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ABSTRACT 

HIGH-SPEED BIDIRECTIONAL FANO ALGORITHM IMPLEMENTATION 

 

Ates, Ozgur 

Computer Engineering 

Thesis Advisor: Prof. Dr. Taskin KOCAK 

January 2014, 95 Pages 

 

 

This thesis is about the implementation of Bidirectional Fano algorithm (BFA) and 

Unidirectional Fano algorithm (UFA or conventional Fano algorithm) in C and CUDA. 

BFA is derived from the Fano algorithm used in high speed convolutional code 

decoding. It is a simultaneous forward and backward codeword search decoder. The 

high throughput demanded by the latest wireless digital interfaces like WirelessHD may 

benefit from a parallel computing specific baseband processing unit that runs BFA at a 

high speed on CUDA. 

In this thesis, BFA reached a throughput of 4.4Gbps in CUDA with a single thread per 

codeword. Its iteration is characterised by one thread decoding first forward then 

backward. Another BFA decoding at 3.1Gbps was performed using dual threads per 

codeword. One thread is a forward decoder while the other is a backward decoder. 

Finally, on the same board, GTX650, UFA was found to have 5.0Gbps of throughput. It 

was concluded that additional memory transactions and check conditions were the 

source of throughput loss of BFA in comparison to UFA. However, BER, NoI and TpI 

analysis gave improved results for BFA, meaning that it decoded more efficiently than 

UFA. 

In order to obtain such throughputs, several optimization measures were taken such as 

the use of look-up tables instead of metric, output bit, state calculations. Another 

technique was to use an indexed circular queue to hold the previous eight steps in 

memory instead of using a conventional array. 

This thesis proposes BFA implementation in CUDA application as a complement to the 

research done by Xu et al. in 2009, in which simulation was conducted in MATLAB. 

Later, it has been implemented in FPGA at 100Mbps, and here we are aiming a 

throughput in several Gbps. 

The research done by Xu and Koçak (2010) proposed the use of LUT for checking 

merge conditions. LUT were used in this thesis, too, but this time to pre-calculate next 

metric, state, output bit calculations, and this contribution was applied to both UFA and 

BFA. 

Keywords:  Bidirectional Fano Algorithm, CUDA, High Throughput Decoding
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ÖZET 

YÜKSEK SÜRATLİ VE ÇİFT YÖNLÜ FANO ALGORİTMA UYGULAMASI 

 

Ateş, Özgür 

Bilgisayar Mühendisliği 

Tez Danışmanı: Prof. Dr. Taşkın KOÇAK 

Ocak 2014, 95 Sayfa 

 

 

Bu tezin konusu, yüksek süratli ve çift yönlü Fano algoritmasının C ve CUDA 

dillerinde uygulanmasıdır. 

Kısa adı BFA olan çift yönlü Fano algoritması, yüksek süratte evrişimli kod çözmede 

kullanılır. Bu, simültane bir biçimde ileri ve geri kod çözme algoritmasıdır.  

WirelessHD gibi modern kablosuz dijital iletişim araçları yüksek hız gerektirir. İşte bu 

yüksek BFA hızı için, CUDA ile paralel işlem yapabilecek bir ana bant işlem birimi 

kullanılabilir. 

Bu tezde, CUDA ile BFA’nın 4.4Gbps’lik bir hıza erişmesi sağlanıyor. Her kod ayrı bir 

thread kullanılarak çözülüyor. Her adımda bir thread başlangıçtan sona doğru kod 

çözüyor, ardından da sondan başa doğru. 3.1Gbps hızındaki diğer bir BFA kod 

çözümünde ise her kod için çift thread kullanılıyor. Burada da bir thread başlangıçtan 

sona doğru, öbür thread sondan başlangıca doğru kod çözüyor. UFA, aynı GTX650 

cihazında 5.0Gbps hızına ulaşabiliyor. BFA’nın yavaşlığının, UFA’ya daha fazla hafıza 

kullanmasından ve ek kontrol mekanizmalarından kaynaklandığını düşünüyoruz. 

Ancak, BER, NoI ve TpI analizlerinden BFA için daha iyi sonuçlar elde edilebiliyor. 

Bundan da anlaşılan şu ki BFA daha yavaş olmasına karşı UFA’dan daha verimli kod 

çözüyor. 

Bu hızlara ulaşabilmek için metrik, çıkan değer v.b. hesap yerine taramalı tablo 

kullanımı gibi bazı optimizasyonlar yapıldı. Bir başka yöntem, bir önceki sekiz adımı 

hafızada tutmak için klasik bir dizi yerine indeksli çember sıra kullanmak oldu. 

Xu et al. (2009) tarafından yapılan BFA araştırmasının simülasyonu MATLAB’da 

yapılmıştı. Başka bir simülasyon da FPGA’da 100Mbps hızında olmuştu. Bu tezde, 

CUDA ile birkaç Gbps hızında BFA araştırması simülasyon yapmayı hedefliyoruz.    

Xu ve Koçak (2010) tarafından yapılan araştırmada ileri ve geri kod çözücülerinin 

birleşmesinin kontrol edilmesinde taramalı tablo kullanılmasını önermişti. Bu tezde de 

metrik, çıkan değer v.b. hesap yerine taramalı tablo okuma yapılmış; üstelik bu hem 

UFA hem BFA için uygulanmıştır. 

Anahtar kelimeler: Çift Yönlü Fano Algoritması, CUDA, Süratli Kod Çözme
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1. INTRODUCTION 

 

This chapter is intends to provide a top-bottom view of the thesis and give the 

motivation behind this research. 

1.1 SCOPE OF THE THESIS 

The goal of this thesis is to propose a high-speed decoding solution using bi-directional 

Fano algorithm (Xu, 2009). The original research is the basis for this thesis and the aim 

will be to reach WirelessHD complying specifications (WirelessHD, 2010) which 

require 4 Gbps at version 1.0. 

This scope of this thesis is the implementation of the BFA. Local optimizations where 

needed are also part of the scope but bringing structural changes to the algorithm is not 

part of the scope. 

The main motivation of the thesis is to propose a real-life implement of BFA for high-

speed wireless networks. 

This research aims to propose a parallel solution to the initial problem. Therefore, a 

GPGPU implementation using CUDA, massive parallel programming platform from 

NVIDIA, will be proposed. Hardware implementation through ASIC, FPGA designing 

is not part of the research. 

1.2 GOAL OF THE THESIS 

This thesis aims to propose a high speed implementation for one of the baseband 

processes, namely signal decoding. For this purpose, BFA will be taken as the decoding 

mechanism and CUDA will be used as a parallel processing environment to optimize 

the computation efficiency. Also, an intermediary code in C++ will be used to 

accurately measure the efficiency gain between a theoretical implementation, a regular 

CPU based implementation and a parallel processing GPGPU based implementation. 
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1.3 OUTLINE OF THESIS REPORT 

In Chapter 2, a literature survey covering the basics of coding and decoding 

mechanisms at the baseband processing level will be reviewed. Also a quick 

introduction to WirelessHD will be done. In Chapter 3, previous algorithms using Fano 

Algorithms will be described. In Chapter 4, a C++ implementation of the BFA will be 

shown. Chapter 5 will introduce CUDA. A CUDA implementation of the BFA will be 

provided in Chapter 6. Optimizations will be the subject of Chapter 7, mainly focused 

on parallel programming in CUDA for the BFA. In Chapter 8, the results of those 

algorithms will be analyzed. In Chapter 9, the conclusion and future research 

perspective will be discussed. 
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2. LITERATURE RESEARCH 

 

2.1 CONVOLUTIONAL CODING 

Convolutional coding is a subject that can be said to have started with P. Elias (1955). 

Inspired by Shannon’s mathematical material in communication (1948) and Hamming’s 

paper on error-correcting code (1950), Elias introduced the concept of convolutional 

coding. This mechanism is used in signal transmission over noisy channel, well known 

in telecommunication. Decoding a signal is one of the most time consuming tasks done 

at the baseband along with the FFT. 

The concept of transmitting over a noisy channel is as follows: 

 

 

 

 

 

 

The convolutional coding is the right most, bottom part of the diagram. Channel 

encoder applies convolutional coding to the data. In the other end, the channel decoder 

decodes the noisy signal which may be subjected to noise (AWGN), phase shifting, and 

interfaces. 

In convolutional coding m-bit input decoded into n-bit symbols. 

)( mnFor
n

m
RrateCode         (2.1) 

Figure 2.1: Transmission over a noisy channel 

Sender Sender Encoder Channel Encoder 

Receiver Receiver Decoder Channel Decoder 

Noisy Channel 
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Decoding is dependent on the last symbol L where L is the code length. 

Encoders can be seen as FIR filters. An example of the mechanism of an encoding 

would be as follows. 

An imaginary encoder has a binary code ),,( mkn  such that 2n , 1k , 3m  where 

n is the number of output bits, k is the number of output bits, m is the number of 

memory registers. 

Considering a generator sequence: 

             (2.2) 

 

The convolutional structure would be then: 

 
 

  

 

 

 

 

 

 

 

Initially all the registers are set to 0. At each time, a new input bit is sent to the encoder 

and n encoded 1v  and 0v  bits are generated from it. When no input is left, 0 is used by 

default. The encoding process ends when all the encoder’s memory registers are set 

back to initial state, 0. 
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
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Figure 2.2: Convolution structure of a (2,1,3) code 
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2.2 STACK ALGORITHM 

The stack algorithm or ZJ algorithm is a tree searching algorithm. It is characterized by 

its relative simplicity compared to Fano algorithm, another sequential decoding 

algorithm, or compared to Viterbi which can be visualized as a search for the shortest 

path through a trellis diagram. The aim of both stack and Fano algorithms is to propose 

an efficient search that may not be the maximum likelihood result. However; the 

resulting path is negligibly different from the maximum likelihood result but with the 

benefit of not traversing all the possibilities before giving that answer. 

Zigangirov (1966) and independently by Jelinek (1969), they proposed their 

implementations of the stack algorithm. The idea behind their result was to set a stack 

with the Fano metric 0 to the starting node, then calculate its successors, delete the top 

path from the stack and insert the new path, sort decreasingly the metrics. If the top 

path ends with the final node we have a result for the search. If not, looping back to the 

calculation above is the next step. 

The algorithm’s working flow can be summarized as: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Flow chart of stack algorithm 
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The Fano metric is calculated as below: 









ıjj

ıjj

xyRp

xyRp

)1(log

2log

2

2
          (2.3) 

(Anderson, 1983) 

Where, 

p is the crossover probability of a bit, 

R is the code rate, 

x is the partial code word, 

y is the received code word, 

i is the starting bit number, 

j is the ending bit number. 

A variant (D. Haccoun, 1975) of the ZJ algorithm was brought, characterized by the 

extension of the most likely paths instead of the systematic top node. The algorithm 

was proven to add some decoding effort and also additional memory requirement. 

However; the result was a reduced average decoding effort. 
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2.3 FANO ALGORITHM 

The Fano algorithm (1963) is a tree searching algorithm characterized by a good 

performance with low average complexity at reasonably high SNR. The algorithm is a 

sequential decoding algorithm. Fano does not claim to propose the maximum 

likelihood decoding schema as in the Viterbi algorithm (1967). However, for only 

slight decoding accuracy deterioration, the proposed algorithm obtains a nearly optimal 

decoding performance with significantly less decoding effort. 

The tree is composed of branches and nodes. Each branch of the tree has a weight that 

is also called branch metric. Paths are sequences of branches. The weight of a path is 

simply the sum of all of the metrics of its branches. 

This is a search algorithm in the sense that we are searching for the minimum weight 

for a path from the root to a leaf. The search is sequential and is done from one node to 

its neighbouring nodes and so on. The algorithm is a depth-first tree-searching 

algorithm. Searching goes on as long as the current node is not a leaf node. 

Fano algorithm moves forward if a branch metric is above a certain threshold T. On the 

other hand, it moves backward if there is no possible forward move and searches for 

other branch candidates. In case neither is possible, T is tightened. 

The threshold T has a calculation that updated dependently to the branch metrics 

statistics. T is initially selected as a multiple of delta. 

The workflow of the algorithm is as follows: 
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Figure 2.4: Flow chart of Fano algorithm 
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2.4 VITERBI ALGORITHM 

Viterbi introduced the convolutional decoding known as the Viterbi algorithm (1967). 

This is an algorithm which finds the shortest path for a weighted graph (Omura, 1969). 

It is the most used decoding schema in convolutional code because it fits well hardware 

implementation. The method used by the algorithm is proven to obtain the MLD 

(Forney, 1973) of a transmission with inter-symbol interferences. However, the 

algorithm is notorious for having an exponential complexity growth in correlation with 

a long constraint length. 

The algorithm finds the shortest path along the trellis diagram. The term trellis 

corresponds to the structure obtained by expanding the encoder’s state diagram over 

time. L + m + 1 time units or levels are produces from this procedure (John B. 

Anderson, 1983).   

Viterbi algorithm starts by computing a metric for every path. Each path is continued to 

be processed. If multiple paths converge to the same node, only the one with the higher 

metric survives and other converging paths are dropped. 

A bit stream of N bits can have kL2 distinct words where k is the number of input bits 

and L is the constraint length. The algorithm limits the selection of the possible output 

by using maximum-likelihood comparisons. 

The comparison type can lead to having a hard decision decoding or soft decision 

decoding algorithm. In a hard decision decoding, the comparison is determined using 

Hamming distance as the metric. On the other hand, a soft decision decoding decoder 

uses Euclidean distance as the measure. 

The workflow of the algorithm is as follows: 
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Figure 2.5: Flow chart of Viterbi algorithm 
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2.5 WIRELESS HD 

A review of some of the latest high-speed solutions is as follows. 

 

Table 2-1: High-speed networking solutions 

  

Technology Speed Area of use 

HDMI (v1.3) 10Gbps (HDMI, 2012) HD TV & WLAN 

WHDI (v1.0) 4.5Gbps (WHDI, 2012) HD TV 

WiGig (v1.1) 7Gbps (Alliance, 2010) HD TV & WLAN 

WirelessHD (v1.0) 

WirelessHD (v2.0) 

4Gbps (WirelessHD, 2008) 

10-28Gbps (WirelessHD, 2010) 

HD TV & WLAN 

HD TV & WLAN 

WirelessUSB(v1.1) 480Mbps (LSI Corporation, 

Hewlett-Packard Company, Intel 

Corporation, Microsoft Corporation, 

NECCorporation, ST-Ericsson, 

Samsung Electronics Co., Ltd., 

2010) 

Video streaming, 

Scanners, MP3 

Players, etc. 

 

WirelessHD is a protocol primarily designed for wireless video networking. It operates 

at the unlicensed 60 GHz band of the frequency spectrum. At v1.0, WirelessHD 

supported 4 Gbps, at the latest v2.0, it provides up to 28 Gbps data streaming for a 

typical 10 m range. At such speed, the company can naturally claim to allow streaming 

high definition audio\video (HD A\V) as uncompressed 1080p A/V transmission or 

uncompressed 7.1 surround sound audio support. Notice that in this thesis we will 

focus on the first version of WirelessHD.  
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A device using WirelessHD supports several different features. We can cite examples 

as: 

i. File transfer data using OBject EXchange (OBEX) 

ii. Smart antenna technology for non-line of site (NLOS) 

iii. 3D video support 

iv. User customized data privacy 

v. 1 Gbps connectivity for low power portable devices 
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3.  PREVIOUS WORKS 

 

3.1 UNIDIRECTIONAL FANO ALGORITHM 

3.1.1 Typical Implementation 

 

A typical UFA implementation is characterized by the avoidance of stack as present in 

the ZJ algorithm or heuristic path search as in the Viterbi case. However, this results in 

a higher decoding effort for low SNR. 

Two concepts directly influence such implementation. 

One of the crucial areas is the variable delta. As said earlier, it is used while tightening 

the threshold to a lower T. When delta is too small, the result is the many unnecessary 

decoding steps from it. On the other hand, a delta value too high would also be 

ineffective since the tightening would result in an increase of new wrong paths. 

Another concept to pay attention to is the rapid initial column distance growth (Li, 

1991). 

The overall design would require the following memory allocation (Ran Xu, 2009). 

i. A visit record is needed to keep track of each bit and in which state it was 

visited; thus, its size would be the number of states multiplied by the size of the 

frames. This information is used in the selection of the next node.  

ii. State history is used to keep track of the state of each frame bit for back tracing. 

Therefore, this requires a memory space as much as the size of the frame. 

iii. The metric history is also kept as the state history and again it needs the 

allocation of frame size memory space. 

iv. Flag history indicates which frame bit needs to look forward to the next best 

node operation. 
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The final result of the memory requirement for each frame calculation would be 

calculated as the following: 

Memory requirement = (number of states + 3) x size of the frame. In this memory 

assumption we ignore the negligible temporary values as delta, T, M, etc.  

3.1.2 Hardware Implementation 

 

Viterbi algorithm is said to be more practical for a hardware implementation but here 

we will present how Fano algorithm had been designed as VLSI circuits. 

We can mention an earlier high speed implementation (Forney & Bower, 1971) where 

the design was claimed to give 5Mb/s. 

For hardware implementation, normalization of data takes an important role. It is found 

that such practice would give better performance, make smaller circuits and prevent 

hardware overflow (Beerel, 2010). The normalization may concern the usage of smaller 

variables that directly affect bandwidth or the usage of variables such that current 

node’s metric is always equal to zero, which makes it unnecessary to add/subtract 

while making metric checks. 

Unlike typical or software implementations, memory limitations are heavy. For 

example, we may have to limit the number of nodes we can back track. 

Also, in the hardware implementation specialized blocks will be used. In their 

publications Beerel et. al (2010) proposed the usage threshold adjust units, branch 

metric unit, skip-ahead units (an interesting unit that tries to guess branch bits and 

calculates ahead the possible decision).  

Several other improvements are also proposed. For example for high SNR channel, 

error-free regions will be encountered most of the time. Therefore, optimizations in 

those regions for such events are recommended. 



 

32 

 

3.2 BIDIRECTIONAL FANO ALGORITHM 

3.2.1 Original Implementation 

 

The algorithm was proposed in Bidirectional Fano Algorithm Throughput Sequential 

Decoding (Ran Xu, 2009) paper. The algorithm was found to have at least 50 percent 

speed up compared to unidirectional Fano algorithm with a better decoding throughput 

at low SNR. 

The research was originally inspired by the idea of bidirectional search from Forney  

(1967) and the possibility of using a forward decoder and backward decoder starting at 

the opposite ends of the sequence and trying to reach a merge condition with the other 

decoder. The decoding ends when either a merge condition, corresponding to a 

successful decoding, or a decoder reaching the other end is detected, which 

corresponds to a failed decoding. 

The simulation result of the paper (Ran Xu, 2009) showed throughput up to 300 

percent improvement for 200 bits of information with dBNEb 3/ 0  and 1 merged 

state. Another note from the result is that as the number of merged states increase, BFA 

performances are close to UFA and VA. However, the research also points out the fact 

that a rigorous merging check still obtains throughput improvement. 

The conclusion of the paper was that the average decoding delay was reduced 

compared to both UFA and VA. Moreover, the throughput gain was even more distinct 

for low SNR values.  
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Figure 3.1: BFA flowchart 

 

 

Source Xu, 2009 

Figure 3.2: BFA merge schema 

 

Source Xu, 2009 

When consecutive merged states are detected, their number is called overlapped length. 

The algorithm typically has smaller length for quicker output but higher BER and, of 

course, expecting more states to merge is slower but gives a more accurate decoding. 
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3.2.2  Parallel Implementation 

 

A high throughput parallel Fano algorithm was proposed (Xu et al. 2011). The paper 

proposes eight decoders to be run simultaneously. 

Authors designed three possible solutions: 

The first solution is a synchronous design with each decoder fed with one codeword 

and resulting in a synchronous result reading. However, even though the decoding time 

is upper bounded, the decoding is not constant since it is dependent on the input and 

SNR level. Hence, variability in the decoding termination time is a source of idle time 

for the decoder finishing earlier which is a waste of parallelism. 

The second solution offers the usage of a “dynamic scheduler”. The scheduler works as 

a dispatcher for the data to be processed and controls the collaboration between 

decoders. The scheduler can adjust the group effort such that for a high SNR in BFA 

situation may cause the circuit to take the decision to switch from BFA to UFA. This is 

because at high SNR values, both UFA and BFA produce similar results. Therefore 

instead of using two decoders, one forward and one backward, only a single decoder 

per codeword is used. 

In this second solution, attempts to use additional one or two decoders to start next 

decoding codeword(s) were done. The selection of the next codeword(s) is made to be 

among the ones presenting the higher probability to finish earlier. 

The third solution is a decoding with “static scheduling”. The term refers to a design of 

four pairs of decoders. They assist only their pairing decoder rather than using a more 

complex scheduler schema as in the second solution. The motivation for this solution 

was to make a compromise between speed and hardware complexity. 
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4. BFA C++ IMPLEMENTATION 

 

4.1 MOTIVATION 

The essential motivation behind a C++ implementation is to propose a solution that 

could go beyond the simulation which was the greatest problem with the former 

MATLAB implementation. This is the case because high speed constraint, which is 

crucial for real-time applications, is not met. 

Also, we may use this implementation to measure the speed gain in comparison to the 

simulations. Depending on the throughput, we can also use this implementation in real 

environment. 

The choice of C++ was taken to avoid abstraction and try to speed the processing by 

focusing on lower level programming. C++ is still a language that is widely used 

especially on the networking environment. 

Finally, C++ is a language that is used in several parallel programming environments 

that lead to new perspectives in that direction. 

4.2 STRENGTHS & WEAKNESSES 

Compared to the original code, we can truly start speaking about speed when we use 

C++. It is an old but still improving (ISO/IEC 14882:2011 (TR1), 2011) language that 

is more suitable for time critical tasks. This is the case because the language presents 

the advantages of low level language that can literally be optimized for specific CPU 

usages. In the same time, the language allows some abstraction which allows smaller 

coding effort. 

A possible advantage is the possibility to call a C++ code from just a command line 

and take the result as an output. This is practical when thinking about the usability of 

the code. With the correct programming style, the BFA code may be used in a batch 

mode which is very useful for both real life usage and scripting environment.  
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So, compared to the MATLAB code, the result is expected to be faster. However some 

considerations should not be neglected. For example, in C++ there are no built-in 

libraries or functions to respond to the mathematical demand. Therefore, such problems 

should be considered. An example is the error function that must be written to run the 

algorithm. 

There is also a technicality limitation with the change between earlier implementation 

and C++. For instance, the memory management is left to the programmer. It may be 

an advantage to allow local optimization. However, it is also a disadvantage since it 

will make the programmer work with stream of data that needs constant checking  

4.3 APPLICATION 

4.3.1 Overall Structure Of The Program 

This section is very important; we will refer back to this point in a next 

implementation. 

It is important that the core design is inspired by the MATLAB code from the first 

BFA paper (Ran Xu, 2009). My contribution here is not to change the overall code, 

which stays somehow similar, but to implement it as a C++ code. 

A later implementation will need drastic modifications at several points. The 

motivation behind it will be to make the algorithm work as a massively parallel 

implementation in CUDA, which in fact is the main goal of this research. 
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The overall work flow of the encoder - decoder system can be summarized as: 

 

      

 

 

 
 

User’s input is taken or generated randomly. 

 

 

 

    The encoder applies convolutional coding to the source. 

 

 

 

    The encoder transforms input 0 to -1, and 1 stays 1. 

 

 

 

Channel interferences, noises, etc. effects are modelled. 

 

 

 
 

    Negative values are changed to 0, others are changed to 1. 

 

 

 

    The actual BFA decoder works at this level. 

 

 
 

    Resulting decoded stream is transferred to destination. 

 

 

 

 

 

 

Figure 4.1: Decoder's work flow 
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4.3.2 Encoder 

For the encoder, the generator sequence was taken from the WirelessHD specifications 

document (2010). 









)1110101(2

)1111001(1

1011011)(0

g

g

g

           (4.1) 

Let OUTA, OUTB, OUTC be the generated output from g0, g1, g2.  

Let also d0, d1…d6 be the memory registers of the encoder, d6 be the current output, 

d0 being the input entered 6 steps before, we have: 















02456

03456

01346

dddddOUTC

dddddOUTB

dddddOUTA

         (4.2) 

 

The function loops through the input bits with six additional iterations to allow the 

tailing bits to be processed entirely and the encoder to return to the initial state.  

When the result is calculated, right shifting is done and d0 becomes d1’s value, d1 

becomes d2’s value, etc… d6 is set to the new input bit, or in the case no new bit is 

available, it is set to 0. 

Naturally, if S is the size of the input, then the output will be 3xS wide. 

Performance wise, an encoder is limited by its memory. This makes it very difficult to 

implement in a real parallel executed code. 
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4.3.3 Modulator \ Demodulator 

Modulator \ Demodulator 

The working mechanisms of both the modulator and demodulator are trivial. 

Let us consider the example of an encoded stream. 

Table 4-1: Modulator\Demodulator example 

 

 Input Output 

Modulation   1     0     0     0     0     1    1    1    -1   -1    -1   -1     1     1 

Demodulation 0.1 -1.2 -0.7 -1.0  -3.0  0.2  0    1     0     0     0    0     1     1 

 

Unlike the encoder, these blocks can easily be parallelized. 

4.3.4 Channel Noise With AWGN 

This calculation of the noise is not a difficult problem. It consists of the usage of the 

normally generated random numbers not supported in the C, C++ libraries. An example 

code (1999) from Thomas Sailer was finally found over the internet. Later, Boost 

library was found to also support normal distribution generation. 

Applying AWGN, like modulator code, can easily be done in parallel coding. 

4.3.5 UFA 

The Fano algorithm mechanism was briefly explained in 2.1. The coding, besides some 

technicalities, basically stays the same. 

Few technical decisions were made during the coding. For example, pointers were 

often used. This is because while computing next states and metrics we would need to 

send multiple answers to output the result. For the next state, we have for current input 

bit=0 and another state for bit=1 and so on. Considering that we also have history 

pointers, we end up with many memory allocations at a time. Fortunately, unlike the 

history pointers, the answers for state or metric calculation stay at the order of O(1). 

The mechanism of the Fano algorithm was slightly decomposed and portions of code 

that could be reused were actually run together. 
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We can summarize the overall coding as the following: 

STEP 1 Initialization 

  Delta, M0, M1 are calculated and memory allocation are made 

STEP 2 Loop start 

  Metrics and MF are computed. 

STEP 3 If in move forward condition 

Current states, metrics are stored in State history and Metric history. 

Current state and its corresponding output bit are updated. 

Flag history is updated. 

Depth in the tree is incremented. 

If search reaches other end, stop the program; otherwise go to STEP 2. 

STEP 4 If MB < T 

Current states, MB, M are computed. 

Depth in the tree is decremented. 

If from worst node check, Flag LFNB is set and go to STEP 2. 

If MB < T is still true, tighten T and go to STEP 2. 

Check overflow and stop if max operation is reached 

For the UFA decoder to work, the parameters to provide are: 

Table 4-2: UFA parameters list 

 

Input Output 

Noised input Decoded output 

Length input Count operations 

SNR Flag overflow 

Metric precision  

Delta  

Max operations  
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4.3.6 BFA 

BFA implementation is very similar to two UFA blocks that run successively. This was 

to be expected from the specification of the paper (Ran Xu, 2009) and the Chapter 

3.2.1. 

We also took into account additional merging conditions. Also, new controlling 

parameters as g, showing the gap between both encoders were added. If the gap is 0, 

this means that both encoders are at the same point in the decoding. In such case, the 

algorithm takes the encoded part from the forward decoder from start to merged region 

and takes the encoded part from the backward decoder from the end to the merged 

region to constitute the decoded output. 

Some remarks about the code: The coding requires twice the memory since we are 

effectively running two decoders at the same time. This may be a problem in memory 

limited environment. 

All other functions remain the same, except that the decoder and the next state finder 

code change for the backward version.  

The generator sequence for the FD was: 









)1010111(2

)1001111(1

1101101)(0

g

g

g

           (4.3) 

The generator sequence used for the BD was then chosen to be: 









)1110101(2

)1111001(1

1011011)(0

g

g

g

           (4.4) 
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5. CUDA 

 

5.1 BACKGROUND 

 

To satisfy gamers, 2D processing image processing demand, as early as 1985 GPU 

were introduced with Commodore Amiga. Modern GPU can process 2D, 3D and make 

several intense arithmetic operations required by the latest games. This is accomplished 

by the use of multi-core design at the hardware level. In order to draw some effects like 

shader effects, OpenGL and DirectX required from GPU to provide GPGPU capability, 

such as a general purpose programming capability. 

Compute Unified Device Architecture (CUDA) was specifically developed for the 

GPGPU purpose. Hence, NVIDIA boards now incorporate this feature allowing 

programmers to use the board as a parallel processing platform. Modern motherboards 

present on-board GPU sufficient enough for a desktop usage. In such cases, the OS 

puts the NVIDIA board into sleep mode for power consumption. We can say that the 

desktop graphics are handled by the on-board GPU, whereas the NVIDIA board 

handles games graphics and CUDA specific instructions. This way, programmers can 

employ the unused processing power of the GPGPU just like a co-processor dedicated 

only to execute programmer’s instructions. 

While generally a modern CPU has around four cores, a CUDA-capable NVIDIA 

board has at least two Streaming Processors (SP) having 8 cores \ SP that is 16 cores in 

total (NVIDIA Corporation, 2009). Current NVIDIA boards starts with at least six SP 

that is around 50 cores. The cores count can even go over 3000 for the latest models 

like Tesla K10 (NVIDIA Corporation, 2012) which is a combination of two boards 

working in pair. This is the result of the fact that CUDA programming is scalable.  

When a CUDA programmer gives instructions to perform, he also has to indicate the 

number of threads that should handle those instructions. The board then gives orders to 

its idle cores to dispatch those instructions among its threads. This part is transparent to 

the coder and requires no change in the initial coding.  
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The following is a typical CPU compared to a CUDA-capable NVIDIA GPGPU board. 

Figure 5.1: Structural comparison CPU & GPUGPU 
 

 

Source: NVIDIA Corporation, 2012 

 

In the previous figure, we can observe that a special disposition for the memory is 

taken. The actual memory structure of a CUDA compliant board is as follows. 

Table 5-1: Cuda memory size with example 

 

Memory Type Access Type Access Scope Example: 330M 

Register Read & Write Thread 1 Kbyte 

Local Memory Read & Write Thread 16 Kbytes 

Shared Memory Read & Write Block 64 Kbytes 

Constant Memory Read only Grid 64 Kbytes 

Texture Memory Read only Grid 8 Kbytes 

Global\Device Memory Read & Write Grid 1024 Mbytes 
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All six memories are accessible in the device. Global, constant and texture memories 

are also accessible from the host which allows a two way communication. This is 

generally used as a memory initialization as it is the only way a device can be given 

data or read data from. It is a large but slow memory access as it is a DRAM memory. 

Other memories much smaller but quicker may also transfer data with those three 

memory types if needed. 

Figure 5.2: CUDA memory hierarchy 
 

 

Source: NVIDIA Corporation, 2012 

 

The software layer is governed by C\C++ with the addition of several CUDA specific 

functions like data transfer functions, thread control commands, usage of CUDA 

libraries etc. Several third party wrappers exist for Java (Java bindings for CUDA, 

2012), Fortran (Portland Group, 2012), Python (ArrayFire CUDA Python, 2012), etc.  

The programmer will be able to write kernels which are nothing more than codes 

destined to be run on the device. Running, instantiating kernels using threads are done 

by the coder. For example, we may want to have 100 percent occupancy for a 330M. 

For this we would ask 512 threads (the maximum threads per blocks) to be instantiated 

for a particular kernel run. 
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5.2 APPLICATIONS 

CUDA works on a NVIDIA GPU board but its applications go beyond the graphical 

and video related applications. As mentioned earlier, the platform presents an immense 

processing power to programmers who have already started utilizing that opportunity 

(CUDA-Accelerated Applications).  

As examples of applications we can refer to the following table. 

Table 5-2: CUDA's areas of application 
 

Program Name Area of application 

Accelerating bio-molecular simulations Computational chemistry 

Arbitragis Trading Financial 

CUDA Acceleration for MATLAB Matlab integration 

CUDA Voxel Rendering Engine Video applications 

Digisens: SnapCT tomographic reconstruction software Medical imaging 

DNA Sequence alignment: MUMmerGPU Bio-informatics 

GIS: Manifold Government & defence 

GPMAD : Particle beam dynamics simulator  Electrodynamics 

NAMD molecular dynamics  Molecular dynamics 

Synopsys: Sentaraus TCAD Electronic design automation 

 

As we can see, CUDA is widely used in the modern market. Nowadays, CUDA has 

many other applications among a diversified palette of utilizations. 
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5.3 ALTERNATIVES 

Microsoft in its HPC Whitepaper (Microsoft, 2010) indicated the AccelerEyes, 

BrookGPU, DirectCompute, OpenCL and PGI as alternatives to CUDA. To this list we 

can also add PathScal’s ENZO. Their specifications are beyond the scope of this thesis 

but we can briefly describe them. 

OpenCL is by far the closest to CUDA and is also more popular than the other 

alternatives. Khronos Group is the developer of this open standard platform (Khronos 

Group, 2012). OpenCL is a framework for heterogeneous systems which supports 

Apple, AMD, Intel, NVIDIA, and ARM GPGPU boards (Khronos Group, 2012). 

DirectCompute is Microsoft’s product and works on top of CUDA \ OpenCL but it is 

not a popular solution. Even its creators do not provide much documentation to 

encourage programmers to use it. 

ENZO (PathScale, 2011) is a small compiler in beta testing. It can be programmed in 

C, C++ and Fortran. It uses NVIDIA’s native instructions and supports OpenHMPP  

(NVidia Corporation, 2012).  

PGI (Portland Group, 2012) is the compiler from the group, which is a subsidiary of 

STMicroelectronics. PGI also proposes C, C++ and Fortran programming supports. 
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4. BFA CUDA IMPLEMENTATION  

 

6.1 MOTIVATION 

 

The MATLAB implementation suffered from a speed problem. This was primarily the 

consequence of the program targeted to being used for simulation and not real life 

project. 

C++ implementation presented a better result but we can still improve the throughput. 

However; there is a limitation to how much we can advance in terms of speed in C++. 

The most reasonable addition we may think is to use the parallel execution. 

Figure 6.1: Intel CPU Trends  

 

 

Source: Sutter, 2011 ‘The Free Lunch is Over’: transistors per processor, clock speed, power 

consumption and instruction level parallelism 
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The figure illustrates the physical limitation that started to appear on 2003. The effect 

was to contradict the Moore’s Law which stipulated that the clock speed of processors 

would double approximately every 18 months. To counter the problem, multi-core 

processing was opted. 

In the same logic, the problem with the C++ implementation was the fact that it relied 

on a single processor execution pattern. Also, we depend on the processing power of 

the CPU which is heavily controlled by the OS. BFA implementation in CUDA was 

selected because it allowed programmers to use the board as a parallel execution 

platform. Also the language used to execute was basically C with the addition of 

CUDA specific APIs that simplifies the transition from the previous C version to 

CUDA. 

6.2 STRENGTHS & WEAKNESSES 

CUDA is a GPGPU platform. It is designed to be used in blocks of data being 

processed simultaneously. This is translated by coding style changes and new 

constraints to be added. 

Since our code will work on the GPU, we will not have the latency imposed by the OS 

which has to listen to many IO and time consuming threads. It is as if we had a huge 

multi-core CPU dedicated only to our job. 

CUDA is dependent on the architecture of the GPU to be used on. Knowing that 

architecture, it may allow further optimizations. 

Memory access is the limiting factor of parallel programming. We may have as many 

threads as we want, they may be as quick as possible but processing power is useless if 

the data transfer is slow. In regular processing, we had to wait for the memory to be 

initialized, and then we had to wait for the result to be calculated. In parallel 

processing, we may multiply the number of cores working and make the processing 

strength virtually unmatched. However, we still have to send the data to be processed 

to the memory and get the result from that memory. 

Since the processes all run at the same time, their synchronization may also become a 

problem. 
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6.3 APPLICATION  

6.3.1 Demodulator 

Until now no code was given since most of the coding was trivial (The appendix will 

have complete codes). However, not everyone is familiar with CUDA programming. 

Therefore an example will be given. The following is the demodulator’s code. 

Here is the kernel code that will run in the device. 

#define MAX_THREADS_PER_BLOCK 512 

#define MAX_BLOCKS 512 

 

__global__ void demodulate(const float *dev_noise, char* dev_demodulated, const int size) 

{ 

 const int i = threadIdx.x + blockIdx.x*MAX_THREADS_PER_BLOCK; 

 if(i>=size) 

  return; 

  

 if(*(dev_noise+i)<0) 

  *(dev_demodulated+i) = 0; 

 else 

  *(dev_demodulated+i) = 1; 

} 

 

Notice that the code is meant to work in a succession of blocks. This is seen by the 

parameter blockIdx.x an API specific identifier. As we remember, the blocks were 2D 

arrays and the x is for that value. In this implementation, 1D blocks were used to 

simplify the coding. 

In the same logic threadIdx.x gives the index of the thread. With these two parameters, 

we will be able to compute the integer i as the index of the thread. 

For example, let us say we want to demodulate a block of 1000 floating point values. 

These can represent a typical portion of WirelessHD frames that passed through a 

noisy channel. 

If we consider that the device can support max threads/block 512 and max 

blocks/device 512, and if we wish to process the demodulation in one time, we will 

need to be concurrently working with two blocks: 

    blocks2512/1000 
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From the equation we can deduce that the first block will be 100 percent occupied, 

while the second block will have 95 percent occupancy with 488 threads running of the 

possible maximum 512. 

The kernel code is very straightforward but one should be aware of the structure of the 

kernel. The beginnings of two memory locations in the device are passed as arguments. 

Those are dev_noise for the input and dev_demodulated as the result of the 

demodulation. The index is calculated to correlate the current thread with its 

corresponding input and output memory locations. The return condition, even though 

adding minor latency from the check condition, is necessary for handling erroneous 

and unexpected device behaviour. 

Now let us see the actual instantiation of the working threads. 

int main() 

{ 

 // Allocate device memory 

 cudaMalloc((void**)&dev_num,memSize); 

 

 // Copy noisy numbers to device memory 

 cudaMemcpy(dev_num, num, memSize, cudaMemcpyHostToDevice); 

  

 // Call demodulate kernel 

 demodulate<<<blockCount, threadCounts>>>(dev_num, size); 

 

 // Copy demodulated result back from device memory 

 cudaMemcpy(num, dev_num, memSize, cudaMemcpyDeviceToHost); 

 

 // Freeing memories 

 cudaFree(dev_num); 

} 

 

As we can see from the main program there are typical changes to C coding. 

i. As we remember, the device has no access to the host memory. Therefore, 

programmers must copy host data to the device’s memory with cudaMemcpy.  

ii. Actual kernel call looks like a regular C function call with the addition of 

<<<…,…>>> after the function name. Considering the kernel code, it is 

apparent that CUDA will instantiate as many as blockCount blocks with 

threadCounts threads each. 

iii. When we wish to get the result from the threads, another memory copy call is 

performed from the device to the host. 
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6.3.2 Parallel Blocks 

Several parts of the coding were adjusted to take advantage of the CUDA’s proposed 

massively parallelism as in the case of encoder - decoder explained in 6.3.1. Using the 

same kind of procedure, the following blocks were changed from iterative blocks to 

parallel blocks to allow concurrent execution. Hence, theoretically those blocks now 

present a drastic performance increase. 

In an initial CUDA implementation attempt of the system, it was apparent that each 

block could not be made parallel as easily as demodulator. A summary of used blocks 

are given in the table below. 

Table 6-1: Initial CUDA parallelism without optimization 

 

Block Name Initial CUDA implementation 

Modulator \ Demodulator Parallel block 

Metric calculation Parallel block 

State finder Parallel block 

Random generation  Parallel block 

Channel AWGN 

 
Parallel block 

Encoder  Iterative block 

Decoder Iterative block 

 

The blocks that could be made parallel are those that presented no memory in their 

coding. 

Notice that the random generation code was part of a blog (Nobile, 2011) and it was 

used for both the generation of random input values for testing and uniform random 

values for applying AWGN to modulated data. 

6.3.3 Iterative Blocks 

Two major blocks, encoder and decoder were not successfully made parallel in the first 

design of the system. As shown in 4.3.2, the encoder needs to know the previous six bits 

to generate the next encoded value. 
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The Fano algorithm is a sequential decoding. Therefore, the algorithm is by design an 

iterative block. However, the use of those blocks in parallel will be investigated in the 

next chapter. 

6.3.4 Decoder Structure 

We can represent the code as the followings. 

 

Table 6-2: call_decoder 

 

void call_decoder 

Inputs BFA_params, BFA_operations 

Purpose 

1) Prepare decoder primitives and memory 

2) Initialize pointers contents 

3) Call __global__ void fano_decoder 

4) Benchmark time spent and collect decoder’s result 

 

 

Table 6-3: fano_decoder 

 

__global__ void fano_decoder 

Inputs BFA_operation, BFA_params, output 

Purpose 

1) Create and set shared memory 

2) For each code word 

a) Get next 3 bits to decode 

b) Call operateOnPreconditions (calculate metrics, next move decision, 
decide tail bit, etc.) 

c) Call moveForward or moveBackward 

d) Call checkOverflowAndMerge 

e) If d) found no FD&BD merge or overflow return to a) 

f) Stop decoding 

3) Calculate final decoder response 
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Table 6-4: metric_calculation 

 

__device__ void metric_calculation 

Inputs preconditions, BFA_params 

Purpose 

1) Calculate 2 possible metrics & next state & next output 

2) Choose next metric 

3) Call __global__ fano_decoder 

4) Benchmark time spent and collect decoder’s result 

 

 

Table 6-5: operateOnPreconditions 

 

__device__ void operateOnPreconditions 

Inputs preconditions 

Purpose 

1) Decide isTail=0 or isTail=1 

2) Calculate next output, next state 

3) Call metric_calculation 

4) Set MF 

5) Decide moveForward=0 or moveForward=1 

 

 

Table 6-6: moveForward 

 

__device__ void moveForward 

Inputs preconditions 

Purpose 

1) Push current context to previousContexts stack 

2) Set current state and current output bit 

3) Increase depth 

4) Update T, M, Flag_LFNB and visit_record 
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Table 6-7: moveBackward 

 

__device__ void moveBackward 

Inputs preconditions 

Purpose 

1) Pop previousContext stack to get previous state, metric and Flag_LFNB 

2) If needs tightening, T=T-delta and stop function 

3) Decrease depth 

4) Update M, Flag_LFNB 

 

 

Table 6-8: checkOverflowAndMerge 

 

__device__ void checkOverflowAndMerge 

Inputs preconditions, preconditions 

Purpose 

1) Check FD or BD do not overflow, stop decoding otherwise 

2) Stop decoding if FD and BD merge 
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5. OPTIMIZATIONS 

 

7.1 MEMORY OPTIMIZATIONS 

7.1.1 Array Optimizations 

The memory is the bottleneck of the algorithm. While the operation to be done at each 

step is trivial, the spatial-temporal requirement is huge. A typical call needed: 

i. Visit_record which has the size inputSize x 64 x 1bit, 

ii. State_history which has the size inputSize x sizeOfState, 

iii. Flag_history which has the size inputSize x 1bit, 

iv. Metric_history which has the size inputSize x sizeOfMetric. 

 

For this memory organization, tests were conducted to find a correlation between 

memory usages and their actual implementations. A first test for back tracing was 

done. In it, for each time a move back was attempted, the final back tracing amount 

was recorded to find a possible maximum back tracing amount. The result was that 

even back tracing was very local, generally one or two steps back. Statistical analysis 

revealed that a significant portion of the back traces were eight or lower covering 97.72 

percent of encountered traces hence the maximum possible back tracing was set to 

eight. This opened an improvement area. Instead of keeping all the possible metrics in 

metric_history, we only needed to keep track of the previous eight metrics. Since we 

are also pretty much using the flag for back tracing keeping the flag_history was also 

unnecessary. 

This was found to be somehow similar to a return back of a function from a regular 

assembly code, in which a context was constructed. In it we had metric, flag and state. 

Each time a move forward is done, a new context is pushed into a circular queue that 

can contain at most eight items. This means that, storage of inputSize x (6+1) bits is 

reduced to a mere constant: 8 x (6+1) bits. Each time a move back is done, the last 

context is popped out rather than reading from a big array and they are both one cycle 

operations. 



 

56 

 

7.1.2 Shared Memory 

For an optimal operation speed, special attention was given to the usage of the shared 

memory. Since global memory usage is a slow access, shared memory was preferred 

whenever possible. However, handling such memory comes with a price: it has a small 

size, in the order of several kilobytes per block. 

The practice used was to use shared memory for every internal variable as count 

computation, latest contexts, input BFA_params or the preconditions structure. Shared 

memory was not used for big storage requirements as state_history or 

visit_record_history. This is due to the fact that in such event, the shared memory 

would saturate and the compiler would even refuse building such program. 

7.1.3 Inputs In The Memory 

As explained earlier, 1-bit is encoded with 3-bits. Therefore, at each step of the 

decoding we are dealing with three bits. Considering the hardware structure of either 

CUDA or more generally C, we can realize that such a representation was not intended. 

We have Boolean or characters etc. which represent respectively one or eight bits. 

Boolean actually are not stored as 1-bit memory spaces but rather packed in 8-bit 

blocks (Microsoft). In that perspective, we can assert that the smaller possible 

addressable memory is a word that is an 8-bit pack which is a char type. 

With the previous statement, our goal was to use char for inputs and such claim would 

give the following memory organization. 

If we use a big-endian representation with M0...M7 and M0 is the most significant bit. 

Figure 7.1: Inputs representation before optimization 

 
 

Input bits  

Unused bits  

Previous blocks  

Next blocks  

 

... M0 M1 M2 M3 M4 M5 M6 M7 ... 
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This would make a 3/8 occupancy making 62.5 percent memory waste for each input.  

When reading inputs, we are always carrying the depth information such that at each 

input read we ask for a 3-bit block to be read for a depth d where 0 ≤ d < inputSize. 

Considering BFA, the following was decided to be used: 

Figure 7.2: Inputs representation before optimization 

 
 

Input bits  

Unused bits  

Trailing bit flag  

Previous blocks  

Next blocks  

 

                   Backward decoding input         Forward decoding input 

 

... M0 M1 M2 M3 M4 M5 M6 M7 ... 
  

 
 

In such reorganization, what we achieve is the followings: 

1) All bits of the memory are effectively used. 

2) Additional information is stored along with the input bits. This information 

trailing bit is used in the algorithm such that: 

Trailing bit flag = 


 

1

073*

otherwise

inputSized
         (7.1) 

This way, we no longer need the inputSize information in the calculation, it is 

already calculated and we only use depth information. 

3) Forward or backward decoding has the same progress schema. Before this, the 

algorithm needed to check if the current decoder was a forward decoder (FD) or 

backward decoder (BD). This information would dictate the calculation of the 

index of the next input block. For example, if we move forward we would have 

depth=depth+1 but index=index+3 for forward decoder and index=index-3 for 

backward decoder. In this optimization, we no longer calculate the index of the 

input nor do we calculate whether or not in the trailing bit. This last information 

can be obtained directly from the input. 



 

58 

 

7.2 ALGORITHMIC OPTIMIZATIONS 

7.2.1 Structures Usage 

The code was also changed to use parameterized structures. Those structures are 

UFA_Memory, BFA_params, BFA_operation. 

Memory allocation for a UFA was partitioned as follows. Rather than allocating and 

freeing memory in the device a single chunk of allocations were done in bulk. That 

memory contained all the memory needed for a single decoding to run. In such manner, 

offsets were calculated to indicate where each memory blocks started. For this, we used 

an initialization function that takes frame length and determines the values for 

offsetVisitRecord, offsetStateHistory, offsetFlagHistory, offsetOutput, 

offsetMetricHist, offsetStateOrder, offsetStateInput, offsetMetricOrde, sizeAllocated. 

The usage of UFA_Memory would allow the reuse of the same allocated memory 

between calls of the same frame length bypassing the allocation procedure to ease the 

memory access with the use of offsets directly accessible within CUDA code. 

The purpose of BFA_params was to pass the same BFA parameters between calls and 

avoid repetitive delta, M0, M1 calculations. The structure also presents an initialization 

method that takes a SNR value, delta, maximum operations, and metric precision. The 

function will store delta, max operations and calculate M0, M1 given the SNR, delta. 

Calling the initialization function again will simply update those values if need be. 

Finally, the last structure is BFA_operation. In it are held the input and the length of 

the frame and the operation specification inputs. However, the structure is not limited 

to inputs; the results are also read from it. The actual output, flags, merging depth, 

sequential and parallel operation counts are also accessible from this object. 

7.2.2 Algorithm Optimization 

A problem in the BFA’s algorithm was that while moving back from the initial case 

with depth = 0, MB was set to   which has no meaning in a hardware environment. 

The MATLAB implementation handled the problem by setting MB to -
202 . This is a 

solution but it means we have to make many looping to get the actually effectual values 

to allow a move back. Testing was made to find the possible minimum value of MB to 
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make the first move back. The result was that such number was -39, therefore   

value was taken as -39 reducing redundant initial looping. 

7.2.3 Local Optimizations 

Code local optimizations were done. 

For example, when tightening was needed, originally the code would tighten as long as 

T < MF - delta was true. Such a condition would introduce unwanted iterative code. 

The iterative code was changed with its corresponding procedural form. 

Table 7-1: Tightening procedural version 

 

Before After 

while(T_f<=MF_f-delta) 
 T_f=T_f+delta; 

if(T_f<=MF_f-delta) 
 T_f+=((MF_f-T_f)/delta)*delta; 
 

 

This way, that portion of the code was no longer iterative. Therefore, this section was 

no longer a limitation to parallelism. 

7.2.4 Code Organization Rearrangement  

After the 10
th

 iteration of the code, the program started to present serious abnormalities. 

This was simply a memory usage problem. In the dereferencing, referencing of pointers 

and handling complex pointer mechanism, the end result was a code that was prone to 

too many mistakes and made the advancement difficult. 

For this purpose three general methodologies were used. 

i. The usage of typedef was done whenever possible. This allowed both a 

dynamic code and a good counter measure to erroneous types that are 

mostly clouded by the compiler. This is the result of its casting values if 

such implicit conversion exists. However, if this was not the programmer’s 

intend, such initiative can and did end up with hardly detectable errors. This 

small change made a long time coding improvement. 
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ii. The algorithm was divided into sub-sections: 

a. The first section is “operate on preconditions”. In this section state 

input, state next, state next output, metric calculations, move 

forward or backward and detect if it is a tail situation or not is done. 

b. The next section is “move forward”. In it, in the case of the memory 

optimization, the current context is pushed into the queue. Also, an 

actual output is generated. Depth, M and flag are calculated. 

Moreover a T value tightening is done in the case it is the first time 

visiting as required from the algorithm. 

c. “Move backward” is the third section. The part is characterized by 

MB updating and in case of successful trace back (pop in the case of 

the memory optimization), change to that previously visited context. 

Naturally, the index of the latest pop index is decreased for each 

time we enter this section. 

d. Lastly, “check overflow and merge” operation takes place. As the 

name suggest, in it both an operation overflow and merging 

conditions are checked. 

iii. Finally a structure called preconditions was created. The purpose of this 

structure was to allow regrouping all values necessary before a forward or 

backward movement. The object contained inputs as isForwardDecoder, 

Flag_LFNB, Depth, received_bits, State_current, M, T. Also outputs as 

isTail, Metric_order, Metric_tail, State_order, State_tail, State_input, 

State_input_tail,State_next_output, State_next, MF, moveForward. 

7.3 PARALLELISM OPTIMIZATIONS 

7.3.1 Look-Up Tables 

In order to handle the encoder problem, look-up tables were imagined. A somehow 

similar idea was also found in another paper (Ran Xu, T. K., 2010) about BFA. In it, 

authors used LUT for merged states operations. In this thesis, the motivation behind the 
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usage of a LUT was that we have seven successive stages all represented by a logical 0 

or 1. Hence each stage including the previous ones only constitutes a 7-bit string. 

Total number of combination is: 

nscombinatio12827   

Thus, the total size of the LUT is: 

bits8967128   

Such memory is negligible when we take into account that constant memory has more 

than 70 times that amount in reserve.  

If this optimization is actually done, even though latency is added for getting the first 

encoded value, in the end a big optimization is done. 

The latency is in the order of calculation of 128 encoded inputs and their storage to the 

memory. However once done, the initial LUT is generated, the encoding process is 

reduced to a memory read access. Let us consider that a WirelessHD frame length is 

300 bits, even in a single frame we can see an improvement while the remaining frames 

to be encoded are just constant memory readings. This is in the order of a register read 

speed (Kirk & Hwu, 2010). 

Also a crucial point is that transforming the encoder’s iterative operation to a LUT 

makes the encoding a massively parallel mechanism which is even quicker than a 

modulation\demodulation. 

The same logic was used to optimize state calculations to avoid unnecessary 

calculations to a simple memory block reading from a LUT. 
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6. RESULTS AND ANALYSIS 

 

8.1 TEST ENVIRONMENT 

Table 8-1: Host specifications 

 

MODEL N \ A 

CPU Pentium Dual-Core E6800 @ 3.33Ghz 

RAM 4GB RAM 

GPU GeForce GTX 650 

OS Windows 7 x64 

Source: Microsoft 

Table 8-2: Device specifications 

 

MODEL GeForce GTX 650  

CORES 
  

384 (48MPx8Cores/MP) 

GPU 

CLOCK 
1058Mhz 

MEMORY 

CLOCK 
5000Mhz 

CONSTANT 

MEMORY 
65536 bytes 

SHARED 

MEMORY \ BLOCK 
65536 bytes 

THREADS 

\ BLOCK 
1024 

CUDA  

CAPABILITY 
3.0 

CUDA 

RUNTIME 
5.0 

Source: NVIDIA Corporation 
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8.2 SPEED COMPARISON BETWEEN IMPLEMENTATIONS 

To measure the time difference between MATLAB, C++ and CUDA implementation, 

the same encoded symbols were used as inputs, thus making equal requirements 

comparison. 

The following are the results of 10 test vectors for SNR = 4. For the purpose of analysis 

simplification, delta was chosen to be 8, max computational was 10000 which virtually 

made the search continuing indefinitely. 

 

Table 8-3: MATLAB, C++, CUDA time comparison with SNR=4, delta=8, R=1/3 

 

Tested lengths MATLAB delay in 
seconds 

C++ delay in  
seconds 

CUDA *** delay in 
seconds 

L = 2 
0.000019993 0.000051886 0.000147 

L = 4 
0.000031512 0.000103189 0.000196 

L = 8 
0.000051350 0.000205401 0.000314 

L = 16 
0.000089938 0.000409390 0.000508 

L = 32 
0.000140053 0.000816677 0.000749 

L = 64 
0.000219301 0.001629516 0.001153 

L = 128 
0.000474368 0.003232794 0.001701 

L = 256 
0.000708974 0.006415299 0.003022 

L = 512 
0.001232765 0.012683948 0.004701 

L = 1024 
0.001913129 0.025045202 0.006820 

 

 

*** The original CUDA implementation was used for fair comparison by putting any 

optimization effects. 
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8.3 NOI AND BER ANALYSIS 

The concept of Number of Iterations was introduced in the simulation results of the 

original BFA paper (Ran Xu, 2009). In that paper, it is defined as: 

),max( BDFDtotal NoINoINoI           (8.1) 

The delay of the BFA operation is then assumed in the same paper as: 

),max( BDFDBFA NoINoIDelay           (8.2) 

The analysis was done using the latest CUDA implementations of UFA\BFA code with 

1000 codewords. As in a previous paper (Ahmet Kakacak, 2012), the analysis of NoI 

was done by excluding overflow cases while calculating the delays. However, they 

were taken into account for BER. 

8.3.1 Experimental Results For Delta = 4 

Figure 8.1: Throughput at delta=4 
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Figure 8.2: Avg. throughput at delta=4 

 

 
 

In the same logic, we can effectively compare UFA and BFA with a new metric that 

we can express as the throughput per iteration (TpI) defined as below. 

Iterations

Throughput
TpI             (8.3) 

 

The NoI analysis allowed measuring the effectiveness of the Fano decoder in terms of 

iterations made per symbol. Following TpI, we are able to measure the speed of each 

iteration. 
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Figure 8.3: TpI comparison at delta=4 

 

 

The graph shows us that each iteration in BFA is run with a higher throughput than its 

corresponding UFA for the same SNR. As SNR increases the improvement decreases 

but we always have a gain for using a BFA over UFA. 

 

Table 8-4: TpI gain comparison at delta=4 

 

SNR 3 4 5 6 7 8 

Gain  percent 127.46 127.69 95.38 74.81 60.11 61.60 
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Figure 8.4: BER at delta=4 
 

 

The BER figure above shows that UFA has higher error rates compared to BFA 

regardless of the SNR. 

Figure 8.5: Decoded percentages at delta=4 

 

 
 

The decoded percentage is also bigger regardless of the dB used. 
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8.3.2 Experimental Results For Delta = 8 

In this experiment, changing delta 4 to 8 comes with the following assumption. Since, 

delta influences directly the tightening rate, the higher it is, the greater the tightening.   

 

 Figure 8.6: Throughput at delta=8 

 

 
 

We can note that the throughputs are comparable at lower SNR. In previous researches, 

the conclusion was that BFA is quicker than UFA for noisy channels while presenting 

worse throughputs for higher SNR. The results obtained may be explained by two 

points. 

Firstly, the additional merge checks for BFA add an overhead of computation. 

Secondly, the workload coming from the increased secondary decoders translates by a 

drop in occupancy. 

Let us consider the perfect situation where forward and backward decoders merge at 

the middle of their decoding. In such case, the allocated resource beyond their merge 

presents a sub optimal memory usage. This situation is actually not an exceptional case 

problem but a general problem for CUDA implementation of BFA. 
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Figure 8.7: Avg. NoI per symbol at delta=8 

 

 
 

The NoI analysis shows a better result before 6dB, at which UFA and BFA are 

relatively comparable. 
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Figure 8.8: TpI comparison at delta=8 

 

 

The graph shows us that each iteration in BFA is run with a higher throughput than its 

corresponding UFA for the same SNR. As SNR increases the improvement decreases 

but we always have a gain for using a BFA over UFA.  

Table 8-5: TpI gain comparison at delta=8 

 

SNR 3 4 5 6 7 8 

Gain  percent 154.12 150.49 108.45 77.81 63.55 62.51 
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 Figure 8.9: BER at delta=8 

 

 
 

While the BER for UFA follows the same pattern in delta 4 or 8, we can notice that the 

error rate is even improved for higher SNR values of BFA. 

 Figure 8.10: Decoded percentages at delta=8 

 

 

 

The decoded percentage of the same sample is again higher for BFA compared to UFA 

regardless of the SNR. 
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8.4 FINAL CUDA CODE 

8.4.1 Chosen Parameters 

FRAME_SIZE = 32 

INPUT_SIZE = 96 

The size of the frame was selected as 32, making it equal to the size of an integer, 

which eases the merge check explained in the previous problem. 

MAX_OPERATIONS = 200 

OVERLAP_LENGTH = 2  

CHECK_FREQ_MASK = 3  

KERNEL_LOOPS = 100 

This means, overflow was considered when 200 iterations were taken. Also, we check 

the mask every 3 iterations rather than making a systematic check. Finally, the merge 

check is done over 2 merging outputs. 

Used batch was decoded over 1D grids with 64 blocks and 64 threads. So, the batch 

size was 64x64x100= 409600 codewords. 

Also, notice that the kernels are reused. In practice, it means a single kernel is 

responsible for consecutive codewords to be decoded. This mitigates the kernel calls 

computing overhead. For example, we can note a progress of 3 percent when we 

change the number of codewords from 10 to 100. 

8.4.2 Handling Merge Problem 

To minimize the effect of systematic merge check of BFA, the following 

implementation was adopted. While the original paper stated that merge was done in 

respect to FD and BD’s state and depth, the final code checks output and depth. This 

annuls the need for a final state history array of 16 byte per BFA. 

Furthermore, the merge check becomes a simple logic operation rather than a 

comparison of state, depth values among decoders. 
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8.4.3 Queue Usage Optimization 

Array optimization mentioned in 7.1.1 had the advantage of transforming the history 

arrays into a smaller array with merely 8 blocks in it instead of INPUT_SIZE blocks. 

The optimization in memory size at 7.1.1 allowed the following gain: 

Table 8-6: History size before array optimization 

 

Array name Size Total size 

Visit_record inputSize x 64 x 1bit 6144 

State_history inputSize x stateSize 576 

Flag_history inputSize x 1bit 96 

Metric_history inputSize x metricSize 768 

 

This would mean these arrays would occupy 7584 bits in total per decoder, just a little 

less than 1 KB \ decoder. However, the optimization changed the required memory to 

8x(stateSize+1+metericSize+depthSize) = 8x(6+1+8+5) = 184. Considering that each 

memory is byte addressable, we have to consider that the actual memory is 192 bits. 

This optimization can be said to allow a swift reduction of 7584/192=39.5. 

On the other hand, what this optimization brought was that each time we check 

whether we are visiting the same {depth, state} pair again, we need to look to the entire 

queue. Although this is a small constraint, it definitively adds computational overhead 

to both forward and backward moves. In other words, we changed move to a O(n) 

operation. 

To overcome this problem, the following was considered. At each time in the queue 

one may only have 8 distinctive depths. We can actually use this feat to use the queue 

as an indexed queue. This would make the queue a bit like a database where we use the 

last 3 bits of the depth as key and that makes the move forward or backward O(1) 

operation. 
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8.4.4 CUDA Analysis 

Figure 8.11: UFA CUDA occupancy analysis 

 

 

Source: NVIDIA Nsight, 2013 

 

Figure 8.12: BFA CUDA occupancy analysis 

 

 

Source: NVIDIA Nsight, 2013 

The analysis shows that we are reaching the theoretical limit in terms of occupancy but 

not the device limit. The speeds are respectively 650MB\s and 550MB\s for UFA and 

BFA. 
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8.4.5 Final CUDA Communication Schema 

In this version of the code, a particular attention was given to the use of the fastest 

possible busses. In that intend, both global and local memory usages were avoided. 

Since look up tables are by definition unchanged, they were placed in the constant 

memory for the fastest possible reach. Parameters were also put in the constant 

memory. This is possible since CUDA’s constant memory is a memory that will not 

change in the scope of a kernel call. However, we may change that memory between 

calls, for instance by changing the parameters for the next call. 

Until now, the same input was sent to every kernel for testing. This allowed the 

programmer to send the input into constant memory for fast access. It had a relatively 

small size which makes simultaneous tests for thousands of codewords impossible. 

However, using the texture memory as linear memory provides a solution to this 

problem. This type of memory is optimized for reading one block of memory and 

caching the adjacent blocks. It was an adequate solution to our algorithm since the 

algorithm only moves to neighbouring blocks. This allows all inputs to be sent to 

memory hence all kernels will be able to process different frames at a time. 

Registers kept queues while shared memory kept different temporary variables. 

Figure 8.13: Memory transfers for 2 blocks with 2 threads per block 
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Figure 8.14: Functionality - Board parts mapping 
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8.4.6 Improvements Effects 

Table 8-7: Improvements gains 

 

Optimizations 
Throughput 

(in MB/s)  

Version 

Improvement 

Version 1: 7.1.1 & 7.1.3 & 7.2.1 49  

Version 2: Length sent as constants 120 145 percent 

Version 3: Reuse of variables for loops 148 23 percent 

Version 4: Frame size made a macro instead of being variable 220 49 percent 

Version 5: 8.4.1&0&8.4.3 550 150 percent 

 

Version 1 is simply the result of optimizations in Chapter 7. 

Version 2 & 4 indicate that CUDA processes at a greater rate when the kernels are 

deterministic and have little or no variable involved. 

Version 3 allows us to determine that each variable allocation induces processing 

overhead. In this optimization, loop counter was reused when leaving that loop by 

setting it to 0 for first visit and 1 to 9 for otherwise, which made the presence of a 

Boolean flag allocation for this purpose redundant. 

In Version 5, most of the improvement was due to the indexed queue which again 

added more deterministic characteristic to the computation. 

8.4.7 BFA With Dual Threads Per Codeword Implementation 

The algorithm was transformed into parallel code with each decoder working in 

synchronization with its pairing decoder. The following are updated results with this 

addition.  
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Figure 8.15: BFA dual threads throughput 

 

 

Figure 8.16: BFA dual threads TpI comparison 
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8.4.8 BFA Result Discussion 

In the following console output, we can see that in C++ the same codeword (SNR=8 

and delta=8) was decoded for both UFA and BFA. The time spent to decode is greater 

for BFA.  

We can explain this by two factors. A new check is added for merging. This has a 

processing overhead. In addition, FD and BD are decoded iteratively in this BFA code. 

Figure 8.17: C++ UFA and BFA comparison 

 

 

In the same logic, the CUDA version may be discussed. The following console is the 

output of another codeword first using UFA, then using BFA iteratively (like C++ 

version) and finally in parallel. In the test, only a single thread was used for the UFA. 

In the same manner, a single thread was used for BFA_single. As for BFA_dual, it uses 

one thread for FD and another thread for BD. 
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Figure 8.18: CUDA UFA and BFA comparison 

 

 
 

In the above output, we first see the duration for UFA, and then we see the duration for 

BFA_single and finally BFA_dual. 

We note that UFA is once again quicker than BFA. It seemed rather surprising at first 

since it goes against the assumption that we should see a drastic improvement for duo 

threading CUDA implementation compared to single threaded BFA. However, we have 

to keep in mind that the algorithm cannot be divided into pieces. It is due to its serial 

nature, thus the definition of the Fano algorithm as a sequential decoding algorithm. 
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This means that the dependencies involved prevent effective data parallelism. Data 

parallelism meaning several threads collaborating to work on the same data. Only task 

parallelism can be done both in UFA and BFA. This type of parallelism is when 

threads are working in parallel in different set of data or input codeword in our case. 

As noted from the improvement effect discussion, CUDA delivers better results when 

dealing with deterministic datasets. When FD and BD check whether or not they have 

already merged, it imposes an intrinsic dependency. It is precisely this requirement of 

BFA -which UFA does not have- that adds latency to these final results, as can be seen 

here-above. 

Table 8-8: Cuda analysis comparison 

 

 UFA BFA_single BFA_dual 

Active Blocks 16 16 16 

Active Warps 32 32 64 

Active Threads 1024 1024 2048 

Occupancy  percent 
 

49 48 86 

Threads/Block 64 64 128 

Warps/Block 2 2 4 

Block Limit 
 

32 32 16 

Registers/Thread 29 41 32 

Registers/Block 2048 3072 4096 

Block Limit 
 

Shared Mem/Block 

32 
 

576 

20 
 

1280 

27 
 

1664 

 

As a final comment, we note in the above table that the active blocks are always 

limited to the same value. However, the number of registers and shared memory used 

per block increases from UFA to BFA when using a single thread per codeword, then 

increases further when BFA uses two threads per codeword. Therefore, the overhead 

from memory transactions increases in that same order, hence the speed drop 

demonstrated by the throughputs. 
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7. CONCLUSIONS 

 

In this thesis, both C++ and CUDA implementations were done with the latter showing 

the best throughput. 

UFA and BFA algorithms have a relatively small memory requirement but still too 

high to be effectively and properly parallelized as can be seen in the CUDA analysis. 

For this reason, the board’s limitation prevented the verification of Xu et al.’s research 

in which the authors used dynamic scheduling for 8 decoders in 2011. 

Improvements were introduced by using look-up tables, which avoided calculating the 

metrics and other temporary parameters on the fly. Also, we note that instead of using 

complete historic records, 8 previous records queue were used to drastically reduce the 

memory requirement. 

655MB\s (5.0Gbps) was reached for CUDA’s UFA implementation (output 

throughput) while 12.75MB\s (100Mbps) was previously achieved in a FPGA 

implementation (Kakacak, 2012). 550 MB\s (4.4Gbps) was reached for CUDA’s BFA. 

The results were in pair with the result of the previous BFA related researches by Ran 

Xu in which, BFA offers better BER compared to UFA regardless of the SNR. In the 

same way, BFA completes decoding quicker for lower SNR. However, at highest SNR, 

the UFA is preferred. The reason for CUDA’s UFA showing higher speed was due to 

the additional memory transactions and merge check from BFA.  

The following difficulties were met in this work. Firstly, this thesis presented several 

alternatives: The line of codes written should be between 10000 and 20000 lines of 

codes in total. Cross-checking their respective speed was difficult especially in terms of 

CUDA benchmarking. C++ implementation had around 20+ versions, 40+ different 

codes for CUDA.  

Also, the fact that the resource of the CUDA board is relatively small dictates the upper 

boundary we can reach for historical keeping algorithms such as Fano algorithms. In 

such case, we are confronted with the well known problem of parallelism, that is, the 

memory being a limiting factor. To overcome this, we need to perform the same 
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operation over many threads, meaning decoding many codewords at the same time, 

which in turn requires as many temporary variables to be kept in memory as 

codewords. 

As future work, we may try to use several CUDA compliant boards on the same 

machine. A possible implementation could be assigning two different NVIDIA units 

each one decoding a different set of codewords. Another direction in which this thesis 

could be broadened in the future would be in the field of shortening the memory even 

further, as this is a critical issue in current implementations. 

One other future work would be to study the reasons why BER in both UFA and BFA 

is slightly higher as compared to the original Ran Xu researches and the algorithm in 

MATLAB. 

Finally, even though testing has already been conducted in 1000 distinctive codewords 

for each SNR, it would still be a good idea to make a real-time testing in real 

environment, for example using WirelessHD. 
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APPENDIX A.1: Test Vectors 

MATLAB, C++, CUDA time comparison with SNR=4, delta=8, R=1/3 used the 

following test vectors: 

 
111011111010001000111000 

Sample size: 2 

000000100111011111110011110111 

Sample size: 4 

000000000111011111110001100111000000000000 

Sample size: 8 

111011000010010100111100110000101100100001111101101101000101011111 

Sample size: 16 

11110001110001110001111011111000011001100101000110001100011010110000101011100

1111110000101000101010001000011111000 

Sample size: 32 

11101100010100111010111000000001000001001001110111000110101111110111011100111

01111110110111101111101111011001000000000100011110001010000100111101111110000

01010010100111100001101110011001111111100011100110011111 

Sample size: 64 

10001101100101011100100001101110101001111111010010001101111110110110100001000

00001001100000110010100011111101110100000000010101111100100110010000000111100

11011010111110011010110101100011110101000001011001010111110100000011100010100

10000100111010111010101101001110001101000001101110001100010111001010101000111

00101010000000001111011101000101010100111000111011001101010000110010011011000

01010000101001011 

Sample size: 128 

10000000011101100101001000101110000010011110001010110010110101011011000111100

11110001110100101101111001100000101001111001111011011100110110111100001000010

11010001001111001110111111001001000111111000011100010011000100011111100000000

00110001000001100000100011010000100111101000000100011001001011001000011100100

10100111100100100011101111100101011000000100001001101100000111101001010010100

10011101001101110111000001100001001001100001101110101010000110011010000000110

11011100011011111100000101001100100101110000001010100010000101010010101111100

01111100110101100100100011010100011110011101111111000001011100111111001111010

10010000001011011101010101001101110000000010101101110000010100010111011110001

01110111100011010110100110001100011001011111000101000111010100101111010011110

1001110110111000 

Sample size: 256 
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10011110001101100010000101110111001111101101010010011111000101101101100100001

11110000000010100111100100110010011011110001111000110101110010000011010010001

11100110101100100110100011011101110001101101101010011101001101110000111110101

10000101000010011010010100110111001001101101110001010110000101011000011100000

01111001001100101000001111111110001100111011011100111001111100011001111110100

01101010101101011110101000111010110000000001100111110110111101000000000011011

11001000011011101110101001111100001011110010000101100110001011111011000001100

11001101001100000101100100110010010111001111100011000000110001101011011111111

10110010011110010011001001011100000101001101110110010101111001000001010100001

10000111100001111010010010000100011100010010110011110000000100111110010000010

11110110000010001111010000000000100011001010111110111000101001001110011011100

00000111011011111001101101101110010110000011001101100110001000111001101100111

00111010001111111101001000011011110101100010010000101100110010000001010101010

01101100111110110111100010101001110110011100000111001111000000011010001110110

10100011111011110101010001100011111100101110011000010100111111011001101100101

01000000101100110101110111000111101011100101101111101010101011100010110001101

11001110001100011010111000010100011011110011010000011100011000100101111111100

00011110011100110100100100100100011010101011010000011110011000000011011001011

10101000110000001111010100110010001001000010000001100100111100010110111000110

00000000101101110110101101001110010101011011011101001101100111110100111101111

10111101011101 

Sample size: 512 

11110011111011001001000000000111110011001011111000000100100011100101100011100

11011111000010110001100101101001011110010010111011010001011001000001101011011

11000011101101011100110110100000111011100001001011001100110100010010000011101

11111000100111010011010111000010100011111111110000110000110110011010111111000

11000100000010011001110010100101000110101111101111001010000010110101100011110

11011110111001010001010000101100011100001111101100011000110011001101011101110

00110101011010101100001000101010100010100001100011111100001011111010011001001

10010010000100110000100101100101110011100111110111110011110100011100101011111

10011101101010100110101111011101000011010101101111001001010100000111001011100

00100000000110100010000000100010111111100111001110001001011111000001010000101

11001010000111101111110010101001111110010011001001100001010010010011010011101

00011010010111001011110100000011111000101111101111100010011010101111001110110

11100000010101010111101000000011101010101000000101011111010011011001001000111

11111001111001111111100010011011111000101101000100011101111110111111111001001

11100101001010101010010101011110011110001101011101000010001101001010011100110

10100000000110001000110010100101101001100111001101000000010110110010011100001

10101111111101111011000110111101111110100011110111011110111000110010100001010

11000100100001111101011000101100110101001000111011000011110001101111101000100

00110000111011100000101010000101011011101101011111111101101101011000001110110

10000000111111101011001001010001101111001100000100011001111100001010000110100

11111000000000011011000010110001011111011011110010101111111110101001101110110

11001010100001000000000101010001000111010111011110011000010100010000110001101

00001000100001000100000001111110010010001111101010110100100100000111001011101

11110101110000011110010111110011101011101111001100010100010111001100111110100

11000111111110100110011111111001011000011000111000100110001001101110010011110

01000000011101010110001100110001101111000000001001000110010110010101110010001

11000100110000001111000101010000110010011100011110000101000100100111110000011

01001001110001111000010111111100100111101010110101100111110101111101011010000

10000011111000001101001101010001101110101110110011000010000101000001110001001

11010000010111000010100000011101000110011000111100010011111001001000111001001



 

91 

 

00011111001011100100011111111100111010011111110110100011111110101100100110110

10001010010100110101110101110100110110000011100111111001100100010100010110101

01000111000110001101100011110001111001001100010010010111001100011010010111000

00100000000000010110101111011000001001101101010011000111111011010100101111000

11001110011001100110000011010000101010011101000001110000100100101111110010000

00110110000100010111111110101100110000000000010010001101111011010101111010011

10010010111101111010010100110110000000010001001000001011110110001010011010010

11101101110101010001100001110101101111000111110100010011101100101010000011100

01100111010100000000000001100111100011010000100001100001110000011110011001101

01101001001011110100110011000011001100101000100011110001000010100001101001111

1001000000 

Sample size: 1024 
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APPENDIX A.2: Code Dependencies 

Table 1:  Dependencies for BFA 

 

Variable 
Size 
(bits) 

Copies \ 
decoder 

Variable changed in  
function Depending variables 

isTail 1 1 operateOnPreconditions Depth, length_frame 

state_next 6 2 operateOnPreconditions 

isForwardDecoder, 
LUT_stateNextFinder, 
State_current 

state_next_output 6 1 operateOnPreconditions metric 

MF 8 1 operateOnPreconditions isTail, metric 

metric 8 2 operateOnPreconditions 
receive_bit,state_next_output, 
M0, M, M 

state_order 2 1 operateOnPreconditions 
receive_bit,state_next_output, 
M0, M, M 

state_input 1 2 operateOnPreconditions 
receive_bit,state_next_output, 
M0, M, M 

moveForward 1 1 operateOnPreconditions MF, T 

previousContexts 24 8 
moveForward, 
moveBackward 

M, State_current, Flag_LFNBi 
contextIndex 

contextIndex 3 1 
moveForward, 
moveBackward contextIndex 

state_current 6 1 
moveForward, 
moveBackward State_order, previousContext 

output 2 1 moveForward 
moveForward, State_input, 
Flag_LFNB 

depth 8 1 
moveForward, 
moveBackward 

moveForward, State_input, 
Flag_LFNB 

receive_bit 3 1 At each iteration 
moveForward, State_input, 
Flag_LFNB 

visit_record 1 InputSize moveForward Depth 

T 8 1 moveForward T, MF, delta 

M 8 1 moveForward MF 

Flag_LFNB 1 1 
moveForward, 
moveBackward previousContext 

Flag_overflow 1 1 checkOverflowOrMerge previousContext 

Merging_depth 8 1 checkOverflowOrMerge 

Depth, Overlap_count, 
Overlap_length, 
Merging_depth 

Overlap_count 3 1 checkOverflowOrMerge 
State_history, Depth, 
length_frame 
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APPENDIX A.3: Calls Analysis 

The following analysis was taken in account while optimizing. Here, we can see that 

most of the time is spent either when calculating metrics or moving. This is the reason 

behind the extensive LUT usage. 

 

Table 1: Call counts 

 

Function Call count Note 

fano_decoder 1 Kernel instantiations 

initBFA 1 Kernel initiation 

getMergedOutputIntoFD 1 
Kernel termination. The function makes simple logic 

arithmetic to put the merged output to forward decoder. 

isTail 28 
This function simply checks Depth < InputSize-6 which 

was rendered useless with the input reorganization. 

checkOverflowAndMerge 30 
The check first check overflow then check merge. This 

was a major time consuming time when benchmarked. 

The optimization done for merge solved this problem. 

moveBackward 34 
A queue iteration until the appropriate depth and 

tightening if needed. 

moveForward 84 
We can note that move forward was more often called 

than moveBack. 

setOutputBit 84 
This function is called systematically each time 

moveForward was called. 

operateOnPreconditions 117 
Metric and temporary variables calculation. This function 

is called for each iteration. 
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APPENDIX A.4: Move Back Analysis 

The following analysis was taken in account while optimizing back tracing.  

In the below figure, the distribution of back traces over 100000 random vectors at 

SNR=3 and delta=4 are displayed. In the following table are shown the back traces and 

their respective percentages in those random vectors. 

 

Figure 1: Back trace distributions 
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Table 1: Back trace cover 

 

Current back trace Occurred  percent Back trace 

1 45620 45.62 

2 42984 42.984 

3 50857 50.857 

4 22028 22.028 

5 17505 17.505 

6 7767 7.767 

7 6897 6.897 

8 2958 2.958 

9 2279 2.279 

10 1187 1.187 

11 942 0.942 

12 518 0.518 

13 364 0.364 

14 190 0.19 

15 110 0.11 

16 84 0.084 

17 48 0.048 

18 23 0.023 

19 21 0.021 

20 11 0.011 

21 4 0.004 

22 5 0.005 

23 0 0 

24 0 0 

25 2 0.002 

26 0 0 

27 0 0 

28 0 0 

29 0 0 

 


