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ABSTRACT 

 

 

3D VESSEL SEGMENTATION AND ANALYSIS IN CORONARY CT 

ANGIOGRAPHY IMAGES 

 

İlkay Öksüz 

 

Electrical and Electronics Engineering Program 

 

Thesis Supervisor: Assist. Prof. Dr. Devrim Ünay 

 

 

September 2013, 33 Pages 

 

 

Vessel Segmentation is a popular topic in biomedical engineering since the 

morphological and statistical properties of vessels play an important role in 

detection of cardiovascular diseases and can be used for understanding stenosis 

and pressure changes in the related vessels. There is a vast amount of coronary 

Computer Tomography images waiting to be analyzed thanks to the high interest 

in this topic and the advancements in imaging technology. But manual analysis of 

these images is a difficult and time-consuming task. Therefore, automated tools 

are required. Such tools should automatically detect coronary arteries and lung 

vessels, segment them properly, and measure their statistical properties like 

stenoses and aneurysm of a vessel. 

 

For accurate segmentation of coronary arteries and lung vessels, in this thesis a 

novel method using Region Growing over Frangi Vesselness Values is proposed, 

and its results are compared with three other state-of-the-art methods; Region 

Growing, Frangi Vesselness, and Connected Component Anaysis on Frangi 

Vesselness Values. 

 

Accuracy of the methods are validated both visually and quantitatively over 

synthetic and real images. Results show that, applying Region Growing on Frangi 

Vesselness Values leads to more accurate segmentation as compared to the other 

methods. Also, on the segmented coronary arteries a plane fitting is applied to 

detect and quantify the stenoses on vessels. 

 

       Keywords: Medical Image Segmentation, Coronary Arteries, 3-D CTA, 

Stenosis Detection, Lung Vessels, Frangi Vesselness,Region Growing , Vessel 

Segmentation 
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ÖZET 

 

 

KORONER BT ANJİYOGRAFİ GÖRÜNTÜLERİNDE DAMAR BÜLÜTLEMESİ VE 

GÖRÜNTÜ ANALİZİ 

 

 

İlkay Öksüz 

 

Elektrik - Elektronik Mühendisliği Programı 

 

Tez Danışmanı: Yrd. Doç. Dr. Devrim Ünay 

 

 

Eylül 2013, 33 Sayfa 

 

 

Damar Bölütlemesi Biyomedikal Mühendisliği‟nin popüler konularından birisidir. 

Bunun nedeni damarların morfolojik ve istatiksel özelliklerinin kardiyovasküler 

hastalıkların tespiti ve daralma noktalarındaki basınç değişimlerinin anlaşılmasında 

önemli rol oynamasıdır.. Bu konuya olan yoğun ilgiye ve görüntüleme 

teknolojilerindeki ilerlemelere bağlı olarak önemli miktarda koroner bigisayarlı 

tomografi  görüntüsü birikmiştir ve bunların hepsi analiz edilmeyi beklemektedir. 

Ancak bu resimlerin elle işlenmesi hem zor hem de vakit alan bir işlemdir. Bu nedenle 

otomatik araçlara gerek duyulmaktadır. Bu araçlar koroner arterleri ve akciğer 

damarlarını tespit etmeli, uygun bir şekilde bölütlemeli ve daralma, anevrizma gibi 

istatiksel özelliklerini ölçmelidir. 

 

Koroner arterlerin ve akciğer damarlarının doğru bir şekilde bölütlenebilmesi için 

Frangi damarlık değerleri üzerine bölge büyütme kullanan bir metodun kullanılması 

önerilmiştir. Bu tezde bu metodun sonuçları literatürde bilinen diğer yöntemlerden; 

Bölge Büyütme, Frangi Damarlık ve Frangi Damarlık Değerleri üzerine bağlanırlık 

metodlarıyla karşılaştırılmıştır. 

 

Segmentasyon sonuçları hem görsel hem de sayısal olarak sentetik ve gerçek görüntüler 

üzerinde doğrulanmıştır. Bu sonuçlara göre Frangi Damarlık Değerleri üzerine 

uygulanan Bölge Büyütme metodu, diğer metodlara göre daha doğru sonuçlar 

vermektedir. Ayrıca bu yöntem sonucu bulunan damarlara düzlem oturtma yöntemi 

uygulanarak daralma miktarı belirlenmesi üzerine çalışılmıştır.  

 

Anahtar Kelimeler: Medikal Görüntü İşleme, Koroner Arterler,3B BTA,Daralma 

Tespiti,Akciğer Damarları, Frangi Damarlık, Bölge Büyütme, Damar Bölütlemesi 

. 
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1. INTRODUCTION 

 

The invention of computed tomography is considered to be the greatest innovation in 

the field of radiology since the discovery of X-rays. This cross-sectional imaging 

technique provided diagnostic radiology with better insight into the anatomy of the 

body, thereby increasing the chances of recovery. In 1979, G.N. Hounsfield and A.M. 

Cormack were awarded the Nobel Prize in medicine for the invention of CT. 

Today, CT is one of the most important methods of radiological diagnosis. It delivers 

non-superimposed, cross-sectional images of the body, which can show smaller contrast 

differences than conventional X-ray images. This allows for better visualization of 

specific differently structured soft-tissue regions, which could otherwise not be 

visualized satisfactorily. Since the introduction of spiral CT in the nineties, computed 

tomography has seen a constant succession of innovations (Budoff and Shinbane 2010). 

A cross-sectional image is produced by scanning a transverse slice of the body from 

different angular positions while the tube and detector rotate 360° around the patient 

with the table being stationary (Figure1.1). The image is reconstructed from the 

resulting projection data. If the patient moves during acquisition, the data obtained from 

different angular positions are no longer consistent. Thus the image is degraded by 

motion artifacts and may be of limited diagnostic value. The tomographic technique is 

suitable only to a limited extent for the diagnosis of anatomical regions with automatism 

functions such as the heart or the lung (Fitzpatrick and Milan 2009). 
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Figure 1.1: CT Image acquisition

 

         (Fitzpatrick and Milan 2009) 

Segmentation of vascular structures, an indispensible part of biomedical imaging 

applications, is an important step towards diagnosis of and planning the surgical 

approach, for vascular disorders. Modern 3D angiography produces increasingly large 

and detailed images that have to be analyzed and interpreted by medical experts. 

Accordingly, the need for automated or semi-automated segmentation methods for 

processing medical images has become more indispensible than ever to reduce the 

burden on the experts. 

Coronary arteries are the first arteries coming out of the aorta on ostias and supplies 

much needed nutrient and oxygen to the heart muscle (myocardium). The coronary 

arteries are separated into two main arteries: right coronary artery and left main 

coronary artery. Furthermore, the latter has two major branches Left Circumflex (LCX) 

and Left Anterior Descending (LAD).  This specialization appears differently in 

different patients in their morphology, in the placement of different bifurcations, 

stenosis and plaques. Therefore, automated and accurate segmentation of coronary 

arteries in CT Images is much needed (Hariqbal et.al 2010). 
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Figure 1.2: Image of heart and coronary arteries  

 

 

(Hariqbal et.al 2010) 

This thesis is organized as follows. In Section 2, literature survey will be given with a 

summary table and explanations of some studies from this table will be presented. In 

this part, studies will be compared based on the main parts of vessel segementation; 

modality, pre-processing, segmentation method, automation, results type and 

evaluation. 

 In Section 3, methods used in this thesis will be explained. Image acquisition, 

preprocessing steps will be briefly given at the beginning of this part. Then, methods 

applied for the segmentation of coronary arteries and lung vessels in this thesis, region 

growing, Vesselness filter by Frangi (1998),connected component labeling and 

proposed method by Oksuz et.al ( 2013) will be explained in detail. 

In Section 4, segmentation results obtained via methods explained in Section 3 will be 

presented for different datasets separately. In Section 5, comparison of these results and 

comments on the overall status of the thesis in the light of these results will be 

discussed.  
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2. LITERATURE SURVEY 

 

Accurate segmentation of the coronary arteries is a crucial task due to the significance 

of abnormalities on these vessels. Stenosis and calcification of coronary arteries are life 

threatening issues for humans. Coronary artery segmentation algorithms are critical 

components of related computer aided diagnosis systems. Early works on coronary 

artery image analysis focused on DSA (Digital Substraction Angiography) and X-Ray 

coronary angiogram (fluoroscopy) images, but did not provide any evaluation. 

Extraction of coronary arteries from DSA images is discussed in Stansfield (1986), 

where a rule-based expert system, ANGY, is proposed to segment coronary vessels. The 

ANGY system consisted of a preprocessing stage containing low-level image 

processing routines, and a rule-based expert system with low-and high-level reasoning. 

Knowledge-based systems exploit a priori knowledge of the anatomical structure. 

These systems employ some low-level image processing algorithms, such as 

thresholding, thinning, and linking, while guiding the segmentation process via high-

level knowledge. Artificial intelligence based algorithms perform well in terms of 

accuracy, but the computational complexity is much larger than other approaches. 

Sarwal and Dhawan (1994) introduced a coronary artery centerline extraction algorithm 

using DSA images, where they attack the problem from the computer vision aspect by 

aligning the images using epipolar geometry, and reconstructing the coronary arteries in 

three dimensions (without any user interaction). 

Segmentation of coronary arteries using fluoroscopic images has been a popular 

research topic as well. Eiho and Qian (1997) proposed a semi-automatic method based 

on morphological operations to detect the coronary artery tree in cine-angiograms. First 

a top-hat operator is applied to enhance vessel contours and afterwards morphological 

erosion followed by half-thresholding operations are used to remove false detections. 

Then starting from a user-given point on the result, the system extracts the whole 

coronary artery tree by average gray level based neighborhood processing, and the 

extracted tree is skeletonized via thinning. Finally, the edges of the arteries are detected 

by applying watershed transformation on the binary image obtained from a dilation 

operation on the binary skeleton. Haris et al. (1997) realizes automatic extraction of 
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coronary arteries on fluoroscopic images using watersheds. The algorithm combines 

recursive sequential tracking, morphological tools of homotopy modification, and 

watersheds. The authors state that their solution is inadequate in extracting the complete 

coronary tree. Sun et al. (2009) combined morphological opening and closing 

algorithms with watersheds to achieve segmentation of coronary arteries, but did not 

carry out evaluation of their results via golden data (expert segmentations). Recently, 

Kang et al. (2010) implemented a transition-region extraction method for extracting 

coronary arteries. Although this semi-automatic method is tested on fifty angiograms, 

the evaluation approach used is not clarified in the paper. The semi-automatic method 

proposed by Lara et al. (2009) combines 2D region growing algorithm with a 2D 

hessian matrix based vesselness measurement to segment the coronary arteries. The 

results are evaluated for five different datasets, and the average accuracy –in terms of 

intersecting portions between the artery center lines and the resultant segmented arteries 

- is measured as 88.9%. 

Recently, CTA (Computer Tomography Angiography) has become the modality-of-

interest in the field of coronary artery segmentation , because it is a non-invasive 

diagnostic method (contrary to DSA) and it offers  detection and visualization of 

calcification with better spatial resolution (contrary to fluoroscopy and MR). A graph-

cuts based semi-automatic segmentation solution is implemented by Li et al. (2009) to 

extract the coronary arteries. The input image for graph cuts is prepared by otsu 

thresholding and a clustering algorithm. Raman and Then (2008) presented a hybrid 

method that sequentially applies the fast marching algorithm and level sets. Then the 

centerlines of the coronary arteries are detected by a minimum cost path approach. Main 

disadvantage of this system is the interactive control needed during the process. Another 

work making use of minimum cost path approach is introduced by Benmansour and 

Cohen (2009). Their anisotropic filter based algorithm requires user interaction, and 

therefore is slow, but it is robust to bifurcations and provides the radius information of 

the coronary arteries. Chen et al.‟s (2010) solution finds the centerlines of the vessels by 

making use of geometric moments, and calculates the vessel radius  with the help of 

snakes. The method is tested on eight datasets and achieved about 95 percent overlap 

with expert annotations. Lesage et al. (2008) presented a semi-automatic method based 

on a tracking framework, where a geometric model is iteratively updated by adding new 
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sphere centers that lie on the surface of the preceding sphere using Monte-Carlo 

estimation, and achieved an accuracy of 94.5% in nineteen cases. One of the most 

recent works focusing on coronary artery segmentation is published by Wang et al. 

(2012), where a 2D level set algorithm with the addition of local and global intensity 

information is used. The method is fully automatic and robust to artifacts such as 

kissing (touching) vessels. The results are tested on eighteen CTA datasets from various 

sources and approximately 94% true positive rate is achieved. 

Independent of modality, automatic coronary vessel segmentation is still a challenging 

task, and robust segmentation algorithms are indispensable in today‟s world. Moreover, 

detection and quantification of stenosis in coronary arteries is the next challenging task 

for researchers. There are challenges and workshops organized internationally to 

contribute to the advancement of this problem. As an example, MICCAI 2009 hosted a 

coronary artery centerline extraction workshop, and in MICCAI 2012 a challenge on 

detection and quantification of stenosis in coronary arteries was organized. 

Segmentation of the lung vessels is another challenging problem (that has similarities 

with coronary artery segmentation). According to WHO (2011) the number of deaths 

related to lung cancer in 2008 was around 1.4 million people [1]. In order to prevent 

these deaths early diagnosis of the disease is crucial. Even though there are many 

methods related to nodule segmentation (Armato et.al 2001) (Rettico et al. 2008), there 

are limited number of methods proposed for automatic segmentation of the lung vessel 

tree. These methods mainly focus on region growing (Schmitt et al. 2002) and level set 

techniques (Queck and Kirbas 2001), whilerecent methods make use of the Hessian 

matrix based approaches (Descoteaux et al. 2008).  
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Study Modality Segmentation Method Preprocessing Automated Result type Datasets+Evaluation 

Stansfield, 1986 DSA Edge and strip detection Yes Yes Centerlines None 

Sarwal and 

Darwan, 1994 

DSA Epipolar geometry No Yes Centerlines+reconstruction None 

Eiho and Qian, 

1997 

Coronary 

X-ray 

erosion+dilation,Morphologic

al Top-Hat 

Yes No Centerlines and whole tree None 

Haris et al., 1997 Fluoroscopy Watershed No Yes Centerlines and whole tree None 

Sun et al., 2009 Fluoroscopy Morphological 

opening+watershed 

Yes Yes Centerlines None 

Kang et al., 2010 Fluoroscopy transition region extraction Yes No Whole tree 50 Angiograms  

No Evaluation  

Lara et al., 2009 Fluoroscopy Region growing+hessian 

matrix 

Yes No Whole tree 5LCA+5RCA 

 88.79% intersection 

accuracy 

Li et al., 2009 CTA Graph cuts,region average 

shift 

Yes No Whole tree 16 CTA datasets 

No Evaluation 

Table 2.1: Summary of Literature Survey  
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Raman and Then, 

2008 

CTA Fast Marching+ Level Set Yes No Whole tree None 

Benmansour and 

Cohen, 2009 

CTA Anisotropic filtering Yes No Whole tree+Radii 2 CTA datasets   

No Evaluation 

Chen et al., 2010 CTA Geometric moments based 

tracking+snakes 

Yes No Whole tree+Radii 8 CTA datasets 

%94.7 Overlap 

Lessage et al., 

2008 

CTA Bayesian tracking Yes Yes Whole tree+Radii 19 CTA datasets 

SI=94.8% 

Wang and Liatsis 

2012 

CTA 2D Level Sets,global and 

local intensity info. İn energy 

calculation,pdf+cdf 

Yes Yes Whole tree Synthetic image + 8 

CTA  

%95 OM on synthetic  

%78 OM on CTA 

DSA:Digital Substraction Angiography; CTA: Computed Tomography Angiography; SI:Similarity Index SI= 
2𝑇𝑃

2𝑇𝑃+𝐹𝑁 +𝐹𝑃
; OM: Overlap Measure 
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3. METHODS 

 

 

In this section Image acquisition followed by the approaches used in this study (Region 

Growing, Frangi Vesselness, Connected Component Analysis, the Proposed Method, 

and  Plane Fitting and Stenosis Detection) will be explained respectively. 

3.1 IMAGE ACQUISITION 

The images used in this study are acquired from multiple resources. Coronary CT 

Images are taken from the PACS system of Maltepe University Medical School. Each 

512 X 512 and 16 bit intensity z-stack contains 100-200 layers and the distance between 

these layers is 1 mm. For stenoses detection purposes the Rotterdam Coronary Artery 

Challenge Framework by Kirisli et.al (2013) is used. The images from that database 

consist of a set from 3 different centers with different pixel spacing and slice 

thicknesses. For the lung vessel tree analysis, ISBI 2012 VESSEL12 Challenge Training 

data is processed and evaluated. This database contains images Each 512 X 512 and 16 

bit intensity z-stack contains 150-250 layers and the distance between these layers 

varies between 0.5-1 mm.  

Figure 3.1: An image from the database showing a slice of the CT Image 
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3.2 PREPROCESSING 

The acquired images further include the pulmonary vessels from the lung region 

observed as high intensity regions, which need to be excluded from the analysis. To this 

end, a threshold of -400 HU (Hounsfield Unit) is used to extract the lung region from 

images.The extracted region is used as a mask with the help of morphological dilation. 

The voxels with intensities higher than 500 HU is also removed due tothe fact that they 

belong to a calcified region. The calcifications are not part of a vessel lumen and they 

could lead to false segmentations. 

Figure 3.2: Result of Preprocessing; on left: original image with calcification, on 

right: preprocessed image with calcification region removed 

 

 

3.3 REGION GROWING 

The algorithm requires seeds for the foreground and the background to be provided.. 

Seeds are used to compute the initial mean gray level for each region. The region 

growing criteria is thedifference of a gray level of a candidate pixel and the mean grey 

level intensity of the region. At each step of the algorithm a candidate with the smallest 

intensity is added to the region and all the neighboring pixels that are not yet assigned to 

any region are added to the candidate list. Seeded region growing algorithm is proposed 

by Adams and Bischof (1994). 
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3.4 FRANGI VESSELNESS FILTER 

In this work the Hessian matrix based method proposed by Frangi (1998) for extracting 

tubular structures from an image is used to determine the vesselness of any voxel in the 

data. It uses the cylindrical structure of the vessels and segments them by employing a 

line enhancement filter. 

The Hessian matrix consists of the second order gradients of an input image, I. The 

orientation of the eigenvalue of the matrix is the basis for the vesselness filter 

𝐻 =  

𝜕2𝐼/𝜕𝑥2 𝜕2𝐼/𝜕𝑥𝜕𝑦 𝜕2𝐼/𝜕𝑥𝜕𝑧

𝜕2𝐼/𝜕𝑥𝜕𝑦 𝜕2𝐼/𝜕𝑦2 𝜕2𝐼/𝜕𝑦𝜕𝑧

𝜕2𝐼/𝜕𝑥𝜕𝑧 𝜕2𝐼/𝜕𝑧𝜕𝑦 𝜕2𝐼/𝜕𝑧2

                        (3.1) 

 

Where I refers to the image and ∂ the gradient operator, respectively gradients of the 

three dimensional image. The calculation of Hessian matrix is repeated at each voxel 

location with different scales. 

Using these values a vesselness value can be calculated (3.5).   

𝑅𝐴 =
 𝜆1 

 𝜆2 
 

(3.2) 

𝑅𝐵 =
𝜆1

  𝜆2𝜆3    
 

(3.3) 

𝑆 =  𝐻 𝐹 =   𝜆𝑖
2

𝑖<3

     

(3.4) 

 

𝑉 =  

0, 𝜆2 > 0 𝑜𝑟 𝜆3 > 0

(1 − 𝑒
𝑅𝐴

2

2𝛼2 ) 𝑒
−
𝑅𝐵

2𝛽2   1 − 𝑒
𝑠2

2𝑐2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  

(3.5) 
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where „V‟ is the normalized vesselness value for each voxel on the data;  α, ß and c 

represent the weights, and the values of RA , RB and S are calculated from different 

eigenvalues of the Hessian matrix.Figure 3.3 shows eigenvectors corresponding to the 

eigenvalues. The scale is empirically set to 2 following the experiments on the training 

dataset. The Figure 3.4 shows the final f-values comparison of different scale selections. 

There is a trade off between the increasing f-measure performance of greater scale and 

the computational cost. Scale 2 is selected as the optimum point for the variety of 

scales. 

Figure 3.3 Eigenvectos in Frangi Vesselness Filter 

 

 

Figure 3.4 F-measure comparison with different scales 
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3.5 CONNECTED COMPONENT LABELING 

On Frangi vesselness probabilities a threholding is applied and then the biggest 

twocomponents will refer to the coronary arteries. Connected components labeling 

scans an image and groups its pixels into components based on pixel connectivity, i.e. 

all pixels in a connected component share similar pixel intensity values and are in some 

way connected with each other. Once all groups have been determined, each pixel is 

labeled with a gray level according to the component it was assigned to (Gonzalez and 

Woods, 1992). 

Connected component labelling works by scanning an image, pixel-by-pixel  in order to 

identify connected pixel regions, i.e. regions of adjacent pixels which share the same set 

of intensity values V.  

Connected component labelling works on binary or gray level images and different 

measures of connectivity are possible. However, for CT images we assume binary input 

images and 8-connectivity. The connected components labelling operator scans the 

image by moving along a row until it comes to a point p (where p denotes the pixel to 

be labelled at any stage in the scanning process) for which K={1}. When this is true, it 

examines the four neighbours of p which have already been encountered in the scan (i.e. 

the neighbours (i) to the left of p, (ii) above it, and (iii and iv) the two upper diagonal 

terms). Based on this information, the labelling of p occurs as follows:  

i. If all four neighbors are 0, assign a new label to p, else  

ii. if only one neighbor has K={1}, assign its label to p, else  

iii. if more than one of the neighbors have K={1}, assign one of the labels to p 

and make a note of the equivalences.  

After completing the scan, the equivalent label pairs are sorted into equivalence classes 

and a unique label is assigned to each class. As a final step, a second scan is made 

through the image, during which each label is replaced by the label assigned to its 

equivalence classes (Ballard and Brown, 1982).  

http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixel.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/connect.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/connect.htm
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Using the connected component approach on binary Frangi vesselness results would 

give us the desired coronary arteries region. 

 

3.6 PROPOSED METHOD 

In order to segment the points belonging to the coronary arteries, a 3D region growing 

operation with adaptive thresholding is used on the vesselness maps of the data; and to 

initialize the region growing algorithm, multiple seed points from both right and left 

coronary arteries are employed. The resulting point cloud is then fed into the subsequent 

stenosis detection algorithm.  

3.7 PLANE FITTING AND STENOSIS DETECTION 

Plane fitting is performed for every centerline point, where the corresponding vessel 

diameter is determined. As a plane can be described with a point and a normal to the 

plane, we employ the detected centerline point and the dominant eigenvector of the 

Hessian matrix at that location as the normal vector. Based on the familiar plane 

equation defined in a three-dimensional space, where  𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧  refers to the normal 

vector, 𝑇 is an empirically set 2-voxel threshold (𝑇=s) while  𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐  and  𝑥, 𝑦, 𝑧  

define the Cartesian coordinates of the centerline location and that of another arbitrary 

point from the lumen data, respectively. Accordingly, luminal data points that satisfy 

the above equation are said to belong to the plane-of-interest and, thus, are used to 

compute the diameter at the corresponding centerline location. Here the diameter is 

defined as twice the average Euclidean distance between the lumen points (satisfying 

the above equation) and the corresponding centerline location 

  𝑛𝑥 𝑥 − 𝑥𝑐 + 𝑛𝑦 𝑦 − 𝑦𝑐 + 𝑛𝑧 𝑧 − 𝑧𝑐 ≤ 𝑇 

(3.6) 
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Figure 3.5. Illustration of diameter (d) calculation via plane fitting using the 

normal vector (n) at a centerline point 

 

In order to quantify local diameter variations along an artery, which can be a sign of 

stenosis, we make use of the arterial diameter profiles. We apply 1D  running window 

(size 7) based median (𝑚) and standard deviation (𝜎) filtering to the profile data (Fig. 

5), and then quantify stenosis at each centerline location as  

stenosis =  

arg min 𝑓𝑖 −  𝑚𝑖 + 0.1𝜎𝑖 , 𝑓𝑖 −  𝑚𝑖 − 0.1𝜎𝑖  

𝑓𝑖
, 𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

                                                                                                                                                     

(3.7) 

where 𝑓𝑖  is the diameter value at the centerline location investigated for every centerline 

point and certain decrease in diameter are marked as possible stenoses points for the 

vessel. The percentage between the smallest diameter and adjacent diameter to stenosis 

gives the CTA Grade. QCA grade is proportional with the length of the stenosis. 
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Figure 3.6. Stenosis detection: Segmented vessel (left);  Corresponding diameter 

profile and its filtering results (right). 
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4. RESULTS 

 

In order to validate the results of coronary arteries and lung vessel tree segmentation 

and coronary artery stenosis section and quantification methods, we have used 5 

different CT images with manually segmented coronary arteries by the experts from 

Maltepe Univesirty Medical School.  

Evaluation of segmentation accuracy is realized by the F-measure, defined as a measure 

of a test's accuracy. It considers both the precision and the recall of the test to compute 

the score Equation (4.1) is used for the calculation of F-measure. In this equation recall 

measures the proportion of actual positives which are correctly identified as such. 

Precision measures the proportion of negatives which are correctly identified as such of 

segmentation result obtained using an automated segmentation method. The F measure 

score can be interpreted as a weighted average of the precision and recall, where a F 

measure score reaches its best value at 1 and worst score at 0. 

 
𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  

2xPrecisionxRecall

Precision + Recall
      (4.1) 

In the following sections we first explain the synthetic dataset that we built to test the 

performance of our algorithm. Then, the results of each algorithm will be presented 

separately using both F-measure and visual analyses that contain four different images. 

After that, we will show the whole 3D Coronary Artery Segmentation results and their 

2D representations for each method. 

4.1 RESULTS OF SYNTHETIC DATA 

In order to segment multiple vessel segmentation algorithms, a 2D Synthetic Data is 

created, considering the anatomical and pathological variations in coronary arteries 

(Figure 4.1). To that purpose, aneurysms, bifurcations and stenoses with varying sizes 

are added to the left and right coronary arteries. Moreover, random noise and Gaussian 

blurring in the range of 0-to-20 per cent is added to the synthetic image.  With the help 

of these variations a more realistic coronary artery dataset is created (Figure 4.1). 
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Figure 4.1: Examples from Sytnhetic Dataset, left: Noisefree data, right: Noise 

added data 

 

The synthetic dataset is tested with four different methods and evaluated based on 

specificity, sensitivity and F-measure. Table 4.1 compares the F-measure results and 

figure compares the specificity-sensitivity graphs of the algorithms. The true positive 

points for the algorithms are selected as the right and left coronary arteries. Ostia and 

left ventricle regions are not added to the evaluation, since they can be removed 

automatically with post-processing. 

The proposed method is compared with region growing, Frangi vesselness, and 

connected component labeling over Frangi vesselness approaches. For each approach 

multiple threshold values are tried and the optimal threshold values are used. Table 4.1 

shows that proposed method clearly outperforms its counterparts quantitatively. As the 

figure shows Frangi vesselness method has low sensitivity and region growing has low 

performance on stenosis locations due to the lack of vesselness information at those 

regions. The proposed method, however, solves that problem with the help of the high 

vesselness values on the stenosis region. The connected component labeling has the 

setback of under segmenting aneurysm regions, where many false negative points can 

be seen. Therefore, this method has lower sensitivity values. 

Finally, for statistical significance analysis paired T-test is applied on the segmentation 

results (Table 4.2). Our analysis revealed that the results of the proposed method are 

significantly different (p-value <0.04) than those of both region growing, Frangi 

vesselness, and connected component analysis over Frangi vesselness approaches. 
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Figure 4.2: Results of synthetic coronary artery segmentation top left:synthetic 

coronary arteries, top right: region growing result, middle left: Frangi 

vesselness result, middle right: Frangi connectivity result, bottom left: 

proposed method result, bottom right: Zoom in comparison of connectivity 

and the proposed method 
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Table 4.1: F measure based comparison of the methods, B: Gaussian blur 

N:Random Noise 

G (%) B (%) Frangi Region Growing Frangi Connectivity 
Proposed 

Method 

0 0 0.741 0.321 0.870 0.928 

5 10 0.068 0.734 0.866 0.895 

10 

 

0.736 0.214 0.867 0.902 

15 

 

0.046 0.740 0.603 0.891 

20 

 

0.016 0.742 0.600 0.876 

10 5 0.746 0.228 0.877 0.927 

 

10 0.736 0.214 0.867 0.902 

 

15 0.724 0.191 0.843 0.886 

 

20 0.712 0.102 0.818 0.831 
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Figure 4.3: Sensitiviy-specificity comparison of different methods with varying 

thresholds  

 

 

Table 4.2: P-values comparison 

P  
Values 

Frangi  Region 

Growing 
Frangi 

Connectivity  

Proposed Method  0.0089  0.0005  0.0348  
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4.2 RESULTS OF OF 3D CORONARY ARTERIES DATA  

The methods are evaluated on 3D CT data which is annotated by an expert in Maltepe 

Medical School. The dataset consists of 5 different subjects. Figure 4.3 shows the 2D 

slices overlapped with the segmentation. The first image shows the right coronary artery 

on that slice. The visual results clearly show that many of the false positives of the 

Frangi vesselness results are eliminated with the help of the proposed algorithm. Region 

growing on the original data creates many false positives at the aorta and left ventricle 

regions. The 3D connected component analysis over Frangi vesselness values gives 

better results than the other two methods. However, the zoomed in images in Figure 4.4 

clearly show that the method has more false negatives than the proposed method 

Table 4.3: F-Measure based comparison of 3D Coronary Artery Data 

 Frangi Region 

Growing 

Frangi 

Conncectivity 

Proposed 

Method 

Subject 1 0.341 0.412 0.652 0.858 

Subject 2 0.312 0.734 0.866 0.895 

Subject 3 0.456 0.521 0.867 0.931 

Subject 4 0.567 0.679 0.853 0.903 

Subject 5 0.216 0.723 0.832 0.955 
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Figure 4.4: Results of coronary artery segmentation top left: right coronar artery 

region, top right: region growing result, middle left: Frangi vesselness result, 

middle right: Frangi connectivity result, bottom left: proposed method result, 

bottom right: Zoom in comparison of connectivity and the proposed method 
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4.3 RESULTS OF STENOSIS DETECTION AND QUANTIFICATION 

The algorithm is tested on the Rotterdam Coronary Artery Stenoses Detection and 

Quantification challenge training file, which consists of 18 different datasets. The 

execution time of an average dataset on 2.4 GHz processor is approximately ten minutes 

with the algorithm. The results for training dataset can be seen on Table.1.     

Our method promises a novel solution for coronary artery stenoses detection and 

quantification. The method should be optimized in terms of minimizing user interaction 

and execution time. Also, as adjacent stenoses in the training data are lumped in a single 

stenosis and classified as one, modification of the present algorithm is warranted 

towards dividing a segment into its multiple stenoses and treating each as a separate 

entity. 

Table 4.4 Training Dataset Results 

 

 QCA 

Sens. 

% 

QCA 

P.P.V. 

% 

CTA 

Sens 

% 

CTA 

P.P.V. 

% 

QCA 

Avg. 

diff. 

% 

QCA 

R.M.S 

diff. 

% 

CTA 

Kappa 

K 

Detection 0.29 0.56 0.08 0.14    

Quantification     29.8 37.4 -0.06 

 

4.4 RESULTS OF LUNG VESSELS 

The same methods are applied on lung vessel tree segmentation problem. For this 

purpose ISBI2012 VESSEL12 Challenge Training Dataset is used. The dataset consists 

of three different subjects. The results are summed up in the table below. It can be 

clearly seen that the proposed method outperforms the other methods in the literature. 
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Table 4.5 F measure results on the Lung Vessel Tree Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Region 

Growing 
Frangi 

Frangi 
Connectivity 

Proposed 

Method 

Subject 1 0.458 0.895 
 

0.876 
 

0.912 

Subject 2 0.563 0.873 
 

0.892 
 

0.932 

Subject 3 0.623 0.819 
 

0.829 
 

0.862 
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Figure 4.5: Results of lung vessel tree segmentation top left: region growing result, 

top right: Frangi vesselness result, middle right: Frangi connectivity result, 

middle left: proposed method result, bottom : 3D visualization of proposed 

method 
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5. DISCUSSIONS AND RESULTS 

 

5.1 RESULTS 

Vessel segmentation in CT images is one of the most important research areas of 

biomedical engineering since the morphological and statistical properties, such as 

number, length and volume of the vessels, can play a role in learning process or can be 

used for understanding the reasons and effects of cardiovascular diseases and lung 

cancer (Queck and Kirbas, 2002). But manual analysis of coronary arteries and lung 

vessels is hard and time-consuming since there is a vast amount of data thanks to the 

advances in the imaging technology. Therefore, these analyses should be done by using 

automated tools, which should detect coronary arteries and lung vessels, segment them 

properly and make a post-analysis for calculating the statistical properties of the vessels 

and monitoring the abnormalities. 

In this thesis we worked on segmentation of the coronary arteries and the lung vessel 

tree. Our main aim is to create an automated tool that will analyze and track 

abnormalities of vessels, where the accuracy of such analyses is directly connected to 

the accuracy of segmentation. Therefore, automated segmentation results must be close 

as close as possible to the manual segmentations of the experts.  

We propose to use Region Growing over Frangi Vesselness Values method (Oksuz et 

al., 2013) for the segmentation of coronary arteries and lung vessels. In this method, the 

image is first masked by a Hounsfield unit based mask to work on the desired vessels. 

Afterwards a two scale Frangi filter is used on the whole data. The twp scale is selected 

optimizing the results that have been made use of in terms of the f-measures results 

obtained. Finally a region growing operation is applied over the probabilistic vesselness 

values. 

Accuracy of the proposed method is compared on coronary synthetic and real CT 

Angiography images with three other state-of-the-art methods: (1) Region Growing (2) 

Frangi Vesselness (1998), and (3) Connected Component Labeling on Frangi 

Vesselness Values. 
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Among the four segmentation methods used Region Growing resulted in the lowest 

accuracy, since it is not able to overreach the stenoses regions and causes a lot of false 

positives in blood-filled areas. Frangi Vesselness outperforms region growing in terms 

of true positive predictive value. However, many false positives are created by this 

method. A connected component analysis on Frangi vesselness values established an F-

measure of up to 0.85 (Table 4.1). Nevertheless in some cases this method has many 

false negatives and shows a low positive predictive value. On the other hand, the 

proposed method provides an F-measure as high as 0.95. 

5.2 FUTURE WORKS 

In the present work, accuracy of the region growing on Frangi vesselness approach 

needs two seed points for both coronary arteries and two lungs. To this end, prior to 

segmentation supervalvular sinus region could be found automatically with minimal 

error. In order to make this segmentation method fully automated, a solution that finds 

the ostias automatically needs to be improved from that point. 

Current results for coronary arteries segmentation are evaluated in a relatively small 

database. We plan to test our algorithm on a larger database to stabilize our algorithm. 

Furthermore, we also think to test this vessel segmentation approach on different vessels 

of human body such as, carotid artery and liver vessels.  

From this thesis, two papers have been published: 

i. Oksuz, I, Unay, D, Kadipasaoglu, K “Region Growing on Frangi Vesselness 

Values in 3-D CTA Data” Proc. SIU, Girne – Northern Cyprus, 2013 

ii. Oksuz, I, Unay, D, Kadipasaoglu, K, “Segmentation of lung vessel tree in 3-D 

CTA data”, Proc. MASFOR, Istanbul - Turkey, 2012. 

 We also contributed in other publications (see the published papers of the curriculum 

vitae). Moreover, we are planning to submit another publication summarizing the results 

of this work to an IEEE Journal in the near future. 
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