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ABSTRACT 

 

A HEURISTIC FRAMEWORK FOR SOLVING TIME DEPENDENT VEHICLE 

ROUTING PROBLEM WITH TIME WINDOWS 

Alper Yasin Sarıcıoğlu 

Industrial Engineering 

Thesis Supervisor: Asst. Prof. İbrahim Muter 

 

September, 2014, 59 pages 

In vehicle routing problem, most of the solution approaches   deals with problems that 

the travel time between two demand points is assumed constant.  While dealing with 

long distances like intercity transportation, variation in travel speed is negligible, it is 

essential when it comes to short distances and high traffic density.   However as GPS 

technology got more common for civilian use in the last decade; it became possible to 

collect instant traffic data from drivers who carry a GPS application in their vehicle and 

share it with a geospatial database.  

These technological developments intrigued researchers to study with more real-life 

problems such as time-dependent vehicle routing problem with time windows which is 

assuming the travel speed is perfectly correlated with time of the day and customers 

want their demand is satisfied within a predefined time period.  

This study suggests a Tabu Search algorithm guided by MetaOpt framework for 

TDVRPTW problems. Optimizing departure times in vehicle routes are considered with 

diversification. Though some approaches are developed and introduced, they all focus 

on post-processing of the main problem. This study is aimed to search different-than-

zero departure time in tabu search is processing. 

Keywords:  Time Dependency, Time Windows, Departure Time Optimization, Tabu 

Search, City Logistics 
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ÖZET 

 

ZAMANA BAĞLI VE ZAMAN PENCERELİ ARAÇ ROTALAMA PROBLEMİ İÇİN 

BİR SEZGİSEL ÇÖZÜM YAKLAŞIMI UYGULAMASI 

Alper Yasin Sarıcıoğlu 

Endüstri Mühendisliği 

Tez Danışmanı: Yrd. Doç. Dr. İbrahim Muter 

 

Eylül, 2014, 59 sayfa 

Araç rotalama problemde, çoğu çözüm yaklaşımı iki talep noktası arasındaki seyahat 

süresini sabit kabul eder. Seyahat hızının değişkenliği, şehirlerarası ulaşım gibi uzun 

mesafelerde görmezden gelinebilirken kısa mesafelerde ve yüksek trafik yoğunluğundan 

etkilenen problemler için önemlidir. 

GPS teknolojisinin son on yılda sivil kullanım için yaygınlaşması ile aracında bir GPS 

uygulaması taşıyan ve bunu bir coğrafi veri tabanı ile paylaşan sürücülerin anlık trafik 

verilerini toplamak mümkün olmuştur. 

Bu teknolojik gelişmeler pek çok araştırmacıyı zaman bağımlı hız ve zaman pencereli 

dağıtım gibi daha gerçekçi problemlere yönlendirmiştir.  

Bu çalışma Zaman Bağımlı ve Zaman Pencereli Araç Rotalama Problemi için MetaOpt 

tarafından yönlendirilen bir Tabu Arama yaklaşımı önerir. Önemli bir değişken olan 

başlangıç zamanının değiştirilmesi literatürde rotalar belirli olduktan sonra ikinci bir 

çalışma ile çözülmeye çalışılmaktadır. Bu çalışma sıfırdan farklı başlangıç zamanlarını 

tabu arama algoritması devam ederken araştırmayı amaçlamaktadır. 

Anahtar Kelimeler:  Zaman Bağımlılık, Zaman pencereleri, Kalkış zamanı 

optimizasyonu, Tabu Arama, Şehir Lojistiği 
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1 INTRODUCTION 

Logistics and its significance in business strategy have changed dramatically due to 

revolutionary experiences like Just-in-Time and Total Quality Management systems in 

the 1980s. As rapidly developing information and communication technologies 

implemented on different levels of supply chain, it gradually changed the way to 

manage production and distribution processes, such as, material handling, inventory 

control and internal and external communication (Persson 1991).  

Fierce competition, expanded to global scale, altered what is understood and what is 

expected from logistics. Linking supply and demand nodes at profitable cost and service 

levels have become harder as new opportunities brings with it new demands. 

Economical offers of technological developments are quickly adapted by private 

companies to gain advantages and having more shares in highly competitive markets. 

These information technologies boost managing capabilities due to its bidirectional 

communication capabilities and also open new aspects for urban governance to design 

transportation networks as well as it does it for private companies. 

Since logistics operations require a number of performances within or between business 

partners, it is highly dependent on information and communication technologies more 

than any other sector in the business environment. This intense flow of information 

created a need to develop management systems based on information technology 

solutions, and this brought a high level of maturation in logistics in terms of 

implementation of complex information systems. 

Although logistics systems comprise different types of activities, among them, physical 

distribution has a crucial role in steps of adding value to products. Transportation of 

goods to a demand point transforms it into a commodity for final customer. 

Transportation operations can be simply defined as the process of moving goods from 

one point to another but it occupies a large part of a company’s overall logistics cost 

and determines the total success of supply chain of the company. Moreover, an efficient 

transportation operation allows companies to have shorter delivery times and fewer 
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inventory costs which provide them a big advantage in competitive markets, besides 

savings in operational costs.  

City logistics, on the other hand, is a developing concept of transportation management, 

targeting problems in major cities, caused by massive transportation needs in a limited 

environment. Highly complex nature of urban transportation operations and 

technological developments such as GPS technology created a new dimension in 

logistics. Serious problems like traffic congestions, environmental issues, human health 

problems and expanding urban areas and increasing urban population needed urgent 

measures and make this topic studied by not only private companies, but also 

governments. 

As mentioned above, implementing solutions obtained by computer environment is 

specifically practical for transportation operations, many methods and approaches are 

proposed to seek out a solution or provide decision support over the years. 

Combinatorial nature of logistics problems causes a heavy computational burden that 

makes exact methods impractical because of exponential explosion. Since heuristics 

provides fast and satisfactory solutions to problems, which require long computational 

time and memory need for an exact solution, they have an important place in logistics 

decision making. The performance advantages of heuristics allow to find optimal or 

near-optimal solutions for large scale problems with real life constraints (Ballou 1989). 

Urban freight transportation had a great role in the evolution of Vehicle Routing 

Problems (VRP). Short distances and traffic congestions pushed researchers to study 

time dependency concept. Technological enablers such as GPS expanded coverage of 

real-time and historical traffic information in urban areas. Also, this practical 

availability led researchers to emphasize time dependency in the last decade.  

Time Dependent Vehicle Routing Problem (TDVRP) is a variation of Vehicle Routing 

Problem (VRP), to model speed limitations dealt in urban transportation. Unlike VRP, 

travel speed is not constant and depends on time of day. 

On the other hand, developments in e-commerce practices change the structure of goods 

deliveries and passenger transports in the cities. Highly customized product scale, lower 
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volume and weight but higher value of the goods, increase the number of drops per tour 

in urban freight transportation (Huschebeck 2004).  

One of the main operations the urban freight transportation is home delivery. It 

constitutes an important part of urban freight transportation operations. Customers who 

buy large goods that cannot be transported by their private vehicles or e-commerce 

customers, who gave their order online, require a transportation service by the supplier 

of the product. This gives dispatchers unique opportunities to schedule the fleet, owned 

by or dedicated to the supplier. Volume or weight of customer demand and location are 

known by the dispatcher prior to the operation. In these operations there is a rendezvous 

with customer within a time window. 

This feature leads us to Vehicle Routing Problem with Time Windows (VRPTW) which 

is another variant of the Vehicle Routing Problem. It restricts arrival times of vehicles in 

a feasible time window and each customer requires a different volume to be delivered 

within a predefined deadline. These time windows vary from customer to customer. 

Since all demand nodes must be served before a predefined early and late time 

windows, these sequential constraints, which has low computation cost, can be used for 

pruning solution space. 

Both hard time window, which does not allow vehicle to exceed late time window, and 

soft time window, which allows exceed but adds a penalty cost, are studied in the 

literature. In this study, time windows are cannot be exceeded. 

In this study VRPTW and time dependency feature is held together. With these two 

merged features of VRP, the new problem is called Time Dependent Vehicle Routing 

Problem with Time Windows, which is studied in the field of combinatorial 

optimization extensively.  
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1.1 MOTIVATION 

In vehicle routing problem, most of the models deals with problems assume that travel 

time between two demand points is constant. While dealing with long distances like 

intercity transportation, deviation in travel speed is negligible but it is crucial when it 

comes to short distances and high traffic density in urban transportation. 

However as GPS technology got more common for civilian use in the last decade; it 

became possible to collect instant traffic data from drivers who carry a GPS application 

in their vehicles and share it with a geospatial database. Thus, instant traffic information 

is not covered for only main road segments which are monitored by speed radars or 

cameras but also for less major thoroughfares especially in urban areas.  

Today this data is used for travel time calculations by popular map applications like 

Google and Yandex. As GPS applications will get common, coverage of these 

geospatial services will expand. These technological developments and urbanization 

trend make the time dependency a practical property for real life problems. 

Today, urban population comprises 50% of global population. This rate is expected to 

increase to 60% in the next twenty years (World Health Organization 2009). Increasing 

urban population in limited geographical space, also, have environmental aspects of 

distribution operations in urban areas and will be crucial in the future more than it has 

ever been.  

High correlation between GHG emission rate and travel speeds pointed out that traffic 

congestion in urban areas and environmental consequences of excessive fossil fuel 

consumption can be combined into one problem. Improving urban transportation 

operations and preventing traffic congestion yields the reduction of the emission 

(Boriboonsomsin & Barth 2008).  

Traffic congestion causes excess consumption of fossil fuels beside productivity loss 

and increased emission of poisonous gasses. In Istanbul, the traffic congestion causes 

the loss of $3.12 billion per year regarding only fuel and time consumption (Ergün & 

Şahin 2006). 
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In this study, time dependency factor over travel speed is concerned only as a time cost. 

However, with small modifications on the objective function to calculate CO2 emission 

cost can be added to the model easily, due to a strong correlation between GHG 

emission rate and travel speeds.  

1.2 CONTRIBUTION 

MetaOpt framework is an algorithmic framework which provides a decision support 

mechanism for diversification or intensification decisions in any metaheuristics. This 

study is the first known implementation of MetaOpt framework to improve the 

performance of a metaheuristic for a TDVRPTW problem.  

Tabu search heuristic for the vehicle routing problem with time windows described by 

Potvin et al. (1996) is adopted as the core metaheuristic as a part of MetaOpt 

framework. Extensive tests carried on in order to evaluate framework’s performance for 

every scenario proposed in the related literature. 

Since there is not a widely accepted standard problem set for TDVRPTW, in this study 

Figliozzi’s modification of Solomon instances is used to compare performances of 

algorithms. Figliozzi divides time span into five equal time period and changes travel 

speeds for each time period to test different scenarios. 
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2  LITERATURE REVIEW 

This literature review summarizes the evolution of VRP from a basic generalization of 

TSP, with constant travel times and capacity without any other condition, to a more 

complicated version, based on time dependent structure and time window concept. After 

brief introduction about diversity in VRP variants, literature survey about exact and 

heuristic methods is given for TDVRP and VRPTW separately. Their consolidation as 

Time Dependent Vehicle Routing Problem with Time Windows and other versions of 

TDVRP is discussed in following topics. 

2.1 VEHICLE ROUTING PROBLEM (VRP) 

Vehicle Routing Problems (VRP) is introduced by Dantzig and Ramser (1959). They 

formulated it as a generalization of Traveling-Salesman Problem (TSP) and named the 

problem as Truck Dispatching Problem. Their aspect of generalization of problem was 

mainly focused on capacity as an additional condition. But in sake of simplicity of 

presentation they assumed there is only one type of product is to be delivered and that 

all vehicles have same capacity (Dantzig & Ramser 1959).  

Vehicle routing problems studied extensively in the literature over the years. Since 

routing and scheduling of a fleet of vehicles to service customers has many different 

forms in distribution systems, many different models are introduced, vary on the 

different problem characteristics to model real-life problems.  

Various combinations of different transpiration scenarios like time windows, periodic 

visits and different physical distribution models like pickup and deliveries, 

heterogeneous vehicle fleet is named and studied with different approaches like exact 

methods, heuristics, metaheuristics and simulation. 

This immense diversity of VRP provides fertile study subjects for researchers. 

Numerous studies in literature focuses on VRP type combinatorial problems is rapidly 

increasing due to developments of computer processors that enabled relatively new 

approaches like tabu search, genetic algorithms to be applied on the VRP. Massive 
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amount of VRP variants and exponentially growing literature created a need of the 

taxonomy for VRP classifications (Eksioglu et al. 2009).  

This study can be classified as combination of two different properties which are hard 

time window, in terms of scenario characteristics and time dependent in terms of 

physical characteristics. Studies in literature about these two characteristics are vast and 

discussed in the following topics. 

2.2 TIME DEPENDENT VEHICLE ROUTING PROBLEM (TDVRP) 

In urban transportation with a congested environment, it is not accurate to assume that 

the travel time between two nodes can be obtained by the function of distance and 

constant travel speed. Changing traffic density causes fluctuations in travel speed that 

result in fluctuations in travel times (Malandraki & Daskin 1992). 

Tough this time dependency concept was discussed before; the first solution approach 

for time dependent vehicle routing problem was introduced by Malandraki (1989). In 

this introduction, exact solutions like, cutting plane and branch and bound techniques 

and numerous simple heuristic algorithms were developed for the TDTSP and TDVRP. 

Later, Malandraki and Daskin proposed an exact solution (1992). In this study, they 

proposed a branch-and-cut algorithm and greedy heuristics. 

In more realistic sense, travel speed not only depends on time of day but also the area in 

this particular time. Traffic density may vary in different parts of the city for different 

period of times. A model with travel speeds that are dependent to both time period and 

area is proposed by Park (2000). This model aims to minimize the total duration time 

and the total weighted tardiness and enables to test the clustered formations where travel 

times between nodes are relatively shorter the for each other than for the rest of the map 

(Park 2000). 

If two vehicles leave the same node to arrive another node, the vehicle that leaves 

departure node later, should visit the arrival node later as well. This is called ‘‘first-in–

first-out’’ (FIFO) property. However, in some cases, since travel speeds over time 
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periods are discreet, a vehicle in a relatively faster time period can arrive a node earlier 

than a vehicle that is an in relatively slower period even if it leaves the node before.  

One of the main turning points of time dependency concept was managing the FIFO 

property. All of the introduced models were incapable to satisfy the FIFO property due 

to their calculation methods for travel times crosses two consecutive time periods. 

Ichoua et al. (2003) proposed a travel time function that adjusts the speed when the time 

period changes during a travel, instead of a stepwise travel time function which assume 

the travel time as a step function of time (Ichoua et al. 2003). This is the first study that 

satisfies FIFO rule that will be discussed later. This study directed literature to take 

FIFO rule account. 

Fleischmann et al. (2004) used stepwise travel time function in their study. To ensure 

FIFO feature in model Smoothed Travel Time Function is carried on as a corrective 

method. 

Haghani and Jung (2005) proposed a formulation for the dynamic vehicle routing 

problem with time-dependent travel times.  

2.3 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW) 

The VRPTW deals with vehicle routing problems that a fleet of homogenous vehicles 

should visit customers whose demand is known beforehand, within a specific time 

range. It takes the minimization of the number of routes or vehicles as the primary 

objective while minimization of the total travel cost is the secondary objective. 

In the literature VRPTW is studied extensively and due to its complexity, many 

different approaches have been proposed to find the best or near-best solution. The first 

exact method which is capable of solving large enough problems for real world 

implementation in the literature is the study of Desrochers et al. (1991). Their method is 

solving a LPR of the set partitioning formulation of the original problem by column 

generation in which feasible columns are generated by dynamic programming are added 

as needed. They solved Solomon instances for benchmarking computational results and 
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succeeded to find optimal solution for 7 problems with 100 customers (Desrochers et al. 

1992). 

In this study a tabu search heuristic for the vehicle routing problem with time windows 

described by Potvin et al. (1996) is referenced as core of heuristic part of MetaOpt 

framework. 

2.4 TIME DEPENDENT VEHICLE ROUTING PROBLEM WITH TIME 

WINDOWS (TDVRPTW) 

One of the first vehicle routing problems that considers time window and time 

dependent travel time is discussed by Ahn and Shin (1991). They proposed the savings, 

insertion, and local improvement algorithms and considered the travel speed as a step 

function of time of day. Their non-passing property satisfies FIFO rule. 

Though time dependency is always claimed to be applicable to real life problems, 

studies tested by with a real time problem is really scarce in the literature. Most of the 

researchers focus on standard problem sets due to the benchmark ability. In fact 

working with a real world problem with real traffic data requires a quietly different and 

complicated data structure. Since there are more than one possible path to go from one 

node to another in real traffic network there is a hidden shortest path problem to feed 

distance matrices. If we consider a path between two nodes that comprises different 

road fragments affected differently by traffic conditions then time-dependent travel time 

calculation concepts must be applied to the traverses of road fragments. 

The travel times in depend on the departure times. In the literature the departure time is 

solved after all the routes are constructed. The vehicle departure time optimization 

problem (VDO), with time-dependent travel times is proposed by Kok et al. (2010). It 

was a post-processing solution method for the VDO.  

Eglese et al. (2006) on the other hand, focused on a data structure that can adequately 

represent a natural network with one directional road fragments and junction elements. 

They proposed a data structure to store information of time-dependent data of the travel 

times for individual roads in the network to provide a realistic travel times between 
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demand nodes and solved a scenario created with real traffic data with tabu search 

adopted from Ichoua. (Eglese et al. 2006). 

If we assume that a vehicle can wait on any node or have the option to leave the depot at 

any time from the beginning, then it is critical to manipulate departure times. Because 

departure times directly affect the how much time will be spend in a particular time 

period for the vehicle. The main approach in the literature is to find optimal departure 

times with post-process methods changing departure times for fixed routes after 

problem is solved, due to practical reasons.  

Yet, Dabia et al. not only proposed the only exact solution for TDVRPTW but also 

optimized departure time optimization problem concurrently with the original problem. 

They applied branch-and-cut-and price algorithm to minimize total travel time.  

2.5 TDVRP EXTENSIONS  

Inarguably the core objectives of fleet routing problems were always been economic 

concerns like shorted lead times and reduced variable costs. They are still the main 

objectives of vehicle routing problems. Nevertheless, after greenhouse gases have been 

denounced as a global threat in 1990’s and its emission is regulated by international 

policymakers to reduce its effects in global warming, GHG has been considered as a 

constraint along with fuel consumption.  

The mutual benefit between environmental and economic concerns created a new 

problem type, EVRP. Simply it can be defined as the conversion of the time-dependent 

vehicle routing problem (TDVRP) into Emissions Vehicle Routing Problem (EVRP).  

However, first researches about minimization of pollution created by fossil fuels only 

dating back to the first decade of 2000’s. Palmer has studied the connection between 

vehicle routing and emission but did not propose a specialized approach.  

Figliozzi introduced Emissions Minimization Vehicle Routing Problem (EVRP) in 

which he derived an algorithm to optimize the departure time between nodes and used 

travel speed as a decision variable because the amount of emissions is a function of 

travel speed (2009). 
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Emissions-based Time-Dependent Vehicle Routing Problem (E-TDVRP) is introduced 

by Jabali et al. (2012). They modeled the traffic congestion with a two speed function: 

the congestion speed which is imposed by traffic and free flow speed. They proposed a 

tabu search procedure as a solution method. 

The Time-Dependent Pollution-Routing Problem (TDPRP) is introduced by 

Franceschetti et al. (2003). The TDPRP aims to minimize the emissions and the driver 

costs. They benefit the same assumption of two speed function as in Jabali et al. (2012). 

There are other extensions for different objective functions where the objective is to 

minimize total route duration, denoted the duration minimizing TDVRPTW (DM-

TDVRPTW) and for different problem structures like real-time time- dependent vehicle 

routing problem with time windows (RT-TDVRPTW) where demands and time 

dependent travel times change over time and problem has to be solved dynamically.   
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3 PROPOSED APPROACH 

3.1 TABU SEARCH 

Tabu Search is a metaheuristic method proposed by Glover (1986) and the term coined 

by himself. In fact, some basic properties like short-term memory and avoiding recent 

moves of tabu search, dating back to early studies of Glover. It is regarded as a 

metaheuristics, a common guiding strategy, rather than a problem specific heuristic.  

Tabu search method can be modified for specific needs of the problem at hand. Because 

of this, there are many different tabu search procedures for different variants of VRP in 

literature. This work is based on the modification of Potvin et al. (1996) tabu search 

procedure that is proposed to solve the Vehicle Routing Problem with Time Windows. 

There are two complementary properties of Tabu Search method. The first is moving 

around in the solution space even if the solution is not improving. The second is not to 

be caught by a loop of feasible local optima by declaring backward moves as tabu 

moves and prohibit them to be visited for a limited time. This short-term memory, also 

called as tabu lists, which ensures not to cycling back to previously visited solutions, is 

not intended to avoid a repeating move but avoiding a reverse move that cancel a 

recently found solution. Such moves conflicts with the main strategy of tabu search that 

is always search undiscovered solution space. This feature insures the current solution 

not to go back the previous one. 

Tabu moves can be recorded as complete solutions in tabu lists. Since this causes 

greater memory usage and more computation time to check if the move is in tabu list or 

not, tabu moves are recorded in the form of single changes of the current solution, 

performed in last few iterations. 

The solution space is the subset of feasible solutions of the problem that can be revealed 

by neighborhood creating processes. Neighborhood is a subset of the solution space that 

is derived from the current solution by mutating iterations. In this work, local search 

heuristics are used to create a neighborhood. Local search heuristics are discussed in 

following topics. 
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Tabu Search method begins with a basic feasible solution. As solution improves with 

better outcomes in the solution space, it records the best solution obtained and update it 

whenever a new best emerges. This information is kept in long term memory in case of 

a diversification or intensification decision. 

Diversification is one of the key properties of tabu search. Its aim is to jump to an 

undiscovered location in the solution space if the current location does not promise an 

improvement. This property distinguishes tabu search procedure from a classical local 

search technique. It enables procedure not to stop at a local optimum and expand 

solution space where more improvement can be found. The downside of this mechanism 

is it can skip a fertile search space where a better solution may be found, and go far 

away from the optimal point that is difficult to found back again. One of most common 

diversification method is restarting tabu procedure from modified best currently known 

solution that is not likely to be explored during the same search. Diversification method 

that is used in this work is discussed in following topics. 

Intensification, on the other hand, aims to focus on a location that is considered as 

fertile neighborhood in the solution space. Procedure stays in promising neighborhood 

to investigate more locations. Restarting tabu procedure from best currently known 

solution is common method for intensification. Intensification is a powerful element of 

tabu search procedure. Yet it is not an urgent move in the search as diversification 

moves are. While diversification moves try to discover far spots in search space and 

may yield dramatic improvements, intensification moves try to go deeper in the current 

solution which its vicinity is explored already. 

Termination criterion can be defined in different ways. It can be stopped when solution 

reach the best-ever value, if it is known beforehand. A number of consecutive iterations 

without an improvement in solution can be interpreted as the search space is consumed 

completely, and any improvement is not expected. CPU time of the execution can be 

limited by a threshold value. 
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3.2 LOCAL SEARCH HEURISTICS 

Defining a proper local search heuristic, which is intended to create a fertile 

neighborhood to exploit, is the key factor for the success of a tabu search procedure. 

These heuristics modifies current solution to generate a neighborhood in the search 

space.  

Although there are lots of successful local search heuristics such as k-opt and 2-opt 

exchanges for VRP type problems, Potvin et al. (1996) prefers and suggests to use 2-

opt* and Or-opt exchange heuristics consecutively due to their performance in 

generating a fertile search space and preserving route orientation property (Potvin & 

Kervahut 1996). Local search heuristics used in this work are in following topics. 

3.2.1 2-Opt* Exchanges 

2-opt is an intra-route exchange, first proposed by Croes (1958). It breaks two arcs of a 

route and reshuffles two nodes that are not connected before to obtain a reordered new 

route. 2-opt exchange is also referred to as a 2-opt move.  

2-opt* is a variant of 2-opt for inter-route exchanges. It exchanges two pairs of arcs 

between routes. 2-opt* move preserve orientation and introduce last part of the route on 

another route. Thus, it helps to keep feasibility of the time windows in the route.  

Figure 3.1 Inter-route change (2 opt*) 

Route3

Route0

31 32 33 34 35 36 37 38 390 0'

1 2 3 4 5 6 7 8 90 0'

1 2 3 4 5 6 7 8 90 0'

31 32 33 34 35 36 37 38 390 0'

 
Source: Figure created by author. 
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Figure 3.1 illustrates a 2-opt* move. Node 36 is one of the h nearest neighbors in 

distance of node 5. 5, 6 and 36, 37 are replaced by links 5,37 and 36, 6.  

3.2.2 Or-Opt Exchanges 

Or-opt exchange was first proposed by Or (1976). Or Opt exchange changes the route 

by reordering sequences of one, two, three consecutive nodes within a route. 

Figure 3.2 Intra-route change (Or-opt) 

21 22 23 24 25 26 27 28 290 0'

21 22 23 24 25 28 26 27 290 0'

  
Source: Figure created by author. 

Figure 3.2 illustrates an Or-opt move. Node 28 is one of the h nearest neighbors in 

distance of node 25. Link 25, 26 is broken and replaced by link 25, 28. Node 27 and 

node 29 are linked after node 28 removed. Yet or opt exchange can be executed for one 

or more consecutive nodes 27, 28 and 29 could be inserted between 25 and 26. 

However, in this study or opt exchanges is applied for only one node of the route. 

3.2.3 Relocation 

Relocation is inter-route exchange that tries to insert a node from one route into another. 

Relocation is also referred as relocate neighborhood (Savelsbergh 1992). It can be 

considered as inter-route version of or-opt swap without consecutive nodes. Sample 

relocation move is shown in Figure 3.3. 
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Figure 3.3 Inter-route change (Relocate) 

1 2 3 4 5 6 7 8 90 0'

31 32 33 34 35 36 37 38 390 0'

 
Source: Figure created by author. 

Figure 3.3 illustrates a relocation move. In this case node 36 is one of the h nearest 

neighbors from a different route in distance of node 5. Link 5, 6 and 36, 37 are replaced 

by link 5, 36. 

3.2.4 Route Saving Reinsertion 

Route saving reinsertion is a particular case of the relocation move. It aims to remove 

nodes of short routes and insert them into another route. It is not a greedy reinsertion 

procedure which seeks the cheapest insertion. Whenever it succeeds to insert a node in a 

new route from a short route, it executes the change in the current solution even if it 

increases the cost of the current solution. Figure 3.4 illustrates route saving reinsertion 

move. 

Main difference between route saving reinsertion and relocation is in the second case 

every possible swap between a node and its neighbors are tried and recorded in a list. 

After iteration is done, the swap with the least cost become valid swap and updates the 

current solution. Since reinsertion procedure focus on consuming short in order to 

routes reducing total number of routes or vehicles, cost reduction is not considered. So 

it does not comprise a neighborhood structure and short-term memory to compare the 

costs of possible moves. 
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Figure 3.4 Route Saving Reinsertion 

Route1

11 12 13 14 15 16 17 180 0'

45

 Source: Figure created by author. 

3.3 METAOPT FRAMEWORK  

Heuristics and exacts solvers have useful properties for each other in different ways. For 

instance, exact solvers can assist heuristic methods as subroutines to explore a 

neighborhood in a local search procedure. On the other side, heuristics has an essential 

role for exacts solvers. They provide high-quality primal values to help exact solvers in 

bounding solution space and preprocessing to reduce calculation time for large scale 

problems (Joncour et al. 2010). 

MetaOpt has a distinctive role in heuristics and exact solvers relation. It is a generic 

framework which provides a decision support mechanism for diversification or 

intensification decisions in combinatorial optimization problems. It combines 

metaheuristics that obtain approximate solutions with exact algorithms that can be 

modeled as a set covering problem (Muter et al. 2010). 

3.3.1 The Framework 

As it is illustrated in Figure 3.5, MetaOpt framework starts with the initialization step 

and follows metaheuristic, column pool management, exact algorithm and evaluation 

steps. More detailed diagram shows inner levels of tabu search in Figure 4.1.  

First step of MetaOpt framework is finding an initial solution to provide a search space 

for the metaheuristic. This step is the only element that is not in the main loop except 

possible diversification decisions. Main loop comprises of four main elements, starting 

with metaheuristic. Metaheuristic generates new columns for the exact algorithm until 

the end of the main loop. Since their quality is questionable, all of the feasible moves 
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and their columns that are produced by local search heuristics are not added to the 

column pool. Solemnly, the produced columns that are good enough to change the 

current solution are added to the column pool. Thus quality and manageable size of the 

solution pool is guaranteed.   

Figure 3.5 The MetaOpt framework  

Initialization Metaheuristic
Column Pool 
Management

Exact algorithm

Evaluation

Diversify

Intensify

Resume

 
Source: Muter et al. (2010) Combination of Metaheuristic and Exact Algorithms 

  for Solving Set Covering-Type Optimization Problems. November 2010. 

It is efficient and convenient to generate columns with heuristics. One of the renowned 

properties of metaheuristic algorithms is that they produce feasible solutions with 

excellent quality for combinatorial optimization problems with small computational 

burden.  

New columns obtained by metaheuristic are handled by column management process. 

Column management, roughly speaking, sorts out the useless columns that are 

dominated by the existing columns in order to avoid exploded the number of columns 

but have an expanding solution space. Exact algorithm solves SCP and chooses the set 

of tours with minimal cost.  

Evaluation step is the essential element of MetaOpt framework. It monitors changes in 

upper and lower bounds values and interpret the trend to guide metaheuristic. There are 

three possible outcomes of this step which are, diversify, intensify and resume. 

Evaluation step completes the loop by informing metaheuristic that way the search will 

continue. 
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This loop continues until the termination criterion that can be reaching a given number 

of iterations, or CPU time is satisfied  

3.3.2 The Difference Between Column Generation and MetaOpt Framework 

There is an analogy between MetaOpt framework and Column generation method. 

Column generation method is useful to solve a restricted master problem, where not all 

columns are in the tableau, in other words; not all variables are allowed to be basic. It 

benefits reduced cost which represents how much the objective function will change if 

you make a non-basic variable, a basic variable. New columns are generated by the 

pricing subproblem as they are needed or metaheuristic algorithms can be used to find a 

column with negative reduced cost.  

Similarly, in MetaOpt framework columns are generated by metaheuristic algorithm and 

exact method solves restricted set covering problem (RSCP) where not all of the 

feasible columns are in the column pool.  

However, in MetaOpt, the metaheuristic has more functions in the framework, beyond 

generating columns. Exact method and the metaheuristic algorithm are assigned to solve 

the original problem cooperatively. The quality of the current solution is evaluated by 

the comparison of the outcomes of metaheuristic and exact solution to guide the 

metaheuristic. Also, in MetaOpt, the exact method does not have to have the dual values 

(Muter et al. 2010). 

3.3.3 Set Covering Problem 

The set covering problem (SCP) chooses a set of tours with minimal cost subject to the 

defined constraints. The reformulation of a NP-hard combinatorial problem as an SCP 

yields to solve the original problem with an exact method. Integer programming 

formulation of the set covering problem is shown below: 

min ∑     

   

 (1.1) 
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subject to ∑      

   

        (1.2) 

     {   }      (1.3) 

This notation is reformulation of vehicle routing problem.   is a finite set and   is 

subset of  ,     .  The cost of a selected column     is shown by parameter   . The 

constraint (1.2) ensures that every customer is visited at least once. The parameter     is 

equal to 1 if the customer   is in selected route    . The decision variable    must 

satisfy the integrality conditions of (1.3).  

The restricted problem that have columns in the pool that is corresponding to the 

decision variable,  greatly reduce the computational cost of the problem; compared to 

the original model that have decision variables for every arc between two nodes and 

every route that might include them. Finding exact integer solution for SCP in every 

iteration of the evaluation step may yield a great computational burden. To overcome 

this drawback, a relaxation of set covering problem (RSCP) is proposed to solve the 

problem by relaxing the integrality constraints (1.3).  

3.3.4 Lower and Upper Bounds 

The optimal solution of RSCP at any time provides a lower bound for RSCP. Since 

restricted problem does not have every possible column produced by metaheuristic, 

lower bound found by RSCP cannot be referred as lower bound of the original problem. 

If   presents the all the columns in the pool then   represents the selected columns from 

the pool, subset of   (1.1). 

Nevertheless generated columns are a portion of the solution space revealed by the 

metaheuristic algorithm. Thus lower bound of the restricted problem presents the 

solution quality of metaheuristic, and it is referred to as potential lower bound. 

Generally speaking, the upper bound is the best ever solution of original problem found 

by the metaheuristic where the potential lower bound is the RLP solution of restricted 

problem. 
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4 APPLICATION TO TDVRPTW 

 TDVRPTW can be described as a vehicle scheduling problem with homogenous 

vehicles with the same capacity. Each vehicle serves a number of customers with known 

demands, within a specific time range for each customer. The total demand of 

customers in a route must be less than or equal to the capacity of the vehicle. Vehicles 

arrive at the customer before its early time window is reached is not penalized but waits 

until the early time window. Travel speeds are not constant and depend on the time of 

the day. Travel time between two nodes varies for different time periods. All routes 

begin and end at the central depot. The primary objective of TDVRPTW is 

minimization of the total distance where the secondary objective is minimization of the 

number of vehicles. 

Figure 4.1 Tabu Search MetaOpt Diagram 
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     Source: Figure created by author. 
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4.1 INITIALIZATION 

As Figure 4.1 shows a detailed illustration of MetaOpt framework modified for a tabu 

search heuristic, the first step of MetaOpt is finding an initial solution. In this study 

insertion heuristic of Solomon’s I1 heuristic (Solomon 1987) is attached to the main 

framework. Insertion Heuristics is class of sequential, tour-building heuristics which 

varied in three different criteria.  

The algorithm starts with a seed solution which is composed of the depot and a 

customer. In this study, seed solution constructed by inserting the un-routed customer 

with earliest late time window into a blank route. Then algorithm tries to insert un-

routed customers between adjacent nodes (customer or the depot) and calculate cost of 

this temporary route, if capacity and time window constraints are satisfied. It resembles 

the relocation move in Figure 3.3 in terms of insertion geometry. At each iteration cost 

of all of the feasible insertions between every adjacent node in the route is stored, and 

the node that is in the insertion with minimum cost is awarded to be placed in the route 

permanently. After a customer is inserted to the route, iterations continues to try out rest 

of the un-routed customers to insert into the route until there is not a feasible insertion 

left for the route. Then another seed route is generated, and procedure continues to build 

new routes sequentially until all of the un-routed nodes are consumed.  

4.2 TABU SEARCH 

In this study metaheuristic element of MetaOpt, framework is adopted from tabu search 

algorithm of Potvin et al. (1996). It has been extensively altered in terms of parameter 

configuration and the mix of local search heuristics. 

Tabu Search method begins after the basic feasible solution obtained by Solomon I1 

insertion heuristic. Then initial solution is modified by local search heuristics to 

generate a search space. Local search heuristics used in this study are, 2-opt*, Or Opt, 

Relocation and Route Saving Reinsertion as introduced above.  
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Figure 4.2 Tabu Search Diagram 
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         Source: Figure created by author. 

The most major difference between this study and study of Potvin et al. (1996) in tabu 

search methods is, whereas 2-opt* and Or-Opt exchanges are used together by Potvin et 

al. (1996), relocation and route saving reinsertion moves are not included in their tabu 

search method. Another major difference is, in Potvin et al. (1996) Or-opt exchanges 

perform for one, two and three consecutive nodes in the route. In this study, or-opt 

exchanges for two and three consecutive nodes are not performed. The saving of 

computational time from this reduction is spend for another local search heuristic, 

relocation move, which is an inter-route, unlike or-opt exchange. 

In Potvin’s algorithm, local search heuristics are performed until any improvement in 

the best-known solution does not occur for the given number of iterations. Since the 

tabu search is executed several times in MetaOpt framework, the number of iterations 

are reduced (       ,          ,                ) compared with Potvin’s 

algoritm and local search heuristics are performed until a certain number of iteration is 

executed regardless the improvement trend. 

Steps of the modified tabu search heuristic of Potvin et al. (1996) is shown below. 
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Step 1. Initialization step. 

Populate the nearest neighbors list for each customer. The parameter h determines the 

size of neighbors list. Run Solomon's I1 heuristic to find the initial solution. Set the 

current and best known solutions to the initial solution. 

Repeat Step 2 until      iterations are performed. 

Step 2. Tabu search step 

Step 2.1 Route saving phase 

Execute Step 2.1 once before 2-opt* iteration 

Find routes with three customers or less in the current solution.  Try to remove 

customers of short routes and insert them into any another route with route 

saving reinsertion. Update both current and best known solution if a route is 

consumed or shortened for next iterations.  

End Step 2.1. 

Step 2.2. Tabu phase with 2-opt* 

Repeat Step 2.2 until        consecutive iterations are performed. 

Populate the random customers list with   customers. For each customer in the 

list execute the 2-opt* exchanges. The best solution is updated to the current 

solution. Add reverse moves of last five iterations in tabu list. Add the two new 

routes of best solution in column pool. 

End Step 2.2. 

Step 2.3 Route saving phase 

It is the same as Step 2.1. 

End Step 2.3. 

Repeat Step 2.4 until              consecutive iterations are performed. 
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Step 2.4. Tabu phase with Or-opt and Relocation 

Populate the random customers list with   customers. For each customer in the 

list, if the the random customer is in the same route with its neighbor execute the 

or-opt exchanges otherwise execute Relocation exchange. The best solution is 

updated to the current solution. Add reverse moves of last five iterations in tabu 

list. Add the one or two new routes of best solution in column pool, regarding 

which local search heuristic is performed. 

End Step 2.4.  

End Step 2. 

The nearest neighbors list size  , and random customers list size   parameters can be set 

to different values to obtain different performances. Two different configurations are 

proposed by Potvin et al. (1996). Each has some advantages and disadvantages in the 

trade-off between more stable results and more computational time. In this study Setting 

B (    ,     ) is preferred due to its stability. Larger size of nearest neighbors list, 

 , visits more feasible exchanges for each customer.  Random customers list size,  , is 

reduced from 25 to 15 to avoid increased computational time. 

4.3 CALCULATING TRAVEL TIME 

Travel time calculation method is an essential element to satisfy FIFO rule, which is 

mentioned in Chapter 2. In this study, stepwise calculation is adopted exactly as Ichoua 

et al proposes it. (2003).  The procedure is described in below.  

1. set         , 

set          , 

set    to   (        
) , 

2. while (     ̅) do 

2.1.             
 , 

2.2.      ̅ , 

2.3.      (        
) 
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2.4.      . 

3. return (     ) 

Departure time of the vehicle from customer   is    in period    which is between 

         . The parameter     is the distance between   and  ,   is current time,    arrival 

time and     
 is the travel speed in time period    . 

4.4 COLUMN POOL MANAGEMENT 

New columns produced by local search heuristics are accumulated in column pool as 

tabu search iterations continues. Where an inter-route exchange generates two new 

feasible columns, an intra-route exchange generates one feasible solution. Although all 

of the generated columns are feasible and expand solution space for RSCP some of 

them are not allowed to enter the pool. Duplicate columns (routes with same customers 

in the same order) and dominated columns (routes with same customers in a different 

order and have higher cost than existing one), are sorted out by column management 

controls. 

Since comparing two different vectors is computationally expensive, an additional 

control step is executed before original comparison step in order to reduce 

computational time. This step checks if two vectors have the same size. If comparison 

fails in this step it skips the next iteration to avoid unnecessary comparison. 

Thanks to its selective structure, column pool management ensures that the search space 

for exact algorithm extends with promising columns as metaheuristic runs. Thus the 

pool size does not get too large to increase computational time. 
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4.5 EXACT ALGORITHM 

The columns, which are generated by local search heuristics and stored in the pool, are 

corresponded to the decision variables to build the LP relaxation (LPR) of the set 

covering problem (SCP). Then, built model is imported to CPLEX environment to be 

solved by simplex method. 

Since integrality constraint is relaxed, most of the time LPR of SCP produces fractional 

solutions that are infeasible for TDVRPTW. Nevertheless at some iteration, the solution 

found by exact algorithm can satisfy the integrality condition and other feasibility 

constraints. In these cases, LP relaxation solution is also optimal for the Restricted SCP. 

At the same time set covering property may cause the solution have customers in more 

than one column. This solution is infeasible for TDVRPTW repeated customers can be 

easily sorted out by a simple method and solution turns into a feasible solution.  

This method is initiated whenever LP relaxation solution satisfies integrality condition. 

In this method, repeated customers are located in the solution and their costs are 

compared with each other. Route with least cost kept its original order and repeated 

customer is removed from other routes. Then total travel times of reduced routes are 

recalculated. The solution time decrease if an over covered customer is reduced but 

possibly total duration time of the solution may remain unchanged due to time window 

property. 

Since LP relaxation of the set covering is known to provide an excellent primal lower 

bound (Desrochers et al. 1992),  lower bound obtained by LPR is used to interpret the 

quality of search space that tabu search is in.  

 (   ( )       ( ))     ( )    (2.26) 

The gap between the upper bound and the potential lower bound shows that the columns 

in the pool possibly improve the solution of original problem. Therefore when the gap 

between these two bounds reached a critical level ( ), Integer Programming is solved 

instead of RLP. Warm up solution does not have to be a feasible solution of original 

problem, the initial solution of IP is set to the best tabu solution to provide a warm start 

to IP.  
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To ensure that exact algorithm does not find a solution with more vehicles than tabu 

search has already found, an additional constraint is added the exact model. The number 

of vehicles in the exact solution cannot exceed the number of vehicles in the current 

tabu solution. Otherwise, when exact algorithm found a better solution with more 

vehicles it cancels the outcomes of route saving phase. However after the diversification 

steps, where the number of vehicles is expected to increase in new solution, this 

constraint is updated to new limit. This may cause to lose fewer number of vehicles 

previously found.  

4.6 EVALUATION 

Detailed steps of evaluation of upper and lower bounds is given with a pseudo-code 

below    ( ) is upper bound value obtained by metaheuristic at iteration  , whereas 

    ( ) is potential lower bound obtained by the RSCP. Parameters    and    are 

incremental variables that monitors upper and potential lower bounds. If a significant 

change has not occurred in both upper and potential lower bound,    increases.  If upper 

bound remains same but potential lower bound reduces,    increases. The limit values of 

these counters determine the timing of intensification or diversification decisions and 

shown as   ̅  and  ̅ .  

Input:     ( ),     ( ) (2.1) 

if Improve (   ( ),    (   )) then (2.2) 

  = 0,   = 0 (2.3) 

if solution is feasible and     ( )  <    ( )  (2.4) 

then  

Update() (2.5) 

end (2.6) 

else if Improve (    ( ),     ( )   ) then (2.7) 

   = 0 (2.8) 

if solution is feasible then (2.9) 

Update() (2.10) 

else (2.11) 
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  ←   + 1 (2.12) 

if   =  ̅  then (2.13) 

Intensify() (2.14) 

   = 0 (2.15) 

end (2.16) 

end (2.17) 

else (2.18) 

   ←    + 1,   = 0 (2.19) 

if r1 =  ̅  then (2.20) 

Diversify() (2.21) 

   = 0 (2.22) 

end (2.23) 

end (2.24) 

  ←   +1 (2.25) 

 

If upper bound, the solution of metaheuristic, improves then both     and    is reset to 

zero and metaheuristic algoritm resumes its process (2.1), (2.3). If the solution of RSCP 

is better than the solution of metaheuristic and satisfies the integrality condition then 

upper bound is updated with potential lower bound (2.4), (2.6).  

If upper bound has not improved, but potential lower bound has, then and    is reset to 

zero. At this point if RSCP solution is integer then upper bound is updated as in (2.5). 

Otherwise    is increased by one and checked if it has exceed the limit  ̅  (2.13). If it 

reaches then metaheuristic is directed for intensification procedure and and    is reset to 

zero (2.15).   

If there is not an improvement in both RSCP and metaheuristic solution then    is 

increased with 1,    is reset to zero (2.19), (2.22) and if   exceed the limit  ̅  (2.20) 

metaheuristic is directed for diversification procedure (2.21). 

Improvement in potential lower bound in consecutive iterations shows the quality of the 

columns added at current iteration. It can be interpreted as the metaheuristic algorithm is 
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in a promising search space but upper bound is not improving. Thus when    reached 

 ̅  intensification procedure is called to exploit the vicinity of current search space.  

Improvement in upper bound in consecutive iterations means that the portion of the 

current solution space is promising and metaheuristic should continue to search the 

vicinity of current search space for further improvements. 

If the upper bound and the potential lower bound have not changed for  ̅  consecutive 

iterations intensification procedure is called to explore different points in the solution 

space and add more varied columns.  

As it is mentioned above, the evaluation step is the key element of MetaOpt framework. 

It monitors improvements in the upper-bound and the potential lower-bound values and 

interpret outcomes to give decisions of diversification, intensification and resuming tabu 

search with the current solution. 

Intensification is triggered in three cases. The first is when upper bound does not 

improve while potential lower bound does for certain times (2.14). Whenever this 

condition is satisfied the current solution is updated to the best solution, and the tabu 

search continues from the new solution. 

    ( )       ( )  (2.27) 

         ( )       ( )  (2.28) 

The second occurs when the gap between these two bounds reaches a critical level and 

problem is solved as IP. Since IP solution provides a feasible solution for the original 

solution, upper bound is updated to IP solution. In the worst case the solution of IP is 

equal to the current upper bound. In this case the tabu search continues unaffectedly. 

In the third case intensification occurs without screening upper and potential lower 

bound. Whenever LP solution satisfy the integrality condition and is better than upper 

bound, upper bound is updated to current lower bound. 
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4.7 DIVERSIFICATION 

The main purpose of diversification is to reveal an undiscovered location, away from 

the not promising solution space. Introducing a diverse solution which is unlikely to be 

found in current search space and restarting the search from this solution is a common 

method for diversification strategy.  

In this study, diversification method combines its original aim with optimal departure 

time problem. Departure times are optimized after routes have been constructed with 

post-process methods. On the other hand, considering departure times as decision 

variables is computationally expensive to obtain an exact solution. Though, Dabia et al. 

(2013) propose a branch-and-cut-and price algorithm to determine the departure times 

for each customer. However, proposed exact algorithm is capable to solve 38% of the 

instances with 50 customers and 15% of the instances with 100 customers. (Dabia et al. 

2013). 

It is hard to turn back to a feasible solution from an infeasible one for tabu search of 

TDVRPTW, due to time window constraints. Because of this, in tabu search method 

feasibility of the current solution is kept at any iteration and under any circumstances. 

Since the change in departure time of one customer affect succeeding customers, 

searching optimal departure times for every customer without violating feasibility 

requires intense search for local search heuristics. Besides, waiting at customer for a 

faster time period is not a practical decision for real life problems but departure time 

from the depot can be determined.  

Thus, in this solution, departure times of customers are not intervened directly. Instead, 

departure time of vehicles from depot is altered to shift entire route to find better 

solutions. Intuitively traveling long distances in faster periods and short distances in 

slower periods decrease total travel time, since capacity constraint evens the number of 

customers in each route most of the time.  

A general notation about time windows is given below for further expressions. 
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Let      is the departure time of vehicle   from customer  ,    is the early time window 

of customer  ,    is the late time window of customer  ,      is the waiting time if arrival 

of vehicle   to customer   (   ) is smaller than and     is the travel time between   and  . 

Time window constraints can be defined as below: 

             (3.1) 

                   (3.2) 

Diversification is performed with Solomon’s I1 heuristic. As mentioned before 

Solomon’s I1 heuristic constructs tours sequentially and starts with a seed solution. In 

diversification step customer with earliest late time window is used to construct seed 

routes as it is preferred in the initialization step. The shift in departure time of customer 

  is denoted by   . It is a uniformly distributed random variable, between zero and the 

late time window of selected customer (3.8).  In Solomon instances departure time at 

the depot for all vehicles is zero (      ).  

           (    ) (3.3) 

              (3.4) 

Slackness of each customer (difference between the arrival time and early time window) 

could be analyzed for descriptive statistics and mean and standard deviation of this 

slackness array could be used to generate a random variable. However, in computational 

experiments it is observed that adding random variables with these parameters can cause 

infeasible start times for some customers. Instead, using late time window of customers 

with earliest late time as an upper limit for random variable ensures that all of the 

customers will be inserted in the initial solution and prevent this drawback.   

Insertion heuristic starts with a seed solution, a start time, or waiting time, is added to 

departure time of vehicle   from the depot (   ) (3.9). Nevertheless, guaranteeing 

every customer to insert initial solution may cause increasing number of vehicles due to 

decline in the number of possible insertion for successive customers. But this outcome 
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is welcomed, since finding a worse solution is acceptable as long as it provides diversity 

in solution regarding diversification strategy. 

Figure 4.3 Improvements in the Upper Bound and the Potential Lower Bound 

 
Source: Figure created by author from data obtained in computational experiments. 

As it is shown in Figure 4.3 diversification dramatically increase the value of objective 

function. Then, one iteration later, tabu search induce a sudden drop in the solution 

value, back to the previous level of upper bound, even lower. After every diversification 

step, IP is solved to reduce the upper bound. In Figure 4.5 tabu search line represents 

the tabu best solution value, except diversification steps. It is showed to emphasize 

increased tabu search value. 

Figure 4.4 Gap Between Upper and Lower Bound 

 
Source: Figure created by author from data obtained in computational experiments. 
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In Figure 4.4  as the gap between the upper bound and the potential lower bound exceed 

the critical level ( ) the intensification condition (2.26) is triggered immediately. 

Consequently IP is solved and reduced the upper bound. 

Termination condition is modified not to stop the algorithm if a diversification occurs in 

the last iteration for certain times more tabu search to exploit the possible improvement 

with this diversification. To prevent an end to end diversification loop it is limited for 

three times, equal with parameter  ̅ , triggers diversification procedure.  

Since the pool has the same columns beside new columns added after diversification, 

the LP solution is not affected by diversification instantaneously. At this point, solving 

LPR of SCP and column pool management has a regulator role. If a route with the 

initial departure value is disadvantageous then, it is sorted out by column pool 

management. Also, integer-feasible solutions (see. Appendix A.2.).  of LP solution and 

IP solution overlook these low-quality columns in intensification moves. Besides, 

diversified columns with good quality are promoted when upper bound is updated with 

potential lower bound. 

Figure 4.5 The number of vehicles at iterations 

 
Source: Figure created by author from data obtained in computational experiments. 

It is can be seen in Figure 4.5 that when the first diversification occurs total number of 

vehicles increase abruptly then tabu search manages to reduce it back to its previous 

number. Nevertheless after second diversification total number of vehicles lost its best 

value found at previous iterations. 

The secondary objective of this problem is the minimization of the total number of 

vehicles. While tabu search minimizes the total travel time, in route saving phases total 
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number of vehicles are reduced in expense of increasing total travel time. It can be 

recalled that route saving reinsertion remove customers in short routes and insert them 

into another route regardless of cost of the new route. In computational experiments, it 

is observed that the total travel time increases as the total number of vehicles decrease 

(see. Appendix A.1.). The trade-off between total travel time and the total number of 

vehicles is discussed in computational experiments. 
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5 COMPUTATIONAL EXPERIMENTS 

Solomon problem set is used to test the algorithm as a benchmarking problem in the 

literature. Solomon instances are proposed to benchmark VRPTW problems. It 

comprises of six sets of problems.  Each set emphasize different elements of the 

problem to evaluate the capabilities of algorithms which are distribution pattern of 

nodes is coordination plane, the capacity of a vehicle and constriction and placement of 

the time windows. 

Since there is not a widely accepted standard problem set for TDVRPTW, in this study 

Figliozzi’s modification of Solomon instances will be used to compare performances of 

algorithms. Figliozzi diverses time span into five equal time period and changes travel 

speeds for each time period to test different scenarios. 

Travel speed distributions vary for different scenarios. To test his algorithm Figliozzi 

(2012) introduced four distinctive speed distribution pattern with different 

characteristics to emphasize different real life conditions and generated three 

distributions with different amplitudes for each of them (Figliozzi 2012).  

All 12 different scenarios have been tested and compared with Figliozzi’s results for 

different objectives. 

All individual problems in a problem set are limited to 12 minutes of CPU time. 

However since diversification at last iteration prolongs the run, the runtime for all 56 

problems average 12.86 minutes. 
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Table 5.1 Comparison of IRCI and MetaOpt Tabu Search for results type (a) 

 
Source: Figure created by author from data obtained in computational experiments and Figliozzi (2012). 

Table 5.2 Comparison of IRCI and MetaOpt Tabu Search for results type (b) 

 

Source: Figure created by author from data obtained in computational experiments and Figliozzi (2012). 

Table 5.3 Comparison of IRCI and MetaOpt Tabu Search for results type (c) 

 Source: Figure created by author from data obtained in computational experiments and Figliozzi (2012). 

 

  

Travel time distribution

IRCI 
MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu

Average number of vehicles 

(1)  TD1 11.67 13.0 2.82 3.8 10 10.0 3 3.5 11.38 12.9 3.25 3.9

(2)  TD2 10.75 12.2 2.55 3.7 10 10.0 3 3.8 10.5 11.9 2.88 3.8

(3)  TD3 9.92 11.7 2.27 3.5 10 10.0 3 3.5 10 11.3 2.75 3.9

Average distance

(1) TD1 1295 1239 1216 973 879 842 657 677 1405 1397 1444 1329

(2) TD2 1258 1215 1244 972 864 841 654 702 1395 1399 1454 1399

(3) TD3 1237 1196 1269 983 880 860 697 682 1362 1376 1434 1141

Average travel time

(1)  TD1 1080 991 990 737 729 683 563 568 1164 1109 1177 1018

(2)  TD2 897 802 861 593 644 610 495 511 989 914 993 893

(3)  TD3 793 652 774 511 608 566 485 455 860 773 867 629

RC2R1 R2 C1 C2 RC1

Travel time distribution

IRCI 
MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu

Average number of vehicles 

(1)  TD1 12.42 13.7 3 3.5 10 10.0 3 3.8 12.13 13.6 3.38 4.5

(2)  TD2 11.5 13.3 2.73 3.5 10 10.0 3 3.6 11.25 12.8 3.25 3.9

(3)  TD3 11.42 12.4 2.73 3.4 10 10.0 3 3.6 11 12.5 3 4.0

Average distance

(1) TD1 1289 1314 1212 1397 892 841 670 709 1454 1545 1403 1101

(2) TD2 1279 1219 1218 998 883 849 667 695 1429 1434 1433 1368

(3) TD3 1265 1209 1245 1040 866 864 714 709 1442 1453 1483 1386

Average travel time

(1)  TD1 1064 1068 1027 1183 732 667 545 572 1180 1243 1200 912

(2)  TD2 905 826 893 667 650 582 467 476 1010 974 1053 943

(3)  TD3 808 720 831 583 584 529 446 428 916 863 981 841

R1 R2 C1 C2 RC1 RC2

Travel time distribution

IRCI 
MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu

Average number of vehicles 

(1)  TD4 11.67 12.8 2.73 3.8 10 10.0 3 3.9 11.5 12.6 3.25 3.9

(2)  TD5 10.83 12.8 2.55 3.4 10 10.0 3 3.6 10.75 11.6 2.75 3.6

(3)  TD6 10.17 11.8 2.36 3.2 10 10.0 3 3.8 10.13 11.8 2.75 3.5

Average distance

(1)  TD4 1302 1212 1245 961 865 832 683 675 1435 1416 1407 1365

(2)  TD5 1266 1348 1238 1277 863 846 658 702 1413 1305 1472 1188

(3)  TD6 1272 1214 1243 950 862 844 665 657 1409 1350 1438 1165

Average travel time

(1)  TD4 1066 966 1003 738 697 669 573 551 1186 1138 1147 1075

(2)  TD5 881 896 843 813 618 595 483 493 1012 887 1027 791

(3)  TD6 801 702 760 537 565 538 451 411 904 810 886 694

RC1 RC2R1 R2 C1 C2
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Table 5.4 Comparison of IRCI and MetaOpt Tabu Search for results type (d) 

 Source: Figure created by author from data obtained in computational experiments and Figliozzi (2012). 

Table 5.5 Percentage Comparison of IRCI and MetaOpt Tabu Search 

 Source: Figure created by author from data obtained in computational experiments and Figliozzi (2012). 

As opposed to MetaOpt with Tabu Search, the primary objective of Figliozzi’s the 

Iterative Route Construction and Improvement approach (IRCI) is the minimization of 

the fleet size. Moreover, the secondary objective is minimization of the total distance 

(Figliozzi 2012). Thus, performances of these two approaches for two different 

objectives should be interpreted accordingly (Table 5.6 to Table 5.4). Difficulty levels of 

Travel time distribution

IRCI 
MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu
IRCI 

MetaOpt 

Tabu

Average number of vehicles 

(1)  TD4 12.25 13.6 3 3.8 10 10.0 3 3.6 12 13.1 3.38 4.1

(2)  TD5 11.58 13.5 2.73 3.6 10 10.0 3 3.8 11.25 12.8 3.25 4.1

(3)  TD6 11.08 13.3 2.64 3.5 10 10.1 3 3.9 10.75 12.5 3.25 4.0

Average distance

(1) TD4 1311 1275 1218 957 872 834 666 685 1425 1407 1394 1271

(2)  TD5 1272 1334 1216 1124 856 838 679 761 1404 1429 1412 1365

(3)  TD6 1293 1330 1215 1318 867 835 690 733 1436 1515 1424 1296

Average travel time

(1)  TD4 1114 1079 1045 823 731 699 552 566 1192 1172 1192 1081

(2)  TD5 943 984 915 831 652 632 494 545 1035 1039 1053 982

(3)  TD6 871 899 846 859 612 588 461 473 964 999 975 852

R1 R2 C1 C2 RC1 RC2

TDVRPTW results type (a). TDVRPTW results type (b).

Travel time distribution R1 R2 C1 C2 RC1 RC2 R1 R2 C1 C2 RC1 RC2

Gap Gap Gap Gap Gap Gap Gap Gap Gap Gap Gap Gap 

Average number of vehicles 

(1)  TD1 -11% -35% 0% -17% -13% -19% -10% -18% 0% -25% -12% -33%

(2)  TD2 -13% -46% 0% -25% -13% -30% -15% -27% 0% -21% -13% -19%

(3)  TD3 -18% -52% 0% -17% -13% -41% -9% -23% 0% -21% -14% -33%

Average distance

(1) TD1 4% 20% 4% -3% 1% 8% -2% -15% 6% -6% -6% 22%

(2) TD2 3% 22% 3% -7% 0% 4% 5% 18% 4% -4% 0% 5%

(3) TD3 3% 23% 2% 2% -1% 20% 4% 16% 0% 1% -1% 7%

Average travel time

(1)  TD1 8% 26% 6% -1% 5% 13% 0% -15% 9% -5% -5% 24%

(2)  TD2 11% 31% 5% -3% 8% 10% 9% 25% 10% -2% 4% 10%

(3)  TD3 18% 34% 7% 6% 10% 27% 11% 30% 9% 4% 6% 14%

TDVRPTW results type (c). TDVRPTW results type (d).

Travel time distribution R1 R2 C1 C2 RC1 RC2 R1 R2 C1 C2 RC1 RC2

Gap Gap Gap Gap Gap Gap Gap Gap Gap Gap Gap Gap 

Average number of vehicles 

(1)  TD4 -10% -40% 0% -29% -10% -19% -11% -27% 0% -21% -9% -22%

(2)  TD5 -18% -32% 0% -21% -8% -32% -17% -33% 0% -25% -13% -27%

(3)  TD6 -16% -35% 0% -25% -16% -27% -20% -34% -1% -29% -16% -23%

Average distance

(1)  TD4 7% 23% 4% 1% 1% 3% 3% 21% 4% -3% 1% 9%

(2)  TD5 -7% -3% 2% -7% 8% 19% -5% 8% 2% -12% -2% 3%

(3)  TD6 5% 24% 2% 1% 4% 19% -3% -9% 4% -6% -5% 9%

Average travel time

(1)  TD4 9% 26% 4% 4% 4% 6% 3% 21% 4% -3% 2% 9%

(2)  TD5 -2% 4% 4% -2% 12% 23% -4% 9% 3% -10% 0% 7%

(3)  TD6 12% 29% 5% 9% 10% 22% -3% -2% 4% -3% -4% 13%
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problem sets are different from each other. Naturally the gap between performance 

scores, grows for more difficult solution space and manifest strong and weak parts of 

approaches. 

In computational experiments, columns with different-than-zero departure time are 

encountered (see. Appendix A.3.). This finding can be interpreted as altering departure 

time in the diversification step can produce advantageous columns.  

In gap analysis table (Table 5.7), referenced values are set to Figliozzi’s results. In other 

words, percentages show how much the proposed approach improved IRCI approach. 

Negative values mean that the proposed approach underperformed IRCI. It can be seen 

that there is a strict trade-off between total vehicle number and total travel time. Since 

C1 set problems are is close the optimality results are close to each other with a slight 

difference in favor of the proposed approach. In C2 set, vehicles have more capacity, 

and time span is wider compared the C1 set. As a result of this, C2 set produce longer 

routes with fewer vehicles. It also has greater solution space which makes it harder to 

find a near optimal solution. IRCI approach has better performance for C2 set for both 

objectives. Since nodes in C sets have a clustered form in the two-dimensional plane, it 

can be said that IRCI approach is capable of exploiting clustered forms. 

On the other hand, in R and RC sets which are scattered randomly in the plane, the 

proposed approach shows better results for total travel time especially for R2 and RC2 

sets. The positive response of the proposed approach to the random problem geometry 

relatively clustered geometry can interpret as arbitrary nature of tabu search is more 

capable of searching solution space.  

The trade-off between fleet size and total travel time, or in other words, fixed costs and 

variable cost can be advantageous or disadvantageous for different scenarios. It is 

impossible to determine that which objective is exactly more advantageous for reducing 

total cost, unless certain figures about transportation scenarios are known. However, 

either way the proposed approach is successful to reduce fleet size as a secondary 

objective. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

This study is the first known implementation of MetaOpt framework on a metaheuristic 

for a TDVRPTW problem. MetaOpt framework is an algorithmic framework which 

provides a decision support mechanism for diversification or intensification decisions in 

any metaheuristics. A tabu search procedure in the literature is slightly modified, and a 

new diversification approach is introduced to search solution space for routes starts with 

different departure times. Extensive tests have been carried out, and results are 

compared with another solution approach for TDVRPTW. 

MetaOpt framework is implemented to TDVRPTW successfully. The results show that 

the proposed approach is capable of exploiting the search space where departure time in 

the depot is different-than-zero. Compared the benchmarking data, better solutions are 

found in terms of total travel time in expense of total vehicle number. 

The proposed approach can be modified with different local search heuristics to respond 

different problem structures, like asymmetric and site dependent travel times which are 

more realistic for urban transportation.  

Since the amount of carbon emission and fuel consumption of a motor vehicle is a 

function of travel speed, the proposed approach can be modified to minimize the 

environmental effects of fossil fuels. 

Data structure of the problem can be modified time-dependent data of the travel times 

for individual roads in the network to provide a realistic travel times between demand 

nodes to represent a more realistic traffic environment. 
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APPENDICES 

Appendix A.1. Effects of Route Saving Phase 

 

 
 
Source: Figure created by author from data obtained in computational experiments. 
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Appendix A.2. Integer Feasible Solutions 

 
 
Source: Figure created by author from data obtained in computational experiments. 
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Appendix A.3. Route with Different-than-zero Departure Time 

Customer Arrival Time 
Deptarture 

Time 
Early Time 
Window 

Late Time 
Window 

Random 
Start Time 

Solution 
Time 

0 0.0 0.0 0.0 230.0 0.0 4.3 
53 95.0 105.0 95.0 105.0 0.0 4.3 

101 216.1 216.1 0.0 230.0 0.0 4.3 

0 0.0 0.0 0.0 230.0 0.0 90.5 
51 10.8 20.8 0.0 193.0 0.0 90.5 
20 24.0 34.0 0.0 188.0 0.0 90.5 
65 51.0 61.0 51.0 61.0 0.0 90.5 
71 71.3 81.3 0.0 180.0 0.0 90.5 

9 97.0 107.0 97.0 107.0 0.0 90.5 
66 127.0 137.0 127.0 137.0 0.0 90.5 
35 152.4 162.4 143.0 153.0 0.0 90.5 
34 172.6 182.6 0.0 183.0 0.0 90.5 
81 187.4 197.4 0.0 192.0 0.0 90.5 
50 201.7 211.7 0.0 203.0 0.0 90.5 

101 216.1 216.1 0.0 230.0 0.0 90.5 

0 0.0 0.0 0.0 230.0 0.0 30.1 
40 85.0 95.0 85.0 95.0 0.0 30.1 
22 104.0 114.0 97.0 107.0 0.0 30.1 
74 149.0 159.0 149.0 159.0 0.0 30.1 
72 162.2 172.2 0.0 197.0 0.0 30.1 
73 175.3 185.3 0.0 199.0 0.0 30.1 
21 186.6 196.6 0.0 201.0 0.0 30.1 

101 216.1 216.1 0.0 230.0 0.0 30.1 

0 0.0 0.0 0.0 230.0 31.0 68.3 
39 44.6 54.6 44.0 54.0 31.0 68.3 
23 68.0 78.0 68.0 78.0 31.0 68.3 
67 90.0 100.0 83.0 93.0 31.0 68.3 
55 136.0 146.0 136.0 146.0 31.0 68.3 
25 172.0 182.0 172.0 182.0 31.0 68.3 
24 189.2 199.2 0.0 190.0 31.0 68.3 
26 207.4 217.4 0.0 208.0 31.0 68.3 

101 216.1 216.1 0.0 230.0 31.0 68.3 

0 0.0 0.0 0.0 230.0 4.0 39.3 
31 11.0 21.0 0.0 202.0 4.0 39.3 
62 58.0 68.0 58.0 68.0 4.0 39.3 
88 74.3 84.3 74.0 84.0 4.0 39.3 

6 100.2 110.2 99.0 109.0 4.0 39.3 
101 216.1 216.1 0.0 230.0 4.0 39.3 

0 0.0 0.0 0.0 230.0 0.0 56.8 
3 8.9 18.9 0.0 197.0 0.0 56.8 

33 37.0 47.0 37.0 47.0 0.0 56.8 
76 73.0 83.0 73.0 83.0 0.0 56.8 
79 92.6 102.6 92.0 102.0 0.0 56.8 
78 105.8 115.8 96.0 106.0 0.0 56.8 
29 121.8 131.8 0.0 190.0 0.0 56.8 
68 142.0 152.0 142.0 152.0 0.0 56.8 
80 182.0 192.0 182.0 192.0 0.0 56.8 
12 194.5 204.5 0.0 205.0 0.0 56.8 

101 216.1 216.1 0.0 230.0 0.0 56.8 

0 0.0 0.0 0.0 230.0 0.0 53.0 
94 4.8 14.8 0.0 207.0 0.0 53.0 
98 18.5 28.5 0.0 198.0 0.0 53.0 
14 33.2 43.2 0.0 187.0 0.0 53.0 
44 69.0 79.0 69.0 79.0 0.0 53.0 
38 89.8 99.8 83.0 93.0 0.0 53.0 
86 107.3 117.3 0.0 184.0 0.0 53.0 
16 120.9 130.9 0.0 190.0 0.0 53.0 
91 133.8 143.8 0.0 194.0 0.0 53.0 

100 185.0 195.0 185.0 195.0 0.0 53.0 
37 196.1 206.1 0.0 198.0 0.0 53.0 
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101 216.1 216.1 0.0 230.0 0.0 53.0 

0 0.0 0.0 0.0 230.0 0.0 95.3 
82 9.3 19.3 0.0 196.0 0.0 95.3 
48 21.5 31.5 0.0 192.0 0.0 95.3 
47 34.0 44.0 0.0 185.0 0.0 95.3 
36 48.3 58.3 41.0 51.0 0.0 95.3 
64 79.7 89.7 73.0 83.0 0.0 95.3 
49 108.0 118.0 108.0 118.0 0.0 95.3 
10 132.5 142.5 124.0 134.0 0.0 95.3 
63 151.9 161.9 0.0 185.0 0.0 95.3 
90 166.4 176.4 0.0 187.0 0.0 95.3 
32 180.9 190.9 0.0 186.0 0.0 95.3 

1 199.2 209.2 0.0 204.0 0.0 95.3 
101 216.1 216.1 0.0 230.0 0.0 95.3 

0 0.0 0.0 0.0 230.0 0.0 77.9 
2 7.2 17.2 0.0 202.0 0.0 77.9 

57 19.5 29.5 0.0 196.0 0.0 77.9 
42 32.7 42.7 31.0 41.0 0.0 77.9 
43 46.9 56.9 0.0 185.0 0.0 77.9 
15 64.2 74.2 61.0 71.0 0.0 77.9 
41 97.0 107.0 97.0 107.0 0.0 77.9 
75 111.6 121.6 0.0 192.0 0.0 77.9 
56 130.0 140.0 130.0 140.0 0.0 77.9 

4 149.0 159.0 149.0 159.0 0.0 77.9 
54 168.2 178.2 0.0 197.0 0.0 77.9 
77 187.5 197.5 179.0 189.0 0.0 77.9 
28 202.9 212.9 0.0 213.0 0.0 77.9 

101 216.1 216.1 0.0 230.0 0.0 77.9 

0 0.0 0.0 0.0 230.0 36.0 35.4 
27 38.0 48.0 37.0 47.0 36.0 35.4 
69 55.3 65.3 50.0 60.0 36.0 35.4 
30 78.6 88.6 71.0 81.0 36.0 35.4 
70 182.0 192.0 182.0 192.0 36.0 35.4 

101 216.1 216.1 0.0 230.0 36.0 35.4 

0 0.0 0.0 0.0 230.0 0.0 31.4 
95 5.9 15.9 0.0 205.0 0.0 31.4 
92 18.0 28.0 18.0 28.0 0.0 31.4 
59 28.9 38.9 0.0 202.0 0.0 31.4 
99 83.0 93.0 83.0 93.0 0.0 31.4 
87 99.5 109.5 93.0 103.0 0.0 31.4 
97 111.9 121.9 0.0 202.0 0.0 31.4 
13 159.0 169.0 159.0 169.0 0.0 31.4 
58 200.0 210.0 200.0 210.0 0.0 31.4 

101 216.1 216.1 0.0 230.0 0.0 31.4 

0 0.0 0.0 0.0 230.0 0.0 68.0 
52 4.5 14.5 0.0 208.0 0.0 68.0 

7 18.5 28.5 0.0 198.0 0.0 68.0 
11 67.0 77.0 67.0 77.0 0.0 68.0 
19 84.1 94.1 0.0 187.0 0.0 68.0 

8 104.2 114.2 95.0 105.0 0.0 68.0 
46 119.6 129.6 0.0 184.0 0.0 68.0 
17 157.0 167.0 157.0 167.0 0.0 68.0 

5 177.0 187.0 0.0 199.0 0.0 68.0 
60 188.8 198.8 0.0 201.0 0.0 68.0 
89 202.4 212.4 0.0 211.0 0.0 68.0 

101 216.1 216.1 0.0 230.0 0.0 68.0 

0 0.0 0.0 0.0 230.0 0.0 32.9 
18 6.3 16.3 0.0 204.0 0.0 32.9 
83 19.0 29.0 0.0 198.0 0.0 32.9 
45 32.2 42.2 32.0 42.0 0.0 32.9 
84 101.0 111.0 101.0 111.0 0.0 32.9 
61 115.0 125.0 0.0 194.0 0.0 32.9 
85 127.6 137.6 0.0 196.0 0.0 32.9 
93 188.0 198.0 188.0 198.0 0.0 32.9 
96 200.0 210.0 0.0 204.0 0.0 32.9 

101 216.1 216.1 0.0 230.0 0.0 32.9 


