

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

CONFERENCE SESSION SCHEDULING USING

MODIFIED ANT COLONY ALGORITHM

Master Thesis

EFE AÇIKGÖZ

İSTANBUL, 2013

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

INFORMATION TECHNOLOGY

CONFERENCE SESSION SCHEDULING USING

MODIFIED ANT COLONY ALGORITHM

Master Thesis

EFE AÇIKGÖZ

Supervisor: Prof.Dr. Adem Karahoca

İSTANBUL, 2013

THE REPUBLIC OF TURKEY

BAHÇEŞEHIR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

INFORMATION TECHNOLOGY

Name of the thesis: Conference Session Scheduling using Modified Ant Colony

Algorithm

Name/Last Name of the Student:Efe Açıkgöz

Date of the Defense of Thesis: 12 September 2013

The thesis has been approved by the Graduate School of ____________.

ASSOC.PROF.DR.TUNÇ BOZBURA

 Graduate School Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master of

Arts.

 Prof.Dr. Adem KARAHOCA

 Program Coordinator

This is to certify that we have read this thesis and we find it fully adequate in scope,

quality and content, as a thesis for the degree of Master of Arts.

Examining Comittee Members Signature____

Thesis Supervisor -----------------------------------

Prof.Dr. Adem KARAHOCA

Member ----------------------------------

Asst.Prof.Dr. M.Alper TUNGA

Member -----------------------------------

Asst.Prof.Dr. Yalçın ÇEKİÇ

DEDICATION

I dedicate this thesis to my teacher, Adem Karahoca, who has been helping me since the

graduate school. It is his tireless efforts that motivated me to set higher targets. I also

dedicate this thesis to my cousin Sarp Erdag who always helped me aim learning new

techniques and technologies.

vi

ABSTRACT

Conference Session Scheduling using Modified Ant Colony Algorithm

Efe Açıkgöz

Information Technology

Thesis Supervisor: Prof.Dr. Adem Karahoca

July 2013, 40 pages

This study deals with the issue of automatizing the session schedules of conferences.

One of the biggest concerns for many conferences is time management considering

there are hundreds of presentations and doing the session scheduling manually is a time

consuming and challenging operation.

In planning the conference program, you can create an almost infinite number of

possible designs. This is an important process because even high-quality sessions can

lose their value if the program is not properly planned.

To calculate the possible presentation schedules, we started using ant colony algorithm

and successfully implemented the algorithm, which was successful for building session

schedules but was lacking the performance and flexibility. To fight the performance

issues the ant colony algorithm was modified, and to give it flexibility, some of the

properties of genetic algorithm was imitated.

In the end, both increasing the performance and flexibility of the generic ant colony

algorithm was making it a bit more specific and focused.

Keywords: Session Scheduling, Ant Colony Algorithm, Genetic Algorithm

vii

ÖZET

GÜNCELLENMİŞ KARINCA KOLONİSİ ALGORİTMASI İLE KONFERANS

OTURUMLARININ PLANLANMASI

Efe Açıkgöz

Bilgi Teknolojileri

Tez Danışmanı: Prof.Dr. Adem Karahoca

Temmuz 2013, 40 sayfa

Bu tez çalışmasında, konferans sunumlarını planlamaya yardımcı olabilecek

güncellenmiş karınca kolonisi algoritması kullanan bir yazılım geliştirilmiştir.

Konferanslarda en büyük problemlerden biri zaman yönetimidir ve yüzlerce sunumun

programını el ile oluşturmak çok zaman alıcı ve zorlayıcı bir görevdir. Konferans

programı planlarken neredeyse sonsuz sayıda olası tasarım bulunmaktadır. Program

planlaması çok önemli bir konudur çünkü en yüksek kaliteli sunumlar bile kötü

programlama dolayısı ile değerini yitirebilirler.

Olası sunum oturumlarını hesaplayabilmek için ilk olarak karınca başarılı bir şekilde

kullanılmıştır. Karınca kolonisi algoritması, sunum programı oluşturma konusunda

başarılı idi, fakat performans ve esneklik konularında başarısızdı. Performans

problemlerinden kurtulmak için karınca kolonisi algoritması güncelledik ve esneklik

katmak için genetik algoritmasının bazı özellikleri örnek alındı.

Sonuç olarak genel karınca kolonisi algoritmasına göre hem performansı hem de

esnekliği daha yüksek spesifik ve odaklı bir sonuç elde edildi.

Anahtar Kelimeler: konferans oturum planlama, karınca sürüsü algoritması, genetik

algoritması

viii

TABLE OF CONTENTS

TABLE FIGURES...ix

ABBREVATIONS...xi

1. INTRODUCTION..1

2. LITERATURE REVIEW..2

3. DATA AND METHODOLOGY...7

 3.1 DATA…………………………………………..8

 3.2 METHODOLOGY….…………………………......................................11

 3.2.1 ANT COLONY ALGORITHM..11

 3.2.2 PYTHON AND DJANGO…….…..15

 3.2.3 GENETIC ALGORITHM………...16

 3.2.4 MODIFICATIONS TO ALGORITHM….....................................17

3.2.4.1 POSSIBLE MODIFICATIONS TO ALGORITHM….23

 3.2.5 IMPLEMENTATION…..……………………………………...…25

4. RESULTS……..…..29

5. DISCUSSION...38

6. CONCLUSION...39

REFERENCES...41

APPENDICES

 Appendices A.1 Code………………………..............................41

 Appendices A.2 Screenshots...55

ix

LIST OF FIGURES

Figure 3.1: Use case diagram………………………………………………....…….7

Figure 3.2: Block diagram……………………………………………………....…..8

Figure 3.1.1: Entity-relationship diagram………………………………………….....9

Figure 3.1.2: Models of the project………………………………………………….10

Graph 3.2.1: Ant colony path finding example ………………………………..13

Figure 3.2.4.1: Example filled spots ………………………………………………19

Figure 3.2.4.2: Presenter restrictions page…………………………………………….20

Figure 3.2.5.1: Add conference screen………………………………………………...26

Figure 4.1: Example performance…………………………………………………37

Figure 5.1: Administration page…………………………………………………...38

x

LIST OF TABLES

Table 4.1 – Conference size – Time……………………………………………………34

Table 4.2 – Conference size – Iteration………………………………………………...35

Table 4.3 – Latest algorithm performance chart………………………………………..36

xi

ABBREVATIONS

ACA : Ant Colony Algorithm

GE : Genetic Algorithm

DB : Database

UI : User Interface

UX : User Experience

ERD : Entity-relationship diagram

WLAN : Wireless local area network

CAPS : Controlled Access Phase Scheduling

NEMO : Network Mobility

CASA : Community-aware scheduling algorithm

1

1. INTRODUCTION

Scheduling sessions at a large conference is a persistent challenge. The problem is,

given a large number of sessions, rooms, time slots and constraints, it is required to

mine for the best schedule that contains all sessions within the given time slots while

satisfying the set of constraints. This is really hard to achieve manually (2011 World

Statistics Congress included approximately 1150 oral and 250 poster presentations, with

as many as 20 sessions running in parallel at any one time)

To eliminate this problem, we decided to implement an algorithm to check possible

session schedules while satisfying the constraints. After some research, we decided to

use Ant Colony Algorithm. The reason we picked ACA is because it is a fairly efficient

probabilistic technique for finding paths through graphs.

Ant colony algorithm is based on the behavior of ants seeking a path between their

colony and a source of food. Ant colony optimization algorithms have been applied to

many optimization problems ranging from quadratic assignment to routing vehicles and

a lot of derived methods have been adapted to dynamic problems in real variables,

multi-targets and parallel implementations. It has also been used to produce near-

optimal solutions to the travelling salesman problem.

Although the ant colony algorithm was successful for creating session schedules, it was

not very effective performance-wise. To fight this issue, we had to modify algorithm,

making it more specific and focused at the problem at hand.

Even after the performance modifications, the algorithm was not flexible enough for

specific issues like handling constraints, certain presenters might had, which was fixed

by merging ACA with other algorithms like Genetic Algorithm.

 2

2. LITERATURE REVIEW

2.1 SESSION SCHEDULING ALGORITHMS

A lot of possible algorithms have been evaluated for our conference session scheduling

task, comparing their strengths, weaknesses, and effectiveness, to select the appropriate

algorithm. So far, mostly Genetic Algorithm, and cluster analysis have been used for

conference session scheduling. Houlding and Haslett used a hybrid cluster analysis to

do the session scheduling in their paper “Scheduling Parallel Conference Sessions: An

Application of a Hybrid Clustering Algorithm for Constrained Cardinality” (Houlding

and Haslett, 2011). In the paper they stated that they needed to cluster similar topics

since it would not be appropriate to hold similar sessions at the same time but in

different venues, making the audience for those sessions split

“If sessions are run in parallel, then it would not be appropriate to hold similar

sessions at the same time but in different venues, as the likely audience for those

sessions would be split. Such problems are further expounded if a conference focuses on

a general discipline that has many diverse elements, e.g., statistics, which has elements

of theoretical statistical development, applied statistical analysis, collection of data,

formulation of national statistics, and the use of statistics in industry”

They approach to the issue by using constraints on the cardinality of the clusters directly

within the steps of a hybrid analysis, avoiding sensitivity to the random initialization of

the clustering process. Although they have a simply approach to the issue, the solution

might not be optimal.

Burns and Wellings also tried to achieve a fixed priority scheduling that is proposed to

be applied to tasks that communicate only asynchronously where sessions are abstract

constructs and can be used to represent presentations as well as conversations, atomic

actions and such. Their paper “Synchronous sessions and fixed priority scheduling”

(Burns, Wellings 1996) defines a means to incorporating synchronous behavior into the

computational model of fixed priority scheduling. Ceiling priorities are assigned to

sessions and appropriate scheduling analysis is derived.

 3

The paper also describes how all tasks involved in a session must be released at the

same time. Tasks may block within a session but will otherwise execute

asynchronously. A ceiling priority protocol for sessions was introduced that allows

blocking time to be calculated and hence effective response time analysis can be

achieved. The more sessions a set of tasks involves themselves in, the more their

completions time will be similar.

Thompson also wrote how effective scheduling can increase the ability of meeting

participants to attend their preferred sessions. In his paper “Improving conferences

through session scheduling” (Thompson 2002) Thompson reports the results of two

actual conferences used to experiment for comparing approaches to conference

scheduling. The results indicate that participants’ ability to attend their preferred

sessions is no higher in manually scheduled conferences that take into account

participants’ preferences that what one would obtain by simply generating random

schedules without taking into account participants’ meeting-selection preferences.

There is also the blog post of Swanson in 2008 named “Conference Session Scheduling

using a Genetic Algorithm” where Swanson proposes an algorithm with constrains like:

a) Only one session can be presented per room during any given time slot.

b) A speaker can only present one session during any given time slot (i.e. can not

be in two places at the same time).

c) A speaker may only be available on specific days.

d) A session may require audio/video equipment that is only present in specific

rooms.

e) Popular sessions should be scheduled in larger rooms.

Which he tries solving by grouping sessions into tracks, and scheduling them in parallel

almost like mini conferences running alongside each other, even though it is rare for

someone to sit through all sessions in a single track which he tries to fix by taking extra

factors into account like

 4

i. The total walking distance required for a participant to attend all of their favorite

sessions. The algorithm prefers shorter routes.

ii. The degree to which room capacities are "balanced." This means that—on

average—the algorithm prefers schedules that leave relatively equal space in

each room. Otherwise, one room may be near 100% capacity while another is

only at 25%.

In his version of the algorithm, each solution in the population represents a conference

schedule. The fitness function takes all of the aforementioned factors into account, and

penalizes solutions with undesirable attributes. At the end of each generation, an elite

group of solutions is retained, and the remainders are subject to both crossover and

mutation.

There is also another blog post by Tarhini in 2012 “Genetic Algorithm for Conference

Session Scheduling“, where he Tarhini proposes an algorithm with sessions, rooms,

timeslots and set of preference sessions to implement a “survival of the fittest”

algorithm which means that solutions are generated, and bad solutions are eliminated

and good solutions are carried over to next step, while using a fitness function to

validate a given solution with the set of constraints and list of preference sessions to

return a value indicating how relevant the solution is, which is an interesting approach

2.2 OTHER ALGORITHMS

Even though there were quite a few algorithms that can be specifically used for

conference session scheduling, we checked other algorithms with capability to be used

in conference session scheduling. Naime and Taherinejad in 2008 wrote a paper “New

robust and efficient ant colony algorithms: Using new interpretation of local updating

process” proposing two new ant colony algorithms by updating the ant colony algorithm

by adding local updating rules. They go from start to end point of a tour while the ants’

freedom to make local changes on links is gradually restricted. This idea is implemented

in two different forms, leaving two new algorithms, KCC-Ants and ELU-Ants. To

evaluate the new algorithms, they run them along with the old one on the standard TSP

library where in almost all the cases the proposed algorithms had better solutions.

 5

Huang, Bessis, Norrington, Kuonen, Hirshbrunner also wrote a paper talking about job

scheduling strategies and how new technologies like grid and cloud, metascheduling

can be an important scheduling pattern since it is responsible for orchestrating resources

managed by independent local schedulers(“Exploring decentralized dynamic scheduling

for grids and clouds using the community-aware scheduling algorithm”). To overcome

issues such as bottleneck, single point failure and impractical unique administrative

management are normally led by conventional centralized or hierarchical schemes, and

how decentralized scheduling scheme can be a promising approach because of its

capability with regards to scalability and flexibility. They introduce a decentralized

dynamic scheduling approach entitled the “Community-aware scheduling algorithm

(CASA)”, a two phase scheduling solution comprised of a set of heuristic sub-

algorithms to achieve optimized scheduling performance over the scope of overall grid

or cloud. They also use a real grid workload trace dataset and show how centralized

scheduling scheme with the use of CASA leads to a 30-61 percent better average job

slowdown and a 68-86 percent shorter average job waiting time in a decentralized

scheduling manner.

There is also another paper named “Analysis of temporal and throughput fair scheduling

in multirate WLANs” (Alnuweiri, Fallah 2008) where the authors talks about how the

Wireless Local Area Network (WLAN) provides controlled access features that can be

used in conjunction with scheduling algorithms to provide guaranteed per-session

services. They also talk about how the multirate operation of the WLAN complicates

the design of scheduling and how Controlled Access Phase Scheduling (CAPS) can

achieve guaranteed fair services in WLAN. They present a modified start time fair

queuing based scheduler as their choice and analyze its performance under dynamic and

static multirate operations. Wang and Tofozolli also aimed to find a solution to the

problem about network mobility supporting a network moving as a whole and it causing

the bandwidth on its wireless link varying with time and locations in their paper

“Performance Comparison of scheduling algorithms in network mobility environment”.

The frequent bandwidth fluctuation makes the resource reservation and admission

control lack of scalability. They propose a solution by using scheduling algorithms to

optimize the resource distribution based on the varying available bandwidth. They

 6

compare the performance of well known queuing algorithms and their advantages and

disadvantages in the NEMO environment. The tests show that the Adaptive Rotation

priority Queue (which operates with a priority first fairness second policy) outperforms

all existing scheduling algorithms in mobile networks whose capabilities are time-

varying and location-dependent.

Even though there were quite a few articles and papers where genetic algorithm used for

session scheduling, the paper “Genetic algorithms and neural networks: optimizing

connections and connectivity (Whitley, Starkweather, Bogart 1990) is an important one

since in this paper the authors propose that the genetic algorithms need not to search

along the contours of the function being optimized instead using selective reproduction

and recombination of binary strings and changing the sampling rate of hyperplanes in

the search space so as to reflect the average fitness of strings that reside in any particular

hyperplane. They give an overview of several different experiments applying genetic

algorithms to neural networks and optimizing the weighted connections in feed forward

neural networks using both binary and real-valued representations and using genetic

algorithm to discover novel architectures in the form of connectivity patterns for neural

networks that learn using error propagation. They also talk about the future applications

in neural network optimization in which genetic algorithm can play a significant role.

 7

3. DATA AND METHODOLOGY

To calculate the scope of the project, we started to research similar researches and

gathered what kinds of designs their projects had. From the information gathered, first

use case diagram, data flow diagram and block diagram have been created. Then using

that information we created our models and created test data. After research, we created

our use case diagram to represent the user interaction with the system

Figure 3.1 – Use case diagram

As the use case diagram shows, we have an administrator who adds conferences,

presenters and presentations. Then we have a presenter who adds restrictions and at last

we have a user that uses all those information to calculate the schedules.

 8

Figure 3.2 – Block diagram

Block diagram above shows the application is designed and how components are related

to each other

 9

3.1 DATA

For data, random names for presenters, random presentations for those presenters,

constraints and different conferences for the presentations have been generated;

following the model-view-controller architecture.

Figure 3.1.1 – Entity-relationship diagram

ERD above shows how the models of the application have been designed. We have a

presenter that has presenter name and registration date; presenter has restrictions which

has dates showing when the presenter is unavailable. Presenters are also connected to

presentation, which has presentation name. Presentation also belongs to conference. A

conference has a conference name, a presentation length, conference date and time, and

conference rooms count

Different numbers of presentations for different conferences to test the performance of

the algorithm with different pool sizes have been generated.

 10

We started small with 42 Presentations in 3 days, 30 minute per presentation, 2 rooms

simultaneously between 10:00-14:30

And then pool size has been increased to 90 Presentations in 3 days, 30 minute per

presentation, 3 rooms simultaneously between 10:00-16:00 then 160 presentations and

so on.

We tested every different pool size for a few hundred times to get an average time spent

to calculate the results and how many iterations needed to calculate those results.

Database in Django is not directly accessible; you can either use administration page or

view controllers to add/remove/get data from the database.

Figure 3.1.2 – Models of the project

 11

We also tested cases with more spots than presentations like a conference with 200 open

spots and 50 presentations, which has better performance with initial algorithm but has

no visible increase with latest changes to the algorithm.

3.2 METHODOLOGY

We started working on the thesis by researching potential algorithms for session

scheduling. After enough information have been gathered on algorithms and methods

like simplex method, Ant Colony Algorithm, Genetic Algorithm, we started researching

previous works and papers on this subject. Even though there are very few works on

this specific problem, they all used Genetic Algorithm and there were no researches

about ACA with session scheduling. After picking algorithm too, we started researching

other works done with ACA on other problems to see its downsides, upsides, and

possible methods to implement the algorithm as well as its effectiveness and

implementation difficulty.

After my researches were done, we picked Python for my programming language and

Django framework to build a server / client type application.

We also used JQuery and Twitter Bootstrap to help create the user interface, Postgre

SQL for DB.

3.2.1 ANT COLONY ALGORITHM

Ant colony optimization algorithm first proposed by Marco Dorigo in 1992 aiming to

search for an optimal path in a graph, based on the behavior of ants seeking a path

between their colony and a source of food.

In the natural world, ants initially wander randomly and upon finding food return to

their colony leaving behind pheromone trails. If other ants find these pheromones, they

will follow these pheromone paths instead of wandering randomly.

 12

Over time, these pheromone trails start to evaporate reducing its attractive strength. The

longer it takes to travel down a path, the longer pheromones evaporate, thus making

long paths less attractive to ants than shorter paths.

In short, when one ant finds a good path from the colony to a food source, other ants are

more likely to follow that path. The idea of the ant colony is to mimic this behavior.

At each stage, the ant chooses to move from one city to another according to some

rules:

1. It must visit each city exactly once;

2. A distant city has less chance of being chosen (the visibility);

3. The more intense the pheromone trail laid out on an edge between two cities, the

greater the probability that that edge will be chosen;

4. Having completed its journey, the ant deposits more pheromones on all edges it

traversed, if the journey is short;

5. After each iteration, trails of pheromones evaporate.

We checked a few of the common extensions of ant colony optimization algorithms,

like elitist ant system where the global best solution deposits pheromone on every

iteration, max-min ant system where a maximum and minimum pheromone amounts are

added and only global best or iteration best tour deposits pheromone, rank based ant

system where all solutions are ranked according to their length, recursive ant colony

optimization where there is a recursive form of ant system which runs nested ant

systems to increase precision of output. We ended up using ant colony system.

In order to make ant colony algorithm work for session scheduling, we needed to

represent the presentations on a graph and calculate a path without any blocks on graph.

So if we think presentations as possible paths, and constraints as roadblocks, the

algorithm works and it calculates possible session schedules.

 13

Also Ant Colony Algorithm has one of the biggest advantages is that it has multiple

threading (multiple ants searching for best path to food), we can search for possible

paths relatively faster than other algorithms. Whereas most other algorithms depend on

single threading, multiple threading is the main property of Ant Colony Algorithm

Figure 3.2.1 – Ant colony path finding example (F = Food, N = Nest) (online

http://pagmo.sourceforge.net/pagmo/ant.png)

3.2.1.1 Example ant colony algorithm

while(not_termination)

 generateSolutions()

 edgeSelection()

 pheromoneUpdate()

end while

 14

Edge selection

An ant is a simple computational agent in the ant colony optimization algorithm. It

iteratively constructs a solution for the problem at hand. The intermediate solutions are

referred to as solution states. At each iteration of the algorithm, each ant moves from a

state x to state y, corresponding to a more complete intermediate solution. Thus, each

ant k computes a set Ak(x) of feasible expansions to its current state in each iteration,

and moves to one of these in probability. For ant k, the probability p
k

x,y of moving from

state x to state y depends on the combination of two values, viz.,

the attractiveness ηx.y of the move, as computed by some heuristic indicating the a

priori desirability of that move and the trail level Tx,y of the move, indicating how

proficient it has been in the past to make that particular move.

The trail level represents a posteriori indication of the desirability of that move. Trails

are updated usually when all ants have completed their solution, increasing or

decreasing the level of trails corresponding to moves that were part of "good" or "bad"

solutions, respectively.

In general, the kth ant moves from state x to state y with probability

Px,y = (Tα
x,y)(η

B
x,y) / SUM(Tα

x,y)(η
B

x.y) (3.2.1.1)

Where Ti,j is the amount of pheromone deposited for transition from state i to j, 0 ≤ α is

a parameter to control the influence of Ti,j, ηi,j is the desirability of state transition i.j (a

priori knowledge, typically 1/dx.y, where d is the distance) and B ≥ 1 is a parameter to

control the influence of ηi,j. Ti,j and ηB
i,j represent the attractiveness and trail level for the

other possible state transitions.

Pheromone update

When all the ants have completed a solution, the trails are updated by

Tx,y = (1-p)Tx,y + ∆ T
k

x,y (3.2.1.2)

where Tx,y is the amount of pheromone deposited for a state transition x,y, p is

the pheromone evaporation coefficient and ∆ T
k

x,y is the amount of pheromone

deposited by kth ant, typically given for a travelling salesman problem (with moves

corresponding to arcs of the graph) by

 15

∆ T
k

x,y = 1/Lk if ant k travels on edge I,j

∆ T
k

x,y = 0 otherwise (3.2.1.3)

where Lk is the cost of the kth ant's tour (typically length) .

3.2.2 PYTHON AND DJANGO

Python is a general-purpose high-level programming language. The main reason we

picked Python for this thesis was to learn a new programming language. Python

emphasizes code readability, and its syntax allows programmers to express concepts in

fewer lines of code.

Python is a multi-paradigm object-oriented programming and structured programmings

are fully supported and there are a number of language features which support

functional programming and aspect-oriented programming (metaprogramming). Many

other paradigms are supported using extensions including design by contract and logic

programming.

Python uses dynamic typing and a combination of reference counting and cycle-

detecting garbage collector for memory management which helped with memory

problems with algorithm modifications where we decrease available spots array size. An

important feature of Python is dynamic name resolution which binds method and

variable names during program execution.

We did not want to make the project a console application so we also started learning

Django web framework, which is a free and open source web application framework. It

is written in Python and follows the model-view-controller architectural pattern.

Primary goal of Django is to ease the creation of complex, database-driven websites.

Django emphasizes reusability and pluggability of components, rapid development, and

the principle of do not repeat yourself (A principle we try to use with every

programming language). Python is used throughout even for settings files and data

models.

 16

We also used scripting library JQuery for client-side scripting, Twitter Bootstrap for

dynamic user interface. JQuery is a multi-browser JavaScript library designed to

simplify the client-side scripting of HTML. Syntax of JQuery is designed to make it

easier to navigate a document, select DOM (Document object model) elements and

create animations, handle events and develop Ajax applications. Twitter Bootstrap is a

free collection of tools for creating websites and web applications. It contains HTML

and CSS based design templates for typography, forms, buttons, charts, navigation and

other interface components as well as optional JavaScript extensions. Bootstrap is

modular and consists essentially of a series of LESS Stylesheets that implement the

various components of the toolkit. A stylesheet called bootstrap.less includes the

components stylesheets. Developers can adapt the Bootstrap file itself, selecting the

components they wish to use in their project.

Adjustments are possible to a limited extent through a central configuration stylesheet.

More profound changes are possible by the LESS declarations.

The use of LESS stylesheet language allows the use of variables, functions and

operators, nested selectors, as well as so-called mixins.

We are using Twitter Bootstrap to fit rooms to the interface using spans

<div class="span{{ span }}">

3.2.3 GENETIC ALGORITHM

A genetic algorithm is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimizations and search

problems. In a genetic algorithm a population of candidate solutions are evolved toward

better solutions.

The evolution usually starts from a population of randomly generated individuals and an

iterative process, with the population in each iteration called a generation and in each

generation; the fitness of every individual in the population is evaluated. The fitness

means the value of the objective function in the optimization problem being solved or

simply; given a solution with the set of constraints and list of preference sessions fitness

 17

returns a value indicating how relevant the solution is, The more fit individuals are

selected from current population and each individual has a genome that is modified to

form a new generation. The new generation of candidate solutions is then used in the

next iteration of the algorithm. The algorithm usually terminates when either a

maximum number of generations have been produced or a satisfactory fitness level has

been reached for the population.

Initially many individual solutions are (usually) randomly generated to form an initial

population. The population size depends on the nature of the problem, but typically

contains several hundreds or thousands of possible solutions. Traditionally, the

population is generated randomly, allowing the entire range of possible solutions

(the search space). Occasionally, the solutions may be "seeded" in areas where optimal

solutions are likely to be found. The fitness function is defined over the genetic

representation and measures the quality of the represented solution. The fitness function

is always problem dependent.

During each successive generation, a proportion of the existing population is selected to

breed a new generation. Individual solutions are selected through a fitness-based

process where fitter solutions (calculated from fitness function) are typically more likely

to be selected to breed. Certain selection methods rate the fitness of each solution and

preferentially select the best solutions.

3.2.4 MODIFICATIONS TO THE ALGORITHM

We initially implemented the ant colony algorithm and was able to create session

schedules with no problem, but even without presentation constraints, the performance

was lacking (More than 200 iteration average to calculate a 42 presentation conference

with 0 constraints). Initial algorithm follows ant colony algorithm with no

modifications on it.

It should also be kept in mind that a presentation might have more than 1 presenter. So

when filling presentation spots we have to check if the presenters of the presentation has

any other presentation at another room.

 18

There is also the case with presenters having more than one presentation in a row. If we

assume a presentation takes 20 minutes a presenter has a presentation in room A at

14:00, he cannot have another presentation at room B at 14:20, but he can have another

one in the room he is in which is room A.

To make sure this worked, we first implemented grouping on presenters where all

presentations of a presenters were in a row with 1 empty spot between them to make

sure the case above does not occur, but this caused quite a lot of problems, like day

ending before filling all presentations of the presenter, or simply the presenter having

more presentation than the number of available half the available spots in a day (1 for

presentation 1 for travelling). When that approach did not work, we went for an “if

check” to see if the presenter had another presentation on an earlier session and rolled

for another spot if he does, which also had downsides like only available spots left were

those unavailable to presenter.

To fight the issue with multiple presenters, we tried to modify the algorithm so that all

presentations of the presenters were grouped in a sequence, one after another, but

decided to scrap the idea since it might not be convenient to presenters.

The pseudocode we used was:

1- leastResistance = x

2- while currentResistance<leastResistance

3- foreach presentation in presentationList

4- while spot not suitable

5- checkPheromones()

6- pickSpotFromConference()

7- checkIfSpotSuitable()

8- updatePheromones()

9- end while

10- end foreach

11- calculateCurrentResistance()

12- end while

 19

Figure 3.2.4.1 – Example filled spots

checkPheromones function checks if there are pheromones on possible spots to help

decide picking a spot

pickSpotFromConference picks a spot for the presentation

checkIfSpotSuitable checks if the picked spot empty, or if there are any constraints

about the spot picked

updatePheromones updates the pheromone or decays it depending on the function above

calculateCurrentResistance() calculates the current resistance of the schedule

Resistance value tells us how hard it was to fill the current session, or simply, how hard

it was to fill all spots. The less resistance it has, the easier and faster it fills the session.

Most effective results we got with this initial algorithm were when we used conferences

with more spots than presentations (ex: a conference with 200 empty spots and 100

presentations).

Although this algorithm works like this, it is still pretty general and we can increase

performance by making it a bit more specifically for session scheduling. First of all, we

know the possible paths, so do we have to randomly pick a spot and check if said spot is

available? Since we have all empty spots, we do not, so we changed the algorithm and

got rid of the iteration.

 20

New pseudocode of the algorithm:

1- leastResistance = x

2- while currentResistance<leastResistance

3- availableSpotsList = allSpotsForConference()

4- foreach presentation in presentationList

5- checkPheromones()

6- spot = getSpotFromAvailableSpots()

7- availableSpotsList.remove(spot)

8- updatePheromones()

9- end foreach

10- calculateCurrentResistance()

11- end while

allSpotsForConference() returns all available spots in a conference as an array

getSpotFromAvailableSpots() picks a spot for the presentation.

Figure 3.2.4.2 – Presenter restrictions page

The available spots array is a sequencing integer array created automatically for every

spot in the conference (presentations in a day * number of rooms * number of days),

and calculates the picked spot using the sequence

 21

hit_time = hit_spot%(morning_size+afternoon_size)

if hit_time>morning_size:

 afternoon = "True"

 hit_time = hit_time-morning_size

else:

 afternoon = "False"

hit_day = hit_spot/((morning_size+afternoon_size)*day_count)

hit_room = (hit_spot/(morning_size+afternoon_size))%room_count

This would be fairly easy if there were no constrains available for

presenters/presentations like a presenter might wish to pick specific days of the

conference he / she is available for presentation. So at this point we either needed to add

loop for picking spots where presenter unavailable, and loop upon picking an

unavailable spot, or change the algorithm further. we went with changing the algorithm

and decided to get presenters available spots and pick a spot from the intersecting part

of presenter’s available spots and available spots of the conferences.

After picking a spot, we remove it from available spots list and update pheromones. So

did this at all increase performance? A 90-presentation conference used to take 450

iterations and 0.12 seconds in average and after the algorithm change; iterations went

down to 0 (no more loop for picking full or unavailable spots) and time it took to

calculate went down to 0.01 seconds in average, which is a good thing but are there any

downsides to this change? Yes there is one: Increased ram usage. If there is a 1000

presentation conference, we need to track all the spots, and we used short integers for

the integer array, so it is 2byte * 1000 = 2KB extra ram space, but considering todays

computers at least has 4GB of ram this number is not important

At this point the algorithm calculates sessions pretty fast, but there is a case where a

presenter with most restrictions can be last person to be placed and he might not have a

spot that is not in his restrictions. This is not a big issue with small presentation pools

and presenters with low restrictions, but will be an issue with big conferences with a lot

of restrictions. Normally it will get fixed sooner or later thanks to pheromones setting a

 22

path with less resistance but what if we merged the algorithm with some other

algorithms? “Survival of the fittest” behavior of the genetic algorithm might be more

fitting. Survival of the fittest behavior of the genetic algorithm forces it to get paths with

least resistance, and examining this behavior reveals that to have the least amount of

resistance we need to get rid of highest resistance presenters, or presenters with most

restrictions by getting them spots first.

Another advantage of calculating all available spots was that the presentation spots’

pool stays the same with initial algorithm (if there were 250 spots, there would be 250

spots even at the end). But with available spots change, the presentation spot pool

decreases on every step, which means less time required to pick a spot for the

presentation. On the algorithm this means the further you travel towards the food

source, the less possible paths to choose from left.

After that change, the pseudocode of the algorithm evolves into:

1- leastResistance = x

2- while currentResistance<leastResistance

3- availableSpotsList = allSpotsForConference()

4- sortedPresentationList = presentationList.sortByHighestRestriction()

5- foreach presentation in sortedPresentationList

6- checkPheromones()

7- spot = getSpotFromAvailableSpots()

8- availableSpotsList.remove(spot)

9- updatePheromones()

10- end foreach

11- calculateCurrentResistance()

12- end while

Where sortByHighestRestriction() function sorts the presentation list ordering by the

restriction size of presenters

 23

So to summarize, so far to calculate the sessions we first create an array with an integer

representing every empty spot in the conference to track the empty spots. Then we sort

presenters ordering by their restriction size (presenter with highest restriction first) so

we will have less restriction, check pheromones and pick a spot for the presentation that

Is available and not in the restriction list of the presenter, remove the picked spot from

available spots array and update the pheromones.

Now that we sorted the presenter list so that we will have the least amount of resistance,

checking for schedule resistance becomes kind of redundant. The whole reason we

checked resistances was to pick the least amount of resistance for the schedule but our

latest change already manages to do just that, so we can now remove it

1- availableSpotsList = allSpotsForConference()

2- sortedPresentationList = presentationList.sortByHighestRestriction()

3- foreach presentation in sortedPresentationList

4- checkPheromones()

5- spot = getSpotFromAvailableSpots()

6- availableSpotsList.remove(spot)

7- updatePheromones()

8- end foreach

3.2.4.1 POSSIBLE MODIFICATIONS TO THE ALGORITHM

There were a few ideas we had but did not implement into the application but wrote the

algorithm modifications of.

First one was adding room sizes.

Adding room sizes to the algorithm where preferred presentations gets the bigger room

or even possibly get a second presentation if it has a bigger audience than biggest room

available. To do this addition, we would need update conference table to add room size

to the database. Then we would have to implement a visitor system to the application

 24

where users can register and select the presentations they wish to see. When we have

enough registrations to the presentations (or when registration date for presentations

ends).

When we have the visitor data we would also have to modify the algorithm so that it

would respect the visitor requests to see presentations. The algorithm we came up with

was:

1- availableSpotsList = allSpotsForConference()

2- sortedPresentationList = presentationList.sortList()

3- sortedPresentationListWithRepeat = sortedPresentationList.checkRepeats()

4- foreach presentation in sortedPresentationListWithRepeat

5- checkPheromones()

6- spot = getSpotFromAvailableSpots()

7- availableSpotsList.remove(spot)

8- updatePheromones()

9- end foreach

sortList() function first function sorts the presentation list ordering by the restriction

size of presenters, then it sort the array ordering by the audience size

checkRepeats() function checks if any presentation has more audience than room size.

If so, it splits the room so all audience can attend it. After split, the second part is put at

the end array.

getSpotFromAvailableSpots() function also gets a modification where it checks if the

presenter has any more presentation at the picked time

The upside of this implementation would be the ability to have different room sizes, but

the downsize is that it requires user input before execution. There might also be cases

where after split the only available spot being the same time as the presenter’s

presentation, or in the restriction time zone of the presenter, which will increase

execution time.

 25

Another possible addition to the algorithm was addition of travel distance between

rooms. Which meant that we had to keep in mind the travelling distance between the

rooms. To do this we had to alter database and add room distances in conference table.

This would be a fairly useful to keep in mind about, but since we did not implement

audience preferences, this addition became redundant.

The way we designed this implementation was; if users had preferred to see 2 different

presentations, we can not put those 2 presentations until time required to be spent

moving between them has passed. For example if users wanted to see presentation A

and B, if presentation A was in room 1 and B in room 2 if we assume it takes 15

minutes to walk between those rooms, presentation A and B should be at least 15

minutes apart (if presentations take 20 minutes and presentation A is at 14:00

presentation B can start latest at 13:25, or earliest at 14:35)

3.2.5 IMPLEMENTATION

Since we had a decent algorithm at this point, we decided to implement them all to see

their performances and if my improvements actually had any effect.

First of all, we implemented the initial algorithm built the models, views and

controllers. we automatized the UI so different length, size conferences with different

presentation length can be viewed without any problems.

Conferences can start at any given time and can be either 15, 20 or 30 minutes long.

 26

Figure 3.2.5.1 – Add conference screen

There are 4 models in the application, which are Conference, Presenter, Presentation,

and Presentation restriction

Conference model has conference name, 3 different time slices for presentation length

(15, 20, 30 minutes), conference start and end dates as well as conference start and end

times for the days (Ex: 6 am to 8 pm), and number of rooms.

Presenter model has presenter name and registration date.

Presentation model has presenter name, which is a foreign key to presenter, and another

foreign key is to the conference model. Presentation model has presentation name field.

Last model is presenter restrictions, which has presenter name, which is a foreign key to

presenter model, unavailable from and to dates.

When a session scheduling is requested, we get the conference restrictions,

presentations and presenter data from the database and calculate the number of slices in

a day

 27

def get_time_slice (period, start, end):

 start_hours = str(start).split(':')

 end_hours = str(end).split(':')

 slices = ((int(end_hours[0]) * 60 + int (end_hours[1])) -

 (int (start_hours[0])*60+ int (start_hours[1]))) / period

As well as number of slices in the morning and afternoon, there is an hour of noon

break and slices through the day split between morning and afternoon, and calculate the

days.

We save various data like number of slices in the morning, afternoon, start and end time

and date, room count, presentations in a dictionary to create the UI. We then calculate

session schedules

We also calculate the time it takes to run the program and add it to the dictionary, and

fill the templates.

There is also an admin page that helps adding new conferences, presenters,

presentations, restrictions, users and much more. Admin page is the main way to add

information to the database, you cannot directly connect to db and add objects, you can

only create an object on view controllers and save or get data from db to these objects

There are more than 20 files that helps us with user experience and calculations, but the

files above has the main code that does calculations and user interface like urls.py

def calculate_without_recursion(conference, presentations, restrictions, morning, afternoon, days_count, count):

 room_count = conference.Conf_Room_Count

 available_spots = fill_available_spots_array(len(morning),len(afternoon),room_count,days_count)

 schedule = []

 del schedule[:]

 for presentation in presentations:

 plan = {}

 plan['room'], plan['day'], plan['time'], plan['afternoon'], available_spots = get_spot_no_recursion (available_spots,

room_count,days_count,len(morning),len(afternoon))

 plan['name'] = presentation.Presentation_Name

 schedule, success = add_to_list(schedule, plan)

 return schedule, 0

 28

which tells server which functions are connected to which urls, or admin.py pages that

create the admin interface

To make sure we did not affect test performances, we uploaded my project to an

external server. We used Heroku to host my server, which offers a cloud platform as a

service and supports Python / Django framework.

 29

4. RESULTS

When we first started working on this thesis we aimed to create an algorithm that can

check possible session schedules while satisfying the presentation restrictions, and we

managed to create an algorithm that can create session schedules, and increased initial

performance.

After implementing the application for initial algorithm, we did around 1000

performance runs to make sure we got a big enough test pool so that we was sure the

performance was consistent.

We grouped tests like “Initial algorithm – 42 presentation”, “Initial algorithm – 90

presentation”, “Algorithm change 1 – 42 presentation” and so on for every combination

of algorithm and 4 different presentation size (42, 90, 160, 250)

All iterations here are from hitting filled spots, not including the loop for all

presentations.

Test results were fairly consistent for initial algorithm

42 Presentations: 3 days, 30 min presentation, 2 rooms, 10:00-14:30 | 25 runs

312 retry, 0.04 second

137 retry, 0.02 second

226 retry, 0.03 second

183 retry, 0.04 second

180 retry, 0.07 second

198 retry, 0.03 second

214 retry, 0.07 second

274 retry, 0.09 second

249 retry, 0.03 second

162 retry, 0.04 second

 30

140 retry, 0.04 second

165 retry, 0.02 second

173 retry, 0.01 second

138 retry, 0.01 second

190 retry, 0.04 second

188 retry, 0.01 second

179 retry, 0.03 second

244 retry, 0.06 second

389 retry, 0.06 second

277 retry, 0.07 second

250 retry, 0.04 second

209 retry, 0.05 second

289 retry, 0.04 second

286 retry, 0.04 second

156 retry, 0.03 second

90 Presentations: 3 days, 30 min presentation, 3 rooms, 10:00-16:00 | 25 runs

440 tries, 0.11 second

406 tries, 0.09 second

403 tries, 0.09 second

360 tries, 0.08 second

324 tries, 0.08 second

627 tries, 0.16 second

431 tries, 0.11 second

308 tries, 0.08 second

272 tries, 0.04 second

684 tries, 0.12 second

757 tries, 0.08 second

437 tries, 0.06 second

340 tries, 0.07 second

530 tries, 0.13 second

 31

503 tries, 0.10 second

421 tries, 0.12 second

333 tries, 0.09 second

357 tries, 0.06 second

397 tries, 0.10 second

407 tries, 0.11 second

586 tries, 0.12 second

564 tries, 0.15 second

518 tries, 0.06 second

531 tries, 0.13 second

526 tries, 0.13 second

160 Presentations: 4days, 30 min presentation, 4 rooms, 10:00-16:00 | 25 runs

1021 retry, 0.37 second

992 retry, 0.35 second

812 retry, 0.31 second

752 retry, 0.31 second

842 retry, 0.41 second

676 retry, 0.29 second

876 retry, 0.31 second

867 retry, 0.33 second

811 retry, 0.34 second

801 retry, 0.31 second

842 retry, 0.33 second

865 retry, 0.32 second

799 retry, 0.30 second

1010 retry, 0.34 second

942 retry, 0.33 second

963 retry, 0.34 second

675 retry, 0.24 second

 32

878 retry, 0.33 second

879 retry, 0.43 second

769 retry, 0.29 second

980 retry, 0.35 second

848 retry, 0.34 second

901 retry, 0.36 second

743 retry, 0.24 second

798 retry, 0.30 second

250 Presentations: 5 days, 30 min presentation, 5 rooms, 10:00-16:00 | 25 runs

2112 tries, 0.80 second

1990 tries, 0.78 second

1879 tries, 0.65 second

1921 tries, 0.68 second

1821 tries, 0.60 second

2045 tries, 0.71 second

1890 tries, 0.69 second

2012 tries, 0.72 second

2051 tries, 0.73 second

2394 tries, 0.76 second

2109 tries, 0.71 second

2494 tries, 0.74 second

2038 tries, 0.69 second

1890 tries, 0.72 second

1955 tries, 0.68 second

2343 tries, 0.71 second

2012 tries, 0.74 second

2117 tries, 0.72 second

1782 tries, 0.70 second

1679 tries, 0.65 second

1927 tries, 0.71 second

 33

2046 tries, 0.72 second

2594 tries, 0.74 second

2942 tries, 0.73 second

1821 tries, 0.69 second

The test results above are randomly selected from the test pool of every test group and

shows that the initial algorithm low performance on larger number of presentations.

Average numbers of initial algorithm are:

0,04 seconds average for 42 presentation conference

0,11 seconds average for 90 presentation conference

0,34 seconds average for 160 presentation conference

0,77 seconds average for 250 presentation conference

216 iterations for 42 presentation conference

443 iterations for 90 presentation conference

844 iterations for 160 presentation conference

1941 iterations for 250 presentation conference

 34

Table 4.1 – Conference size - Time

 35

Table 4.2 – Conference size - Iteration

To compare the performance of latest algorithm, the test results are:

0,008 seconds average for 42 presentation conference

0,014 seconds average for 90 presentation conference

0,019 seconds average for 160 presentation conference

0,024 seconds average for 250 presentation conference

 36

Table 4.3 – Latest algorithm performance chart

There are no iterations (from filled spots, iterations can still happen for some cases) for

latest algorithm since presentations cannot hit unavailable spots.

 37

Figure 4.1 - Example performance of latest algorithm with 90 presentations

Performance difference between algorithms:

From 0,04 seconds to 0,008 seconds average for 42 presentation conference

From 0,11 seconds to 0,014 seconds average for 90 presentation conference

From 0,34 seconds to 0,019 seconds average for 160 presentation conference

From 0,77 seconds to 0,024 seconds average for 250 presentation conference

The reason latest algorithm does not scale as much as initial algorithm is that with latest

algorithm, the further you travel towards the food source (or the further you fill the

schedule) the less possible roads left to pick from, which increases the performance.

 38

5. DISCUSSION

There was a paper and a few blog posts about doing session scheduling using different

algorithms like Genetic Algorithm, but there were no published works about doing

session scheduling using Ant Colony Algorithm. Using different algorithms to do a job

is important, since you can compare performance, advantages and disadvantages of

different algorithms for that job when you have multiple algorithms. You can compare

efficiency, complexity, performance, memory use, time needed to finish operations. For

example efficiency refers to the algorithmic efficiency as the size of the input grows

large, how does the iterations scale with it?

When we first started this thesis, we aimed to create an application that does session,

and not only we managed to do it, we modified and merged it with other algorithms like

Genetic algorithm to increase performance and flexibility (presenter restrictions and

such)

Figure 5.1 – Administration page

 39

6. CONCLUSION

In conclusion, we did manage to create an application that does session scheduling for

conferences using Ant Colony Algorithm. We also managed to modify the algorithm to

see if we can increase the performance of the algorithm for this specific job.

We used python Django framework to implement the application, and implemented all

modifications to the algorithm to test performance, effectiveness, and memory usage

changes.

Tests indicate that ant colony algorithm can be an effective way to do session

scheduling for conferences, but is it better than other algorithms like genetic algorithm?

For example, Genetic Algorithm can have sessions, rooms, timeslots and set of

preference sessions to implement a “survival of the fittest” algorithm which means that

solutions are generated, and bad solutions are eliminated and good solutions are carried

over to next step, while using a fitness function to validate a given solution with the set

of constraints and list of preference sessions to return a value indicating how relevant

the solution is.

We too had an algorithm with different sizes of room, sessions, timeslots and set of

presentation restrictions to search for eligible and effective solutions. Given the

advantages of the Genetic Algorithm’s “Survival of the fittest” behavior instead of one

algorithm, it will be most effective to create a merge of Ant Colony Algorithm and

Genetic Algorithm to do session scheduling. With Genetic Algorithm’s survival of the

fittest behavior and Ant Colony Algorithm’s multi threading and pheromone technique,

we can eliminate bad solutions faster and calculate the better solutions faster and more

effective.

To summarize, it is possible to do session scheduling using ACO, and there is room for

algorithm to be improved for doing specific jobs. We also created a client / server

 40

application that implements the algorithm we modified using python Django

framework.

To anyone else who wishes to do research on this subject, should also research Tabu

search as well as Simulated annealing which is a generic probabilistic metaheuristic for

global optimization problem of locating a good approximation to global optimum of a

given function in a large search space. It is often used when the search space is discrete.

Tabu search is a local search method used for mathematical optimization where it does a

local search to take a potential solution to a problem and check its immediate

neighbors(solutions that are similar with few minor differences) in hope of finding an

improved solution. Tabu search enhances the performance by using memory structures

that describe the visited solutions or user-provided sets of rules. If a potential solution

has been previously visited within a certain short-term period or if has violated a rule it

is marked as tabu so that the algorithm does not consider that possibility repeatedly.

 41

REFERENCES

Periodicals

Rafael S. Parpinelli, Heitor S. Lopes, Alex A. Freitas2 “Data Mining with an Ant

Colony Optimization Algorithm” CEFET-PR, CPGEI, Av. Sete de Setembro, 3165,

Curitiba - PR, 80230-901, Brazil

B. Houlding & J. Haslett (10 Jan 2012) “Scheduling parallel conference sessions: an

application of a novel hybrid clustering algorithm for ensuring constrained cardinality”

Journal of Applied StatisticsVolume 40, Issue 5, 2013

Sha Fan (Jan 2010) “Session Scheduling Algorithm of Grid Computing” Knowledge

Discovery and Data Mining, 2010. WKDD '10. Third International Conference on

A.J Wellings(Nov 1997) “Synchronous sessions and fixed priority scheduling” Journal

of Systems Architecture Volume 44, Issue 2, November 1997, Pages 107-118

Thompson, G. M. (2002) “Improving conferences through session scheduling.”

Cornell Hotel and Restaurant Administration Quarterly 2002 Vol. 43 No. 3 pp. 71-76

Yaser Pourmohammadi Fallah, Hussein Alnuweiri (2008) “Analysis of temporal and

throughput fair scheduling in multirate WLANs” Computer Networks Volume 52, Issue

16 Pages 3169-3183

Yaning Wang, Linghang Fan, Dan He, Rahim Tafozolli (2008) “Performance

comparison of scheduling algorithms in network mobility environment” Computer

Communications Volume 31, Issue 9 Pages 1727-1738

Ye Huang, Nik Bessis, Peter Norrington, Pierre Kuonen, Beat Hirsbrunner (Jan 2013)

“Exploring decentralized dynamic scheduling for grids and clouds using the

community-aware scheduling algorithm” Clouds and Service-Oriented Architectures

Volume 29, Issue 1 Pages 402-415

Hossein Miar Naimi, Nima Taherinejad (Jan 2009) “New robust and efficient ant colony

algorithm: Using new interpretation of local updating process” Experts Systems with

Applications Volume 36, Issue 1, Pages 481-488

D Whitley, T Sharkweather, C Bogart (Aug 1990) “Genetic algorithms and neural

networks: optimizing connections and connectivity” Parallel Computing Volume 14,

Issue 3, Pages 347-361

 42

Other publications

Michael Swanson (May 2008) “PDC 2008 Conference Scheduling Using a Genetic

Algorithm” [online] http://blogs.msdn.com/b/mswanson/archive/2008/05/03/pdc-2008-

conference-scheduling-using-a-genetic-algorithm.aspx

Ali Tarhini (Feb 2012) “Genetic Algorithm for Conference Schedule Mining” [online]

http://alitarhini.wordpress.com/2012/02/27/genetic-algorithm-for-conference-schedule-

mining/

Wikipedia “Ant colony optimization algorithms” [online]

http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

 43

APPENDICES

Appendices A1 - Code:

Admin page (admin.py)

from conf.models import Presenter, Conference, PresenterRestriction, Presentation

from django.contrib import admin

class PresenterInline(admin.TabularInline):

 model = Presentation.Name.through

 verbose_name = 'Another presentor'

 verbose_name_plural = 'Presenters:'

 extra = 1

class PresentationInline(admin.TabularInline):

 model = PresenterRestriction.Presentations_To_Attend.through

 verbose_name = 'Another presentation'

 verbose_name_plural = 'Which presentations wishes to attend:'

 extra = 1

class presenterAdminPage(admin.ModelAdmin):

 list_display = ('Presenter_Name', 'Register_Date')

 fieldsets = [

 ('Name', {'fields': ['Presenter_Name']}),

 ('Date Added', {'fields': ['Register_Date']}),

]

class conferenceAdmin(admin.ModelAdmin):

 list_display = ('Conference_Name', 'Conf_Date_Start', 'Conf_Date_End')

class presentationAdmin(admin.ModelAdmin):

 list_display = ('Presentation_Name', 'Conference')

 inlines = (PresenterInline,)

 exclude = ('Name',)

class PresenterRestrictionAdmin(admin.ModelAdmin):

 list_display = ('Presenter_Names', 'Unavailable_Start', 'Unavailable_End')

 inlines = (PresentationInline,)

 exclude = ('Presentations_To_Attend',)

admin.site.register(Presenter,presenterAdminPage)

admin.site.register(Conference, conferenceAdmin)

admin.site.register(Presentation, presentationAdmin)

admin.site.register(PresenterRestriction, PresenterRestrictionAdmin)

 44

Calculate ant colony (calculate_ant_colony.py)

import random

import math

def calculate(conference, presentations, restrictions, morning, afternoon, days, count):

 room_count = conference.Conf_Room_Count

 schedule = []

 del schedule[:]

 for presentation in presentations:

 success = False

 while not success:

 plan = {}

 plan['room'], plan['day'], plan['time'], plan['afternoon'] =

get_random_position(room_count, days, len(morning)+len(afternoon), len(morning))

 plan['name'] = presentation.Presentation_Name

 schedule, success = add_to_list(schedule, plan)

 count = count+1

 return schedule, count

def get_random_position(rooms, days, slices, morning):

 room = random.randrange(rooms)

 day = random.randrange(days)

 time = random.randrange(slices)

 afternoon = "False"

 if time >= morning:

 print ("time: " + str(time) + " morning: " + str(morning))

 time = time - morning

 afternoon = "True"

 return room, day, time, afternoon

def add_to_list(to_return, item_to_add):

 flag = True

 success = True

 for element in to_return:

 if element['room'] == item_to_add['room'] and element['day'] ==

item_to_add['day'] and element['time'] == item_to_add['time'] and element['afternoon']

== item_to_add['afternoon']:

 flag = False

 if flag:

 to_return.append(item_to_add)

 else:

 success = False

 return to_return, success

def calculate_without_recursion(conference, presentations, restrictions, morning,

afternoon, days_count, count):

 45

 room_count = conference.Conf_Room_Count

 available_spots =

fill_available_spots_array(len(morning),len(afternoon),room_count,days_count)

 schedule = []

 del schedule[:]

 for presentation in presentations:

 plan = {}

 plan['room'], plan['day'], plan['time'], plan['afternoon'], available_spots =

get_spot_no_recursion(available_spots,room_count,days_count,len(morning),len(aftern

oon))

 plan['name'] = presentation.Presentation_Name

 schedule, success = add_to_list(schedule, plan)

 return schedule, 0

def fill_available_spots_array(morning_size, afternoon_size, room_count, days_count):

 count = 0

 to_return = []

 for x in xrange(0,(morning_size + afternoon_size)*room_count*days_count):

 to_return.append(count)

 count= count+1

 return to_return

def

get_spot_no_recursion(available_spots,room_count,day_count,morning_size,afternoon_

size):

 if len(available_spots)>0:

 hit_spot = available_spots[random.randrange(len(available_spots))]

 available_spots.remove(hit_spot)

 hit_time = hit_spot%(morning_size+afternoon_size)

 if hit_time>morning_size:

 afternoon = "True"

 hit_time = hit_time-morning_size

 else:

 afternoon = "False"

 hit_day = hit_spot/((morning_size+afternoon_size)*day_count)

 hit_room = (hit_spot/(morning_size+afternoon_size))%room_count

 print(hit_room, hit_day, hit_time, afternoon)

 return hit_room, hit_day, hit_time, afternoon, available_spots

def get_random_position(rooms, days, slices, morning):

 room = random.randrange(rooms)

 day = random.randrange(days)

 time = random.randrange(slices)

 afternoon = "False"

 if time >= morning:

 print ("time: " + str(time) + " morning: " + str(morning))

 time = time - morning

 46

 afternoon = "True"

 return room, day, time, afternoon

 #print("room = " + str(room)+ " day = "+str(day) + " time = " + str(time))

def add_to_list(to_return, item_to_add):

 flag = True

 success = True

 for element in to_return:

 if element['room'] == item_to_add['room'] and element['day'] ==

item_to_add['day'] and element['time'] == item_to_add['time'] and element['afternoon']

== item_to_add['afternoon']:

 flag = False

 if flag:

 to_return.append(item_to_add)

 else:

 success = False

 return to_return, success

Day slices calculation (functions.py)

import datetime as dt

def get_time_slice(period, start, end):

 start_hours = str(start).split(':')

 end_hours = str(end).split(':')

 slices = ((int(end_hours[0]) * 60 + int(end_hours[1])) -

 (int(start_hours[0])*60+int(start_hours[1]))) / period

 return slices

def fill_time_values(period, start, end):

 slice_size = get_time_slice(period, start, end)

 to_return = []

 for until in range(slice_size):

 time_slice = dt.timedelta(minutes = (period*until))

 to_return.append(str((dt.datetime.combine(dt.date(1,1,1),start) +

time_slice).time()))

 return to_return

def get_days(start, end):

 days = end-start

 to_return = days.days

 return to_return

Database models (models.py)

from django.db import models

 47

class Presenter(models.Model):

 Presenter_Name = models.CharField(max_length=100)

 Register_Date = models.DateTimeField('Date Registered')

 def __unicode__(self):

 return self.Presenter_Name

class Conference(models.Model):

 Conference_Name = models.CharField(max_length=125)

 TIME_SLICES = (

 (15, '15 minutes'),

 (20, '20 minutes'),

 (30, '30 minutes'),

)

 Conf_Date_Start = models.DateField('Conference Start Date')

 Conf_Date_End = models.DateField('Conference End Date')

 Conf_Start_Time = models.TimeField()

 Conf_End_Time = models.TimeField()

 Conf_Length = models.IntegerField(choices=TIME_SLICES)

 Conf_Room_Count = models.IntegerField()

 def __unicode__(self):

 return self.Conference_Name

class PresenterRestriction(models.Model):

 Presenter_Names = models.ForeignKey('Presenter', null=True)

 Unavailable_Start = models.DateField('Unavailable from',null=True, blank=True)

 Unavailable_End = models.DateField('to',null=True, blank=True)

 Presentations_To_Attend = models.ManyToManyField('Presentation', null=True,

symmetrical=False)

class Presentation(models.Model):

 Name = models.ManyToManyField('Presenter')

 Conference = models.ForeignKey('Conference')

 Presentation_Name = models.CharField(max_length=100)

 def __unicode__(self):

 return self.Presentation_Name

URL resolver (urls.py)

from django.conf.urls import patterns, url

urlpatterns = patterns('conf.views',

 url(r'^$', "index"),

 url(r'^(?P<conf_id>\d+)/$', 'viewConference'),

 url(r'^(?P<conf_id>\d+)/calculate/$', 'calculate'),

)

View Controller (views.py)

 48

from django.http import HttpResponseRedirect, HttpResponse

from django.shortcuts import render_to_response

from django.template import RequestContext

import datetime, time

from time import clock as c, time as t

import functions, calculate_ant_colony

from conf.models import Presenter, Conference, Presentation, PresenterRestriction

def index(request):

 template_data = {}

 template_data['conferences'] = Conference.objects.order_by('-Conf_Date_Start')

 return render_to_response('conferences.html', template_data,

context_instance=RequestContext(request))

def viewConference(request, conf_id):

 template_data = {}

 template_data['Presentations'] = Presentation.objects.filter(Conference = conf_id)

 template_data['conf_id'] = conf_id

 return render_to_response('_details.html', template_data,

context_instance=RequestContext(request))

def calculate(request, conf_id):

 before = t()

 template_data = {}

 #variables

 conference = Conference.objects.get(id=conf_id)

 restrictions = PresenterRestriction.objects.all()

 FMT = '%H:%M:%S'

 noon = datetime.time(12,0,0)

 afternoon = datetime.time(13,0,0)

 cstart = conference.Conf_Start_Time

 cend = conference.Conf_End_Time

 clen = conference.Conf_Length

 cstart_date = conference.Conf_Date_Start

 cend_date = conference.Conf_Date_End

 croom_count = conference.Conf_Room_Count

 slices_morning = functions.fill_time_values(clen,cstart , noon)

 slices_afternoon = functions.fill_time_values(clen, afternoon, cend)

 presentations = Presentation.objects.filter(Conference = conf_id)

 days = functions.get_days(cstart_date, cend_date)

 #context data

 template_data['morning_slices'] = slices_morning

 template_data['afternoon_slices'] = slices_afternoon

 template_data['days'] = range(days)

 template_data['span'] = int(10 / croom_count)

 template_data['span_rest'] = 12-(template_data['span']*croom_count)

 template_data['rooms'] = range(croom_count)

 49

 template_data['schedule'], template_data['count'] =

calculate_ant_colony.calculate_without_recursion(conference, presentations,

restrictions, slices_morning, slices_afternoon, days,1)

 template_data['morn'] = len(slices_morning)

 template_data['Presentations'] = presentations

 after = t()

 delta = after - before

 print("page took " + str(delta) + " seconds to load")

 template_data['timing'] = str(delta) + " seconds"

 return render_to_response('calculate.html', template_data,

context_instance=RequestContext(request))

Conference details template (_details.html)

{% extends "base.html" %}

{% block title %}Conference Details{% endblock %}

{% block content %}

 <div class="row">

 <div class="span12">

 <h1> Presentations for conference </h1>

 </div>

 <div class="span12" style="padding-bottom:300px;">

 {% if Presentations %}

 {% include "presentation_details.html" %}

Run conference planner

 </div>

 {% else %}

 There are no presentations in this conference yet!

 Other Conferences

 {% endif %}

 </div>

 <div>

{% endblock %}

Template base (base.html)

<!DOCTYPE html>

<html>

 <head profile="http://www.w3.org/2005/10/profile">

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <meta name="description" content="Thesis project for Efe Acikgoz" />

 <meta name="author" content="Efe Acikgoz" />

 <title>{% block title %}{% endblock %} - Conference Planner</title>

 <link href="/static/css/base.css" rel="stylesheet" />

 50

 <link href="/static/css/bootstrap.min.css" rel="stylesheet" />

 <link

href='http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz:400,300,700'

rel='stylesheet' type='text/css' />

 </head>

 <body>

 <div class="container cont">

 {% spaceless %}{% block content %} {% endblock %}{% endspaceless %}

 </div>

 </body>

</html>

Schedule screen (calculate.html)

{% extends "base.html" %}

{% block title %}Conference Plan{% endblock %}

{% block content %}

 {% comment %}

 <div class="row">

 <div class="span12">

 <h1> Calculation </h1>

 {% for day in days %}

 <div class="row">

 <div class="span{{span_rest}}">

 <span

style="background:url(/static/img/date.png);height:63px;width:58px;float:left;margin-

bottom:2px; margin-right:5px;">

 <h2 style="margin-left:15px;">

 Day {{ forloop.counter }}

 </h2>

 </div>

 {% for room in rooms %}

 <div class="span{{ span }}">

 <h2> Room {{ forloop.counter }} </h2>

 </div>

 {% endfor %}f

 {% for slice in morning_slices %}

 <div class="span{{span_rest}}">

 {{ slice }}

 </div>

 {% include "rooms.html" %}

 {% endfor %}

 <div class="span12">

 <hr class="style-two">

 </div>

 51

 {% for slice in afternoon_slices %}

 <div class="span{{span_rest}}">

 {{ slice }}

 </div>

 {% include "rooms.html" %}

 {% endfor %}

 </div>

 {% endfor %}

 </div>

 </div>

 {% endcomment %}

 <div class="row">

 <div class="span12">

 <h1> Calculations took: {{count}} in {{timing}}</h1>

 {% for day in days %}

 <div class="row">

 <div class="span{{span_rest}}">

 <h2>

 <font size="4" color="white" style="margin-top:5px;padding-

left:5px;text-shadow: 0px 1px 1px #000;">

 Day {{ forloop.counter }}

 </h2>

 </div>

 {% for room in rooms %}

 <div class="span{{ span }}">

 <h2> Room {{ forloop.counter }} </h2>

 </div>

 {% endfor %}

 {% spaceless %}{% for slice in morning_slices %}

 <div class="span{{span_rest}}">

 {{ slice }}

 </div>

 {% include "calculated_rooms_morning.html" %}

 {% endfor %}{% endspaceless %}

 <div class="span12">

 <hr class="style-two">

 </div>

 {% spaceless %}{% for slice in afternoon_slices %}

 <div class="span{{span_rest}}">

 {{ slice }}

 </div>

 {% include "calculated_rooms_afternoon.html" %}

 {% endfor %}{% endspaceless %}

 </div>

 52

 {% endfor %}

 </div>

 </div>

 {% include "presentation_details.html" %}

{% endblock %}

Calculated room (calculated_rooms)

 {% spaceless %}

 {% for room in rooms %}

 <div class="span{{ span }}">

 {% for plan in schedule %}{% if day = plan.day and room =

plan.room %}{% if plan.afternoon == "True" %}{% if plan.time =

forloop.parentloop.parentloop.counter0 %}

 {{ plan.name }}

 {% endif %}{% endif %}{% endif %}{% endfor %}

 </div>

 {% endfor %}{% endspaceless %}

Conference list (conferences.html)

{% extends "base.html" %}

{% block title %}Conferences{% endblock %}

{% block content %}

 <div class="row">

 <div class="span12" style="padding-bottom:250px;">

 <h1> Conferences </h1>

 {% for conference in conferences %}

 <h3> {{ conference.Conference_Name }}

</h3>

 {% endfor %}

 </div>

 </div>

{% endblock %}

presentation details page (presentation_details)

 Show Details

 Hide Details

 <div id="details">

 <div class="row">

 {% for Presentation in Presentations %}

 <div class="presentation">

 <h4>{{ Presentation.Presentation_Name }}</h4>

 {% for Presenter in Presentation.Name.all %}

 {{ Presenter }}

 {% endfor %}

 </div>

 53

 {% endfor %}

 </div>

 </div>

 <script src="/static/js/jquery-1.5.1.min.js"></script>

 <script src="/static/js/jquery.masonry.min.js"></script>

 <script>

 $(document).ready(function(){

 $('#details').masonry({

 itemSelector: '.presentation',

 columnWidth : 230,

 });

 $("#details").hide();

 $(".btnHide").hide();

 $(".btnShow").click(function() {

 $("#details").fadeIn(1000);

 $(".btnShow").hide();

 $(".btnHide").show();

 });

 $(".btnHide").click(function() {

 $("#details").fadeOut(1000);

 $(".btnHide").hide();

 $(".btnShow").show();

 });

 });

 </script>

Settings (settings.py)

Django settings for thesis project.

import os.path

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))

DEBUG = True

TEMPLATE_DEBUG = DEBUG

ADMINS = (

 # ('Your Name', 'your_email@example.com'),

)

MANAGERS = ADMINS

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql',

'sqlite3' or 'oracle'.

 'NAME': PROJECT_ROOT+'/db', # Or path to database file if using

sqlite3.

 'USER': '', # Not used with sqlite3.

 54

 'PASSWORD': '', # Not used with sqlite3.

 'HOST': '', # Set to empty string for localhost. Not used with sqlite3.

 'PORT': '', # Set to empty string for default. Not used with sqlite3.

 }

}

TIME_ZONE = 'Europe/Istanbul'

LANGUAGE_CODE = 'en-us'

SITE_ID = 1

USE_I18N = True

USE_L10N = True

USE_TZ = True

MEDIA_ROOT = ''

MEDIA_URL = ''

STATIC_ROOT = ''

STATIC_URL = '/static/'

STATICFILES_DIRS = (

 os.path.join(PROJECT_ROOT, 'static'),

)

STATICFILES_FINDERS = (

 'django.contrib.staticfiles.finders.FileSystemFinder',

 'django.contrib.staticfiles.finders.AppDirectoriesFinder',

)

SECRET_KEY = '&kt14m%dpz=f4qhx5wafsrx=h0uvxst(l45n3a43i9$$zo9$3d'

TEMPLATE_LOADERS = (

 'django.template.loaders.filesystem.Loader',

 'django.template.loaders.app_directories.Loader',

)

MIDDLEWARE_CLASSES = (

 'django.middleware.common.CommonMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

)

ROOT_URLCONF = 'urls'

WSGI_APPLICATION = 'wsgi.application'

TEMPLATE_DIRS = (

 55

 os.path.join(PROJECT_ROOT, "templates").replace('\\','/'),

)

INSTALLED_APPS = (

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.sites',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'django.contrib.admin',

 'conf',

)

LOGGING = {

 'version': 1,

 'disable_existing_loggers': False,

 'filters': {

 'require_debug_false': {

 '()': 'django.utils.log.RequireDebugFalse'

 }

 },

 'handlers': {

 'mail_admins': {

 'level': 'ERROR',

 'filters': ['require_debug_false'],

 'class': 'django.utils.log.AdminEmailHandler'

 }

 },

 'loggers': {

 'django.request': {

 'handlers': ['mail_admins'],

 'level': 'ERROR',

 'propagate': True,

 },

 }

}

 56

Appendices A.2 - Screenshots:

Admin pages:

Main administration page

Conference admin page

 57

Presentation admin page

Presentation restrictions admin page

 58

Presenter admin page

Admin user details page

 59

Application pages:

Conferences list page

Conference details

 60

Conference schedule

 61

ÖZGEÇMİŞ

Adı Soyadı :Efe Açıkgöz

Sürekli Adresi : Salnameci Sok. H. Suleyman Temur Apt. No:45 D:9 Şişli/İstanbul

Doğum Yeri ve Yılı : Balıkesir 07/03/1988

Yabancı Dili : İngilizce

İlk Öğretim : Atatürk İlköğretim Okulu 2002

Orta Öğretim : Rahmi Kula Anadolu Lisesi 2006

Lisans : Bahçeşehir Üniversitesi 2010

Yüksek Lisans : Bahçeşehir Üniversitesi

Enstitü Adı : Fen Bilimleri Enstitüsü

Program Adı : Bilgi Teknolojileri

Çalışma Hayatı :

Apperto 2012 – Devam

Mobinex 2010 – 2012

 62

 63

