. Ardından Rarita ve Schwinder (1941), Fierz ve Pauli denklemlerinin analizini yapmış ve sorunlarını gidermeğe çalışmışlardır. Bargmann ve Winger (1948), Lorentz grubunun 2(2s+1) – elemanlı temsiline göre lokal olarak dönüşebilen dalga fonksiyonları kullanılması ve bu yolla yüksek spine sahip parcacıklar için elde edilecek dalga denklemlerinin Poincare grubunun islemleri altında değismez kalması gerektiğini belirtmistir. Daha sonraki çalışmalar bu koşul dikkate alınarak devam ettirilmiştir Gel'fald ve Yaglom (1948), Mathevs (1965), Jayaraman (1965a, b), Varlamov (2002, 2007), Niederle ve Nikitin (2004). Teorinin ilk uygulamaları, elde edilen denklemlerin Coulomb alanında çözümü yapılarak gerçekleştirilmiştir (Gazeau, 1980; Nikitin, 2006). Güncelliğini günümüzde de koruyan bu problem üzerine son yıllarda yapılan çalışmalardan biri de Guseinov (2009, 2010, 2011, 2012)'un, göreli olmayan durum için önerdiği tam ortonormal fonksiyonlarını

$$\psi^{\alpha}_{nlm_l}(\zeta,\vec{r}) = R^{\alpha}_{nl}(\zeta,r)Y_{lm_l}(\theta,\varphi)$$
(1.1)

skaler radyal fonksiyonun özelliklerini değiştirmeden dalga fonksiyonlarını 2(2s+1)-elemanlı küresel spinörlerin özelliklerine bağlı olarak elde etmesi

$$\Psi^{\alpha}_{nljm}(\zeta,\vec{r}) = \begin{bmatrix} R^{\alpha}_{nl}(\zeta,r)Y^{s}_{ljm}(\theta,\varphi) \\ \tilde{R}^{\alpha}_{nl}(\zeta,r)\tilde{Y}^{s}_{ljm}(\theta,\varphi) \end{bmatrix},$$
(1.2)

bununla birlikte hem Dirac denklemini hem de tam ortonormal dalga fonksiyonlarını yüksek spinli parçacıklar için genelleştirmeye çalışmasıdır. Şimdiye kadar, yüksek spine sahip parçacıkları ifade eden genel bir denklem elde edilmesi ile ilgili çalışmalar, tam spine sahip parçacıkların dalga denklemi (TSDD) ve yarım spine sahip parçacıkların dalga denklemi (YSDD) olmak üzere iki bölümde olmuştur.

Şekil 3. $D(0,s) \oplus D(s,0)$ Lorentz dönüşümleri altında lokal olarak dönüşebilen (2s+1)elemanlı, tam spine sahip (sol) ve yarım spine sahip (sağ) parçacıklar için spinör çiftlerinden oluşan (bi-spinör) dalga fonksiyonlarının temsili

Diğer taraftan şimdiye kadar bilinen parçacıkların $0 \le s \le \frac{3}{2}$ spine sahip oldukları dikkate alındığında ileri sürülen teorilerin uygulama alanlarının sınırlı olduğu da görülür. Yine de Dirac tarafından ortaya koyulan bu eski problem *"hem ilerde keşfedilmesi muhtemel yüksek spine sahip parçacıklar için teorik bir altyapı hazırlamak hem de teorik fiziğin matematiksel estetiği açısından önem arz eder"* (Dirac 1928).

Bu tez çalışmasında, GDD'ye bağlı olarak genel biçimde, yarım spine sahip $\left(s \ge \frac{1}{2}\right)$ parçacıklar için elde edilen dalga fonksiyonları ve uygulamaları üzerinde durulmuş, ardından tam ortonormal spinör orbital toplumları ve Slater spinor orbitalleri tartışılmış $s = \frac{1}{2}$ durumunda Dirac-Hartree-Fock-Roothaan (DHFR) denklemlerinin çözümü, atom ve moleküllerin kuantum mekaniksel incelenmesi üzerinde çalışmalar yapılmıştır. Bu amaçla;

> ✓ Guseinov (2012)'un yarım spine sahip parçacıklar için önerdiği baz fonksiyonları analiz edilmiş

bu baz fonksiyonları göz önüne alınarak,

- ✓ Dirac denkleminde ortaya çıkan bir- ve iki-elektronlu matris elemanlarının analitik ifadeleri elde edilmiş,
- ✓ cebirsel yaklaşım yöntemi ile yarım spinli parçacıklar için Guseinov (2011) tarafından analojik yöntemlerle önerilen Dirac denkleminin elektronik sistemler için Coulomb ve Yukawa potansiyelleri kullanılarak çözümü yapılmış ve literatürle karşılaştırılmış,
- kapalı kabuklu atomlar için DHFR yöntemi kullanılarak hesaplamalar yapılmış atomik özellikler incelenmiş ve sonuçlar ilgili literatürden elde edilen verilerle karşılaştırılmıştır.

Şekil 4. Göreli etkileri içeren elektronik yapı hesaplamalarının tarihsel gelişimini anlatan kavram şeması

BÖLÜM 2

ÖNCEKİ ÇALIŞMALAR

2.1. H-benzer Sistemler

Bir-elektronlu sistemler; Çekirdek (veya çekirdekler) yörüngesinde bulunan birelektrondan meydana gelen, analitik çözümü mümkün sistemler olarak, gerek kuantum mekaniğinin tarihsel gelişiminde gerekse de sonraki yıllarda edinilen yeni gelişmeler açısından rolleri oldukça büyük olmuştur. Yeni düşüncelerin test edilebileceği en ideal sistemler oldukları gibi kuantum mekaniğinin ilerlemesine yol gösteren her yeni kuram da fiziksel ve kimyasal özelliklerinin (elektrik ve manyetik, saçılma, radyoaktiflik) daha iyi anlaşılmasını sağlamaktadır. Dolayısıyla atomun fiziksel özelliklerinin öğrenilmesinde birelektronlu sistemlerin zengin tarihinin günümüzde de öneminden hiçbir şey kaybetmediği aşikardır.

Bohr teorisindeki hatalar göz önünde bulundurulduğunda bir-elektronlu atomların enerji seviyelerinin ilk olarak Schrödinger denkleminin sonsuz yoğunlukta merkezcil Coulomb alanında çözümüyle tanımlandığı söylenebilir,

$$\left(-\frac{1}{2}\vec{\nabla}^2 + V(r)\right)\psi_{nlm}(\vec{r}) = \varepsilon_n\psi_{nlm}(\vec{r})$$
(2.1.1)

$$V(r) = -\frac{Z\alpha}{r}.$$
(2.1.2)

(2.1.1) denkleminin çözümü ile

$$\psi_{nlm_l}(\vec{r}) = R_{nl}(r)Y_{lm_l}(\theta,\varphi) \tag{2.1.3}$$

dalga fonksiyonları bulunur. $R_{nl}(r)$ dalga fonksiyonlarının radyal kısmını, $Y_{lm_l}(\theta, \phi)$ ise küresel kısmını ifade eder. Enerji seviyeleri ise,

$$\mathcal{E}_n = -\frac{(Z\alpha)^2}{2n^2} \tag{2.1.4}$$

olmak üzere, *n* mertebeden dejenere olarak elde edilirler. Burada *n* başkuantum, *l* ise açısal momentumun kuantum sayısıdır ve l = 0, 1, 2, ..., n-1 değeri ile belirlenir. m_l orbital açısal momentum kuantum sayısının değerleri ise $m_l = 0, \pm 1, \pm 2, ..., \pm l$ biçimindedir.

Enerji seviyelerinin aldığı değerler başkuantum sayısına göre belirlendiğinden açısal momentumun farklı değerleri aynı enerji seviyesinde bulunabilir. Buna bağlı olarak her enerji seviyesi açısal momentumun aldığı değerlere göre 2l + 1 mertebeden dejenere olur.

Atomların Schrödinger teorisine göre yapılan hesaplamalarında elde edilen sonuçların çekirdek yüküne bağlı olarak deneyden bulunan sonuçlardan git gide uzaklaşması neticesinde teoride bir takım düzeltmelerin yapılması gerekliliği sonucunu doğurmuştur. Buna bağlı olarak kuantum mekanikel denklemlere göreli düzeltmelerin dahil edilmesi ilk olarak birelektronlu atomların fiziksel özelliklerini daha iyi tanımlamak üzere özel görelilik teorisindeki enerji-momentum eşitliğinin işlemci şeklinde yazılmış hali dikkate alınarak yapılmıştır,

$$E^2 = p^2 c^2 + m^2 c^4 \tag{2.1.5}$$

burada, $E = i\hbar \frac{\partial}{\partial t}$ ve $p = -i\hbar \vec{\nabla}$ biçiminde yazılarak Schrödinger denkleminde dikkate alındığında,

$$\left[\left(\frac{\varepsilon_{nl}}{c} + V(r)\right)^2 + \nabla^2 - c^2\right]\psi_{nlm}(\vec{r}) = 0$$
(2.1.6)

 ε_{nl} enerji seviyelerini ifade etmek üzere göreli enerji-momentum bağıntısının kuantum mekaniksel bir ifadesi olarak Klein-Gordon denklemi elde edilmiş olur. Denklemin çözümünden enerji seviyelerinin ifadesi,

$$\varepsilon_{nl} = mc^2 \left[1 - \frac{\left(Z\alpha\right)^2}{2n^2} - \frac{\left(Z\alpha\right)^4}{2n^4} \left(\frac{n}{l + \frac{1}{2}} - \frac{3}{4}\right) + \dots \right]$$
(2.1.7)

olarak bulunur. Burada ilk terim serbest enerjiyi, ikinci ve üçüncü terim ise sırayla göreli olmayan ve ince yapı sabitine ait enerji seviyelerini temsil eder. İnce yapı sabiti için bir takım sonuçların Paschen'in değerleri ile olan uyuşmazlığı, Uhlenbeck ve Goudsmit (1926)'in elektronun spin açısal momentumuna da sahip olduğunu göstermeleri ile birlikte açısal momentum kuantum sayısı l'nin toplam açısal momentum kuantum sayısı (j = l + s) yer değiştirmesi ile çözülür (Grant, 2007). Genel olarak, Schrödinger ve göreli enerji-moentum ifadesini Schrödinder denkleminde doğrudan dikkate alan Klein-Gordon denklemleri için;

- İkisinde de spin etkileşiminin doğrudan dahil edilmediği
- Klein-Gordon denkleminde pozitif ve negatif enerji seviyelerinin, ancak Schrödinger denkleminde sadece pozitif enerji seviyeleri izinli olduğu
- Klein-Gordon denkleminin zamanın ikinci dereceden türevini, Schrödinger denkleminin ise zamanın birinci dereceden türevini içerdiği

anlaşılır.

Klain-Gordon denkleminin zamanın ikinci dereceden türevini içermesi (lineer olmaması) onu niteliksel olarak Schrödinger denkleminden farklı kılmaktadır. Bununla birlikte, sistemin dalga fonksiyonunun sadece pozitif olasılık yoğunluğunu içermesi izinli olan negatif enerji seviyelerinin fiziksel yorumunu çelişkili hale getirmekte, zamanın birinci dereceden türevini içerecek şekilde düzenlenmesi halinde ise Lorentz dönüşümleri altında invaryant kalmamasına ve süreklilik denklemini sağlamamasına yol açmaktadır. Ortaya çıkan bu sorunlar nedeni ile Schrödinger denkleminin göreli etkileri içerecek şekilde genelleştirilmesi bağlamında Klein-Gordon denkleminin yetersiz kaldığı görülür.

Atomun fiziksel özelliklerini doğru bir biçimde tanımlayan aynı zamanda göreli etkileri dikkate alan denklemlerin elde edilmesinde elektronun spin açısal momentumuna sahip olduğunun keşfedilmesi oldukça önemli bir rol oynamış, Klein-Gordon denkleminde ortaya çıkan yetersizliklerin çözümünü sağlamıştır. Buna göre, sistemin dalga fonksiyonu spin fonksiyonunu doğrudan içerecek şekilde iki-bileşenli olacak biçimde tanımlanır ve enerji-momentum işlemcisi Schrödinger denkleminde dalga fonksiyonunu bu özelliği dikkate alınarak yeniden yazılırsa Klein-Gordon denkleminde ortaya çıkan yetersizliklerin giderildiği görülür.

Zamana bağlı Klein-Gordon denklemi, $\hat{e}(e_1, e_2, e_3)$ birim vektörler olmak üzere,

$$\left[\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right]\psi = -(mc)^2\psi$$
(2.1.8)

$$\vec{\nabla} = i\vec{\hat{p}} = \left(\frac{\partial}{\partial x_1}\hat{e}_1 + \frac{\partial}{\partial x_2}\hat{e}_2 + \frac{\partial}{\partial x_3}\hat{e}_3\right) = \sum_{i=1}^3 \frac{\partial}{\partial x_i}\hat{e}_i, \qquad (2.1.9)$$

Şeklinde yazıldığında. Pauli matrisleri, $\vec{\sigma}(\sigma_1, \sigma_2, \sigma_3)$

$$\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad (2.1.10)$$

ve ψ dalga fonksiyonunun 2-bileşenli olduğu göz önüne alınırsa

$$-\left[\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right]\psi = \left[\frac{i}{c^2}\frac{\partial^2}{\partial t^2} - \left(\vec{\sigma}.\hat{\vec{p}}\right)\right]\left[\frac{i}{c^2}\frac{\partial^2}{\partial t^2} + \left(\vec{\sigma}.\hat{\vec{p}}\right)\right]\psi = (mc)^2\psi, \qquad (2.1.11)$$

biçiminde ifade edilir. ψ dalga fonksiyonları için,

$$\psi_1 = \frac{1}{mc} \left[\frac{i}{c^2} \frac{\partial}{\partial t} + \left(\vec{\sigma} \cdot \hat{\vec{p}} \right) \right] \psi; \quad \psi_2 = \psi,$$
(2.1.12)

dönüşümü kullanılırsa, zamanın ikinci dereceden türevini içeren Klein-Gordon denklemi, birinci dereceden türevi içerecek denklemlere indirgenmiş olur:

$$\begin{bmatrix} \frac{i}{c} \frac{\partial}{\partial t} - \left(\vec{\sigma} \cdot \hat{\vec{p}}\right) \end{bmatrix} \psi_1 = mc\psi_2$$

$$\begin{bmatrix} \frac{i}{c} \frac{\partial}{\partial t} + \left(\vec{\sigma} \cdot \hat{\vec{p}}\right) \end{bmatrix} \psi_2 = mc\psi_1,$$
(2.1.13)

(2.1.12) denklemleri yan yana toplanıp çıkarılırsa,

$$\frac{i}{c}\frac{\partial}{\partial t}(\psi_1+\psi_2) - \left(\vec{\sigma}.\hat{\vec{p}}\right)(\psi_1-\psi_2) = mc(\psi_1+\psi_2) -\frac{i}{c}\frac{\partial}{\partial t}(\psi_1+\psi_2) + \left(\vec{\sigma}.\hat{\vec{p}}\right)(\psi_1+\psi_2) = mc(\psi_1+\psi_2).$$
(2.1.14)

Böylece,

$$\Psi_{1} = (\psi_{1} + \psi_{2}); \quad \Psi_{2} = (\psi_{1} - \psi_{2})$$
(2.1.15)

$$\begin{pmatrix} \frac{i}{c} \frac{\partial}{\partial t} & -\left(\vec{\sigma} \cdot \hat{\vec{p}}\right) \\ \left(\vec{\sigma} \cdot \hat{\vec{p}}\right) & -\frac{i}{c} \frac{\partial}{\partial t} \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = mc \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$$
(2.1.16)

Klein-Gordon denklemindeki sorunları ortadan kaldıran, Lorenz dönüşümleri altında değişmez kalan ve zamanın birinci dereceden türevini içeren Dirac denklemi basitçe elde edilir (Saue, 1996). Denklem,

$$\vec{\alpha} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}; \quad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$
(2.1.17)

ve I 2×2 birim matris olduğu dikkate alınarak

$$\left[i\frac{\partial}{\partial t} - c\left(\vec{\alpha}.\hat{\vec{p}}\right)\right]\Psi = \beta mc^2\Psi,$$
(2.1.18)

$$\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$$
(2.1.19)

şeklinde yazılabilir. (2.1.18) denkleminde (2.1.9) ifadesi dikkate alınır ve elde edilen denklemin karesi alınıp ve gerekli işlemler yapılırsa (2.1.8) denklemine dönülür. (2.1.18) denkleminde zamana bağlı olmayan terim,

$$\left[\hat{h}_{D} - i\frac{\partial}{\partial t}\right]\Psi = 0; \quad \hat{h}_{D} = c\left(\vec{\alpha}.\hat{\vec{p}}\right) + \beta mc^{2}$$
(2.1.20)

olarak tanımlanırsa \hat{h}_{D} Dirac Hamiltonien'i olmak üzere,

$$\hat{h}_{D} = -i \begin{bmatrix} mc^{2} & 0 & c\frac{\partial}{\partial x_{3}} & c\left(\frac{\partial}{\partial x_{1}} - i\frac{\partial}{\partial x_{2}}\right) \\ 0 & mc^{2} & c\left(\frac{\partial}{\partial x_{1}} + i\frac{\partial}{\partial x_{2}}\right) & -c\frac{\partial}{\partial x_{3}} \\ c\frac{\partial}{\partial x_{3}} & c\left(\frac{\partial}{\partial x_{1}} - i\frac{\partial}{\partial x_{2}}\right) & -mc^{2} & 0 \\ c\left(\frac{\partial}{\partial x_{1}} + i\frac{\partial}{\partial x_{2}}\right) & -c\frac{\partial}{\partial x_{3}} & 0 & -mc^{2} \end{bmatrix}$$
(2.1.21)

şeklinde ifade edilir.

Zamandan bağımsız Dirac denkleminin hidrojen-benzer atomlar için merkezcil Coulomb potansiyeli altında çözümü dikkate alındığında ise dalga fonksiyonu için,

$$\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \\ \Psi_4 \end{pmatrix} = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$$
(2.1.22)

olmak üzere,

$$\Psi_{n\kappa}(\vec{r}) = \begin{pmatrix} \frac{P_{n\kappa}(r)}{r} \chi_{\kappa m}(\theta, \varphi) \\ i \frac{Q_{n\kappa}(r)}{r} \chi_{-\kappa m}(\theta, \varphi) \end{pmatrix}$$
(2.1.23)

elde edilir. Burada, $\chi_{\kappa m}(\theta, \varphi)$ iki-bileşenli küresel spinörlerdir ve

$$\chi_{\kappa m}(\theta,\varphi) = \sum_{m_s} \langle l \frac{1}{2} (m - m_s) m_s | jm \rangle Y_{l(m - m_s)}(\theta,\varphi) \phi_{m_s}^{1/2}$$
(2.1.24)

14

$$\phi_{1/2}^{1/2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \ \phi_{-1/2}^{1/2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \tag{2.1.25}$$

olarak ifade edilir. Küresel spinörlerin özdeğerleri ise,

$$\hat{j}^2 \chi_{\pm\kappa m}(\theta,\varphi) = j(j+1)\chi_{\pm\kappa m}(\theta,\varphi), \qquad (2.1.26)$$

$$\hat{l}^2 \chi_{\pm\kappa m}(\theta,\varphi) = l(l+1)\chi_{\pm\kappa m}(\theta,\varphi), \qquad (2.1.27)$$

$$\hat{s}^2 \chi_{\tau\kappa m}(\theta, \varphi) = s(s+1)\chi_{\tau\kappa m}(\theta, \varphi), \qquad (2.1.28)$$

$$\hat{j}_{z}\chi_{\mp\kappa m}(\theta,\varphi) = m\chi_{\mp\kappa m}(\theta,\varphi), \qquad (2.1.29)$$

şeklindedir. Burada κ , $\hat{K} = (\vec{\sigma}.\hat{l}+1)$ işlemcinin özdeğeri olmak üzere $\kappa = 2(l-j)(j+1/2)$ ve

$$s = \frac{1}{2}, m_s = \pm \frac{1}{2}, j = l + \frac{1}{2}, -j \le m \le j$$
 biçimindedir. Bununla birlikte,

$$(\vec{\sigma}.\hat{\vec{p}})f\chi_{\kappa m}(\theta,\varphi) = i\left(\frac{df}{dr} + \frac{\kappa+1}{r}f\right)\chi_{-\kappa m}(\theta,\varphi)$$
(2.1.30)

f keyfi bir fonksiyon olmak üzere (2.1.30) eşitliği dikkate alındığında açısal kısma ait değişkenlerin ortadan kalktığı görülür.

Dolayısı ile Dirac denklemi radyal kısma ait değişkenler dikkate alınarak çözülür. Elektronlar için enerji ifadesi ise,

$$E_{nj} = m \sqrt{1 + \frac{\left(\frac{Z}{c}\right)^2}{\left(n - j - 1/2 + \sqrt{(j + 1/2)^2} + \left(\frac{Z}{c}\right)^2\right)^2}}$$
(2.1.31)

olarak bulunur (Raiher ve Wolf, 2009; Grant, 2007).

Kabuk	<i>S</i> _{1/2}	$p_{_{1/2}}$	$p_{_{3/2}}$	$d_{_{3/2}}$	<i>d</i> _{5/2}	$f_{\rm 5/2}$	$f_{_{7/2}}$	$g_{_{7/2}}$	$g_{9/2}$
Karakter	S	<i>p</i>	р	Ĩ	d	Ĩ	f	ĝ	g
ĸ	-1	1	-2	2	-3	3	-4	4	-5
1	0	1	1	2	2	3	3	4	4
$j = \kappa - 1/2$	1/2	1/2	3/2	3/2	5/2	5/2	7/2	7/2	9/2
Parite $(-1)^l$	+	-	-	+	+	-	-	+	+
$Dejenerasyon(2 \kappa =2j+1)$	2	2	4	4	6	6	8	8	10

Çizelge 1. Dirac denkleminin çözümüne dayalı olarak kuantum sayılarının ve atom orbitallerinin sembolleri ve kuantum sayılarının bazı değerleri (Raiher ve Wolf, 2009)

Her ne kadar Dirac denklemleri özel görelilik teorisini kuantum mekaniği ile doğru ve eksiksiz biçimde bir araya getirmiş olsa da atomun fiziksel özelliklerinin nihai olarak ortaya koyan denklemler olmamıştır. Dirac denkleminin hidrojen atomu için Coulomb alanında çözümünden orbitallerin enerji seviyelerinin (Çizelge 1) toplam açısal momentum kuantum sayısı (*j*) 'ye bağımlılığı deneysel olarak Lamb ve Rutherford (1947) tarafından kanıtlanmış olsa da Dirac teorisinin öngördüğünden daha farklı sonuçları da beraberinde getirmiştir. Buna göre, aynı *j* değeri için açısal momentum kuantum sayısı *l* 'nin küçük değerine sahip enerji seviyesinin diğerine göre daha düşük olduğu görülmüş ve n=2, j=1/2 değerlerinde en geniş aralığa $(1s_{1/2}-2p_{1/2}=0.03cm^{-1})$ sahip olduğu tespit edilmiştir (Şekil 5).

Daha sonra Bethe (1947) dejenere enerji seviyeleri arasında gerçekleşen ve Lamb kayması olarak adlandırılan bu olayın, bağ elektronları ile kuantize olmuş elektromanyetik alanın etkileşiminden kaynaklandığını ifade etmiştir.

Şekil 5. Bir-elektonlu sistemler için Schrödinger ve Dirac denklemlerinin çözümünden elde edilen enerji seviyelerinin gösterimi. $1s_{1/2}, 2p_{1/2}$ enerji seviyelerinin Dirac teorisinden farklı olarak dejenere olmaması gerektiğini Lamb ve Rutherford (1947) belirtmiştir

2.2. Çok-Elektronlu Problem ve DHFR yöntemi

Bir-elektronlu sistemler için göreli ve göreli olmayan kuantum mekaniksel denklemlerin tam çözümü farklı potansiyeller dikkate alınarak da yapılabilmektedir (Lai, 1982; Purt ve Watson, 1963: Bielinska ve ark., 2004: Setare ve Haidari, 2010). Tam çözümü mümkün olmayan çok-elektronlu sistemler için ise göreli olmayan denklemlerden faydalanılarak yaklaşım yöntemleri önerilmiştir. Göreli olmayan teori için elde elde edilen yaklaşım yöntemleri çok elektronlu atomların incelenmesinde başarı ile uygulanmış, atom ve moleküllerin özelliklerinin öğrenilmesinde önemli gelişmeler ve deneyimler kazanılmasını sağlamıştır. Çok-elektronlu atomik ve moleküler sistemler açısından, elektronik yapı ve özelliklerin anlaşılması, çok-elektronlu sistemler için elde edilen denklemlerin çözüm yöntemlerinin geliştirilmesi, baz fonksiyonu seçimi, orbital parametrelerinin en-iyileştirilmesi (optimizasyonu), göz önüne alınan sistemlerin geometrik yapı ve simetri özellikleri, korelasyon etkilerinin dikkate alınması için yöntem geliştirilmesi... vb. belli başlı kazanımlar olmuştur.

Literatürde yaygın olarak kullanılan en önemli yaklaşım yöntemlerinden biri bağımsız elektronlar modeli ve perdelenmiş alan yaklaşımı dikkate alınarak çok-elektronlu sistemler için oluşturulan denklemlere doğrudan varyasyon prensibinin uygulanması sonucunda elde edilen HF ve bu denklemlerinin analitik çözümünü olanaklı hale getiren HFR denklemleridir.

HFR denklemlerinde çözüm denklemlerin lineer olmamasından kaynaklı olarak öz uyumlu alan (SCF-self consistent field) yöntemi kullanılarak iterasyon metodu ile yapılır. SCF yönteminde iterasyon atom orbitallerine ait doğrusal birleşim katsayıları için değişmeyen değerler elde edilinceye kadar adım adım devam eder. HFR denklemlerinin uygulamalarında ortaya çıkan problemlerden biri açık kabuklu sistemlerin hesaplanmasıdır. Denklemler, kapalı kabuklu sistemlere başarı ile uygulanmasına rağmen açık kabuklu sistemler göz önüne alındığında Slater determinantının elde edilmesi açık kabuklara ait çiftlenim izdüşüm katsayılarının doğru biçimde hesaplanması gerekmektedir. Açık kabuklu sistemlerin hesaplamalarına ait ilk çalışmalar Roothaan (1960) tarafından yapılmıştır. Roothaan çalışmalarında açık kabuk sayısı iki olan sistemlerin hesaplamalarını gerçekleştirebilmiştir ancak HFR denklemlerinin istenilen açık kabuk sayısını içerecek şekilde genelleştirilmesi teorik atom ve molekül fiziğinin önemli problemlerinden biri olmuştur (Guseinov, 1998).

Elektronların yapı ve özelliklerinin analitik yöntemlerle hesaplanabilmesi amacı ile türetilen HFR denklemleri genel olarak çok parçacıklıklı tüm kapalı kuantum mekaniksel sistemlere uygulanabilecek niteliklere sahiptir. Bu nitelikleri itibarı ile atom, molekül ve çekirdek sistemlerine uygulanabilen HFR denklemlerinin (Guseinov ve ark, 2007a, b) benzer şekilde Dirac denkleminin çok parçacıklıklı sistemler için genelleştirilmesi için de kullanılabileceği görülmüş böylece kuantum mekaniksel sistemlerin göreli etkileri içerecek şekilde incelenmesi olanaklı hale gelmiştir.

2.2.1. Hartree-Fock yaklaşımı

Atomik birimlerde $(\hbar = m_e = |e| = 4\pi\varepsilon_0 = 1) N$ elektronlu bir sistemin Hamilton işlemcisi (\hat{H}) :

$$\hat{H} = \sum_{i=1}^{N} H_0^T(i) + \sum_{i < j}^{N} g^{C,B}(i,j)$$
(2.2.1.1)

ile gösterilir. Burada H_0^T bir-elektronlu etkileşmeleri tanımlamaktadır. $T \equiv S, D$ olmak üzere S, göreli olmayan etkileşme işlemcilerini, D ise göreli etkileşme işlemcilerini ifade eder.

Buna göre H_0^T işlemcisi için;

$$H_0^S = \sum_{i=1}^N \left(\frac{1}{2} \nabla_i^2 + \frac{Z}{r_i} \right), \tag{2.2.1.2}$$

$$H_0^D = \sum_{i=1}^N \left[c \left(\vec{\alpha} \cdot \hat{\vec{p}}_i \right) + \hat{\beta} c^2 \right]$$
(2.2.1.3)

olarak yazılabilir. Burada *i* atom çekirdeğinden uzaklığı ifade etmek üzere *i*. elektronun koordinatı r_i ve elektronlar arası uzaklık $r_{ij} = |r_i - r_j|$ ile gösterilir. Buna göre, $g^{C,B}(i, j)$ iki-elektronlu etkileşme işlemcisi,

$$g^{C,B}(i,j) = g^{C}(i,j) + g^{B}(i,j), \qquad (2.2.1.4)$$

ilk terim Coulomb ve ikinci terim Breit etkileşimini olmak üzere,

$$g^{C,B}(i,j) = \frac{1}{r_{ij}} - \frac{1}{2} \left[\frac{\alpha_i \cdot \alpha_j}{r_{ij}} + \frac{(\alpha_i \cdot r_{ij})(\alpha_j \cdot r_{ij})}{r_{ij}^3} \right],$$
(2.2.1.5)

şeklinde tanımlanır. Bununla birlikte Breit etkileşimi de iki kısımdan oluşur; elektronlar arası manyetik etkileşmeyi ifade eden Gaunt etkileşimi $(g^G(i, j))$ ve ışık hızının sınırlı olmasından dolayı ortaya çıkan gecikme (Retardation- $(g^R(i, j))$),

$$g^{B}(i,j) = \frac{\left[g^{G}(i,j) + g^{R}(i,j)\right]}{2},$$
(2.2.1.6)

 $g^{G}(i, j)$ elektronlar arası manyetik etkileşmeyi ifade etmek üzere,

$$g^{G}(i,j) = -\frac{\alpha_{i}.\alpha_{j}}{r_{ij}},$$
 (2.2.1.7)

 $g^{R}(i, j)$ gecikme etkisi ise,

$$g^{R}(i,j) = -\frac{(\alpha_{i}.r_{ij})(\alpha_{j}.r_{ij})}{r_{ij}^{3}},$$
(2.2.1.8)

ifade edilir.

Göreli olmayan durum dikkate alınır ise ışık hızı sonsuz ve manyetik etkileşim elektrostatik etkileşime göre çok zayıf olacağından Breit etkileşiminin sıfıra yaklaştığı görülür,

$$\lim_{a \to \infty} g^B(i,j) \to 0. \tag{2.2.1.9}$$

N elektronlu atomun dalga denklemi göreli olmayan teoriden yol çıkarak yazılabilir, x_i , *i*.elektronun koordinatı olmak üzere,

$$\hat{H}\Psi(x_1, x_2, \dots, x_N) = E\Psi(x_1, x_2, \dots, x_N)$$
(2.2.1.10)

ifade edilir. (2.2.1.10) denkleminin çözümü perdelenmiş alan yaklaşımına göre elektronların seçilmezliği ilkesi göz önünde bulundurularak yapılır. Problem bu şekilde çözümü mümkün olan bir-elektronlu probleme indirgenir. Dolayısı ile birbirinden bağımsız elektronlardan oluşan N elektronlu sistemin normalleştirilmiş determinant dalga fonksiyonu;

olacağından Slater determinantının bir özelliği olarak herhangi iki-elektronun kuantum sayıları veya koordinatlarının birbirine eşit olması durumunda sıfıra eşit olacaktır. Böylece herhangi iki-elektronun aynı koordinatlar veya kuantum sayılarında bulunma olasılığı sıfır olur. Göreli olmayan durumda U matrisini oluşturan elemanlar skalerdir ve her bir elektronun atom ve spin koordinatlarına göre dalga fonksiyonunu ifade ederler,

$$u_{p_i}(x) = u_i(\vec{r})u_{m_s}(\sigma), \qquad (2.2.1.12)$$

 $u_i(\vec{r})$ dalga fonksiyonunun koordinatlara bağlı olan kısmını, $u_{m_s}(\sigma)$ ise spin durumunu gösterir, dolayısı ile,

$$u_{i}(\vec{r}) = u_{nlm_{i}}(\vec{r}) = R_{nl}(r)Y_{lm_{i}}(\theta, \phi), \qquad (2.2.1.13)$$

$$u_{m_s}(\sigma) = \delta_{m_s,\sigma} \tag{2.2.1.14}$$

olarak tanımlanır. nlm_l, m_s, σ sırası ile uzay, spin koordinatlarına göre kuantum sayılarını ve spin durumunu ifade eder. Göreli durumda ise $u_{p_l}(x)$ dalga fonksiyonları spin fonksiyonlarını doğrudan içeren iki-bileşenli, dört-elemanlı spinörlerden oluşur, burada, p_i niceliğinin alacağı değerler, $p_i, p'_i, \tilde{p}_i, \tilde{p}'_i$ niceliklerinin alacağı değerleri belirlemektedir. Buna göre, (2.1.23), (2.1.24) ve (2.1.25) ifadeleri göz önüne alındığında, dalga fonksiyonu için,

$$u_{p_{i}}(x) = \frac{1}{r} \begin{pmatrix} \left(\sqrt{\frac{l-m+1/2}{2l+1}}\right) R_{n\kappa}(r) Y_{l(m-1/2)}(\theta, \varphi) \\ \left(\sqrt{\frac{l-m+1/2}{2l+1}}\right) R_{n\kappa}(r) Y_{l(m+1/2)}(\theta, \varphi) \\ \left(-\sqrt{\frac{l-m+1/2}{2l+1}}\right) \tilde{R}_{n\kappa}(r) Y_{\tilde{l}(m-1/2)}(\theta, \varphi) \\ \left(\sqrt{\frac{l+m+1/2}{2l+1}}\right) \tilde{R}_{n\kappa}(r) Y_{\tilde{l}(m+1/2)}(\theta, \varphi) \end{pmatrix},$$
(2.2.1.16)

 $l = j - \frac{1}{2}$, $\tilde{l} = j - \frac{1}{2}$ olarak yazılabilir. Böylece göreli Slater determinantı göreli olmayan durumdan farklı olarak, spin fonksiyonunun doğrudan eklendiği, \hat{J} , \hat{j}_z işlemcilerinin özfonksiyonlarını içeren ve n, κ, m değerlerine göre sıralanan (Çizelge 2) ortonormal orbitallerden oluşur. Buna bağlı olarak çizelge 2'deki örneklerden görüleceği gibi göreli olmayan teori dikkate alındığında *C* atomu için elektron dizilimi $1s^2 2s^2 2p^2$ olduğundan atom açık kabuk yapıya sahiptir, ancak göreli etkiler dikkate alındığında elektron diziliminin kapalı kabuklu yapıya sahip olduğu görülür.

Ortonormal orbitallerden oluşan Slater determinant dalga fonksiyonu da ortonormal olacağından. dv bir-elektronun hacim elemanı olmak üzere,

$$\int u_{p_i}^* u_{q_i} dv = \delta_{p_i q_i}, \qquad (2.2.1.17)$$

$$\int \mathbf{U}^* \mathbf{U} dv = 1 \tag{2.2.1.18}$$

şeklindedir (Swirles, 1936: Synek, 1964, Kim, 1967). Sonuç olarak, toplam enerjiği verecek şekilde varyasyon uygulanması ile bir-elektronlu dalga fonksiyonları için HF denklemleri bulunur.

Çizelge 2. Göreli etkiler dikkate alındığında çok-elektronlu atomların elektron dizilimi ve kabuk durumu

Atom		1	ı			K	•		j				Elektron sayısı	Konfigrasyon $(n\kappa_j^N)$	Durum						
Н]	1		-1			1/2				1	$1s_{1/2}^1$	-							
Не		1	1		-1			1/2				2	$1s_{1/2}^2$	Kapalı							
Li	1 2		1 2		1 2		1 2		2		_	1	-	.1	1/	/2	2 1/		3	$1s_{1/2}^2 2s_{1/2}^1$	Açık
Be					-			1/2 1/2		4 $1s_{1/2}^2 2s_{1/2}^2$		Kapalı									
В	1		2	2	-1	-1	1	1	1/2	1/2 1/2		1/2	5	$1s_{1/2}^2 2s_{1/2}^2 2\tilde{p}_{1/2}^1$	Açık						
C	-	_		-	_			-	-/-			1/ =	6	$1s_{1/2}^2 2s_{1/2}^2 2\tilde{p}_{1/2}^2$	Kapalı						
N													7	$1s_{1/2}^2 2s_{1/2}^2 2\tilde{p}_{1/2}^2 2p_{3/2}^1$	Açık						
0	1	2	2	2	-1	-1	1	-2	1/2	1/2	1/2 1/2	3/2	8	$1s_{1/2}^2 2s_{1/2}^2 2\tilde{p}_{1/2}^2 2p_{3/2}^2$	Açık						
F	1					-		-	1/ _						9	$1s_{1/2}^2 2s_{1/2}^2 2\tilde{p}_{1/2}^2 2p_{3/2}^3$	Açık				
Ne													10	$1s_{1/2}^2 2s_{1/2}^2 2\tilde{p}_{1/2}^2 2p_{3/2}^4$	Kapalı						

Kapalı kabuklu atomlar dikkate alındığında toplam enerjinin beklenen değeri için,

$$E[\{u\}] = \frac{\int u^* \hat{H} u dv}{\int u^* u dv},$$
(2.2.1.19)

buradan (2.2.1.2) ifadesi dikkate alındığında bir-elektronlu ve iki-elektronlu terimler için,

$$E_0 = \int u^* \hat{H}_0^T u dv$$
 (2.2.1.20)

$$E_1 = \int u^* g^C(1,2) u dv \tag{2.2.1.21}$$

elde edilir. İki elektronlu terimde göreli etkiler göz önüne alındığında Breit etkileşiminin katkısı HF denklemlerinin çözümünden sonra eklenir (Raiher ve Wolf, 2009; Grant, 2007). Böylece, h_i bir-elektronlu, J_{kk}^{ii} ve K_{kk}^{ii} iki-elektronlu terimi ifade etmek üzere,

$$E[\{u\}] = E_0 + E_1, \tag{2.2.1.22}$$

$$E[\{u_i\}] = \sum_{i=1}^{N} h_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \left(J_{kk}^{ii} - K_{kk}^{ii} \right), \qquad (2.2.1.23)$$

22

$$J_{kk}^{ii} = \iint u_i^*(x_1)u_k^*(x_2)g^C(1,2)u_i(x_1)u_k(x_2)dv_1dv_2$$
(2.2.1.25)

$$K_{kk}^{ii} = \int \int u_i^*(x_1) u_k^*(x_2) g^C(1,2) u_k(x_1) u_i(x_2) dv_1 dv_2$$
(2.2.1.26)

olarak tanımlanır. Varyasyon ilkesinin uygulanması neticesinde elde edilen denklemdeki varyasyonların tamamının bağımsız olmadığı görülür. Lagrange belirsiz çarpanlar yöntemi bağımlı varyasyonları denklemden çıkarmak için kullanılır (Echenique ve Alonso, 2007). Sonuç olarak,

$$\left\{\hat{h} + \frac{1}{2}\sum_{k} \left(\hat{J}_{kk} - K_{kk}\right)\right\} u_{i} \equiv \hat{F}u_{i} = \sum_{k} u_{k}\varepsilon_{ki}$$

$$(2.2.1.27)$$

$$\hat{J}_{kk}(x_1)\varphi(x_1) = \left(\int u_k^*(x_2)g^C(1,2)u_k(x_2)dv_2\right)\varphi(x_1), \qquad (2.2.1.28)$$

$$\hat{K}_{kk}(x_1)\varphi(x_1) = \left(\int u_k^*(x_2)g^C(1,2)\varphi(x_2)dv_2\right)u_k(x_1).$$
(2.2.1.29)

(2.2.1.27) ile verilen denklemi özdeğer denklemine dönüştürmek için orbitallerin üniterbirimsel dönüşümlerden faydalanıldığında,

$$\hat{F}u_i = \sum_k \varepsilon_{ki} u_k \tag{2.2.1.30}$$

HF denklemleri elde edilmiş olur. Kapalı sistemler için enerji ifadesi,

$$E = \sum_{i} \varepsilon_{i} + \frac{1}{2} \sum_{ik} \left(J_{kk}^{ii} - K_{kk}^{ii} \right)$$
(2.2.1.31)

yazılır. Elde edilen denklemler integro-diferansiyel denklemler olduğundan doğrudan analitik çözümü mümkün olmamaktadır. Denklemlerin çözümü için sayısal yöntemlerden faydalanılır. Göreli etkiler dikkate alındığında ise bir-elektronlu etkileşme işlemcisi olarak Dirac işlemcisi, u_{p_i} orbitallerinin ise dört-elemanlı spinör orbitaller olduğu dikkate alınmalıdır. Bununla birlikte, DHF denklemlerinde kinetik enerji işlemcisinin özelliklerinden dolayı açısal kısım ortadan kalkmakta, denklemler Etkin (Large) ve Pasif (Small) bileşenlerin radyal fonksiyonlarına bağlı olarak elde edilmektedir (Bethe ve Salpeter, 1957: Davydov, 1965).

2.2.2. Roothaan lineer varyasyon yöntemi

HF denklemlerinin sayısal çözümü ile koordinatların her değerinde orbitallerin sayısal değeri bulunur. Dolayısı ile sistemin fiziksel özelliklerini incelemek oldukça zorlaşır. Bu durum HF denklemleri için analitik çözüm elde edilmesinin gerekliliğini ortaya koyar. Roothaan (1951), HF denklemlerinin analitik çözümü için Slater determinantına ait u_{p_i} orbitallerini atom orbitallerinin doğrusal bileşimi şeklinde ifade etmeyi önermiştir. Buna bağlı olarak, u_{p_i} orbitali önceden bilinen temel-baz fonksiyonlarının seri açılımı şeklinde yazılır:

$$u_i = \sum_{p_q} \chi_q C_{qi},$$
(2.2.2.1)

 C_{qi} doğrusal bileşim katsayılarına ait denklemler, varyasyon ilkesinin uygulanması ile bulunur.

Göreli etkiler dikkate alındığında ise atom orbitallerinin doğrusal bileşimi,

$$u_i^{\mu} = \sum_p \chi_p C_{pi}^{\mu}, \qquad (2.2.2.2)$$

Slater determianatına ait her bir elemanın 2-bileşenli, 4-elemanlı olduğu göz önüne alınarak yazılabilir. Burada, i = 1, 2, ..., N, şeklindedir. χ_p ise çözümü yapılacak sisteme uygun şekilde seçilir. Genel olarak baz fonksiyonlarında aranan önemli koşullardan biri, çekirdeğe çok yakın durumlarda dalga fonksiyonunun türevinin süreksiz olması (Kato, 1957), çekirdekten çok uzak iken üstel fonksiyon şeklinde azalmasıdır (Agmon, 1982). Göreli özellikler dikkate alındığında ise gerekli bir diğer koşul varyasyonel çöküş probleminin önlenmesi ve denklemlerin göreli olmayan duruma indirgenebilmesi için seçilen baz fonksiyonunun kinetik denge (KD) koşulunu sağlamasıdır (Kutzelnigg, 1984). Göreli etkileri dikkate alan durum için varyasyon ilkesinin uygulanmasından sonra elde edilen denklemlerin matris ifadesi,

$$\sum_{q} \hat{F}_{pq}^{\mu\nu} C_{qi}^{\nu} = \varepsilon_{i}^{\mu} \sum_{q} S_{pq}^{\mu\nu} C_{qi}^{\mu}$$

$$\mu, \nu = 1, 2, 3, 4$$
(2.2.2.3)

yazlılabilir. \hat{F} işlemcisindeki bir-elektronlu etkileşmeler göreli olmayan durumda H_{pq}^{s} ile ifade edilir. Atom orbitallerini ifade eden dalga fonksiyonu skaler olacağından $\mu, \nu = 1$ 'dir.

$$F_{pq}^{\mu\nu} = h_{pq}^{\mu\nu} + \left(J_{pq}^{\mu\nu} - K_{pq}^{\mu\nu}\right), \qquad (2.2.2.4)$$

$$h_{pq}^{\mu\nu} = \int \chi_p^* \left(\hat{H}_0^T \right)^{\mu\nu} \chi_q d\nu, \qquad (2.2.2.5)$$

$$J_{pq}^{\mu\nu} = \sum_{\sigma} \sum_{rs} \left(I_{rs}^{pq} \right)^{\mu\nu} R_{rs}^{\sigma\sigma}, \qquad (2.2.2.6)$$

$$K_{pq}^{\mu\nu} = \sum_{\sigma} \sum_{rs} \left(I_{rq}^{ps} \right)^{\mu\sigma} R_{rs}^{\sigma\nu}, \qquad (2.2.2.7)$$

$$I_{rs}^{pq} = \iint \psi_p^*(x_1) \psi_r^*(x_2) g^C(2,1) \psi_q(x_1) \psi_s(x_2) dv_1 dv_2$$
(2.2.2.8)

$$R_{rs}^{\mu\nu} = \sum_{k} C_{rk}^{\mu*} C_{sk}^{\nu}$$
(2.2.2.9)

 $\sigma = 1, 2, 3, 4$, ifade edilebilir (Rosicky ve Mark, 1979, 1980; Mark, 1980; Rosicky, 1980; Laaksonen ve ark., 1988)

Sonuç olarak (2.2.2.4) matrisinin açık ifadesi,

$$\begin{pmatrix} h_{pq}^{11} & h_{pq}^{12} & h_{pq}^{13} & h_{pq}^{14} \\ h_{pq}^{21} & h_{pq}^{22} & h_{pq}^{23} & h_{pq}^{24} \\ h_{pq}^{31} & h_{pq}^{32} & h_{pq}^{33} & h_{pq}^{44} \\ h_{pq}^{41} & h_{pq}^{42} & h_{pq}^{43} & h_{pq}^{44} \end{pmatrix} + \begin{pmatrix} J_{pq}^{11} - K_{pq}^{11} & J_{pq}^{12} - K_{pq}^{12} & J_{pq}^{13} - K_{pq}^{13} & J_{pq}^{14} - K_{pq}^{14} \\ J_{pq}^{21} - K_{pq}^{21} & J_{pq}^{22} - K_{pq}^{22} & J_{pq}^{23} - K_{pq}^{23} & J_{pq}^{24} - K_{pq}^{24} \\ J_{pq}^{31} - K_{pq}^{31} & J_{pq}^{32} - K_{pq}^{32} & J_{pq}^{33} - K_{pq}^{33} & J_{pq}^{34} - K_{pq}^{34} \\ J_{pq}^{41} - K_{pq}^{41} & J_{pq}^{42} - K_{pq}^{42} & J_{pq}^{43} - K_{pq}^{43} & J_{pq}^{44} - K_{pq}^{44} \end{pmatrix},$$

 $\mu = 1 \Longrightarrow p \to p$ $\mu = 2 \Longrightarrow p \to p'$ $\mu = 3 \Longrightarrow p \to \tilde{p}'$ $\mu = 4 \Longrightarrow p \to \tilde{p}'$ $v = 1 \Longrightarrow q \to q$ $v = 2 \Longrightarrow q \to q'$ $v = 3 \Longrightarrow q \to \tilde{q}$ $v = 4 \Longrightarrow q \to \tilde{q}'$

şartları altında matris elemanları için,

$$h_{pq}^{\mu\nu} = \begin{cases} \mu \neq v \lor \mu, v \leq 2 & 0 \\ \mu \neq v \lor \mu, v > 2 & 0 \\ \mu = v \lor \mu \leq 2 & \mu = 1, V_{pq}^{\mu\nu}; \mu = 2, V_{p'q'}^{\mu\nu} \\ \mu = v \lor \mu > 2 & \mu = 3, V_{\tilde{p}\tilde{q}}^{\mu\nu} - 2c^2 S_{\tilde{p}\tilde{q}}; \mu = 4, V_{\tilde{p}'q'}^{\mu\nu} - 2c^2 S_{\tilde{p}'q'} \\ \mu \neq v \lor \mu = 1, \quad v = 3, \Pi_{(0)p\tilde{q}}^{\mu\nu}; v = 4, \Pi_{(2)p\tilde{q}}^{\mu\nu} \\ \mu \neq v \lor \mu = 2, \quad v = 3, \Pi_{(1)p'\tilde{q}}^{\mu\nu}; v = 4, \Pi_{(3)p'\tilde{q}}^{\mu\nu} \\ \mu \neq v \lor \mu = 3, \quad v = 1, \Pi_{(0)\tilde{p}q}^{\mu\nu}; v = 2, \Pi_{(2)\tilde{p}q}^{\mu\nu} \\ \mu \neq v \lor \mu = 4, \quad v = 1, \Pi_{(1)\tilde{p}'q}^{\mu\nu}; v = 2, \Pi_{(3)\tilde{p}'q}^{\mu\nu} \end{cases}$$
(2.2.2.11)

$$J_{pq}^{\mu\nu} = \begin{cases} \mu \neq \nu & 0 \\ \mu = \nu \lor \mu \leq 2 & \mu = 1, J_{pq}^{\mu\mu}; \mu = 3, J_{\tilde{p}\tilde{q}}^{\mu\mu} \\ \mu = \nu \lor \mu > 2 & \mu = 3, J_{\tilde{p}\tilde{q}}^{\mu\mu}; \mu = 4, J_{\tilde{p}\tilde{q}}^{\mu\mu} \end{cases}$$
(2.2.2.12)

$$K_{pq}^{\mu\nu} = \begin{cases} \mu = \nu \lor \mu, \nu \le 2 & \mu, \nu = 1, K_{pq}^{\mu\nu}; \mu, \nu = 2, K_{p'q'}^{\mu\nu} \\ \mu \ne \nu \lor \mu = 1, \nu > 2 & \nu = 3, K_{p\bar{q}}^{\mu\nu}; \nu = 4, K_{p\bar{q}'}^{\mu\nu} \\ \mu \ne \nu \lor \mu = 2, \nu > 2 & \nu = 3, K_{p'\bar{q}}^{\mu\nu}; \nu = 4, K_{p'\bar{q}'}^{\mu\nu} \\ \mu \ne \nu \lor \mu = 1, \nu \le 2 & \nu = 1, K_{\bar{p}q}^{\mu\nu}; \nu = 2, K_{\bar{p}q'}^{\mu\nu} \\ \mu \ne \nu \lor \mu = 2, \nu \le 2 & \nu = 1, K_{\bar{p}q}^{\mu\nu}; \nu = 2, K_{\bar{p}q'}^{\mu\nu} \\ \mu = \nu \lor \mu, \nu > 2 & \mu, \nu = 3, K_{\bar{p}\bar{q}}^{\mu\nu}; \mu, \nu = 4, K_{\bar{p}\bar{q}'}^{\mu\nu} \end{cases}$$
(2.2.2.13)

$$V_{pq}^{\mu\nu} = \int \psi_{p}^{*} \left(-\frac{Z}{r} \right) \psi_{q} d\nu.$$
 (2.2.2.14)

$$\Pi_{(1)pq}^{\mu\nu} = \int \psi_p^* \left(\frac{\partial}{\partial x_1}\right) \psi_q d\nu$$
(2.2.2.15)

$$\Pi^{\mu\nu}_{(2)pq} = \int \psi^*_p \left(\frac{\partial}{\partial x_2}\right) \psi_q dv \qquad (2.2.2.16)$$

$$\Pi^{\mu\nu}_{(3)pq} = \int \psi^*_p \left(\frac{\partial}{\partial x_3}\right) \psi_q dv \qquad (2.2.2.17)$$

elde edilir. (2.2.2.3) ifadesinde örtme integrali ise,
$$\begin{pmatrix} S_{pq}^{11} & S_{pq}^{12} & S_{pq}^{13} & S_{pq}^{14} \\ S_{pq}^{21} & S_{pq}^{22} & S_{pq}^{23} & S_{pq}^{24} \\ S_{pq}^{31} & S_{pq}^{32} & S_{pq}^{33} & S_{pq}^{34} \\ S_{pq}^{41} & S_{pq}^{42} & S_{pq}^{43} & S_{pq}^{44} \end{pmatrix},$$
(2.2.2.18)

$$S_{pq}^{\mu\nu} = \begin{cases} \mu \neq \nu & 0\\ \mu = \nu \lor \mu \leq 2 & \mu = 1, S_{pq}^{\mu\nu}; \mu = 2, S_{p'q'}^{\mu\nu}\\ \mu = \nu \lor \mu > 2 & \mu = 3, S_{\tilde{p}\tilde{q}}^{\mu\nu}; \mu = 4, S_{\tilde{p}'\tilde{q}'}^{\mu\nu} \end{cases}$$
(2.2.2.19)

şeklindedir. $\{p,q;p',q'\}$ ve $\{\tilde{p},\tilde{q};\tilde{p}',\tilde{q}'\}$ sırası ile dalga fonksiyonun etkin ve pasif bileşenine ait kuantum sayılarını ifade eder.

2.3. İki-bileşenli DHFR denklemleri ve Kinetik Denge (Balance) Koşulu

(2.2.1.15)'teki 4-elemanlı dalga fonksiyonunu küresel spinörlerin özelliklerinden faydalanılarak (2.1.16) ifadesini sağlayacak şekilde iki-bileşenli formda yazılabilir. Böylelikle DHFR denklemleri atomik uygulamalarda radyal fonksiyonları içeren denklemlere indirgenir. Bu form DHFR denklemlerinin atomlara uygulanmasında ortaya çıkan matris elemanlarının göreli olmayan teoriden faydalanılarak elde edilmesini, hesaplanacak matris elemanlarının sayısının azaltılmasını sağlar. Bununla birlikte baz fonksiyonu olarak seçilecek radyal fonksiyonların kinetik denge koşulunu sağlaması gerektiği görülür. (2.1.23) ifadesinden küresel spinörler için $\kappa = 2(l-j)(j+1/2)$, $a = 2(l-j) = \pm 1$ olduğu göz önünde bulundurulursa,

$$\chi^{a}_{ljm}(\theta,\varphi) = \frac{1}{\sqrt{2l+1}} \begin{pmatrix} a\sqrt{l+am+\frac{1}{2}}Y_{lm-\frac{1}{2}}(\theta,\varphi) \\ a\sqrt{l-am+\frac{1}{2}}Y_{lm+\frac{1}{2}}(\theta,\varphi) \end{pmatrix},$$
(2.3.1)

$$X_{ljm}(\theta,\varphi) = \begin{pmatrix} \chi_{ljm}^{+1}(\theta,\varphi) \\ i\chi_{ljm}^{-1}(\theta,\varphi) \end{pmatrix}$$
(2.3.2)

olmak üzere, ortonormaldirler;

$$\int_{0}^{\pi} \int_{0}^{2\pi} \chi_{ljm}^{+1\dagger}(\theta,\varphi) \chi_{l'j'm'}^{+1}(\theta,\varphi) \sin\theta d\theta d\varphi = \delta_{ll'} \delta_{jj'} \delta_{mm'}$$
(2.3.3)

$$\int_{0}^{\pi} \int_{0}^{2\pi} \chi_{ljm}^{-1\dagger}(\theta,\varphi) \chi_{l'j'm'}^{-1}(\theta,\varphi) \sin\theta d\theta d\varphi = \delta_{ll'} \delta_{jj'} \delta_{mm'}$$
(2.3.4)

ulaşılabilir.

 $(\vec{\sigma}.\hat{\vec{p}})$ işlemcisi için,

$$(\vec{\sigma}.\hat{\vec{p}}) = \left(\vec{\sigma}.\hat{r}\right) \left(\frac{\partial}{\partial r} + \frac{\vec{\sigma}.\vec{l}}{r}\right),\tag{2.3.5}$$

$$(\vec{\sigma}.\hat{\vec{p}}) = (\vec{\sigma}.\hat{r}) \left(\frac{\partial}{\partial r} \pm (\kappa - 1) \frac{1}{r} \right), \tag{2.3.6}$$

 $\vec{\sigma}.\hat{l} = \hat{K} - 1$, olduğu hesaba katılarak küresek fonksiyonlar \hat{K} işlemcisine uygulandığında, $\hat{K}\chi^{\pm}_{ljm}(\theta,\varphi) = \pm\kappa\chi^{\pm}_{ljm}(\theta,\varphi)$, (2.3.7)

özdeğerleri bulunur. $(ec{\sigma}.\hat{r})$ operatörü için,

$$\left(\vec{\sigma}.\hat{r}\right) = \frac{1}{r} \begin{pmatrix} x_3 & x_1 - ix_2 \\ x_1 + ix_2 & -x_3 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta e^{-i\varphi} \\ \sin\theta e^{+i\varphi} & -\cos\theta \end{pmatrix}$$
(2.3.8)

eşitlikleri hesaba katılırsa dalga fonksiyonunun etkin ve pasif bileşenleri arasındaki küresel ve radyal kısımları için kinetik denge eşitliği elde edilir. Dolayısı ile $(\vec{\sigma}, \hat{\vec{p}})$ operatöründeki ilk terim açısal değişkenleri içerdiğinden küresel kısmın, ikinci terim ise radyal değişkeni içerdiğinden dalga fonksiyonunun radyal kısmının kinetik denge koşulunu temsil eder:

$$\left(\vec{\sigma}.\hat{r}\right)\chi_{ljm}^{a'}(\theta,\varphi) = a\chi_{ljm}^{a''}(\theta,\varphi); \quad a',a'' \in \{+,-\}$$
(2.3.9)

$$\left(\vec{\sigma}.\hat{r}\right)^{2}\chi_{ljm}^{a'}(\theta,\varphi) = \chi_{ljm}^{a'}(\theta,\varphi)$$
(2.3.10)

 $R_{nlj}(r)$, $\tilde{R}_{nlj}(r)$ sırası ile etkin ve pasif bileşenleri temsil eden radyal fonksiyonlar olarak,

$$\tilde{R}_{n\kappa}(r) = \left(\frac{\partial}{\partial r} \mp \kappa \frac{1}{r}\right) R_{n\kappa}(r)$$
(2.3.11)

eşitliğine ulaşılır. (2.3.11) eşitliği gereğince pasif bileşene ait radyal fonksiyonun etkin bileşene ait radyal fonksiyonun türevi olduğu ve etkin bileşeni içermesi gerektiği anlaşılır. Bir diğer deyişle etkin bileşene ait radyal fonksiyon pasif bileşene ait radyal fonksiyonun bir alt kümesi olmalıdır. Radyal fonksiyon için genel olarak (2.3.11) eşitliği ile tanımlanan KD koşulu, seçilen baz fonksiyonu durumunda göreli Dirac denkleminin göreli olmayan limit durumuna indirgenebileceği, elektronların pozitif ve negatif enerji seviyeleri için göreli olmayan kinetik enerji ifadesini sağlayacağı, pasif bileşenin göreli olmayan limit durumunu doğru biçimde temsil edileceğini ifade etmesi bakımından oldukça önemlidir. Yine de baz fonksiyonu seçiminde kesin olarak KD koşulunun aranması gerekli değildir. Seçilecek baz fonksiyonlarının sistemin fiziksel özelliklerinin iyi temsili için muhakkak KD koşulunu sağlaması gerektiği ile birlikte yeterli koşul, etkin bileşene ait baz fonksiyonunun pasif bileşene ait baz fonksiyonun bir alt kümesi olması ($\tilde{\mathcal{H}} \supseteq (\vec{\sigma}.\hat{\vec{p}})\mathcal{H}$; $\mathcal{H},\tilde{\mathcal{H}}$ sırası ile etkin ve pasif bileşenleri içeren uzay) veya pasif bileşenin her zaman etkin bileşene ait baz fonksiyonundan daha geniş olmasıdır (Fægri, 2005; Dyall, 2012, Karwowski ve ark., 2006). Böylelikle, göreli hesaplamalarda göreli olmayan baz fonksiyonu kullanılması imkanı edinilerek teoride ortaya çıkan matematiksel zorlukların bir kısmı aşılmış ve hesaplama süresinde önemli avantaj sağlanmış olur. Ancak, dikkat edilmesi gereken önemli bir unsur olarak, göreli olmayan baz fonksiyonlarının kullanılması esnasında sistemin fiziksel özelliklerinin temsili ve hesaplamaların hassasiyeti için baz fonksiyonları sayısının geniş tutulmasıdır.

KD koşulu altında h_{pq} bir-elektronlu ve g_{pq} iki-elektronlu matris elemanlarını temsil etmek üzere radyal değişkenlere bağlı iki-bileşenli DHFR denklemleri (2.2.2.10) ifadesine benzer şekilde,

 $f_{pq}^{\mu\nu} = h_{pq}^{\mu\nu} + g_{pq}^{\mu\nu}$, olacak biçimde Fock matris elemanı için,

$$\begin{pmatrix} f_{pq}^{11} & f_{pq}^{12} \\ f_{pq}^{21} & f_{pq}^{22} \end{pmatrix} = \begin{pmatrix} h_{pq}^{11} & h_{pq}^{12} \\ h_{pq}^{21} & h_{pq}^{22} \end{pmatrix} + \begin{pmatrix} J_{pq}^{11} - K_{pq}^{11} & J_{pq}^{12} - K_{pq}^{12} \\ J_{pq}^{21} - K_{pq}^{21} & J_{pq}^{22} - K_{pq}^{22} \end{pmatrix},$$
(2.3.12)

eşitliğine ulaşılır. Burada μ , $\nu = 1, 2$ ve matris elemanları açısal kısımdan bağımsızdır. Çözüm radyal fonksiyonları içeren matris elemanlarının analitik ifadesinin elde edilerek genelleştirilmiş özdeğer probleminin SCF yöntemi kullanılması ile sağlanabilir. İki-bileşenli DHFR denklemleri için,

$$\mu = 1 \quad p \to p$$

$$\mu = 2 \quad p \to \tilde{p}$$

$$\nu = 1 \quad q \to q$$

$$\nu = 2 \quad q \to \tilde{q}$$

ve,

$$h_{pq}^{\mu\nu} = \begin{cases} \mu = \nu = 1 & V_{pq}^{\mu\nu} \\ \mu = \nu = 2 & V_{\tilde{p}\tilde{q}}^{\mu\nu} - 2c^2 S_{\tilde{p}\tilde{q}}^{\mu\nu} \\ \mu \neq \nu \lor \nu = 2, & \Pi_{(+)p\tilde{q}}^{\mu\nu} \\ \mu \neq \nu \lor \nu = 1, & \Pi_{(-)\tilde{p}q}^{\mu\nu} \end{cases}$$
(2.3.13)
$$J_{pq}^{\mu\nu} = \begin{cases} \mu = \nu = 1 & J_{pq}^{\mu\mu} \\ \mu \neq \nu & 0 \\ \mu = \nu = 2 & J_{\tilde{p}\tilde{q}}^{\mu\mu} \end{cases}$$
(2.3.14)

$$K_{pq}^{\mu\nu} = \begin{cases} \mu = \nu \lor \nu = 1 & K_{pq}^{\mu\nu} \\ \mu \neq \nu \lor \nu = 2 & K_{p\tilde{q}}^{\mu\nu} \\ \mu \neq \nu \lor \nu = 1 & K_{\tilde{p}q}^{\mu\nu} \\ \mu = \nu \lor \nu = 2 & K_{\tilde{p}\tilde{q}}^{\mu\nu} \end{cases}$$
(2.3.15)

 μ , ν = 1, 2 olacak şekilde,

$$V_{pq}(r) = \int R_p(r) R_q(r) dr.$$
 (2.3.16)

$$V_{pq}(r) = \int R_p(r) \left(-\frac{Z}{r_i} \right) R_q(r) dv.$$
(2.3.17)

$$\Pi_{(+)pq} = \int R_p(r) \left(\frac{\partial}{\partial r} + \kappa \frac{1}{r} \right) R_p(r) dr$$
(2.3.18)

$$\Pi_{(-)pq} = \int R_p(r) \left(\frac{\partial}{\partial r} - \kappa \frac{1}{r} \right) R_p(r) dr$$
(2.3.19)

 $\mu, \mu'; \nu, \nu'$ sırası ile radyal fonksiyonun etkin ve pasif bileşene ait olduğunu belirtmek üzere,

$$I_{pq,rs}^{(\nu)\mu\nu\mu'\nu'} = \iint R_p^{\mu}(r)R_r^{\mu'}(r)g_{\nu}^{\nu}(1,2)R_q^{\nu'}(r)R_s^{\nu'}(r)dr_1dr_2$$
(2.3.20)

$$J_{pq}^{\mu\mu} = \sum_{rs} (2j+1) \left(R_{rs}^{\mu\mu} I_{pq,rs}^{(0)\mu\mu\mu\mu} + R_{rs}^{\nu\nu} I_{pq,rs}^{(0)\mu\mu\nu\nu} \right)$$
(2.3.21)

$$K_{pq}^{\mu\nu} = \sum_{rs} (2j'+1)b_{\nu}(jj') \left(R_{rs}^{\mu\nu}I_{pq,rs}^{(\nu)\mu\nu\mu\nu}\right)$$
(2.3.22)

$$g_{\nu}^{V}(1,2) = \begin{cases} r_{1}^{\nu} / r_{2}^{\nu+1} & r_{1} < r_{2} \\ r_{2}^{\nu} / r_{1}^{\nu+1} & r_{1} > r_{2} \end{cases}$$
(2.3.23)

bulunur. Burada, $b_{\nu}(jj')$ Grant katsayısıdır (Grant, 2007).

KD koşulunun gereği olarak $c \rightarrow \infty$ durumunda göreli ve göreli olmayan kinetik enerji matris elemanları arasındaki ilişki,

$$T_{pq} = \frac{1}{2} \left(\Pi_{p\tilde{q}}^{\mu\nu} \left[S_{\tilde{p}\tilde{q}}^{\mu\nu} \right]^{-1} \Pi_{\tilde{p}q}^{\mu\nu} \right)$$
(2.3.24)

$$T_{\tilde{p}\tilde{q}} = \frac{1}{2} \left(\prod_{\tilde{p}q}^{\mu\nu} \left[S_{pq}^{\mu\nu} \right]^{-1} \prod_{p\tilde{q}}^{\mu\nu} \right)$$
(2.3.25)

 $\Pi_{pq}^{\mu\nu}$, $S_{pq}^{\mu\nu}$, iki-bileşenli Dirac denkleminin matris elemanları olmak üzere, eşitlikleri elde edilir. Burada, T_{pq} ifadesi göreli olmayan kinetik enerji ifadesine eşit olmalıdır (Dyall, 2012).

2.4. Göreli Baz Fonksiyonların Yapısı

Göreli olmayan Schrödinger denklemi göz önüne alındığında (2.2.1.19) ifadesinden enerjinin minimum (elektronların bağ enerjileri) değerlerine ulaşılabilir. Bununla birlikte HFR denklemlerinde kullanılan baz fonksiyonunun orbital parametrelerini bulmak için varyasyon ilkesinin enerjinin minimum değerlerini vermesinden dolayı dalga fonksiyonu eniyileştirilebilir. (2.2.1.19) ifadesi; göreli Dirac denklemi göz önüne alındığında ise Schrödinger denkleminden farklı olarak negatif enerji sürekli durumlarını da içerdiğinden enerji değerleri için minimum elde etmek mümkün olmamaktadır. Varyasyonel çöküş (variational collapse) olarak adlandırılan bu problem, DHFR denklemlerinden elektronların bağ enerjileri için beklenenden daha düşük enerji değerleri elde edilmesine neden olur. Böylece göreli olmayan ($c \rightarrow \infty$) durumunda da Schrödinger denkleminden bulunan enerjiden daha düşük enerji değerleri elde edilir (Kim, 1967; Kutzelnigg, 1984; Goldman, 1987; Colm ve Mason, 2005). Bu problemin ortaya çıkmasının önlenmesinde kullanılacak baz fonksiyonunun seçimi oldukça önemlidir. Buna göre;

- Dirac işlemcisinin öz-durumları olarak 4-elemanlı, etkin ve pasif bileşenler olarak çiftlenebilen spinörler olduğundan seçilecek baz fonksiyonları da 4elemanlı çiftlenebilen fonksiyonlar olmalıdır.
- Çekirdeğe çok yakın durumlarda dalga fonksiyonunun türevi süreksiz olmalı,
 çekirdekten çok uzak durumlarda ise üstel fonksiyon şeklinde azalmalıdır.
- Seçilen baz fonksiyonu, varyasyonel çöküşü önlemek, denklemlerin göreli olmayan duruma indirgenebilmesi için KD koşulunu sağlamalıdır.

2.4.1. Tam ortonormal baz fonksiyonları

İkinci dereceden Dirac-Coulomb denkleminin Sturm-Liouville problemine dayalı olarak çözümünden elde edilen Coulomb-Sturmian tipi fonksiyonlardır. Fonksiyonların detaylı incelenmesi ve üretilen diğer tam fonksiyonlar ile karşılaştırılması Szmykowski (1997) tarafından yapılmıştır;

$$R_{n\kappa}(2\zeta r) = \sqrt{\frac{|n|!(|n|+2\gamma)}{2N_{n\kappa}(N_{n\kappa}\mp\kappa)\Gamma(|n|+2\gamma)}} (2\zeta r)^{\gamma} e^{-\zeta r} \left[\mathcal{L}_{|n|-1}^{2\gamma}(2\zeta r) + \frac{\kappa\mp N_{n\kappa}}{(|n|+2\gamma)} \mathcal{L}_{|n|}^{2\gamma}(2\zeta r) \right]$$
(2.4.1.1)

$$\tilde{R}_{n\kappa}(2\zeta r) = \sqrt{\frac{|n|!(|n|+2\gamma)}{2N_{n\kappa}(N_{n\kappa}\mp\kappa)\Gamma(|n|+2\gamma)}} (2\zeta r)^{\gamma} e^{-\zeta r} \left[\mathcal{L}_{|n|-1}^{2\gamma}(2\zeta r) - \frac{\kappa\mp N_{n\kappa}}{(|n|+2\gamma)} \mathcal{L}_{|n|}^{2\gamma}(2\zeta r) \right], \quad (2.4.1.2)$$

$$\gamma = \sqrt{\kappa^{2} - \frac{Z^{2}}{c^{2}}}, \quad N_{n\kappa} = \sqrt{|n|^{2} + 2|n|\gamma + \kappa^{2}}, \quad -\infty \le n \le \infty.$$

 $\mathcal{L}_{q-p}^{p}(x)$ Laguerre polinomları olmak üzere, çekirdek yükünün pozitif ve negatif durumlarını içerecek şekilde yazılabilir. Göreli olmayan durum $(c \to \infty || Z \to 0)$ için;

$$\begin{split} \gamma &= |\kappa|, \ N_{n\kappa} = \left(|n| + |\kappa|\right), \\ R_{n\kappa}(2\zeta r) &= \sqrt{\frac{|n|!(|n| + 2|\kappa|)}{2(|n| + |\kappa|)((|n| + |\kappa|) \mp \kappa)\Gamma(|n| + 2|\kappa|)}} (2\zeta r)^{|\kappa|} e^{-\zeta r} \times \\ \left[\mathcal{L}_{|n|-1}^{2|\kappa|}(2\zeta r) + \frac{\kappa \mp (|n| + |\kappa|)}{(|n| + 2|\kappa|)} \mathcal{L}_{|n|}^{2|\kappa|}(2\zeta r) \right] \end{split}$$
(2.4.1.3)

$$\widetilde{R}_{n\kappa}(2\zeta r) = \sqrt{\frac{|n|!(|n|+2|\kappa|)}{2(|n|+|\kappa|)((|n|+|\kappa|)\mp\kappa)\Gamma(|n|+2|\kappa|)}} (2\zeta r)^{|\kappa|} e^{-\zeta r} \times \left[\mathcal{L}_{|n|-1}^{2|\kappa|}(2\zeta r) - \frac{\kappa\mp(|n|+|\kappa|)}{(|n|+2|\kappa|)} \mathcal{L}_{|n|}^{2|\kappa|}(2\zeta r) \right]$$
(2.4.1.4)

bulunur. Burada, üst işaret n > 0, alt işaret n < 0 için kullanılır. n = 0 için, üst işaret $\kappa < 0$, alt işaret $\kappa > 0$ durumlarını tanımlar. Laguerre polinomlarının tekrarlama bağıntılarından faydalanılarak $c \rightarrow \infty$ göreli olmayan limit durumunda etkin ve pasif bileşenlerin her ikisi için gerekli işlemler yapıldığında,

$$R_{n\kappa}(2\zeta r) = \sqrt{\frac{\left(n + |\kappa| - l - 1\right)!}{2\left(n + |\kappa|\right)\left(n + |\kappa| + l\right)!}} (2\zeta r)^{l+1} e^{-\zeta r} \mathcal{L}_{n+|\kappa|-l-1}^{2l+1}(2\zeta r)$$
(2.4.1.5)

göreli olmayan Coulomb-Sturmian fonksiyonu bulunur. Elde edilen fonksiyonların sistemin fiziksel özelliklerini sınırlarda iyi temsil etmeleri ile birlikte KD koşulunu yerine getirdikleri görülür.

2.4.2. Tam olmayan baz fonksiyonları

Coulomb-Sturmian fonksiyonlarındaki Laguerre polinomlarının üst limiti dikkate alınarak üretilen fonksiyonlar olmak üzere

$$S_m(r) = Ag_m(\gamma, r) + Bg_m(\gamma + 1, r)$$
(2.4.2.1)

formundadır. g_m Slater-tipli orbitaller (STO) olmak üzere A ve B katsayıları κ 'nın pozitif ve negatif değerleri dikkate alınarak hesaplanır (Grant, 2007).

Genel şekilde etkin ve pasif bileşenler için geçerli olacak biçimde üretilen bir diğer fonksiyon üstel tipli baz fonksiyonlarının genelleştirilmesi ile elde edilen Dirac-tipi fonksiyonlardır (Malli, 1984). Bu fonksiyonların kullanılması tam olmayan üstel tipli baz fonksiyonları göz önüne alındığında daha kolay ve kapsayıcı olmaktadır;

$$R_{n\kappa}(2\zeta r) = \sqrt{\frac{(2\zeta)(n)!}{\Gamma(n+2\gamma+1)}} (2\zeta r)^{\gamma} e^{-\zeta r} \mathcal{L}_{n}^{2\gamma}(2\zeta r), \qquad (2.4.2.2)$$

ifade edilir. n = 0için, Dirac-tipli fonksiyonun özel bir durumu olarak Slater-tipli orbital elde edilir.

Göreli elektronik yapı hesaplamalarında kullanılmak üzere baz fonksiyonları için gerekli şartlar hesaba katılarak Drake ve Goldman (1981) ise Slater-tipli orbitalleri etkin bileşenin pasif bileşenin bir alt kümesi olacak şekilde yazmayı önermiştir.

BÖLÜM 3

MATERYAL VE YÖNTEM

3.1. Dirac Denkleminin Genelleştirilmesi

Dirac denkleminin yüksek spinli parçacıklar için genelleştirilmeşi üzerine yapılan çalışmalarda ortaya çıkan önemli problemlerden biri elektromanyetik etkileşimi de dikkate alan denklemlerin elde edilmesidir. Diğer yandan yüksek spine sahip parçacıklar için elde edilecek ve Clifford cebrini sağlayan denklemler doğrudan spin $s = \frac{1}{2}$ denklemlerine indirgenecek şekilde analojik olarak Dirac matrislerinin s spin için genelleştirilmesi ile neticesinde bulunabilir. Bununla birlikte bu genelleştirme sonucunda ortaya çıkacak denklemlerin Lorentz dönüsümleri altında değismez kaldığı da bilinmektedir. Analojik yöntemlerin kullanılması, yüksek spine sahip sistemlerin fiziksel özelliklerini tam olarak tanımlayan denklemler elde edilmesini sağlamasa da elektromanyetik alan etkileşiminin dikkate alınması sonucu ortaya çıkan zorlukları ihmal etmekte ve yüksek spine sahip parçacıklar için elde edilen dalga fonksiyonlarının fiziksel özelliklerinin kolay bir şekilde incelenebilmesini sağlamaktadır. Bu şekilde elde edilen Dirac denkleminin incelenmesi, denklemlerde ortava cıkan matris elemanlarının analitik ifadelerinin elde edilmesi, denklemlerin çözümünde genel olarak teoride ortaya çıkan matematiksel zorlukların aşılmasında önemli bir adım olmaktadır. Buna karşın, elektromanyetik alan etkileşimini dikkate alan ve yüksek spinli parçacıkların davranışını tanımlayacak denklemlerde, Poincare grubunu temsil eden üreticiler bulunması ve bu temsile karşılık gelen Lubansky-Pauli vektörlerinin özdeğerlerinin hesaplaması gereklidir (Fushchich ve Nikitin, 1994).

Yarım spine sahip parçacıklar için analojik yöntemlerle elde edilen 2(2s+1)-elemanlı genelleştirilmiş Dirac denklemi için $2(2s+1) \times 2(2s+1)$ -elemanlı hermityen ve üniter matrisleri;

$$\vec{\alpha}^{s} = \begin{pmatrix} 0 & \vec{\sigma}^{s} \\ \vec{\sigma}^{s} & 0 \end{pmatrix}; \quad \beta^{s} = \begin{pmatrix} I^{s} & 0 \\ 0 & -I^{s} \end{pmatrix}, \quad (3.1.1)$$

$$s = \frac{1}{2} \operatorname{için} \quad \vec{\alpha}^{1/2} = \vec{\alpha}, \beta^{1/2} = \beta, \vec{\sigma}^{1/2} = \vec{\sigma}, I^{1/2} = I \operatorname{seklinde} \quad (2.1.10), \quad (2.1.17) \quad \text{bulunur.} \quad \left(s > \frac{1}{2}\right)$$

durumunda ise denklemler (2.1.10), (2.1.17) ifadesine indirgenecek şekilde bulunur;

$$\vec{\sigma}^{3/2} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}; \quad I^{3/2} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}, \tag{3.1.2}$$

$$\vec{\sigma}^{5/2} = \begin{pmatrix} 0 & 0 & \vec{\sigma} \\ 0 & \vec{\sigma} & 0 \\ \vec{\sigma} & 0 & 0 \end{pmatrix}; \quad I^{5/2} = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}.$$
(3.1.3)

Dirac denklemi ise *s* spin için yazılan Dirac matrislerine göre \hat{h}_D^s Dirac işlemcisi olmak üzere;

$$\hat{h}_D^s = c \left(\vec{\alpha}^s \cdot \hat{\vec{p}} \right) + \beta^s m c^2 \tag{3.1.4}$$

$$\hat{h}_D^s \Psi^s(\vec{r}) = \varepsilon^s \Psi^s(\vec{r}), \tag{3.1.5}$$

yazılabilir. $\Psi^{s}(\vec{r})$ dalga fonksiyonları buna bağlı olarak,

$$\Psi^{s} = \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \psi_{4s+2} \end{pmatrix} \equiv \begin{pmatrix} \varphi^{s} \\ \chi^{s} \end{pmatrix}, \qquad (3.1.6)$$

$$\varphi^{s} = \begin{pmatrix} \varphi^{s0} \\ \varphi^{s2} \\ \vdots \\ \varphi^{s,2s-3} \\ \varphi^{s,2s-1} \end{pmatrix}, \chi^{s} = \begin{pmatrix} \chi^{s0} \\ \chi^{s2} \\ \vdots \\ \chi^{s,2s-3} \\ \chi^{s,2s-1} \end{pmatrix}$$
(3.1.7)

elde edilir. Burada $\varphi^{s\lambda}$ ve $\chi^{s\lambda}$ 2-bileşenli spinör matrislerdir,

$$\varphi^{s\lambda} = \begin{pmatrix} u^{\lambda} \\ u^{\lambda+1} \end{pmatrix}, \chi^{s\lambda} = \begin{pmatrix} v^{\lambda} \\ v^{\lambda+1} \end{pmatrix}, \tag{3.1.8}$$

dalga fonksiyonlarının küresel kısmını temsil etmek üzere λ ve λ +1 parametreleri $\lambda = 0, 2, ..., 2s - 1$ sınırları çerçevesinde $s - m_s; -s \le m_s \le s$ değerlerini tanımlar. Elde edilen ifadeler (3.1.5) denkleminde hesaba katıldığında,

(2.1.21) ifadesi cinsinden,

$$c\left(\vec{\sigma}^{s}.\hat{\vec{p}}\right)\chi^{s\lambda} = c\left(\vec{\sigma}.\hat{\vec{p}}\right)\binom{v^{\lambda}}{v^{\lambda+1}} = \frac{c}{i} \begin{pmatrix} \frac{\partial v^{\lambda}}{\partial x_{1}} + \left(\frac{\partial}{\partial x_{1}} - i\frac{\partial}{\partial x_{2}}\right)v^{\lambda+1} \\ -\frac{\partial v^{\lambda+1}}{\partial x_{3}} + \left(\frac{\partial}{\partial x_{1}} + i\frac{\partial}{\partial x_{2}}\right)v^{\lambda} \end{pmatrix}$$
(3.1.10)

$$c\left(\vec{\sigma}^{s}.\hat{\vec{p}}\right)\varphi^{s\lambda} = c\left(\vec{\sigma}.\hat{\vec{p}}\right)\begin{pmatrix}u^{\lambda}\\u^{\lambda+1}\end{pmatrix} = \frac{c}{i} \begin{pmatrix}\frac{\partial u^{\lambda}}{\partial x_{3}} + \left(\frac{\partial}{\partial x_{1}} - i\frac{\partial}{\partial x_{2}}\right)u^{\lambda+1}\\-\frac{\partial u^{\lambda+1}}{\partial x_{3}} + \left(\frac{\partial}{\partial x_{1}} + i\frac{\partial}{\partial x_{2}}\right)u^{\lambda}\end{pmatrix}$$
(3.1.11)

bulunur. (3.1.9) ifadesinden yola çıkarak, 2(2s+1)-elemanlı dalga fonksiyonlarının, etkin ve pasif bileşenleri arasındaki ilişki için,

$$\varphi^{s} = \frac{c\left(\vec{\alpha}^{s}, \hat{\vec{p}}\right)}{\varepsilon^{s} - mc^{2}} \chi^{s}$$
(3.1.12)

$$\chi^{s} = \frac{c\left(\vec{\alpha}^{s}, \hat{\vec{p}}\right)}{\varepsilon^{s} + mc^{2}}\varphi^{s}$$
(3.1.13)

elde edilir. (3.1.12) ve (3.1.13) eşitlikleri KD koşulunun yüksek spine sahip parçacıklar için genelleştirilmesidir. Göreli olmayan durumda $\varepsilon^s = +E_p$ ve $E_p = mc^2 + E'$ ise $E' \ll mc^2$ koşulunda $\varphi^s \gg \chi^s$; $\varepsilon^s = -E_p$ için ise, $\varphi^s \ll \chi^s$ olacak şekilde spinin $s = \frac{1}{2}$ olduğu duruma benzer olarak etkin ve pasif bileşenler arasındaki ilişki bulunur. Buradan $\varepsilon^s = -E_p$ durumunda pasif bileşenin sıfıra yaklaştığı, $\varepsilon^s = +E_p$ durumunda etkin bileşenin sıfıra yaklaştığı görülür (Guseinov, 2012).

3.2. Yarım Spin Spinör Orbitalleri

Yüksek spine sahip parçacıkların kuantum mekaniksel incelenmesinde kullanılacak baz spinörleri genelleşmiş Dirac denklemi (GDD) dikkate alınarak elde edilmelidir. Buna göre baz spinörleri (3.1.8) ifadesini sağlayarak baz spinör orbitalinin göreli hesaplamalarda kullanılabilmesi için gerekli şartlarından biri olan çiftlenebilen spinör orbitaller olma özelliklerini yerine getirmelidirler. Spinör orbitallerin her bir elemanı elektronlar için tanımlanan Dirac denklemi için elde edilen spinör orbitallere benzer olarak radyal ve açısal kısma ayrılabilmeli, radyal kısım ise limit durumunda göreli olmayan denklemlere indirilebilmelidir. Bununla birlikte seçilen baz spinör orbitali (3.1.12) ve (3.1.13) eşitliklerini sağlamalıdır.

Spinör orbitaller için, radyal fonksiyonlar skaler çarpanlar olarak $s = \frac{1}{2}$ durumunda kullanılan

ve KD koşulunu yerine getiren fonksiyon tipleri olabilirler. Ancak, spinör orbitallerin yapısını temsil etmesi bakımından açısal kısım yüksek spine sahip denklemlerin oluşturulmasında gerekli şartları sağlamalıdır.

3.2.1. Spinör-tipli küresel tensörler

Birbirinden bağımsız $(2s+1)\times(2s+1)$ -elemanlı Spinör-Tipli Küresel Tensörler (STKT)'in yalnızca 2(2s+1)-elemanı sıfırdan farklıdır. Bunlardan (2s+1) tanesi etkin diğer (2s+1) pasif bileşene aittir;

$$\Lambda_{ljm}^{s}\left(\theta,\varphi\right) = \begin{bmatrix} Y_{ljm}^{s}\left(\theta,\varphi\right) \\ \tilde{Y}_{\tilde{l}jm}^{s}\left(\theta,\varphi\right) \end{bmatrix},$$
(3.2.1.1)

olmak üzere, etkin bileşene ait elmanlar,

$$Y_{ljm}^{s}(\theta,\varphi) = \begin{bmatrix} Y_{ljm}^{s0}(\theta,\varphi) \\ Y_{ljm}^{s2}(\theta,\varphi) \\ \vdots \\ Y_{ljm}^{s,2s-3}(\theta,\varphi) \\ Y_{ljm}^{s,2s-1}(\theta,\varphi) \end{bmatrix}$$
(3.2.1.2)

pasif bileşene ait elmanlar,

$$\tilde{Y}_{\tilde{l}jm}^{s}\left(\theta,\varphi\right) = \begin{bmatrix} \tilde{Y}_{\tilde{l}jm}^{s,0}\left(\theta,\varphi\right) \\ \tilde{Y}_{\tilde{l}jm}^{s,2}\left(\theta,\varphi\right) \\ \vdots \\ \tilde{Y}_{\tilde{l}jm}^{s2s-3}\left(\theta,\varphi\right) \\ \tilde{Y}_{\tilde{l}jm}^{s2s-1}\left(\theta,\varphi\right) \end{bmatrix}$$
(3.2.1.3)

olarak yazılabilir.

$$\hat{j}^2 \Lambda^s_{ljm} \left(\theta, \varphi \right) = j(j+1) \Lambda^s_{ljm} \left(\theta, \varphi \right)$$
(3.2.1.4)

$$\hat{j}_{z}\Lambda^{s}_{ljm}(\theta,\varphi) = m\Lambda^{s}_{ljm}(\theta,\varphi)$$
(3.2.1.5)

$$\hat{l}^2 \Lambda^s_{ljm} \left(\theta, \varphi \right) = l(l+1) \Lambda^s_{ljm} \left(\theta, \varphi \right)$$
(3.2.1.6)

$$\hat{s}^2 \Lambda^s_{ljm} \left(\theta, \varphi \right) = s(s+1) \Lambda^s_{ljm} \left(\theta, \varphi \right)$$
(3.2.1.7)

(3.2.1.4)- (3.2.1.7) ifadelerinden STKT'lerin sırası ile etkin ve pasif bileşenine ait her bir eleman,

$$Y_{ljm}^{s\lambda}(\theta,\varphi) = \begin{bmatrix} a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}Y_{lm(\lambda)}(\theta,\varphi) \\ a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{lm(\lambda+1)}(\theta,\varphi) \end{bmatrix}$$
(3.2.1.8)

$$\tilde{Y}_{\tilde{l}jm}^{s\lambda}(\theta,\varphi) = \begin{bmatrix} -ia_{\tilde{l}jm}^{s}(\lambda)\beta_{m(\lambda)}Y_{\tilde{l}m(\lambda)}(\theta,\varphi) \\ -ia_{\tilde{l}jm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{\tilde{l}m(\lambda+1)}(\theta,\varphi) \end{bmatrix},$$
(3.2.1.9)

$$0 \le \lambda(2) \le 2s - 1, |l - s| \le j \le l + s, -j \le m \le j, \ j = l + \frac{1}{2}t, \quad t = 2(j - l) = \pm 1, \pm 3, ..., \pm 2s,$$
$$m_l = m(\lambda) = m - s + \lambda, \quad \beta_{m(\lambda)} = (-1)^{\left[|m(\lambda)| - m(\lambda)|\right]/2} \quad \text{tanımlanır.}$$

 $a_{ljm}^{s}(\lambda)$ ise Genelleşmiş Clebsch-Gordan katsayıları,

$$a_{ljm}^{s}(\lambda) = \left(lsm(\lambda)s - \lambda \middle| lsjm \right).$$
(3.2.1.10)

ve $Y_{lm}(\theta, \phi)$ Condon ve Shortley (1935) fazından $\left(Y_{lm_l}^* = i^{|m_l|+m_l}Y_{l-m_l}\right)$ şeklinde farkla ifade edilen olarak küresel harmoniklerdir. (3.2.1.8) ve (3.2.1.9) eşitlikleri ile çiftlenebilen spinörlerden oluşan STKT'ler ortonormaldirler:

$$\int_{0}^{\pi} \int_{0}^{2\pi} Y_{ljm}^{s^{\dagger}}(\theta,\varphi) Y_{l'j'm'}^{s}(\theta,\varphi) Sin\theta d\theta d\varphi = \sum_{\lambda=0}^{2s-1} \int_{0}^{\pi} \int_{0}^{2\pi} Y_{ljm}^{s\lambda^{\dagger}}(\theta,\varphi) Y_{l'j'm'}^{s\lambda}(\theta,\varphi) Sin\theta d\theta d\varphi = \delta_{ll'} \delta_{jj'} \delta_{mm'}$$
(3.2.1.11)

$$\int_{0}^{\pi} \int_{0}^{2\pi} \tilde{Y}_{\tilde{l}jm}^{s^{\dagger}}(\theta,\varphi) \tilde{Y}_{\tilde{l}j'm'}^{s}(\theta,\varphi) Sin\theta d\theta d\varphi = \sum_{\lambda=0}^{2s-1} \int_{0}^{\pi} \int_{0}^{2\pi} \tilde{Y}_{\tilde{l}jm}^{s\lambda^{\dagger}}(\theta,\varphi) \tilde{Y}_{\tilde{l}j'm'}^{s\lambda}(\theta,\varphi) Sin\theta d\theta d\varphi = \delta_{\tilde{l}l'} \delta_{jj'} \delta_{mm'} \quad . \tag{3.2.1.12}$$

STKT'lerin sırası ile ifadelerin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ durumları incelendiğinde, $s = \frac{1}{2}$ olan durumunun elde edildiği (Grant, 2007) ve $s = \frac{3}{2}$ için ise literatürle uyumlu (Nikitin, 2004) denklemler elde edildiği görülür.

$$s = \frac{1}{2}$$
:

 $t = \pm 1$ değerleri aldığı göz önüne alındığında,

$$Y_{ljm}^{s}(\theta,\varphi) = Y_{ljm}^{s0}(\theta,\varphi); \tilde{Y}_{\tilde{l}jm}^{s}(\theta,\varphi) = \tilde{Y}_{\tilde{l}jm}^{s0}(\theta,\varphi), \qquad (3.2.1.13)$$

$$Y_{ljm}^{1/2}(\theta,\varphi) = \begin{bmatrix} a_{ljm}^{1/2}(0)\beta_{m(0)}Y_{lm(0)}(\theta,\varphi) \\ a_{ljm}^{1/2}(1)\beta_{m(1)}Y_{lm(1)}(\theta,\varphi) \end{bmatrix} = \begin{bmatrix} \left(\frac{j+m}{2j}\right)^{1/2}Y_{lm-\frac{1}{2}}(\theta,\varphi) \\ -\left(\frac{j-m}{2j}\right)^{1/2}Y_{lm+\frac{1}{2}}(\theta,\varphi) \end{bmatrix}$$
(3.2.1.14)

$$\tilde{Y}_{\tilde{l}jm}^{1/2}(\theta,\varphi) = \begin{bmatrix} a_{\tilde{l}jm}^{1/2}(0)\beta_{m(0)}Y_{\tilde{l}m(0)}(\theta,\varphi) \\ a_{\tilde{l}jm}^{1/2}(1)\beta_{m(1)}Y_{\tilde{l}m(1)}(\theta,\varphi) \end{bmatrix} = \begin{bmatrix} -\left(\frac{j+1-m}{2j}\right)^{1/2}Y_{l+1m-\frac{1}{2}}(\theta,\varphi) \\ \left(\frac{j+1+m}{2j+2}\right)^{1/2}Y_{l+1m+\frac{1}{2}}(\theta,\varphi) \end{bmatrix}$$
(3.2.1.15)

$$s=\frac{3}{2}$$
:

$$Y_{ljm}^{s}\left(\theta,\varphi\right) = \begin{pmatrix} Y_{ljm}^{s0}\left(\theta,\varphi\right) \\ Y_{ljm}^{s2}\left(\theta,\varphi\right) \end{pmatrix}; \tilde{Y}_{ljm}^{s}\left(\theta,\varphi\right) = \begin{pmatrix} \tilde{Y}_{ljm}^{s0}\left(\theta,\varphi\right) \\ \tilde{Y}_{ljm}^{s2}\left(\theta,\varphi\right) \end{pmatrix},$$
(3.2.1.16)

olmak üzere $t = \pm 3$ değerleri için,

$$Y_{ljm}^{3/2}(\theta,\varphi) = \begin{bmatrix} a_{ljm}^{1/2}(0)\beta_{m(0)}Y_{lm(0)}(\theta,\varphi) \\ a_{ljm}^{1/2}(1)\beta_{m(1)}Y_{lm(1)}(\theta,\varphi) \\ a_{ljm}^{1/2}(2)\beta_{m(2)}Y_{lm(2)}(\theta,\varphi) \\ a_{ljm}^{1/2}(3)\beta_{m(3)}Y_{lm(3)}(\theta,\varphi) \end{bmatrix}$$

$$= \frac{1}{2\sqrt{j(j-1)(2j-1)}} \begin{bmatrix} [(j+m)(j+m-1)(j+m-2)]^{1/2}Y_{lm-\frac{3}{2}}(\theta,\varphi) \\ [3(j^{2}-m^{2})(j+m-1)]^{1/2}Y_{lm-\frac{1}{2}}(\theta,\varphi) \\ [3(j^{2}-m^{2})(j-m-1)]^{1/2}Y_{lm+\frac{1}{2}}(\theta,\varphi) \\ [(j-m)(j-m-1)(j-m-2)]^{1/2}Y_{lm+\frac{3}{2}}(\theta,\varphi) \end{bmatrix}$$
(3.2.1.17)

$$\begin{split} \tilde{Y}_{\bar{l}jm}^{3/2}(\theta,\varphi) &= \begin{bmatrix} a_{\bar{l}jm}^{1/2}(0)\beta_{m(0)}Y_{\bar{l}m(0)}(\theta,\varphi) \\ a_{\bar{l}jm}^{1/2}(1)\beta_{m(1)}Y_{\bar{l}m(1)}(\theta,\varphi) \\ a_{\bar{l}jm}^{1/2}(2)\beta_{m(2)}Y_{\bar{l}m(2)}(\theta,\varphi) \\ a_{\bar{l}jm}^{1/2}(3)\beta_{m(3)}Y_{\bar{l}m(3)}(\theta,\varphi) \end{bmatrix} \\ &= \frac{1}{2\sqrt{(j+1)(j+2)(2j+3)}} \begin{bmatrix} -[(j-m+1)(j-m+2)(j-m+3)]^{1/2}Y_{l+3m-\frac{3}{2}}(\theta,\varphi) \\ [3(j+m+1)(j-m+1)(j-m+2)]^{1/2}Y_{l+3m-\frac{1}{2}}(\theta,\varphi) \\ -[3(j-m+1)(j+m+1)(j+m+2)]^{1/2}Y_{l+3m+\frac{1}{2}}(\theta,\varphi) \\ [(j+m+1)(j+m+2)(j+m+3)]^{1/2}Y_{l+3m+\frac{3}{2}}(\theta,\varphi) \end{bmatrix}. \end{split}$$
(3.2.1.18)

 $t = \pm 1$ değerleri için,

$$Y_{ljm}^{3/2}(\theta,\varphi) = \begin{bmatrix} a_{ljm}^{1/2}(0)\beta_{m(0)}Y_{lm(0)}(\theta,\varphi) \\ a_{ljm}^{1/2}(1)\beta_{m(1)}Y_{lm(1)}(\theta,\varphi) \\ a_{ljm}^{1/2}(2)\beta_{m(2)}Y_{lm(2)}(\theta,\varphi) \\ a_{ljm}^{1/2}(3)\beta_{m(3)}Y_{lm(3)}(\theta,\varphi) \end{bmatrix}$$

$$= \frac{1}{2\sqrt{j(j-1)(2j+1)}} \begin{bmatrix} -[3(j+m)(j+m-1)(j-m+1)]^{1/2}Y_{lm-\frac{3}{2}}(\theta,\varphi) \\ -[(j-3m+1)^{2}(j+m)]^{1/2}Y_{lm-\frac{1}{2}}(\theta,\varphi) \\ [(j+3m+1)^{2}(j-m)]^{1/2}Y_{lm+\frac{1}{2}}(\theta,\varphi) \\ [3(j-m)(j-m-1)(j+m-1)]^{1/2}Y_{lm+\frac{3}{2}}(\theta,\varphi) \end{bmatrix}$$
(3.2.1.19)

Ali BAĞCI

40

Ali BAĞCI

$$\begin{split} \tilde{Y}_{\bar{l}jm}^{3/2}(\theta,\varphi) &= \begin{bmatrix} a_{\bar{l}jm}^{1/2}(0)\beta_{m(0)}Y_{\bar{l}m(0)}(\theta,\varphi) \\ a_{\bar{l}jm}^{1/2}(1)\beta_{m(1)}Y_{\bar{l}m(1)}(\theta,\varphi) \\ a_{\bar{l}jm}^{1/2}(2)\beta_{m(2)}Y_{\bar{l}m(2)}(\theta,\varphi) \\ a_{\bar{l}jm}^{1/2}(3)\beta_{m(3)}Y_{\bar{l}m(3)}(\theta,\varphi) \end{bmatrix} \\ &= \frac{1}{2\sqrt{j(j+1)(2j+3)}} \begin{bmatrix} [3(j+m)(j-m+2)(j-m+1)]^{1/2}Y_{l+1m-\frac{3}{2}}(\theta,\varphi) \\ -[(j+3m)^{2}(j-m+1)]^{1/2}Y_{l+1m-\frac{1}{2}}(\theta,\varphi) \\ -[(j-3m)^{2}(j+m+1)]^{1/2}Y_{l+1m+\frac{1}{2}}(\theta,\varphi) \\ [3(j-m)(j+m+1)(j+m+2)]^{1/2}Y_{l+1m+\frac{3}{2}}(\theta,\varphi) \end{bmatrix}. \end{split}$$
(3.2.1.20)

eşitlikleri sağlanır. STKT'lerin yoğunluk dağılımları ise,

$$A_{ljm}^{s\lambda}(\theta,\varphi) = Y_{ljm}^{s\lambda\dagger}(\theta,\varphi)Y_{ljm}^{s\lambda}(\theta,\varphi)$$
(3.2.1.21)

$$\tilde{A}_{\tilde{l}jm}^{s\lambda}(\theta,\varphi) = \tilde{Y}_{\tilde{l}jm}^{s\lambda\dagger}(\theta,\varphi)\tilde{Y}_{\tilde{l}jm}^{s\lambda}(\theta,\varphi)$$
(3.2.1.22)

olmak üzere,

$$A_{ljm}^{s}(\theta,\varphi) = \left[a_{ljm}^{s}(\lambda+p)\beta_{m(\lambda+p)}\right]^{2}Y_{lm(\lambda+p)}^{*}(\theta,\varphi)Y_{lm(\lambda+p)}(\theta,\varphi)$$
(3.2.1.23)

$$\tilde{A}^{s}_{\tilde{l}jm}(\theta,\varphi) = \left[a^{s}_{\tilde{l}jm}(\lambda+p)\beta_{m(\lambda+p)}\right]^{2}Y^{*}_{\tilde{l}m(\lambda+p)}(\theta,\varphi)Y_{\tilde{l}m(\lambda+p)}(\theta,\varphi)$$
(3.2.1.24)

 $0 \le p \le 1$, elde edilir.

3.2.2 STKT'lerin toplama formülleri

(3.2.1.1)-(3.2.1.3) ve (3.2.1.8), (3.2.1.9) eşitlikleri göz önüne alınarak Dirac denkleminin varyasyonel olarak tam çözümünün içerdiği ifadeler (Darwin, 1928) GDD dikkate alınarak yazılırsa,

$$\Omega_{lj}^{s}(x,x') = \sum_{m=-j}^{j} Y_{ljm}^{s}(x) Y_{ljm}^{s\dagger}(x'), \qquad (3.2.2.1)$$

$$\tilde{\Omega}_{lj}^{s}\left(x,x'\right) = \sum_{m=-j}^{j} \tilde{Y}_{ljm}^{s}\left(x\right) Y_{ljm}^{s\dagger}\left(x'\right)$$
(3.2.2.2)

$$\Omega_{lj,l'j'}^{s}(x,x) = \sum_{m,m'} Y_{ljm}^{s\dagger}(x) Y_{l'j'm'}^{s}(x), \qquad (3.2.2.3)$$

$$\tilde{\Omega}^{s}_{\tilde{l}j,\tilde{l}j'}(x,x) = \sum_{m,m'} \tilde{Y}^{s\dagger}_{\tilde{l}jm}(x) \tilde{Y}^{s}_{\tilde{l}j'm'}(x), \qquad (3.2.2.4)$$

sırası ile,

$$\Omega_{lj}^{s}(x,x') = \sum_{m=-j}^{j} \begin{bmatrix} Y_{ljm}^{s0}(x)Y_{ljm}^{s0\dagger}(x') & Y_{ljm}^{s0}(x)Y_{ljm}^{s2\dagger}(x') & \cdots & Y_{ljm}^{s0}(x)Y_{ljm}^{s,2s-1\dagger}(x') \\ Y_{ljm}^{s2}(x)Y_{ljm}^{s0\dagger}(x') & Y_{ljm}^{s2}(x)Y_{ljm}^{s2\dagger}(x') & \vdots & Y_{ljm}^{s2}(x)Y_{ljm}^{s,2s-1\dagger}(x') \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{ljm}^{s,2s-1}(x)Y_{ljm}^{s,0\dagger}(x') & Y_{ljm}^{s,2s-1}(x)Y_{ljm}^{s,2\dagger}(x') & \vdots & Y_{ljm}^{s,2s-1\dagger}(x)Y_{ljm}^{s,2s-1\dagger}(x') \end{bmatrix}$$
(3.2.2.5)

$$\tilde{\Omega}_{lj}^{s}(x,x') = \sum_{m=-j}^{j} \begin{bmatrix} \tilde{Y}_{ljm}^{s0}(x)Y_{ljm}^{s0\dagger}(x') & \tilde{Y}_{ljm}^{s0}(x)Y_{ljm}^{s2\dagger}(x') & \cdots & \tilde{Y}_{ljm}^{s0}(x)Y_{ljm}^{s,2s-1\dagger}(x') \\ \tilde{Y}_{ljm}^{s2}(x)Y_{ljm}^{s0\dagger}(x') & \tilde{Y}_{ljm}^{s2}(x)Y_{ljm}^{s2\dagger}(x') & \vdots & \tilde{Y}_{ljm}^{s2}(x)Y_{ljm}^{s,2s-1\dagger}(x') \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{Y}_{ljm}^{s,2s-1}(x)Y_{ljm}^{s,0\dagger}(x') & \tilde{Y}_{ljm}^{s,2s-1}(x)Y_{ljm}^{s,2\dagger}(x') & \vdots & \tilde{Y}_{ljm}^{s,2s-1}(x)Y_{ljm}^{s,2s-1\dagger}(x') \end{bmatrix}$$
(3.2.2.6)

$$\Omega_{lj,l'j'}^{s}(x,x) = \sum_{m,m'} \left[Y_{ljm}^{s0\dagger}(x) Y_{l'j'm'}^{s0}(x) + Y_{ljm}^{s2\dagger}(x) Y_{l'j'm'}^{s2}(x) + \dots + Y_{ljm}^{s2s-1\dagger}(x) Y_{l'j'm'}^{s2s-1\dagger}(x) \right]$$
(3.2.2.7)

$$\tilde{\Omega}^{s}_{\tilde{l}j,\tilde{l}j'}(x,x) = \sum_{m,m'} \left[\tilde{Y}^{s0\dagger}_{\tilde{l}jm}(x) \tilde{Y}^{s0}_{\tilde{l}j'm'}(x) + \tilde{Y}^{s2\dagger}_{\tilde{l}jm}(x) \tilde{Y}^{s2}_{\tilde{l}j'm'}(x) + \dots + \tilde{Y}^{s2s-1\dagger}_{\tilde{l}jm}(x) \tilde{Y}^{s2s-1}_{\tilde{l}j'm'}(x) \right].$$
(3.2.2.8)

Toplam ifadelerinde ortaya çıkan her bir matris elemanı,

$$\mathcal{A}_{ljm,l'j'm'}^{s}\left(p,p',\lambda\right) = a_{ljm}^{s}\left(\lambda+p\right)a_{l'j'm'}^{s}\left(\lambda+p'\right)\beta_{m(\lambda+p)}\beta_{m'(\lambda+p')}$$
(3.2.2.9)

p, p' = 0,1 olmak üzere,

$$\Omega_{lj}^{s\lambda}\left(x,x'\right) = \sum_{m=-j}^{j} Y_{ljm}^{s\lambda}\left(x\right) Y_{ljm}^{s\lambda\dagger}\left(x'\right)$$
(3.2.2.10)

$$\Omega_{lj}^{s\lambda}(x,x') = \sum_{m=-j}^{j} \begin{bmatrix} \mathcal{A}_{ljm,ljm}^{s}(0,0,\lambda)Y_{lm(\lambda)}(x)Y_{lm(\lambda)}^{*}(x') & \mathcal{A}_{ljm,ljm}^{s}(0,1,\lambda)Y_{lm(\lambda)}(x)Y_{lm(\lambda+1)}^{*}(x') \\ \mathcal{A}_{ljm,ljm}^{s}(1,0,\lambda)Y_{lm(\lambda+1)}(x)Y_{lm(\lambda)}^{*}(x') & \mathcal{A}_{ljm,ljm}^{s}(1,1,\lambda)Y_{lm(\lambda+1)}(x)Y_{lm(\lambda+1)}^{*}(x') \end{bmatrix}$$
(3.2.2.11)

$$\tilde{\Omega}_{lj}^{s\lambda}(x,x') = \sum_{m=-j}^{j} \tilde{Y}_{\tilde{l}jm}^{s\lambda}(x) Y_{ljm}^{s\lambda\dagger}(x')$$
(3.2.2.12)

$$\widetilde{\Omega}_{lj}^{s\lambda}(x,x') = \sum_{m=-j}^{j} \begin{bmatrix} \mathcal{A}_{\tilde{l}jm,ljm}^{s}(0,0,\lambda)Y_{\tilde{l}m(\lambda)}(x)Y_{lm(\lambda)}^{*}(x') & \mathcal{A}_{\tilde{l}jm,ljm}^{s}(0,1,\lambda)Y_{\tilde{l}m(\lambda)}(x)Y_{lm(\lambda+1)}^{*}(x') \\ \mathcal{A}_{\tilde{l}jm,ljm}^{s}(1,0,\lambda)Y_{\tilde{l}m(\lambda+1)}(x)Y_{lm(\lambda)}^{*}(x') & \mathcal{A}_{\tilde{l}jm,ljm}^{s}(1,1,\lambda)Y_{\tilde{l}m(\lambda+1)}(x)Y_{lm(\lambda+1)}^{*}(x') \end{bmatrix}$$
(3.2.2.13)

$$\Omega_{lj,lj'}^{s}(x,x) = \sum_{m,m'} \left[\mathcal{A}_{ljm,lj'm'}^{s}(0,0,\lambda) Y_{lm(\lambda)}^{*}(x) Y_{lm'(\lambda)}(x) + \mathcal{A}_{ljm,lj'm'}^{s}(1,1,\lambda) Y_{lm(\lambda+1)}^{*}(x) Y_{l'm'(\lambda+1)}(x) \right] (3.2.2.14)$$

$$\tilde{\Omega}^{s}_{\tilde{l}j,\tilde{l}j'}(x,x) = \sum_{m,m'} \left[\mathcal{A}^{s}_{\tilde{l}jm,\tilde{l}j'm'}(0,0,\lambda) Y^{*}_{\tilde{l}m(\lambda)}(x) Y_{\tilde{l}m'(\lambda)}(x) + \mathcal{A}^{s}_{\tilde{l}jm,\tilde{l}j'm'}(1,1,\lambda) Y^{*}_{\tilde{l}m(\lambda+1)}(x) Y_{\tilde{l}m'(\lambda+1)}(x) \right] (3.2.2.15)$$

yazılabilir, x vektörü kartezyen koordinatlarda x_1, x_2, x_3 eksenleri ile ifade edilir. Azimutal eksenin yönü x_3 olarak seçilirse küresel koordinatlarla aralarındaki ilişki,

$$x_{\mp} = \pm \frac{1}{\sqrt{2}} \left(x_1 \mp i x_2 \right) \tag{3.2.2.16}$$

şeklindedir. (2.3.8) ifadesine göre x_{-}, x_{+} sembollerinin açısal eksenleri ifade ettiği görülür.

3.2.3. Yarım spin spinör orbitallerinin genel yapısı ve özellikleri

 $R_{nlj}(\zeta, r)$ etkin, $\tilde{R}_{nlj}(\zeta, r)$ pasif bileşene ait KD koşulunu yerine getiren keyfi radyal fonksiyonlar olmak üzere, 2(2s+1)-elemanlı göreli Yarım Spin Spinör Orbitalleri (YSSO) küresel spinörlerin özelliklerinden faydalanılarak,

$$\Psi_{nljm}^{s}\left(\zeta,\vec{r}\right) = \frac{1}{\sqrt{2}} \begin{bmatrix} R_{nlj}\left(\zeta,r\right)Y_{ljm}^{s}\left(\theta,\varphi\right) \\ \tilde{R}_{nlj}\left(\zeta,r\right)\tilde{Y}_{ljm}^{s}\left(\theta,\varphi\right) \end{bmatrix}$$
(3.2.3.1)

$$\Psi_{nljm}^{s}(\zeta,\vec{r}) = \frac{1}{\sqrt{2}} \begin{bmatrix} \left(a_{ljm}^{s}(0)\beta_{m(0)}\right)R_{nlj}(\zeta,r)Y_{lm(0)}(\theta,\varphi) \\ \left(a_{ljm}^{s}(2)\beta_{m(2)}\right)R_{nlj}(\zeta,r)Y_{lm(2)}(\theta,\varphi) \\ \vdots \\ \left(a_{ljm}^{s}(2s-3)\beta_{m(2s-3)}\right)R_{nlj}(\zeta,r)Y_{lm(2s-3)}(\theta,\varphi) \\ \left(a_{ljm}^{s}(2s-1)\beta_{m(2s-1)}\right)R_{nlj}(\zeta,r)Y_{lm(2s-1)}(\theta,\varphi) \\ -i\left(a_{ljm}^{s}(0)\beta_{m(0)}\right)\tilde{R}_{nlj}(\zeta,r)Y_{lm(0)}(\theta,\varphi) \\ -i\left(a_{ljm}^{s}(2)\beta_{m(2)}\right)\tilde{R}_{nlj}(\zeta,r)Y_{lm(2)}(\theta,\varphi) \\ \vdots \\ -i\left(a_{ljm}^{s}(2s-3)\beta_{m(2s-3)}\right)\tilde{R}_{nlj}(\zeta,r)Y_{lm(2s-3)}(\theta,\varphi) \\ -i\left(a_{ljm}^{s}(2s-1)\beta_{m(2s-1)}\right)\tilde{R}_{nlj}(\zeta,r)Y_{lm(2s-1)}(\theta,\varphi) \end{bmatrix}$$
(3.2.3.2)

yazılabilir. Burada etkin ve pasif bileşene ait radyal fonksiyonları göreli olmayan fonksiyonlar cinsinden yazılırsa, YSSO göreli olmayan dalga fonksiyonları cinsinden elde edilebilir. Bu yöntemle hesaplamalarda ortaya çıkan matematiksel zorlukların önemli bir kısmının önüne geçilse de elde edilen spinör dalga fonksiyonu KD koşulunu yerine getirmediğinden $s = \frac{1}{2}$ spine sahip çok-elektronlu atomik sistemlerin incelenmesinde varyasyonel çöküş probleminin ortaya çıkmasına neden olur. Coulomb probleminin yüksek spine sahip sitemler için birbirinden çözümünden elde edilecek dalga fonksiyonların farklı özellikler sergileyebilecekleri dikkate alınarak göreli olmayan dalga fonksiyonu KD koşulunu yaklaşık olarak yerine getirmek kaydıyla, pasif bileşene ait dalga fonksiyonu etkin bileşenden her zaman daha geniş tutulacak şekilde alınabilir. Böylece spinin her bir değeri için varyasyonel çöküş problemine kısmen yol açmayacak biçimde radyal fonksiyon yaklaşık olarak elde edilir.

$$R_{nlj}(\zeta, r) \equiv R_{nl}(\zeta, r); \tilde{R}_{nlj}(\zeta, r) \equiv R_{nl}(\zeta, r)$$
(3.2.3.3)

olarak tanımlandığında,

$$\Psi_{nljm}^{s}(\zeta,\vec{r}) = \frac{1}{\sqrt{2}} \begin{bmatrix} a_{ljm}^{s}(0)\beta_{m(0)}\psi_{nlm(0)}(r,\theta,\varphi) \\ a_{ljm}^{s}(2)\beta_{m(2)}\psi_{nlm(2)}(r,\theta,\varphi) \\ \vdots \\ a_{ljm}^{s}(2s-3)\beta_{m(2s-3)}\psi_{nlm(2s-3)}(r,\theta,\varphi) \\ a_{ljm}^{s}(2s-1)\beta_{m(2s-1)}\psi_{nlm(2s-1)}(r,\theta,\varphi) \\ -ia_{ljm}^{s}(0)\beta_{m(0)}\tilde{\psi}_{nlm(0)}(r,\theta,\varphi) \\ -ia_{ljm}^{s}(2)\beta_{m(2)}\tilde{\psi}_{nlm(2)}(r,\theta,\varphi) \\ \vdots \\ -ia_{ljm}^{s}(2s-3)\beta_{m(2s-3)}\tilde{\psi}_{nlm(2s-3)}(r,\theta,\varphi) \\ -ia_{ljm}^{s}(2s-1)\beta_{m(2s-1)}\tilde{\psi}_{nlm(2s-1)}(r,\theta,\varphi) \end{bmatrix},$$
(3.2.3.4)

burada $n \ge 1, s \le j \le s + n - 1, j - s \le l \le \min(j + s, n - 1),$

$$\Psi_{nlm}(\zeta, \vec{r}) = R_{nl}(\zeta, r)Y_{lm}(\theta, \varphi)$$
(3.2.3.5)

yazılabilir. $\tilde{\psi}_{nlm}(\zeta, \vec{r})$ pasif bileşen için küresel fonksiyonda açısal momentum kuantum sayısı \tilde{l} olarak elde edilir. $R_{nl}(\zeta, r)$ ve $\tilde{R}_{nl}(\zeta, r)$ fonksiyonları göreli olmayan radyal fonksiyonlar olmak üzere, keyfi olarak seçilebilirler.

Buna göre (3.2.3.1) ifadesi tekrar yazılırsa,

$$\Psi_{nljm}^{s}\left(\zeta,\vec{r}\right) = \frac{1}{\sqrt{2}} \begin{bmatrix} R_{nl}\left(\zeta,r\right)Y_{ljm}^{s}\left(\theta,\varphi\right) \\ \tilde{R}_{nl}\left(\zeta,r\right)\tilde{Y}_{ljm}^{s}\left(\theta,\varphi\right) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \Psi_{nljm}^{s}\left(\zeta,\vec{r}\right) \\ \tilde{\Psi}_{nljm}^{s}\left(\zeta,\vec{r}\right) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \Psi_{nljm}^{s}\left(\zeta,\vec{r}\right) \\ \tilde{\Psi}_{nljm}^{s,0}\left(\zeta,\vec{r}\right) \\ \tilde{\Psi}_{nljm}^{s,0}\left(\zeta,\vec{r}\right) \\ \tilde{\Psi}_{nljm}^{s,2s-1}\left(\zeta,\vec{r}\right) \\ \vdots \\ \tilde{\Psi}_{nljm}^{s,2s-1}\left(\zeta,\vec{r}\right) \end{bmatrix}$$
(3.2.3.6)

etkin ve pasif bileşenlere ait her bir dalga fonksiyonu çift-elemandan oluşan spinörler şekilde elde edilir.

$$\Psi_{nljm}^{s,\lambda}(\zeta,\vec{r}) = R_{nl}(\zeta,r)Y_{ljm}^{s\lambda}(\theta,\varphi)$$
(3.2.3.7)

$$\tilde{\Psi}_{nljm}^{s,\lambda}(\zeta,\vec{r}) = \tilde{R}_{nl}(\zeta,r)\tilde{Y}_{ljm}^{s\lambda}(\theta,\varphi).$$
(3.2.3.8)

KYSSO'lerin türevlerinin incelenmesi gerek matris elemanlarının elde edilmesinde gerekse de dalga fonksiyonunun fiziksel özelliklerinin anlaşılmasında temel bir role sahiptir. Buna bağlı olarak da (2.3.24), (2.3.25) ifadelerinin, (3.1.12) ve (3.1.13) ifadeleri hesaba katılarak yüksek spinli dalga fonksiyonları için genelleştirilmesi sistemin fiziksel özelliklerinin daha iyi temsil edilmesi açısından oldukça önemlidir.

Skaler bir fonksiyonun, f keyfi radyal fonksiyon ve Y_{lm} küresel fonksiyonu olmak üzere $(\vec{\sigma}, \hat{\vec{p}})$ işlemcisinin elemanlarına göre türevleri,

$$\left(\frac{\partial}{\partial x_1} - i\frac{\partial}{\partial x_2}\right) \left(f\beta_m Y_{lm}\right) = \sum_{k=-1}^{1} \left[\frac{df}{dr} + \left(\delta_{k,-1} - kl\right)\frac{f}{r}\right] d_k^{lm} \beta_{m-1} Y_{l+k,m-1}$$
(3.2.3.9)

$$\left(\frac{\partial}{\partial x_1} + i\frac{\partial}{\partial x_2}\right) \left(f\beta_m Y_{lm}\right) = \sum_{k=-1}^{1} \left[\frac{df}{dr} + \left(\delta_{k,-1} - kl\right)\frac{f}{r}\right] c_k^{lm}\beta_{m+1}Y_{l+k,m+1}, \qquad (3.2.3.10)$$

her bir koordinata göre türevleri,

$$\left(\frac{\partial}{\partial x_{1}}\right)\left(f\beta_{m}Y_{lm}\right) = \frac{1}{2}\sum_{k=-1}^{1}\left[\frac{df}{dr} + \left(\delta_{k,-1} - kl\right)\frac{f}{r}\right]\left(c_{k}^{lm}\beta_{m+1}Y_{l+k,m+1} + d_{k}^{lm}\beta_{m-1}Y_{l+k,m-1}\right)$$
(3.2.3.11)

$$\left(\frac{\partial}{\partial x_{2}}\right)\left(f\beta_{m}Y_{lm}\right) = \frac{1}{2}\sum_{k=-1}^{1}\left[\frac{df}{dr} + \left(\delta_{k,-1} - kl\right)\frac{f}{r}\right]\left(c_{k}^{lm}\beta_{m+1}Y_{l+k,m+1} - d_{k}^{lm}\beta_{m-1}Y_{l+k,m-1}\right)$$
(3.2.3.12)

$$\frac{\partial}{\partial x_3} (f \beta_m Y_{lm}) = \sum_{k=-1}^{1} \left[\frac{df}{dr} + \left(\delta_{k,-1} - kl \right) \frac{f}{r} \right] b_k^{lm} \beta_m Y_{l+k,m}$$
(3.2.3.13)

şeklindedir. Bethe ve Salpeter (1957) faydalanarak denklemlerdeki katsayılar

$$b_{k}^{lm} = \left[(l+m+\delta_{k1})(l-m+\delta_{k1}) / \left(2(l+1)+k \right) (2l+k) \right]^{1/2}$$
(3.2.3.14)

$$d_{k}^{lm} = -k \left[(l - km + 2\delta_{k1})(l - k(m-1)) / (2(l+1) + k)(2l+k) \right]^{1/2}$$
(3.2.3.15)

$$c_{k}^{lm} = k \left[(l+km+2\delta_{k1})(l+k(m+1)) / (2(l+1)+k)(2l+k) \right]^{1/2} = -d_{k}^{l,-m}$$
(3.2.3.16)

 $-1 \le k(2) \le 1$ bulunur.

YSSO'lerin etkin ve pasif bileşenleri arasındaki dönüşümü incelemek için $(\vec{\sigma}^s.\hat{\vec{p}})$ işlemcisi,

BÖLÜM 3- MATERYAL VE YÖNTEM

$$(\vec{\sigma}^s.\hat{\vec{p}}) = \left(\vec{\sigma}^s.\hat{r}\right) \left(\frac{\partial}{\partial r} + \frac{\vec{\sigma}^s.\vec{l}}{r}\right),\tag{3.2.3.17}$$

şeklinde ifade edilirse YSSO'lerin etkinve pasif bileşenleri arasında dönüşüm denklemleri elde etmek mümkün olur. Bunun için ilk olarak (3.2.3.17) ifadesindeki $(\vec{\sigma}^s \cdot \hat{r})$ işlemcisine göre STKT'lerin etkin ve pasif bileşenine ait her bir elemanın dönüşümü;

Etkinve pasif bileşenler için sırası ile,

$$\begin{aligned} \Upsilon_{ljm}^{s}\left(\theta,\varphi\right) &= \left(\vec{\sigma}^{s}.\hat{r}\right)Y_{ljm}^{s}\left(\theta,\varphi\right) \\ \Upsilon_{ljm}^{s\lambda}\left(\theta,\varphi\right) &= \left(\vec{\sigma}.\hat{r}\right)Y_{ljm}^{s\lambda}\left(\theta,\varphi\right) \end{aligned} \tag{3.2.3.18}$$

$$\tilde{\mathcal{Y}}_{\tilde{l}jm}^{s}\left(\theta,\varphi\right) = \left(\vec{\sigma}^{s}.\hat{r}\right)\tilde{Y}_{\tilde{l}jm}^{s}\left(\theta,\varphi\right)
\tilde{\mathcal{Y}}_{\tilde{l}jm}^{s\lambda}\left(\theta,\varphi\right) = \left(\vec{\sigma}.\hat{r}\right)\tilde{Y}_{\tilde{l}jm}^{s\lambda}\left(\theta,\varphi\right)$$
(3.2.3.19)

tanımlanarak,

$$\begin{aligned} \Upsilon_{ljm}^{s\lambda}(\theta,\varphi) &= \begin{pmatrix} \cos\theta & \sin\theta e^{-i\varphi} \\ \sin\theta e^{+i\varphi} & -\cos\theta \end{pmatrix} \begin{bmatrix} a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}Y_{lm(\lambda)}(\theta,\varphi) \\ a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{lm(\lambda+1)}(\theta,\varphi) \end{bmatrix} \\ &= \begin{pmatrix} a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}Y_{lm(\lambda)}(\theta,\varphi)\cos\theta + a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{lm(\lambda+1)}(\theta,\varphi)\sin\theta e^{+i\varphi} \\ a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}Y_{lm(\lambda)}(\theta,\varphi)\sin\theta e^{-i\varphi} - a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{lm(\lambda+1)}(\theta,\varphi)\cos\theta \end{pmatrix} \quad (3.2.3.20) \\ &= a\tilde{Y}_{lim}^{s\lambda}(\theta,\varphi) \end{aligned}$$

$$\begin{split} \tilde{Y}_{\tilde{l}jm}^{s\lambda}(\theta,\varphi) &= \begin{pmatrix} \cos\theta & \sin\theta e^{-i\varphi} \\ \sin\theta e^{+i\varphi} & -\cos\theta \end{pmatrix} \begin{bmatrix} a_{\tilde{l}jm}^{s}(\lambda)\beta_{m(\lambda+1)}Y_{\tilde{l}m(\lambda)}(\theta,\varphi) \\ a_{\tilde{l}jm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{\tilde{l}m(\lambda+1)}(\theta,\varphi) \end{bmatrix} \\ &= \begin{pmatrix} \left[a_{\tilde{l}jm}^{s}(\lambda)\beta_{m(\lambda)}Y_{\tilde{l}m(\lambda)}(\theta,\varphi)\cos\theta + a_{\tilde{l}jm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{\tilde{l}m(\lambda+1)}(\theta,\varphi)\sin\theta e^{+i\varphi} \\ \left[a_{\tilde{l}jm}^{s}(\lambda)\beta_{m(\lambda)}Y_{\tilde{l}m(\lambda)}(\theta,\varphi)\sin\theta e^{-i\varphi} - a_{\tilde{l}jm}^{s}(\lambda+1)\beta_{m(\lambda+1)}Y_{\tilde{l}m(\lambda+1)}(\theta,\varphi)\cos\theta \end{bmatrix} \right] \\ &= aY_{ljm}^{s\lambda}(\theta,\varphi) \end{split}$$
(3.2.3.21)

bulunur. $s = \frac{1}{2}$ ve $\varphi = 0$ durumunda a = -1'dir. YSSO'lerin etkin ve pasif bileşenleri arasındaki dönüşüm, $(\vec{\sigma}^s, \hat{\vec{p}})$ işlemcisinin (3.2.3.6) ifadesinde (3.2.3.9)-(3.2.3.13) eşitlikleri dikkate alınarak hesaplanırsa,

$$\Psi_{nljm}^{s}\left(\zeta,\vec{r}\right) = \left(\vec{\sigma}^{s}.\hat{\vec{p}}\right)\Psi_{nljm}^{s}\left(\zeta,\vec{r}\right)$$
(3.2.3.22)

$$\tilde{\Psi}_{nljm}^{s}\left(\zeta,\vec{r}\right) = \left(\vec{\sigma}^{s}.\hat{\vec{p}}\right)\tilde{\Psi}_{nljm}^{s}\left(\zeta,\vec{r}\right)$$
(3.2.3.24)

$$\tilde{\Psi}_{nljm}^{s\lambda}(\zeta,\vec{r}) = \left(\vec{\sigma}.\hat{\vec{p}}\right) \tilde{\Psi}_{nljm}^{s\lambda}(\zeta,\vec{r}), \qquad (3.2.3.25)$$

$$\Psi_{nljm}^{s\lambda}(\zeta,\vec{r}) = (\vec{\sigma}.\hat{\vec{p}})R_{nl}(\zeta,r)Y_{ljm}^{s\lambda}(\theta,\varphi)
= -i \begin{pmatrix} \frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_1} - i\frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_1} + i\frac{\partial}{\partial x_2} & -\frac{\partial}{\partial x_3} \end{pmatrix} \begin{pmatrix} a_{ljm}^s(\lambda)\beta_{m(\lambda)}R_{nl}(\zeta,r)Y_{lm(\lambda)}(\theta,\varphi) \\ a_{ljm}^s(\lambda+1)\beta_{m(\lambda+1)}R_{nl}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \end{pmatrix} (3.2.3.26)$$

$$\hat{\Pi}_{3} = \frac{\partial}{\partial x_{3}}; \hat{\Pi}_{(-)12} = \frac{\partial}{\partial x_{1}} - i\frac{\partial}{\partial x_{2}}; \hat{\Pi}_{(+)12} = \frac{\partial}{\partial x_{1}} + i\frac{\partial}{\partial x_{2}}$$
(3.2.3.27)

şeklinde tanımlanır, ardından (3.2.3.27) ifadeleri göz önüne alınırsa,

$$\Psi_{nljm}^{s\lambda}(\zeta,\vec{r}) = -i \left[\hat{\Pi}_{3} \left[a_{ljm}^{s}(\lambda) \beta_{m(\lambda)} R_{nl}(\zeta,r) Y_{lm(\lambda)}(\theta,\varphi) \right] + \hat{\Pi}_{(-)12} \left[a_{ljm}^{s}(\lambda+1) \beta_{m(\lambda+1)} R_{nl}(\zeta,r) Y_{lm(\lambda+1)}(\theta,\varphi) \right] \right] (3.2.3.28) \\ -i \left[\hat{\Pi}_{(+)12} \left[a_{ljm}^{s}(\lambda) \beta_{m(\lambda)} R_{nl}(\zeta,r) Y_{lm(\lambda)}(\theta,\varphi) \right] - \hat{\Pi}_{3} \left[a_{ljm}^{s}(\lambda+1) \beta_{m(\lambda+1)} R_{nl}(\zeta,r) Y_{lm(\lambda+1)}(\theta,\varphi) \right] \right]$$

böylece,

$$\Psi_{nljm}^{s\lambda}(\zeta,\vec{r}) = -i \left[\frac{\partial R_{nl}(\zeta,r)}{\partial r} + (\delta_{k,-1} - kl) \frac{R_{nl}(\zeta,r)}{r} \right] \times \left(\left\{ a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}b_{k}^{lm(\lambda)} + a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)-1}d_{k}^{lm(\lambda+1)} \right\} Y_{l+km(\lambda)}(\theta,\varphi) \right) \\ \left\{ a_{ljm}^{s}(\lambda)\beta_{m(\lambda)+1}c_{k}^{lm(\lambda)} - a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}b_{k}^{lm(\lambda+1)} \right\} Y_{l+km(\lambda+1)}(\theta,\varphi) \right)$$
(3.2.3.29)

 $\tilde{\Psi}^{s}_{nljm}(\zeta,\vec{r})$ için benzer şekilde,

$$\widetilde{\Psi}_{nljm}^{s}\left(\zeta,\vec{r}\right) = -\left[\frac{\partial\widetilde{R}_{nl}\left(\zeta,r\right)}{\partial r} + \left(\delta_{k,-1} - k\widetilde{l}\right)\frac{\widetilde{R}_{nl}\left(\zeta,r\right)}{r}\right] \times \left(\left\{a_{\widetilde{l}jm}^{s}\left(\lambda\right)\beta_{m(\lambda)}b_{k}^{\widetilde{l}m(\lambda)} + a_{\widetilde{l}jm}^{s}\left(\lambda+1\right)\beta_{m(\lambda+1)-1}d_{k}^{\widetilde{l}m(\lambda+1)}\right\}Y_{\widetilde{l}+km(\lambda)}\left(\theta,\varphi\right)\right) \\ \left\{a_{\widetilde{l}jm}^{s}\left(\lambda\right)\beta_{m(\lambda)+1}c_{k}^{\widetilde{l}m(\lambda)} - a_{\widetilde{l}jm}^{s}\left(\lambda+1\right)\beta_{m(\lambda+1)}b_{k}^{\widetilde{l}m(\lambda+1)}\right\}Y_{\widetilde{l}+km(\lambda+1)}\left(\theta,\varphi\right)\right)$$
(3.2.3.30)

elde edilir. STKT'ler göz önünde bulundurularak $s = \frac{1}{2}$ durumu incelendiğinde,

$$\mathcal{Y}_{ljm}^{\frac{1}{2}\lambda}(\theta,\varphi) = - \begin{pmatrix} \left\{ a_{\tilde{l}jm}^{1/2}(0)\beta_{m(0)}b_{k}^{\tilde{l}m(0)} + a_{\tilde{l}jm}^{1/2}(1)\beta_{m(1)-1}d_{k}^{\tilde{l}m(1)} \right\}Y_{\tilde{l}+km(0)}(\theta,\varphi) \\ \left\{ a_{\tilde{l}jm}^{1/2}(0)\beta_{m(0)+1}c_{k}^{\tilde{l}m(0)} - a_{\tilde{l}jm}^{1/2}(1)\beta_{m(1)}b_{k}^{\tilde{l}m(1)} \right\}Y_{\tilde{l}+km(1)}(\theta,\varphi) \end{pmatrix}$$
(3.2.3.31)

$$\tilde{\mathcal{Y}}_{ljm}^{\frac{1}{2}\lambda}(\theta,\varphi) = -i \left(\begin{cases} a_{ljm}^{1/2}(0)\beta_{m(0)}b_{k}^{lm(0)} + a_{ljm}^{1/2}(1)\beta_{m(1)-1}d_{k}^{lm(1)} \}Y_{l+km(0)}(\theta,\varphi) \\ \left\{ a_{ljm}^{1/2}(0)\beta_{m(0)+1}c_{k}^{lm(0)} - a_{ljm}^{1/2}(1)\beta_{m(1)}b_{k}^{lm(1)} \}Y_{l+km(1)}(\theta,\varphi) \right)$$
(3.2.3.32)

ulaşılır. Böylece (3.2.3.29) ve (3.2.3.30) denklemlerinde sağ ve sol tarafın eşit olması radyal fonksiyonlar arasındaki ilişkiye dayanır. Buna göre,

$$R_{nl}(\zeta,r) = \left[\frac{\partial \tilde{R}_{nl}(\zeta,r)}{\partial r} + \left(\delta_{k,-1} - k\tilde{l}\right)\frac{\tilde{R}_{nl}(\zeta,r)}{r}\right]$$
(3.2.3.33)

$$\tilde{R}_{\tilde{n}\tilde{l}}(\zeta,r) = \left[\frac{\partial R_{nl}(\zeta,r)}{\partial r} + \left(\delta_{k,-1} - kl\right)\frac{R_{nl}(\zeta,r)}{r}\right]$$
(3.2.3.34)

radyal fonksiyonlarının eşitliğini sağlaması beklenir. Göreli olmayan radyal fonksiyonlar kullanılması durumunda KD koşulunun gereği olan (3.2.3.33), (3.2.3.34) eşitliklerinin genel tanımı olan $\tilde{\mathcal{H}} \supseteq (\vec{\sigma}.\hat{\vec{p}})\mathcal{H}$ ifadesine göre baz fonksiyonu seçimi yapılmalıdır.

3.3. Matris Elemanları

Merkezcil Coulomb alanında GDD'nin cebirsel yaklaşım kullanılarak elde edilecek çözümünde Örtme, Potansiyel ve Kinetik enerji integrallerine ait matris elemanları ortaya çıkar. Radyal fonksiyonların KD koşulunu doğrudan dikkate alan fonksiyonlar olarak seçilmesi durumunda dalga fonksiyonun yalnızca küresel kısmı göreli olmayan fonksiyonlarla ifade edilebilmektedir. Göreli olmayan radyal fonksiyonu kullanılması durumda ise dalga fonksiyonu göreli olmayan dalga fonksiyonunun bir birleşimi olarak yazılabilmektedir. Spini $s = \frac{1}{2}$ olan elektronlar için denklemler radyal çözüme indirgenebildiğinden dalga fonksiyonunun radyal kısmına ait integrallerin hesaplanması yeterli olacaktır. Bu durum baz fonksiyonu olarak kullanılacak radyal fonksiyonun seçimini KD koşulunun gereklerini yerine getirmeyi kolaylaştırmaktadır. Ancak spin $s > \frac{1}{2}$ durumunda küresel kısım denklemlerde

sadeleşmemektedir. Dolayısı ile GDD'nin çözümünde ortaya çıkan matris elemanları hesaplanırken küresel kısmın da dikkate alınması gerekir. Diğer yandan küresel fonksiyonların varlığı elektronlar için elde edilen (3.2.3.33), (3.2.3.34) eşitliklerinden daha çok (3.2.3.29) ve (3.2.3.30) eşitliklerinin göz önüne alınması gerektirir.

Çok-elektronlu sistemler açısından DHFR denklemlerinin çözümünde elektronlar arasındaki etkileşmeleri ifade eden matris elemanlarının hesaplanmasında (2.3.19)-(2.3.21) integrallerinin analitik ifadelerinin bulunması yeterli olmaktadır. Bununla birlikte elektronlar arası etkileşmeleri ifade eden matris elemanlarının da küresel fonksiyonlar hesaba katılarak hesaplanması YSSO'lerin $s = \frac{1}{2}$ durumuna indirgenebildiğini görmek açısından önem teşkil eder.

3.3.1. Örtme ve potansiyel enerji integralleri

YSSO'lerin (3.2.3.1) ifadesi göz önüne alındığında örtme integrali için,

$$S_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') = \int \Psi_{nljm}^{s\dagger}(\zeta,\vec{r}) \Psi_{n'l'j'm'}^{s}(\zeta',\vec{r}) dV$$

$$= \frac{1}{2} \int \begin{bmatrix} R_{nlj}(\zeta,r) Y_{ljm}^{s}(\theta,\varphi) \\ \tilde{R}_{nlj}(\zeta,r) \tilde{Y}_{ljm}^{s}(\theta,\varphi) \end{bmatrix}^{\dagger} \begin{bmatrix} R_{n'l'j'}(\zeta',r) Y_{l'j'm'}^{s}(\theta,\varphi) \\ \tilde{R}_{n'l'j'}(\zeta',r) \tilde{Y}_{l'jm'}^{s}(\theta,\varphi) \end{bmatrix} dV$$
(3.3.1.1)

$$S_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') = \frac{1}{2} \Big[S_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') + \tilde{S}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') \Big]$$
(3.3.1.2)

olmak üzere (3.2.3.7) ve (3.2.3.8) tanımlamalarından,

$$\mathcal{S}_{nljm,n'lj'm'}^{s}(\zeta,\zeta') = \int \Psi_{nljm}^{s,\lambda}(\zeta,\vec{r}) \Psi_{n'lj'm'}^{s,\lambda\dagger}(\zeta',\vec{r}) dV$$
(3.3.1.3)

$$\tilde{\mathcal{S}}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') = \int \tilde{\Psi}_{nljm}^{s,\lambda}(\zeta,\vec{r}) \tilde{\Psi}_{n'l'j'm'}^{s,\lambda}(\zeta,\vec{r}) dV$$
(3.3.1.4)

yazılabilir. (3.2.1.8) ve (3.2.1.9) ifadelerinden,

$$\begin{split} S_{nljm,n'lj'm'}^{s}(\zeta,\zeta') &= \\ \int \left[\begin{pmatrix} a_{ljm}^{s}(\lambda)\beta_{m(\lambda)} \end{pmatrix} R_{nlj}(\zeta,r)Y_{lm(\lambda)}(\theta,\varphi) \\ \left(a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)} \right) R_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \end{bmatrix}^{\dagger} \left[\begin{pmatrix} a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)} \end{pmatrix} R_{n'lj'}(\zeta',r)Y_{l'm'(\lambda)}(\theta,\varphi) \\ \left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)} \right) R_{n'lj'}(\zeta',r)Y_{l'm'(\lambda+1)}(\theta,\varphi) \end{bmatrix}^{dV} \begin{pmatrix} (3.3.1.5) \\ a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)} \end{pmatrix} R_{n'lj'}(\zeta',r)Y_{l'm'(\lambda+1)}(\theta,\varphi) \\ \tilde{S}_{nljm,n'lj'm'}^{s}(\zeta,\zeta') &= \\ \int \left[-i\left(a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}\right) \tilde{R}_{nlj}(\zeta,r)Y_{lm(\lambda)}(\theta,\varphi) \\ -i\left(a_{ljm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \left[-i\left(a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)}\right) \tilde{R}_{n'lj'}(\zeta',r)Y_{l'm'(\lambda+1)}(\theta,\varphi) \\ -i\left(a_{ljm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \left[\begin{pmatrix} -i\left(a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)}\right) \tilde{R}_{n'lj'}(\zeta',r)Y_{lm'(\lambda)}(\theta,\varphi) \\ -i\left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \left[\begin{pmatrix} -i\left(a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)}\right) \tilde{R}_{n'lj'}(\zeta',r)Y_{l'm'(\lambda)}(\theta,\varphi) \\ -i\left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \left[\begin{pmatrix} -i\left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{n'lj'}(\zeta',r)Y_{l'm'(\lambda)}(\theta,\varphi) \\ -i\left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{nlj'}(\zeta',r)Y_{lm(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \right] \left[\begin{pmatrix} -i\left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{n'lj'}(\zeta',r)Y_{l'm'(\lambda)}(\theta,\varphi) \\ -i\left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right) \tilde{R}_{n'lj'}(\zeta',r)Y_{l'm'(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \right] dV$$

bulunur. (3.2.2.9)'ye göre,

$$S_{nljm,n'lj'm'}^{s}(\zeta,\zeta') = \mathcal{A}_{ljm,l'j'm'}^{s}(p,p,\lambda) \int R_{nlj}(\zeta,r) R_{n'lj'}(\zeta',r) Y_{lm(\lambda+p)}^{*}(\theta,\varphi) Y_{l'm'(\lambda+p)}(\theta,\varphi) dV$$

$$= \delta_{ll'} \delta_{m(\lambda+p)m'(\lambda+p)} \mathcal{A}_{ljm,l'j'm'}^{s}(p,p,\lambda) \int_{0}^{\infty} R_{nlj}(\zeta,r) R_{n'lj'}(\zeta',r) r^{2} dr$$
(3.3.1.7)

$$\begin{split} \tilde{S}^{s}_{nljm,n'lj'm'}(\zeta,\zeta') &= \mathcal{A}^{s}_{\bar{l}jm,\bar{l}'j'm'}\left(p,p,\lambda\right) \int \tilde{R}_{nlj}\left(\zeta,r\right) \tilde{R}_{n'lj'}\left(\zeta,r\right) Y^{*}_{\bar{l}m(\lambda+p)}\left(\theta,\varphi\right) Y_{\bar{l}'m'(\lambda+p)}\left(\theta,\varphi\right) dV \\ &= \delta_{\bar{l}\bar{l}'}\delta_{m(\lambda+p)m'(\lambda+p)} \mathcal{A}^{s}_{\bar{l}jm,\bar{l}'j'm'}\left(p,p,\lambda\right) \int_{0}^{\infty} \tilde{R}_{nlj}\left(\zeta,r\right) \tilde{R}_{n'lj'}\left(\zeta,r\right) r^{2} dr \end{split}$$
(3.3.1.8)

radyal fonksiyonlar için (3.2.3.2)- (3.2.3.4) tanımlamaları baz alınarak,

$$\mathcal{S}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') = \mathcal{A}_{ljm,l'j'm'}^{s}\left(p,p,\lambda\right) \int \psi_{nlm(\lambda+p)}^{*}\left(\zeta,\vec{r}\right) \psi_{n'l'm'(\lambda+p)}\left(\zeta,\vec{r}\right) dV$$
(3.3.1.9)

$$\tilde{\mathcal{S}}^{s}_{nljm,n'l'j'm'}(\zeta,\zeta') = \mathcal{A}^{s}_{\tilde{l}jm,\tilde{l}'j'm'}(p,p,\lambda) \int \tilde{\psi}^{*}_{nlm(\lambda+p)}(\zeta,\vec{r}) \tilde{\psi}_{n'l'm'(\lambda+p)}(\zeta,\vec{r}) dV$$
(3.3.1.10)

 $0 \le p \le 1$, matris elemanları göreli olmayan matris elemanlarının bir birleşimi olarak bulunur. Potansiyel enerji integrali de benzer şekilde elde edilir.

Perdelenmiş Yukawa-tipi potansiyel kullanılması durumunda,

$$V_{nljm,n'lj'm'}^{s}(\zeta,\zeta',\eta,\eta') = \int \Psi_{nljm}^{s\dagger}(\zeta,\vec{r})V(r)\Psi_{n'lj'm'}^{s}(\zeta',\vec{r})dV$$

$$= \int \begin{bmatrix} R_{nlj}(\zeta,r)Y_{ljm}^{s}(\theta,\varphi) \\ \tilde{R}_{nlj}(\zeta,r)\tilde{Y}_{\bar{l}jm}^{s}(\theta,\varphi) \end{bmatrix}^{\dagger} \left(\frac{e^{-\eta r}}{r^{1-\eta'}}\right) \begin{bmatrix} R_{n'lj'}(\zeta',r)Y_{l'j'm'}^{s}(\theta,\varphi) \\ \tilde{R}_{n'lj'}(\zeta',r)\tilde{Y}_{\bar{l}j'm'}^{s}(\theta,\varphi) \end{bmatrix} dV$$

$$(3.3.1.11)$$

$$V_{nljm,n'l'j'm'}^{s}(\zeta,\zeta',\eta,\eta') = \left[\mathcal{V}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta',\eta,\eta') + \tilde{\mathcal{V}}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta',\eta,\eta') \right]$$
(3.3.1.12)

olmak üzere,

$$\mathcal{V}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta',\eta,\eta') = \mathcal{A}_{ljm,l'j'm'}^{s}\left(p,p,\lambda\right)\int_{0}^{\infty} R_{nlj}\left(\zeta,r\right)R_{n'l'j'}\left(\zeta',r\right)e^{-\eta r}r^{1+\eta'}dr \qquad (3.3.1.13)$$

$$\times \int_{0}^{2\pi} \int_{0}^{\pi} Y_{lm(\lambda+p)}^{*}\left(\theta,\varphi\right)Y_{l'm'(\lambda+p)}\left(\theta,\varphi\right)d\rho$$

$$\mathcal{V}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta',\eta,\eta') = \delta_{ll'}\delta_{m(\lambda+p)m'(\lambda+p)}\mathcal{A}_{ljm,l'j'm'}^{s}(p,p,\lambda)\int_{0}^{\infty} R_{nlj}(\zeta,r)R_{n'l'j'}(\zeta',r)e^{-\eta r}r^{1+\eta'}dr$$
(3.3.1.14)

$$\widetilde{\mathcal{V}}^{s}_{nljm,n'lj'm'}(\zeta,\zeta',\eta,\eta') = \mathcal{A}^{s}_{\tilde{l}jm,\tilde{l}j'm'}(p,p,\lambda) \int_{0}^{\infty} \widetilde{R}_{nlj}(\zeta,r) \widetilde{R}_{n'lj'}(\zeta,r) e^{-\eta r} r^{1+\eta'} dr \int_{0}^{2\pi} \int_{0}^{\pi} Y^{*}_{\tilde{l}m(\lambda+p)}(\theta,\varphi) Y_{\tilde{l}'m'(\lambda+p)}(\theta,\varphi) d\rho$$

$$(3.3.1.15)$$

$$\widetilde{\mathcal{V}}^{s}_{nljm,n'l'j'm'}(\zeta,\zeta',\eta,\eta') = \delta_{\widetilde{l}\widetilde{l}'}\delta_{m(\lambda+p)m'(\lambda+p)}\mathcal{A}^{s}_{\widetilde{l}jm,\widetilde{l}'j'm'}(p,p,\lambda) \int_{0}^{\infty} \widetilde{R}_{nlj}(\zeta,r) \widetilde{R}_{n'lj'}(\zeta,r) e^{-\eta r} r^{1+\eta'} dr$$
(3.3.1.16)

ve,

$$\mathcal{V}_{nljm,n'lj'm'}^{s}(\zeta,\zeta',\eta,\eta') = \mathcal{A}_{ljm,l'j'm'}^{s}\left(p,p,\lambda\right) \int \psi_{nlm(\lambda+p)}^{*}\left(\zeta,\vec{r}\right) \left(\frac{e^{-\eta r}}{r^{1-\eta'}}\right) \psi_{n'l'm'(\lambda+p)}\left(\zeta,\vec{r}\right) dV \quad (3.3.1.17)$$

$$\tilde{\mathcal{V}}^{s}_{nljm,n'l'j'm'}(\zeta,\zeta',\eta,\eta') = \mathcal{A}^{s}_{\tilde{l}jm,\tilde{l}j'm'}(p,p,\lambda) \int \tilde{\psi}^{*}_{nlm(\lambda+p)}(\zeta,\vec{r}) \left(\frac{e^{-\eta r}}{r^{1-\eta'}}\right) \tilde{\psi}_{n'l'm'(\lambda+p)}(\zeta,\vec{r}) dV \quad (3.3.1.18)$$

ifadelerine ulaşılır.

3.3.2. Kinetik enerji integrali

(3.2.3.22)-(3.2.3.25) ifadelerine dayalı olarak,

$$\Pi^{s}_{nljm,n'l'j'm'}(\zeta,\zeta') = \int \Psi^{s\dagger}_{nljm}(\zeta,\vec{r}) \Big(\vec{\alpha}^{s}.\hat{\vec{p}}\Big) \Psi^{s}_{n'l'j'm'}(\zeta',\vec{r}) dV = \int \begin{bmatrix} R_{nlj}(\zeta,r)Y^{s}_{ljm}(\theta,\varphi) \\ \tilde{R}_{nlj}(\zeta,r)\tilde{Y}^{s}_{ljm}(\theta,\varphi) \end{bmatrix}^{\dagger} \begin{pmatrix} 0 & \vec{\sigma}^{s}.\hat{\vec{p}} \\ \vec{\sigma}^{s}.\hat{\vec{p}} & 0 \end{pmatrix} \begin{bmatrix} R_{n'l'j'}(\zeta',r)Y^{s}_{l'j'm'}(\theta,\varphi) \\ \tilde{R}_{n'l'j'}(\zeta',r)\tilde{Y}^{s}_{l'j'm'}(\theta,\varphi) \end{bmatrix} dV$$
(3.3.2.1)

$$\Pi_{nljm,n'lj'm'}^{s}(\zeta,\zeta') = \int \begin{bmatrix} R_{nlj}(\zeta,r)Y_{ljm}^{s}(\theta,\varphi) \\ \tilde{R}_{nlj}(\zeta,r)\tilde{Y}_{ljm}^{s}(\theta,\varphi) \end{bmatrix}^{\dagger} \begin{bmatrix} \left(\vec{\sigma}^{s}.\hat{\vec{p}}\right)\tilde{R}_{n'lj'}(\zeta',r)\tilde{Y}_{lj'm'}^{s}(\theta,\varphi) \\ \left(\vec{\sigma}^{s}.\hat{\vec{p}}\right)R_{n'lj'}(\zeta',r)Y_{lj'm'}^{s}(\theta,\varphi) \end{bmatrix}^{dV}$$

$$= \int \frac{\left\{ \begin{bmatrix} \left(R_{nlj}(\zeta,r)Y_{ljm}^{s}(\theta,\varphi)\right)^{\dagger}(\hat{\sigma}^{s}\vec{p})\left(\tilde{R}_{n'lj'}(\zeta',r)\tilde{Y}_{lj'm'}^{s}(\theta,\varphi)\right)\right] \\ + \begin{bmatrix} \left(\tilde{R}_{nlj}(\zeta,r)\tilde{Y}_{ljm}^{s}(\theta,\varphi)\right)^{\dagger}(\hat{\sigma}^{s}\vec{p})\left(R_{n'lj'}(\zeta',r)Y_{lj'm'}^{s}(\theta,\varphi)\right) \end{bmatrix} \right\} dV$$

$$(3.3.2.2)$$

yazıldığında,

$$\Pi^{s}_{nljm,n'l'j'm'}(\zeta,\zeta') = \left[\mathcal{H}^{s}_{nljm,n'l'j'm'}(\zeta,\zeta') + \tilde{\mathcal{H}}^{s}_{nljm,n'l'j'm'}(\zeta,\zeta') \right]$$
(3.3.2.3)

tanımlanabilir. İfadede terimlerin her biri ayrı olarak incelenirse,

$$\begin{aligned} \pi^{s}_{nijm,n'lj'm'}(\zeta,\zeta') \\ &= -\int \begin{bmatrix} \left(a^{s}_{ljm}(\lambda)\beta_{m(\lambda)}\right)R_{nlj}(\zeta,r)Y_{lm(\lambda)}(\theta,\varphi) \\ \left(a^{s}_{ljm}(\lambda+1)\beta_{m(\lambda+1)}\right)R_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \end{bmatrix}^{\dagger} \begin{pmatrix} d^{s}_{z} & d^{s}_{zy_{-}} \\ d^{s}_{zy_{+}} & -d^{s}_{z} \end{pmatrix} \begin{bmatrix} \left(a^{s}_{\tilde{l}j'm'}(\lambda)\beta_{m'(\lambda)}\right)R_{n'lj'}(\zeta',r)Y_{\tilde{l}m'(\lambda)}(\theta,\varphi) \\ \left(a^{s}_{\tilde{l}j'm'}(\lambda+1)\beta_{m'(\lambda+1)}\right)R_{n'lj'}(\zeta',r)Y_{\tilde{l}m'(\lambda+1)}(\theta,\varphi) \end{bmatrix}^{\dagger} dV \end{aligned}$$
(3.3.2.4)

$$\begin{split} \tilde{\pi}_{nljm,n'lj'm'}^{s}(\zeta,\zeta') &= -\int \begin{bmatrix} \left(a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}\right)R_{nlj}(\zeta,r)Y_{lm(\lambda)}(\theta,\varphi) \\ \left(a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}\right)R_{nlj}(\zeta,r)Y_{lm(\lambda+1)}(\theta,\varphi) \end{bmatrix}^{\dagger} \begin{pmatrix} d_{z}^{s} & d_{xy_{-}}^{s} \\ d_{xy_{+}}^{s} & -d_{z}^{s} \end{pmatrix} \begin{bmatrix} \left(a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)}\right)R_{n'lj'}(\zeta',r)Y_{lm'(\lambda)}(\theta,\varphi) \\ \left(a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}\right)R_{n'lj'}(\zeta',r)Y_{lm'(\lambda+1)}(\theta,\varphi) \end{bmatrix}^{\dagger} dV. \end{split}$$

$$(3.3.2.5)$$

Sonuç olarak (3.2.3.9)- (3.2.3.16) eşitliklerinden faydalanılarak (3.2.3.29) ve (3.2.3.30) ifadelerine benzer şekilde,

$$\mathcal{H}_{nljm,n'lj'm'}^{s}(\zeta,\zeta') = -\int_{0}^{\infty} R_{nlj}(\zeta,r) \left[\frac{\partial \tilde{R}_{n'lj'}(\zeta',r)}{\partial r} + \left(\delta_{k,-1} - k\tilde{l}' \right) \frac{\tilde{R}_{n'lj'}(\zeta',r)}{r} \right] r^{2} dr \qquad (3.3.2.6)$$

$$\times \int_{0}^{2\pi} \int_{0}^{\pi} \left[\left(a_{ljm}^{s}(\lambda)\beta_{m(\lambda)} \right) Y_{lm(\lambda)}(\theta,\varphi) \\ \left(a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)} \right) Y_{lm(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \left[\left\{ a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)}b_{k}^{l'm'(\lambda)} + a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)-l}d_{k}^{l'm'(\lambda+1)} \right\} Y_{l'+km'(\lambda)}(\theta,\varphi) \\ \left\{ a_{lj'm'}^{s}(\lambda)\beta_{m'(\lambda)+1}c_{k}^{lm'(\lambda)} - a_{lj'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}b_{k}^{l'm'(\lambda+1)} \right\} Y_{l'+km'(\lambda+1)}(\theta,\varphi) \right] d\rho$$

$$\widetilde{\mathcal{H}}_{nljm,n'lj'm'}^{s}(\zeta,\zeta') = -\int_{0}^{\infty} \widetilde{R}_{nlj}(\zeta,r) \left[\frac{\partial R_{n'lj'}(\zeta',r)}{\partial r} + (\delta_{k,-1} - kl') \frac{R_{n'lj'}(\zeta',r)}{r} \right] r^{2} dr$$

$$\times \int_{0}^{2\pi} \int_{0}^{\pi} \left[\left(a_{\bar{l}jm}^{s}(\lambda)\beta_{m(\lambda)} \right) Y_{\bar{l}m(\lambda)}(\theta,\varphi) \right]^{\dagger} \left[\left\{ a_{l'j'm'}^{s}(\lambda)\beta_{m'(\lambda)}b_{k}^{l'm'(\lambda)} + a_{l'j'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)-1}d_{k}^{l'm'(\lambda+1)} \right\} Y_{l'+km'(\lambda)}(\theta,\varphi) \right] d\rho$$

$$\left(a_{\bar{l}jm}^{s}(\lambda+1)\beta_{m(\lambda+1)} \right) Y_{\bar{l}m(\lambda+1)}(\theta,\varphi) \right]^{\dagger} \left[\left\{ a_{l'j'm'}^{s}(\lambda)\beta_{m'(\lambda)+1}c_{k}^{lm'(\lambda)} - a_{l'j'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}b_{k}^{lm'(\lambda+1)} \right\} Y_{l'+km'(\lambda+1)}(\theta,\varphi) \right] d\rho$$
(3.3.2.7)

$$\mathcal{B}_{ljm,l'j'm'}^{s}(\lambda) = a_{ljm}^{s}(\lambda)\beta_{m(\lambda)}\left(a_{l'j'm'}^{s}(\lambda)\beta_{m'(\lambda)}b_{k}^{l'm'(\lambda)} + a_{l'j'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)-1}d_{k}^{l'm'(\lambda+1)}\right)$$
(3.3.2.8)

$$C_{ljm,l'j'm'}^{s} = a_{ljm}^{s}(\lambda+1)\beta_{m(\lambda+1)}\left(a_{l'j'm'}^{s}(\lambda)\beta_{m'(\lambda)+1}c_{k}^{l'm'(\lambda)} - a_{l'j'm'}^{s}(\lambda+1)\beta_{m'(\lambda+1)}d_{k}^{l'm'(\lambda+1)}\right)$$
(3.3.2.9)

$$\mathcal{H}_{nljm,n'lj'm'}^{s}(\zeta,\zeta') = -\left(\mathcal{B}_{ljm,\tilde{l}j'm'}^{s}(\lambda)\delta_{l\tilde{l}'}\delta_{m(\lambda)m'(\lambda)} + C_{ljm,\tilde{l}j'm'}^{s}(\lambda)\delta_{l\tilde{l}'+k}\delta_{m(\lambda)+1,m'(\lambda)+1}\right)$$

$$\int_{0}^{\infty} R_{nlj}\left(\zeta,r\right) \left[\frac{\partial \tilde{R}_{n'lj'}(\zeta',r)}{\partial r} + \left(\delta_{k,-1} - k\tilde{l}'\right)\frac{\tilde{R}_{n'lj'}(\zeta',r)}{r}\right]r^{2}dr$$
(3.3.2.10)

$$\widetilde{\mathcal{H}}_{nljm,n'l'j'm'}^{s}(\zeta,\zeta') = -\left(\mathcal{B}_{ljm,l'j'm'}^{s}(\lambda)\delta_{\tilde{l}l'}\delta_{m(\lambda)m'(\lambda)} + C_{\tilde{l}jm,l'j'm'}^{s}(\lambda)\delta_{\tilde{l}l'+k}\delta_{m(\lambda)+1,m'(\lambda)+1}\right) \\
\int_{0}^{\infty} \widetilde{R}_{nlj}\left(\zeta,r\right) \left[\frac{\partial R_{n'l'j'}(\zeta',r)}{\partial r} + \left(\delta_{k,-1} - kl'\right)\frac{R_{n'l'j'}(\zeta',r)}{r}\right]r^{2}dr$$
(3.3.2.11)

bulunur.

3.3.3. Radyal integrallerin çözüm yöntemleri

Laguerre polinomlarından veya bu polinomlarla ifade edilebilen polinomlardan oluşan herhangi bir radyal fonksiyonu

$$R_{nl}(\zeta, r) = Nr^l e^{-\zeta r} L^p_q(2\zeta r)$$
(3.3.3.1)

N normalizasyon katsayısı ve p,qkuantum sayılarını temsil eden indisler olacak şekilde tanımlansın. Böylece keyfi iki radyal fonksiyonunun,

$$\int_{0}^{\infty} R_{nl}(\zeta, r) R_{n'l'}(\zeta', r) r^{2} dr$$
(3.3.3.2)

integral çözümü bir-merkezli matris elemanlarının analitik ifadesinin elde edilmesinde gerekli yardımcı fonksiyon olacaktır. p, p' ve q, q', nl, n'l' kuantum sayılarını içeren indisler olacak şekilde genel ifadesi,

$$\mathcal{F}_{nl,n'l'}^{\nu} \left[\beta, \beta', \mu; x\right] = \int_{0}^{\infty} x^{\nu-1} e^{-\mu x} L_{q}^{p}(\beta x) L_{q'}^{p'}(\beta' x) dr$$
(3.3.3.3)

olmak üzere çözüm,

$$\mathcal{F}_{nl,n'l'}^{\nu} \left[\beta, \beta', \mu; x\right] = (-1)^{p+p'} \frac{\left[\Gamma(q+1)\Gamma(q'+1)\right]^2}{\Gamma(q-p+1)\Gamma(q'-p'+1)\Gamma(p+1)\Gamma(p'+1)} \times \frac{\Gamma(\nu)}{\mu^{\nu}} \times F_2 \left[\nu, -(q-p), -(q'-p'); (p+1), (p'+1); \frac{\beta}{\mu}, \frac{\beta'}{\mu}\right]$$
(3.3.3.4)

 F_2 , 2. tür Appell fonksiyonu ve $\Re(\rho) > 0$; $\Re(\sigma) > 0$; (q-p), $(q'-p') \in \mathbb{N}_0$ olarak elde edilir (Srivastava ve ark., 2003).

$$F_{2}[a,b,b';c,c';x,y] = \sum_{i=0}^{\infty} \frac{(a)_{i}(b)_{i}}{(c)_{i}} {}_{2}F_{1}(a+i,b;c;y)\frac{x^{i}}{i!},$$
(3.3.3.5)

$$(a)_i = \frac{\Gamma(a+i)}{\Gamma(a)}$$
(3.3.3.6)

Pochammer sembolü ve $_{2}F_{1}(a+i,b;c;y)$ genelleşmiş Hipergeometrik fonksiyondur. (3.3.3.1) ifadesi *q* indisinin minimum değerinde, Slater-tipi orbitallerin yapısına indirgenir.

$$R_{n}(\zeta, r) = N'r^{n-1}e^{-\zeta r}$$
(3.3.3.7)

Bu durumda ortaya çıkan integrallerin analitik ifadesi,

$$\int_{0}^{\infty} r^{n} e^{-xr} dr = \frac{\Gamma(n+1)}{x^{n+1}}$$
(3.3.3.8)

yardımcı fonksiyonunun kullanılması ile bulunur $(n \ge 1)$. Laguerre polinomlarını içeren radyal fonksiyonlar için bir diğer çözüm, Laguerre polinomlarının seri açılım ifadesinden faydalanılarak integrallerin STF'ların integrallerine benzer olarak elde edilmesi ve (3.3.3.8) eşitliğinden faydalanılarak çözülmesidir. Bu yöntem ile elde edilen integral çözümleri (3.3.3.4) ifadesinden faydalanılarak elde edilen çözümlerden daha hızlı hesaplamasını sağlamaktadır. Ancak (3.3.3.4) eşitliği keyfi değişkenleri olan Laguerre polinomlarını içeren radyal integrallerin genel çözümünü vermesi itibarı ile analitik ifadelerin matematiksel olarak daha kolay elde edilmesine olanak vermektedir.

3.3.4. ψ^{α} – *ETO* tam ortonormal orbital toplumları

Atom-molekül ve çekirdek sistemlerinin fiziksel özelliklerinin incelenmesi esnasında baz fonksiyonu seçiminde, sistemin fiziksel özelliklerinin iyi temsili hesaplama süresi açısından en iyi performans ve matris elemanlarının elde edilmesinde matematiksel kolaylık aranan koşullardır. Bununla birlikte bu koşulları bir araya getiren baz fonksiyonunun elde edildiği henüz söylenemez. Literatürde şimdiye kadar bulunan baz fonksiyonları genelde iki sınıfa ayrılır. Bu sınıflandırma genel olarak baz fonksiyonunda bulunun $e^{\zeta r^{\mu}}$ exponansiyel ifadesinde μ indisine bağlıdır. $\mu = 2$ durumunda baz fonksiyonunun Gauss-tipi orbital (GTO)

ailesine, $\mu = 1$ durumunda Exponansiyel-tipli orbital (ETO) ailesine ait olduğu söylenir. GTO'lerde exponansiyel fonksiyonun ortaya çıkan yapısından dolayı matris elemanlarının analitik ifadesi, çok-merkezli integrallerin analitik ifadesinin elde edilmesinde önemli bir yöntem olan orbitalin başka merkeze taşınması oldukça kolay yapılmakta ve hesaplama süresi açısından avantaj sağlamaktadır. Ancak bu tip orbitallerde sistemin fiziksel özellikleri iyi temsil edilemediğinden bu dezavantajı ortadan kaldırmak için hesaplamalarda baz fonksiyonu sayısı oldukça yüksek alınmalıdır. Böyle bir durumda ise hesaplama süresi açısından elde edilen avantaj ortadan kalkmaktadır. ETO'lerde ise sistemlerin fiziksel özellikleri iyi temsil edilmesine rağmen benzer sekilde exponansiyel fonksiyonun yapısından dolayı cok-merkezli integrallerin elde edilmesi zorlasmakta hesaplama süresi acısından dezayantai oluşmaktadır. Çok-merkezli integrallerin elde edilmesinde tam ortonormal baz fonksiyonlarından faydalanmak ETO tipli orbitallerde matematiksel zorlukların önüne geçmektedir. Fakat bu yolla elde edilen çok-merkezli integrallerin analitik ifadesi fazla sayıda seri içerdiğinden hesaplama süresi açısından dezavantajlar artmaktadır. Her iki baz fonksiyonu ailesi için ortaya çıkan bu sorunlardan dolayı, literatürde GTO'ler içerdiği parçacık sayısı çok olan sistemlerin incelenmesinde ETO'ler ise parçacık sayısı az olan sistemlerin analiz edilmesi ve kuantum-kimyasının temel teorisinin araştırılmasında kullanılır. Yine de son yıllarda bilgisayar teknolojilerinde yaşanan gelişmeler sistemin fiziksel özelliklerini iyi temsil etmesi bakımından ETO'lerin parçacık sayısı çok olan sistemler için kullanımını (Rico ve ark., 2001) tesvik etmekte ve güncel tutmaktadır.

Bu çalışmada atomların göreli etkiler dikkate alınarak özellikleri incelenecektir. Analojik yollarla göreli olmayan teoriye dayalı olarak elde edilen ψ^{α} – ETO tam ortonormal orbital toplumlarından faydalanılacak ve KD koşulunu gereklerini yaklaşık olarak yerine getirebilmek için pasif bileşene ait baz fonksiyonu etkin bileşene ait baz fonksiyonundan daha geniş tutulacaktır. Buna göre

Göreli olmayan ψ^{α} – ETO tam ortonormal fonksiyonlar sistemi Laguerre polinomlarından, exponansiyal fonksiyonlardan ve skaler küresel harmoniklerden oluşur:

$$\psi^{\alpha}_{nlm_{l}}(\zeta,\vec{r}) = R^{\alpha}_{nl}(\zeta,r)S_{lm_{l}}(\theta,\varphi)$$
(3.3.4.1)

$$R_{nl}^{\alpha}(\zeta,\vec{r}) = (-1)^{\alpha} \left[\frac{(2\zeta)^{3}(n-l-1)!}{(2n)^{\alpha} \left[(n+l+1-\alpha)! \right]^{3}} \right]^{\frac{1}{2}} (2\zeta r)^{l} e^{-\zeta r} L_{n+l+1-\alpha}^{2l+2-\alpha}(2\zeta r), \qquad (3.3.4.2)$$

Burada $(1 \le n \le \infty)$, $(0 \le l \le n-1)$, $(-l \le m_l \le l)$, $\alpha = 1, 0, -1, -2, -3, ...$ ve $S_{lm_l}(\theta, \varphi)$ komplex veya gerçek skaler küresel harmonik, L_q^p genelleşmiş Laguere polinomu, ζ perdelenme katsayısıdır $(0 < \zeta < \infty)$.

$$L_{p}^{q}(x) = \sum_{i=0}^{q-p} \gamma_{qi}^{p} x^{i}$$
(3.3.4.3)

$$\gamma_{qi}^{p} = (-1)^{p+i} (q-i)! F_{i}(q) F_{p+i}(q)$$
(3.3.4.4)

Ortonormallik ilişkisi,

$$\int \psi_{nlm_l}^{\alpha*}(\zeta,\vec{r}) \left(\frac{n'}{\zeta r}\right)^{\alpha} \psi_{n'l'm_l'}^{\alpha}(\zeta,\vec{r}) dV = \delta_{nn'} \delta_{ll'} \delta_{nm_l'}$$
(3.3.4.5)

 $\left(\frac{n'}{\zeta r}\right)^{\alpha}$ ağırlıklı olarak elde edilir.

 ψ^{α} – ETO'nun STO bazında ifadesi ise,

$$\psi_{nlm_{l}}^{\alpha}(\zeta,\vec{r}) = \sum_{n'=l+1}^{n} \omega_{nn'}^{\alpha l} \chi_{n'lm_{l}}(\zeta,\vec{r})$$
(3.3.4.6)

STO'nun ψ^{α} – ETO bazında ifadesi,

$$\chi_{nlm_{l}}(\zeta,\vec{r}) = \sum_{n'=l+1}^{n} \bar{\omega}_{nn'}^{\alpha l} \Psi_{n'lm_{l}}^{\alpha}(\zeta,\vec{r})$$
(3.3.4.7)

(3.3.4.6) ve (3.3.4.7) ifadelerindeki $\omega_{nn'}^{al}$, $\overline{\omega}_{nn'}^{al}$ katsayıları,

$$\omega_{nn'}^{\alpha l} = (-1)^{n'-l-1} \left[\frac{(n'+l+1)!}{(2n)^{\alpha} (n'+l+1-\alpha)!} F_{n'+l+1-\alpha} (n+l+1-\alpha) \times F_{n'-l-1} (n-l-1) \right] \times F_{n'-l-1} (2n')^{1/2}$$
(3.3.4.8)

$$\overline{\omega}_{nn'}^{\alpha l} = (-1)^{n'-l-1} \left[\frac{(2n')^{\alpha} (n+l+1-\alpha)!}{(n+l+1)! F_{n-l-1}(2n)} F_{n'+l+1-\alpha}(n+l+1-\alpha) \times F_{n'-l-1}(n-l-1) \right]^{\frac{l}{2}}$$
(3.3.4.9)

$$F_b(a) = \begin{cases} a!/(b!(a-b)!) & 0 \le b \le a \\ 0 & b < 0, b > a \end{cases}$$
(3.3.4.10)

Guseinov (2002). $\left(\frac{n'}{\zeta r}\right)^{\alpha}$ ağırlığı, ψ^{α} – ETO fonksiyonlarının radyal kısmı ve ortonormallik

(3.3.4.5) ilişkisine dayalı olarak dalga fonksiyonlarına paylaştırılırsa, α' nın her bir değeri için Lambda- ve Coulomb-Sturmian-benzer dalga fonksiyonlarına ait radyal fonksiyonlar elde edilebilir.

Lambda-benzer fonsiyonlar için,

$$R_{n'l'}^{0}(\zeta,r) = \ddot{R}_{nl}^{\alpha}(\zeta,r) = \mathcal{N}_{nl}(\zeta)(2\zeta r)^{l-\frac{\alpha}{2}} e^{-\zeta r} L_{n+l+1-\alpha}^{2l+2-\alpha}(2\zeta r)$$
(3.3.4.11)

 $\mathcal{N}_{nl}(\zeta)$ dalga fonksiyonunda normalizasyon katsayısını ifade etmek üzere,

$$\int_{0}^{\infty} \ddot{R}_{nl}^{\alpha}(\zeta, r) \ddot{R}_{nl}^{\alpha}(\zeta, r) r^{2} dr = 1$$
(3.3.4.12)

ortonormallik bağıntısından,

$$\mathcal{N}_{nl}(\zeta) = \left[\frac{(2\zeta)^3(n-l-1)!}{\left[(n+l+1-\alpha)!\right]^3}\right]^{1/2},$$
(3.3.4.13)

$$n' = n - \frac{\alpha}{2}$$

 $l' = l - \frac{\alpha}{2},$
 $\alpha \le 0, \alpha = 0, -2, -4...$
(3.3.4.14)

olacak şekilde bulunur. Coulomb-Sturmian-benzer fonksiyonlar için ise,

$$R_{n'l'}^{1}(\zeta,r) = \ddot{R}_{nl}^{\alpha}(\zeta,r) = \left[\frac{(2\zeta)^{3}(n-l-1)!}{\left[\left(n+l+1-\alpha\right)!\right]^{3}}\right]^{1/2} (2\zeta r)^{l-\left(\frac{\alpha-1}{2}\right)} e^{-\zeta r} L_{n+l+1-\alpha}^{2l+2-\alpha}(2\zeta r),$$
(3.3.4.15)

$$\int_{0}^{\infty} \ddot{R}_{nl}^{\alpha}(\zeta, r) \left(\frac{1}{2\zeta r}\right) \ddot{R}_{nl}^{\alpha}(\zeta, r) r^{2} dr = 1, \qquad (3.3.4.16)$$

58

$$n' = n - \left(\frac{\alpha - 1}{2}\right)$$

$$l' = l - \left(\frac{\alpha - 1}{2}\right),$$

$$\alpha \le 1, \alpha = 1, -1, -3...$$
(3.3.4.17)

olmak üzere normalizasyon katsayısı aynı ancak Lambda-benzer fonksiyonlardan farklı olarak α 'nın tek değerlerini alacak şekilde elde edilir. Böylece, Lambda- ve Coulomb-Sturmian-benzer fonksiyonlarından faydalanılarak analojik yöntemlerle $\left(\frac{n'}{\zeta r}\right)^{\alpha}$ ağırlıklı ψ^{α} – ETO fonksiyonlarının elde edilebileceği görülür. Buna bağlı olarak, ψ^{α} – ETO fonksiyonlarının tanımlandığı $L^2_{,\alpha}(\mathbb{R})$ ağırlıklı Hilbert uzayında ortonormallik bağıntısının Lambda $L^2(\mathbb{R})$ Hilbert uzayında ve Coulomb-Sturmian fonksiyonlarının tanımlandığı $W^1_2(\mathbb{R})$ Sobolev uzayında ortonormallik bağıntısı cinsinden (3.3.4.14) ve (3.3.4.17)'de belirtilen şartlar göz önüne alınarak doğrudan yazılabileceğini ortaya çıkar:

$$\int_{0}^{\infty} R_{nl}^{\alpha}(\zeta, r) \left(\frac{1}{2\zeta r}\right)^{\alpha} R_{nl}^{\alpha}(\zeta, r) r^{2} dr = \int_{0}^{\infty} \ddot{R}_{n'l'}^{\alpha}(\zeta, r) \ddot{R}_{n'l'}^{\alpha}(\zeta, r) r^{2} dr$$
(3.3.4.18)

$$\int_{0}^{\infty} R_{nl}^{\alpha}(\zeta, r) \left(\frac{1}{2\zeta r}\right)^{\alpha} R_{nl}^{\alpha}(\zeta, r) r^{2} dr = \int_{0}^{\infty} \ddot{R}_{n'l'}^{\alpha}(\zeta, r) \left(\frac{1}{2\zeta r}\right) \ddot{R}_{n'l'}^{\alpha}(\zeta, r) r^{2} dr.$$
(3.3.4.19)

Her ne kadar ψ^{α} – exponansiyel-tipli orbitallerin göreli olmayan atom ve molekül sistemlerinin incelenmesinde baz fonksiyonu seçiminin keyfi olmasına dayalı olarak kullanılabileceğini söyleyebilsek te çok merkezli integrallerin elde edilmesinde kullanılan bir yöntem olan tek-bölgeli toplama teoreminde, Lambda veya Coulomb-Sturmian fonksiyonlarına dahil olan değişkenlerin bir kısmının ağırlık fonksiyonu oluşturacak ve $\alpha \leq -1$ durumlarını ortaya çıkaracak şekilde elde edilen ve $L^2_{,\alpha}(\mathbb{R})$ Hilbert uzayında tam ortonormal fonksiyonların kullanılması şüphe ile yaklaşılan ve halen tartışma konusu olan bir durumdur. Tek-bölgeli toplama teoreminde ψ^{α} – ETO'lerin $\alpha \leq -1$ durumlarında kullanılmasının sakıncaları üzerine detaylı bir çalışma Weniger (2012) tarafından yapılmıştır.

3.3.5. STO kullanılarak örtme potansiyel enerji ve kinetik enerji matris elemanlarına ait radyal integraller ve çözümleri

(2.1.23) ifadesine göre, ektin ve pasif bileşen için aynı Slater radyal orbitalleri kullanılması durumunda, tek-merkezli atomik integrallerin analitik ifadesi (3.3.3.8) eşitliğinden faydalanılarak elde edilebilir,

$$R_{nlj}(\zeta, r) \equiv R_n(\zeta, r); \tilde{R}_{nlj}(\zeta, r) \equiv \tilde{R}_n(\zeta, r), \qquad (3.3.5.1)$$

$$R_n(\zeta, r) = \tilde{R}_n(\zeta, r) = r^n e^{-\zeta r}$$
(3.3.5.2)

normalleştirilmemiş radyal orbitaller olmak üzere örtme integrali,

$$S_{n,n'}(\zeta,\zeta') = \tilde{S}_{n,n'}(\zeta,\zeta') = \int_{0}^{\infty} R_n(\zeta,r) R_{n'}(\zeta',r) dr$$

$$= \int_{0}^{\infty} r^{n+n'} e^{-(\zeta+\zeta')} dr = \frac{\Gamma(n+n'+1)}{(\zeta+\zeta')^{n+n'+1}},$$
(3.3.5.3)

potansiyel enerji integrali,

$$\mathcal{V}_{n,n'}(\zeta,\zeta',\eta,\eta') = \tilde{\mathcal{V}}_{n,n'}(\zeta,\zeta',\eta,\eta') = \int_{0}^{\infty} R_n(\zeta,r) R_{n'}(\zeta',r) e^{-\eta r} r^{\eta'-1} dr$$

$$= \int_{0}^{\infty} r^{n+n'+\eta'-1} e^{-(\zeta+\zeta'+\eta)} dr = \frac{\Gamma(n+n'+\eta')}{(\zeta+\zeta'+\eta)^{n+n'+\eta'}},$$
(3.3.5.4)

bulunur. Kinetik enerji integrali ise (3.3.2.6) ve (3.3.2.7) ifadelerinden,

$$\frac{dR_n(\zeta,r)}{dr} = nr^{n-1}e^{-\zeta r} - \zeta r^n e^{-\zeta r}$$
(3.3.5.5)

ve $\kappa = -(\delta_{k,-1} - k\tilde{l}) = (\delta_{k,-1} - kl)$ olduğu göz önüne alınırsa,

$$\mathcal{H}_{n,n'}(\zeta,\zeta') = \int_{0}^{\infty} R_n(\zeta,r) \left[\frac{\partial}{\partial r} - \kappa \frac{1}{r} \right] R_{n'}(\zeta',r) dr$$

$$= (n'-\kappa) \mathcal{V}_{n,n'}(\zeta,\zeta') - \zeta' S_{n,n'}(\zeta,\zeta')$$
(3.3.5.6)

$$\tilde{\mathcal{H}}_{n,n'}(\zeta,\zeta') = \int_{0}^{\infty} R_n(\zeta,r) \left[\frac{\partial}{\partial r} + \kappa \frac{1}{r} \right] R_{n'}(\zeta',r) dr$$

$$= (n'+\kappa) \mathcal{V}_{n,n'}(\zeta,\zeta') - \zeta' S_{n,n'}(\zeta,\zeta')$$
(3.3.5.7)

60

elde edilir.

KB koşulunun dikkate alınması durumunda ise Slater radyal orbitalleri etkin ve pasif bileşenlerin her ikisini tanımlayacak şekilde

$$f_{nlj}^{t}(\zeta, r) = \sum_{i=0}^{1} W_{nlj}^{i}(\zeta, t) r^{n+i-1} e^{-\zeta r}, \qquad (3.3.5.8)$$

$$W_{nlj}^{i}(\zeta,t) = \varepsilon_t \zeta^t \delta_{i,1} - t(n+\kappa)\delta_{i,0}, \qquad (3.3.5.9)$$

$$\mathcal{E}_{t} = \begin{cases} t = 0 & 1 \\ t = 1 & -1 \end{cases}$$
(3.3.5.10)

yazılabilir. t = 0 durumunda $r^n e^{-\zeta r}$ olarak etkin bileşenin, t = 1 durumuda ise $(n+\kappa)r^{n-1}e^{-\zeta r} - \zeta r^n e^{-\zeta r}$ olarak pasif bileşenin radyal orbitalleri elde edilir. Buna göre örtme, potansiyel ve kinetik enerji integrallerinin analitik ifadeleri sırası ile,

Örtme integrali,

$$S_{nlj,n'l'j'}^{t}(\zeta,\zeta') = \int_{0}^{\infty} f_{nlj}^{t}(\zeta,r) f_{n'l'j'}^{t}(\zeta',r) dr$$

$$= W_{nlj}^{i}(\zeta,t) W_{n'l'j'}^{i'}(\zeta',t) \frac{\Gamma(n+n'+i+i'-1)}{(\zeta+\zeta')^{n+n'+i+i'-1}}$$
(3.3.5.11)

$$S_{nlj,n'l'j'}(\zeta,\zeta') = S_{nlj,n'l'j'}^{0}(\zeta,\zeta'), \tilde{S}_{nlj,n'l'j'}(\zeta,\zeta') = S_{nlj,n'l'j'}^{1}(\zeta,\zeta'), \qquad (3.3.5.12)$$

potansiyel enerji integrali,

$$\mathcal{V}_{nlj,n'l'j'}^{t}(\zeta,\zeta',\eta,\eta') = \int_{0}^{\infty} f_{nlj}^{t}(\zeta,r) f_{n'l'j'}^{t}(\zeta',r) e^{-\eta r} r^{\eta'-1} dr$$

$$= W_{nlj}^{i}(\zeta,t) W_{n'l'j'}^{i'}(\zeta',t) \frac{\Gamma(n+n'+i+i'+\eta'-2)}{(\zeta+\zeta'+\eta)^{n+n'+i+i'+\eta'-2}}$$
(3.3.5.13)

$$\mathcal{V}_{nlj,n'l'j'}(\zeta,\zeta',\eta,\eta') = \mathcal{V}_{nlj,n'l'j'}^{0}(\zeta,\zeta',\eta,\eta'), \tilde{\mathcal{V}}_{nlj,n'l'j'}(\zeta,\zeta',\eta,\eta') = \mathcal{V}_{nlj,n'l'j'}^{1}(\zeta,\zeta',\eta,\eta'), \quad (3.3.5.14)$$

ve kinetik enerji integrali,

$$\mathcal{H}_{nlj,n'l'j'}^{t,t'}(\zeta,\zeta') = \int_{0}^{\infty} f_{nlj}^{t}(\zeta,r) \left[\frac{\partial}{\partial r} + (-1)^{t'} \kappa' \frac{1}{r} \right] f_{n'l'j'}^{t'}(\zeta',r) dr$$

$$= (n'+i'-1+(-1)^{t'} \kappa) \mathcal{V}_{nlj,n'l'j'}^{t,t'}(\zeta,\zeta') - \zeta' \mathcal{S}_{nlj,n'l'j'}^{t,t'}(\zeta,\zeta')$$
(3.3.5.15)

61

$$\mathcal{H}_{nlj,n'l'j'}^{0,1}(\zeta,\zeta') = \mathcal{H}_{nlj,n'l'j'}(\zeta,\zeta'), \mathcal{H}_{nlj,n'l'j'}^{1,0}(\zeta,\zeta') = \tilde{\mathcal{H}}_{nlj,n'l'j'}(\zeta,\zeta')$$
(3.3.5.16)

şeklinde bulunur. Varsaynonel çöküşü önlemek için, kullanılan baz fonksiyonlarında aranan KB koşulunun kontrol edilmesi önemlidir. Bu amaçla önerilen (2.3.24) ve (2.3.25) eşitliklerinde, göreli olmayan kinetik enerji ifadesinin de analitik ifadesi elde edilmelidir. Dolayısı ile STO radyal orbitalleri için (3.3.5.8) ifadesi dikkate alınarak göreli olmayan kinetik enerji ifadesi,

$$f_{nlj}''(\zeta, r) = \frac{1}{r} f_{nlj}'(\zeta, r), \qquad (3.3.5.17)$$

$$T_{nlj,n'l'j'}^{t}(\zeta,\zeta') = \int f_{nlj}^{\prime t}(\zeta,r) \left(-\frac{1}{2}\nabla^{2}\right) f_{n'l'j'}^{\prime t}(\zeta',r) r^{2} dr$$
(3.3.5.18)

olmak üzere,

$$\left(-\frac{1}{2}\nabla^{2}\right)f_{nlj}^{\prime\prime}(\zeta,r) = -\frac{1}{2}\left[\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - \frac{l(l+1)}{r^{2}}\right]f_{nlj}^{\prime\prime}(\zeta,r) = -\frac{1}{2}\left\{\zeta^{2}f_{nlj}^{\prime\prime}(\zeta,r) - 2\zeta(n+i-1)f_{n-1lj}^{\prime\prime}(\zeta,r) + (n-l+i-2)(n+l+i-1)f_{n-2lj}^{\prime\prime}(\zeta,r)\right\}$$
(3.3.5.19)

dikkate alınarak örtme integralinin tanımından faydalanılırsa,

$$T_{nlj,n'lj'}^{t}(\zeta,\zeta') = -\frac{1}{2} \left\{ \zeta'^{2} S_{nlj,n'lj'}^{t}(\zeta,\zeta') - (2\zeta')(n'+i'-1)S_{nlj,n'-llj'}^{t}(\zeta,\zeta') + (n'-l'+i'-2)(n'+l'+i'-1)S_{nlj,n'-2lj'}^{t}(\zeta,\zeta') \right\}$$
(3.3.5.20)

bulunur. $T^0_{nlj,n'lj'}(\zeta,\zeta')$ ektin, $T^1_{nlj,n'lj'}(\zeta,\zeta')$ pasif bileşene ait göreli olmayan kinetik enerji ifadesini sağlar. Etkin ve pasif bileşenlerin ayni olmasi durumunda $T^0_{nlj,n'lj'}(\zeta,\zeta')$ durumunun kullanılması yeterli olur.

3.3.6. Tam ortonormal orbital toplumları kullanılarak örtme potansiyel enerji ve kinetik enerji matris elemanlarına ait radyal integraller ve çözümleri

DHFR denklemlerinde ortaya çıkan Örtme, Potasiyel enerji ve Kinetik enerji matris elemanlarının analitik ifadesi etkin ve pasif bileşenin aynı $\psi^{\alpha} - ETO$ normalleştirilmemiş radyal orbitalleri kullanılması durumunda analitik ifadeleri,
(2.1.23) ifadesi dikkate alındığında radyal orbitaller için,

$$R_{nl}^{\alpha}(\zeta, r) = (2\zeta r)^{l+1} e^{-\zeta r} L_{n+l+1-\alpha}^{2l+2-\alpha}(2\zeta r)$$
(3.3.6.1)

yazılır. Örtme integrali,

$$S_{nl,n'l'}^{\alpha}(\zeta,\zeta') = \int_{0}^{\infty} R_{nl}^{\alpha}(\zeta,r) R_{n'l'}^{\alpha}(\zeta',r) dr$$
(3.3.6.2)

olmak üzere,

$$S_{nl,n'l'}^{\alpha}(\zeta,\zeta') = (2\zeta)^{l+1} (2\zeta')^{l'+1} \int_{0}^{\infty} r^{l+l'+2} e^{-(\zeta+\zeta')r} L_{n+l+1-\alpha}^{2l+2-\alpha} (2\zeta r) L_{n'+l'+1-\alpha}^{2l'+2-\alpha} (2\zeta' r) dr$$
(3.3.6.3)

 $p = 2l + 2 - \alpha, q = n + l + 1 - \alpha; p' = 2l' + 2 - \alpha, q' = n' + l' + 1 - \alpha$ olarak elde edilen ifade (3.3.3.3) eşitliğine benzerdir. Dolayısı ile etkin ve pasif bileşenler için,

$$S_{nl,n'l'}^{\alpha}(\zeta,\zeta') = \tilde{S}_{nl,n'l'}^{\alpha}(\zeta,\zeta') = (2\zeta)^{l+1} (2\zeta')^{l'+1} \mathcal{F}_{nl,n'l'}^{l+l'+3} [\zeta,\zeta',(\zeta+\zeta');r]$$
(3.3.6.4)

bulunur. Potansiyel enerji etkin ve pasif bileşene ait integraller içinde benzer olarak,

$$\mathcal{V}_{nl,n'l'}^{\alpha}(\zeta,\zeta',\eta,\eta') = \int_{0}^{\infty} R_{nl}^{\alpha}(\zeta,r) R_{n'l'}^{\alpha}(\zeta',r) e^{-\eta r} r^{-1+\eta'} dr$$
(3.3.6.5)

$$\mathcal{V}_{nl,n'l'}^{\alpha}(\zeta,\zeta',\eta,\eta') = (2\zeta)^{l+1} (2\zeta')^{l'+1} \int_{0}^{\infty} r^{l+l'+\eta'+1} e^{-(\zeta+\zeta'+\eta)r} L_{n+l+1-\alpha}^{2l+2-\alpha}(2\zeta r) L_{n'+l'+1-\alpha}^{2l'+2-\alpha}(2\zeta' r) dr \qquad (3.3.6.6)$$

$$\mathcal{V}_{nl,n'l'}^{\alpha}(\zeta,\zeta',\eta,\eta') = \tilde{\mathcal{V}}_{nl,n'l'}^{\alpha}(\zeta,\zeta',\eta,\eta') = (2\zeta)^{l+1} (2\zeta')^{l'+1} \mathcal{F}_{nl,n'l'}^{l+l'+\eta'+2} [\zeta,\zeta',(\zeta+\zeta'+\eta);r] \quad (3.3.6.7)$$

elde edilir. Etkin ve pasif bileşenlere bağlı olarak kinetik enerji integralleri ise $\kappa = -\left(\delta_{k,-1} - k\tilde{l}\right) = \left(\delta_{k,-1} - kl\right)$ olduğu dikkate alınarak, Radyal fonksiyonun türevi,

$$\frac{\partial R_{nl}^{\alpha}(\zeta, r)}{\partial r} =$$

$$\{ (2\zeta)(l+1)(2\zeta r)^{l} e^{-\zeta r} L_{q}^{p}(2\zeta r) - \zeta (2\zeta r)^{l+1} e^{-\zeta r} L_{q}^{p}(2\zeta r) + 2\zeta (2\zeta r)^{l+1} e^{-\zeta r} L_{q}^{p+1}(2\zeta r) \}$$
(3.3.6.8)

$$\mathcal{H}_{nl,n'l'}^{\alpha}(\zeta,\zeta') = \int_{0}^{\infty} R_{nl}^{\alpha}(\zeta,r) \left[\frac{\partial}{\partial r} - \kappa \frac{1}{r} \right] R_{n'l'}^{\alpha}(\zeta',r) dr$$
(3.3.6.9)

$$\mathcal{H}_{nl,n'l'}^{\alpha}(\zeta,\zeta') = \int_{0}^{\infty} R_{nl}^{\alpha}(\zeta,r) \left[\frac{\partial}{\partial r} + \kappa \frac{1}{r} \right] R_{n'l'}^{\alpha}(\zeta',r) dr$$
(3.3.6.10)

yazılır. (3.3.1.9)- (3.3.1.10) ve (3.3.1.17)- (3.3.1.18) eşitliklerine göre türevdeki ilk terim $\eta, \eta' = 0$ durumunda potansiyel enerji integralini, ikinci terim örtme integralini verir. Üçüncü terimin analitik ifadesi ise radyal integraller için önerilen genel çözümden bulunabilir. Buna göre,

$$\mathcal{H}_{nl,n'l'}^{\alpha}(\zeta,\zeta') = \left\{ \left[l' + 1 - \kappa \right] \mathcal{V}_{nl,n'l'}^{\alpha}(\zeta,\zeta',0,0) - \zeta' \left[S_{nl,n'l'}^{\alpha}(\zeta,\zeta') - 2\mathcal{K}_{nl,n'l'}^{\alpha}(\zeta,\zeta') \right] \right\}$$
(3.3.6.11)

$$\tilde{\mathcal{H}}_{nl,n'l'}^{\alpha}(\zeta,\zeta') = \left\{ \left[l' + 1 + \kappa \right] \mathcal{V}_{nl,n'l'}^{\alpha}(\zeta,\zeta',0,0) - \zeta' \left[S_{nl,n'l'}^{\alpha}(\zeta,\zeta') - 2\mathcal{K}_{nl,n'l'}^{\alpha}(\zeta,\zeta') \right] \right\}$$
(3.3.6.12)

 $\mathcal{K}^{\alpha}_{nl,n'l'}(\zeta,\zeta')$ integrali,

$$\mathcal{K}_{nl,n'l'}^{\alpha}(\zeta,\zeta') = (2\zeta)^{l+1} (2\zeta')^{l'+1} \int_{0}^{\infty} r^{l+l'+2} e^{-(\zeta+\zeta')r} L_{n+l+1-\alpha}^{2l+2-\alpha} (2\zeta r) L_{n'+l'+1-\alpha}^{2l'+3-\alpha} (2\zeta' r) dr$$
(3.3.6.13)

$$p = 2l + 2 - \alpha, q = n + l + 1 - \alpha; p' = 2l' + 3 - \alpha, q' = n' + l' + 1 - \alpha \text{ olarak},$$

$$\mathcal{K}^{\alpha}_{nl,n'l'}(\zeta,\zeta') = (2\zeta)^{l+1} (2\zeta')^{l'+1} \mathcal{F}^{l+l'+3}_{nl,n'l'} [\zeta,\zeta',(\zeta+\zeta');r]$$
(3.3.6.14)

bulunur. KB koşulunu dikkate alan STO radyal orbitallerinin elde edilmesine benzer şekilde baz fonksiyonu olarak kullanılan $\psi^{\alpha} - ETO$ radyal orbitalleri için KB koşulunu dikkate alan ve etkin, pasif bileşenlerin her ikisini ifade eden radyal orbitalleri,

$$f_{nlj}^{\alpha,t}(\zeta,r) = \sum_{\substack{i,k=0\\i\geq k}}^{1} W_{nlj}^{i,k}(\zeta,t)(2\zeta r)^{l+i} e^{-\zeta r} L_{n+l+1-\alpha}^{2l+2+k-\alpha}(2\zeta r)$$
(3.3.6.15)

$$W_{nlj}^{i,k}(\zeta,t) = t \Big[(2\zeta)(l+1) + \kappa \Big] \delta_{i,0} \delta_{i,k} - \zeta^{t} \varepsilon_{t} \delta_{i,1}(1-\delta_{i,k}) + t(2\zeta) \delta_{i,1} \delta_{i,k}, \qquad (3.3.6.16)$$

ve sırası ile örtme, potansiyel ve kinetik enerji integralleri,

örtme integrali,

$$S_{nlj,n'lj'}^{\alpha,t}(\zeta,\zeta') = \int_{0}^{\infty} f_{nlj}^{\alpha,t}(\zeta,r) f_{n'lj'}^{\alpha,t}(\zeta',r) dr$$

$$= W_{nlj}^{i,k}(\zeta,t) W_{n'lj'}^{i',k'}(\zeta',t) \Big[(2\zeta)^{l+i} (2\zeta')^{l'+i'} \mathcal{F}_{nlj,n'lj'}^{l+l'+i+i'+1} \big[\zeta,\zeta',(\zeta+\zeta');r \big] \Big]$$
(3.3.6.17)

$$S_{nlj,n'lj'}^{\alpha,0}(\zeta,\zeta') = S_{nlj,n'lj'}^{\alpha}(\zeta,\zeta'), S_{nlj,n'lj'}^{\alpha,1}(\zeta,\zeta') = \tilde{S}_{nlj,n'lj'}^{\alpha}(\zeta,\zeta')$$
(3.3.6.18)

potansiyel enerji integrali

$$\mathcal{V}_{nlj,n'lj'}^{\alpha,t}(\zeta,\zeta',\eta,\eta') = \int_{0}^{\infty} f_{nlj}^{\alpha,t}(\zeta,r) f_{n'lj'}^{\alpha,t}(\zeta',r) e^{-\eta r} r^{-1+\eta'} dr$$

$$= W_{nlj}^{i,k}(\zeta,t) W_{n'lj'}^{i',k'}(\zeta',t) \Big[(2\zeta)^{l+i} (2\zeta')^{l'+i'} \mathcal{F}_{nlj,n'lj'}^{l+l'+i+i'+\eta'} \big[\zeta,\zeta',(\zeta+\zeta'+\eta);r \big] \Big]$$
(3.3.6.19)

$$\mathcal{V}_{nlj,n'l'j'}^{\alpha,0}(\zeta,\zeta',\eta,\eta') = \mathcal{V}_{nlj,n'l'j'}^{\alpha}(\zeta,\zeta',\eta,\eta'), \\ \mathcal{V}_{nlj,n'l'j'}^{\alpha,1}(\zeta,\zeta',\eta,\eta') = \tilde{\mathcal{V}}_{nlj,n'l'j'}^{\alpha}(\zeta,\zeta',\eta,\eta'),$$
(3.3.6.20)

ve kinetik enerji integrali,

$$\mathcal{H}_{nlj,nlj}^{\alpha,t,t'}(\zeta,\zeta') = \int_{0}^{\infty} f_{nlj}^{\alpha,t}\left(\zeta,r\right) \left[\frac{\partial}{\partial r} + (-1)^{t'}\kappa\frac{1}{r}\right] f_{n'lj'}^{\alpha,t'}\left(\zeta',r\right) dr$$
(3.3.6.21)

olmak üzere, radyal fonksiyonu türevi,

$$\frac{df_{nlj}^{\alpha,t}(\zeta,r)}{dr} = W_{nlj}^{i,k}(\zeta,t) \left\{ (2\zeta)(l+i)(2\zeta r)^{l+i-1}e^{-\zeta r}L_{n+l+1-\alpha}^{2l+2+k-\alpha}(2\zeta r) -\zeta(2\zeta r)^{l+i}e^{-\zeta r}L_{n+l+1-\alpha}^{2l+2+k-\alpha}(2\zeta r) + (2\zeta)(2\zeta r)^{l+i}e^{-\zeta r}L_{n+l+1-\alpha}^{2l+3+k-\alpha}(2\zeta r) \right\}$$
(3.3.6.22)

ise,

$$\mathcal{H}_{nlj,n'lj'}^{\alpha,t,t'}(\zeta,\zeta') = \left\{ \begin{bmatrix} l' + i' + (-1)^{t'} \kappa \end{bmatrix} \mathcal{V}_{nlj,n'lj'}^{\alpha;t,t'}(\zeta,\zeta',0,0) - \zeta' \begin{bmatrix} S_{nlj,n'lj'}^{\alpha;t,t'}(\zeta,\zeta') - 2\mathcal{K}_{nlj,n'lj'}^{\alpha;t,t'}(\zeta,\zeta') \end{bmatrix} \right\}$$
(3.3.6.23)

bulunur. Buna göre, $\mathcal{H}_{nlj,n'lj'}^{\alpha,0,1}(\zeta,\zeta') = \mathcal{H}_{nlj,n'lj'}^{\alpha}(\zeta,\zeta')$, $\mathcal{H}_{nlj,n'lj'}^{\alpha,1,0}(\zeta,\zeta') = \tilde{\mathcal{H}}_{nlj,n'lj'}^{\alpha}(\zeta,\zeta')$ elde edilir. (2.3.24) ve (2.3.25) eşitliklerinden faydalanarak KB koşulunun kontrolu edilmesi amacı ile $\psi^{\alpha} - ETO$ radyal orbitalleri için göreli olmayan kinetik enerji matris elemanlarının analitik ifadesi, Laguerre polinomlarının (3.3.4.3) tanımından faydalanarak STO radyal orbitallerine benzer şekilde veya (3.3.3.3) tanımından faydalanılarak doğrudan Laguerre polinomlarını içeren integrallerin analitik ifadesinden faydalanılarak elde edilebilir. Bununla birlikte, (3.3.3.3) tanımından çözümde $\psi^{\alpha} - ETO$ radyal orbitallerinin Laguerre polinomlarını içermesinden dolayı ikinci türevlerinin içerdiği eleman sayısı fazla olacaktır. Bu durum (3.3.3.3) tanımının anatilik çözümünü sağlayan (3.3.3.5) eşitliğinin sozsuz seri içermesinden dolayı hesaplama zamanında dezavantajlar oluşturacaktır. Dolayısı ile göreli olmayan kinetik enerji integrallerinin analitik ifadesinin Laguerre polinomlarının seri açılımını veren (3.3.4.3) tanımından faydalanılarak elde edilmesi daha avantajlı olacaktır:

$$f_{nlj}^{\prime\alpha,t}(\zeta,r) = \frac{1}{r} f_{nlj}^{\alpha,t}(\zeta,r) = \sum_{\substack{i,k=0\\i\geq k}}^{1} \sum_{\mu=0}^{n-l-1-k} W_{nlj}^{i,k}(\zeta,t) \gamma_{n+l+1-\alpha,\mu}^{2l+2+k-\alpha} (2\zeta r)^{l+i+\mu-1} e^{-\zeta r}$$
(3.3.6.24)

$$T_{nlj,n'lj'}^{\alpha,t}(\zeta,\zeta') = \int f_{nlj}^{\prime\alpha,t}(\zeta,r) \left(-\frac{1}{2}\nabla^2\right) f_{n'lj'}^{\prime\alpha t}(\zeta',r) r^2 dr$$
(3.3.6.25)

$$\left(-\frac{1}{2}\nabla^{2}\right)f_{nlj}^{\prime\alpha,t}\left(\zeta,r\right) = -\frac{1}{2}\left[\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - \frac{l(l+1)}{r^{2}}\right]f_{nlj}^{\prime\alpha,t}\left(\zeta,r\right) = -\frac{1}{2}\sum_{\substack{i,k=0\\i\geq k}}^{1}\sum_{\mu=0}^{n-l-1-k}W_{nlj}^{i,k}\left(\zeta,t\right)\gamma_{n+l+1-\alpha,\mu}^{2l+2+k-\alpha} \times \left\{(2\zeta)^{l+i+\mu-1}\left[(l+i+\mu)(l+i+\mu-1)-l(l+1)\right]r^{l+i+\mu-3}e^{-\zeta r} -(2\zeta)^{l+i+\mu}(l+i+\mu)r^{l+i+\mu-2}e^{-\zeta r} + \frac{1}{4}(2\zeta)^{l+i+\mu+1}r^{l+i+\mu-1}e^{-\zeta r}\right\}.$$

$$(3.3.6.26)$$

(3.3.6.26) ifadesi $l+i+\mu=n$ eşitliğine göre yazıldığında ortaya çıkan radyal orbitallerin STO-benzer $R_n(\zeta, r)$ radyal olbitaller olduğu anlaşılır. (3.3.6.24) ifadesi de buna göre,

$$f_{nlj}^{\prime\alpha,t}(\zeta,r) = \frac{1}{r} f_{nlj}^{\alpha,t}(\zeta,r) = \sum_{\substack{i,k=0\\i\geq k}}^{1} \sum_{\mu=0}^{n-l-1-k} (2\zeta)^{l+i+\mu-1} W_{nlj}^{i,k}(\zeta,t) \gamma_{n+l+1-\alpha,\mu}^{2l+2+k-\alpha} r^{l+i+\mu-1} e^{-\zeta r}$$
$$= \sum_{\substack{i,k=0\\i\geq k}}^{1} \sum_{\mu=0}^{n-l-1-k} (2\zeta)^{l+i+\mu-1} W_{nlj}^{i,k}(\zeta,t) \gamma_{n+l+1-\alpha,\mu}^{2l+2+k-\alpha} R_{\star}(\zeta,r)$$
(3.3.6.27)

yazıldığında görerli olmayan kinetik enerji ifadesi,

$$\left(-\frac{1}{2}\nabla^{2}\right)f_{nlj}^{\prime\alpha,t}(\zeta,r) = -\frac{1}{2}\left[\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - \frac{l(l+1)}{r^{2}}\right]f_{nlj}^{\prime\alpha,t}(\zeta,r)$$

$$= \sum_{\substack{i,k=0\\i\geq k}}^{1}\sum_{\mu=0}^{n-l-1-k}W_{nlj}^{i,k}(\zeta,t)\gamma_{n+l+1-\alpha,\mu}^{2l+2+k-\alpha} \times \left\{-\frac{(2\zeta)^{*}}{2}\left\{(2\zeta)^{-1}\left[(n+l)(n-l-1)\right]R_{n-2}(\zeta,r)\right\}$$

$$- (n)R_{n-1}(\zeta,r) + \frac{1}{4}(2\zeta)R_{n}(\zeta,r)\right\}.$$

$$(3.3.6.28)$$

olmak üzere,

$$T_{nlj,n'l'j'}^{\alpha,i}(\zeta,\zeta') = \sum_{\substack{i,k=0\\i\geq k}}^{1} \sum_{\substack{\mu=0\\i\geq k'}}^{n'-l'-1-k} \sum_{\substack{j'=0\\i\geq k'}}^{1} \sum_{\substack{\mu'=0\\j\geq k'}}^{n'-l'-1-k'} (2\zeta)^{l+i+\mu-1} (2\zeta')^{\#'+l'+i'+\mu'-1} W_{nlj}^{i,k}(\zeta,t) W_{n'l'j'}^{i',k'}(\zeta,t) \gamma_{n+l+1-\alpha,\mu}^{2l+2+k-\alpha} \gamma_{n'+l'+1-\alpha,\mu'}^{2l'+2+k'-\alpha} \times (3.3.6.29)$$

$$-\frac{1}{2} \left[\frac{1}{4} (2\zeta') S_{\#,\#'}(\zeta,\zeta') - (\#') S_{\#,\#'-1}(\zeta,\zeta') + (2\zeta')^{-1} \left[(\#'+l')(\#'-l'-1) \right] S_{\#,\#'-2}(\zeta,\zeta') \right]$$

burada değişkenlerde $\mathbf{n} = l + i + \mu$, $\mathbf{n}' = l' + i' + \mu'$ değişiklikleri yapılır ve,

$$S_{\pi,\pi'}(\zeta,\zeta') = \int_{0}^{\infty} R_{\pi}(\zeta,r) R_{\pi'}(\zeta',r) r^{2} dr$$

$$= \int_{0}^{\infty} r^{\pi+\pi'} e^{-(\zeta+\zeta')} dr = \frac{\Gamma(n+n'+1)}{(\zeta+\zeta')^{n+\pi'+1}}$$
(3.3.6.30)

örtme integralinin yukarıdaki tanımından faydalanılırsa $T_{nlj,n'lj'}^{\alpha,0}(\zeta,\zeta')$ pasif, $T_{nlj,n'lj'}^{\alpha,1}(\zeta,\zeta')$ etkin bileşenin göreli olmayan kinetik enerjisini ifade edecek şekilde bulunur. Etkin ve pasif bileşenlerin aynı olmasi durumunda ise STO radyal orbitalleri için bulunan sonuca benzer olarak $T_{nlj,n'lj'}^{\alpha,0}(\zeta,\zeta')$ durumunun kullanılması yeterli olur.

3.3.7. Bir-merkezli etkileşme integralleri

Bir-merkezli etkileşme integrallerinin analitik ifadelerini elde etmek üzere çalışmalar, (Grant, 1961; Ley-Koo ve ark., 1993) tarafından spin $s = \frac{1}{2}$ durumu göz önüne alınarak yapılmıştır. Yapılan bu çalışmalarda Coulomb ve "exchange" integralleri ile birlikte KED etkiler olarak adlandırılan gecikme, manyetik etkileri dikkate alan işlemcinin matris elemanlarının da analitik ifadeleri elde edilmiştir. Benzer şekilde YSSO'lerin (3.2.3.4) tanımından faydalanarak Coulomb ve "exchange" etkileşme integralleri için analitik ifadeler bulunur, ancak KED etkileri dikkate almak YSSO'lerin spin $s = \frac{1}{2}$ durumuna indirgenmesi neticesinde mümkün olur. Dolayısı ile varyasyon ilkesinin uygulanması ile DHF denklemlerinde ortaya çıkan iki parçacığın etkileşmesini ifade eden integralleri için,

$$I_{bd}^{s,ac} = \int \Psi_a^{s\dagger} \left(\zeta_a, \vec{r}_1 \right) \left(\Psi_b^{s\dagger} \left(\zeta_b, \vec{r}_2 \right) \hat{f}(21) \Psi_d^{s\dagger} \left(\zeta_d, \vec{r}_2 \right) \right) \Psi_c^{s\dagger} \left(\zeta_c, \vec{r}_1 \right) dV$$
(3.3.7.1)

$$I_{bd}^{s,ac} = \int \begin{bmatrix} \Psi_a^s \left(\zeta_a, \vec{r}_1\right) \\ \tilde{\Psi}_a^s \left(\zeta_a, \vec{r}_1\right) \end{bmatrix}^{\dagger} \begin{pmatrix} \left[\Psi_b^s \left(\zeta_b, \vec{r}_2\right) \\ \tilde{\Psi}_b^s \left(\zeta_b, \vec{r}_2\right) \end{bmatrix}^{\dagger} \hat{f}(21) \begin{bmatrix} \Psi_d^s \left(\zeta_d, \vec{r}_2\right) \\ \tilde{\Psi}_{\tilde{d}}^s \left(\zeta_d, \vec{r}_2\right) \end{bmatrix} \end{pmatrix} \begin{bmatrix} \Psi_c^s \left(\zeta_c, \vec{r}_1\right) \\ \tilde{\Psi}_{\tilde{c}}^s \left(\zeta_c, \vec{r}_1\right) \end{bmatrix} dV$$
(3.3.7.2)

$$\begin{split} I_{bd}^{s,ac} &= \int \left[\Psi_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\Psi_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \Psi_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \Psi_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\Psi_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \Psi_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\Psi_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \Psi_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \left(\tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \left(\tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \left(\tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \right] dV + \\ &\int \left[\tilde{\Psi}_{a}^{s\dagger} \left(\zeta_{a}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{f}(21) \tilde{\Psi}_{d}^{s} \left(\zeta_{d}, \vec{r}_{2} \right) \right] \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right] dV + \\ &\int \left[\tilde{\Psi}_{b}^{s\dagger} \left(\zeta_{b}, \vec{r}_{2} \right) \hat{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{2} \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{1} \right) \left(\tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{2} \right) \right] \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{2} \right) \tilde{\Psi}_{c}^{s} \left(\zeta_{c}, \vec{r}_{2} \right) \tilde{\Psi}_$$

 $I_{bd}^{s,ac}$ if a desine ait her bir terim ayrı ayrı incelenirse,

$$\mathcal{J}_{bd}^{s,ac} = \int \left[\Psi_a^{s\dagger} \left(\zeta_a, \vec{r}_1 \right) \left(\Psi_b^{s\dagger} \left(\zeta_b, \vec{r}_2 \right) \hat{f}(21) \Psi_d^s \left(\zeta_d, \vec{r}_2 \right) \right) \Psi_c^s \left(\zeta_c, \vec{r}_1 \right) \right] dV$$
(3.3.7.4)

$$\mathcal{J}_{bd}^{s,ac} = \int R_a \left(\zeta_a, r_1\right) Y_a^{s\dagger} \left(\theta_1, \varphi_1\right) \left(R_b \left(\zeta_b, r_2\right) Y_b^{s\dagger} \left(\theta_2, \varphi_2\right) \hat{f}(21) R_d \left(\zeta_d, r_2\right) Y_d^s \left(\theta_2, \varphi_2\right) \right) R_c \left(\zeta_c, r_1\right) Y_c^s \left(\theta_1, \varphi_1\right) dV \quad (3.3.7.5)$$

yazılır. Diğer terimler de sırası ile benzer şekilde, $J_{bd}^{s,ac}$, $J_{bd}^{s,ac}$, $J_{bd}^{s,ac}$ bulunur. Coulomb ve "exchange" integralleri durumunda ortaya çıkan matris elemanları sırası ile, coulomb için, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{ba}^{s,aa}$, $J_{ba}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{bb}^{s,aa}$, $J_{ba}^{s,ab}$, $J_{ba}^{s,$

$$Y_{ljm}^{s\lambda}\left(\theta,\varphi\right) = \begin{bmatrix} a_{ljm}^{s}\left(\lambda\right)\beta_{m(\lambda)}Y_{lm(\lambda)}\left(\theta,\varphi\right)\\ a_{ljm}^{s}\left(\lambda+1\right)\beta_{m(\lambda+1)}Y_{lm(\lambda+1)}\left(\theta,\varphi\right) \end{bmatrix},$$
(3.3.7.6)

 $m_l = m(\lambda) = m - (s - \lambda) = m - m_s$

olduğu göz önüne alınırsa, küresel spinörlere ait ifade spin açısal momentum kuantum sayısı üzerinden toplam şeklinde yazılabilir,

$$Y_{ljm}^{s\lambda}(\theta,\varphi) = \sum_{m_s = -s,s} a_{ljm}^s (s-m_s) \beta_{m-m_s} Y_{lm-m_s}(\theta,\varphi) \phi_{m_s}$$

= $\sum_{m_s = -s,s} (l, s, m-m_s, m_s | lsjm) \beta_{m-m_s} Y_{lm-m_s}(\theta,\varphi) \phi_{m_s}$ (3.3.7.7)

 ϕ_{m_s} , (2s+1) boyutlu spin fonksiyonudur. $s = \frac{1}{2}$ için,

$$\phi_{1/2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \phi_{-1/2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(3.3.7.8)
$$s = \frac{3}{2} \text{ için,}$$
$$\phi_{3/2} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \phi_{1/2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}; \phi_{-1/2} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
(3.3.7.9)

şeklindedir. Dolayısı ile ifade genel olarak,

$$\mathcal{J}_{bd}^{s,ac} = \sum_{m_s} \sum_{m_{s'}} \beta_{m_a - m_s} \beta_{m_b - m_{s'}} \beta_{m_d - m_{s'}} \beta_{m_c - m_s} \\
\times a_{l_a j_a m_a}^s (s - m_s) a_{l_b j_b m_b}^s (s - m_{s'}) a_{l_d j_d m_d}^s (s - m_{s'}) a_{l_c j_c m_c}^s (s - m_s) \\
\times \int \psi_{n_a l_a m_a - m_s}^* \left(\vec{r_1}\right) \left(\psi_{n_b l_b m_b - m_{s'}}^* \left(\vec{r_2}\right) \hat{f}(12) \psi_{n_d l_d m_d - m_{s'}}\left(\vec{r_2}\right) \right) \psi_{n_c l_c m_c - m_s}\left(\vec{r_1}\right) dV$$
(3.3.7.10)

şeklinde yazılabilir. Göreli olmayan kısım,

$$\mathcal{J}_{bd}^{ac} = \int \psi_{n_{a}l_{a}m_{a}-m_{s}}^{*}\left(\vec{r}_{1}\right) \left(\psi_{n_{b}l_{b}m_{b}-m_{s'}}^{*}\left(\vec{r}_{2}\right) \hat{f}(12)\psi_{n_{d}l_{d}m_{d}-m_{s'}}\left(\vec{r}_{2}\right)\right) \psi_{n_{c}l_{c}m_{c}-m_{s}}\left(\vec{r}_{1}\right) dV$$
(3.3.7.11)

olarak tanımlandığında,

$$\hat{f}(21) = \frac{1}{r_{21}}$$
(3.3.7.12)

parçacıklar arası statik-skaler Coulomb etkileşimi olmak üzere, $\hat{f}(21)$ işlemcisi için iki bölgeli toplama teoreminden (Two-range addition theorem) faydalanarak

$$\frac{1}{r_{21}} = \sum_{\mu\nu} \left(\frac{4\pi}{2\mu + 1} \right) \frac{r_{<}^{L}}{r_{>}^{L+1}} Y_{\mu\nu} \left(\theta_{1}, \varphi_{1} \right) Y_{\mu\nu}^{*} \left(\theta_{2}, \varphi_{2} \right)$$
(3.3.7.13)

$$\frac{r_{<}^{L}}{r_{>}^{L+1}} = \begin{cases} \frac{r_{1}^{L}}{r_{2}^{L+1}} & r_{1} < r_{2} \\ \frac{r_{2}^{L}}{r_{1}^{L+1}} & r_{1} > r_{2} \end{cases}$$
(3.3.7.14)

yazılabilir. Böylece \mathcal{J}_{bd}^{ac} integrali radyal integral ve Gaunt katsayılarına bağlı olarak elde edilebilir,

$$\mathcal{J}_{bd}^{ac} = \sum_{L} C^{L}(l_{a}, m_{a} - m_{s}; l_{c}, m_{c} - m_{s}) C^{L}(l_{b}, m_{b} - m_{s'}; l_{d}, m_{d} - m_{s'}) R^{L}(a, c; b, d)$$
(3.3.7.15)

 \mathcal{J}_{bd}^{ac} integrali (3.3.7.5) ifadesinde yerine konursa,

$$\mathcal{J}_{bd}^{s,ac} = \sum_{L} d^{s,L}(j_a, m_a; j_c, m_c) d^{s,L}(j_b, m_b; j_d, m_d) R^L(a, c; b, d)$$
(3.3.7.16)

olur. Burada $d^{s,L}(j,m;j',m')$ katsayıları,

$$d^{s,L}(j,m;j',m') = \sum_{m_s} \beta_{m-m_s} \beta_{m'-m_s} a^s_{ljm}(s-m_s) a^s_{l'j'm'}(s-m_s) C^L(l,m-m_s;l',m'-m_s)$$
(3.3.7.17)

olarak tanımlanır. Buna göre,

$$a^{sL}(j,m;j',m') = d^{s,L}(j,m;j,m)d^{s,L}(j',m';j',m')$$
(3.3.7.18)

$$b^{sL}(j,m;j',m') = d^{s,L}(j,m;j',m')d^{s,L}(j,m;j',m')$$
(3.3.7.19)

Coulomb ve "exchange" etkileşim katsayıları elde edilir. $s = \frac{1}{2}$ durumunda katsayılar spin açısal momentum kuantum sayısı üzerinden toplamı alındığında analitik olarak ifade edilebilen Grant (1961), Cooper (1965) katsayılarına indirgenir,

$$d^{\frac{1}{2},L}(j,m;j',m') = d^{L}(j,m;j',m'), \qquad (3.3.7.20)$$

$$d^{L}(j,m;j',m') = (-1)^{m+1/2} \frac{\left[(2j+1)(2j'+1)\right]^{1/2}}{2L+1}$$

$$\times (j,j',\frac{1}{2},-\frac{1}{2}|jj'L0)(j,j',-m,m'|jj'Lm-m')$$
(3.3.7.21)

70

 $d^{L}(j,m; j',m')$ katsayısının Coulomb ve "exchange" integralleri dikkate alınarak yazılması durumunda, $a^{L}(j,m; j',m')$, $b^{L}(j,m; j',m')$ katsayısı şeklinde ifade edilirler.

m,m' üzerinden toplamı neticesinde açısal momentum kuantum sayısı m'den bağımsız olan $a^{L}(jj'), b^{L}(jj')$ (Kim, 1967) katsayıları bulunur.

$$a^{L}(jj') = (2j+1)(2j'+1)\delta_{L0}$$
(3.3.7.22)

$$b^{L}(jj') = (2j+1)(2j'+1)\left[\frac{(j,j',\frac{1}{2},-\frac{1}{2}|jj'L0)}{(2L+1)}\right]^{2}.$$
(3.3.7.23)

Geriye analitik ifadesi elde edilmesi gereken $R^{L}(a,c;b,d)$ radyal integrali kalır,

$$R^{L}(a,c;b,d) = \int_{0}^{\infty} \int_{0}^{\infty} R_{a}(r_{1})R_{b}(r_{2})\frac{r_{<}^{L}}{r_{>}^{L+1}}R_{d}(r_{2})R_{c}(r_{1})dr_{1}dr_{2}.$$
(3.3.7.24)

Göreli olmayan KB koşulunu dikkate alan $f_{n\kappa}^{t}(\zeta, r)$ radyal orbitalleri dikkate alındığında,

$$R_{n_{l}\kappa_{1},n_{1}'\kappa_{1}';n_{2}\kappa_{2},n_{2}'\kappa_{2}'}^{L,t_{1},t_{1}';t_{2},t_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f_{n_{1}\kappa_{1}}^{t_{1}}(r_{1},\zeta_{1}) f_{n_{1}'\kappa_{1}'}^{t_{1}'}(r_{1},\zeta_{1}') \frac{r_{<}^{L}}{r_{>}^{L+1}} f_{n_{2}\kappa_{2}}^{t_{2}}(r_{2},\zeta_{2}) f_{n_{2}'\kappa_{2}'}^{t_{2}'}(r_{2},\zeta_{2}') dr_{1} dr_{2}$$

$$(3.3.7.25)$$

olmak üzere,

$$R_{n_{1}\kappa_{1},n_{1}'\kappa_{1}';n_{2}\kappa_{2},n_{2}'\kappa_{2}'}^{L,t_{1},t_{1}';\zeta_{2},\zeta_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}') = W_{n_{1}\kappa_{1}}^{i_{1}}(\zeta_{1},t_{1})W_{n_{1}'\kappa_{1}'}^{i_{1}'}(\zeta_{1}',t_{1}')W_{n_{2}\kappa_{2}}^{i_{2}}(\zeta_{2},t_{2})W_{n_{2}'\kappa_{2}'}^{i_{2}'}(\zeta_{2}',t_{2}') \\ \times \int_{0}^{\infty} \int_{0}^{\infty} r_{1}^{n_{1}+n_{1}'+i_{1}+i_{1}'-2}e^{-(\zeta_{1}+\zeta_{1}')r_{1}} \frac{r_{<}^{L}}{r_{>}^{L+1}}r_{2}^{n_{2}+n_{2}'+i_{2}+i_{2}'-2}e^{-(\zeta_{2}+\zeta_{2}')r_{2}}dr_{1}dr_{2}$$
(3.3.7.26)

yazılır. Etkin ve pasif bileşenler için aynı radyal orbitalleri kullanılacaksa $t_1 = t'_1 = t_2 = t'_2 = 0$ olarak seçilmelidir. $f_{nlj}^{\alpha,t}(\zeta,r)$ radyal fonksiyonları dikkate alındığında ise,

$$R_{n_{l}l_{j}j_{1},n_{l}'l_{j}'j_{1}'n_{2}l_{2}j_{2},n_{2}'l_{2}'j_{2}'}^{\alpha,L_{1},L_{1}',L_{1}',L_{2}',L_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f_{n_{l}l_{j}j_{1}}^{\alpha,L_{1}}(r_{1},\zeta_{1}) f_{n_{l}'l_{j}'j_{1}}^{\alpha,L_{1}'}(r_{1},\zeta_{1}') \frac{r_{<}^{L}}{r_{>}^{L+1}} f_{n_{2}l_{2}j_{2}}^{\alpha,L_{2}'}(r_{2},\zeta_{2}) f_{n_{2}'l_{2}'j_{2}'}^{\alpha,L_{2}'}(r_{2},\zeta_{2}') dr_{1} dr_{2}$$

$$(3.3.7.27)$$

 $R_{n_ll_j1,n_ll_j1'$

bazında hesaplamak, ikincisi ise doğrudan $f_{nlj}^{\alpha,i}(r,\zeta)$ radyal fonksiyonunda integralin analitik ifadesini elde etmek. Her iki çözümün yöntemininde aynı sonucu vermesi beklenir. Bununla birlikte çözümler hesaplama süresi açısından değerlendirildiğinde atomik hesaplamalarda integralin STO bazına dönüştürülmesinde çözüm, hem Laguerre polinomları içermediğinden matematiksel olarak kolaylaşmakta hem de $f_{nlj}^{\alpha,i}(r,\zeta)$ radyal fonksiyonunun STO bazında ifadesi sınırlı toplam içerdiğinden hesaplama süresi açısından dezavantaj oluşmamaktadır. Diğer yandan integralin doğrudan çözümü, çok-merkezli moleküler integrallerin çözümünü mümkün kılan bir merkezin diğer bir merkeze taşımasında kullanılan formüllerde yardımcı fonksiyon olma özelliği gösterdiğinden gereklidir. Laguerre polinomları için (3.3.4.3) açılımı dikkate alındığında,

$$\begin{aligned} R_{n_{l}l_{j}i_{1},n_{l}'l_{j}'i_{2},n_{2}'j_{2}}^{\alpha,L,l_{1},l_{1}';z_{2},l_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}') \\ &= W_{n_{l}l_{j}i_{1},n_{l}'l_{j}'i_{1}'n_{2}'l_{2}j_{2},n_{2}'l_{2}'j_{2}'}^{i_{1}',j_{1}'}(\zeta_{1}',t_{1}')W_{n_{2}l_{2}j_{2}}^{i_{2},j_{2}'}(\zeta_{2},t_{2})W_{n_{2}'l_{2}'j_{2}'}^{i_{2}',j_{2}'}(\zeta_{2}',t_{2}') \\ &\times (2\zeta_{1})^{\mu_{1}}(2\zeta_{1}')^{\mu_{1}'}(2\zeta_{2})^{\mu_{2}}(2\zeta_{2}')^{\mu_{2}'}\gamma_{n_{1}+l_{1}+1-\alpha,\mu_{1}}^{2l_{1}+2+j_{1}-\alpha}\gamma_{n_{1}'+l_{1}'+1-\alpha,\mu_{1}'}^{2l_{1}+2+j_{1}-\alpha}\gamma_{n_{2}'+l_{2}+1-\alpha,\mu_{2}}^{2l_{2}+2+j_{2}-\alpha}\gamma_{n_{2}'+l_{2}+1-\alpha,\mu_{2}'}^{2l_{2}'+2+j_{2}-\alpha} \\ &\times \int_{0}^{\infty} \int_{0}^{\infty} r_{1}^{l_{1}+l_{1}'+i_{1}+i_{1}'}e^{-(\zeta_{1}+\zeta_{1}')r_{1}} \frac{r_{<}^{L}}{r_{<}^{L+1}}r_{2}^{l_{2}+l_{2}'+i_{2}'+\mu_{2}+\mu_{2}'}e^{-(\zeta_{2}+\zeta_{2}')r_{2}}dr_{1}dr_{2} \end{aligned}$$
(3.3.7.28)

Benzer şekilde, atkin ve pasif bileşenlerin aynı radyal orbital alınması durumunda, $t_1 = t'_1 = t_2 = t'_2 = 0$ olur. $\gamma^p_{q,\mu}$ Laguerre katsayılarının toplam sınırları ise, $0 \le \mu_1 \le n_1 - l_1 - 1 - j_1$, $0 \le \mu'_1 \le n'_1 - l'_1 - 1 - j'_1$, $0 \le \mu_2 \le n_2 - l_2 - 1 - j_2$, $0 \le \mu'_2 \le n'_2 - l'_2 - 1 - j'_2$ olur.

 $f_{n\kappa}^{t}(\zeta, r)$, $f_{nlj}^{\alpha,t}(r, \zeta)$ radyal orbitalleri KB koşulunu sağlayan orbitaller olarak şeçildiğinde $t_{1}, t_{1}', t_{2}, t_{2}'$ parametreleri DHFR denklemlerinde ortaya çıkan matris elemanlarına göre etkin ve pasif bileşeni tanımlayan parametreler olarak 0 veya 1 değerlerini alırlar.

 $R_{n_{l}k_{1},n_{1}'k_{1}';n_{2}k_{2},n_{2}'k_{2}'}^{L,t_{1},j_{1}';t_{2},j_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}') \text{ ve } R_{n_{l}l_{1}j_{1},n_{1}'l_{1}'j_{1}';n_{2}l_{2}j_{2},n_{2}'l_{2}'j_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}') \text{ integrallerinin analitik ifadesi için genel çözüm, integral,}$

$$\mathcal{R}_{x;y}^{L}(\zeta_{x};\zeta_{y}) = \int_{0}^{\infty} \int_{0}^{\infty} r_{1}^{x} e^{-\zeta_{x}r_{1}} \frac{r_{<}^{L}}{r_{>}^{L+1}} r_{2}^{y} e^{-\zeta_{y}r_{2}} dr_{1} dr_{2}$$
(3.3.7.29)

biçiminde tanımlandığında,

$$\mathcal{R}_{x;\nu}^{L}(\zeta_{x};\zeta_{y}) = \frac{\Gamma(x+y+1)}{\left(\zeta_{x}+\zeta_{y}\right)^{x+y+1}} \left\{ \frac{1}{x+L+1} {}_{2}F_{1} \left[1,x+y+1;x+L+2;\frac{\zeta_{x}}{\left(\zeta_{x}+\zeta_{y}\right)} \right] + \frac{1}{y+L+1} {}_{2}F_{1} \left[1,x+y+1;y+L+2;\frac{\zeta_{y}}{\left(\zeta_{x}+\zeta_{y}\right)} \right] \right\}$$
(3.3.7.30)

olacak şeklinde elde edilir (Koga ve ark, 1997). Buna göre $f_{n\kappa}^{t}(\zeta, r)$ radyal orbitalleri için integralinin analitik ifadesinin sağlanması için $x = l_1 + l_1' + i_1 + i_1' - 2$, $y = l_2 + l_2' + i_2 + i_2' - 2$, $\zeta_x = \zeta_1 + \zeta_1'$ ve $\zeta_y = \zeta_2 + \zeta_2'$ yazılması yeterlidir. $f_{nlj}^{\alpha,t}(r,\zeta)$ radyal orbitalleri için ise $x = l_1 + l_1' + i_1 + i_1' + \mu_1 + \mu_1'$, $y = l_2 + l_2' + i_2 + i_2' + \mu_2 + \mu_2'$, $\zeta_x = \zeta_1 + \zeta_1'$, $\zeta_y = \zeta_2 + \zeta_2'$ yazılır. Dolayısı ile DHFR denklemlerinin çözümü esnasında KED etkilerini içermeyen, elektronlar arası skaler etkileşimi tanımlayan analitik ifadeler elde edilmiş olur. DHFR denklemlerinin çözümünden sonra toplam enerjiye dahil olmak üzere KED etkilerini içeren Gaunt, gecikme etkileri (2.2.1.6) vektörel-tensörel etkileşimler olarak bulunurlar (Ley-Koo ve ark., 1993).

BÖLÜM4

ARAŞTIRMA BULGULARI VE TARTIŞMA

Bu çalışma genel olarak Guseinov (2012) tarafından önerilen YSSO'lerine dayalı olarak yapılmıştır. YSSO'lerin ilk olarak özellikleri analiz edilmiş, literatürle uyumlulukları karşılaştırılmış daha sonra elektronik sistemlere uygulamaları tartışılmıştır.

YSSO'ler radyal ve küresel olmak üzere iki kısımda incelenmiş, küresel kısmın literatürle uyumlu olduğu görülmüştür. Bununla birlikte radyal kısmın göreli olmayan STO ve $\psi^{\alpha} - ETO$ radyal fonksiyonları kullanılarak oluşturulması diğer bir değişle radyal fonksiyonun göreli hesaplamalar açısından var olan yeterli ve gerekli koşulları sağlamaması, KD koşulunun yerine getirilmemesi varyasyonel çöküş probleminin devam etmesine neden olmuştur. Diğer yandan, yüksek spine sahip parçacıklar için $\left(s > \frac{1}{2}\right)$ (3.2.3.29)- (3.2.3.30)

eşitliklerine dayalı olarak Dirac denkleminin çözümünün spin $s = \frac{1}{2}$ durumunda olduğu gibi

STKT'lerden bağımsız olmaması, $s > \frac{1}{2}$ için, KD koşulunun, radyal fonksiyonların ve analojik olarak genelleştirilmiş Dirac denkleminin daha detaylı incelenmesini gerektirir. Yinede, analojik olarak genelleştirilmiş Dirac denklemi ile birlikte YSSO'lerinde göreli olmayan radyal fonksiyonları kullanılması, teorinin gerektirdiği matematiksel materyallerin elde edilmesi ve incelenebilmesi bakımından faydalıdır.

Bu çalışmada, elektronik sistemler için, Dirac denkleminin Coulomb ve Yukawa potansiyelleri kullanılarak bir-elektronlu atomlar için çözümü elde edilmiş ve sonuçların literatürle uyumlu olduğu görülmüştür. He- Be-benzer atomlar göz önüne alınarak çok-elektronlu sistemler incelenmiş ve benzer şekilde sonuçlar literatürle karşılaştırılmıştır.

4.1. Yarım Spin Spinör Orbitallerinin Analizi

İlk incelemeler (3.2.3.6)-(3.2.3.8) ifadelerine dayalı olarak, YSSO'leri ve içerdiği elemanların, $s = \frac{1}{2}, \frac{3}{2}$ durumu için yapılmış ve literatürle uyumluluk karşılaştırılmıştır. Bunun için,

Wigner-3j sembolleri ile Genelleşmiş Clebsch-Gordan katsayılarının genel ifadesi,

$$\left(j_1 j_2 m_1 m_2 \middle| j_1 j_2 j_3 m_3\right) = \frac{\left(-1\right)^{j_2 - j_1 - m_3}}{\sqrt{2 j_3 + 1}} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}$$

$$\begin{pmatrix} j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3} \end{pmatrix} = (-1)^{j_{1}-j_{2}-m_{3}} \left[\frac{F_{j_{1}-j_{2}+j_{3}}(2j_{1})F_{j_{1}+j_{2}-j_{3}}(2j_{2})F_{-j_{1}+j_{2}+j_{3}}(2j_{3})}{F_{j_{1}+m_{1}}(2j_{1})F_{j_{2}+m_{2}}(2j_{2})F_{j_{3}+m_{3}}(2j_{3})} \right]^{1/2} \\ \times \sum_{k} F_{k}(j_{1}+j_{2}-j_{3})F_{j_{1}-m_{1}-k}(j_{1}-j_{2}+j_{3})F_{j_{2}-m_{2}-k}(-j_{1}+j_{2}+j_{3})} \\ \times \left[\frac{(j_{1}+j_{2}-j_{3})!(j_{1}-j_{2}+j_{3})!(-j_{1}+j_{2}+j_{3})!}{(j_{1}+j_{2}+j_{3}+1)!} \right]^{1/2},$$

 $Max(0, j_1 - j_3 + m_2, j_2 - j_3 - m_1) \le k \le Min(j_1 + j_2 - j_3, j_1 - m_1, j_2 + m_2)$

tanımlanır (Wei, 1999). $a_{ljm}^{s}(\lambda)$ ifadesi hesaba katıldığında,

$$a_{ljm}^{s}(\lambda) = \left(lsm(\lambda)s - \lambda \middle| lsjm\right) = \frac{\left(-1\right)^{s-l-m}}{\sqrt{2j+1}} \begin{pmatrix} l & s & j \\ m(\lambda) & s-\lambda & -m \end{pmatrix}$$

elde edilir. Dolayısı ile Genelleşmiş Clebsch-Gordan, STKT'ler ve YSSO'ler için,

Çizelge 3. Genelleşmiş Clebsch-Gordan $(a_{ljm}^s(\lambda))$ katsayılarının spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri

S	l	ĩ	j	т	λ	$a^{s}_{ljm}(\lambda)$	$a_{ljm}^{s}(\lambda+1)$
	0	1	1/2	1/2	0	1	0
	1	0	1/2	1/2	0	-\sqrt{1/3}	$\sqrt{2/3}$
	1	2	3/2	3/2	0	1	0
	2	1	3/2	3/2	0	-\sqrt{1/5}	$\sqrt{4/5}$
	2	3	5/2	5/2	0	1	0
1/2	3	2	5/2	5/2	0	-\sqrt{1/7}	$\sqrt{6/7}$
	3	4	7/2	7/2	0	1	0
	4	3	7/2	7/2	0	-\sqrt{1/9}	$\sqrt{8/9}$
	4	5	9/2	9/2	0	1	0
	5	4	9/2	9/2	0	-\sqrt{1/11}	$\sqrt{10/11}$
	0	3	3/2	3/2	0/2	1/0	0/0
	3	0	3/2	3/2	0/2	$-\sqrt{1/35}/-\sqrt{2/7}$	$\sqrt{4/35} / \sqrt{4/7}$
3/2	1	2	3/2	3/2	0/2	$-\sqrt{3/5}/0$	$\sqrt{2/5}/0$
5/2	2	1	3/2	3/2	0/2	$\sqrt{1/5}/\sqrt{2/5}$	$-\sqrt{2/5}/0$
	1	4	5/2	5/2	0/2	1/0	0/0
	4	1	5/2	5/2	0/2	$-\sqrt{1/84}/-\sqrt{1/4}$	$\sqrt{1/14} / \sqrt{2/3}$

Çizelge 4. Genelleşmiş Clebsch-Gordan $\left(a_{\tilde{l}jm}^{s}(\lambda)\right)$ katsayılarının spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri

S	l	ĩ	j	т	λ	$a^{s}_{ ilde{l}jm}(\lambda)$	$a^s_{\tilde{l}jm}(\lambda+1)$
	0	1	1/2	1/2	0	$-\sqrt{1/3}$	$\sqrt{2/3}$
	1	0	1/2	1/2	0	1	0
	1	2	3/2	3/2	0	$-\sqrt{1/5}$	$\sqrt{4/5}$
	2	1	3/2	3/2	0	1	0
1/2	2	3	5/2	5/2	0	$-\sqrt{1/7}$	$\sqrt{6/7}$
1/2	3	2	5/2	5/2	0	1	0
	3	4	7/2	7/2	0	$-\sqrt{1/9}$	$\sqrt{8/9}$
	4	3	7/2	7/2	0	1	0
	4	5	9/2	9/2	0	$-\sqrt{1/11}$	$\sqrt{10/11}$
	5	4	9/2	9/2	0	1	0
	0	3	3/2	3/2	0/2	$-\sqrt{1/35}$ / $-\sqrt{2/7}$	$\sqrt{4/35} / \sqrt{4/7}$
	3	0	3/2	3/2	0/2	1/0	0/0
3/2	1	2	3/2	3/2	0/2	$\sqrt{1/5}/\sqrt{2/5}$	$-\sqrt{2/5}/0$
5/2	2	1	3/2	3/2	0/2	$-\sqrt{3/5}/0$	$\sqrt{2/5}/0$
	1	4	5/2	5/2	0/2	$-\sqrt{1/84}/-\sqrt{1/4}$	$\sqrt{1/14}/\sqrt{2/3}$
	4	1	5/2	5/2	0/2	1/0	0/0

	Sį	gn(m)			
				+	_
l	ĩ	j	m		
0	1	1/2	1/2	$\begin{pmatrix} Y_{00}(\theta,\varphi) \\ 0 \\ -\sqrt{1/3}Y_{10}(\theta,\varphi) \\ \sqrt{2/3}Y_{11}(\theta,\varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ Y_{00}(\theta, \varphi) \\ -\sqrt{2/3}Y_{1-1}(\theta, \varphi) \\ \sqrt{1/3}Y_{10}(\theta, \varphi) \end{pmatrix}$
1	0	1/2	1/2	$\begin{pmatrix} -\sqrt{1/3}Y_{10}(\theta,\varphi) \\ \sqrt{2/3}Y_{11}(\theta,\varphi) \\ Y_{00}(\theta,\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\sqrt{2/3}Y_{1-1}(\theta,\varphi) \\ \sqrt{1/3}Y_{10}(\theta,\varphi) \\ 0 \\ Y_{00}(\theta,\varphi) \end{pmatrix}$
1	2	3/2	3/2	$\begin{pmatrix} Y_{11}(\theta,\varphi) \\ 0 \\ -\sqrt{1/5}Y_{21}(\theta,\varphi) \\ \sqrt{4/5}Y_{22}(\theta,\varphi) \end{pmatrix}$	$\begin{pmatrix} 0\\ Y_{1-1}(\theta,\varphi)\\ -\sqrt{4/5}Y_{2-2}(\theta,\varphi)\\ \sqrt{1/5}Y_{2-1}(\theta,\varphi) \end{pmatrix}$
1	2	3/2	1/2	$\begin{pmatrix} \sqrt{2/3}Y_{10}(\theta,\varphi) \\ \sqrt{1/3}Y_{11}(\theta,\varphi) \\ -\sqrt{2/5}Y_{20}(\theta,\varphi) \\ \sqrt{3/5}Y_{21}(\theta,\varphi) \end{pmatrix}$	$\begin{pmatrix} \sqrt{1/3}Y_{1-1}(\theta,\varphi) \\ \sqrt{2/3}Y_{10}(\theta,\varphi) \\ -\sqrt{3/5}Y_{2-1}(\theta,\varphi) \\ \sqrt{2/5}Y_{20}(\theta,\varphi) \end{pmatrix}$
2	1	3/2	3/2	$\begin{pmatrix} -\sqrt{1/5}Y_{21}(\theta,\varphi) \\ \sqrt{4/5}Y_{22}(\theta,\varphi) \\ Y_{11}(\theta,\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\sqrt{4/5}Y_{2-2}(\theta,\varphi) \\ \sqrt{1/5}Y_{2-1}(\theta,\varphi) \\ 0 \\ Y_{1-1}(\theta,\varphi) \end{pmatrix}$
2	1	3/2	1/2	$ \begin{pmatrix} -\sqrt{2/5}Y_{20}(\theta,\varphi) \\ \sqrt{3/5}Y_{21}(\theta,\varphi) \\ \sqrt{2/3}Y_{10}(\theta,\varphi) \\ \sqrt{1/3}Y_{11}(\theta,\varphi) \end{pmatrix} $	$ \begin{pmatrix} -\sqrt{3/5}Y_{2-1}(\theta,\varphi) \\ \sqrt{2/5}Y_{20}(\theta,\varphi) \\ \sqrt{1/3}Y_{1-1}(\theta,\varphi) \\ \sqrt{2/3}Y_{10}(\theta,\varphi) \end{pmatrix} $

Çizelge 5. STKT'lerin spin $s = \frac{1}{2}$ için bazı kuantum sayılarında değerleri

2	3	5/2	5/2	$\begin{pmatrix} Y_{22}(\theta,\varphi) \\ 0 \\ -\sqrt{1/7}Y_{32}(\theta,\varphi) \\ \sqrt{6/7}Y_{33}(\theta,\varphi) \end{pmatrix}$	$\begin{pmatrix} 0\\ Y_{2-2}(\theta,\varphi)\\ -\sqrt{6/7}Y_{3-3}(\theta,\varphi)\\ \sqrt{1/7}Y_{3-2}(\theta,\varphi) \end{pmatrix}$
2	3	5/2	3/2	$\begin{pmatrix} \sqrt{4/5}Y_{21}(\theta,\varphi) \\ \sqrt{1/5}Y_{22}(\theta,\varphi) \\ -\sqrt{2/7}Y_{31}(\theta,\varphi) \\ \sqrt{5/7}Y_{32}(\theta,\varphi) \end{pmatrix}$	$\begin{pmatrix} \sqrt{1/5}Y_{2-2}(\theta,\varphi) \\ \sqrt{4/5}Y_{2-1}(\theta,\varphi) \\ -\sqrt{5/7}Y_{3-2}(\theta,\varphi) \\ \sqrt{2/7}Y_{3-1}(\theta,\varphi) \end{pmatrix}$
2	3	5/2	1/2	$ \begin{pmatrix} \sqrt{3/5}Y_{20}(\theta,\varphi) \\ \sqrt{2/5}Y_{21}(\theta,\varphi) \\ -\sqrt{3/7}Y_{30}(\theta,\varphi) \\ \sqrt{4/7}Y_{31}(\theta,\varphi) \end{pmatrix} $	$ \begin{pmatrix} \sqrt{2/5} Y_{2-1}(\theta, \varphi) \\ \sqrt{3/5} Y_{20}(\theta, \varphi) \\ -\sqrt{4/7} Y_{3-1}(\theta, \varphi) \\ \sqrt{3/7} Y_{30}(\theta, \varphi) \end{pmatrix} $
3	2	5/2	5/2	$\begin{pmatrix} -\sqrt{1/7}Y_{32}(\theta,\varphi) \\ \sqrt{6/7}Y_{33}(\theta,\varphi) \\ Y_{22}(\theta,\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\sqrt{6/7}Y_{3-3}(\theta,\varphi)\\\sqrt{1/7}Y_{3-2}(\theta,\varphi)\\0\\Y_{2-2}(\theta,\varphi) \end{pmatrix}$
3	2	5/2	3/2	$ \begin{pmatrix} -\sqrt{2/7}Y_{31}(\theta,\varphi) \\ \sqrt{5/7}Y_{32}(\theta,\varphi) \\ \sqrt{4/5}Y_{21}(\theta,\varphi) \\ \sqrt{1/5}Y_{22}(\theta,\varphi) \end{pmatrix} $	$\begin{pmatrix} -\sqrt{5/7}Y_{3-2}(\theta,\varphi) \\ \sqrt{2/7}Y_{3-1}(\theta,\varphi) \\ \sqrt{1/5}Y_{2-2}(\theta,\varphi) \\ \sqrt{4/5}Y_{2-1}(\theta,\varphi) \end{pmatrix}$
3	2	5/2	1/2	$\begin{pmatrix} -\sqrt{3/7}Y_{30}(\theta,\varphi) \\ \sqrt{4/7}Y_{31}(\theta,\varphi) \\ \sqrt{3/5}Y_{20}(\theta,\varphi) \\ \sqrt{2/5}Y_{21}(\theta,\varphi) \end{pmatrix}$	$\begin{pmatrix} -\sqrt{4/7}Y_{3-1}(\theta,\varphi) \\ \sqrt{3/7}Y_{30}(\theta,\varphi) \\ \sqrt{2/5}Y_{2-1}(\theta,\varphi) \\ \sqrt{3/5}Y_{20}(\theta,\varphi) \end{pmatrix}$

Sgn(m)					
l	ĩ	j	m	+	_
0	3	3/2	3/2	$\begin{pmatrix} Y_{00}(\theta, \varphi) \\ 0 \\ 0 \\ 0 \\ -\sqrt{1/35}Y_{30}(\theta, \varphi) \\ \sqrt{4/35}Y_{31}(\theta, \varphi) \\ -\sqrt{2/7}Y_{32}(\theta, \varphi) \\ \sqrt{4/7}Y_{33}(\theta, \varphi) \end{pmatrix}$	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ Y_{00}(\theta, \varphi) \\ -\sqrt{4/7}Y_{3-3}(\theta, \varphi) \\ \sqrt{2/7}Y_{3-2}(\theta, \varphi) \\ \sqrt{2/7}Y_{3-2}(\theta, \varphi) \\ -\sqrt{4/35}Y_{3-1}(\theta, \varphi) \\ \sqrt{1/35}Y_{30}(\theta, \varphi) \end{pmatrix} $
0	3	3/2	1/2	$\begin{pmatrix} 0 \\ Y_{00}(\theta, \varphi) \\ 0 \\ 0 \\ -\sqrt{4/35}Y_{3-1}(\theta, \varphi) \\ \sqrt{9/35}Y_{30}(\theta, \varphi) \\ -\sqrt{12/35}Y_{31}(\theta, \varphi) \\ \sqrt{2/7}Y_{32}(\theta, \varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ Y_{00}(\theta, \varphi) \\ 0 \\ -\sqrt{2/7}Y_{3-2}(\theta, \varphi) \\ \sqrt{12/35}Y_{3-1}(\theta, \varphi) \\ -\sqrt{9/35}Y_{30}(\theta, \varphi) \\ \sqrt{4/35}Y_{31}(\theta, \varphi) \end{pmatrix}$
1	2	3/2	1/2	$ \begin{pmatrix} -\sqrt{2/5}Y_{1-1}(\theta,\varphi) \\ -\sqrt{1/15}Y_{10}(\theta,\varphi) \\ \sqrt{8/15}Y_{11}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{2-1}(\theta,\varphi) \\ \sqrt{1/5}Y_{20}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{22}(\theta,\varphi) \end{pmatrix} $	$\begin{pmatrix} 0 \\ -\sqrt{8/15}Y_{1-1}(\theta,\varphi) \\ \sqrt{1/15}Y_{10}(\theta,\varphi) \\ \sqrt{2/5}Y_{11}(\theta,\varphi) \\ \sqrt{2/5}Y_{2-2}(\theta,\varphi) \\ -\sqrt{1/5}Y_{20}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{21}(\theta,\varphi) \end{pmatrix}$

Çizelge 6. STKT'lerin spin $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri

1	2	3/2	1/2	$ \begin{pmatrix} -\sqrt{2/5}Y_{1-1}(\theta,\varphi) \\ -\sqrt{1/15}Y_{10}(\theta,\varphi) \\ \sqrt{8/15}Y_{11}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{2-1}(\theta,\varphi) \\ \sqrt{1/5}Y_{20}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{22}(\theta,\varphi) \end{pmatrix} $	$ \begin{pmatrix} 0 \\ -\sqrt{8/15}Y_{1-1}(\theta,\varphi) \\ \sqrt{1/15}Y_{10}(\theta,\varphi) \\ \sqrt{2/5}Y_{11}(\theta,\varphi) \\ \sqrt{2/5}Y_{2-2}(\theta,\varphi) \\ -\sqrt{1/5}Y_{20}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{21}(\theta,\varphi) \end{pmatrix} $
2	1	3/2	3/2	$\begin{pmatrix} \sqrt{1/5}Y_{20}(\theta,\varphi) \\ -\sqrt{2/5}Y_{21}(\theta,\varphi) \\ \sqrt{2/5}Y_{22}(\theta,\varphi) \\ 0 \\ -\sqrt{3/5}Y_{10}(\theta,\varphi) \\ \sqrt{2/5}Y_{11}(\theta,\varphi) \\ 0 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 0 \\ \sqrt{2/5}Y_{2-2}(\theta,\varphi) \\ -\sqrt{2/5}Y_{2-1}(\theta,\varphi) \\ \sqrt{1/5}Y_{20}(\theta,\varphi) \\ 0 \\ 0 \\ -\sqrt{2/5}Y_{1-1}(\theta,\varphi) \\ \sqrt{3/5}Y_{10}(\theta,\varphi) \end{pmatrix} $
2	1	3/2	1/2	$\begin{pmatrix} \sqrt{2/5}Y_{2-1}(\theta,\varphi) \\ -\sqrt{1/5}Y_{20}(\theta,\varphi) \\ 0 \\ \sqrt{2/5}Y_{22}(\theta,\varphi) \\ -\sqrt{2/5}Y_{1-1}(\theta,\varphi) \\ -\sqrt{1/15}Y_{10}(\theta,\varphi) \\ \sqrt{8/15}Y_{11}(\theta,\varphi) \\ 0 \end{pmatrix}$	$ \begin{pmatrix} \sqrt{2/5}Y_{2-2}(\theta,\varphi) \\ 0 \\ -\sqrt{1/5}Y_{20}(\theta,\varphi) \\ \sqrt{2/5}Y_{21}(\theta,\varphi) \\ 0 \\ -\sqrt{8/15}Y_{1-1}(\theta,\varphi) \\ \sqrt{1/15}Y_{10}(\theta,\varphi) \\ \sqrt{2/5}Y_{11}(\theta,\varphi) \end{pmatrix} $
3	0	3/2	3/2	$ \begin{pmatrix} -\sqrt{1/35}Y_{30}(\theta,\varphi) \\ \sqrt{4/35}Y_{31}(\theta,\varphi) \\ -\sqrt{2/7}Y_{32}(\theta,\varphi) \\ \sqrt{4/7}Y_{33}(\theta,\varphi) \\ Y_{00}(\theta,\varphi) \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	$\begin{pmatrix} -\sqrt{4/7}Y_{3-3}(\theta,\varphi) \\ \sqrt{2/7}Y_{3-2}(\theta,\varphi) \\ -\sqrt{4/35}Y_{3-1}(\theta,\varphi) \\ \sqrt{1/35}Y_{30}(\theta,\varphi) \\ 0 \\ 0 \\ 0 \\ 0 \\ Y_{00}(\theta,\varphi) \end{pmatrix}$

3	0	3/2	1/2	$\begin{pmatrix} -\sqrt{4/35}Y_{3-1}(\theta,\varphi) \\ \sqrt{9/35}Y_{30}(\theta,\varphi) \\ -\sqrt{12/35}Y_{31}(\theta,\varphi) \\ \sqrt{2/7}Y_{32}(\theta,\varphi) \\ 0 \\ Y_{00}(\theta,\varphi) \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\sqrt{2/7}Y_{3-2}(\theta,\varphi) \\ \sqrt{12/35}Y_{3-1}(\theta,\varphi) \\ -\sqrt{9/35}Y_{30}(\theta,\varphi) \\ \sqrt{4/35}Y_{31}(\theta,\varphi) \\ 0 \\ 0 \\ Y_{00}(\theta,\varphi) \\ 0 \end{pmatrix}$
1	4	5/2	5/2	$\begin{pmatrix} Y_{11}(\theta, \varphi) \\ 0 \\ 0 \\ 0 \\ -\sqrt{1/84}Y_{41}(\theta, \varphi) \\ \sqrt{1/14}Y_{42}(\theta, \varphi) \\ -\sqrt{1/4}Y_{43}(\theta, \varphi) \\ \sqrt{2/3}Y_{44}(\theta, \varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ Y_{1-1}(\theta, \varphi) \\ -\sqrt{2/3}Y_{4-4}(\theta, \varphi) \\ \sqrt{1/4}Y_{4-3}(\theta, \varphi) \\ -\sqrt{1/14}Y_{4-2}(\theta, \varphi) \\ \sqrt{1/84}Y_{4-1}(\theta, \varphi) \end{pmatrix}$
1	4	5/2	3/2	$ \begin{pmatrix} \sqrt{2/5}Y_{10}(\theta,\varphi) \\ \sqrt{3/5}Y_{11}(\theta,\varphi) \\ 0 \\ 0 \\ -\sqrt{1/21}Y_{40}(\theta,\varphi) \\ \sqrt{5/28}Y_{41}(\theta,\varphi) \\ -\sqrt{5/14}Y_{42}(\theta,\varphi) \\ \sqrt{5/12}Y_{43}(\theta,\varphi) \end{pmatrix} $	$ \begin{pmatrix} 0 \\ 0 \\ \sqrt{3/5}Y_{1-1}(\theta,\varphi) \\ \sqrt{2/5}Y_{10}(\theta,\varphi) \\ -\sqrt{5/12}Y_{4-3}(\theta,\varphi) \\ \sqrt{5/14}Y_{4-2}(\theta,\varphi) \\ -\sqrt{5/28}Y_{4-1}(\theta,\varphi) \\ \sqrt{1/21}Y_{40}(\theta,\varphi) \end{pmatrix} $

elde edilir. Çizelge 3ve 4'te $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ sırası ile için Genelleşmiş Clebsch-Gordan katsayıları ardından çizelge 5'te ve çizelge 6'da dahil oldukları STKT'lerin Condon-Shortley fazında bazı kuantum sayıları için değerleri verilmiştir. $s = \frac{1}{2}$ durumunda STKT'lere dahil olan eleman sayısı dört, $s = \frac{3}{2}$ durumunda ise sekizdir. Her iki spin değeri için katsayılar matrisinin çarpımının sonucu iki olarak elde edilir. Dolayısı ile ortonormallik koşulunun sağlandığı görülür (Katsayılar matrisi iki'ye bölünür). Bununla birlikte $s = \frac{1}{2}$ için elde edilen eşitliklerin (3.2.1.17), (3.2.1.18) Nikitin (2004) tarafından elde edilen eşitliklerle uyumlu olduğu dikkate alındığında, Çizelge 5'in STKT'lerin $s = \frac{3}{2}$ durumundaki değerlerini verdiği söylenir. STKT ile ilgili olarak incelenmesi gereken bir diğer özellik, dağılım fonksiyonlarının özellikleri $s = \frac{1}{2}$ için Grant (2007) tarafından atom orbitallerinin karşılaştırılması, yüksek spinli parçacıklar için atom orbitallerinin özelliklerini anlaşılırısı bakımından önemlidir.

Çizelge 7. Göreli $\left(A_{ljm}^{s}(\theta, \varphi), \tilde{A}_{\bar{l}jm}^{s}(\theta, \varphi); s = \frac{1}{2}\right)$ ve göreli olmayan dağılım fonksiyonlarının

bazı kuantum sayılarında değerleri.

l	Ĩ	j	m	Göreli	$ m_l $	Göreli Olmayan
0	1	1/2	1/2			
					0	
1	0	1/2	1/2			
1	2	3/2	3/2			
1	2	3/2	1/2		1	

Çizelge 7. göreli olmayan ve göreli $\left(s=\frac{1}{2}\right)$ dağılım fonksiyonlarının kuantum sayılarının bazı değerleri için karşılaştırmasını vermektedir. Buna göre, l=0 için bulunan sonuçlardan göreli ve göreli olmayan dağılım fonksiyonlarının eşit olduğu görülür, $l=1, j=\frac{3}{2}, m=\frac{1}{2}$ ile $l=1, m_l=0$ kuantum sayılarında fonksiyonların birbirine benzer, ancak göreli durumda deforme yani daha geniş oldukları anlaşılır. Fonksiyonlarda ortaya çıkan bu küçük değişiklikler $l=2, j=\frac{5}{2}, m=\frac{5}{2}; l=2, m_l=2, l=2, j=\frac{5}{2}, m=\frac{3}{2}; l=2, m_l=1, ve$

 $l = 2, j = \frac{5}{2}, m = \frac{1}{2}; l = 2, m_l = 0$ kuantum sayılarında da geçerli olmaktadır. Bununla birlikte

göreli $\tilde{l} < l$ için bulunan fonksiyonlar ise aynı kuantum sayılarında $\tilde{l} > l$ koşuluna sahip fonksiyonlarla eş olmaktadır. Dolayısı ile her iki koşulda dağılım fonksiyonlarının birbirine

eşit
$$\left(A_{ljm}^{\frac{1}{2}}(\theta, \varphi) = \tilde{A}_{ljm}^{\frac{1}{2}}(\theta, \varphi)\right)$$
 olduğu görülür. $s = \frac{3}{2}$ için dağılım fonksiyonları incelenirse,

Çizelge 8. $A_{ijm}^{s}(\theta, \varphi), \tilde{A}_{\tilde{l}jm}^{s}(\theta, \varphi)$ dağılım fonksiyonlarının $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri

$$l$$
 j
 $|m| = j$
 $|m| - 1$
 $|m| - 2$

 0
 3
 $3/2$
 0
 0
 0
 $-$

 1
 2
 $3/2$
 0
 0
 $-$

 1
 2
 $3/2$
 0
 0
 $-$

 1
 4
 $5/2$
 0
 0
 0
 0

 2
 1
 $3/2$
 0
 0
 0
 0
 $-$

bulunur. Elde edilen sonuçlardan, l = 0 fonksiyonlarının göreli $s = \frac{1}{2}$ ve göreli olmayan fonksiyonlarla eşit olduğu, $l = 1, j = \frac{3}{2}, m = \frac{1}{2};$

$$l = 1, j = \frac{5}{2}, m = \frac{5}{2}; l = 1, j = \frac{5}{2}, m = \frac{1}{2}; l = 2, j = \frac{5}{2}, m = \frac{5}{2}, ve$$
 $l = 2, j = \frac{5}{2}, m = \frac{1}{2}$ için benzer

sonuçların alındığı, diğer yandan göreli $s = \frac{1}{2}$ ve göreli olmayan fonksiyonlardan farklı fonksiyonların da ortaya çıktığı görülür. Dalga fonksiyonlarının etkin ve pasif bileşenleri ile oluşturulan dağılım fonksiyonlarının ise $s = \frac{1}{2}$ 'de olduğu gibi birbirine eşit $\left(A_{ljm}^{\frac{3}{2}}(\theta, \varphi) = \tilde{A}_{ljm}^{\frac{3}{2}}(\theta, \varphi)\right)$ olduğu görülür. Böylece, bulunan sonuçlardan ve literatürle yapılan

karşılaştırmalardan, dağılım fonksiyonlarının yüksek spine sahip değerlerde de eşit $\left(A_{ljm}^{s}\left(\theta,\varphi\right)=\tilde{A}_{ljm}^{s}\left(\theta,\varphi\right)\right)$ olduğu, STKT'lerin yüksek spinli parçacıkların dalga fonksiyonuna ait açısal kısmı doğru ve eksiksiz biçimde temsil ettiği, dolayısı ile YSSO'lerin açısal kısmının STKT'lerle oluşturulması gerektiği anlaşılır.

Kullanılacak radyal fonksiyonları için ise, KD koşuluna göre pasif bileşenin etkin bileşenden daha geniş ve etkin bileşeni kapsayacak şekilde olması göz önüne alınarak,

 $R_{nlj}(\zeta,r) \equiv R_{nl}^{\alpha}(\zeta,r),$ $\tilde{R}_{\tilde{n}\tilde{l}j}(\zeta,r) \equiv \sum_{i} \tilde{R}_{n_{i}l_{i}}^{\alpha}(\zeta,r)$

tanımlamaları dikkate alındığında $s = \frac{1}{2}$ için STO ve $\psi^{\alpha} - ETO$ YSSO'lerin (3.2.3.1) eşitliği, (3.3.5.8) ve (3.3.6.15) ifadeleri dikkate alınarak

	f_{nl}^{t}	_j (ζ	,r)/r		Sgn	(m)
n	l	ĩ	j	m	+	_
1	0	1	1/2	1/2	$\begin{pmatrix} \frac{e^{-\zeta r}}{2\sqrt{\pi}} \\ 0 \\ \frac{e^{-\zeta r}\zeta \cos(\theta)}{2\sqrt{\pi}} \\ \frac{e^{-\zeta r}\zeta \sin(\theta)}{2\sqrt{\pi}} \end{pmatrix}$	$\begin{pmatrix} 0\\ \frac{e^{-\zeta r}}{2\sqrt{\pi}}\\ \frac{e^{-\zeta r}\zeta \operatorname{Sin}(\theta)}{2\sqrt{\pi}}\\ -\frac{e^{-\zeta r}\zeta \operatorname{Sin}(\theta)}{2\sqrt{\pi}} \end{pmatrix}$
2	0	1	1/2	1/2	$\begin{pmatrix} \frac{e^{-\zeta r}r}{2\sqrt{\pi}} \\ 0 \\ \frac{e^{-\zeta r}(-1+\zeta r)Cos(\theta)}{2\sqrt{\pi}} \\ \frac{e^{-\zeta r}(-1+\zeta r)Sin(\theta)}{2\sqrt{\pi}} \end{pmatrix}$	$\begin{pmatrix} 0\\ \frac{e^{-\zeta r}r}{2\sqrt{\pi}}\\ \frac{e^{-\zeta r}(-1+\zeta r)Sin(\theta)}{2\sqrt{\pi}}\\ -\frac{e^{-\zeta r}(-1+\zeta r)Cos(\theta)}{2\sqrt{\pi}} \end{pmatrix}$
2	1	0	1/2	1/2	$\begin{pmatrix} -\frac{e^{-\zeta r}rCos(\theta)}{2\sqrt{\pi}} \\ -\frac{e^{-\zeta r}rSin(\theta)}{2\sqrt{\pi}} \\ -\frac{e^{-\zeta r}(-3+\zeta r)}{2\sqrt{\pi}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\frac{e^{-\zeta r}rSin(\theta)}{2\sqrt{\pi}}\\ \frac{e^{-\zeta r}rCos(\theta)}{2\sqrt{\pi}}\\ 0\\ -\frac{e^{-\zeta r}(-3+\zeta r)}{2\sqrt{\pi}} \end{pmatrix}$
2	1	2	3/2	3/2	$\begin{pmatrix} -\frac{1}{2}e^{-\zeta r}\sqrt{\frac{3}{2\pi}}rSin(\theta)\\ 0\\ -\frac{1}{2}e^{-\zeta r}\sqrt{\frac{3}{2\pi}}r\zeta Cos(\theta)Sin(\theta)\\ -\frac{1}{2}e^{-\zeta r}\sqrt{\frac{3}{2\pi}}r\zeta Sin(\theta)^2 \end{pmatrix}$	$\begin{pmatrix} 0\\ \frac{1}{2}e^{-\zeta r}\sqrt{\frac{3}{2\pi}}rSin(\theta)\\ \frac{1}{2}e^{-\zeta r}\sqrt{\frac{3}{2\pi}}r\zeta Sin(\theta)^{2}\\ -\frac{1}{2}e^{-\zeta r}\sqrt{\frac{3}{2\pi}}r\zeta Cos(\theta)Sin(\theta) \end{pmatrix}$

Çizelge 9. STO YSSO'lerin spin $s = \frac{1}{2}$ için bazı kuantum sayılarında değerleri

elde edilir. Çizelge 9, YSSO'lerin normalleştirilmemiş tam başkuantum sayılı STO bazında pasif bileşenin (2.3.11) eşitliği dikkate alınarak oluşturulması ile elde edilmiştir.

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

Ali BAĞCI

$f_{nlj}^{0,t}\left(\zeta,r ight)/r$					Sgn(m)				
n	l	ĩ	j	m	+	_			
1	0	1	1/2	1/2	$\begin{pmatrix} \frac{2e^{-\zeta r}\zeta}{\sqrt{\pi}} \\ 0 \\ -\frac{e^{-\zeta r}\left(1-2\zeta+2\zeta^{2}r\right)Cos(\theta)}{\sqrt{\pi}r} \\ \frac{e^{-\zeta r}\left(1-2\zeta+2\zeta^{2}r\right)Sin(\theta)}{\sqrt{\pi}r} \end{pmatrix}$	$\begin{pmatrix} 0\\ \frac{2e^{-\zeta r}\zeta}{\sqrt{\pi}}\\ \frac{e^{-\zeta r}\left(1-2\zeta+2\zeta^{2}r\right)Sin(\theta)}{\sqrt{\pi}r}\\ -\frac{e^{-\zeta r}\left(1-2\zeta+2\zeta^{2}r\right)Cos(\theta)}{\sqrt{\pi}r} \end{pmatrix}$			
2	0	1	1/2	1/2	$\begin{pmatrix} \frac{e^{-\zeta r}\zeta \left(3-2r\zeta\right)}{\sqrt{\pi}} \\ 0 \\ -\frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Cos(\theta)}{\sqrt{\pi}r} \\ -\frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \end{pmatrix}$	$\begin{pmatrix} 0 \\ \frac{e^{-\zeta r}\zeta \left(3-2r\zeta\right)}{\sqrt{\pi}} \\ -\frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)\right)Sin(\theta)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \right)} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+\zeta \left(-7+2\zeta r\right)\right)}{\sqrt{\pi}r} \right)} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+2\zeta r\right)}{\sqrt{\pi}r} \right)} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+2\zeta r\right)}{\sqrt{\pi}r} \right)} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta \left(1+2\zeta r\right)}{\sqrt{\pi}r} \right)} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta r\right)}{\sqrt{\pi}r} \\ \frac{3e^{-\zeta r}\left(-3+2\zeta r\right)}{\sqrt{\pi}r} \right)} $			

Çizelge 10. $\psi^{\alpha} - ETO$ YSSO'lerin spin $s = \frac{1}{2}$ için bazı kuantum sayılarında değerleri

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

Ali BAĞCI

92

 $\alpha = 0$ durumunda elde edilmiş olur. Pasif bileşene ait radyal fonksiyonun $\tilde{R}^{\alpha}_{n_{l}l_{i}}(\zeta, r)$ pasif bileşenin etkin bileşenden daha geniş olacak şeklinde ele alındığı hesaba katılır, bir- ve ikielektronlu atomik integrallerin genel olarak yazılımı toplam şeklinde dikkate alınırsa, Ortme, potasyel enerji ve kinetik enerji integralleri (3.3.1.5), (3.3.1.8), (3.3.1.13), (3.3.1.16) ve (3.3.2.10)- (3.3.2.11) eşitliklerindeki radyal integraller için sırası ile etkin ve pasif bileşenler,

Örtme integrali,

$$S_{nl,n'l'}^{\alpha}(\zeta,\zeta'); \sum_{i,i'} \tilde{S}_{n_i l_i, n_i' l_i'}^{\alpha}(\zeta,\zeta')$$
(4.1.1)

Potasiyel enerji integrali,

$$\mathcal{V}^{\alpha}_{nl,n'l'}(\zeta,\zeta',\eta,\eta'); \sum_{i,i'} \tilde{\mathcal{V}}^{\alpha}_{n_{i}l_{i},n'_{i}l'_{i}}(\zeta,\zeta',\eta,\eta')$$

$$(4.1.2)$$

Ve kinetik enerji integrali

$$\sum_{i'} \mathcal{H}^{\alpha}_{nl,n'_{l'_{i'}}}(\zeta,\zeta'); \sum_{i} \tilde{\mathcal{H}}^{\alpha}_{n_{i}l_{i'},n'l'}(\zeta,\zeta')$$

$$(4.1.3)$$

ifade edilir. Benzer şekilde iki parçacığın etkileşimini tanımlayan integrallerde (3.3.6.25) eşitliğinden yola çıkarak pasif bileşeni içeren elemanlarında radyal fonksiyonun toplam şeklinde yazılması gerekir. buna göre iki-elektronlu integrallerde ortaya çıkan olasılıklar dikkate alınarak,

Coulomb integrali,

$$R^{L}_{n_{l}l_{1},n_{1}'l_{1}';n_{2}l_{2},n_{2}'l_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$

$$R^{L}_{n_{l_{l}}l_{l_{l}},n_{l_{l}'}l_{l_{l}}';n_{2}l_{2},n_{2}'l_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$

$$R^{L}_{n_{l_{l}}l_{l_{l}},n_{l_{l}'}l_{l_{l}}';n_{2}r'l_{2}r',n_{2}r'l_{2}r'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$
(4.1.4)

"exchange" integrali,

$$R^{L}_{n_{l}l_{1},n_{l'}l_{l'_{1}};n_{2r}l_{2r},n_{2}'l_{2}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$

$$R^{L}_{n_{l}l_{l'_{1}},n_{l'_{1}}';n_{2}l_{2},n_{2r'}'l_{2r'}}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$

$$R^{L}_{n_{l}l_{l'_{1}},n_{l'_{1}}';n_{2r'}l_{2r'},n_{2r'}'l_{2r'}'}(\zeta_{1},\zeta_{1}';\zeta_{2},\zeta_{2}')$$
(4.1.5)

yazılır.

4.2. Coulomb ve Exchange Etkileşim Katsayıları

DHFR denklemlerinde Coulomb ve "exchange" etkileşimini ifade eden matris elemanlarında açısal momentum üzerinden integral alındığında matris elemanlarının analitik ifadesi radyal integrallerin çözümüne indirgenir. Matris elemanının ait açısal kısmını ise $d^{s.L}(j,m; j',m')$ katsayıları ile ifade edilir. $s = \frac{1}{2}$ durumunda, elektronlar arası etkileşmenin elektrostatik etkileşme olması vesilesi ile, $d^{\frac{1}{2}L}(j,m; j',m')$ katsayıları da elektrostatik etkileşim katsayıları (EEK) olarak tanımlanırlar. $d^{\frac{1}{2}L}(j,m; j',m')$ katsayısının coulomb integralinin açısal kısmını ifade ettiği durumda durumunda $a^{L}(j,m; j',m')$ coulomb elektrostatik etkileşim katsayıları (CEEK), "exchange" integralinin açısal kısmını ifade ettiği durumda ise $b^{L}(j,m; j',m')$ "exchange" elektrostatik etkileşim katsayıları (EEEK) olarak ifade edilirler. (3.3.7.17) denklemi dikkate alınarak $s = \frac{1}{2}$ için, CEEK ve EEEK katsayıları,

j		i'	<i>m</i> ′		$d^{\frac{1}{2},L}(j,m;j',m')$							
Ū		Ū			L(t = -1)					L(t=1))	
<u>.</u>		<u>.</u>		0	2	4	6	0	2	4	6	
1/2	1/2	7/2	7/2	1	-	-	-	1	-	-	-	
			5/2	1	-	-	-	1	-	-	-	
			3/2	1	-	-	-	1	-	-	-	
			1/2	1	-	-	-	1	-	-	-	
3/2	3/2	7/2	7/2	1	1/15	-	-	1	1/15	-	-	
			5/2	1	1/105	-	-	1	1/105	-	-	
			3/2	1	-1/35	-	-	1	-1/35	-	-	
			1/2	1	-1/21	-	-	1	-1/21	-	-	
5/2	5/2	7/2	7/2	1	2/21	1/231	-	1	2/21	1/231	-	
			5/2	1	2/147	-13/1617	-	1	2/147	-13/1617	-	
			3/2	1	-2/49	-1/539	-	1	-2/49	-1/539	-	
			1/2	1	-10/147	3/539	-	1	-10/147	3/539	-	
7/2	7/2	7/2	7/2	1	1/9	1/121	25/184041	1	1/9	1/121	25/184041	
			5/2	1	1/63	-13/847	-125/184041	1	1/63	-13/847	-125/184041	
			3/2	1	-1/21	-3/847	25/20449	1	-1/21	-3/847	25/20449	
			1/2	1	-5/63	9/847	-125/184041	1	-5/63	9/847	-125/184041	

Çizelge 11. $d^{s,L}(j,m;j',m')$ katsayısının spin	$s = \frac{1}{2}$ için CEEK değerleri
--	---------------------------------------

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

Ali BAĞCI

										1							
j		j'	<i>m</i>		$d^{\frac{1}{2},L}(j,m;j',m')$												
					L(t = -1)							L(t=1)					
		-		0	1	2	3	4	5	6	0	1	2	3	4	5	6
1/2	1/2	7/2	7/2	-	-	-	1/7	-	-	-	-	-	-	1/7	-	-	-
			5/2	-	-	-	6/49	-	-	-	-	-	-	6/49	-	-	-
			3/2	-	-	-	5/49	-	-	-	-	-	-	5/49	-	-	-
			1/2	-	-	-	4/49	-	-	-	-	-	-	4/49	-	-	-
3/2	3/2	7/2	7/2	-	-	9/35	-	1/189	-	-	-	-	9/35	0	1/189	-	-
			5/2	-	-	36/245	-	2/147	-	-	-	-	36/245	-	2/147	-	-
			3/2	-	-	18/245	-	10/441	-	-	-	-	18/245	-	10/441	-	-
			1/2	-	-	36/1225	-	40/1323	-	-	-	-	36/1225	-	40/1323	-	-
5/2	5/2	7/2	7/2	-	3/7	-	2/63	-	5/7623	-	-	3/7	-	2/63	-	5/7623	-
			5/2	-	6/49	-	8/147	-	50/17787	-	-	6/49	-	8/147	-	50/17787	-
			3/2	-	1/49	-	8/147	-	125/17787	-	-	1/49	-	8/147	-	125/17787	-
			1/2	-	-	-	16/441	-	100/7623	-	-	-	-	16/441	-	100/7623	-
7/2	7/2	7/2	7/2	1	-	1/9	-	1/121	-	25/184041	1	-	1/9	-	1/121	-	25/184041
			5/2	-	-	2/21	-	20/847	-	50/61347	-	-	2/21	-	20/847	-	50/61347
			3/2	-	-	2/63	-	30/847	-	500/184041	-	-	2/63	-	30/847	-	500/184041
			1/2	-	-	-	-	4/121	-	400/61347	-	-	-	-	4/121	-	400/61347

Çizelge 12. $d^{s,L}(j,m;j',m')$ katsayısının spin $s = \frac{1}{2}$ için EEEK değerleri

Çizelge 11 ve 12'den CEEK ve EEEK katsayılarının spin $s = \frac{1}{2}$ için elde edilen sonuçlarının Cooper (1965) sonuçları ile, *L*' nin

$$L_{min} = Max \Big[|j_a - j_c| + Mod(|j_a - j_c| + l_a + l_c, 2), |j_b - j_d| + Mod(|j_b - j_d| + l_b + l_d, 2) \Big], ()$$

$$L_{max} = Min \Big[j_a + j_c - Mod(j_a + j_c + l_a + l_c, 2), j_b + j_d + Mod(j_b + j_d + l_b + l_d, 2) \Big] ()$$

sınırları çerçevesinde uyumlu olduğu görülür. Cooper (1965) 'ın elde ettiği sonuçlarda L' nin alacağı değerler radyal integralin çözümünden bağımsız olarak sadece j, j' kuantum sayılarına bağlı olarak belirlendiğinden $d^{\frac{1}{2},L}(j,m;j',m')$ katsayıları için sonuçlar da j, j'kuantum sayılarının sınırları çerçevesinde bulunur. Dolayısı ile $d^{\frac{1}{2},L}(j,m;j',m')$ katsayısının alacağı değerlerin olasılıkları daha geniş olarak elde edilir. Yine de, j, j' sınırlarına göre belirlenen $d^{\frac{1}{2},L}(j,m;j',m')$ katsayısının alacağı değerlerin olasılıkları Coulomb ve "exchange" etkileşme integrallerinin çözümü neticesinde, çizelge 11 ve çizelge 12'den bulduğumuz değerlere benzer şekilde daralacaktır. Buna ek olarak, çizelge 11 ve çizelge 12'den spin $s = \frac{1}{2}$ için, t = 1 ve t = -1 durumlarında aynı sonuçların alındığı böylece Coulomb ve "exchange" etkileşme katsayılarının l, l' kuantum sayılarından bağımsız olduğu ancak L'nin alacağı değerlerin olasılıklarının belirlenmesinde bu kuantum sayılarının da rol oynadığı görülür.

4.4. Bir-elektronlu Atomik Sistemlerin İncelenmesi

Bir-elektronlu sistemlerin incelenmesi gerek radyal fonksiyonun özelliklerinin anlaşılması, gerekse de göreli etkilerin çekirdek yüküne bağlılığının gözlenmesi bakımından önemlidir. Dolayısı ile, cebirsel yaklaşım yöntemi ile yüksek spinli parçacıklar için önerilen Dirac denkleminin elektronik sistemler için Coulomb ve Yukawa potansiyelleri kullanılarak çözümü tezde ortaya konulan teorinin, Örtme, Potansiyel enerji ve Kinetik enerji matris elemanları için elde edilen analitik ifadelerin sağlaması olmakla birlikte Dirac denkleminin fiziksel özelliklerinin incelenmesi bakımından gereklidir.

Ali BAĞCI

Energy	$1s_{1/2}$	$2s_{1/2}/2p_{1/2}$	$2p_{3/2}$	$3s_{1/2}/3p_{1/2}$	$3p_{3/2}/3d_{3/2}$	3d _{5/2}	$4s_{1/2}/4p_{1/2}$	$4p_{3/2}/4d_{3/2}$	$4d_{5/2}/4f_{5/2}$	$4f_{7/2}$
$\frac{(a.u.)}{H}$	0.500006657	0.125002080	0.125000416	0.055556295	0.055555802	0.055555638	0.031250338	0.031250130	0.031250061	0.031250026
He^{+1}	2.000106514	0.500033286	0.500006657	0.222234057	0.222226167	0.222223537	0.125005409	0.125002080	0.125000971	0.125000416
Li^{+2}	4.500539299	1.125168533	1.125033700	0.500059921	0.500019971	0.500006657	0.281277385	0.281260531	0.281254914	0.281252106
Be^{+3}	8.001704770	2.000532750	2.000106514	0.889078303	0.888952009	0.888909927	0.500086565	0.500033286	0.500015532	0.500006657
B^{+4}	12.504163034	3.126300986	3.125260060	1.389351431	1.389043000	1.388940254	0.781461382	0.781331269	0.781287922	0.781266251
C^{+5}	18.008634998	4.502698550	4.500539299	2.000959394	2.000319590	2.000106514	1.125438430	1.125168533	1.125078638	1.125033700
N^{+6}	24.516002948	6.130001207	6.125999205	2.724000200	2.722814358	2.722419560	1.532062485	1.531562256	1.531395692	1.531312435
O^{+7}	32.027311253	8.008535406	8.001704770	3.558589857	3.556565821	3.555892220	2.001386533	2.000532752	2.000248556	2.000106514
F^{+8}	40.543767210	10.138678554	10.127731021	4.504862451	4.501618447	4.500539299	2.533471813	2.532103467	2.531648160	2.531420620
Ne^{+9}	50.066742016	12.520859337	12.504163034	5.562970261	5.558022660	5.556377579	3.128387851	3.126300991	3.125606896	3.125260060
Na^{+10}	60.597771881	15.155558079	15.131095950	6.733083862	6.725834852	6.723425821	3.786212514	3.783155061	3.782138615	3.781630767
Mg^{+11}	72.138559270	18.043307153	18.008634998	8.015392267	8.005117398	8.001704770	4.507032063	4.502698566	4.501258632	4.500539299
Al^{+12}	84.690974296	21.184691433	21.136895510	9.410103070	9.395938666	9.391237149	5.290941207	5.284967555	5.282983733	5.281992842
Si^{+13}	98.257056244	24.580348794	24.516002948	10.917442602	10.898373032	10.892047671	6.138043177	6.130001247	6.127332154	6.125999205
P^{+14}	112.839015250	28.230970659	28.146092929	12.537656110	12.512500898	12.504163034	7.048449792	7.037842033	7.034323618	7.032566826
S^{+15}	128.439234125	32.137302596	32.027311253	14.271007954	14.238408708	14.227611923	8.022281538	8.008535492	8.003979304	8.001704770
Cl^{+16}	145.060270330	36.300144963	36.159813930	16.117781803	16.076188967	16.062425016	9.059667657	9.042130397	9.036321868	9.033422727
Ar^{+17}	162.704858109	40.720353608	40.543767210	18.078280867	18.025940263	18.008634998	10.160746230	10.138678725	10.131375439	10.127731021
K^{+18}	181.375910781	45.398840616	45.179347625	20.152828134	20.087767283	20.066276530	11.325664286	11.298235670	11.289165623	11.284640597
Ca^{+19}	201.076523201	50.336575113	50.066742016	22.341766630	22.261780842	22.235386287	12.554577895	12.520859653	12.509719502	12.504163034
Sc^{+20}	221.809974383	55.534584124	55.206147575	24.645459691	24.548097903	24.516002948	13.847652291	13.806612335	13.793065640	13.786310539
Ti^{+21}	243.579730307	60.993953493	60.597771881	27.064291258	26.946841606	26.908167197	15.205061981	15.155558631	15.139234088	15.131095950
V^{+22}	266.389446903	66.715828856	66.241832943	29.598666189	29.458141291	29.411921727	16.626990879	16.567766722	16.548256378	16.538532737
Cr^{+23}	290.242973219	72.701416678	72.138559270	32.249010589	32.082132527	32.027311257	18.113632438	18.043308071	18.020165536	18.008634998
Fe^{+25}	341.097837203	85.468866375	84.690974296	37.899420591	37.668763270	37.593184227	21.281875902	21.184692900	21.152784020	21.136895510
Cu^{+28}	425.316426898	106.631671249	105.420906258	47.256721733	46.897646942	46.780490234	26.524987281	26.373746624	26.324274881	26.299666247

Çizelge 13. H-benzer atomlar için atomik birimlerde Coulomb potansiyeli kullanılarak göreli temel ve uyarılmış durum enerjileri
BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

_

Zn^{+29}	455.524906269	114.228423151	112.839015250	50.613068002	50.200987292	50.066742016	28.404520422	28.230974053	28.174282594	28.146092929
Se^{+33}	587.180010642	147.372804217	145.060270330	65.240479263	64.554424257	64.332416843	36.588933893	36.300152054	36.206372055	36.159813928
Kr^{+35}	659.583511678	165.625589614	162.704858109	73.284577636	72.417961879	72.138559271	41.085044651	40.720363546	40.602320294	40.543767210
Rb^{+36}	697.451766831	175.179215998	171.911887190	77.491705020	76.522175470	76.210197333	43.435191485	43.027264779	42.895448111	42.830092590
Sr^{+37}	736.440283953	185.020580269	181.375910782	81.823256500	80.741652109	80.394310500	45.853856523	45.398854301	45.252083579	45.179347625
Y^{+38}	776.556341667	195.151975434	191.097321433	86.279972254	85.076625225	84.690974296	48.341398452	47.835255069	47.672282528	47.591555992
Zr^{+39}	817.807495063	205.575782556	201.076523201	90.862742335	89.527335134	89.100266344	50.898188926	50.336593664	50.156102344	50.066742016
Nb^{+40}	860.201583566	216.294473310	211.313931739	95.572407481	94.094029095	93.622266376	53.524612880	52.903000312	52.703601978	52.604930670
Sn^{+49}	1294.626148771	326.488860216	315.144354791	143.828050227	140.457868352	139.406335662	80.366473942	78.952055815	78.507198855	78.288189857
Xe^{+53}	1519.473342882	383.779979622	368.107869867	168.798808141	164.141114651	162.704858109	94.206326524	92.253567804	91.645665996	91.347172796
Hg^{+79}	3532.192089936	904.618791796	817.807495063	392.016990646	366.142608751	358.986848012	216.299145170	205.577084122	202.536302430	201.076523201
Rn^{+85}	4158.424331533	1069.643814540	948.451395342	461.279959340	425.136191334	415.485225535	253.535705211	238.628945632	234.523112032	232.565090245
Th^{+89}	4617.757542443	1191.578906181	1041.374504577	511.994324766	467.182256505	455.524906269	280.583941950	262.173646492	257.210162799	254.854357520
U^{+91}	4861.197896989	1256.503912615	1089.611415934	538.835425203	489.036815405	476.261594241	294.821570246	274.407643099	268.965875454	266.389446903

Çizelge 14. H-benzer atomlar	rın Coulomb potansiy	eli kullanılarak	elde edilen	göreli temel	ve uyarılmış	durum	enerjileri i	için elde	edilmiş	en-iyileşti	rme
parametreleri											

Orbital Parameters	$1s_{1/2}$	$2s_{_{1/2}}/2p_{_{1/2}}$	$2p_{_{3/2}}$	$3s_{1/2}/3p_{1/2}$	$3p_{_{3/2}}/3d_{_{3/2}}$	$3d_{5/2}$	$4s_{1/2}/4p_{1/2}$	$4p_{_{3/2}}/4d_{_{3/2}}$	$4d_{_{5/2}}/4f_{_{5/2}}$	$4f_{_{7/2}}$
Н	1.986164727	0.780372326	0.812619119	0.517829203	0.464670952	0.485229809	0.333708966	0.349300218	0.319393277	0.185228704
He^{+1}	4.267678193	1.643516939	1.700799218	1.096547878	0.964213453	1.009790489	0.690215036	0.724742855	0.670640689	0.587722423
Li^{+2}	6.686364535	2.548638586	2.628635734	1.699045227	1.482866215	1.549304639	1.063892654	1.112283103	1.029364836	1.092708755
Be^{+3}	9.224280727	3.483488533	3.580981263	2.322293701	2.010065345	2.099825561	1.443956167	1.507300086	1.389854001	1.471007250
B^{+4}	11.848472451	4.446621014	4.555808620	2.961394625	2.547828367	2.658914059	1.834352274	1.912649664	1.756054884	1.846449886
C^{+5}	14.546352274	5.429572362	5.547810566	3.618219126	3.097402180	3.227244310	2.232225116	2.322620117	2.126876643	2.229369257
N^{+6}	17.310140737	6.428557510	6.555734232	4.287868528	3.648993517	3.800195437	2.634718835	2.737211448	2.502319279	2.619765364
O^{+7}	20.147617301	7.449700826	7.578805300	4.965444155	4.209131223	4.380623300	3.043598448	3.159279514	2.880617774	2.999828876
F^{+8}	23.051002505	8.490663008	8.612490848	5.655844683	4.775797773	4.965672040	3.459280619	3.583112598	3.260681287	3.397701718
Ne^{+9}	26.004620989	9.541534624	9.660070930	6.359070111	5.347746270	5.553576638	3.875636968	4.012657400	3.644691499	3.797339578
Na^{+10}	28.995716582	10.604654973	10.716238307	7.070221764	5.924976713	6.148957972	4.300560893	4.443967219	4.032231747	4.195212421
Mg^{+11}	32.039224197	11.685254889	11.780992977	7.789299642	6.507489102	6.747195165	4.727249836	4.880988756	4.419771995	4.602327016
Al^{+12}	35.135143833	12.774318472	12.859642182	8.518174872	7.093265913	7.348962393	5.158559655	5.319775311	4.810168102	5.015153329
Si^{+13}	38.283475492	13.883200922	13.948905866	9.254976327	7.684324670	7.956441339	5.595581192	5.761417724	5.202329226	5.414791189
P^{+14}	41.476572362	14.998207738	15.041449605	9.999704007	8.277400952	8.563920284	6.034367747	6.207681014	5.598437051	5.824761643
S^{+15}	44.709708455	16.126909055	16.142580638	10.752357911	8.873741655	9.178875966	6.476010160	6.656800163	5.995219052	6.236497115
Cl^{+16}	47.975236958	17.267859105	17.252298965	11.509910492	9.476611204	9.793831647	6.925129309	7.107684330	6.393091894	6.649323428
Ar^{+17}	51.293177483	18.422503656	18.372631772	12.280287973	10.081498276	10.413408205	7.373157617	7.561424355	6.792729754	7.071391494
K^{+18}	54.643510419	19.585611873	19.496244633	13.053693003	10.689649771	11.034749780	7.826897642	8.018020240	7.195223473	7.485982825
Ca^{+19}	58.033882577	20.762414591	20.630471974	13.836895385	11.303083212	11.658947215	8.286349385	8.476381142	7.597717191	7.897718297
Sc^{+20}	61.469019947	21.949126742	21.771259424	14.626152865	11.916516652	12.286000508	8.746475305	8.937597903	8.003066769	8.315165486
Ti^{+21}	64.936549727	23.141963259	22.919381298	15.425207696	12.535232039	12.915909660	9.210547925	9.403435540	8.410181364	8.737233552
V^{+22}	68.464138341	24.354618644	24.070783228	16.229161204	13.157211848	13.547583830	9.676385563	9.869273178	8.817295960	9.163922495
Cr^{+23}	72.016472555	25.573398396	25.230772451	17.041040937	13.781209181	14.183878876	10.149699935	10.336875833	9.227266414	9.585990561
Fe^{+25}	79.233611837	28.043025499	27.569952672	18.685551528	15.038997114	15.459324828	11.100949558	11.281739561	10.051828199	10.430126693

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

Cu^{+28}	90.349949877	31.829080922	31.122673068	21.207222776	16.948439009	17.391731014	12.552564636	12.712689451	11.295602191	11.715905239
Zn^{+29}	94.133877721	33.111995875	32.319038653	22.062475888	17.589529080	18.040123672	13.042597497	13.193480559	11.713049380	12.144359200
Se^{+33}	109.688707596	38.362568886	37.165386373	25.555980777	20.186057310	20.655450335	15.037256761	15.142605234	13.393844909	13.874636018
Kr^{+35}	117.701479188	41.061900026	39.622282975	27.345749247	21.499158502	21.974665858	16.057562020	16.128382674	14.242601918	14.742967374
Rb^{+36}	121.777933623	42.428769047	40.855024923	28.253458383	22.159358833	22.636246969	16.571790106	16.623036412	14.669290861	15.178898070
Sr^{+37}	125.899153268	43.803208201	42.098381351	29.170964871	22.822823586	23.301358116	17.088874050	17.123401868	15.094214786	15.615919607
Y^{+38}	130.065138125	45.189896088	43.348297887	30.094526456	23.489552762	23.967560104	17.610578871	17.622676483	15.522668746	16.057562020
Zr^{+39}	134.271162204	46.596402842	44.600241609	31.022986717	24.159546360	24.635527110	18.135139550	18.125897797	15.952213548	16.493492716
Nb^{+40}	138.517225504	48.009033963	45.860772626	31.964271880	24.830310583	25.306349975	18.664321107	18.628028271	16.381758349	16.933370112
Sn^{+49}	179.023320073	61.353815329	57.431622924	40.822898209	30.995566041	31.419197287	23.593882486	23.257588545	20.301347064	20.937642111
Xe^{+53}	198.426862615	67.671293756	62.717767046	45.009831174	33.806047837	34.182551152	25.894254573	25.367928876	22.072537595	22.737648742
Hg^{+79}	355.873606666	116.778118955	99.403228800	77.412255042	53.208906684	52.830335946	42.936685369	39.956248664	33.989663537	34.753737262
Rn^{+85}	403.903665838	130.908215232	108.505315147	86.677977659	57.999218847	57.306157300	47.5541480315	43.561973644	36.846268263	37.600009394
Th^{+89}	439.812106573	141.169747785	114.724603024	93.398250352	61.266511301	60.328598558	50.823579070	46.022470546	38.772962732	39.514606250
U^{+91}	459.170883904	146.594353299	117.879210619	96.943054845	62.925796634	61.852799308	52.521093088	47.271956255	39.743786702	40.477953485

Şekil 6. H-benzer atomlar için orbital parametrelerinin çekirdek yüküne bağlı olarak değişimi

Şekil 7. H-benzer atomlar için orbital parametrelerinin enerji seviyelerine göre değişimi (1 = 1 $s_{1/2}$; 2 = 2 $s_{1/2}$ / 2 $p_{1/2}$; 3 = 2 $p_{3/2}$; 4 = 3 $s_{1/2}$ / 3 $p_{1/2}$; 5 = 3 $p_{3/2}$ / 3 $d_{3/2}$; 6 = 3 $d_{5/2}$; 7 = 4 $s_{1/2}$ / 4 $p_{1/2}$; 8 = 4 $p_{3/2}$ / 4 $d_{3/2}$; 9 = 4 $d_{5/2}$ / 4 $f_{5/2}$; 10 = 4 $f_{7/2}$)

Çizelge 15. H-benzer atomların atomik birimlerde Yukawa $\left(\frac{e^{-\mu r}}{r}\right)$ potansiyeli kullanılarak

Energy	$1s_{1/2}$	$2s_{1/2}/2p_{1/2}$	$2p_{_{3/2}}$	$3s_{1/2}/3p_{1/2}$	$3p_{3/2}/3d_{3/2}$
(a.u.)					
·	0.490081162	0.115295360	0.115245639	0.046199588	0.046153348
H	0.451823054	0.081773156	0.080740775	0.019353126	0.018557934
	0.407064568	0.049929943	0.046534709	0.003208297	0.001589062
. 1	1.980181260	0.480329836	0.480254209	0.202892511	0.202836827
He^{+1}	1.901951160	0.407136371	0.405976389	0.137329073	0.136319283
	1.807371724	0.327116144	0.322967753	0.077419365	0.074233929
. 2	4.470614121	1.095466181	1.095282048	0.470723671	0.470635244
Li^{+2}	4.352393635	0.982394729	0.981090093	0.365676946	0.364559394
	4.207878666	0.853111144	0.848586940	0.258547447	0.254790799
. 2	7.961779624	1.960830927	1.960355258	0.849744715	0.849569625
Be^{+3}	7.803563882	1.807822772	1.806208388	0.704978184	0.703735122
	7.609081802	1.628938770	1.623983977	0.549448740	0.545320826
	12.454237901	3.076599453	3.075509036	1.340019412	1.339662021
$B^{{\scriptscriptstyle +}4}$	12.256024880	2.883629623	2.881389859	1.155428332	1.153979606
	12.011562429	2.654995565	2.649341910	0.950942062	0.946455963
.5	17.948709868	4.442997183	4.440788425	1.941628379	1.940939537
C^{+3}	17.710498512	4.210052651	4.206687896	1.717156941	1.715361568
	17.416048812	3.931588642	3.924761478	1.463404375	1.458468560
16	24.446077812	6.060299930	6.056248430	2.654669857	2.653434951
$N^{\scriptscriptstyle + \mathrm{o}}$	24.167867488	5.787372978	5.782161234	2.390284669	2.387932947
	23.823426465	5.459031112	5.450323386	2.087075190	2.081509696
. 7	31.947386107	7.928834164	7.921954063	3.479259967	3.477186881
$O^{*\prime}$	31.629176391	7.615919795	7.607876797	3.174939375	3.171742425
	31.234741397	7.237668926	7.226106151	2.822146829	2.815682259
. 0	40.453842047	10.048977311	10.037980361	4.415532863	4.412239852
F^{**}	40.095632637	9.696072060	9.683910707	4.071261960	4.066840319
	39.651201829	9.267890681	9.252192592	3.668798260	3.661068756
	49.966816836	12.421158060	12.404412403	5.463640861	5.458644321
Ne^{+9}	49.568607498	12.028259402	12.010348705	5.079408888	5.073280663
	49.074179516	11.550131936	11.528672592	4.627209917	4.617743561
+10	60.487846676	15.045856743	15.021345338	6.623754562	6.616456705
Na^{+10}	60.049637225	14.612962752	14.587286364	6.199553462	6.191122192
	59.505211021	14.084877477	14.055644420	5.697570952	5.685778906
n <i>e</i> +11	72.018634041	17.923605736	17.888884392	7.896062998	7.885739389
Mg	71.540424315	17.450714888	17.414829197	7.431886543	7.420428874
	70.945999053	16.872662703	16.833215424	6.880083124	6.865248060
1 +12	84.561049036	21.054989916	21.007144902	9.280773772	9.266560754
Al^{+12}	84.042838902	20.542100970	20.493092741	8.776617014	8.761270200
	83.398413888	19.914074603	19.861502429	8.174963080	8.156227144
a +13	98.117130952	24.440647159	24.376252331	10.778113223	10.758995183
Sins	97.558920292	23.887759074	23.822202602	10.233972138	10.213721347
	96.864494934	23.209752584	23.140631975	9.582443746	9.558796191
D +14	112.689089925	28.081268887	27.996342297	12.388326610	12.363123082
P^{+1+}	112.090878621	27.488380780	27.402294503	11.804197871	11.777863323
	111.346452404	26.760389203	26.670740479	11.102775303	11.073039838

sırası ile $\mu = 0.01, 0.05, 0.1$ değerleri için göreli temel ve uyarılmış durum enerjileri

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMAAli BAĞCI

a+15	128.279308747	31.977600671	31.867560599	14.111678285	14.079030901
S^{+15}	127.641096720	31.344711758	31.233514328	13.487559087	13.453783018
	126.846669197	30.566730881	30.451974343	12.736225863	12.699047749
~r+16	144.890344897	36.130442868	35.990063251	15.948451930	15.906811147
Cl^{+10}	144.212132045	35.457552463	35.316018144	15.284339853	15.241573297
	143.367702777	34.629578628	34.484490045	14.483082004	14.436914941
17	162.524932641	40.540651337	40.364016504	17.898950747	17.846562413
Ar^{+1}	161.806718862	39.827758797	39.649972251	17.194843694	17.141333014
	160.912287499	38.949788815	38.768454199	16.343649218	16.286741975
10	181.185985268	45.209138146	44.989596882	19.963497763	19.898389382
K^{+10}	180.427770470	44.456242915	44.235553218	19.219393866	19.153167068
	179.483336632	43.528273933	43.304043630	18.318252330	18.248635107
- +23	290.003047376	72.461713019	71.898808292	32.009678411	31.842754162
Cr^{+23}	289.044826370	71.508796942	70.944764415	31.065568456	30.897551944
	287.850375556	70.330798599	69.763279271	29.914572632	29.743224044
~ +28	425.026500761	106.341966124	105.131154969	46.967387180	46.608267807
Cu^{+20}	423.868271365	105.189018689	103.977106985	45.823243341	45.463067980
	422.423796999	103.760946493	102.545625725	44.422253585	44.058842672
- 122	586.840084303	147.033097161	144.720518632	64.901141854	64.215044097
Se^{+33}	585.481844713	145.680109481	143.366463661	63.556942849	62.869834689
	583.787340405	144.001928070	141.684972432	61.905861821	61.215647974
125	659.223584268	165.265881986	162.345106225	72.925238734	72.058581241
Kr^{+33}	657.785340941	163.832875297	160.911047754	71.501012721	70.633365343
	655.990822917	162.054641524	159.129549470	69.749872768	68.879180677
126	697.081838735	174.809507672	171.542135217	77.122365927	76.152794599
Rb^{+30}	695.603592750	173.336491334	170.068074861	75.658124207	74.687574922
	693.759068754	171.508229328	168.236572460	73.856951831	72.883388826
152	1518.933412423	383.240260748	367.568115840	168.259449337	163.601728272
Xe^{+33}	1516.775119916	381.087028272	365.414010691	166.114864985	161.456401627
	1514.080426017	378.408112324	362.732388599	163.462742722	158.802000424
	4157.564262195	1068.783975158	947.591635173	460.420534537	424.276788002
Rn^{TOS}	4154.125730543	1065.350029799	944.157385878	456.994757840	420.851080619
	4149.830101187	1061.069106610	939.875330865	452.739133515	416.595591511

Çizelge 16. H-benzer atomların Yukawa

 $\left(\frac{e^{-\mu r}}{r}\right)$ potansiyeli kullanılarak sırası ile

$\mu = 0.01, 0.05, 0.1 \text{degerleri}$ içi	ı elde	edilen	göreli	temel	ve	uyarılmış	durum	enerjilerinin	en-
iyileştirilmiş orbital parametr	eleri								

Orbital	1 <i>s</i>	$2s_{1/2} / 2p_{1/2}$	$2p_{3/2}$	$3s_{1/2}/3p_{1/2}$	$3p_{3/2}/3d_{3/2}$
Parameters					
	2.015094196	0.869938332	0 556913887	0 503442928	0 462594750
H	2.068565155	0.816467373	0.783420503	0.416925099	0.276936312
	2.002471415	0.643431716	0.656054497	0.236088134	0.203041264
	4 214066621	1 702069751	1 462940353	1 055596771	1 149915908
He^{+1}	4 321008539	1 722493839	1.562080963	1.022549901	0.762996415
	4.214066621	1.442516264	1.422092175	0.829090154	0.783420503
12	6 672592533	2 628520305	2 475908737	1 689446969	1 562080963
Li^{+2}	6.693016621	2.608096217	2.608096217	1.615551922	1.376422524
	6.626922881	2.435060559	2.608096217	1.529034093	1.462940353
.2	9 138919752	3 394557984	2 475908737	2 335919949	2 195931161
Be^{+3}	9 278908540	3 468453032	3 208899545	2.295071771	1 742917928
	9.052401923	3 448028943	2.974591621	2.155082984	2.002471415
	11 823052280	4 440573237	1 39/19/3586	2.033002501	2.602006217
$B^{_{+4}}$	11.803528191	4 394903586	4 761398991	2.974591021	2.608070217
	11.836575061	4 354055409	4 580562025	2.941944191	2.475908737
_	14 575078548	5 486588491	4 287961669	3 621064600	3 3/1087025
C^{+5}	14.575078548	5 354401011	5 766566067	3 567593641	3 114580408
	14.488560719	5 400070662	4 168396970	3 521923990	3 208899545
	17 267912384	6 446085916	5 214412224	4 287961669	3 341087025
N^{+6}	17 247488295	6 446085916	5 720896415	4 234490710	3 801901566
	17.313582035	6.400416265	6.079590512	4.168396970	3.068910757
	20 125980570	7 499902478	7 405583341	4 967481518	4 168396970
O^{+7}	20.129960570	7 405583341	5 720896415	4 947057429	3 801901566
	20.125980570	7.459054300	5.733519197	4.860539601	4.547515155
0	23 037519714	8 459399902	8 459399902	5 667425457	4 947057429
$F^{\scriptscriptstyle +8}$	23.111414762	8.459399902	8.232893286	5.647001368	4.181019751
	23.037519714	8.472022684	8.245516067	5.593530409	5.120093087
.0	26 022953907	9 518037937	8 665482430	6 379992176	4 774021772
Ne^{+9}	25.989907037	9.551084807	8.772424348	6.346945306	5.053999347
	25.949058859	9.484991067	9.764968643	6.260427477	4.893586471
. 10	29 021010880	10 510582232	10 464912581	7 059512026	5 260081875
Na^{+10}	29.008388099	10.564053191	10.704041979	7.039087937	5.486588491
	29.021010880	10.551430410	10.144086828	7.006041067	5.873507984
±11	32.059916031	11.650916622	11.103584253	7.812926923	6.313898436
Mg^{+11}	32.113386990	11.610068445	11.696586273	7.759455964	6.906900457
	32.039491942	11.610068445	10.497959451	7.705985005	6.446085916
12	35,131868052	12.729978746	12.656083698	8.525493642	7.359913690
$Al^{_{\pm 12}}$	35.131868052	12.729978746	12.330436472	8.525493642	7.039087937
	35.037548916	12.696931876	13.289933897	8.459399902	7.273395861
	38.323384772	13.895558699	13.849889047	9.238060362	7.405583341
Si^{+13}	38.269913814	13.882935917	12.956485363	9.278908540	8.232893286
	38.282536595	13.796418089	13.236462938	9.205013492	7.039087937
_ 14	41.474053315	14.961998041	14.575078548	10.011899348	8.092904498
$P^{_{+14}}$	41.568372451	14.995044911	15.402388493	9.971051170	8.365080766
	41.514901492	14.928951171	14.755915514	9.938004300	8.232893286
	44 706418212	16 114955213	16 707957233	10 757512937	8 838518088
C ⁺¹⁵	44,792936041	16.081908343	16.201473041	10.757512937	9.184589403
5	44.673371342	16.127577994	16.494073398	10.691419198	8.232893286

C1 +16	48.050546501	17.181394555	17.087075419	11.523550616	9.785392731
Cl	48.070970590	17.280535165	17.000557590	11.510927835	9.418897327
	48.050546501	17.247488295	17.247488295	11.470079657	9.785392731
▲ +17	51.282911399	18.466539206	18.046572843	12.297389602	10.131464047
$Ar^{\prime\prime\prime\prime}$	51.315958269	18.400445467	18.466539206	12.297389602	9.958428389
	51.209016351	18.466539206	17.787019357	12.243918643	10.144086828
T7 +18	54.560945948	19.553402638	18.593905213	13.076050061	11.103584253
K	54.680510646	19.553402638	19.779909254	13.043003191	11.017066424
	54.754405694	19.599072289	19.825578906	13.009956321	10.357970663
C +23	71.897993335	25.582563455	24.849572646	17.041405767	13.602958342
Cr^{-1}	71.984511164	25.582563455	25.809070071	17.041405767	13.982076527
	71.984511164	25.602987544	25.216068051	17.041405767	14.162913493
C +28	90.342328243	31.833409415	31.199559216	21.151571735	17.354430213
Cu	90.248009107	31.746891586	31.426065833	21.192419912	17.181394555
	90.482317031	31.746891586	31.199559216	21.192419912	16.687533144
G +33	109.684888310	38.323384772	37.150003512	25.569940674	20.439005015
Se	109.618794570	38.323384772	37.363887348	25.623411633	19.919898042
	109.824877097	38.409902601	37.289992300	25.536893804	20.072509611
T Z +35	117.760409983	41.041464171	40.155861793	27.328522647	21.151571735
Kr	117.694316243	41.107557910	39.422870985	27.361569517	21.612386275
	117.747787202	41.074511040	39.369400026	27.315899866	21.518067139
D1 +36	122.178778922	42.301363260	41.107557910	28.275397291	22.111069159
Rb	121.812283518	42.453974828	40.708015636	28.234549113	22.291906125
	121.931848217	42.301363260	40.761486595	28.221926332	22.291906125
v z +53	198.576898981	67.507849793	62.896021107	44.932924829	33.485049470
Xe	198.444711501	67.660461362	62.743409538	44.932924829	33.938062703
	198.576898981	67.780026061	62.636467621	44.945547610	34.032381840
n +85	403.275497707	131.213798020	109.071462200	86.916503599	58.365888777
Kn	403.275497707	131.213798020	109.025792549	86.916503599	58.052864332
	403.568098063	131.259467671	108.984944371	86.550008195	57.385967263

Çizelge 17. H-benzer atomların atomik birimlerde Screened Coulomb-like Yukawa $\left(\frac{e^{-\mu r}}{r^{1-\eta}}\right)$ potansiyeli kullanılarak sırası ile $\mu = 0.01, 0.05, 0.1$ değerleri için göreli temel ve uyarılmış durum enerjileri

Energy	1 c	2 c / 2 n	2 n	3s / 3n	3n/3d
(a.u.)	13 _{1/2}	$2s_{1/2} / 2p_{1/2}$	$2P_{3/2}$	$33_{1/2} / 3p_{1/2}$	$SP_{3/2} / Su_{3/2}$
()					
	0.490080889	0.115295574	0.115245938	0.046199749	0.046153537
H	0.451822775	0.081773315	0.080741020	0.019353214	0.018558046
	0.407064285	0.049930050	0.046534895	0.003208325	0.001589097
	1 980177415	0 480330047	0 480254756	0 202892907	0 202837335
He^{+1}	1 901947355	0.407136517	0.405976878	0.137329353	0.136319674
	1.807367974	0.327116226	0.322968180	0.077419540	0.074234200
	4 470601821	1.095465767	1.095282390	0.470724194	0.470636019
Li^{+2}	4 352381442	0.982394260	0.981090393	0.365677331	0.364560032
	4 207866612	0.853110627	0.848587200	0 258547703	0.254791297
-	7.961753144	1 960829058	1 960354732	0.849745160	0.849570518
Be^{+3}	7 803537590	1.900829058	1.900334732	0.70/078/83	0.703735873
	7.609055750	1.628936851	1 623983437	0.549448902	0.545321432
	12 454100022	2 076505148	2 075506922	1 240010510	1 220662821
$oldsymbol{B}^{\scriptscriptstyle +4}$	12.454190922	2 883625318	2 881387683	1.540019510	1.539002821
	12.255776180	2.654991285	2.681387083	0.950941882	0.946456486
	17.048635600	4 442080344	4 440783618	1.041627810	1 0/0030070
$C^{\scriptscriptstyle +5}$	17.948033009	4.442989344	4.440783018	1.941027810	1.940939979
	17.710424032	3 931580923	3 924756856	1.717130233	1.458468753
	24 445060110	6.060287365	6.056240004	2 654669257	2 652424720
$N^{\scriptscriptstyle +6}$	24.443909110	0.000287303 5 787360504	5 782152030	2.034008237	2.033434729
	24.107739270	5.787300304	5 450315268	2.390282948	2.387932018
	21.047225469	7.029915200	7.021040022	2.087075509	2.081309209
$O^{\scriptscriptstyle +7}$	31.947233408	7.928813000	7.921940925	3.479230930	3.477103030
	31.029020347	7.013901374	7.007803848	2 822143626	2 815680884
	10 452641699	10.049051207	10.027061242	4.415527070	4 410027052
$F^{\scriptscriptstyle +8}$	40.433041088	0.606046350	0.683801046	4.413327970	4.412237233
	40.093432991	9.090040330	9.083891940	4.071230993	3 661066074
	40.066559710	12 421122284	12 404296295	5 462622645	5.458620051
Ne^{+9}	49.900338710	12.421123384	12.404580285	5.079/01630	5.073276272
	49.00000207	12.028224993	11 528647222	4 627202662	4 617739184
	60 487522500	15.045911931	15.021210941	6 622744520	6 616450120
Na^{+10}	60.0487322300	14 612018175	14 587252268	6 1005/3/32	6 101115646
	50.04/314003	14.012210175	14.055610839	5 607560063	5 685772421
	72 018235204	17 023540057	17 888840101	7 806040654	7 885730187
Mg^{+11}	72.018233294	17.923349037	17.000040191	7.890049034	7.003730107
	71.340020039	16 872606964	16 833172313	6 880060006	6 865239034
	84 560566005	21.054010882	21.007080625	0.280756576	0.266549452
Al^{+12}	84.000000995	21.034919882	21.007089023	9.280730370	9.200346432
	83 397934590	19 914005683	19 861448426	8.174946102	8 156215116
	08 116556692	24 440562125	24 276194565	10 778001618	10 758070202
Si^{+13}	96.110550065	24.440302133	24.570104505	10.778091018	10.736979293
	97.338347384	23.00/0/4010	23.822155479	0 582422465	0 558780688
	112 (99414200	29.091167105	23.140303009	9.382422403	9.336760066
$P^{\scriptscriptstyle +14}$	112.000414299	28.08110/193	21.990200388	12.388300018	12.303103113
	111 3/5780150	21.400219124	21.402213320	11.0041/1440	11.777043334
	111.343/00139	21.700200773	21.070000420	11.102/49140 11.11212100	14.070006229
$S^{\scriptscriptstyle +15}$	120.2/0022404	31.7//4803/4	31.00/40340U	14.111040109	14.079000328 13 453759704
	127.040312073	30 566612432	31.233410000	12.40/22/122	12 699023795
	120.073000307	50.500012452	JU.TJIU/JUJJ	12.130174220	14.077043173

C1 +16	144.889438438	36.130302583	35.989949154	15.948413555	15.906781444
Cl	144.211227348	35.457412977	35.315904957	15.284301752	15.241543903
	143.366800333	34.629440186	34.484378014	14.483044295	14.436885979
↓ +17	162.523896343	40.540489031	40.363883890	17.898905548	17.846527024
Ar^{m}	161.805684453	39.827597393	39.649840649	17.194798804	17.141297997
	160.911255502	38.949628557	38.768323868	16.343604795	16.286707463
zz +18	181.184809212	45.208951947	44.989444171	19.963445049	19.898347755
K	180.426596480	44.456057711	44.235401611	19.219341553	19.153125869
	179.482165277	43.528089988	43.303893414	18.318200545	18.248594494
C +23	290.001018283	72.461377625	71.898530237	32.009577718	31.842672442
Cr	289.042800029	71.508463020	70.944487982	31.065468432	30.897470994
	287.848352890	70.330466542	69.763004869	29.914473580	29.743144095
a +28	425.023344339	106.341427373	105.130707763	46.967218851	46.608130114
Cu	423.865118463	105.188482075	103.976661960	45.823076132	45.462931417
	422.420648691	103.760412443	102.545183435	44.422087726	44.058707581
a +33	586.835499340	147.032294418	144.719855527	64.900882973	64.214833163
Se	585.477265672	145.679309216	143.365803321	63.556685809	62.869625300
	583.782767099	144.001131186	141.684315545	61.905606819	61.215440574
r z +35	659.218340823	165.264954860	162.344343045	72.924936978	72.058335860
Kr	657.780101703	163.831951078	160.910287585	71.500712863	70.633121694
	655.985589472	162.053720916	159.128793080	69.749574964	68.878939206
D1 +36	697.076243689	174.808514185	171.541318966	77.122039664	76.152530862
Rb	695.598002190	173.335500826	170.067261743	75.657801954	74.687313020
	693.753483442	171.507242710	168.235763293	73.856630157	72.883129207
v z +53	1518.919451778	383.237606573	367.566067942	168.258500229	163.601026071
Xe	1516.761171408	381.084376051	365.411968179	166.113916868	161.455702894
	1514.066474542	378.405466926	362.730352900	163.461797715	158.801306132
n +85	4157.511924239	1068.772223481	947.585285817	460.414406619	424.274459792
Rn ¹⁰⁵	4154.072930021	1065.338267878	944.151046978	456.988534457	420.848758167
	4149.777715948	1061.057263256	939.869005516	452.732949081	416.593278370

Çizelge 18. H-benzer atomların Screened Coulomb-like Yukawa

$$\left(\frac{e^{-\mu r}}{r^{1-\eta}}\right)$$
 potansiyeli

kullanılarak sırası ile $\eta = 10^{-6}$ ve $\mu = 0.01, 0.05, 0.1$ değerleri için elde edilen göreli temel ve uyarılmış durum enerjilerinin en-iyileştirilmiş orbital parametreleri

Orbital	15	2s / 2n	2n	3s/3n	3n/3d
Parameters	13 _{1/2}	$2s_{1/2} + 2p_{1/2}$	$2P_{3/2}$	$33_{1/2} + 3p_{1/2}$	$SP_{3/2} / Su_{3/2}$
11	2.002471415	0.869938332	0.696902675	0.516065709	0.569536668
П	2.055942374	0.783420503	0.742572326	0.396501010	0.376076921
	2.015094196	0.696902675	0.556913887	0.236088134	0.223465353
TT +1	4.300584450	1.615551922	1.516411312	1.055596771	1.055596771
Не	4.147972881	1.702069751	1.562080963	1.042973990	0.923409291
	4.127548792	1.582505052	1.562080963	0.829090154	0.623007627
T :+2	6.586074704	2.575049347	2.702415353	1.702069751	1.422092175
Ll	6.713440710	2.475908737	2.249402120	1.562080963	1.216009648
	6.626922881	2.435060559	2.475908737	1.475563134	1.335574346
D +3	9.278908540	3.435406162	2.842404141	2.315495860	2.249402120
Ве	9.278908540	3.481075813	3.208899545	2.249402120	2.015094196
	9.098071574	3.481075813	3.608441819	2.195931161	2.015094196
D +4	11.856999150	4.527091066	3.847571217	2.974591621	2.262024901
B^{++}	11.803528191	4.394903586	3.801901566	2.875451011	2.249402120
	11.836575061	4.300584450	4.394903586	2.821980052	2.842404141
C+5	14.669397685	5.420494751	4.168396970	3.608441819	3.068910757
C	14.542031678	5.486588491	4.761398991	3.588017730	2.681991264
	14.575078548	5.387447881	4.527091066	3.521923990	2.381589600
a 7+6	17.313582035	6.446085916	5.120093087	4.254914799	3.934089046
IN	17.334006124	6.446085916	5.720896415	4.214066621	3.567593641
	17.280535165	6.359568087	6.133061471	4.181019751	3.435406162
O ⁺⁷	20.159027439	7.426007430	6.433463135	5.000528388	4.300584450
0	20.105556481	7.459054300	5.873507984	4.947057429	3.661912778
	20.159027414	7.446431519	6.812581320	4.847916819	4.147972881
r +8	23.024896933	8.492446772	7.405583341	5.667425457	4.481421415
F	23.004472844	8.525493642	7.586420306	5.647001368	4.300584450
	23.024896933	8.438975814	7.726409094	5.560483539	5.120093087
N/a ⁺⁹	25.989907037	9.591932985	9.691073595	6.346945306	5.720896415
Ne	26.002529818	9.591932985	8.232893286	6.313898436	5.140517176
	26.022953907	9.551084807	8.838518088	6.293474347	5.720896415
λI_{α}^{+10}	28.987964010	10.564053191	10.144086828	7.059512026	5.486588491
Iva	28.934493051	10.617524150	10.757512937	7.026465156	5.626577279
	28.967539921	10.604901369	10.184935006	7.026465156	6.079590512
$Ma^{\pm 11}$	32.072538812	11.683963492	12.297389602	7.812926923	5.807414244
IVIg	32.059916031	11.750057232	11.696586273	7.772078745	6.079590512
	32.072538812	11.610068445	11.057914602	7.705985005	6.079590512
A 1+12	35.131868052	12.783449705	13.249085719	8.525493642	6.672592533
Al	35.144490834	12.750402835	12.063081678	8.492446772	6.906900457
	35.057973005	12.709554657	12.976909451	8.438975814	7.359913690
C; +13	38.369054424	13.936406876	12.890391623	9.258484451	8.192045108
51	38.323384772	13.915982787	14.208583144	9.238060362	7.586420306
	38.302960684	13.796418089	12.297389602	9.205013492	7.866397882
D^{+14}	41.568372451	14.941573952	14.488560719	9.991475259	7.998585362
Γ	41.474053315	14.961998041	14.195960363	9.971051170	8.319411114
	41.474053315	14.941573952	14.822009253	9.938004300	8.578964601
C ⁺¹⁵	44.772511952	16.081908343	16.267566781	10.744890156	8.825895307
S	44.673371342	16.081908343	16.114955213	10.744890156	9.184589403
	44.719040993	16.114955213	15.761082589	10.704041979	9.052401923

Cu +16	48.050546501	17.227064206	17.300959254	11.470079657	9.551084807
Cl^{-1}	48.050546501	17.227064206	17.181394555	11.470079657	9.205013492
	47.824039885	17.300959254	17.313582035	11.457456876	9.744544554
+ +17	51.282911399	18.466539206	17.733548398	12.256541424	9.785392732
Ar^{n}	51.209016351	18.380021378	18.227409809	12.297389602	10.057568999
	51.282911399	18.367398597	18.507387384	12.203070465	10.077993088
** +18	54.721358824	19.566025419	19.273425063	13.076050061	11.090961472
K	54.527899078	19.619496378	19.825578906	13.043003191	10.704041979
	54.680510646	19.599072289	18.639574864	12.989532233	10.424064403
C +23	71.984511164	25.582563455	24.623066030	17.020981679	13.615581123
Cr^{-1}	71.984511164	25.582563455	25.376480927	17.020981679	13.755569911
	71.938841513	25.623411633	25.083880571	17.000557590	14.002500616
C +28	90.248009107	31.833409415	31.026523559	21.171995823	16.954887939
Cu^{-1}	90.482317031	31.846032196	30.833063812	21.205042693	17.194017336
	90.248009107	31.846032196	31.067371736	21.205042693	17.160970466
G +33	109.964865885	38.475996341	36.890450026	25.582563455	20.512900063
Se	109.857923967	38.302960684	37.376510129	25.483422845	20.265969357
	109.705312399	38.323384772	37.463027957	25.496045626	20.426382234
T Z +35	117.747787202	41.107557910	39.328551848	27.315899866	21.744573755
Kr	117.747787202	40.881051294	39.575482554	27.275051688	21.625009056
	117.747787202	40.881051294	39.875884218	27.315899866	21.385879659
D1 +36	122.178778922	42.367457000	40.155861793	28.188879462	22.671024310
KD	121.812283518	42.433550740	41.201877047	28.254973202	21.978881680
	122.084459785	42.433550740	40.748863814	28.221926332	22.271482036
V = +53	198.218204885	67.874345197	62.483856052	44.986395788	34.304558107
Хе	198.490381153	67.780026061	62.389536915	45.052489528	33.871968963
	198.576898981	67.780026061	62.990340244	44.932924829	34.078051491
D +85	403.588522152	131.259467671	109.025792549	86.504338544	58.559348524
KN	403.275497707	131.213798020	107.465491796	86.916503599	58.884995750
	404.593689228	131.259467671	109.005368460	86.504338544	58.559348524

Fizik, kimyanın önemli uygulama alanlarından olan Coulomb, Yukawa, perdelenmiş Yukawa potansiyelleri için cebirsel yaklaşım yöntemi kullanılarak Dirac denkleminin çözümünden elde edilen sonuçlar literatürde bulunan (Dyall K ve ark., 1984; Nakashima ve Nakatsuji, 2011; Gazdy, 1983; Arets ve Nieuwpoort, 1985; Ikhdair ve Sever, 2007; Lai, 1982; Hegarty, 1986; Purt ve Watson, 1963: Bielinska ve ark., 2004: Setare ve Haidari, 2010) sonuçlarla uyumlu olmakla birlikte göreli olmayan limit $(c \rightarrow \infty)$ durumunda hesaplamalar Shrödinger denkleminin çözümünden bulunan sonuçlarla da uyumlu olduğu görülmüştür. Dolayısı ile bir-elektronlu sistemler için elde edilen denklemlerin ve yapılan hesaplamaların atomun göreli etkilerin dikkate alınması ile ortaya çıkan fiziksel özelliklerini temsil ettiği, göreli etkilerin çekirdek yüküne göre arttığı, hesaplamaların göreli olmayan limit durumuna indirgenebildiği anlaşılır.

4.5. Çok-elektronlu Atomik Sistemlerin İncelenmesi

Çok elektronlu atomlarda göreli etkilerin incelenmesi açısından KD koşulu, varyasyonel çöküş, enerjinin en-iyileştirilmesi, kullanılan radyal fonksiyonların, iki elektronlu integrallerin, Coulomb ve "exchange" etkileşme katsayılarının, DHFR denklemlerinin ve oluşturulan bilgisayar programının analiz edilmesi açısından oldukça önemlidir. Bu vesile ile YSSO kullanılması ile etkileşme katsayıları elde edilerek, iki elektronlu Coulomb ve exhange integralleri STO ve $\psi^{\alpha} - ETO$ baz fonksiyonları için hesaplanmış ve bilgisayar programı yapılmış He-benzer atomlar analiz edilmiş, Be-benzer atomlar için hesaplamalar yapılmış literatürle karşılaşırlaştırılmıştır (Kim, 1967; Quiney ve ark., 1987; Goldman 1988; Styszynski ve Karwowski, 1988; Blundell ve ark., 1989; Malli ve ark. 1992; Datta, 1993; Ishikawa ve Quiney, 1993; Jorge ve Da Silva 1996; ; Jorge ve ark. 1999 ; Raiher ve Kind, 2001; Filatov ve Cremer, 2005).

Ali BAĞCI

Çizelge 19. He-benzer atomlar için atomik birimlerde tekli-zeta (s) ve ikili-zeta (d) baz takımı kullanılarak göreli toplam enerji, orbital enerji ve eniyileştirilmiş orbital parametrelerinin değerleri

Atom	E_s	\mathcal{E}_{s}	ζ_s	E_d	\mathcal{E}_{d}	ζ_d
H^{-1}	0.472656357110	0.021432359939	0.687671164625	0.487826316889	0.045805255007	0.462227227243 1.214510886907
Не	2.847690206918	0.896456753627	1.687761102341	2.861729998707 2.861838 ^a 2.861813342 ^b 2.861813340 ^c 2.861813347 ^d	0.917972001392	1.453187558872 2.908710842917
Li^{+1}	7.222922813261	2.771721971864	2.687851040058	7.236770407306 7.237205520 ^b	2.792640170419	2.448761609197 4.588343061015
Be^{+2}	13.598678898403	5.647451242827	3.688345455630	13.612552504330 13.614001410 ^b	5.668177574313	3.447253153300 6.283586716477
B^{+3}	21.975443636344	9.524076450658	4.689494330120	21.989493555896 21.993149188 ^b	9.544864898984	4.446905839993 8.001922359156
$C^{{}^{\scriptscriptstyle+4}}$	32.353862984689	14.402345894167	5.691047682464	32.368239995340 32.375989218 ^b	14.423265155599	5.449371724635 9.791446946527
N^{+5}	44.734744398974	20.283012810941	6.693255493726	44.749616452799 44.764201119 ^b	20.304226632335	6.450950721197 11.613656730732
$O^{{}^{+6}}$	59.119057635070	27.167069618927	7.696117763906	59.134616365077 59.1597940044 ^b	27.188634872169	7.456619329408 13.594235253127
$F^{\scriptscriptstyle +7}$	75.507935778905	35.055545822562	8.700038970858	75.524398861917 75.565105006 ^b	35.077727056585	8.460506758475 15.628037169021
Ne^{+8}	93.902676351965	43.949759429664	9.705019114582	93.920289397772 93.982799546 ^b 93.982768 ^d	43.972755121443	9.465422951898 17.800804662921
Na^{+9}	114.304742591219	53.851050694738	10.711522330447	114.323780109510 114.41587336 ^b	53.875157377694	10.473112388522 20.212427844835

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

Mg^{+10}	136.715765198671	64.761347718798	11.718620823616	136.736529889800 136.86765451 ^b	64.786657114009	11.479051397839 22.718499068075
$Al^{_{+11}}$	161.137543429627	76.682158633787	12.727313070110	161.160366526281 161.34180596 ^b	76.709063810280	12.483566830639 25.318336834851
Si^{+12}	187.572047630344	89.615434887340	13.737696951230	187.597287858928 187.84232857 ^b	89.644277089674	13.489894678856 28.175717491387
P^{+13}	216.021420719594	103.563220720547	14.750132565715	216.049462744827 216.37356430 ^b	103.594506997218	14.495032466334 31.133595845796
$S^{{\scriptscriptstyle +14}}$	246.487980574561	118.528048784130	15.763883708731	246.519233742216 246.94019980 ^b	118.562084261131	15.499166128860 34.188385109542
Cl^{+15}	278.974222253549	134.512316436493	16.779250345604	279.009119157038 279.54727023 ^ь	134.549429788549	16.504264150155 37.450777650925
Ar^{+16}	313.482820934279	151.518234334399	17.797856476646	313.521815140634 314.20016358 ^b 314.199594 ^d	151.559278036109	17.508384302682 40.783625730819
$K^{_{+17}}$	350.016634456448	169.549192307832	18.817720088182	350.060198836787	169.594434129034	18.512412131601 44.225785467231
Cr^{+22}	563.177108342873	275.186020208825	23.955681653881	563.251172087142	275.261908770827	23.535716472181 63.033235619123
<i>Cu</i> ⁺²⁷	827.507323518121	406.967509369123	29.169553068567	827.621018080983	407.087187219486	28.358492871711 64.998710914254
<i>Se</i> ⁺³²	1143.591471163335	565.456548284245	34.479865813134	1143.767838037662	565.657958000972	33.674241365840 111.518341061203
Kr^{+34}	1284.674459104324	636.481440245465	36.635429124319	1284.877859223458	636.721013375563	35.731336768201 123.660270400426
Rb^{+35}	1358.380965461729	673.653254531515	37.721285640166	1358.598655855904	673.913791691146	36.764339613661 130.030565489124
Xe^{+52}	2942.725512474062	1482.758015104105	57.160264708310	2943.252459758940	1483.590790212552	55.077982189881 281.992364645964
Rn^{+84}	7809.851693190857	4082.136615098522	103.543312811876	7811.258707006876	4085.283621836622	98.349119537112 1008.611028058015

Ali BAĞCI

Işık hızı		c = 137.035999629 c =			$c = 10^{6}$					
Baz Yaklaşımı	Tekli	i-zeta	İkili	-zeta		Tekli-zeta			İkili-zeta	
Atom	$C_{1s_{1/2}}$	$ ilde{C}_{1s_{1/2}}$	$C_{1s_{1/2}}$	$ ilde{C}_{1s_{1/2}}$	$E_{_D}$ / $\varepsilon_{_D}$	$C_{1s_{1/2}}$	$ ilde{C}_{1s_{1/2}}$	$E_{_D}$ / $\varepsilon_{_D}$	$C_{1s_{1/2}}$	$ ilde{C}_{1s_{1/2}}$
H^{-1}	0.999996852	0.002509066	0.724073458 0.345035649	0.001221187 0.001528925	0.472656221 0.021430871	0.9999999999	3.438355 E -7	0.487900658 0.045845685	0.723929884 0.345201052	1.673101 E –7 2.096252 E -7
Не	0.999981041	0.006157744	0.843197739 0.181290784	0.004471230 0.001923268	2.847656182 0.896402746	0.9999999999	8.438805 E -7	2.861729802 0.917993899	0.843320001 0.181175184	6.127511 E –7 2.634931 E -7
Li^{+1}	0.999951923	0.009805684	0.889920590 0.124980600	0.007952982 0.002089242	7.222656127 2.771374613	0.9999999999	1.343926 E -6	7.236478172 2.792466531	0.890241585 0.124676278	1.089994E –6 2.860287 E -7
Be^{+2}	0.999909492	0.013453924	0.915720148 0.094976888	0.011522523 0.002169454	13.597655535 5.646219813	0.9999999999	1.844172 E -6	13.611230319 5.667179169	0.916328545 0.094400068	1.579408 Е –6 2.965855 Е -7
B^{+3}	0.999853734	0.017102938	0.932041632 0.076296105	0.015132336 0.002211012	21.972652273 9.520859158	0.9999999999	2.344747 E -6	21.986235748 9.542242141	0.933055694 0.075329231	2.074605 E –6 3.013893 E -7
$C^{_{+4}}$	0.999784667	0.020751376	0.944258821 0.062544998	0.018791750 0.002205092	32.347643664 14.395369431	0.9999999999	2.845523 E -6	32.361164120 14.417304476	0.945733482 0.061137655	2.576826 E –6 2.993131 E -7
N^{+5}	0.999702283	0.024399708	0.952697757 0.053051749	0.022451374 0.002200662	44.722623125 20.269669221	0.9999999999	3.346628 E -6	44.736177846 20.292568810	0.954710219 0.051129304	3.079394 E –6 2.968991 E -7
$O^{{}^{+6}}$	0.999606592	0.028047496	0.960307949 0.044633688	0.026166890 0.002143156	59.097581985 27.143754191	0.9999999999	3.848058 E -6	59.111053389 27.167734079	0.962889304 0.042163088	3.589950 E –6 2.865875 E -7
$F^{ m +7}$	0.999497563	0.031695770	0.965664537 0.038671048	0.029865398 0.002104711	75.472499025 35.017487334	0.9999999999	4.350019 E -6	75.486124321 35.043228860	0.968858686 0.035610256	4.098518 E –6 2.782592 E -7
Ne^{+8}	0.999375203	0.035344086	0.970098784 0.033748984	0.033577332 0.002055564	93.847349332 43.890856193	0.9999999999	4.852509 E -6	93.860954169 43.918567747	0.973921280 0.030079914	4.609288 E –6 2.677233 E -7

Çizelge 20. He-benzer atomların göreli ve göreli olmayan limit $(c \rightarrow \infty)$ durumunda toplam, orbital enerjileri ve doğrusal birleşim katsayıları

Şekil 8. He-benzer atomların tekli- ve ikili-zeta baz takımları kullanılarak elde edilen orbital enerjileri (a) ve toplam enerjileri (b) arasındaki farkin değişimi

Şekil 9. He-benzer atomlar için ikili-zeta baztakimi ile orbital enerjileri ($\varepsilon_{1s_{12}}, \varepsilon_{2s_{1/2}}$) için elde edilen orbital parametleri farkinin çekirdek yüküne göre değişimi

Çizelge 21. Etkin ve pasif bileşenler için aynı tam başkuantum sayılı STO radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş göreli olmayan (HFR), göreli (DHFR) orbital (ε), toplam enerji (E) değerleri ve eniyileştirilmiş orbital parametreleri (ζ)

• .			ST	ΓO		
Atom	$E_{_{HFR}}$	\mathcal{E}_{HFR}	$\zeta_{\rm HFR}$	$E_{\rm DHFR}$	\mathcal{E}_{DHFR}	ζ_{DHFR}
Be	14.573020907 14.57302 ^a	4.732666429 0.309268180	2.201776092 6.092066782 1.370179919 0.866389961 2.066318469 2.815609927	14.575400682 14.57590 ^a 14.57589306 ^d 14.5758922 ^b	4.731076538 0.308742039	2.839229613 2.906555564 4.296015812 8.349221276 8.085415510 0.975381898
Ne ⁺⁶	110.106561327	40.535718757 7.489250577	6.269296849 6.159743521 14.389250217 15.060866365 5.786507562 4.224168610	110.181543288 110.2559741 ^d 110.2560077 ^b	40.585159355 7.500972288	4.598068902 4.724078442 15.001830951 15.099999945 6.284437574 4.250675185
Ar^{+14}	377.535336162	144.346810836 31.099483582	18.431938048 7.172751564 15.238343516 14.923250528 12.036628685 13.679630742	378.403503090 379.1981846 ^d	144.890960212 31.253732750	8.009669454 6.549313499 5.059083283 6.364973012 12.000234512 12.984367837
<i>Sn</i> ⁺⁴⁶	3047.258173465	1199.610341723 285.553365288	30.396459901 50.957328418 24.666619037 67.296708306 51.601140365 24.499224491	3101.832269793 3159.8330540 ^d 3159.987310 ^c	1235.468562751 297.878475656	19.008375921 29.258791122 26.156129178 66.958370743 81.585968801 10.456464460

BÖLÜM 4- ARAŞTIRMA BULGULARI VE TARTIŞMA

Ali BAĞCI

Çizelge 22. Etkin ve pasif bileşenler için aynı kesirli başkuantum sayılı STO (n-STO) radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş göreli olmayan (HFR), göreli (DHFR) orbital (ε),toplam

enerji (E) değerleri ve en-iyileştirilmiş orbital parametreleri (ζ)

Atom				n-1	STO			
7 ttolii	$E_{\rm HFR}$	${\cal E}_{HFR}$	n^*_{HFR}	$\zeta_{\rm HFR}$	E_{DHFR}	${\cal E}_{DHFR}$	n^{*}_{DHFR}	ζ_{DHFR}
Be	14.573022552 14.57302 ª	4.732669089 0.309269222	0.997851860 1.007133154 2.220846354 2.102973178 2.064407579 1.988739979	1.592403155 6.361037728 1.315490488 0.867077105 1.890319668 2.804266061	14.575557114 14.57590 ^a 14.57589306 ^d 14.5758922 ^b	4.731275017 0.308758516	1.011933380 1.482276573 2.219778737 1.231308230 2.081152949 1.981094418	2.831198743 2.906388422 4.295862145 8.330293372 8.081198743 0.971231105
Ne^{+6}	110.110955548	40.539695546 7.490671098	1.731021301 1.003168729 1.797632025 1.829987045 1.665463877 2.627188358	7.259986906 6.451931384 14.637474160 14.722603506 5.519810705 4.229103722	110.182250948 110.2559741 ^d 110.2560077 ^b	40.584786474 7.500051417	0.964051179 0.964865425 2.172581136 2.135990126 2.110704446 2.020402631	4.616992782 4.721318164 15.001318164 15.070390516 6.281900954 4.251213064
Ar^{+14}	377.535504149	144.347148816 31.099530042	0.999830647 0.999680898 2.795418969 1.997071904 2.787849382 1.999940504	18.280996346 7.163135666 14.516771069 15.095314889 12.040503101 14.669933893	378.403503090 379.1981846 ^d	144.890960212 31.253732750	1.000000000 1.000000000 2.000000000 2.000000000 2.00000000	8.009669454 6.549313499 5.059083283 6.364973012 12.000234512 12.984367837
<i>Sn</i> ⁺⁴⁶	3047.258173465	1199.610341723 285.553365288	1.000000000 1.00000000 2.00000000 2.00000000 2.00000000	30.396459901 50.957328418 24.666619037 67.296708306 51.601140365 24.499224491	3102.864325903 3159.8330540 ^d 3159.987310 ^c	1235.906490280 297.962891850	0.999847842 0.950372636 1.999999693 2.483398687 1.918589779 1.937808125	19.003797276 29.285924909 26.149347733 66.951925020 82.220916869 10.476137130

•			α =	= 2		
Atom	E _{HFR}	\mathcal{E}_{HFR}	$\zeta_{\rm HFR}$	E _{DHFR}	\mathcal{E}_{DHFR}	ζ_{DHFR}
Be	14.573020163 14.57302 ^a	4.732662593 0.309264836	2.737296295 5.624173278 1.482045160 3.083303769 5.615851429 0.884198471	14.574221921 14.57590 ^a 14.57589306 ^d 14.5758922 ^b	4.735161003 0.309543334	2.043596600 9.615929025 8.286020429 5.138247983 1.007419419 7.583651376
Ne^{+6}	110.111008664	40.539819112 7.490713593	9.602430915 11.707565770 4.290778603 3.855294849 11.322545892 15.204945718	110.199073288 110.2559741 ^d 110.2560077 ^b	40.590670621 7.506356911	5.068509388 16.083047884 14.185367663 15.617890996 6.865326860 19.197827519
Ar^{+14}	377.535520644	144.347131929 31.099523648	26.428233095 13.222483048 7.939581111 13.091779300 12.129895939 14.577053861	378.405774525 379.1981846 ^d	144.891993061 31.253747119	8.277588914 6.390617641 5.059170668 6.146534293 12.000200382 12.984609500
<i>Sn</i> ⁺⁴⁶	3047.258169224	1199.610339829 285.553363850	51.089086783 58.115249974 23.641645433 23.855235199 63.862513322 37.504890432	3108.893670823 3159.8330540 ^d 3159.987310 ^c	1241.760819171 296.193223621	47.404115102 52.353867978 90.661960961 19.564814051 95.374159000 90.153527080

Çizelge 23. Etkin ve pasif bileşenler için aynı $\psi^2 - ETO$ radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş göreli olmayan (HFR), göreli (DHFR) orbital (ε), toplam enerji (E) değerleri ve en-iyileştirilmiş orbital parametreleri (ζ)

			α	=1		
Atom	E _{HFR}	\mathcal{E}_{HFR}	$\zeta_{\rm HFR}$	E _{DHFR}	\mathcal{E}_{DHFR}	ζ_{DHFR}
Be	14.573014646 14.57302 ^a	4.732648270 0.309256402	3.050052712 4.193545085 1.638131177 0.911575575 5.227546397 4.283635049	14.574944116 14.57590 ^a 14.57589306 ^d 14.5758922 ^b	4.733337129 0.308751666	2.049150913 11.095405182 9.886388838 1.064934861 2.654958195 8.195208316
Ne^{+6}	110.111009187	40.539812214 7.490711624	9.361861478 13.163717926 6.127907892 13.375661794 13.172793409 3.978033093	110.187879164 110.2559741 ^d 110.2560077 ^b	40.593766017 7.500937777	10.811100133 7.891002838 14.383292269 15.617893972 3.750022840 3.355369920
Ar^{+14}	377.535519816	144.347141269 31.099526381	17.042615461 8.053769891 13.245214503 7.921156897 25.113194686 16.344430443	378.405958881 379.1981846 ^d	144.891988176 31.253710392	8.109590283 5.803312340 5.068117517 7.425996956 12.004151845 12.982380000
<i>Sn</i> ⁺⁴⁶	3047.258172382	1199.610339090 285.553365462	46.176454313 66.849479351 24.121636303 22.968172044 42.866480727 38.143212929	3108.787977454 3159.8330540 ^d 3159.987310 ^c	1242.224630940 295.916767932	64.689455189 14.720874736 87.974404171 126.054951676 81.410894285 123.735087860

Çizelge 24. Etkin ve pasif bileşenler için aynı $\psi^1 - ETO$ radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş göreli olmayan (HFR), göreli (DHFR) orbital (ε), toplam enerji (E) değerleri ve en-iyileştirilmiş orbital parametreleri (ζ)

			α =	= 0		
Atom	$E_{\rm HFR}$	\mathcal{E}_{HFR}	$\zeta_{\rm HFR}$	E_{DHFR}	\mathcal{E}_{DHFR}	ζ_{DHFR}
Be	14.573020920 14.57302 ^a	4.732665343 0.309267811	2.296547009 6.105370358 1.348254868 0.881786343 1.947290167 2.884186710	14.574688776 14.57590 ^a 14.57589306 ^d 14.5758922 ^b	4.737256068 0.311471378	4.140196118 3.828757820 9.999685992 0.924009058 1.946327460 8.078289162
Ne^{+6}	110.111008678	40.539813914 7.490712277	8.987482027 4.751929211 11.223730450 15.734699458 5.978053685 3.983669884	110.185693617 110.2559741 ^d 110.2560077 ^b	40.590922766 7.500931384	8.674532925 4.735978086 15.018895660 15.097284611 6.710417669 3.358501889
Ar^{+14}	377.535517264	144.347020330 31.099484909	18.476602511 16.074914561 8.054029955 27.099903221 12.036620000 13.679630000	378.406891412 379.1981846 ^d	144.892379099 31.253720150	8.077058426 6.602656208 5.056844870 6.145951290 11.999260062 12.982387621
Sn^{+46}	3047.258173584	1199.610341430 285.553366157	23.812816673 51.999751280 24.548726372 23.543658762 52.898658644 65.374094294	3095.374233800 3159.8330540 ^d 3159.987310 ^c	1236.037681860 295.333712132	17.328155296 26.524832220 62.264149625 99.227692564 99.437271798 83.990222379

Çizelge 25. Etkin ve pasif bileşenler için aynı $\psi^0 - ETO$ radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş göreli olmayan (HFR), göreli (DHFR) orbital (ε), toplam enerji (E) değerleri ve en-iyileştirilmiş orbital parametreleri (ζ)

BÖLÜM 5

SONUÇ VE ÖNERİLER

Atomların elektronik yapı ve özelliklerin incelenmesinde hesaplamalarda kullanılan baz fonksiyonlarının sistemin fiziksel özelliklerine uygun olması, KD koşulunu sağlaması, fonksiyonların limit durumunda göreli olmayan duruma indirgenebilmesi, varyasyonel çöküşün önlenmesi, sistemlerin fiziksel özelliklerinin daha hassas hesaplanması, orbital parametrelerinin bulunabilmesi amacı ile en-iyileştirilmesinin yapılabilmesi için gereklidir. Dolayısı ile göreli olmayan durumdan farklı olarak seçilen baz fonksiyonunun göreli etkileri içermesi ve denklemlere göreli etkilerin dahil edilmesi sonucunda ortaya çıkan koşulları yerine getirmesi sistemlerin fiziksel özelliklerinin incelenebilmesi bakımından önem taşır.

Bu çalışmada literatürde yarım spinli parçacıklar için önerilen tam ortonormal baz fonksiyonları (Guseinov, 2012) kullanılmış ve H-, He-, Be-benzer atomlar için hesaplamalar yapılmıştır. Çalışmanın ilk bölümünde bu baz fonksiyonlarının açısal kısmı (STKT) analiz edilmiş, baz fonksiyonlarının açısal kısmında literatürle uyumlu olacak şekilde düzenlemeler yapılmış, açısal kısmın spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ için sonuçları elde edilip literatürle karşılaştırılmış, denklemlerin ve hesaplamalar neticesinde elde edilen sonuçların uyumlu olduğu görülmüştür. Ardından dalga fonksiyonlarının açısal kısmına ait dağılım fonksiyonlarının ifadeleri, spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ durumunda bulunmuş bu ifadelerin şematik sonuçları elde edilmiştir. Spin $s = \frac{1}{2}$ için göreli ve göreli olmayan dağılım fonksiyonları karşılaştırılmış, göreli ve göreli olmayan durumlar için benzer dağılım fonksiyonlarının hangi koşullar altında sağlandığı tartışılmıştır. Benzer bir tartışma spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ dağılım fonksiyonları içinde gerçekleştirilmiştir.

Ayrıca, yapılan incelemeler denklemlerin açısal kısmının spin $s = \frac{1}{2}$ için ortadan kalktığı ve denklemlerin iki-bileşenli radyal denklemlere indirgenebildiği ancak daha yüksek spine sahip sistemler için bu durumun geçerli olmadığı görülmüştür. Dolayısı ile $s = \frac{1}{2}$ için KD koşulunun kullanılan radyal fonksiyonlar için aranmasının yeterli olacağı ancak daha yüksek spine sahip sistemler için KD koşulunun kullanılan dalga fonksiyonunun tamamı için aranması gerektiği anlaşılmıştır.

Çalışmanın ikinci bölümünde YSSO'lerin radyal kısımları analiz edilmiş, spin $s = \frac{1}{2}$ için göreli denklemlerin gerektirdiği koşulları sağlayıp sağlamadığı tartışılmıştır. Buna göre YSSO'lerin içerdiği radyal fonksiyonları için çalışma, etkin ve zayıf bileşenler için aynı radyal fonksiyonları, etkin bileşen aynı kalmak koşulu ile etkin bileşeni de içerecek şekilde genişletilen pasif bileşen göz önünde bulundurularak sonuçlar elde edilmiştir.

Çalışmanın üçüncü bölümünde ise elektrostatik etkileşmelerin hesaplanabilmesi açısından YSSO'ler dikkate alınarak spin $s = \frac{1}{2}$ için elde edilen Grant katsayıları *s* spin için genelleştirilmiş sonuçlar literatürle karşılaştırılmış, bir-merkezli integrallerin ve Coulomb, "exchange" etkileşme integrallerinin analitik ifadeleri türetilmiş, DHF denklemleri YSSO'lerin spin $s = \frac{1}{2}$ durumu dikkate alınarak Roothaan'ın atom orbitallerinin doğrusal bileşimi yöntemi ile analitik olarak çözülmüştür.

Hesaplamalar, $\psi^{\alpha} - ETO$ ve STO orbitalleri için etkin ve pasif bileşenin aynı radyal orbitallere sahip olması durumu seçilerek H-benzer atomlar için tekli-, He-benzer aomlar için tekli- ve ikili-zeta baz takımı kullanılarak, Be-benzer atomlar için ise Kim (1967) tarafından önerilen genişletilmiş $(1s \rightarrow 1s1s, 2s \rightarrow 2s2s2s2s)$ baz takımı kullanılarak yapılmıştır. Enivilestirme vöntemi ile orbital parametreleri elde edilmis, orbital parametrelerinin davranışı tartışılmış, yapılan hesaplamalar neticesinde literatürle (a: Kim, 1967; b: Goldman, 1988; c: Quiney ve ark., 1987; d: Jorge, 1999) uyumlu sonuçlar bulunmuştur. Bununla birlikte incelenen atomların çekirdek yükünün ve elektron sayısının artması ile birlikte varyasyonel çöküş probleminin göreli etkileri içermeyen dalga fonksiyonları kullanılması neticesinde çok elektronlu atomlar için ortaya çıktığı, orbital parametrelerinin en-iyileştirilmeşi sırasında hesaplanan atomlar açısından beklenenden daha düşük enerji değerlerinin elde edildiği görülmüştür gözlenmiştir. Enerji değerlerinin hesaplaması esnasında ortaya çıkan varyasyonel cöküs problemi yüzünden orbital parametrelerinin en-iyileştirmeşi virial teoremi dikkate alınarak yapılmıştır. Ancak, varyasyonel çöküş problemine dayalı olarak düşünülen bu geçici yöntem, genel ve sürekli çözüm olmamakla birlikte hesaplanan enerji ve elde edilen eniyileşmiş orbital parametre değerlerinin hassasiyeti açısından güvenilirliği azaltmaktadır. Dolayısı ile göreli olmayan radyal fonksiyonlarının elektron sayısı ve çekirdek yükü düşük olan atomlar için kullanılabileceği sonucu elde edilmiştir. Buna bağlı olarak YSSO'ler için seçilen radyal fonksiyonlarının muhakkak göreli etkileri içeren ve KD koşulunu yerine getiren radyal fonksiyonlar ile oluşturulması gerektiği görülmüştür. Dolayısı ile, ψ^{α} – tam ortonormal toplumlarına ait radyal fonksiyonların, göreli olmayan Lambda ve Coulomb-Sturmian radyal fonksiyonlarının analojik olarak elde edilmiş genel formu olduğu dikkate alındığında göreli olmayan kuantum teorisi açısından tam ve ağırlıklı ortonormal oldukları, göreli kuantum teorisi açısından ise baz fonksiyonu olarak ele alınabilecekleri görülür. $\psi^{\alpha} - ETO$ 'lerin göreli etkileri içerecek şekilde yazılabilmesi için yapılan incelemeler neticesinde Dirac-tipi dalga fonksiyonlarına (2.4.2.2), göreli formunun elde edilebilmesi için çapılan çalışmalar neticesinde ise göreli Coulomb-Sturmian tipi (2.4.1.3)-(2.4.1.4) dalga fonksiyonlarına benzediği anlaşılmıştır. Bu durum analojik yöntemlerle elde edilen $\psi^{\alpha} - ETO'$ lerin göreli etkileri içermeyen kuantum mekaniksel hesaplamalarda uygun olduğunu ancak göreli etkileri içeren kuantum mekaniksel hesaplamalar durumunda elde edilecek tam ortonormal orbitallerin Szmytkowski (1997) tarafından belirtilen sartlar neticesinde elde edilmesi gerektiğini ortaya koymuştur. Çok elektronlu atom ve molekül sistemlerinin analitik çözümünde STO radyal orbitallerinin kullanılması durumunda ise son yıllarda yapılan calısmalar (Munger, 2007) en ideal baz fonksiyonunun Drake ve Goldman (1981) tarafından önerilen yaklaşımla elde edilmesi gerektiğini göstermiştir.

Diğer yandan, gerek STO gereksede $\psi^{\alpha} - ETO'$ lerin göreli olmayan formlarının DHFR denklemlerinde ortaya çıkan Coulomb ve "exchange" integrallerinin, Breit etkileşimini ifade eden integrallerin çözümünde önemli kolaylıklar sağladığı, az sayıda parçacık içeren sistemlere uygulanabildiği dikkate alındığında yüksek spine sahip $\left(s > \frac{1}{2}\right)$ sistemlerin temel teorisinin incelenmesi ve anlaşılması için yapılacak çalışmalarda ve bu süreç içerisinde ortaya

çıkan matematiksel problemlerin aşılmasında kullanılabileceği söylenebilir.

KAYNAKLAR

- Agmon S., 1982. Lectures On Exponential Decay of Solutions of Second Order Elliptic Equations: Bound on Eigenfunctions of N-Body Schrödinger Operators. Mathematical Notes, Vol.29, Princeton University, Princeton, NJ 118 p.
- Aerts P. J. C. ve Nieuwpoort W. C. 1985. On the use of Gaussian basis sets to solve the Hartree-Fock-Dirac equation. I. Application to one-electron atomix systems. *Chem. Phys. Lett.*, 113; 165-172.
- Bargmann V. ve E. P. Wigner. 1948. Group Theoretical Discussion of Relativistic Wave Equations. *Proc. Natl. Acad. Sci. U. S. A.*, 34: 211-223.
- Bethe H. A. 1947. The Electromagnetic Shift of Energy Levels. Phys. Rev., 72: 339-341.
- Bethe A. H. ve Salpeter E. E., 1957. *Quantum Mechanics of One and Two Electron Atoms. Springer*, New York.
- Bielinska D. ve ark. 2004. Relativistic effects in hydrogenlike atoms embedded in Debye plasmas. *Phys. Rev.* E., 69: 016404, 1-6.
- Blundell S. A., Johnson W. R., Liu Z. W. ve Sapirstein J. 1989. Relativistic all-order equations for helium. *Phys. Rev.*, 39: 3768-3775.
- Bohr N. 1913. On the Constitution of Atoms and Molecules. Phil Mag., 26: 1-25.
- Breit G. 1929. The Effect of Retardation on the interaction of Two electrons. *Phys. Rew.*, 34:553-573.
- Brown G. E. ve Ravenhall D. G. 1951. On the Inretaction of Two Electrons. *Proc. Roy. Soc.*, 208: 552-559.
- Cohen S. 1960. Relativistic Self-Consistent Solutions for Atoms of Large Atomic Number. *Phys. Rev.*, 118: 489-494.
- Colm T. W. ve Mason N. J. 2005. *Electron scattering from atoms, molecules, nuclei and bulk matter*. Springer. 55-68 p.
- Condon E. U. ve Shortley G. H. 1935. *Theory of Atomic Spectra. Cambridge University press*, London. 460 p.
- Cooper J. R. A. 1965.Electron interaction coefficients in relativistic self-consistent field theory. *Proc. Phys. Soc.*, 86: 529-533.
- Datta S. N.1993. Ab-initio nonrelativistic and relativistic Hartree-Fock calculations for both closed- and open shell molecules using GTO basis. *Pramana J. Phys.*, 41: 363-370.
- Darwin C. G. 1928. The Wave Equation of the Electron. Proc. Roy. Soc., 118: 654-680.

Davydov A. S. 1965. Quantum Mechanics. Pergamon Press. Oxford.

- Desclaux J. P. 1975. A multiconfigrational relativistic DIRAC-FOCK program. *Comput. Phys. Commun.* 9: 31-45.
- Dirac P. A. M., 1928. Uber die Quantentheorie des Elektrons. Phys. Zeits., 29: 561-563.
- Dirac P. A. M., 1958. The Principles of Quantum Mechanics (4th ed.), Oxford Univ. Press.
- Dirac P. A. M. 1936. Relativistic Wave Equations, Proc. Roy. Soc. 155: 447-459.
- Drake G. W. F. Ve Goldman S. P. 1981. Application of discrete-basis-set methods to the Dirac equation. *Phys. Rev A.*, 23: 2093-2098.
- Dyall K. G., Grant I. P., Wilson S. 1984. The Dirac equation in the algebraic approximation:II. Extended basis set calculations for hydrogenic atoms. J. Phys. B: At. Mol. Phys., 17: 1201-1209.
- Dyall K. G., Grant I. P., Johnson C. T., Parpia F. A., Plummer E. P.1989. GRASP: A generalpurpose relativistic atomic structure program. *Comput. Phys. Commun.*, 55: 425-456.
- Dyall K. G. 2012. A question of balance: Kinetic balance for electrons and positrons. *Chem. Phys.*, 395:35-43.
- Echenique P. ve Alonso J. L., 2007. A Mathematical and Computational Review of Hartree-Fock SCF Methods in Quantum Chemistry. *Molecular physics.*, 105 (23-24):3057-3098.
- Einstein A., 1905. Zur Elektrodynamik bewegter Körper. Ann. Physik, 17: 891–921.
- Einstein A., 1915. Zur allgemeinen Relativitatstheorie (Nachtrag), Sitzungsber. *Preuß. Akad. Wissensch.*, 46: 799-801.
- Fægri K. 2005. Even tempered basis sets for four-component relativistic quantum chemistry. *Chem. Phys.*, 311: 25-34.
- Fierz M. ve Pauli W. 1939. On the wave equations for particles of arbitrary spin in an electromagnetic field. *Proc. Roy. Soc.*, 173: 211-232.
- Filatov M., Cremer D. 2005. Connnection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. *The J. Chem. Phys.*, 122:064104,1-8.
- Fock V., 1930. Naherungsmethode zur Lösung des Quantenmechanischen Mehrkörperproblems. Zeits. F. Physik., 61:126-148.
- Fushchich W. I. ve Nikitin A. G. 1994. Symmetries of Equations of Quantum Mechanics. N. Y., Allerton Press Inc.
- Gazdy B. 1983. Variational method fort he solution of Dirac-type equation. *Chem. Phys. Lett.*, 99; 41-44.

- Gazeau J. P. 1980. L'equation de Dirac avec masse et spin arbitraries: une construction simple et naturelle. *J. Phys. G: Nucl. Phys.*, 6: 1459-1475.
- Gel'fald I. M. ve Yaglom A. M. 1948. General relativistic invariant equations and infinitedimensional representations of the Lorentz group. *Sov. Phys.*, 18: 703-733.
- Gordon W., 1927. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Physik. 40:117-133.
- Grant I. P. 1961. Relativistic Self-Consistent Fields. Proc. Roy. Soc., 262: 555-576.
- Grant I. P. 1965. Relativistic Self-Consistent Fields. Proc. Phys. Soc., 86: 523-528.
- Grant I. P. 1970. Relativistic calcularion of atomic structures. Adv. Phys. 19: 747-811.
- Grant I. P. 1986. Variational methods for Dirac wave equations. J. Phys. B. At. and Mol. Phys., 20: 3187-3206.
- Grant I. P., McKenzie B. J., Norrington P. H., Mayers D. F., Pyper N. C. 1980. An atomic multiconfigrational Dirac-Fock package. *Comput. Phys. Commun.*, 21: 207-231.
- Grant I. I. 2007. Relativistic Quantum Theory of Atoms and Molecules. Springer.
- Goldman S. P. 1987. Variational Dirac-Hartree-Fock energy optimization by the virialtheorem method. *Phys. Rev. A*, 36: 3054-3058.
- Goldman S. P. 1988. Variational Dirac-Hartree-Fock method: Results fort he He, Be, C, and Ne isoelectronic sequences . *Phys. Rev. A*, 37: 16-30.
- Goudsmit S. Ve Uhlenbeck G. E. 1926. Spinning Electrons and the Structure of Spectra. *Nature*, 117:264-265.
- Guseinov I. I. 1998. Restricted open shell Hartree-Fock theory. J. Mol. Struct. Theocem. 422:69-73.
- Guseinov I. I. 2002. New Complete orthonormal sets of exponential-type orbitals and their application to translation of Slater orbitals. *Int. J. Quant. Chem.*, 90: 114-118.
- Guseinov I. I., 2007. Combined Open Shell Hartree–Fock Theory of Atomic–Molecular and Nuclear Systems. J. Math. Chem., 42:177-189.
- Guseinov I. I., Mamedov B. A., Ertürk M., Aksu H. ve Şahin E., 2007. Application of Combined Hartree-Fock-Roothaan Theory to Atoms With an Arbitrary Number of Closed And Open Shells of Any Symmetry. *Few Body Systems*, 41:211-220.
- Guseinov I. I. 2009. Theory of complete orthonormal sets of relativistic tensor wave functions and Slater tensor orbitals of particles with arbitrary spin in position, momentum and four-dimensional spaces. *Phys. Lett. A.*, 373: 2178-2181.

- Guseinov I. I. 2010. Combined theory of two- and four-component complete orthonormal sets of spinor wave functions and Slater type spinor orbitals in position, momentum and four-dimensional spaces. *J. Math. Chem.*, 47: 391-402.
- Guseinov I. I. 2011. Dirac equation for particles with arbitrary half-integral spin. *Phil. Mag.*, 91: 4063-4072.
- Guseinov I. I. 2012. New Complete Orthonormal Basis Sets of Relativistic Exponential Type Spinor Orbitals and Slater Spinor Functions of Particles with Arbitrary Half-Integral Spin in Position, Momentum and Four-Dimensional Spaces. *arXiv*:1008.5267v2: 1-27.
- Hall R. L. 1986. Dirac eigenvalues for screened Coulomb potentials. J. Phys. A: Math. Gen., 19: 2079-2086.
- Hartree D.R., 1928a. The Wave Mechanics of an Atom with a Non-Coulomb Central Field.Central Field. Part I: Theory and Methods. *Proc. Camb. Phil. Soc.*, 24 (1):89-110.
- Hartree D.R., 1928b. The Wave Mechanics of an Atom with a Non-Coulomb CentralField. Part II: Some Results and Discussion. *Proc. Camb. Phil. Soc.*, 24 (1):111-132.
- Hartree D. R., 1957. The Calculation of Atomic Structures. Wiley, New York.
- Hegarty D. 1986. On the Dirac equation in the algebraic approximation. *Theor. Chim. Acta.*, 70: 351-356.
- Heisenberg W., 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Physik, 33: 879-893.
- Ikhdair S. M. ve Sever R. 2007. Bound energy fort he exponential-cosine-screened Coulomb potential. *J. Math. Chem.*, 41: 329-341.
- Ishikawa Y., Quiney H. M. 1993. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions. *Phys. Rev. A.*, 47: 1732-1739.
- Ishikawa Y., Koc K., Schwarz W. H. E. 1997. The use of Gaussian spinors in relativistic electronic structure calculations: the effect of the boundary of the finite nucleus of uniform proton charge distribution. *Chem. Phys.*, 225: 239-246.
- Jayaraman J. 1976a. On the additional invariance of arbitrary spin relativistic wave equations. *J. Phys. A.*, 9: 1181-1185.
- Jayaraman J. 1976b. A new linear Dirac-like spin- $\frac{3}{2}$ wave equation using Clifford algebra. J. *Phys. A.*, 10: L131-L136.
- Jorge F. E., Da Silva A. B. F. 1996. The generator coordinate Dirac-Fock method applied to Beryllium-like atomic species. *Can. J. Chem.*, 74: 1748-1752.

- Jorge F. E., Bareto M. T., Da Silva A. B. F. 1999. Accurate adapted Gaussian basis sets for helium- and Beryllium-like atomic species to be used in Dirac-Fock calculations. J. Mol. Struct. 464: 1-6.
- Karwowski J., Petska G., Stanke F., Harris E. 2006. Representation of the Dirac equation and variational principle. *Int. J. Quant. Chem.*, 106: 3129-3139.
- Kato T., 1957. On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics. Commun. *Pure and Appl. Math.* 10:151-177.
- Klein O., 1926. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für *Physik A.*, 37: 895–906.
- Kim Y. K. 1967. Relativistic Self-Consistent-Field Theory for Closed-Shell Atoms. *Phys. Rev.*, 154: 17-39.
- Koga T., Kanayama K., Thakkar A. J. 1997. Noninteger Principal Quantum Numbers Increase the Efficiency of Slater-Type Basis Sets. *Int. J. Quant. Chem.*, 62: 1-11.
- Kutzelnigg W. 1984. Basis set expansion of the Dirac operator without variational collapse. *Int. J. Quant. Chem.* 25: 107-129.
- Laaksonen L, Grant I. P. ve Wilson S. 1988. The Dirac equation in the algebraic approximation: VI. Molecular self-consistent field studies using basis sets of Gaussiantype functions. J. Phys. B: At. Mol. Phys., 21: 1969-1985.
- Lamb W. E. ve Rutherford R. C. 1947. Fine Structure of the Hydrogen Atom, by a Microwave Method. *Phys. Rev.*, 72:241-243.
- Lai C. S. 1982. Energies of the exponential cosine screened Coulomb potential. *Phys. Rev. A*. 26: 2245-2248.
- Ley-Koo E., Jauregui R., Gongora-T A., Bunge C. F. 1993. General method to evaluate twobody integrals for relativistic atomic calculations. *Phys. Rev.*, 47: 1761-1770.
- Malli G. 1984. Dirac-type functions as basis set for relativistic SCF calculations. J. Chem. Phys., 80: 2060-2062.
- Malli G., Da Silva B. F., ve Ishikawa Y. 1992. Universal Gaussian basis functions in relativistic quantum chemistry atomic Dirac-Fock-Coulomb and Dirac-Fock-Breit calculations. *Can. J. Chem.*, 70: 1822-1826.
- Mark F. 1980. Variational Solution oh The Dirac Equation within a Multicentre Basis Sets of Gaussian Functions. *Chem. Phys. Lett.*, 71: 507-512.
- Matsuoka O., Watanabe Y. 2001. An atomic Dirac-Fock-Roothaan program. *Comput. Phys. Commun.*, 139: 218-234.

- Mayers D. F. 1957. Relativistic Self-consistent Field Calculation for Mercury. *Proc. Roy. Soc.*, 241: 93-109.
- Mathews P. M. 1965. Relativistic Schrödinger Equations for Particles of Arbitrary Spin. *Phys. Rev.*, 143: 978-985.
- McKenzie B. J., Grant I. P., Norrington P. H. 1980. A program to calculate transverse Breit and QED corrections to energy levels in a multiconfigrational Dirac-Fock environment. *Comput. Phys. Commun.*, 21: 233-246.
- Munger C. T. 2007. Ideal basis sets for the Dirac Coulomb problem: Eigenvalue bounds and convergence proofs. *J. Math. Phys.*, 48: 022301, 1-48.
- Nakashima H. ve Nakatsuji H. 2011. Relativistic free complement method for correctly solving the Dirac equation with the application to hydrigen isoelectronic atoms. *Theor. Chem. Acc.*, 129: 567-574.
- Niederle J. Nikitin A. G. 2004. Relativistic wave equation for interacting massive particles with arbitrary half-integer spins. *Phys. Rev. D.*, 64:125013, 1-11.
- Nikitin A. G. 2006. The relativistic Coulomb problem for particles with arbitrary half-integer spin. J. Phys. A: Math. Gen., 39: 10931-10944.
- Parpia F. A., Fischer F. C., Grant I. P. 1996. GRASP92: A package for large-scale relativistic atomic structure calculations. *Comput. Phys. Commun.*, 94: 249-271.
- Pauli W. 1925. There can never be two or more equivalent electrons in an atom. Zeits. F. Phys., 31: 765-783.
- Purt P. ve Watson W. K. R. 1963. Additional solutions to the Dirac equation with Yukawa potential. *Il. Nuovo Cimento*, 2: 525-529.
- Quiney H. M., Grant I. P., Wilson S. 1987. The Dirac Equation in the Algebraic Approximation. *Phys. Scripta*, 36: 460-463.
- Raiher M., Kind C. 2001. Self-comsistent treatment of the frequency-independent Breit interaction in Dirac-Fock calculations of atomic structures. H. He- and Be-like ions. J. Phys. B: At. Mol. Opt. Phys., 34: 3133-3126.
- Raiher M. ve Wolf A. 2009. *Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science*. Wiley.
- Rarita W. ve Schwinger J. 1941. On a Theory of Particles with Half-Integral Spin. *Phys. Rev.* 60:61-61.
- Rico J. F., Lopez R., Aguado A., Ema I. ve Ramirez G., 2001. New Program for Molecular Calculations with Slater Type Orbitals. *Int. J. Quant. Chem.*, 81: 148-153.

- Rosicky F. ve Mark F. 1979. Approximate Relativistic Hartree-Fock Equations and Their Solution within a Minimum Basis Set of Slater-Type Functions. *Theoret. Chim. Acta* (*Berl*)., 54: 35-51.
- Rosicky F. ve Mark F. 1980. Analytical Relativistic Hartree-Fock Equations within Scalar Basis Sets. *Chem. Phys. Lett.*, 74:562-567.
- Rosicky F. 1982. On relativistic Hartree-Fock theory. J. Phys. B: At. Mol. Phys., 15: L305-L308.
- Roothaan C. C., 1951. New Developments in Molecular Orbital Theory. *Rev Mod Phys.*, 23:69-89.
- Roothaan C. C. J. 1960. Self-Consistent Field Theory for Open Shells of Electronic Systems. *Rev. Mod. Phys.*, 32: 179-185.
- Saue T. 1996. *Principles and Applications of Relativistic Molecular Calculations*. PhD Dissertation (Doktora Tezi). University of Oslo, Norway.
- Schrödinger E., 1926. Quantisierung als Eigenwertproblem. Ann. Physik, 79: 361-376.
- Setare M. R. ve Haidari S. 2010. Spin symmetry of the Dirac equation with the Yukawa potential. *Phys. Scripta.*, 81: 065201.
- Srivastava H. M., Mavromatis H. A., Alassar R. S. 2003. Remarks on Some Assiciated Laguerre Integral Results. *App. Math. Lett.*, 16: 1131-1136.
- Slater J. C., 1929. The Theory of Complex Spectra. Phys. Rev., 34(10): 1293–1322.
- Slater J. C., 1930a. Note on Hartree's Method. Phys. Rev., 35:210-211.
- Slater J. C., 1930b. Atomic Shielding Constants. Phys. Rev., 36(1): 57-64. 125.
- Slater J. C., 1960. Quantum Theory of Atomic Structure. (2 vols.) McGraw-Hill, New York.
- Sommerfeld A., 1916. Zur Quantentheorie der Spektrallinien. Ann. Physik, 51: 1-94.
- Styszynski J., Karwowski J. 1988. Multiconfigration Dirac-Fock study on the ground-state energies of two-electron atoms. J. Phys. B: At. Mol. Phys., 21: 2389-2397.
- Swirles B., 1935. The Relativistic Self-Consistent Field. Proc. R. Soc. 152: 625-649.
- Swirles B., 1936. The Relativistic Self-Consistent Field. Proc. R. Soc. 157: 680-696.
- Synek M. 1964. Analytical Relativistic Self-Consistent Field Theory. *Phys. Rev.*, 136: A1552-A1560.
- Szmytkowski R. 1997. The Dirac-Coulomb Sturmians and the series expansion of the Dirac-Coulomb Green function: application to the relativistic polarizability of the hydrogenlike atom. *J. Phys. B: At. Mol. Opt. Phys.*, 30: 825-861.
- Varlamov V. V. 2002. General Solution of Relativistic Wave Equations. Int. J. Theo. Phys., 42: 583-633.

- Varlamov V. V. 2007. General Solution of Relativistic Wave Equations II: Arbitrary Spin Chains. Int. J. Theo. Phys., 4: 741-805.
- Wallmeier H. 1984. Relativistic self-consistent-field calculations with the squared Dirac operator. *Phys. Rev. A.*, 29: 2293-3006.
- Weniger E. J. 2012. On the mathematical nature of Guseinov's rearranged one-range addition theorems for Slater-type functions. *J. Math. Chem.*, 50: 17-81.
- Wei L.1999. Unified approach for exact calculation of angular momentum coupling and recoupling coefficients. *Comp. Phys. Commun.*, 120: 222-230.

ÇİZELGELER

Sayfa No

Çizelge 1. Dirac denkleminin çözümüne dayalı olarak kuantum sayılarının ve atom
orbitallerinin sembolleri ve kuantum sayılarının bazı değerleri16
Çizelge 2. Göreli etkiler dikkate alındığında çok-elektronlu atomların elektron dizilimi ve kabuk durumu
Çizelge 3. Clebsch-Gordan $(a_{ljm}^s(\lambda))$ katsayılarının spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri
Çizelge 4. Clebsch-Gordan $(a_{\tilde{l}jm}^s(\lambda))$ katsayılarının spin $s = \frac{1}{2}$ ve $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri
Çizelge 5. STKT'lerin spin $s = \frac{1}{2}$ için bazı kuantum sayılarında değerleri
Çizelge 6. STKT'lerin spin $s = \frac{3}{2}$ için bazı kuantum sayılarında değerleri
Çizelge 7. Göreli $\left(A_{ljm}^{s}(\theta, \varphi), \tilde{A}_{ljm}^{s}(\theta, \varphi); s = \frac{1}{2}\right)$ ve göreli olmayan dağılım fonksiyonlarının bazı kuantum sayılarında değerleri
Çizelge 8. Göreli $\left(A_{ljm}^{s}(\theta, \varphi), \tilde{A}_{\tilde{l}jm}^{s}(\theta, \varphi); s = \frac{3}{2}\right)$ ve göreli olmayan dağılım fonksiyonlarının bazı kuantum sayılarında değerleri
Çizelge 9. STO YSSO'lerin spin $s = \frac{1}{2}$ için bazı kuantum sayılarında değerleri
Çizelge 10. $\psi^{\alpha} - ETO$ YSSO'lerin spin $s = \frac{1}{2}$ için bazı kuantum sayılarında değerleri91
Çizelge 11. $d^{s,L}(j,m;j',m')$ katsayısının spin $s = \frac{1}{2}$ için CEEK değerleri
Çizelge 12. $d^{s,L}(j,m;j',m')$ katsayısının spin $s = \frac{1}{2}$ için EEEK değerleri
Çizelge 13. H-benzer atomlar için atomik birimlerde Coulomb potansiyeli kullanılarak göreli
temel ve uyarılmış durum enerjileri

Çizelge 15. H-benzer atomların atomik birimlerde Yukawa $\left(\frac{e^{-\mu r}}{r}\right)$ potansiyeli kullanılarak sırası ile $\mu = 0.01, 0.05, 0.1$ değerleri için göreli temel ve uyarılmış durum enerjileri.......103 Çizelge 16. H-benzer atomların Yukawa $\left(\frac{e^{-\mu r}}{r}\right)$ potansiyeli kullanılarak sırası ile $\mu = 0.01, 0.05, 0.1$ değerleri için elde edilen göreli temel ve uyarılmış durum enerjilerinin Çizelge 17. H-benzer atomların atomik birimlerde Screened Coulomb-like Yukawa $\left(\frac{e^{-\mu r}}{r^{1-\eta}}\right)$ potansiyeli kullanılarak sırası ile $\mu = 0.01, 0.05, 0.1$ ve $\eta = 10^{-6}$ değerleri için göreli temel ve Çizelge 18. H-benzer atomların Screened Coulomb-like Yukawa $\left(\frac{e^{-\mu r}}{r^{1-\eta}}\right)$ potansiyeli kullanılarak sırası ile $\mu = 0.01, 0.05, 0.1$ ve $\eta = 10^{-6}$ değerleri için elde edilen göreli temel ve Cizelge 19. He-benzer atomlar için atomik birimlerde ikili-zeta baz takımı kullanılarak göreli ve göreli olmayan toplam enerji, orbital enerji ve optimize edilmiş orbital parametrelerinin değerleri......112 Çizelge 20. He-benzer atomların göreli ve göreli olmayan limit $(c \rightarrow \infty)$ durumunda toplam, Cizelge 21. Etkin ve pasif bilesenler için aynı tam başkuantum sayılı STO radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş göreli olmayan (HFR), göreli (DHFR) orbital (ε), toplam enerji (E) değerleri ve eniyileştirilmiş orbital parametreleri (ζ)......116 Çizelge 22. Etkin ve pasif bileşenler için aynı kesirli başkuantum sayılı STO (n-STO) radyal orbitallerinin kullanılması ile atomik birimlerde bazı Be-benzer atomlar için elde edilmiş
ŞEKİLLER

Sayfa No

Şekil 1. H-benzer sistemlerin çekirdek yüküne bağlı olarak göreli (Dirac $-\varepsilon_D$) ve göreli
olmayan (Schrödinger – ε_s) orbital enerjileri arasındaki fark ($\Delta \varepsilon = \varepsilon_D - \varepsilon_s$)2
Şekil 2. Göreli (Dirac) ve Göreli olmayan (Schrödinger) elektronik sistemlerin enerji tayflarının şeması
Şekil 3. $D(0,s) \oplus D(s,0)$ Lorentz dönüşümleri altında lokal olarak dönüşebilen (2s+1)-
elemanlı, tam spine sahip (sol) ve yarım (sağ) spine sahip parçacıklar için bi-spinör dalga fonksiyonlarının temsili
Şekil 4. Göreli etkileri içeren elektronik yapı hesaplamalarının tarihsel gelişimi anlatan kavram şeması
Şekil 5. Bir-elektonlu sistemler için Schrödinger ve Dirac denklemlerinin çözümünden elde edilen enerji seviyelerinin gösterimi
Şekil 6. H-benzer atomlar için orbital parametrelerinin çekirdek yüküne bağlı olarak değişimi
Şekil 7. H-benzer atomlar için orbital parametrelerinin enerji seviyelerine göre değişimi (1 = $1s_{1/2}$; 2 = $2s_{1/2} / 2p_{1/2}$; 3 = $2p_{3/2}$; 4 = $3s_{1/2} / 3p_{1/2}$; 5 = $3p_{3/2} / 3d_{3/2}$; 6 = $3d_{5/2}$; 7 = $4s_{1/2} / 4p_{1/2}$; 8 = $4p_{3/2} / 4d_{3/2}$; 9 = $4d_{5/2} / 4f_{5/2}$; 10 = $4f_{7/2}$)
Şekil 8. He-benzer atomların tekli- ve ikili-zeta baz takımları kullanılarak elde edilen orbital enerjileri (a) ve toplam enerjileri (b) arasındaki farkin değişimi
Şekil 9. He-benzer atomlar için ikili-zeta baztakimi ile orbital enerjileri ($\varepsilon_{1_{s_{1/2}}}, \varepsilon_{2_{s_{1/2}}}$) için elde
edilen orbital parametleri farkinin çekirdek yüküne göre değişimi115

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER:

Adı Soyadı: Ali BAĞCI

Doğum Yeri: Hatay-Antakya

Doğum Tarihi: 01.01.1979

EĞİTİM DURUMU:

Lisans Öğrenimi: Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü (1999-2004)

Yüksel Lisans Öğrenimi: Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı (2004-2007)

Bildiği Yabancı Dil: İngilizce

BİLİMSEL FAALİYETLER:

a) Yayınlar-SCI

1) I. I. Guseinov, E. Sahin, R. Aydin, **A. Bagci**, "Use of basis sets of Ψ^{α} -Exponential type orbitals in calculation of electronic energies for one-electron diatomic molecules by single-zeta approximation", Phys. Scr. 77 (2008) 045302.

2) I.I. Guseinov, M. Erturk, E. Sahin, H. Aksu and **A. Bagci**, "Calculation of negative ions of B, C, N, O and F using noninteger n Slater type orbitals", J. Chinese Chem. Soc. 55 (2008) 303.

3) I.I. Guseinov, R. Aydn and A. Bagci, "Application of Complete Orthonormal Sets of Ψ^{α} -Exponential-Type Orbitals to Accurate Ground and Excited States Calculations of One-Electron Diatomic Molecules Using Single-Zeta Approximation", Chinese Phys. Let. 25 (2008) 2841.

4) I.I. Guseinov, R. Aydin, **A. Bagci**, "Calculation of Overlap integrals over Slater-type spinor orbitals of arbitrary half-integral spin using Auxiliary functions" Philosophical Magazine, 99 (2012), 2375-2381.

b) Ulusal/Uluslararası Toplantılarda Sunulan Bildiriler/Etkinlikler:

1) V. National Disordered Systems: Theory and application working group, Karaburun, Izmir, August 2005, **A. Bagci**" Perturbation theory in Quantum mechanics", (Sözlü Bildiri).

2) Computational Many-Particle Physics, Greifswald, GERMANY, Eylül, 2006, **A.Bagci** "Investigation of Hydrogen Molecule Ion using New CompleteOrthonormal Sets of Exponential Type Orbitals and Screening Field Approximation", (Poster Bldiri).

3) Winter School in Theoretical Chemistry, Helsinki, FINLAND, Aralık 2007, N. Ozcan, **A. Bagci**, "Accurate Ground State Calculations of Diatomic Molecules Using Complete Orthonormal Basis Sets of Exponential-Type Orbitals by Single-Zeta Approximation", (Poster Bildiri).

4) Symposium on Advanced Methods of Quantum Chemistry and Physics, Torun, POLAND, Eylül, 2007, I.I. Guseinov, E. Sahin, A. Bagci "Use of Ψ^{α} -Exponential Type Orbitals in Calculation of Electronic Energies for One-Electron Diatomic Molecules by Single-Zeta Approximation" (Poster Bildiri).

5) Turkish Physics Society 24th International Physics Congress, Malatya, TURKEY, Ağustos 2007, **A. Bagci**, I.I. Guseinov, B. A. Mamedov, M. Erturk, E. Sahin, H. Aksu, N. "Ozcan, "Application of Hartree-Fock-Roothaan Theory to Atoms and Molecules with Arbitrary Number of Open Shells" (Sözlü Bildiri).

6) 13th International Congress of Quantum Chemistry, Helsinki, Finland, Haziran 2009, **A.Bagci** "Calculation of One-electron diatomic molecules by single-zeta approximation using noninteger n-Slater type orbitals" (Poster Bildiri).

7) Turkish Physics Society 27th International Physics Congress, Malatya, TURKEY, Eylül 2010, **A. Bagci**, "Calculation of Two-center Overlap integrals over the Complete orthonormal sets of relativistic spinor orbitals and Slater spinor orbitals with arbitrary half-integral spin" (Sözlü Bildiri).

8) Turkish Physics Society 28th International Physics Congress, Malatya, TURKEY, Eylül 2011, A. Bagci, "Relativistic electronic structure calculation of one-electron atoms using Ψ^{α} -exponential type spinor orbitals" (Sözlü Bildiri).

9) Molecular electronic structure, TROY, Çanakkale, TURKEY, 9-13 September, yerel **organizasyon kurulu üyesi**.

VI

c) Katıldığı Projeler

1) Dirac Denkleminde Tam Ortonormal Orbital Toplumları Kullanılarak Bazı Atomik Özelliklerin İncelenmesi. Proje No: 2010/184. Proje Yöneticisi: Prof. Dr. İsrafil HÜSEYİN (Doktora Tezi projesi).

Kazandığı Burslar/Ödüller

1) Kredi Yurtlar Kurumu Doktora Bursu (2007-2011).

2) Erasmus Bursu, Nicolaus Copernicus Universitesi (Torun/Poland).

İLETİŞİM BİLGİLERİ

E-Posta Adresi: ali.bagci@yahoo.com.tr