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İSTANBUL, 2014



T. C.
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ABSTRACT

ELECTRICITY SPOT PRICE MODELLING AND RISK-RETURN TRADE-OFF
APPLICATIONS

Esra ADIYEKE

Industrial Engineering
Supervisor: Asst. Prof. Dr. Ethem ÇANAKOĞLU

June 2014, 47 Pages

After the liberalisation and restructuring of electricity markets, risk management has be-
come an important objective for all the market participants. For effective risk manage-
ment, modelling electricity prices has become an important issue. In this study electricity
prices in the UK market has been modelled using different methodologies.Moreover, us-
ing CVaR as a risk measure, a portfolio problem for a distribution company has been
defined. Different portfolio strategies for changing objectives are calculated and their
performances are compared. And finally, managerial insight are provided throughout this
study.

Keywords: Electricity Pricing, Forecasting, Portfolio Risk
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ÖZET

Elektrik Fiyatı Modelleme ve Risk Yönetimi Uygulamaları

Esra ADIYEKE

Endüstri Mühendisliği
Tez Danışmanı: Yrd. Doç. Dr. Ethem ÇANAKOĞLU

Haziran 2014, 47 Sayfa

Elektrik piyasalarında yaşanan değişimlerle birlikte bu piyasada oyuncu pozisyonunda
olan herkes için tutarlı ve anlamlı fiyat tahminleri ile maruz kalınması beklenen fiyat
kaynaklı riskin yönetilmesi önemli ihtiyaçlardır. Bu çalışmada elektrik fiyatları çeşitli
modelleme metodolojileri kullanılarak simüle edilmiştir. Seçilen performans testlerine
göre modellerin analizleri yapılmıştır. Üretilen yapay fiyat serileri ile risk metriği olarak
seçilen CVaR beraber kullanılarak sistem optimizasyon problemi olarak ifade edilmiştir.
Bu yapılırken stokastik programlamadan yararlanılmıştır. Son olarak çalışma dahilinde
edinilmiş bulgu ve sonuçlara dair yorumlar verilmiştir.

Anahtar Kelimeler: Elektrik Fiyatlama, Tahmin, Portföy riski
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1. INTRODUCTION

Electricity as a trading commodity on the power markets differs from any other asset

owing to its distinctive properties such as high volatility of prices, strong seasonality of

demand, and non-storability (Mayer et al. (2012)). For instance at some stage of extreme

weather conditions or sudden breakdowns in one of the main plants people cannot easily

utilize their “stored” electricity unless they are in need for power to make their phones

or some other small home appliances work and have no chance other than purchasing

electricity from market with a skyrocketed price. As a result it is clear that accurate fore-

casting methods that are capable of capturing the changing aspects of the electricity prices

and the risk- return trade-off optimization applications that assist the companies to miti-

gate the destructive consequences, are crucial to survive in business world.

In the literature various forecasting methods are applied to electricity prices, i.e. fun-

damental models employ a holistic approach to energy systems as they need informa-

tion about demands, capacity uses, maintenance hours et cetera. Game-theoretic models

are interested in explaining the market settings with Nash-Cournot framework. Financial

mathematical models make uses of stochastic processes like mean-reversion or Geometric

Brownian Motion. Econometric models concentrate on clarifying the patterns or autocor-

relations of prices and highly depend on the historical data. These models are detailed in

Literature Review section of this thesis. In this study financial and econometric models

are developed so as to reflect the price behavior in the UK power market in MATLAB

environment.

Besides the precise price predictions, it is also a necessity for both producer and consumer

groups to devise a reasonable plan for their electricity production or consumption in ad-

vance. The objective of this plan is to derive a proper using strategy for the time horizon

considered using weather derivatives. In the literature, portfolio optimization applications
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mostly deal with deriving practical hedging strategies considering different risk measures

or return functions. Following Markowitz (1952)’s mean-variance approach, which is

one of the most prominent study in this framework, recent advances in risk management

field are developed to define different optimization problems such as Value-at-Risk or

expected shortfall minimization under some return or risk preferences. In this context ,

Rockafellar and Uryasev (2000) suggested a scenario based expected shortfall minimiza-

tion problem which can be modelled as a linear programming problem. Altough there

are more complex models that leads to nonlinear problems, e.g. (Vehlivainen and Keppo

2003), Rockafellar and Uryasev (2000)’ s formulization has been used by researchers to

its tractability.In our study we will also use a scenario based expected shortfall minimiza-

tion model. Also, we are interested in models allow us to formulate the system as a linear

programming problem are selected since these models enable the practitioners to evaluate

the risk preferences with different levels and save them a significant computational bur-

den. The scope of this study is two folds. Initially historical prices are analyzed and the

formulae for simulating price scenarios are derived. Model accuracies are tested under

various performance measures. Secondly several risk modelling problems are suggested

and the results are evaluated.

Both manufacturers and consumers need a mechanism to handle setbacks arise from the

nature of electricity and prospective losses. In this research, we aimed to provide many

models which are able to emulate the dynamics of the spot prices and optimize the risk-

return trade-off in order to shed light for practitioners by presenting quantitative insights

about the benefits of these approaches.

2



1.1 ORGANIZATION OF DISSERTATION

The thesis is organized as follows. Chapter 1 includes an introduction of modeling

methodologies of the electricity spot prices and the risk-return optimization framework. In

Chapter 2, there is a brief literature review of electricity spot price modeling approaches

and optimization applications in the risk management field. In Chapter 3, problem de-

scriptions and models are given. This chapter is divided into two subsections. The models

and numerical results are also given in this chapters. In Chapter 4, the thesis is concluded

with the main insights and outcomes gained throughout this study.
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2. LITERATURE REVIEW

Electricity has been attracting attention of both researchers and practitioners as a result

of the significant changes in the market environment. Research devoted to understand

the unique attributes of electricity, assist people to understand the characteristics of this

product. The studies over electricity markets can be divided into two major streams in

relation to our work. The first stream is modelling electricity price process and second is

risk management of electricity portfolios. Our study closes the gap between those ares.

In this section we will give a review of both areas.

2.1 PRICING MODELS

Research which are conducted towards this aim are given in the following. In Bunn and

Karakatsani (2003) and Karakatsani and Bunn (2008b), price drivers are defined and ana-

lyzed for UK Power Market data. Demand, margin and scarcity are listed as price drivers.

According their studies, electricity prices also exhibit trend and strong seasonality.

Moreover, Weron (2005) investigated the distinctive aspects of prices based on spot prices

of Nordic Power Market. In this study, they suggested jumps are the most obvious fea-

ture of electricity and they point aout that, after the price rises up to significantly extreme

values, it returns to its normal level which means this spiky movement is not permanent.

These temporary movements are also the signs of severe risks over decisions incorporated

with spot prices. Additionally, according to graphical and statistical observations prices

display seasonality coherently with the weather changes or the daily consumption rates.

Moreover, when the spiky nature of electricity is mentioned, it is also indicated that prices

oscillates near its normal level. This property is named as mean reversion and could be

observed in spot prices easily. Finally, the author concludes that the electricity prices ex-



hibit heavy-tailed characteristics.

Furthermore in the literature, there exist some studies devoted to understand the specifi-

cally long-term component of electricity prices. Nowotarski et al. (2013) proposed, lin-

ear regression, monthly dummies, sinusoidal functions and wavelet smoothers to define

this component of the prices in German and Nordic Markets. According to experiments

wavelet based designs yielded better results.

Deterministic forecasting methods are entirely applicable to stable environments that have

constant demand and balanced production, and at the time of sudden high demands in-

ventory may help to recover the new situation. However, it is hard to integrate traditional

techniques to fragile environment of the electricity prices. As a result, devising novel or

hybrid methods becomes very important in modelling. In order to fill the gap between

academic literature and market environment, research devoted to understand the price

behavior has received much attention in the last decades. Within this scope, Möst and

Keles (2010), Aggarwal et al. (2009), Higgs and Worthington (2010) and Karakatsani and

Bunn (2008a)’ s articles are useful for their elaborated literature surveys that are pub-

lished about the design and taxonomy of the different spot price modeling studies. These

papers present a detailed basis for the recent status of the literature in this area. From this

point of view Möst and Keles (2010)’ s survey presents a detailed outline about electricity

pricing. In this paper selected models in the means of operations research and financial

mathematics instances based on different decision problems and the comparison of them

are given. They did not deal with operational issues, called fundamental models. Instead,

they preferred to focus on research that is trying to understand the structure of the prices.

Moreover they also categorized problems as short term, mid-term and long term decision

models based on their impacts. They state that, researchers consider the prices either as

a unique stochastic process or a stochastic process with a deterministic component. The

studies show that the latter reveal better results. Deterministic part consists of trend and

seasonality. Seasonality is taken into account for different periods, i.e. daily, weekly or

5



annual. This approach is reasonable since for instance demand levels do not remain the

same in summer compared to cool month or the need for electricity during the work day

is obviously more than the midnight. Thus,the prices do not remain constant even at dif-

ferent times of a day.

To simulate the prices deterministic parts and stochastic parts are summed and the results

are retransformed. Also, in some studies various exogenous factors are included such as

oil, fuel price or CO2 emission as commodities or wind power and hydropower effects on

the electricity prices in order to refine the simulations.

Likewise, in the papers reviewed Karakatsani and Bunn (2008a) are limited to the time se-

ries models. After giving a brief introduction about electricity and market characteristics,

they discussed the stochastic models existing in the literature.According to this study, the

models have evolved in the time however these models are not adequate enough to reflect

the electricity prices entirely. They are not fully capable of capturing the large deviations,

also known as jumps, and these models have to be enriched with exogenous factors. In

order to handle this situation regime switching models are presented. As mentioned be-

fore in Möst and Keles (2010), these regimes consist of two independent states, one is for

regular movements and the other is for abnormal spikes. The other class consists of the k

autoregressive processes with time-variant volatility. In this study not only historical data

dependent models, but also some hybrid models that are integrated with some structural

components like load or parameters of technical properties of plants such as capacity, fuel

prices et cetera, are given. Finally, non-parametric modeling examples such as artificial

neural network, genetic algorithms applications are mentioned.

On the other hand, in Aggarwal et al. (2009), a comprehensive outline is given about the

existing pricing strategies in three categories: game theory models, time series models

and simulation models. Time series has also three subcategories, parsimonious stochastic

models, artificial intelligence models and regression models. Details about game theory

models are also given in Möst and Keles (2010). Simulation models are actually not the

6



same but similar with fundamental models as the system data is the key factor for this

methodology. Also artificial neural network models and datamining models, as subtitles

of regression models, are given as the instances of novel practices. In this paper cat-

egorization according to factors that are influencing prices are power markets are also

provided.

Additionally, in Higgs and Worthington (2010), the authors prefer to focus on time series

models and their variants to state the design parameters. It is assumed that, operational

issues have no effect on design parameters of time series models. Firstly, they divided

the existing literature into two groups as multivariate and univariate structures. In the

multivariate models, relationship between power markets are examined. In the univariate

models, prices consist of two components namely stochastic and deterministic parts. In-

stances of the vector autoregressive, ARCH, GARCH, mean reversion and regime switch-

ing methodologies are represented. This paper provides a thorough collection of previous

works related with time series. Firstly they determined the model structures, solution

approach, decision variables, performance measures, objective and setting under some

assumptions and then they gathered this information in a table.

2.2 RISK MANAGEMENT APPLICATIONS

Practitioners have to be careful at selecting the proper tool for managing the risk arises

from the special structure of electricity prices. Traditional methods, i.e. Greeks, fail to

reflect the large scale variations in the volatility over time. In order to deal with het-

eroskedasticity, exponentially moving average (EWMA) and GARCH models are pro-

posed.(Eydeland and Wolyniec (2003)) However, using these analytical methods come

with the expense of some drawbacks like making assumptions and approximations for the

sake of simplicity, i.e. normally distributed prices. Also Value-at-Risk is another popular

gauge for managers, yet this method also has some setbacks like lacking of subadditivity

7



and no use of handling the extreme values. Moreover, it is hard to manage VaR in opti-

mization applications due to non-smooth nature of it.

In Krokhmal et al. (2002), a profit expectation maximization problem under various con-

straints including CVaR, is proposed and compared with mean-variance approach. Ac-

cording to their numerical results, these two methodologies yield approximate solutions.

However, this outcome is not unexpected when the distribution is near normal like in the

case of designed experiment indicated in Rockafellar and Uryasev (2000).

Likewise in Hochreiter et al. (2006), authors propose a model with minimizing the cost

and the average VaR in a multi-stage stochastic programming framework and compare

the performance of the predefined model with hedge and forget case. A scenario tree of

stochastic pot prices, is generated and a tree-based solution procedure is applied. Their

experiments show that, the multi-stage stochastic programming method outperforms the

hedge and forget approach.

In Yau et al. (2011), authors have defined a two-stage stochastic integer programming

model in order to devise an optimal power contract portfolio from the perspective of a

generation company. This model deals with the case of a generation company who has

to meet its customer demands with the aid of three alternatives. Electricity could be gen-

erated in their own facility, could be bought from the spot market or contracts could be

purchased. At the beginning of the first stage, the company determines the number of

contracts and at the beginning of the second stage their own facility and spot market orig-

inated amounts of energy are derived. CVaR is used to model the risk preference of the

company to compare with the risk neutral manner. Uncertainty stems from electricity spot

prices, production capacity and customer demands.

Likewise in Eichhorn and Römisch (2006), authors proposed a stochastic programming

model that takes into account a weighted risk parameter and expected cost at the same

time in objective function.For a generation company heat demands, spot prices and future

prices are defined as the stochastic parts of the problem.

8



Single period, multi-period and zero risk measure models are compared and according to

experiments multi-period case outperforms. Likewise in Kettunen et al. (2010), fix mix,

stochastic and periodically updated models are devised and compared. In this study, a

binary scenario tree based on a specific tree generation method is given and also proba-

bilities are defined over an existing methodology. CVaR is selected as the risk measure

and applied in both stochastic and periodic cases. Also impacts of inputs on the solution

are analyzed from the views of two different distributor with risk neutral and lower risk

preference manners.

In Eichhorn et al. (2004), authors searched for an optimal portfolio considering with the

retailer’ s risk preferences. After eliminating trend and seasonal components from histori-

cal spot prices an autoregressive process is proposed. Moreover, a jump diffusion process

is also incorporated into this autoregressive process in order to reflect the spiky behavior

of prices. In the same fashion, load data is represented with an autoregressive process

without jump diffusion component. CVaR and multi-period CVaR are selected as risk

metrics. Also alternative CVaR variations are also given in Römisch et al. (2004). In this

study, electricity could be bought from spot market. Also buying fixed or flexible con-

tracts are available. It is assumed that flexible contracts allow to buy electricity within in

a given interval, not a pre-fixed quantity. An objective function is stated as a summation

of risk measure multiplied with a preference rate and a cost expression.

In brief, when we consider all these papers, we will see that selected studies are concen-

trated on statistical control methods and performance estimation is achieved through the

simulation method. Statistical control mechanisms needs a lot of data collection, data

storage and data analysis. Fortunately, markets allow researchers to access high quality

logs of prices. Similar conditions are also binding for clarifying and analyzing these data.

However, with the help of appropriate software these tasks become significantly easier. A

major draw-back of these studies is, researches are concerned with just pricing method-

ologies. Accurate forecasting of prices has high priority however to manage the risk arises

9



from upcoming prices in a reasonable manner is also crucial. In this dissertation, after se-

lecting the best candidate among generated different price scenarios, several optimization

models are proposed and solved explicitly. Important managerial insights on the design

of portfolios are obtained with the aid of the numerical experiments.
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3. ELECTRICITY PRICE MODELLING

A major part of the academic literature suggests models based on the assumption that

prices consist of two components: deterministic and stochastic parts. In the context of

bipartite systems, proposed stochastic processes are significant defining factors that affect

the quality of the models. Besides the considerable number of benefits, the common idea

of the academic literature is that traditional modeling systems are not adequate and ap-

propriate for the real market environments. Moreover it is not necessary that a specific

method is suits well for every power market. Therefore novel modeling approaches are

emerged to meet the needs of a real market environment. We propose different types of

approaches for spot prices in order to evaluate and select the best alternative. Various

techniques have been proposed in the literature for spot prices. Among these methods

financial mathematical and statistical econometric models are employed. In our study,

we are interested in papers that have focused specifically on these methods and research

towards this intention are given in the following.

Escribiano et al. (2002)’ s study is mainly concerned with proposing models to reflect the

idiosyncratic behavior of electricity prices. After defining the regular patterns, the authors

have tried to explain the existence of mean reversion, jump and specific volatility prop-

erties and devise models that take into account and conducted tests about their adequacy

for various power markets. Pure diffusion (AR(1)), AR(1)-GARCH(1,1), diffusion model

with jump component, AR(1)-GARCH(1,1) with jump component with time dependent

intensity and with constant intensity models, including the deterministic parts, are pro-

posed. The motivation behind proposing time dependent jump intensity is, that is more

likely to observe jumps in some season, i.e. summer. GARCH models with jumps have

outperformed the remaining models for the markets considered.

In Guirguis and Felder (2004)’ s study, in order to forecast electricity spot prices, sev-
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eral models are proposed; they also investigated whether the exogenous factors affect the

model quality is investigated. The authors have defined a transfer function that takes into

account the natural gas prices in autoregressive model with lag 1. In addition to consid-

ering the effect of the natural gas prices over the electricity prices, trend and seasonality

function variants and a GARCH(1,1) model are included. Besides, the outlier effect is

also questioned in this study. According to numerical results, GARCH models omitting

outliers have yielded better results.

In Keles et al. (2012), authors have searched for the various models for spot prices of

German Power Market for the years 2002 and 2009. In equation 3.1, Xt stands for the

log-prices. X trend
t , Xseason

t and Xresidue
t stand for trend component, seasonal component

and stochastic component, respectively.

Xt = X trend
t +Xseason

t +Xresidue
t (3.1)

In order to remove the trend, a linear model where X0 stands for the log price at time zero

and γ is constant, is proposed as in equation 3.2

X trend
t = X0 + γ.t (3.2)

Similar procedures are suggested for eliminating different types seasonalities with the

help of the trigonometric functions. In the first step in order to remove the weekly cycle a

sinusoidal function is proposed in equation 3.3. In equation 3.3, α is a constant and β is

a scalar coefficient. ϕ is a shift factor that adjusts the starting point to the weekly cycle’ s

minimum point.

Xweekly cycle
t = α + β

∣∣∣∣sin(
πt

168
− ϕ)

∣∣∣∣ (3.3)

After eliminating the weekly cycle, averages of specific hours for four seasons are sub-

tracted in order to deal with daily cycles. The authors have finished to work with de-
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terministic part by taking the annual cycle, that is found by average of each month for

the years considered, out of the prices. After they obtained the stochastic residues, the

procedure continues with proposing four different types of stochastic processes. In mean

reversion model, the differences between consecutive prices are modeled as a stochastic

differential equation and with the aid of Ito formula an exact solution is found.

After removing the deterministic components from the log-prices, stochastic residues are

obtained. In order to simulate these residues three types of stochastic processes are used.

One of these stochastic processes is mean reversion process and prices follow the process

given below. In equation 3.4, κ, µ and σ represent mean-reversion rate, long term mean

and standard deviation, respectively.

dXt = κ.(µ−Xt.dt+ σ.dWt) (3.4)

dWt is the standard Brownian Motion and dWt = εtdt
1/2. After applying Ito’ s Lemma

to this stochastic differential equation the following form is obtained. In equation 3.5, δ

represents the time difference,i.e. 1 hour, and ε is a normally distributed random variable

with given parameters.

Xt+1 = Xt.e
κδ + σ

√
1− e−2κδ

2κ
.εt εt∼ N(0,1) (3.5)

Another stochastic process, which is commonly employed in the literature, is the jump

diffusion models which are able to reflect the sudden price movements called spikes.In

equation 3.6, κ is the mean reversion rate, µ is the long term mean, σ is the standard

deviation, dWt is the standard Brownian Motion and J is the jump heights.

Xt+1 = κ(µ−Xt).dt+ σ.dWt + lnJ.dq lnJ∼ N(µlnJ , σlnJ) (3.6)
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dq is Poisson factor responsible for jumps arrivals. With the aid of an auxiliary variable,

which represents the intensity of the spikes corresponding to the realized data, say δ, dq

is 0 as long as a uniformly distributed random variable is less than or equal to δ and is 1,

otherwise. This process yields better results when it is combined with regime switching

component. Regime switching mechanism is based on the following assumption: At a

specific time, prices follow either base regime or peak regime, and transition probabilities

of regime alternations of the prices during the considered time horizon is the main driver

of the price processes. Utilizing the historical data, transition probabilities are devised.

For a 2-state stochastic process, the transition probability matrix is given below in equa-

tion 3.7:

P =

p11 p12

p21 p22

 (3.7)

In addition to the given processes above, autoregressive moving average processes are

widely used to model the electricity prices. In order to detail, with the assumption of weak

stationary of residues and error terms’ distribution is known in advance, for an ARMA(p,

q) process given in equation 3.8, price pattern is consisted of weighted summation of last

p prices and weighted summation of last q error terms.

XR
t =

p∑
i=1

αiX
R
t−i +

q∑
j=1

βjεt−j + εt εt∼ N(µresidue, σresidue) (3.8)

In the autoregressive models, after the autocorrelation of the residues are examined, the

models ARMA(5,1) and ARMA(1,1) are proposed. MATLAB finds the coefficients of

the corresponding processes via Maximum Likelihood Estimation.

Also in order to handle the spiky nature of the spot prices, GARCH(p,q) process is intro-

duced. In this study,p and q values are selected as 1. In equation 3.9, ω is a constant, αz
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and βz are the autoregressive and moving average coefficients, respectively. σ2
t−z stands

for time-variant variance and t−z represent normally distributed error terms.

σ2
t = ω +

p∑
z=1

αzσ
2
t−z +

q∑
z=1

βzε
2
t−z (3.9)

Finally, as the jumps are the components that must be included in the processes so as to

obtain better results, a regime-switching factor is added to the procedure. After the tran-

sition probabilities, that of directly reflect the prices’ tendency to jumps or other regimes,

are acquired, with the help this transition matrix and one uniform random number, jump

components are derived.

After replicating sample trajectories for each scenario, the adequacy of the results are

compared with historical spot prices considering different performance measures.

Similarly, Bierbrauer et al. (2007) searched for the factors that affect the sufficiency of

models and examined the effects of these factors with the simulation method. In this

study, German spot prices are used between the years 2000 and 2003. After eliminating

the outliers with the purposes of removing the deterministic parts, a linear trend is sug-

gested and a sinusoidal function that captures the daily patterns is proposed. The data are

restructured for eliminating monthly and weekly cycles in the following manners: aver-

ages of days are obtained, i.e. averages of all wednesdays for the years, and subtracted

from preprocessed data. After that, monthly averages are calculated and values are re-

moved. In equation 3.10, α, β, τ and γ are scalar parameters, Dday and Dmon are daily

and monthly dummies, respectively. t stands for time and finally, d and m are vector pa-

rameters.

fdet(t) = α + β.t+ d.Dday +m.Dmonγ.sin

(
(t+ τ)

2π

365

)
(3.10)

In order to mimic the stochastic part several processes are derived. Mean-reverting,

Ornstein-Uhlenbeck, jump-diffusion models with different jump distributions(normal, log-
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normal, exponential) and 3 regime models are devised and compared the results with the

spot prices. The authors indicate that, normal distribution is the best alternative for jump

distributions and regime switching model is outperformed the remaining models in both

in-sample and out-sample tests.

Cartea and Figueroa (2005) proposed a model such that can capture mean reverting char-

acteristics of electricity. In order to refine their model, a jump component is also in-

troduced. Once the spot price model is derived, closed form of future prices are also

obtained. In this study UK Power Market data are used. Initially, the log-prices are de-

seasonalized in a straightforward manner, mean of hours are subtracted from each hour

month by month, g(t) and then a preprocessing procedure applied in order to define a

jumps class J . In equation 3.11, St, g(t) and Yt represent the spot prices, the determinis-

tic and the stochastic parts.

lnSt = g(t) + Yt (3.11)

This preprocessing consists of an algorithm that separates the outliers that exceeds the

mean value more than three times the standard deviation, from the original series. After

that, a mean reversion process with the jump component is given in equation 3.12. In

equation 3.12, α is mean reversion rate and σt is time- varying volatility.

dYt = −αYt + σ(t)dZt + lnJdqt (3.12)

However, it needs some explanation about its terms. In equation 3.13 ϕ is a normally dis-

tributed error term. In this process, Zt is Brownian motion, dqt is a Poisson process that

has the same character with the jump controller in Keles et al. (2012), and J is responsible

for the jump size which is defined as in equation 3.13, equation 3.14 and equation 3.15.

In equation 3.14 and equation 3.15, ρ represents mean reverting level.
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J = eφ φ∼ N(-σ2
J , σ

2
J) (3.13)

dSt = α(ρt − lnSt)Stdt+ σ(t)StdZt + St(J − 1)dqt (3.14)

ρ =
1

α
(
dg(t)

dt
+

1

2
σ2(t)) + g(t) (3.15)

Mean reversion rate is found by linear regression differences of historical log-prices with

log-prices. Time-varying deviation is acquired from rolling horizons consisted of 30-day

time windows. Once mean reversion rate α and σ(t) is found, these values are plugged in

the equation above for simulating price process.

Likewise, in Mayer et al. (2012), spot prices of German, French, Nordic and British Power

Markets between 2004 and 2009 are used. To eliminate the daily, weekly and annual

patterns least square estimation is employed with dummies corresponding time periods.

For deseasonalized log-prices, two processes are combined: one is for normal part and the

other is for extreme values. The latter process is defined with a jump component dI(t).

This dI(t) jump process is a compound Poisson processes whose arrival rates (in this

context jump intensities) are λ+ and λ− and given in equation 3.16.

I+ =

N+
t∑

I=1

J+
i (3.16)

Jump sizes are calculated in the same way given in Cartea and Figueroa (2005) with a

slight difference. The authors also categorized the down jumps and assigned I− for this

type of price movements. In equation 3.17, Λdet is deterministic and Z(t) is the stochastic

parts of price Fprice.

Fprice = Λdet + Z(t) (3.17)

dZ(t) = dX(t) + dY (t) (3.18)

After discretizing the price process equation 3.18 is obtained and using linear regression
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mean reversion rate is found which helps to obtain a residue term represents the effects of

jumps. In equation 3.19 γ is a constant parameter and ε(t) represent the error term.

Z(t) = γZ(t)∆t+ ε(t) (3.19)

This error term is refined according to the following assumption: if a value is in the in-

terval between 2.57 times of standard deviation, then this value would be considered as

‘normal’ value. Rest of the data is classified as extreme values. This classification helps

to find the mean reversion rates for base process and jump process separately using Max-

imum Likelihood Estimation. Since X and Y are different processes, each process has its

own mean reversion rate, αx and αy. In this representation, also dB and dI are responsi-

ble for changes caused by mean reversion represented with equation 3.20:

X(t+ 1) = X(t) + dX(t), Y (t+ 1) = Y (t) + dY (t) (3.20)

Replacing with increment definitions of X and Y equation 3.21 below are obtained.

X(t+ 1) = (1− αX)X(t) + σdB(t), Y (t+ 1) = (1− αY )Y (t) + dI(t) (3.21)

In this study for the different market data, different modeling approaches outperform for

p-value and rejection tests.

The study of Weron and Misiorek (2008) investigated whether the exogenous inputs such

as load or temperature, have effect over model adequacy or not for several methods.

The datasets are provided from California (1999-2000) and Nordic Power Markets(1998-

1999, 2003-2004). All modeling procedures start with deseasonalization. In this study,

treatment of outliers is also investigated. An autoregressive model is derived for prepro-

cessed prices. Moreover regime-switching and mean reverting models are also devised.

Besides several time series models, authors also extend their tests with semi-parametric

models which are beyond the scope of this dissertation. According to the performance
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tests, semi-parametric models have yielded better results than the Gaussian competitors.

In our study, half-hourly based electricity prices of the British power market, known as

APX, for a period of time from 1 January 2008 to 31 December 2012 are selected to an-

alyze and test. Some appealing features of this market, such as relative maturity of the

market environment, high quality records of the historical prices, and data accessibility

for research intends, make us to select this alternative. Figure 3.1 indicates that the his-

torical prices do not exhibit normal distribution.

Figure 3.1: Histogram of the log-prices

In the previous parts of this study, it is stressed that, the importance of the accurate esti-

mation of the deterministic and stochastic parts of the historical data, is required in order
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to understand and emulate the price behavior. Historical data is our critical element to

detect patterns, make statistical inferences and obtain the parameters. To start with, it is

assumed that the electricity prices St consist of deterministic Ft and stochastic Xt parts

in equation 3.22.

St = eFt+Xt (3.22)

logSt = Ft +Xt (3.23)

In order to obtain the variance stability, logarithms of the prices are calculated and equa-

tion 3.23 is obtained. In Figure 3.2 it is clearly seen that, the transformation of the histor-

ical prices reduces the variance notoriously compared to the original values.

Figure 3.2: Price and log price series between 2008-2012

In Janczura et al. (2013), it is investigated that how the deterministic components and their

parameters are responsive to the outliers. In this study, they have revealed that, handling

these extreme values using with appropriate filtering techniques like threshold based or

recursive filters, have yielded more robust parameter estimations. Likewise in Janczura

20



et al. (2013), an outlier elimination procedure is also applied to the log-prices. The high-

est 2.5% of the log-prices are considered as the outliers and they are replaced with the

average of the two neighbor log-prices with the help of a computational routine.

Deterministic part Ft is assumed as a summation of the linear trend and the cycles given

in equation 3.24.

F det
t = f trendt + fweeklyt + fannualt + fdailyt (3.24)

First and foremost the existence of trend is investigated. A slight trend is observable in

Figure 3.3. A linear trend is proposed as in equation 3.25. Least-square error estimation

is employed to determine the parameters. In equation 3.25, a is constant, b is a scalar

coefficient and t represents half-hour t.

f trendt = a+ b.t (3.25)

Once the trend is eliminated from the log-prices, another significant cycle is detected. It is

reasonable to propose a pattern that reflects the daytimes and midnights of the weekdays

and week-ends price relations and similarities with each other caused by business activi-

ties. These special time slots of the days are called as peak and off-peak times. The time

interval between 8:00 and 20:00 are considered as peak and the time interval between

20:00 and 8:00 are assumed as off-peak times of a day. In order to remove the ‘weekly

cycle’ fitting a trigonometric function is common in the literature. For details cf Enders

(2010). In equation 3.26, c is a constant, d is a scalar coefficient, ϕ is the shift parameter

that adjusts the starting point to the weekly cycle’ s minimum point.

fweeklyt = c+ d

∣∣∣∣sin( π.t336
− φ
)∣∣∣∣ (3.26)

In order to obtain the parameters of the weekly periodicity, a least square error estimation
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Figure 3.3: Trend curve of the prices

procedure is proposed. After subtracting the weekly cycle from de-seasonalized log-

prices, daily periodicity still exists. Likewise in Keles et al. (2012), once the year is

categorized as winter, spring, summer and fall, averages of the corresponding season’s

each hour is calculated and subtracted. To eliminate this deterministic component the fol-

lowing function given in equation 3.27 is proposed.

fdailyt =
1

7

7∑
i=1

hijk j = 1, .., 48 k = 1, . . . , 4 (3.27)

The only deterministic component still need to be removed is the annual cycle. Due to

the high level weather dependency of the electricity prices, it is inevitable to taking into
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account weather effect on prices. A monthly average elimination procedure is employed

as in equation 3.28.

fannualt =
1

4

4∑
j=1

mi,j j = 1, .., 12 (3.28)

Up to now, deterministic parts are handled. Removing all of these components yields a

stochastic component. However, we also need to reflect the spiky nature of the electricity

prices in our pricing methods in order to obtain accurate results. In order to deal with the

stochastic parts, evaluate the performances and select the best pricing method that exhibits

the original series characteristics, a variety of pricing procedures are given. For details cf.

the Literature Review part of the dissertation.

Mean-reversion is a distinctive property of the electricity prices (Cartea and Figueroa

(2005), Bunn and Karakatsani (2003)) and stochastic processes help to handle this issue.

A mean-reversion process, called Ornstein-Uhlenbeck process, is given as follows. In

equation 3.29, κ is the speed of the mean-reversion and µ is the long-term mean.

dXt = κ(µ−Xt).dt+ σ.dWt (3.29)

In equation 3.29, dWt is the standard Brownian Motion and dWt = εtdt
1/2.

dWt = εtdt
1/2 εt∼ N(0,1) (3.30)

With the aid of Ito’ s Lemma (Neftci (2000)), the following solution form is obtained.

In equation 3.31, δ represents the time difference,i.e. 1 half-hour, and ε is a normally

distributed random variable with given parameters.

Xt+1 = Xt.e
−κδ + µ(1− e−κδ) + σ.(

1− e2κδ

2κ
)1/2εt εt ∼ N(0,1) (3.31)

For the sake of brevity, the equation above would be discretized using the time period δ
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as 1 and re- written as follows. In equation 3.32 g is scalar coefficient and h is a constant

parameter. Using with the Maximum Likelihood procedures, the parameters are obtained.

Xt+1 = g.Xt + h+ εt εt ∼ N(µε, σε) (3.32)

Another modeling approach is autoregressive moving average process, called ARMA.

These methods are interested in incorporating the weighted last p prices and q error terms

in a recursive manner as it can be seen clearly in equation 3.33:

Xt =

p∑
i=1

αiXt−i +

q∑
j=1

βjεt−j + εt εt∼N(µε, σε) (3.33)

To identify the parameters of ARMA(p,q) process, Box-Jenkins methodology is em-

ployed. Box-Jenkins methodolgy is given in Appendix A. (Enders (2010)).

Figure 3.4:
¯
Residual autocorrelation of ARMA(1,1) for 2010
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Figure 3.5: Residual autocorrelation of ARMA(5,1) for 2010

Figure 3.6: Residual autocorrelation of ARMA(7,3) for 2010

After analyzing the autocorrelation diagram of the residues and comparing the error term

quality of several models, an ARMA(1,1), ARMA(5,1) and ARMA(7,3) are selected.

Residual autocorrelations are given in Figures 3.4, 3.5, and3.6. MATLAB’ s garchset and

garchfit commands are performed in order to find parameters using with Maximum Like-

lihood Estimation.

With the purpose of combining time-varying variance with the stochastic processes gen-

eralized autoregressive conditional heteroskedasticity, called GARCH, class is proposed.
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In the literature, it is common to use GARCH(1,1) process that has the formula given

in equation 3.34. Also GARCH class can capture the spikes owing to its heteroskedastic

variance(Keles et al. (2012)). In equation 3.34, ω is constant parameter, α and β are scalar

coefficients.σ2
t stands for time varying variance and εt represent normally distributed er-

ror terms.

σ2
t = ω + α.σ2

t−1 + β.ε2t−1 (3.34)

Due to ARMA(p,q) processes have a homoskedastic structure, researchers are utilized in-

tegrating a regular ARMA(p,q) with a jump component, for details cf Cartea and Figueroa

(2005), Keles et al. (2012), Mayer et al. (2012). In this regime-switching context, it is as-

sumed that the electricity prices follow independent price regimes, i.e. base and jump

regimes. The procedure starts with classifying the regime transitions. In this study prices

that exceed the mean value three times of standard deviation are categorized as jumps

and a positive jump class is created. Likewise, if a price is less than three times standard

deviation from mean value then it is categorized as a negative jump. Using these classes

positive and negative jumps’ error terms’ means and standard deviations are estimated.

With the aid of piece of codes written in MATLAB environment, the procedure is per-

formed.

In the next chapter we will deal with risk management applications in the electricity mar-

kets.
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4. RISK MANAGEMENT APPLICATIONS

4.1 MOTIVATION

The extraordinary nature of the electricity, i.e. lacking the opportunity of utilizing the

inventory, spikes or high weather- dependency (Escribiano et al. (2002)), makes the mar-

ket players shape and manage their risk constantly if they want to survive. To exemplify

it, in the aftermath of the failure of two major plants in the US in 1998, have made the

prices escalated up to $7000 per MWatt, noting that the normal price level oscillates in

the interval of $ 30- $ 60 at that time of the year (Deng (2000)). Taking action against the

exposure of extreme spikes in advance, would provide the shareholder from catastrophic

outcomes such as bankruptcy. To give an idea about the relative price volatility of the

electricity and some other assets are represented in Table 4.1 .(Weron (2005)).

Table 4.1: Volatility examples of German Spot Market

Daily Prices Volatility
Treasury Bills and Notes 0.5%

Stock Indices 1-1.5%
Commodities (crude oil or natural gas) 1.5- 4

Electricity up to 50%

4.2 MEAN VARIANCE MODEL

In Huisman et al. (2009), authors investigate the optimal selection of electricity deriva-

tives for a one- period planning term. In this study, authors show that categorizing the

forward contracts into two classes (peak and off-peak) has an impact on hedging strategy.

In this study, Markowitz (1952)’s mean-variance model is employed. In equation 4.1,
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C(T ) represents cost function, No and Np are number of off-peak and peak hours at day

T , respectively. θo and θp are the number of contract decisions. fo(t, T ) and fp(t, T ) are

market prices of off-peak and peak types, respectively. s(h, T − 1) stands for the electric-

ity spot price and v(h, T ) represents the demand during hour h on day T .

C(T ) = Noθofo(t, T ) +Npθpfp(t, T ) +
∑
h∈Ho

(v(h, T )− θo)s(h, T − 1)+

∑
h∈Hp

(v(h, T )− θp)s(h, T − 1)

(4.1)

After defining the cost function, with the assumption of independent loads and spot prices

a more tractable system is obtained and ‘dividing decision matrix into two’ case is inves-

tigated. In equation 4.2, Et C(T ) is the expected cost and N is the number of off-peak

and peak hours at a day. θ′
t is contract decision vector and ft is forward price vector. B is

an indicator vector and, µ′
v and µs are the hourly spot price means and the hourly demand

means, respectively.

Et C(T ) = θ
′

t(N.ft −B
′
µs) + µ

′

vµs (4.2)

In equation 4.3, Ωs and Ωv represent the covariance matrices of the hourly spot prices and

hourly energy demand, respectively.

vart(C(T )) = θ
′

tB
′
ΩsBθt + tr(ΩsΩv) + µ

′

sΩvµs + µ
′

vΩsµv + 2θ
′

t(B
′
µs)(µ

′

vµs) (4.3)

Practitioners use various tools for measuring the risk, i.e. Greeks, standard deviation,

variance, VaR, and CVaR. Greeks fails to provide adequate information since they need

a lot of parameters when the manager deals with portfolios with great number of com-

ponents. Standard deviation and variance are interested in the dispersion of the values.

These quantifiers are symmetrical and they have nothing to do with extreme values. Ad-

ditionally, variance is indifferent to positive and negative deviations and for investor and
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produces sides these deviations are not considered the same. Moreover, mean-variance

approach works properly when the underlying distribution of loss or return is symmet-

rical. It is impractical to make decision considering with this risk measure in electricity

portfolios because electricity prices exhibit heavy tails (Weron (2005)).

4.3 COHERENT RISK MEASURES

VaR is a threshold value given with a probability level and actually tells nothing about

beyond of itself. Additionally VaR is not a coherent risk measure which makes it imprac-

tical to use it in optimization applications. A coherent risk measure satisfies the following

four properties (Hull (2009)):

i. Monotonicity: If one portfolio always produces a worse outcome than another its risk

measure should be greater.

ii. Translation Invariance: If we add an amount of cash K to a portfolio, its risk measure

should go down by K.

iii. Homogeneity: Changing the size of a portfolio by l should result in the risk measure

being multiplied by l.

iv. Subadditivity: The risk measures for two portfolios after they have been merged should

be no greater than the sum of their risk measures before they were merged.

VaR is not a coherent risk measure since it does not meet the last property which makes it

contradicts the principle of risk reduction the by diversification. Also it does not provide

a convex structure which results computationally intractable optimization models. VaR is

formulated as follows:

αβ = min {α ∈ < : Ψ(x, α)) ≥ β} (4.4)
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With the advent of the Conditional Value-at-Risk, defined as the average of values that

exceed VaR, requirement for a subadditive measure that takes into account losses exceed

VaR is satisfied. Since CVaR meets the coherency conditions, it is widely used by practi-

tioners. CVaR formula is given in equation 4.5:

ϕβ(x) = (1− β)−1
∫
f(x,y)≥αβ(x)

f(x, y)p(y)dy (4.5)

In Rockafellar and Uryasev (2000), a linear expression that minimizes VaR and CVaR

simultaneously is given to utilize it in the optimization applications. In this study, instead

of dealing with traditional CVaR formula, another closed form contains Var and CVaR

is proposed which is given in the following equation. The authors show in their work

that minimizing this convex function, given in equation 4.6, is equal to minimizing corre-

sponding expected shortfall and their approach is widely employed in various studies.

Fβ(x, a) = α + (1− β)−1
∫
y∈<m

[f(x, y)− α]+ p(y)dy (4.6)

In Krokhmal et al. (2002), a profit expectation maximization problem under various con-

straints including CVaR, is proposed and compared with mean-variance approach. Ac-

cording to their numerical results, these two methodologies yield approximate solutions.

However, this outcome is not unexpected when the distribution is near normal like in the

case of designed experiment indicated in Rockafellar and Uryasev (2000).

Likewise in Hochreiter et al. (2006), authors propose a model with minimizing the cost

and the average VaR in a multi-stage stochastic programming framework and compare

the performance of the predefined model with hedge and forget case. A scenario tree of

stochastic pot prices, is generated and a tree-based solution procedure is applied. Their

experiments show that, the multi- stage stochastic programming method outperforms the

hedge and forget approach.

In Yau et al. (2011), authors have defined a two- stage stochastic integer programming
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model in order to devise an optimal power contract portfolio from the perspective of a

generation company. This model deals with the case of a generation company who has

to meet its customer demands with the aid of three alternatives. Electricity could be gen-

erated in their own facility, could be bought from the spot market or contracts could be

purchased. At the beginning of the first stage, the company determines the number of

contracts and at the beginning of the second stage their own facility and spot market orig-

inated amounts of energy are derived. CVaR is used to model the risk preference of the

company to compare with the risk neutral manner. Uncertainty stems from electricity spot

prices, production capacity and customer demands.

In order to manage the risk stems from the characteristics of the electricity, precise fore-

casting is the initial step to devise a plan in advance. After drawing the contours of the

upcoming horizon’s price structure clearly, risk management tools enable market partic-

ipants to hedge themselves in reasonable manners. Financial products such as futures,

forwards or options are some instances of instruments that allow people to make deci-

sions in accordance with their risk preferences. For details cf Hull (2009), also Deng and

Oren (2006) provides a broad review of electricity derivatives that are commonly in use.

In this study forward contracts are preferred. Forwards are contracts between buyers and

seller which makes them selling and buying an asset or commodity, in this context elec-

tricity, with pre-specified price in a predefined future time.

Considering with the delivery period of the electricity, there are three types of forwards

which are in use: peak, off-peak and base load. Peak time delivery is usually higher than

the others and a peak time forward provides a pre-defined amount of electricity between

8:00 and 20:00. The time period between 20:00 and 8:00 are accepted as off-peak time

and the corresponding forward prices are relatively lower than peak hours. Base load

contracts supplies the consumers some desired amount of electricity 24-hour day time

constantly.

In this context, a retailer company who has to fulfill electricity demand of its customers
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constantly over a three-month planning horizon is considered. This retailer company

has two energy procurement alternatives; they may buy forward contracts or purchase

the electricity directly from the spot market. Forward contracts help its writers to hedge

themselves against the market price risk, however this risk averse action comes with an

expense since the forward contracts’ prices are usually higher than the spot prices. More-

over, since forwards oblige their writers’ to buy the energy in a predefined amount, one

needs to be careful with the hedged and non-hedged parts of the energy need. In order to

devise an optimal energy portfolio the following decision environments are considered.

In the first case, it is assumed that the company determines the contracted and non-

contracted amounts at the beginning of the planning horizon and is allowed to buy only

three-month contracts. In the second case the company makes the policy decisions at be-

ginning of each month and the contract durations are also limited with one month. In the

third case, the company decides the portfolio structures at the beginning of the months

and has no limits over delivery durations of the forward contracts. Furthermore, in order

to understand how uncertainty and risk preferences affect the optimal solution, each case

is defined with two different systems. One of them is interested in minimizing CVaR, and

the other one minimizes the total expenditures of energy demand fulfillment considering

with a given budget which is limited with the CVaR value. Optimization models of these

models are given as follows. In this study, it is assumed that all transactions take place at

the beginning of the months, transaction costs are omitted, and the company cannot sell

the excess energy in the market. And lastly, it is assumed that the only uncertainty of a

defined system stems from the electricity spot prices.

Let the planning horizon is indexed with half hour t=1,. . . ,T . The scenarios and forward

contract types are indexed with s=1,. . . ,S, and i=1,. . . , I , respectively. Dt and pst denote

the demand at time t, and the electricity spot prices at time t under scenario s, respec-

tively. Additionally, πs and f i represent the probability of scenario s, and market price

of long position in forward contract i, respectively. Since a forward contract delivers 1
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MWh of electricity all the times t if it includes, the system needs an indicator Ai,t states

if the contract type i is active at time t and consists of zeros and ones. To exemplify the

block structure of Ai,t, all the elements of Ai,t related with base contracts consist of ones.

The incorporation of risk aversion is achieved with linear programming formula of CVaR

given in Rockafellar and Uryasev (2000). This model allows its users to calculate VaR

represented with α and CVaR simultaneously in a β probability level. By introducing θi

as the number of contract type i bought as decision variables and us as auxiliary variables,

the optimization problem of the first case becomes the following:

Min α +
1

1− β

S∑
s=1

πsus

s.t.

α + us ≥
I∑
i=1

θif i
T∑
t=1

Ai,t +
T∑
t=1

pst(Dt −
I∑
i=1

θiAi,t) ∀s ∈ S

θi ≥ 0 ∀i ∈ I

us ≥ 0 ∀s ∈ S

(4.7)

Case 2 is a multi stage version of the previous problem and is given as in the following.

In this case, we need to state the K intermediate steps indexed with scenario set N whose

elements are consisted of n=1,. . . ,N . Then the optimization problem becomes:
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Min α +
1

1− β
∑
n∈NK

πnun

s.t.

γsuc(n) = γn +
I∑
i=1

θinf
i
n

T∑
t=1

Ai,t +

Tk(n)∑
t=Tk(n)+1

pnt (Dt −
I∑
i=1

θinAi,t) ∀n ∈ N \ {NK}

un ≥ γn ∀n ∈ NK

un ≥ 0 ∀n ∈ NK

θin ≥ 0 ∀n
(4.8)

Case 3 is differs from case 2 as the company is allowed to purchase forward contracts for

different delivery periods, say 1-month contract, 2-month contract, 3-month contracts.

Min α +
1

1− β
∑
n∈NK

πnun

s.t.

γsuc(n) = γn +
I∑
i=1

θinf
i
n

T∑
t=1

Ai,t + ...

Tk(n)∑
t=Tk(n)+1

pnt (Dt −
I∑
i=1

θ̃inAi,t) ∀n ∈ N \ {NK}

θ̃isuc(n) = θ̃in + θnsuc(n) ∀n ∈ N \ {NK}

un ≥ γn ∀n ∈ NK

un ≥ 0 ∀n ∈ NK

θin ≥ 0 ∀n

(4.9)

All of these problems deal with minimizing CVaR subject to system’s constraints. How-

ever, in order to evaluate how budget B constraint affect the optimal the decision, these

problems are reformulated such that minimizes total expected expenditures subject to pre-

vious constraints and an extra budget constraint. Considering with this adjustment first
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case becomes:

Min
∑
∀s

πs

(
I∑
i=1

θif i
T∑
t=1

Ai,t +
T∑
t=1

pst(Dt −
I∑
i=1

θiAi,t)

)

s.t.

α +
1

1− β
∑
∀s

πsus ≤ B

α + us ≥
I∑
i=1

θif i
T∑
t=1

Ai,t +
T∑
t=1

pst(Dt −
I∑
i=1

θiAi,t) ∀s ∈ S

us ≥ 0 ∀s ∈ S

θ ≥ 0

(4.10)

Case 2 is introduced as following:

Min
∑
n∈NK

πnγn

s.t.

α +
1

1− β
∑
∀s

πnun ≤ B

γsuc(n) = γn +
I∑
i=1

θinf
i
n

T∑
t=1

Ai,t +

Tk(n)∑
t=Tk(n)+1

pnt (Dt −
I∑
i=1

θ̃inAi,t) ∀n ∈ N \ {NK}

un ≥ γn ∀n ∈ NK

un ≥ 0 ∀n ∈ NK

θn ≥ 0

(4.11)
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Finally case 3 is stated as following:

Min
∑
n∈NK

πnγn

s.t.

α +
1

1− β
∑
∀s

πnun ≤ B

γsuc(n) = γn +
I∑
i=1

θinf
i
n

T∑
t=1

Ai,t + ...

Tk(n)∑
t=Tk(n)+1

pnt (Dt −
I∑
i=1

θ̃inAi,t) ∀n ∈ N{NK}

θ̃isuc(n) = θ̃in + θisuc(n) ∀n ∈ N \ {NK}

un ≥ γn ∀n ∈ NK

un ≥ ∀n ∈ NK

θn ≥ 0

(4.12)

In the next section we will analyze different models using simulations done for the UK

market.
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5. RESULTS AND DISCUSSIONS

In this part efficiency of modeling methodologies and optimization models are discussed.After

estimating parameters for each model, the performances of the simulations are evaluated.

Three error performance measures are selected: mean average percentage value, root

mean squared error and coefficient of determination. The formulae of these performance

measures are given in equations 5.1 and 5.2. In these equations, N , T , and P represents

the number of simulations, the number of simulated hours and the prices, respectively.

E(MAPE) =
1

N

N∑
k=1

1

T

T∑
t=1

|Pk,t,generic − Pt|
Pt

(5.1)

E(RMSE) =
1

N

N∑
k=1

 1

T

√√√√ T∑
t=1

(Pk,t,generic)2)− Pt

 (5.2)

After running 100 simulations, overall performances are given in the following table.

These tests are performed using sorted prices since we are not interested in pinpointing

the jumps, which is impossible, instead we are trying to predict the sizes of shocks be-

cause overall expected loss or gain does not depend on the time point of shocks. Different

models have outperformed according to different performance measures. Table 5.1 and

Table 5.2 shows the coefficients of ARMA(7,3) and Mean Reverting processes. Coeffi-

cients of the ARMA(p,q) processes are given in Appendix B. Table 5.3 indicates the test

results for 2010.

In addition to numerical tests, in order to observe the accuracy of simulations graphs of

the pricing methodologies are obtained and given in Figure 5.1 and Figure 5.2.
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Table 5.1: Model parameters of the ARMA(7,3) for different years

Model Parameter 2008 2009 2010 2011 2012 2008-2012
ARMA(7,3) µ 1.027 0.689 0.626 2.4988 0.2272 2.360

σ 0.224 -0.668 -0.5689 -2.7433 0.30 -2.454
αi -0.277 0.935 0.10206 1.471 0.338 1.186

0.0372 -0.212 -0.1286 -0.187 -0.073 -0.0466
-0.023 0.0026 -0.057 -0.036 0.0174 -0.059
0.0898 0.075 -0.0004 0.035 0.046 0.0516
-0.080 0.135 0.0316 -0.04 0.11 -0.0378
-0.080 0.135 0.0316 -0.04 0.11 -0.0378

βi 0.930 0.371 -0.465 -2.103 0.175 -2.138
-0.219 0.615 0.588 0.2 -0.146 2.089
0.195 -0.785 -0.897 -0.8508 -0.309 -0.883

Table 5.2: Estimated model parameters of the MR process for different years

Model Parameter 2008 2009 2010 2011 2012 2008-2012
MR µ 3.2902E-5 3.290E-5 -8.31E-6 -1.03E-4 1.2E-3 3.9152E-6

σ 0.499 0.256 0.330 0.247 0.1888 0.312
κ 0.881 0.355 0.471 0.2459 0.198 0.43

Table 5.3: Test results of pricing methodologies for 2010

Model RMSE MAPE R
ARMA(1,1) w/o RS 6.94 28.79 0,93

ARMA(1,1)- GARCH(1,1) 6.72 28.7 0.93
ARMA(5,1) w/o RS 7.37 29.66 0.93
ARMA(7,3) w/o RS 7.33 29.04 0.93

Mean Reverting w/o RS 9.08 34.551 0.87
ARMA(1,1) w/ RS 11.57 19.17 0.88
ARMA(5,1) w/ RS 12.45 21.97 0.87
ARMA(7,3) w/ RS 14.76 28.18 0.85

Mean Reverting w/RS 6.54 37 0.92

In order to make further inferences about our model, out- of- sample tests are performed

and given in Table 5.4. As it is expected, out-of-sample tests have not yielded not as good

as in-sample tests, nevertheless results are still acceptable.

As it is mentioned before, a three-month planning horizon is considered and since all t’

s represent half- hours, we have actually T=4320 half hours. Also there exist three types

of contracts which makes i values are limited with I=3. We have the demand information
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Figure 5.1: Historical and simulated price curves(Mean Reverting)

Figure 5.2: Historical and simulated price curves (ARMA(5,1) w/ RS)

Table 5.4: Test results for 2011 and 2012 (out-of-sample)

Model R RMSE MAPE
ARMA(1,1) w/o RS 0,97 10 27,9

ARMA(1,1)- GARCH(1,1) 0,96 47,2 47,6
ARMA(5,1) w/o RS 0,97 7,3 27,7
ARMA(7,3) w/o RS 0,96 10,1 28,6

Mean Reverting w/o RS 0,95 7,2 28,4
ARMA(5,1) w/ RS 0,89 30,9 41,0
ARMA(7,3) w/ RS 0,96 48,9 48,3

Mean Reverting w/RS 0,88 51,3 39,7

for upcoming planning term in advance. Prices of the forward contracts are also known.

In multi stage cases, we have limited the number of stages with three. Finally it is assumed

that the only uncertainty arises from spot prices.
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In order to simulate the price paths, the mean reversion process is employed and total

scenarios are limited with 1000 simulations. After obtaining the price paths, optimization

models are solved in MATLAB R2010b environment. YALMIP and GUROBI 5.6.2 are

selected as modeling language and solver, respectively.

We have tested each case with respect to changing β levels in order to evaluate the CVaR

values. It can be observed that, in Figure 5.3, Figure 5.4 and Figure 5.5, as the decision

maker behaves more conservative; the expected shortfall and the expected cost values

both increase which in accordance with price of risk aversion concept. It is reasonable

because when β level increases, CVaR value shifts toward extreme values. Also, Case 1

and Case 2 are actually subproblems of Case 3 and it can be observed in Figure 5.5 it is

possible to devise a hedging strategy with a lower cost by updating at the beginning of

each month rather than Case 1 and Case 2.

Figure 5.3: Results with respect to changing β- Case 1
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Figure 5.4: Results with respect to changing β- Case 2

Figure 5.5: Results with respect to changing β- Case 3

According to Figure 5.6, Figure 5.7 and Figure 5.8, generally the optimal expected cost

value is higher when CVaR is low which means the system cannot adapt itself into more

conservative one with a lower budget.

sometextIn the first group of optimization systems, multi stage decision making have

yielded lower expected costs with lower CVaR value. It can be inferred that, updating

the decisions at the beginning of each month makes more profit. Likewise, in the second
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Figure 5.6: Results with respect to changing budgets- Case 1

Figure 5.7: Results with respect to changing budgets- Case 2

group of optimization it canIn the direction of finding out the strategies, solution set of

the optimization models are examined. To exemplify, if we take a closer look to the

solution set of Case 2 given in Figure 4.1, it could be seen that as the decision maker

defines system in more conservative manner,say β level differs from 0.80 to 0.90, both

number of base and peak contracts tend to increase, but whe ometextIn the first group

of optimization systems, multi stage decision making have yielded lower expected costs

with lower CVaR value. It can be inferred that, updating the decisions at the beginning
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Figure 5.8: Results with respect to changing budgets- Case 3

of each month makes more profit. Likewise, in the second group of optimization it canIn

the direction of finding out the strategies, solution set of the optimization models are

examined. To exemplify, if we take a closer look to the solution set of Case 2 given in

Figure 4.1, it could be seen that as the decision maker defines system in more conservative

manner,say β level differs from 0.80 to 0.90, both number of base and peak contracts tend

to increase, but wheometextIn the first group of optimization systems, multi stage decision

making have yielded lower expected costs with lower CVaR value. It can be inferred that,

updating the decisions at the beginning of each month makes more profit. Likewise, in the

second group of optimization it canIn the direction of finding out the strategies, solution

set of the optimization models are examined. To exemplify, if we take a closer look to

the solution set of Case 2 given in Figure 4.1, it could be seen that as the decision maker

defines system in more conservative manner,say β level differs from 0.80 to 0.90, both

number of base and peak contracts tend to increase, but whe
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6. CONCLUSIONS

Liberalization of the electricity market in a country is an important breakpoint for the

market participants and this importance originates from the nature of the electricity it-

self. It cannot be effectively stored which means actors cannot make use of the inventory

when there exist a gap between the supply and demand amounts. From the consumer

view, electricity is not such a regular requirement, it must be delivered in the time of need

since almost all of the manufacturing, trading even smaller scale activities highly depend

on electricity as a result of today’ s technology. Likewise, for an electricity generation

company, an imbalance between production and transfer rates would lead undesirable out-

comes.

Another interesting thing about electricity comes from its production conditions. There

are several ways of producing electricity such as via hydropower, solar power, wind

power, fuel or nuclear plants. Except the nuclear or the fuel based production cases, it

is obvious that the electricity production highly depends on weather conditions. Also for

end user side, excluding the manufacturing companies that have fixed and predetermined

electricity usage schedules, the consumption is mainly formed according to the climate

conditions. For instance in moderate conditions consumption level decreases, however in

the times of extreme temperatures, need for electricity also escalates.

The combination of all of these issues given above, makes modeling the electricity prices

attractive for the researchers. In the literature a lot of effort devoted to model the elec-

tricity prices using with different methodologies such as game theoretical, financial math-

ematical or econometric models which are detailed in the previous sections of this dis-

sertation. In this dissertation financial mathematical and econometric approaches are

employed. After analyzing the historical time series, firstly models are proposed and

afterwards maximum likelihood or linear regression estimations are performed in order
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to find the relevant parameters which are also specified in the previous chapters of this

thesis. Qualities of the fitted models are measured with several performance metrics and

according to these tests, performance levels are adequate enough.

After comparing the models’ price trajectories, mean-reverting model is selected to con-

struct the optimization problems. In these optimization problems, a customer who has

a predetermined schedule of electricity demand case is considered. In order to meet the

expected future consumption, the consumer may directly buy electricity from spot mar-

ket and make forward contracts include predefined amounts of electricity for a specific

period of time. Forward contracts are usually more expensive than spot prices, however

these forward contracts prepares a safer position in the fragile market environment against

price shocks.

As it is mentioned before, if the market risk is not managed properly and a hedging strat-

egy is not prepared in advance, then the market players face the devastating aftereffects

of the price shocks. In this stage, decision on the selection of the risk metrics is up to

the planner, however variance, VaR, and CVaR are frequently used risk quantifiers. The

former two quantifiers have some drawbacks such as working with variance means a se-

rious computational burden or VaR is not a coherent risk measure which does not allow

to evaluate the portfolio construction cases properly. Nevertheless, with the aid of recent

contributions of Rockafellar and Uryasev (2000), CVaR as coherent risk measure is ex-

pressed, in linear form and used in defining the risk of various cases. In our study, CVaR

is preferred.

According to our results, models for Turkish power market can be also derived. However,

due to the infancy of Turkish power market, it will be challenging to estimate model pa-

rameters and structures. Both econometric and financial models rely on relatively long

time series, which makes the researchers to devise some other techniques for Turkish

power market case. Additionally, these models could be tested on different countries’

market data such as Australian case because Australian power market is also based on a
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half-hour structure likewise British case. Nevertheless, refining the parameters makes it

possible to adapt the models for different markets.

Moreover, in this dissertation only financial and econometric models are considered. As

it is known that the failure of a major supplier may lead to unusual price movements. As

a result, taking into account the physical conditions of generation plants would be useful.

However, these models are investigated under the category of fundamental models and

they are criticized because the scale of information requirements.

Additionally, in our dissertation the exogenous factors that affect the electricity prices

such as renewable energy, load or fuel prices are omitted. For example, governments

promotes the companies to use renewable sources or solar power and wind power has no

marginal cost which decreases prices indirectly.

To sum up, in this study uncertain electricity prices are modeled and generated a series

of possible outcomes which are expressed as scenarios. After simulating the price trajec-

tories, a risk quantifier is selected and the portfolio decision problem is expressed as a

linear programming problem. And finally, the optimization problem is solved using with

commercial software.

The main contribution of this study would be expressed in the following. In the literature,

existing studies are focused on only price modeling or on decision optimization parts.

Most of the studies which are concerned about price modeling totally ignore the strate-

gies about making decision about how to manage market price risk. On the other hand,

studies that deal with constructing portfolio towards hedging against the fluctuations, use

the scenario trees that are not generated in ways sophisticated enough that the complex

structure of the electricity prices require. These stressed drawbacks would be eliminated

with an integrated approach that uses both of adequate modeling techniques and proper

problem definition simultaneously. In this study, both of these sides of the system are

considered as their importance is equally-weighted. To consider one side as trivial would

mislead the decision makers.
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Moreover, in order to reduce the complexity of the price modeling, it is common to ag-

gregate the prices in for instance 4-hour blocks. In short, instead of working with time

series point by point, it is preferred to perform on time slots for the sake of simplicity.

In our study, half- hourly data structure is protected, besides all of the experiments and

estimations are carried on using with this original form which makes the estimations and

experiments more reliable.

This study would serve as a useful gauge to the decision makers in the electricity markets

and is not only supportive on the task of pricing the spot and devising hedging strategies,

but also would be beneficial in pricing some financial instruments, such as options or other

derivatives based on electricity. Pricing of commodity derivatives widely studied in the

literature, however power portfolios are relatively novel they need to be investigated more.
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Eichhorn, A., Gröve-Kuska, N., Liebscher, A., Römisch, W., Spangardt, G. and Wegner,
I.: 2004, Mean- risk optimization of electricity portfolios, Proceedings of Applied
Mathematical Mechanics (4), 3–6.

Guirguis, S. H. and Felder, A. F.: 2004, Further advances in forecasting day- ahead elec-
tricity prices using time series models, KIEE International Transactions on PE 4-
A(3), 159–166.

Higgs, H. and Worthington, C. A.: 2010, Modelling spot prices in deregulated wholesale
electricity markets: A selected empirical review, Energy Studies Review 17(1), 1–25.

Hochreiter, H., Pflug, G. and Wozabal, D.: 2006, Multi- stage stochastic electricity port-
folio optimization in liberalized energy markets, IFIP International Federation for
Information Processing 199.

Huisman, R., Mahieu, R. and Schlichter, F.: 2009, Electricity portfolio management:
Optimal peak/ off- peak allocations, Energy Economics 31(1), 169– 174.

Janczura, J., Trück, S., Weron, R. and Wolff, R. C.: 2013, Identifying spikes and sea-
sonal components in electricity spot price data: A guide to robust modeling, Energy
Economics 38, 96– 110.

Karakatsani, V. N. and Bunn, D.: 2008a, Forecasting electricity prices: The impact of
fundamentals and time-varying coefficients, International Journal of Forecasting
24, 764– 785.

Karakatsani, V. N. and Bunn, D.: 2008b, Intra-day and regime- switching dynamics in
electricity price formation, Energy Economics 30, 1776– 1797.
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Möst, D. and Keles, D.: 2010, A survey of modelling approaches for liberalised electricity
markets, European Journal of Operational Research 207(2), 543– 556.

Nowotarski, J., Tomczyk, J. and Rafal, W.: 2013, Robust estimation and forecasting of the
long-term seasonal component of electricity spot prices, Energy Economics 39, 13–
27.

Rockafellar, T. and Uryasev, S.: 2000, Optimization of conditional value-at-risk, Journal
of Risk 2, 21–41.

Römisch, W., Eichhorn, A. and Wegner, I.: 2004, Polyhedral risk measures in electricity
portfolio optimization, Proceedings of Applied Mathematical Mechanics (4), 7–10.

Vehlivainen, I. and Keppo, J.: 2003, Managing electricity market price risk, European
Journal of Operational Research 145, 136–147.

Weron, R. and Misiorek, A.: 2008, Forecasting spot electricity prices: A comparison of
parametric and semiparametric time series models, International Journal of Fore-
casting 24, 744–763.

Yau, S., Kwon, R., Rogers, S. and Wu, D.: 2011, Financial and operational decisions in
the electricity sector: Contract portfolio optimization with conditional value at risk
criterion, International Journal of Production Economics 134, 67–77.

50



Other Publications

Bunn, D. and Karakatsani, N.: 2003, Forecasting electricity prices, EMG Working Paper,
London Business School.

Deng, S.: 2000, Pricing electricity derivative under alternative stochastic spot price mod-
els, Proceedings of the 33rd Hawaii International Conference on System Sciences.

Eichhorn, A. and Römisch, W.: 2006, Mean- risk optimization models for electricity
portfolio management, Proceedings of PMAPS.

Escribiano, A., Pena, Juno, P. and Pablo, V.: 2002, Modelling electricity prices: Interna-
tional evidence, Working Paper 02-27, Economic Series 08, Universidad Carlos 3
De Madrid.

Weron, R.: 2005, Heavy tails and electricity prices, HSC/05/02, HSC Research Reports,
Hugo Steinhaus Center, Wroclaw University of Technology.

51



APPENDICES

52



APPENDIX A. FIGURES

Figure A.1: Box- Jenkins Methodology (Enders (2010))
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APPENDIX B. TABLES

Table B.1: Model parameters of the ARMA(1,1) for different years

Model Parameter 2008 2009 2010 2011 2012
ARMA(1,1) αi 0.994 0.994 0.992 0.976 0.985

βi -0.919 -0.866 -0.863 -0.681 -0.705

Table B.2: Model parameters of the ARMA(5,1) for different years

Model Parameter 2008 2009 2010 2011 2012
ARMA(5,1) αi 1.02 1.172 1.136 1.224 1.205

0.01 -0.266 -0.114 -0.268 -0.2405
-0.068 0.038 0.004 -0.067 0.006
0.045 -0.02 -0.0297 0.006 -0.0158
-0.014 0.079 0.0005 0.0932 0.0375

βi -0.927 -0.864 -0.917 -0.782 -0.803

Table B.3: Model parameters of the AR(1) for different years

Model Parameter 2008 2009 2010 2011 2012
AR(1) αi 0.414 0.7005 0.623 0.781 0.819

Constant -3.627E-4 1.33E-1 -3.243E-4 2.365E-4 1.039E-4
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