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ABSTRACT 

 

 

LOW-COST 3D RECONSTRUCTION OF OBJECTS 

 

 

Bahtiyar Kaba 

 

Computer Engineering 

 

Thesis Supervisor: Asst. Prof. Dr. Övgü Öztürk Ergün 

 

 

September 2014, 67 pages 

 

 

In today's computing, 3D models are a vital part of many applications from surveillance 

to cultural heritage preservation and most of these systems require digital 

representations of real world objects. Acquiring real world objects with accuracy is 

carried out by laser scanners which are expensive to use and they are complicated for a 

regular user to operate. Research is now focused on building low-cost, yet high-quality 

scanners with cheap range sensors. 

 

In this thesis, we research the field of 3D scanning with commodity range sensors and 

propose a system design with Kinect. We modularize our work as data acquisition, 

registration and surface reconstruction; and evaluate corresponding algorithms on how 

they perform on Kinect depth output. We compare the results in accuracy, completeness 

and RMS metrics as well as assess the visual quality output. From the literature survey 

and experimental analysis that we have done, we propose a framework for 3D 

reconstruction with Kinect commenting on the possible improvements. 

 

Algorithms for filtering depth images are evaluated against two datasets, one is publicly 

available and one is compiled by us. Bilateral filtering is the best performing when both 

quantitative and visual results considered. In the proposed scanner setup, the depth 

maps are acquired and filtered with bilateral kernel, and registered with a globally 

optimal graph based registration scheme which is shown to be appropriate for scanning 

full loops around an object. The final cloud is input to Poisson algorithm to produce a 

mesh representation. The effect of the octree depth size for Poisson is investigated on 

both visual and quantitative aspects. 

 

Keywords: 3D Reconstruction, Kinect, Depth Scanning 
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ÖZET 

 

 

NESNELER İÇİN DÜŞÜK MALİYETLİ 3B TARAMA SİSTEMİ 

 

 

Bahtiyar Kaba  

 

Bilgisayar Mühendisliği 

 

Tez Danışmanı: Yrd. Doç. Dr. Övgü Öztürk Ergün 

 

 

Eylül 2014, 67 sayfa 

 

 

Bilişim alanında 3B modellerin yeri önem kazanmıştır ve gözetim, kültürel mirasın 

korunması gibi birçok uygulamada bu modellere ihtiyaç duyulmaktadır. Bu gibi 

uygulamalarda gerçek nesnelerin 3B dijital temsilleri kullanılmaktadır. Gerçek 

nesnelerin yeterli düzeyde hassasiyet ile taranması lazer tarayıcılar ile yapılmaktadır, 

fakat bu aletler pahalıdır ve kullanılması sıradan bir kullanıcı için zordur. Son 

zamanlarda düşük maliyetli ve ulaşılması kolay olan menzil sensörleri ile yüksek 

kalitede tarama yapılması üzerine çalışmalar olmaktadır. 

 

Bu tez çalışmasında, ucuz menzil sensörleri ile 3B tarama teknolojileri geliştirme 

üzerinde araştırmalar yapılarak; Kinect sensörü ile bir tarama sistemi önerisinde 

bulunulmuştur. Çalışma; veri alma, örtüştürme ve yüzey oluşturma olarak 

bölümlendirilmiş olup, ilgili algoritmaların bu kısımlardaki performansları test 

edilmiştir. Sonuçlar hassasiyet, tamamlılık ve etkin değer(RMS) kritelerine göre sayısal 

olarak karşılaştırıldığı gibi görsel açıdan da incelenmiştir. Yapılan literatür araştırması 

ve elde edilen deneysel bulgular ışığında 3B tarama sistemi önerisi yapılmıştır. 

 

Menzil imajlarını filtreleme işlemi için geliştirilmiş algoritmalar, biri halka açık biri 

bizim oluşturduğumuz iki veri kümesi üzerinde incelendi. Çift yanlı (bilateral) 

filtreleme, sayısal ve görsel sonuçlar birlikte göze alındığında en iyi sonuç veren 

algoritma olarak değerlendirildi. Önerdiğimiz sistemde menzil imajları taranıp, çift 

yanlı filtreleme ile filtrelendikten sonra elde edilen nokta bulutları yerel olmayan genel 

odaklı örtüştürme ile birleştirilir ve Poisson algoritması ile poligon model oluşturulur. 

Poisson algoritmasında octree derinliğinin sonuç üzerindeki etkisi de deneysel olarak 

incelenmiştir. 

 

Anahtar Kelimeler: 3B Model Oluşturma, Kinect, Menzil ile Tarama 
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1. INTRODUCTION 

 

The main objective of this thesis is to evaluate methods and algorithms for depth 

scanning and produce a 3D scanning solution in a cost effective manner. Microsoft 

Kinect, a low-budget range sensing device released for game consoles, is a good asset 

that could be integrated into such a system considering its price and availability. 

A 3D model is a digital representation of an object that can be stored and processed in 

computers for various purposes like visualization, games and movies, quality assurance, 

prototyping and many more. These digital models can be crafted by artists possibly 

effected by their preferences and imagination, or can be scanned from real objects.  

3D scanning projects are generally carried out with laser scanners which are expensive 

and using them requires expert level knowledge. They also require accompanying 

complex software. Furthermore, the laser beams emitted from these devices prevents 

them from being used on sensitive objects such as ancient artifacts. Their principal 

selling point is that the output digital models are high-quality, precise and accurate. 

Their error levels can be as low as tenths of millimeters.  

The Kinect sensor’s output is a depth map with a resolution of 640x480. This data 

quality is very low compared to laser scanners, yet worse, it contains high amounts of 

noise. One of the goals of this work is to process Kinect data to improve our output 

models and minimize the error level difference between laser outputs. These 

enhancements can be required in different stages of the scanning procedure.  

The procedure for scanning can be fundamentally separated into three parts or stages, be 

it for laser or Kinect(Chen and Medioni 1991, Curless 1999) : 

a. Data Reading: The reference object is placed in front of the sensor and data is 

captured from around the object with varying viewing angles. The scans should 

be adjusted to cover all 360 degree rotation around. Filtering or superresolution 

methods are applied to each scan to remove noise and improve the quality. 

b. Registration (Alignment): The scans from the previous step are generally depth 

maps each having their own coordinate system. To integrate them into a merged 

model, they first need to be transformed according to a common reference 

coordinate system so that the overlapping regions in different scans would align. 
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c. Surface Reconstruction: The aligned scans in the form of point clouds are 

merged to output a final mesh or other 3D surface representation.  

For each of this stage many algorithms are proposed to augment it. In the literature 

survey section, we describe these methods in detail and evaluate their performance for 

different metrics and usage purposes.  

From the knowledgebase we got from the survey, we design and propose a system 

solution to 3D scanning. The scanning is carried out with a Kinect sensor. The object is 

placed in front of the sensor on a rotating stage. 36 frames are captured each having a 10 

degrees of rotation interval. Depth filtering algorithms are applied to each depth map to 

deal with noise and extract smoother depth maps with minimum loss in detail. 

To align the depth scans, a common solution is the Iterative Closest Point algorithm 

(Besl and McKay 1992). It basically works by finding corresponding points in a pair of 

clouds and calculates the transformation matrix minimizing the error between the 

corresponding points. The variants of this algorithm differs in the type of error metric 

used, some examples of these are point to point distance, point to plane distance, color 

similarity (Rusinkiewicz and Levoy 2001) . ICP(Iterative Closest Point) algorithm 

works on pairs of point clouds, registering all clouds in a scan dataset requires aligning 

every adjacent pair of clouds. However, this creates a problem because the error 

between the first cloud and subsequent clouds accumulates towards the last cloud. This 

problem is referred to as Loop Closure Problem in cloud alignment (Lu and Milios 

1997) . Especially the error between first and last frame is significant thus the loop 

cannot be closed properly. In our system design, we employ a graph based 

implementation of ICP (Lu and Milios 1997) that will distribute error to all 

transformations evenly and mitigate loop closure errors. 

After the alignment has been properly done, the final clouds are merged with a meshing 

algorithm. We use Poisson algorithm since it can build water tight complete models and 

smooth out the unwanted geometry (Kazhdan et al. 2006). 

Our contributions from this study includes: 

a. A summarized generic framework for 3D scanning applicable to different 

setups. Different methods can be integrated in each step to compare and evaluate 

improvements. 

b. A visual and quantitative comparison of filtering algorithms on depth maps. 
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c. Visual and quantitative evaluation of the effect of octree depth parameter in 

Poisson surface reconstruction algorithm. 

d. A dataset of three objects in 30-60cm length. The dataset includes Kinect and 

Konica Minolta VI-900 scans. Laser scans can be assumed as ground truth. 

e. Low-cost scanning system for Kinect which can be used to produce triangulated 

meshes of objects with less than 5mm error for 90 percent of vertices. 

The subsequent chapters are organized as follows: 

In chapter 2, we present the literature survey on the field of range scanning and 3d 

model reconstruction. Some preliminary information is provided which will be useful 

for explaining algorithms. Then, range sensors and specifications of Kinect sensor is 

given. What algorithms and methods are applied to improve depth map output of Kinect 

is discussed. The alignment or registration problem and the solutions proposed to these 

problems, and surface reconstruction algorithms is presented.  

In chapter 3, we show our system design and present comparisons of algorithms for 

each stage of 3D scanning procedure. We reference some of the work presented in 

chapter 2 and investigate them to evaluate for 3D scanning with Kinect. 

In chapter 4, we present a wider and more thorough comparisons of some algorithms 

with quantified results. 

In chapter 5, conclusion and final remarks are given with open research questions in this 

area.  
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2. LITERATURE SURVEY 

 

In this section, we present our research output on the field of 3D scanning. Different 

algorithms and methods are discussed that tries to improve the output models of 3D 

scanners. Even though some of them are developed in use with laser scanners, their 

principles might apply to scanning with Kinect-like depth cameras. 

First, a general description and explanation of the common terminology used will be 

given for the reader far from the subject. Then, the survey will be partitioned into three 

parts as described in the Introduction section – Data Reading, Alignment, Surface 

Reconstruction- , and each section will comprise the relevant algorithms. There are also 

some works that deals with 3D scanning as a whole, evaluation of such systems will 

also be presented. 

2.1 PRELIMINARIES AND DEFINITIONS 

2.1.1 3D Models and Their Representations 

A 3D digital model is a representation of a real or imaginary object in computers. 

Unlike 2D representations like color images from regular cameras, they contain the 

shape and geometry information. One type of such 3D models is the Point Cloud . A 

Point cloud is a collection of points defined by three dimensional vectors, and each 

element of a vector corresponds to x, y, z value with regards to a particular coordinate 

system. Refer toFigure 2.1 for a visual representation. Some point clouds can also 

contain the vertex normal, curvature and color information, in this case, the cloud 

vectors will be six or more dimensional. 

Besides this collection of points, a model can have a set of polygons which are lists of 

indices to the elements in the point list. These type of representations are called 

Polygonal Mesh. This is a widely used model type, and if each polygon contains three 

vertices (points), it is quite useful in some tasks such as rendering since a triangle would 

necessarily be a plane and not a free form (Watt 1993).  

Parametric Forms describes the geometry of models with mathematical equations 

(Campbell and Flynn 2001).  
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Figure 2.1: Example Point Cloud 

 
Source: This figure has been prepared by 

Bahtiyar Kaba. 

 

A generic parametric form can be defined as follows: 

 

S(u,v) =  

x = f(u,v)

y = g(u,v)

z = h(u,v)

  (2.1) 

 

In the above equation, the functions f(u,v) , g(u,v) and h(u,v) are parameterized by the 

variables (u,v), and the surface is defined by points (x,y,z) in 3D world coordinates. 

From this mathematical definition, we can infer that (x,y,z) values will be in a 

continuous space, thus the surface is continuous one as opposed to a discrete 

representation in Polygonal Meshes. This is true in theory, but again, since the 

computers digitizes everything to work, and practically a certain operator can use 

discrete approximations of the parametric functions with the advantage of decreasing 

quantization when needed. Generally octree data structures are used to store and process 

such data. A common parametric formulation is Non-Uniform Rational B-Spline 

(NURBS) which has parameterized control points (Piegl 1991, pp. 55-71).  

Algebraic implicit surfaces defines the surface as a zero set of function f (2.2). 

 S = {(x,y,z) | f(x,y,z) = 0} (2.2) 
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Equation (2.2) basically states that the surface composes the points (x,y,z) such that 

f(x,y,z) will be zero. Generally, for the points inside the surface f(x,y,z) will be smaller 

than zero and outside greater than zero. Implicit surfaces are used in the KinectFusion to 

build 3D models of environments ( Newcombe et al. 2011) . This representation is used 

for mathematical computations in Poisson algorithm (Kazhdan et al. 2006).  

Several other 3d object representation exist, but for the scope of this research we will 

not go into detail on them. However, inTable 2.1: Comprasion of 3D representation 

types a summary of these representations and their properties is presented. The reader 

can follow the source for more information. 

Table 2.1: Comprasion of 3D representation types 

Representation Global Compact Local 

control 

Complete Easily 

sampled 

Easily 

fit 

Parametric Yes Yes Yes Yes Yes No 

Implicit Yes Yes No Yes No Yes 

Superquadratic Yes Yes No Yes Yes Yes 

Cylinder Yes Yes No Yes Yes No 

Mesh No No Yes Yes Yes Yes 

Source: ( Campbell and Flynn 2001, A survey of free form Object Representation) 

 

2.1.2 Range Scanning 

Although, some studies have focused on 3D reconstruction from color cameras and 

produce compelling results (Wu et al. 2011) , reconstruction from range sensors 

continues to be a subject of interest, because illumination variations will have less effect 

on them, thus making them more reliable. Reconstruction from color cameras are 

referred as passive scanning, while special range sensor which works by projecting rays 

are called active sensors. 

Range sensors work by projecting light on a surface and either measures the distance by 

time of flight or models the distortion of a structured pattern. Kinect is a structured light 

scanner. From its emitter, a structured pattern of infrared light is cast. The sensor then 

evaluates how the pattern of light is distorted due to shape of objects in front of it, and 

calculates depth measurements pixel-wise. The output is depth map, that is an array of 

specified resolution whose each element contains a distance value.  
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These distance values can later be used to back-project to 3D space to find vertices 

given the camera calibration parameters (Szeliski 2010) . Once all the pixels in a depth 

image are back-projected, a point cloud is extracted as shown back in Figure 2.1. Here, 

it may also be necessary to apply a background subtraction technique to isolate the 

object from the surroundings. 

The process of integrating scans from different view angles, called registration, and 

merging them are explained in the subsequent sections. 

2.2 KINECT SENSOR 

Kinect sensor is a range scanning sensor that is introduced for game consoles. The user 

can play the games by gestures without touching the controller. The console 

implementation process the depth values fed to it, and does skeleton tracking, gesture 

recognition etc. 

Figure 2.2 shows the structure of Kinect. It contains an infrared emitter which will 

project structured light patterns and a sensor which will sense the distortions of the 

patterns to find the depth data. 

The raw output from Kinect is an 11-bit 640x480 depth image. This depth image is very 

useful or 3D reconstruction because with the known camera calibration parameters of 

the sensor, a back-projection will produce the associated point cloud data for a depth 

map.  

Figure 2.2: Kinect Sensor 

 

Source: MSDN kinect website http://msdn.microsoft.com/en-us/library/jj131033.aspx 
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2.3 DEPTH DATA ENHANCEMENT 

The output from Kinect depth sensor is highly noise contaminated and subject to 

systematic bias. Trying to reconstruct a 3D model with this raw input would lead to 

incomplete and inaccurate methods. Moreover, even if the noise had been removed 

completely, low-resolution of depth images will not allow a higher detail model to be 

built. Because of these problems, preprocessing the depth frames before aligning and 

reconstructing the surface is a vital part of a 3D scanning system. 

We can subdivide the works focused on depth data enhancement into two categories: 

depth filtering and upsampling. Depth filtering is to reduce the noise and compromise 

the systematic bias that could have been occurred during scanning. Upsampling 

methods focus on generating higher quality depth images from low-resolution 

sometimes by using a higher-resolution color input. 

2.3.1 Filtering 

It has been a common practice for color imaging devices would apply one or several 

filtering algorithms to the raw sensor input, because the input data can be affected from 

illumination, hand motion and so on. The same reasoning can be applied to the depth 

maps, and we should also note depth cameras are more sensitive to noise due to their 

working principle. 

First attempts to filter a depth map and remove the noise have been borrowed from the 

traditional image denoising algorithms.  

Mean filter is a simple filter whose application field is extensive. It is effective on 

reducing random noise (Gonzalez and Woods 2007) .It also smoothes out the signals. 

However, this smoothing can have negative effects on depth map for two reasons. The 

smoothing is good to remove noisy data but it can also discard higher detail data, high 

frequency regions in the depth maps can correspond to a noise or a pointy end. Second, 

the smoothing of the boundary pixels results in unwanted artifacts (Vijayanagar et al. 

2012). For these reasons, a direct mean filter cannot be applied to depth maps.  

To deal with the boundary pixels, a weighting scheme is applied to elements of the 

filtering kernel (Zhao et al. 2013). Instead of the evenly distributed weights on each 

element, a weight is assigned which is calculated by its similarity to the center pixel. 

This way, for example, a boundary pixel on the object will be effect by the pixels within 
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the object not from the pixels that belong the background even if they are adjacent 

pixels.  

The above weighting scheme can be varied by applying different similarity metrics for 

giving weights to the filtering kernel. In (Zhao et al. 2013), they apply a direction 

aware, multi scale metric to alleviate the problems related to quantization. Multi-scale 

filtering derived from scale-space theory which is used widely in many filtering 

algorithms.Witkin(1984) proposed a multiple-scale approach to analyze the features in a 

digital image, since not all features are prominent in a certain scale. Generally, what is 

called an image pyramid is built by scaling down the original image down with 

decreasing factors. Then the features are searched in each scale giving broader 

definition of the image with larger number of features than that of a single-scale image. 

This, multi-scale scheme is also used on depth maps to detect boundaries, corners and 

neighboring pixels which will aid the kernel weighting algorithm for filtering (Zhao et 

al. 2013) . 

Bilateral filtering, again first proposed for regular color or gray scale images, is another 

method that can be adjusted to be applied to depth maps (Tomasi and Manduchi 1998). 

Bilateral filtering smoothes out the noise in the image, preserving the boundaries. It 

works by penalizing pixel weights regarding their geometric or photogrammetric 

symmetry with central pixel. The application of bilateral filtering to depth maps is 

straight-forward since it already deals with the problems related to boundary pixels. 

Kinect Fusion system makes use of the bilateral filtering to preprocess captured depth 

maps before applying their reconstruction method (Newcombe et al. 2011).  

Some of the methods for filtering focuses on Kinect, and investigates properties for 

depth-denoising. Ngueyn et al.(2012) makes an experimental analysis on Kinect noise, 

and derives a generic model. With this generic model, they filter Kinect depth maps to 

remove noise. Fu et al.(2012) analyze the behavior of Kinect data, and proposes an 

appropriate spatial-temporal denoising algorithm.  

2.3.2 Upsampling 

Kinect or other consumable ToF cameras work with rather small resolutions. Kinect can 

produce depth frames of size 640x480, which ideally corresponds to 307200 vertices of 

a point cloud. However, most of this data is noisy and mostly the object we are scanning 
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will cover only a portion of a frame. Therefore, it is not rudimentary to reconstruct a 

higher quality model provided the given resolution.  

Upsampling methods try to increase the resolution of the depth maps while attaining 

noise reduction. Superresolution methods applied on color images generates higher 

resolution output by combining several inputs taken from slightly varying angles (Farsiu 

et al. 2006). A similar approach is applied on depth maps in the work LidarBoost 

(Schuon et al. 2009). The object is constantly spinned in front of sensor, and every 10 

frames are integrated to produce a higher resolution depth map, in this manner 60 high 

resolution maps are captured and high quality model is produced by registering them. 

Subsequent works employing Lidarboost for depth denoising and upsampling proposes 

complete 3D reconstruction systems (Cui et al. 2010).  

Color cameras can capture images in greater resolution compared to depth cameras. The 

color information also contains cues to the depth of the scene even if not complete. 

Therefore, if we have both depth and color image taken from the same view angle, 

which is mostly hard in practice, we can exploit color data to enhance the depth map. 

These types of methods are generally named Image Guided Upsampling/ Denoising. 

For such a method to work, the depth and color image should be taken from the same 

position, angle and calibration parameters, yet since this is unlikely, algorithms have 

been to develop to map the color information from a slightly displaced camera to depth 

maps of the depth sensor. 

Chan et al. (2008) uses an image guided method to improve the quality of depth maps 

and to filter noise. They modify the classical bilateral filtering approach so as to work 

with a pair of depth and color image. High-resolution color image contains higher-

frequency details that would be important for depth upsampling. This information is 

employed in a multi-lateral adaptive weighted filtering of the depth maps.  

Park et al. (2011) uses a similar approach to exploit high-resolution color images. A 

regularization which applies nonlocal means filtering with an edge weighting scheme to 

depth maps is proposed.  

Stereo methods incorporates color images from different angles to give depth estimates 

of the scene. Zhu et al. (2008) merges the depth output from stereo methods with time-

of-flight camera outputs. Probabilistic functions are used to weight and select the 
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correct depth value for a point. They also propose better calibration techniques for time-

of-flight cameras to improve their results. 

Some empirical methods have been studied that regards the Kinect output as a model, 

applies statistical calculations to derive this empirical model. This model is used to 

guide theupsampling and depth filtering for any scene (Ngueyn et al. 2012, Fu et al. 

2012). 

2.4 SCAN ALIGNMENT 

It is necessary to scan and capture depth frames at many view angles from around the 

object to build a complete model since some parts of the object will be occluded in a 

specific frame. However, point clouds re-projected from depth frames will be defined 

on their own coordinate systems. One needs to apply the necessary transformations to 

point clouds such that they all sit in a common reference coordinate system (Hartley and 

Zisserman 2003) . In this case, the points from all the appended clouds will be ready to 

define the output 3D model. 

This job is performed in two steps as coarse alignment and fine alignment. Coarse 

alignment is the process of roughly aligning the clouds. A simple solution is to restrict 

the motion of the sensor during scanning. Some predefined movement path is defined. 

For example, if it suffices, the object is rotated 10 degrees on certain axis between each 

scan, yielding 36 scans for a full capture. Since physically applying rotations exactly is 

not practical, that is there will be little fluctuations from 10 degrees between each frame. 

Fine alignment is applied after the clouds are coarsely aligned to minimize the 

transformation error.  

Coarse alignment can also be achieved by finding distinct features on the objects such 

as corners and transforming the clouds so as to overlap these features (Makadia et al. 

2006) . It can be thought possible that these features can be adequate to fine align the 

clouds, however, noisy and sparse nature of depth maps prevents this. 

For aligning still objects, the transformations required to be applied are rigid since the 

form of the object is constant. Non-rigid registration techniques are used to align clouds 

belonging to objects that are moving during scanning (Huang et al. 2008). These 

algorithm are shown to be useful for reducing noise also. 
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2.4.1 Fine Alignment 

Fine alignment is an important part of 3D scanning, because if the error between two 

overlapping scans is rather high, merging the points in overlapping regions will be 

cumbersome, and will produce low-quality output if merging threshold is lowered for it 

to work.  

Iterative Closest Point algorithms is broad set of algorithms that are incorporated into 

many 3D scanning solutions(Rusinkiewicz and Levoy 2001). ICP algorithm aligns a 

pair of point clouds provided they have enough overlapping region and coarsely 

aligned. It works by finding the corresponding points in two clouds, and minimizes the 

distance between these points. The distance metric is not necessarily the Euclidean 

distance. The derivations of the ICP algorithm use different metrics and corresponding 

point selection methods. If the face data is available for the model cloud, point-to-plane 

distant metric can be used instead of a point-to-point metric.  

2.5 SURFACE RECONSTRUCTION 

Once all the captured information (points) is aligned correctly, they need to be merged 

and a surface maybe reconstructed depending on the application. In Section 2.1.1, 

different representations for 3D models have been discussed. The output merged cloud 

can be the final model, or a polygonal mesh can be produced if it is required. Parametric 

forms can also be created to describe the object with some predefined shapes.  

For the scope of this study we focused on polyhedral mesh output, and investigated 

algorithms for them. Poisson is a good performing algorithm that is able to reconstruct 

triangulated meshes from unorganized point clouds. It also performs noise removal and 

smoothing to some extent (Kazhdan et al. 2006) .  

Marching cubes (Lorensen and Cline, 1987) is another popular algorithm to triangulate 

3D scan data which was first proposed to be used in medical imaging. Several works 

came after it that tries improve the results  (Nielson and Hamann 1991, Hoppe et al. 

1992). However, marching cubes and its derivative algorithms do not deal well with 

manipulating point position geometry, thus are sensitive to noise. For this reason, we 

cannot apply it to our strategy since we will use Kinect ( high noise).  

Surface reconstruction from mathematical models or point sets is a well studied 

problem and it has a huge application area. Numerous other works have been studied on 

it for different purposes like visualization, 3D data compression, transmission, physics 
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simulations and so on. For the scope of our study, we have stipulated that we should not 

go into details of these studies. 
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3. 3D SCANNING PIPELINE 

 

There is a pipeline of stages for 3D scanning that is used for most of the projects. As we 

categorized our literature survey these stages have become more clear. In this section, 

considering these stages, we build a 3D scanning solution as a system and describe in 

detail the algorithms used, and present their output.  

3.1 SYSTEM DESCRIPTION 

The use case for our system will be as such: The user places the object to be scanned in 

front of the sensor at around 70cm away. Scans are taken with 10 degrees of rotation in-

between. The rotation is realized by a rotating stage which can apply specified rotations. 

The scans taken are aligned into a common world frame, and finally the surface is 

reconstructed.  

A schematic representation of the components forming our system is shown inFigure 

3.1 . In data acquisition part, the object is rotated in front of the sensor, and raw data is 

saved. This raw data is then filtered to remove noise, and back-projected to get the finer 

point clouds.  

Figure 3.1: 3D Reconstruction Pipeline Overview 

 

Source:  This figure has been prepared by Bahtiyar Kaba. 

3.2 DATA AND EVALUATION METHOD 

Our dataset that we will use to evaluate methods in filtering, alignment and surface 

reconstruction consists of two subsets. 

Doumanoglou et al. (2013) created a public dataset of objects scanned with both Kinect 

and Konica VI-700 digitizer. We used this dataset to evaluate and make numeric 

comparison for filtering and surface reconstruction. However, we did not use it produce 
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full models since the scanned objects are tiny and is not very feasible for visual 

assessment with Kinect output.  

We have also created a dataset of our own by scanning four objects which are referred 

as following in the text: 'boy', 'angel', 'buddha', 'three angles' . We scanned the objects 

with Kinect, and Konica Minolta VI 900 digitizer as ground truth.  

3.2.1 Accuracy and Completeness 

To quantitatively evaluate the results and compare them with ground models, there are 

two metrics that can be of use: accuracy and completeness( Doumanoglou et al. 2013) . 

Accuracy is the defined as a distance d for which a certain per cent of points in the 

reconstructed model ( from Kinect) has a nearest neighbor closer than d in the ground 

truth model. For example, if the 75 per cent of points in the reconstructed model has a 

distance lower than 1 cm to its nearest neighbor in ground truth model, it is said that the 

accuracy is 1cm with 75 per cent threshold.  

Completeness measures how complete the model is built. It is calculated by percentage 

of points in the ground truth model which has a nearest neighbor in the reconstructed 

model closer than a certain distance threshold. That is, if the model is 90 per cent 

complete with 5mm threshold, 90 per cent of the points in the ground truth model is 

closer than 5mm to a point in reconstructed model. 

3.2.2 RMS Error 

Another metric that could be of use for evaluating the reconstructed model's 

resemblance to the ground truth model is to use the Root-Mean-Square (RMS) error. 

For calculating RMS, for each point in the cloud, the nearest neighbor in the reference 

cloud is found according to Euclidean distance, and this distance is stored as deviation 

value. In equation (3.1), Δi denotes the deviation of n
th

 point, n is the number of points 

in the cloud. The RMS error value for a cloud is calculated as in the equation(3.1). 

 

RMS =  
1

n
(Δ1

2 +  Δ2
2 +  Δ3

2 … + Δn
2) (3.1) 
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3.3 ENVIRONMENT AND TOOLS 

For completing the computation tasks in this study, we used a PC with Intel i7-2600 

@3.40 Ghz and 8 GB RAM with both Windows 7 64-bit and Ubuntu 12.04 64-bit 

installed as OS. 

For 3D data processing, there are several useful, open-source software that we tried. 

CloudCompare
1
is a 3D point cloud and mesh visualization and comparison software 

with open-source license. We used it to produce visual error coded comparison between 

point clouds.  

Meshlab
2
 software has editing and processing utilities that is helpful on working and 

manipulating point clouds.  

The system implementation has been carried on Ubuntu 12.04, because we wanted to 

make use of the Point Cloud Library (PCL)
3
 which is easier to integrate in a Linux 

environment. PCL is an extensive library which is written in C++and includes 

implementations of many general point cloud operations such as transformations, 

correspondence estimation, projection, registration and surface reconstruction. We 

preferred a C++ implemented library for efficiency. 

Matlab has been used mostly in the experimental study. For trying the filtering methods, 

we imported them to Matlab, and did processing there. Quantitave analysis is realized 

on Matlab, too.  

3.4 DATA READING 

3.4.1 Depth Data 

The data scanned from Kinect is an array of values that gives distance information in 

millimeters from the sensor. It is like a color image with pixels having depth values. A 

visual representation of depth map can be seen in Figure 3.2 . Here, for visualization 

purposes depth values are scaled to range 0-255 to display as a gray-scale image. The 

corresponding RGB image of the same scene is shown in Figure 3.3.  

                                                 
1
 Cloud Compare website. http://www.danielgm.net/cc/ 

2
 Meshlab website. http://meshlab.sourceforge.net/ 

3
 Point Cloud Library website http://pointclouds.org/ 
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With the camera calibration parameters of Kinect (Khoshelham 2011, Konolige and 

Mihelich 2012, Burrus 2014, Willow Garage
4
), we can back-project the pixels to extract 

the point cloud for a single scan.  

 

Figure 3.2: An example depth map 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

                                                 
4
 Willow Garage website. Kinect calibration code complete. http://www.ros.org/news/2010/12/kinect-

calibration-code-complete.html 
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Figure 3.3: Corresponding Color Image 

 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

The purpose of this work is focused on reconstructing objects rather than full scenes or 

environment, therefore it is necessary to segment the object in depth images. For this, 

we restrict our scenes such that the object in the foreground will be isolated well 

enough. This way removing the background is simpler by setting a distance threshold.  

3.4.2 Background Removal 

For background removal we have tried two methods. First, the scanning can be 

restricted such that the object will be at a certain distance from the sensor, for example 

between 50cm-100cm. Then, after the raw depth maps have been acquired, the pixels 

having depth values other than the interval 50-100cm(500mm-1000mm in Kinect) is 

labeled as environment. This is a simple, yet effective solution for working fast and 

getting results and in this study we created our dataset this way. However, for a real 

world scenario it can be a limiting factor. 

Otsu thresholding (Otsu 1979) is an algorithm that adaptively selects an appropriate 

threshold for segmenting the background and foreground in grayscale images. The 

depth maps can also be seen as grayscale images, and therefore, if the object is isolated 

well from the background, a mask can be generated by binarizing the depth map with 

Otsu. In our system, we make use of Otsu thresholding for background removal. 
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3.4.3 Normal Estimation 

The normal data for each vertex in a point cloud is necessary for the latter surface 

reconstruction step. It is possible to estimate the normals in the back-projected point 

cloud. But this can be computationally more expensive and sometimes normals will be 

ambiguous (with 180 degree). Therefore, we can exploit the depth map, and the 

neighborhood of pixels to estimate them.  

The pixels in the depth data correspond to z-value of the vertices of the point cloud. 

Therefore, the cross product of the image gradient in x and y directions will give an 

estimate of that pixel's normal. For calculating image gradients equations (3.2) and (3.3) 

can be used which gives discrete approximations to the derivative of the intensity 

function(Gonzalez and Woods 2007, Grady and Poimeni 2010). In the equation, P(i,j) 

denotes the 3D vertex that is calculated by back-projecting pixel(i,j). The normal for the 

point corresponding to pixel(i,j) is then calculated as in equation (3.4) . It is also 

important to apply a smooth filter to the depth map for normal calculation because the 

noise can distort the results. 

 

 δ I

δx
(i,j) =

1

2
 ((P(i,j+1) - P(i,j)) +( P(i+1, j+1) - P(i+1, j))) (3.2) 

 

 δ I

δy
(i,j) =

1

2
 ((P(i +1,j) - P(i,j)) +( P(i+1, j+1) - P(i, j+1))) (3.3) 

 

 
N(i,j) = 

δ I

δx
 i,j 

              
 x 

δ I

δy
(i,j)

              
 (3.4) 

 

3.4.4 Filtering 

3.4.4.1  Mean filtering 

To remove unwanted noise from depth data, filtering methods will be applied to depth 

data. Mean filtering is a common method that works well with color images to deal with 

noise. However, directly applying a mean filtering approach to depth images is not 

practical since artifacts can appear along the boundaries or edges (Vijayanagar et al. 

2012).  
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The aforementioned problem can be seen in Figure 3.4 . The pixels along the 

boundaries of the boy object is filtered with the pixels that belong to background and 

have value of zero. Even though the background pixels can be in the local neighborhood 

of boundary pixels, they need to be ignored for filtering since their depth values are 

irrelevant. 

Figure 3.4: The problem of classical mean filter 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

 A heuristic solution to this problem is to investigate the filtering kernel as it moves 

over each pixel neighborhood, and select and mask some of the pixels that does not 

belong the object. A threshold can be set that will eliminate far away points in terms of 

depth values. Assuming the depth values are in millimeters (as in our case with Kinect), 

in our experiments a value 50 ( 5 centimeters) worked fine. Equation(3.5) shows the 

modified masked filter. W define the filtering kernel, D is the depth map and M is the 

mask. M can also be calculated by object map which has been calculated previously in 

background removal. 

 
D(p,q) = 

1

 M
 D q .M(q)

q ∈W
 (3.5) 

 

After applying the masking scheme described we get an output similar to Figure 3.5(b). 

We see that artifacts in the boundaries do not appear in the output point cloud. It is also 



21 
 

seen that the output point cloud after mean filtering is smoother and noise level is 

decreased.  

Figure 3.5: Raw(left) and Mean filtered(right) point cloud with masking. Bottom 

row is a closer look onto head part. 

  

  

Source: This figure has been prepared by Bahtiyar Kaba. 

 

To quantitatively analyze the filtering, we calculate its accuracy value as described in 

section 3.2 . Accuracy is normally calculated on reconstructed and ground truth 

complete models, but for assessment here, we will use it on individual point clouds. Our 

procedure for this analysis is as follows: 



22 
 

a. 30 random depth maps are chosen from the Doumanoglou dataset each from 

either these 5 objects: rhino, dolphin, shark, zebra, giraffe. (Figure 3.6) 

b. The depths map are filtered with the respective algorithm, background removal 

is performed. 

c. Resultant images are reprojected to 3D, and point clouds are extracted for each 

depth image. 

d. Each point cloud is registered to its corresponding ground truth mesh with ICP 

algorithm. (i.e, a point cloud from rhino object is registered to ground truth 

rhino) 

e. Accuracy values are calculated for each point cloud. 

In Figure 3.7, accuracy results comparison between the raw depth maps outputs and 

mean filters are compared. The mean filter window size is given as 3, and accuracy 

results are calculated for per cent thresholds between 75-100. 

The results as seen in Figure 3.7 which clues that mean filtering improves the output 

slightly, however, as other parts of 3D scanning pipeline process the data, the output 

results may differ for the better or worse. Therefore, we made an analysis after 

alignment and surface reconstruction which will be discussed later. A threshold value of 

100 per cent is another way of saying the distance of point who is furthest, and a single 

outlier can drive this value very high. So, we can forgive the unwanted peak of the 

graph at the end. 

Figure 3.6 Doumanoglou dataset 

   

  

 

Source: Doumanoglou et al (2013). A dataset of Kinect Based 3D scans 
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Figure 3.7: Raw and mean filtering accuracy comparison 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

3.4.4.2 Bilateral filtering 

Bilateral filtering does not only focus on spatial closeness but also takes into account 

the range (similarity) of the pixels (Tomasi and Manduchi 1998). Since it penalizes 

dissimilarity, the boundary remains crisp, and textured parts are smoothed. This 

property makes it suitable for depth filtering.  

The bilateral filter response is calculated by a combination of weighted neighbors by 

geometric and spatial similarity. In equation (3.6) , a mathematical description is given. 

In the equation f is the intensity ( depth ) value of the neighbour pixel (m,n), and 

function w is the aforementioned weighting function. The calculation of the weighting 

function consists of two stages, one for geometric and one for depth similarity. Equation 

(3.7)  is the domain weighting function parametized by σd. σd can be thought of as the 

domain of pixels that will take part in the filter response calculation. For example, when 

σd = 3 pixels, function d will have values getting smaller exponentially for pixels that 

are more than 3 pixel away, their contribution in the weighting function w will be 
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minimal, and for σd = 1 , the bilateral filter will only be weighted by depth similarity 

function  . In equation (3.8) , the function r is the depth similarity function which 

penalizes the output according to our similarity metric. For our case, the l2 norm of the 

intensity difference is adequate. Again, there is a parametrization variable σr which we 

can use to adjust how the filter will react. Here, giving this variable a value of 1 will 

result in the bilateral filter as gaussian filter since the intensity weights will not make 

any effects on the weights, but only the geometric distance.  

The weighting function w is finally calculated by multiplying the geometric and depth 

similarity functions. The neighboring pixels ( the window) of the kernels is defined by 

(m,n) given as parameters to the functions. Although, the domain function already 

penalizes far away pixels, for implementation purposes we use one more parameter, 

window width, which will define the window on which the calculations are to be 

performed. (m,n) parameters will thus have values in the range [-width, +width]. This 

would also spare some computation costs, especially when σd has smaller values.  

 

 
D(p,q) = 

 f(m, n) w(p,q,m,n)m , n

 w(p,q,m,n)m , n
 (3.6) 

   

 
d(p,q,m,n) = e

- 
(p - m)2+ (q - n)2

2σd
2

 (3.7) 

   

 
r(p,q,m,n) = e

- 
 f(p, q) - f(m, n) 2

σr
2  (3.8) 

   

 w(p,q,m,n) = d(p,q,m,n) * r(p,q,m,n) (3.9) 

 

Investigating the mathematical definition of  bilateral filtering, it is obvious that this 

type of filtering is appropriate to depth filtering without much modification. Given 

proper parameters, the weighting function will eliminate out-of-object pixels since their 

depth values will be significantly different. Moreover, incorporating depth similarity in 

the filtering process is expected to preserve the flow of geometry in the object. 

An example output is shown in Figure 3.8 . The cloud reprojected from the filtered 

depth map is smoother, and the boundary pixels are not distorted. However, it can also 
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be noted that some small details are gone, too. To give an example, in the raw cloud, the 

nose part of the boy object is more pointy ( similar to the real object), but in the filtered 

cloud the nose is smoothed and the pointy end is not prominent. In Figure 3.8 (c) and 

(d) , a visual comparison can be seen. When we are making our quantitative analysis, 

we will investigate what this problem can become. 

Similar to our previous quantitative analysis on Gaussian filtering, we performed tests 

on the Doumanoglou dataset with bilateral filtering. The 30 depth frames are processed 

with bilateral filter and the parameters are given as width = 5, σd=3, σr= 0.01 . In Figure 

3.9, a graphical representation our output is shown. The raw and mean filter outputs are 

same with the previous comparison. Now, we see some slight improvement in bilateral 

filter output compared to mean filters, and more improvement compared to the raw 

depth map. The higher threshold values ( above 95 per cent) still continues to be a 

problem though. But as we discussed earlier, they can be neglected for our analysis. 
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Figure 3.8: Point cloud from raw depth map(a) and bilateral filtering (b) , raw 

cloud close up of nose(c) , filtered cloud close up of nose(d) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

These results suggests that bilateral filtering can be a good method of choice for our 3D 

scanning system. However, these accuracy values are calculated without the latter 

processing steps. They might affect the final result, and these effects can be dependent 

on the filtering method applied. We will look into the results of these later when we 

discussed the relevant alignment and surface reconstruction algorithms. 
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Figure 3.9: Bilateral filtering accuracy comparison 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

3.5 SCAN ALIGNMENT 

3.5.1 Coarse Alignment 

After the depth maps are filtered and back-projected to point clouds, the point clouds 

which are on different coordinate systems will be aligned. An example of the same 

object scanned from 50 degree intervals is seen in Figure 3.10.  
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Figure 3.10: Same object scanned from 50 degree interval 

 

 

We proposed a controlled motion to our system, therefore, we have the coarse 

information about the alignment already. Applying a 50 degree rotation to the second 

cloud in Figure 3.10will coarsely align it with the first one.  

We place the objects on top of rotating stage which can given commands to spin around 

specific angles. We use Micos Pollux RSP 200 (Micos website
5
) to realize the 

controlled rotation motion in our system. See Figure 3.11.  

Figure 3.11: Micos Pollux RSP 200 Rotating Stage 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

                                                 
5
 Micos website : http://www.pimicos.com/web2/data/discontinued/1,5,150,rsp200.html 
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For finding the transformation applied to the clouds, it is necessary to know the axis of 

rotation. The specified degrees of rotation occurs around the axis that passes through the 

center of rotating stage.  

To find the rotating axis, we incorporate a calibration tool which consists of two 

intersecting planes as in Figure 3.12. When we take a scan of the calibration tool by 

placing it on top of the rotating stage so as to align its intersection line with the central 

axis of the stage, the output point cloud will have two prominent planes provided that 

the background is removed.  

Figure 3.12: Calibration tool 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

We can estimate the parameters of these planes using RANSAC algorithm (Fischler and 

Bolles 1981, Xu and Lu 2012). With RANSAC algorithm, it is possible to get the 

coefficients of the two planes (rows of multiplier matrix in equation (3.10)) The 

intersection line of these planes is defined by solving the plane equations. The solution 

to the linear equation in (3.10) is an infinite set of points if it exists which defines the 

line. Equation (3.11) is the representation of line such that (x1, y1, z1) and (x2, y2, z2) are 

any different points from the solution set and t is any real number. The rotating axis is 

found this way. 

 

 
𝑎1𝑏1𝑐1𝑑1

𝑎2𝑏2𝑐2𝑑2
   

𝑥
𝑦
𝑧
1

 = 0 (3.10) 
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After the rotation is applied, the clouds are coarsely aligned and ready for the fine 

alignment stage.  

3.5.2 ICP 

Iterative Closest Points (ICP) refers to a class of algorithms that finds the rigid-body 

transformation between a pair of clouds by minimizing an error between the input 

clouds (Besl and McKay 1992).  

The ICP algorithm works as follows: First, corresponding points between the pair of 

clouds are found. The corresponding points can be found by their curvature or color 

similarity in the neighborhood. After the corresponding points are found, an initial error 

is calculated based on a specific metric. Several metrics have been proposed such as 

point-to-point distance and point-to-plane distance. The algorithm starts to work 

iteratively, and at each iteration the objective function ( the RMS of the error metric 

between the corresponding points) is recalculated and the necessary transformation to 

minimize its value is estimated. At next iteration, the cloud is transformed with the 

estimated matrix and the same procedure is reapplied. 

As the iterations continues, the fit error between the two clouds will converge. When 

the objective function converges the algorithms stops and outputs the multiplication of 

all inter-iteration transformations. 

In our 3D scanning setup, we need to scan the object from many view angles. 

Convinced that ICP is a good algorithm for aligning a pair of overlapping point clouds, 

we can chain apply it to each subsequent point cloud. A mathematical description of 

what we are trying to achieve is shown in Equation (3.12) . Ti denotes the 

transformation estimated by ICP between cloud (i) and cloud (i-1) . The proper 

alignment of nth cloud is done by transforming it to the (n-1)th cloud which have been 

transformed to (n-2)th and it goes likes till the first cloud. 

This method is good if the point clouds to be registered are not covering the full object. 

 T1 = I n=1,2,... (3.12) 
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Pn
′=   Ti

n

i=2

 Pn 

 

When the coverage of the scans is to capture the full object, the accumulation error 

poses a problem. When each subsequent frame is registered with ICP, there is a minimal 

error in between them. When the nth cloud is to be aligned with the first 

cloud(reference), the transformation matrix is found by multiplying the transformations 

of all subsequent clouds until itself. Therefore, the error between the reference 

cloud(first) and the nth cloud becomes larger. And, this problem increases towards the 

last cloud in the set, which should supposedly be very close to the reference cloud. This 

problem is known as the loop-closure problem. 

Figure 3.13 depicts a simulation diagram of the loop-closure. Supposedly, 6 scans 

around an object are captured with equal rotations. After the alignment process is done, 

we expect the poses of the scans to be as in right of Figure 3.13 . However, when the 

error is minimized between each subsequent frame, the poses of the scans look as in left 

of the figure. The error between scan 6 and scan 1 is very significant. This is due to the 

fact that alignment is optimized locally between subsequent scans without taking into 

account the global positioning. 

A practical result of this shown in Figure 3.14 . For visualization purposes the point 

cloud is meshed with Poisson algorithm. The figure zooms into the ear part of boy 

object. Since the loop closure has not been done properly, and the first (reference cloud) 

pose is significantly different than that of the last cloud, the ears (not only ears, the 

clouds as a whole) does not overlap. 



32 
 

Figure 3.13: Loop closure problem 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

Figure 3.14: Erroneous output mesh due to loop closure  

 

Source: This figure has been prepared by Bahtiyar Kaba. 
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3.5.3 Graph Based Global Alignment 

The loop closure problem stems from the fact errors are minimized locally leaving a 

large error between the last and first cloud that are supposed the close the loop. The 

solution, therefore, starts by suggesting to distribute this large error to all transformation 

evenly. An even distribution will prevent the error to accumulate in one place, and avoid 

the loop closure problem. One can argue that distributing the error will lead other 

transformations to be distorted; however, when the error is shared between all of them, 

its contribution will be negligible. 

Lu and Milios (1997) suggests a graph optimization approach to make this even 

distribution of error. The vertices of the graph are point clouds and the global 

transformation matrices regarding to a common world coordinate system. The edges of 

the graph represent the constraints between the vertices( point clouds) and have the 

correspondence data between them. The weight of an edge is measured by the distance 

of the correspondences for a particular metric. 

The algorithm uses ICP for pair wise error minimization with constraints defined by the 

global pose. These constraints are adjusted to keep edge weights between vertices 

globally even, thus preventing error accumulation on any of them.  

Figure 3.15 depicts this constrained error minimization in an example graph diagram. 

At the start of an iteration, assume the graph the structure is as in (a) and edge having a 

weight of 6 is being optimized. If the objective function only considers the pair of 

vertices of this edge, the result might be as in (b). Here, minimizing the error for one 

edge caused other edges to have higher weights since the global transformation matrices 

are modified for each of them. But if the minimization is constrained such that it will 

not go as low as to 2, and it will go 4 instead; the weights of other edges will not be 

altered too much as shown in (c). Therefore, the objective function of the ICP is 

constrained such that not to allow this kind of behavior. 
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Figure 3.15 Graph constrainted iteration, initial (a) , no constraints (b) , 

constrainted objective ( c) 

 
 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

Previously shown erroneous mesh mitigated by global based alignment is shown in 

Figure 3.16 .  

Figure 3.16 Globally optimal alignment: loop closure (a), globally optimal 

alignment(b) 

 

(a) 

 

(b) 

 

3.6 SURFACE RECONSTRUCTION 

3.6.1 Poisson 

Scanned clouds from different view angles around the object have been transformed to 

be aligned in a common reference(global) coordinate system and unified to produce an 

integrated cloud. The vertices of this cloud define a digitized representation of the real 

object sampled at discrete point. Figure 3.17 shows an example point cloud registered 

and concatenated from many point clouds . Depending on the application, the scanning 

process can be reported to have finished here.  
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Figure 3.17: Registered and concatenated point cloud 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

In this work, we aim to output polygonal mesh models which will contain the edge 

information together with the vertex data. To do this, the final ( registered, unified) 

cloud needs to be processed to find the faces of the polygons.  

Poisson reconstruction algorithm (Kazhdan et al. 2006) is a surface triangulating 

algorithm from oriented point sets (i.e. with normals). It uses the implicit function 

approach to define and solve the surface equation, and outputs a polyhedral mesh 

representation ( as triangulated faces ). 

A 3D indicator function χ, defined as 1 inside the surface model and 0 outside, is used 

to extract an iso-surface which will approximate the surface of the actual object. Now, it 
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is necessary to find this function. The gradient of the indicator function χ is constant for 

the most cases except along the surface. Therefore, the normals of the point set are like 

the samples of the gradient field of χ . Finding the function is possible by finding the 

function χ whose gradient best approximates the sample vector field ( the normals). A 

2D example of this scheme is represented in Figure 3.18 and a real world example is 

shown in Figure 3.19 . As the input to the algorithm a set of oriented points ( point 

cloud with normals) is given, which is then by processed with the given octree depth 

and produces the triangulated mesh (Figure 3.19). 

Equation (3.13) shows this relation mathematically. V denotes the vector field sampled 

by the input point clouds' normals. The objective is to minimize the distance between 

the gradient of the indicator and this vector field. However, V is generally not 

integrable, so some manipulation is necessary. If we consider a random point p, 

equation (3.13) suggests that the divergence of the gradient of χ should be equal to 

divergence of V around p. Without loss of generalization, equation (3.14) can be 

derived. The equation in this form is in the form of a Poisson equation (Winslow 1966).  

 minχ ∇𝜒 - V     →  ∇χ = V    (3.13) 

 

 Δχ ≡ ∇ . ∇ χ = ∇ . V    (3.14) 

 

Figure 3.18: Poisson 2D example 

 

Source: Kazhdan et al., (2006) Poisson surface reconstruction 

For implementation, the space can be partitioned into a regular grid, and calculations 

can be done on that quantization level. To capture finer detail, the resolution of the grid 
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can be increased but after some point it will become impractical ( memory constraints) . 

To keep fine detail intact and achieve practical execution, an octree representation is 

used. This octree will be given a maximum depth parameter. The octree will be 

generated such that the depth will be small for regions far from the surface ( because it 

is not important to keep lots of emtpy cells) and will approach max depth around the 

surface. 

For our experiments, we used the maximum depth parameter for getting and comparing 

results. The depth parameter will affect the detail of the output mesh. If higher values 

are given, the grid resolution around the surface will be higher and more detail will be 

captured. However, as we see in Figure 3.20, increasing detail will lead a lot of noise to 

contaminate the output. In the figure (a) shows the color image object that is scanned, 

the angle object, (b) is the output reconstructed model with depth set to 9. The 

resolution of the grid where the Poisson equation is solve is fine-grained. And as 

expected, the output mesh has too much crease. As the octree depth is lowered to 8 and 

7, the creases vanishes and output mesh becomes smoother. The mesh reconstructed 

with depth 7 is the smoothest and most visually appealing. 

Figure 3.19 Oriented point set(left) and application of Poisson depth 7(middle), 

depth 8(right) 

   

Source: This figure has been prepared by Bahtiyar Kaba. 
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Figure 3.20: Poisson algorithm with different max octree depths color image(a), 

depth 9 (b), depth 8 (c), depth 7 (d) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Source: This figure has been prepared by Bahtiyar Kaba. 
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The smoothing of the surface due to lowering octree depth poses another problem. 

While the noisy parts are removed, the high frequency detail that exists in the actual 

object might have been removed, too. Again in Figure 3.20, notice how the pits of the 

eyes of angel start to be less distinctive as the depth value is decreased. For another 

example, the navel (belly button) which can slightly observed in depth 9 and depth 8 

has completely disappeared at depth 7. 

 

3.6.2 Coloring 

Although it is not one of our primary objectives, we have tested a basic coloring scheme 

to our 3D reconstruction scheme. Kinect has an RGB sensor besides the depth sesnsor, 

and calibration parameters between these is known. Therefore, when the point clouds 

are captured, color information for each vertex is stored, too. When the triangulated 

mesh is built, vertices of the mesh is given the color of the nearest point in the input 

concatenated cloud. During renderin, the color of face is interpolated between its three 

vertices. An example output can be seen in Figure 3.21. 
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Figure 3.21: Color mapped mesh 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

3.7 3D SCANNER WITH KINECT 

With the algorithms we tested out , we describe the our scanner system setup. In Figure 

3.22, schematic representation of the system is given. In Appendix B, a pseudo code of 

the modules is presented. The depth maps are acquired with a Kinect sensor and 

bilateral filtering applied to them for smoothing and noise reduction. For later 

processing, normal values are estimated, too . Then, the acquired depth maps are back-

projected to 3D coordinates with camera calibration parameters of Kinect, the known 

rotation transformation are applied for coarse alignment. 

The unregistered point clouds is then processed to find correspondence information 

between them that will be used for registration. Then, the point clouds are placed into 

the graph based alignment algorithm setting the edge weights according to the estimated 
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correspondences. The alignment module transforms the point clouds onto a common 

world coordinate system, and outputs a concatenated(unified) point cloud. This unified 

cloud is ready for surface reconstruction for Poisson. In analysis and evaluation section, 

the comparisons are made based on the meshes that are reconstructed as described here. 

Figure 3.22: System setup schema 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

 

 

 

 

4. ANALYSIS AND EVALUATION 

In this chapter, we analyze the methods and algorithms that have been discussed 

previously and used in our system setup. 

4.1 FILTERING ANALYSIS 

On chapter 3, mean and bilateral filtering methods have been discussed and some 

analysis on them have been presented on the relevant sections. There we have 
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investigated how they perform on single depth maps and compared their accuracy 

values ( refer to the relevant sections for more insight).  

Here, we apply the filtering methods on the whole set of scans for the boy object and 

evaluate their performance. 

Figure 4.1 show how the effect of mean filtering occurs on the output point clouds. The 

scanned clouds are filtered with a mean kernel of sizes 3 (b), 5 (c) and 7 (d) . (a) shows 

the raw point cloud reconstruction for reference. The registered clouds with ICP, are 

then triangulated with Poisson algorithm with an octree depth of 8 and no post 

processing is done. As seen in (a) , Poisson algorithm is capable of removing some 

noise and smoothing the results, and it will be smoother with less detail as discussed in 

section 3.5 . In (b) , we see that we can remove some unwanted noise by keeping the 

detail at a certain level and without resorting to a lower octree depth in Poisson. (c) and 

(d) shows that we can continue to widen the kernel size for further smoothing. The 

visual inspection suggests that a kernel size of 5 is optimum because noise is removed 

greatly and as the kernel size gets wider the details start to be lost.  
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Figure 4.1: Raw (a) , mean filter with width 3 (b), mean filter with width 5 (c) , 

mean filter with width 7 (d) 

  

  

 Source: This figure has been prepared by Bahtiyar Kaba. 
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Figure 4.2: Bilateral filtering results. width = 3, σd = 3,  σr= 0.01 (a) ;   width=3, σd 

=3 , σr =0.03(b);    width = 5, σd =3,σr =0.01 (c);   widht=5, =3, σr =  0.005(d) 

  

  

Source: This figure has been prepared by Bahtiyar Kaba. 



45 
 

Figure 4.2 shows the reconstruction in the same manner. Some changes in the 

parameters are reflected in the results. Between (a) and (c) the width of the kernel size is 

changed. In (a) a lower kernel size produces a more detailed model and also the little 

noise level difference means we should not sacrifice detail with higher kernel size. 

Between (c) and (d), the depth range parameter is reduced to 0.005 from 0.01. The 

effect of this change is not very prominent but when looked carefully we see that 

reconstructed model (d) has slightly more distinctive creases. The actual difference 

occurs when the depth range parameter is increased to 0.03 from 0.01 between (a) and 

(b). Increasing the depth range parameter to 0.03 almost removed all the noise in 

exchange of fine detail. Notice how in (b) the eyes, the apple in the hand, the shoes are 

less realistic than that of (a).  

A quantitative analysis on performed on the filters with given parameters. In our 

previous analysis ( discussed in 3.3.3.1 and 3.3.3.2) , we concluded that accuracy results 

are improved when they have been applied on individual depth frames. Here, we make a 

similar quantitative analysis and calculate the accuracy, completeness and RMS errors 

of the output of the meshes. For these calculations the vertices of the mesh are used. 

Table 4.1 summarizes the results. 

In Table 4.1, green highlighted area presents the results of the filtering methods with 

different parameters whose mesh screenshots are presented previously in this section. 

Accuracy values for 75 and 85 per cents, completeness values in 5mm and 1cm (refer to 

section 3.2 for description) , and the total RMS error are calculated for each mesh 

output of the corresponding filter indicated in row headers. 

When we inspect the results we see that the quantitative measurements does not differ 

as much as the visual output changes. Also, the results of filtering does not make a 

substantial improvement compared to the raw output. 
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Table 4.1: Quantitative analysis of filtering methods 

 

Source: This table has been prepared by Bahtiyar Kaba. 

 

4.2 POISSON ANALYSIS 

The implementation of Poisson algorithm uses an octree whose maximum depth 

parameter can be set. This maximum depth parameter is the allowed octree depth near 

the surface of the reconstruction. Here, we will analyze how this depth parameter effects 

the output. 

We use our scanning system as described in section 3.6. In Figure 4.3, the application of 

Poisson filter with different depth parameters are shown. The increasing depth 

parameter decrease the smoothness of the output final model. For the reconstruction of 

this model, a depth parameter of 7 or 8 is good depending on the application, but 9 is 

too noisy. In Figure 4.3(a) , the laser scanned model with Konica Minolta VI 900 is 

shown. Now using this ground truth data, we make some error evaluation to compare 

how changing depth parameters performs. 

Figure 4.4 shows the color coded error for each of these models. For these colors to 

make sense, refer to Figure 4.5 which shows the histogram of the error map of 

reconstructed model with depth 7. The x-axis of the histogram shows the error 

difference in millimeters. A light green color corresponds to 0, yellow (1-3mm) , 

orange(4-8mm) and red ( > 8 mm). The darker green and blue correspond to negative 

values ( if the point is under the surface of ground truth ). Inspecting Figure 4.4, it can 

be seen that mesh with depth 7 has less red points, and the model with depth 9 has more 

red distributed over it. This supports that a mesh reconstructed with depth 9 is not 

satisfactory. Between (a) and (b) , there is not too much difference but the regions that  
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Figure 4.3: Poisson with different depths, ground truth (a), depth 7 (b), depth 8 (c), 

depth 9 (d) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Source: This figure has been prepared by Bahtiyar Kaba. 
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Figure 4.4: Color coded error maps for Poisson, depth 7 (a), depth 8 (b), depth (9) 

 

(a) 

 

(b) 

 

(c) 

Source: This figure has been prepared by Bahtiyar Kaba. 
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Figure 4.5: Histogram of the error map, Angel object, Poisson with depth = 7 

 

Source: This figure has been prepared by Bahtiyar Kaba. 

 

Table 4.2: Accuracy and RMS error for Poisson 

 Accuracy 80% Accuracy 90% RMS 

Depth 7 2.99 mm 4.02 mm 3.129 

Depth 8 2.92 mm 3.91 mm 3.351 

Depth 9 3.68 mm 4.98 mm 3.833 

Source: This table has been prepared by Bahtiyar Kaba. 

 

have red color ( problematic) are more distinctive in (b). We will see if that makes any 

difference in numbers. 

Back to the histogram in Figure 4.5, we see that a large portion of the error is distributed 

between -4 mm and 4 mm for depth 7. Similar histograms for other depth values can be 

found in Appendix A. This histogram indicates that we achieved a satisfactory results 

for our 3D scanning solution. 

In Table 4.2 the accuracy values for 80 and 90 per cent thresholds and the RMS error 

value for each depth is shown. Again, we see that depth 7 has better quantitative results 

than the others. However, the small difference among them is not what we expected 

from our inspection of the meshes and error maps visually. The accuracy value for 
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depth 9 is only marginally worse than the others ( around 1mm for 90 per cent 

threshold).  (Refer to Appendix A for more comparison results) 

The reason why the accuracy and visual results differs might be due to the number of 

vertices in each mesh. As described in 3.2.1, the accuracy is calculated by setting a per 

cent threshold, finding the greatest distance in the per cent. Therefore, when the number 

of vertices large ( as in model with depth 9 ) , the left-out points will also be numerous. 

Considering Figure 4.4 (c) , the red indicated regions could total up to 10 per cent of the 

entire mesh, therefore, will have no effect when the accuracy is calculated for 90 or 80 

per cent. A similar explanation is valid for the RMS error. It is calculated by the mean 

of squared distances, and even if many noisy points will have larger values, the good 

points will drive the RMS lower. Considering these facts, it is obvious that some other 

error metric is required to objectively compare quantitative results of meshing 

algorithms. 
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5. CONCLUSION REMARKS 

5.1 CONCLUSION 

In this thesis study, we have worked building a 3D scanning solution alternative to 

expensive laser scanners. We proposed a setup with Kinect and a controlled rotating 

stage. We have satisfactory results which have accuracy values of around 5 millimeters 

for 90 per cent of our cloud mesh outputs. 

Our contributions include a survey of active 3D range scanning where we have pointed 

the general architectural structure of 3D scanning. We have studied the algorithms for 

depth filtering, super resolution, alignment and surface reconstruction from point sets. 

We have also carried out experiments relating to filtering and surface reconstruction and 

compared the output visually and quantitatively with accuracy, completeness and RMS 

metrics.  

Based on our experimental results, we have proposed our scanning system. We have 

also evaluated how our scanning system output compares to the ground truth ( laser 

scanner).  

5.2 FURTHER RESEARCH 

During this work, we have studied several problems in the field of 3D scanning and 

proposed our system after evaluation of some previous work. In this section, we discuss 

the points that we believe necessary for further study on this area. 

3D reconstruction from color cameras and depth cameras have their advantages and 

disadvantages compared to each other. Color cameras are sensitive to illumination 

variations and does not give very reliable output, and depth cameras have low resolution 

output with noise. In the literature, color cameras are used to upsample the outputs of 

depth sensor and have positive results. However, a better approach can be to integrate 

their reconstruction results, that is, doing the optimization globally not on each frame. 

This could improve the overall output by allowing each to improve the other one's 

output iteratively. 

Mean filtering and bilateral filtering methods have been applied on depth maps to 

improve the reconstruction quality. More clever filtering methods can be incorporated, 

however, as we see in our experiments, the effect of filtering the depth maps will be up 

to some point. The surface reconstruction step can be used to filter some noise with 
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keeping details. Therefore, it is important to work on how these will affect the final 

output. 

We used accuracy measure in our quantitative analysis. But, as we saw in our 

comparisons with different octree depths in Poisson algorithm evaluation, it might not 

be a good metric to interpret quality. We have also measured completeness and RMS 

and both suffered the same problem with accuracy. So, we claim it is important to come 

up with another metric that will quantify the output mesh more descriptively. 

For alignment of the point clouds, we focused on rigid registration, i.e. no relative 

positions are not altered. However, even though filtering algorithms reduce noise to 

some extent, some of them still remains. After a rigid transformation of those noisy 

points, there occurs creases which negatively affect the reconstruction. Non-rigid 

deformations can help to solve this problem. A noisy region in an overlapping area can 

be fixed by the second cloud which has more correct data. Such algorithms can be 

integrated into the scanning procedure to see how they will work. 
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APPENDICES 

APPENDIX A-1. Laser scanning and our scanning results 

  

  

Laser scans ( left) and our results for boy and angel objects(right) 
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APPENDIX A-2. Color coded error comparison for boy and angel object with 

histogram 

 

Boy, octree depth 7 

 

Boy, octree depth 8 

  

RMS : 2.6872 

Accuracy 80% : 2.03 mm 

Accuracy 90% : 2.88 mm 
 

RMS : 2.7005 

Accuracy 80% : 1.97 mm 

Accuracy 90% : 2.62 mm 
 

Color coded error comparison 
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Boy, octree depth 9  

Angel, octree depth 7 

  

RMS : 2.787 

Accuracy 80% : 2.18 mm 

Accuracy 90% : 2.92 mm 
 

RMS : 3.129 

Accuracy 80% : 2.99 mm 

Accuracy 90% : 4.02 mm 
 

Color coded error comparison 
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Angel, octree depth 8 

 

Angel, octree depth 9 

  

RMS : 3.351 

Accuracy 80% : 2.92 mm 

Accuracy 90% : 3.91 mm 
 

RMS : 3.833 

Accuracy 80% : 3.68 mm 

Accuracy 90%  : 4.98 mm 
 

Color coded error comparison 
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APPENDIX A-3. Color coded error maps for Buddha and vase objects 
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APPENDIX A-4. Laser and our scanning result of Buddha 
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APPENDIX B-1. Pseudocode summary of our 3D reconstruction scheme 

The indicated functions are assumed to be implemented such as NormalEstimation or 

ReadDepthMap. In our system, we implemented some of these functions and used the 

implementations in PCL library for some of them.  

module Calibrate 

BEGIN 

 

InitKinect 

depthMap <-- KinectAPI.AcquireDepthFrame 

removeBackground( depthMap ) 

pointCloud <-- depthMap.Reproject( calibration_params) 

[plane1points, plane1params] <-- PlaneRANSAC(pointCloud) 

pointCloud.deletePoints(plane1points) 

[plane2points, plane2params] <-- PlaneRANSAC(pointCloud) 

axisParams <-- planeIntersect(plane1params, plane2params) 

 

return axisParams 

END 

 

module  ScanObject ( scanNumber, angle, axisParams ) 

BEGIN 

InitKinect 

FOR i <- 0 TO scanNumber 

depthMap <-- KinectAPI.AcquireDepthFrame 

removeBackground(depthMap) 

applyBilateralFilter(depthMap, 5, 3, 0.01) 

normalMap <-- estimateNormals(depthMap) 

pointCloudWithNormals <- reproject(depthMap, 

normalMap,calibration_params) 

rotateCloud(pointCloudWithNormals, angle*i) 

pointCloudSet.push(pointCloudWithNormals) 

sendRotateCommandToCOMPort(angle) 

END 

return pointCloudSet 

END 
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Module AlignSet(pointCloudSet) 

BEGIN 

FOR i<- 0 TO pointCloudSet.size-1 

corr <- estimateCorrespondence( pointCloudSet[i], 

pointCloudSet[i + 1] ) 

graph.insertEdge ( pointCloudSet[i], pointCloudSet[i + 1], 

corr ) 

END 

 

corr<- estimateCorrespondence(pointCloudSet.last, 

pointCloudSet.first) 

graph.insertEdge(pointCloudSet.last, pointCloudSet.first, corr) 

 

ICPRegisterWithGraph(graph) 

 

return graph.ConcatenatedPointCloud 

END 

 

 

Module ReconsturctMesh(pointCloud, depth) 

BEGIN 

downSamplePointCloud(pointCloud, 0.0001) 

octree<- generateOctree(pointCloud, depth) 

mesh <- Poisson(octree) 

 

return mesh 

END 
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Main Module 

BEGIN 

axisParams <- Calibrate 

pointCloudSet <- ScanObject(36, 10, axisParams) 

pointCloud <- AlignSet(pointCloudSet) 

mesh <- ReconstructMesh(pointCloud, 7) 

END 

 


