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ABSTRACT

IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY FOR WIRELESS SENSOR
NETWORKS

Utku Gülen

COMPUTER ENGINEERING
Thesis Supervisor: Asst. Prof. Dr. Selçuk BAKTIR

1 September 2014, 39 Pages

In this work, elliptic curve cryptography (ECC) is implemented in the frequency do-
main on the constrained MSP430 microcontroller widely used in wireless sensor networks
(WSN). 169-bit ECC implementation performs a scalar point multiplication in only 1.55

and 0.77 s for multiplication of random and fixed points, respectively. The timings are
similar to or faster than existing implementations on the same platform. Furthermore,
an alternative implementation of ECC, without utilizing hardware multiplier support is
achieved for low-power applications on WSNs. Surprisingly, the implementations with-
out hardware multiplier support were only 21.9 percent and 22.1 percent slower than with
hardware multiplier support, for random and fixed point multiplication, respectively. This
is the first ever practical software implementation of ECC in the frequency domain on a
constrained low-power microcontroller without hardware multiplier support.

Keywords: Elliptic Curve Cryptography, Wireless Sensor Networks, Discrete Fourier
Transform, MSP430, Microcontroller,
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ÖZET

KABLOSUZ SENSÖR AĞLARINDA ELİPTİK EĞRİYLE ŞİFRELEMENİN
UYGULANMASI

Utku Gülen

Bilgisayar Mühendisliği
Tez Danışmanı: Yrd Doç. Dr. Selçuk BAKTIR

1 Eylül 2014, 39 Sayfa

Bu çalışmada, sınırlı işlem kapasitesine sahip MSP430 mikrodenetleyicileri için frekans
bölgesinde Eliptik Eğriyle şifreleme (ECC) uygulaması yapılmıştır. MSP430, Kablosuz
Sensör Ağları’nda (WSN) çokça kullanılan bir mikrodenetleyicidir. Yaptığımız çalışmada,
169 bit ECC için, rastlantısal ve sabit nokta çarpımı sırasıyla 1.55s ve 0.77s sürmektedir.
İşlem zamanlamaları aynı platformu kullanan diğer çalışmalara göre hemen hemen aynı
veya daha hızlıdır. Ayrıca bu çalışmada ECC’yi, düşük güç tüketimi amaçlayan WSN
uygulamaları için, MSP430 içinde bulunan donanımsal çapma birimini kullanmadan da
gerçekledik. ECC’de kullanılan rastlantısal ve sabit nokta çarpma işlemleri, donanımsal
çarpma birimi kullanmadan sırasıyla yüzde 21.9 ve yüzde 22.1 daha yavaş çalışmaktadır.
Bu çalışmadaki ECC yazılımı, sınırlı performansı olan mikrodenetleyicilerde frekans
bölgesi işlemleri kullanılarak gerçeklenmiş ilk uygulamadır.

Anahtar Kelimeler: Eliptik Eğriyle Şifreleme, Kablosuz Sensör Ağları, Ayrık Fourier
Dönüşümü, MSP430, Mikrodenetleyici
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1. INTRODUCTION

Wireless sensor networks (WSN) have many applications [Akyildiz et al. (2002), Akyildiz

and Can Vuran (2010)], including battlefield reconnaissance, emergency rescue opera-

tions, surveillance and environmental monitoring, e.g. forest fires, air pollution, humidity,

etc. In WSN nodes, for economic reasons and power constraints, typically cheap de-

vices with a tiny microcontroller are used. These tiny devices are usually spread around

in the field and vulnerable against potential attacks. In applications where these devices

communicate sensitive data to each other, providing security and privacy is essential.

Data confidentiality can easily be achieved by using symmetric-key cryptographic algo-

rithms, however distribution of the symmetric key remains a problem, and can be over-

come most effectively by utilizing public-key cryptography [Diffie and Hellman (1976)].

RSA [Rivest et al. (1978)] and elliptic curve cryptography (ECC) [Koblitz (1987), Miller

(1986)] are the two most popular public-key cryptographic algorithms. RSA requires us-

ing at least a 1024 bit long key which necessitates computations over 1024 bit operands.

For the same level of security, ECC requires a 160 bit key and computations over 160 bit

numbers. WSN nodes usually run on battery and hence power efficiency is an important

criterion for cryptographic algorithms to be practically run on these devices. Furthermore,

these are tiny devices with usually minimal storage available. ECC is computationally less

costly and requires less storage due to its shorter key size. Therefore, it is considered the

public-key cryptographic algorithm of choice for WSNs [Walters et al. (2007), Zhou et al.

(2008)].

The underlying finite field arithmetic is a determining factor in the efficiency of an ECC

implementation. In ECC implementations, projective coordinates are typically preferred

to avoid costly inversion operations, therefore multiplication remains as the most time-

consuming arithmetic operation. Any speed-up in the multiplication operation would

directly contribute to a speedup in an ECC implementation. A 160 bit multiplication,

e.g. for implementing ECC, is realized by performing around 100 word addition and

100 word multiplication operations, using the classical schoolbook method, on a 16 bit

microcontroller. On a constrained microcontroller, a word multiplication usually takes

several times longer to execute than a word addition. This usually holds true even when

1



the constrained microcontroller has a built-in hardware multiplier circuitry and a related

multiply instruction. For instance, on the MSP430 microcontroller, a 16 bit multiplication

operation takes 14 clock cycles using its hardware multiplier, whereas a 16 bit addition

operation takes only 1 clock cycle. And if an on-board hardware multiplier is not avail-

able, or it is available but not used, e.g. for power efficiency, a word multiplication is

achieved through a sequence of shift and add instructions which would take up to 100

clock cycles.

In this work, we implemented ECC by performing the required finite field multiplica-

tion operation in the frequency domain, using a discrete Fourier transform (DFT) based

algorithm. Multiplication in the frequency domain is potentially more efficient for imple-

mentations on constrained microcontrollers since they typically require a small number

of word multiplications, in addition to a large number of simpler operations such as ad-

dition. Frequency domain arithmetic was shown to be efficient for constrained hardware

implementations of ECC [Baktir et al. (2007)]. A hardware architecture for large inte-

ger multiplication in the frequency domain was proposed in [Kalach and David (2005)].

However, the authors presented only analytical results, claiming their proposed hardware

multiplier architecture is more efficient than multiplication with the classical method for

the operand size of 4096 bit or longer. No implementation results were provided for timing

performance or circuit area. In [Baktir and Sunar (2008), Baktir (2008)], analytical results

for the implementation of frequency domain inversion for ECC were provided, however

no implementation results were given. Frequency domain arithmetic was also proposed

for lattice-based cryptography in [Göttert et al. (2012), Pöppelmann and Güneysu (2012),

Aysu et al. (2013), Güneysu et al. (2012)]. In [Chen et al. (2012)] and [Yao et al. (2010)],

hardware architectures were proposed for modular multiplication in the frequency domain

for RSA bitlengths, and actual implementation results were given. Finally, a frequency

domain hash function was proposed in [Cheung et al. (2009)]. A method for frequency do-

main multiplication for ECC was proposed in [Baktir and Sunar (2006a)], however only

theoretical complexity figures were given and no actual implementation results. While

point multiplication with random points is more general, point multiplication with a fixed

point is much faster and commonly used for digital signature generation with the ECDSA.

With this work, we present efficient software implementations of ECC, for point multi-

plication with both random and fixed points, on a constrained low-power microcontroller

2



without hardware multiplier support by using frequency domain multiplication. To our

knowledge, this is the first work that presents a practical software implementation of ECC

in the frequency domain on a constrained microcontroller without hardware multiplier

support.
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2. WIRELESS SENSOR NETWORK APPLICATIONS

Wireless sensor networks (WSN) are widespread and enabling technologies, applicable

almost every part of people’s lives. A WSN consists of nodes which are tiny, cheap and

low power constrained and communicate with each other via radio transceivers [see figure

2.1]. WSN nodes usually have a microcontroller to process data. Designing a WSN for an

application requires to fulfill several factors such as hardware limitations, error tolerance,

cost of the devices [Akyildiz and Can Vuran (2010)]. In terms of hardware limitations,

power efficiency is the main concern in a WSN. In a wide range of WSN applications,

the architecture of the network topology and protocols which are used can vary according

to specifications. While WSN applications expand increasingly, new protocols and algo-

rithms are still being developed to provide higher scalability and advanced topologies.

Figure 2.1: A Sensor node

Reference: www.comsys.rwth-aachen.de/teaching/ss-12/wireless-sensor-networks-lab/
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Diverse sensor nodes monitor different environmental conditions such as traffic, stress,

temperature, humidity, etc. depending on the application. Thus wireless sensor networks

can be deployed on land, to prevent forest fire , underground, to measure seismic activi-

ties, underwater, to help fishery. WSN can be used on animals to track their movements

i.e. ZebraNet is a system helps biologists to monitor zebras migration in a year [Zhang

et al. (2004)]. Using the wireless sensor nodes in a large scale environment complicates

to refresh them, hence sensor nodes which are equipped with solar power are very ad-

vantageous if the application is power efficient. Beyond monitoring nature, in a city,

wireless sensor networks benefit people life through traffic, home and office applications

[see figure 2.2].

Figure 2.2: A wireless sensor network in a city

Reference:www.fujitsu.com/global/solutions/business-technology/intelligent-society/sensor-

network/future/

Another promising area for WSN is health applications. Patient monitoring, alerting sys-

tems for infants, perception sensors for handicapped people, tracking implanted biomed-

ical devices and medicine administration in hospitals are some applications. Advances in

WSN technology in health applications may improve health care system remarkably and

help save thousands of lives in the near future hopefully.
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Military applications using sensor nodes are one of the earliest usages of WSNs. Battle-

field surveillance, reconnaissance, enemy and assault detection are already used in WSN

applications. WSN applications are also suitable for the battlefield area, since nodes are

low cost and tiny devices which are dispensable. With the help of WSN, the protection of

military personnel from hazardous situations and development of unmanned systems and

vehicles for military actions are aimed.

In industry, WSNs offer many solutions in process control, inventory management, ma-

chine monitoring, chemical compounds measuring, structural health monitoring, etc. Their

low cost, ease of deployment and accuracy makes WSN preferable for the applications in

industry.

2.1 SECURING WSN

Since a wide variety of applications on sensitive areas such as military, health and en-

vironmental prevention, a WSN should be protected against possible threats. Although

providing security in a WSN means additional computations over constrained resources,

implementing cryptosystems for sensor nodes is a necessity. Efficient cryptosystems for

security protocols on WSN should consider processing, storage and power limitations to

be useful. Our work presents such a cryptosystem, applicable and efficient, to perform in

numerous applications of WSNs.
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3. ELLIPTIC CURVE CRYPTOGRAPHY

Security in a system intends the following objectives in a communication:

a. Confidentiality: Keeping the message from unauthorized third parties,

b. Integrity: Detecting whether the message has been altered or not,

c. Authentication: Validating the source of a message and identity of the sender,

d. Non-repudiation: Preventing the denial of message sender.

Cryptosystems are categorized into two: Private key (symmetric) and public key (asym-

metric) cryptography. Elliptic curve cryptography (ECC) is a relatively recent public key

cryptosystem. ECC was proposed by Neil Koblitz [Koblitz (1987)] and Victor Miller [Miller

(1986)] in 1985. Elliptic curve protocols were accredited by standards organizations in

late 90’s and come have been used commonly in security protocols. Considerably shorter

key size for ECC (at least 160 bit) makes it a preferable option among the other cryp-

tosystems. Cryptosystems are based on one way functions or mathematical problems

hard to solve e.g. factorization of large integers, discrete logarithm problem. ECC based

on discrete logarithm problem also allows it to be applicable for other discrete logarithm

protocols easily such as Diffie-Hellman key exchange. Choosing the cryptosystem for a

specific application must be done considering a few criteria. Functionality, security and

performance are important factors in security applications. ECC fulfills functionality as

being a public key cryptosystem thus it’s convenient to use in existing protocols. Security

in ECC depends on the discrete logarithm problem and 160 bit key size for it provides 80

bit level of security. For instance, RSA is another popular public key cryptosystem and

requires 1024 bit keys to reach the same level of security. ECC benefits from its smaller

key size while the performance in an implementation highly dependent on ECC group

operations (point addition and doubling operations over curves) while performing it.
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3.1 CRYPTOGRAPHIC PROTOCOLS BASED ON ECC

Elliptic curve cryptography is based on discrete logarithm problem to provide security for

the protocols. Elliptic curves are defined over finite fields and since the finite field is a

multiplicative cyclic group, all elements of the field can be generated from the primitive

elements. This allows to create elliptic curve discrete logarithm problem (ECDL) for

ECC. ECDL can be defined if P is a point on elliptic curve E of order of n − 1 over a

finite field of GF (q), P can be obtained by primitive element R, in k steps as shown in

equation 3.1:

R.k ≡ P mod n (3.1)

The ECDL problem is basically the problem of obtaining k back while R, P and n are

known. It creates a one-way function due to easy forward computation P but hard reverse

calculation, obtaining k. Naively, ECDL problem can be solved by trying all the possibil-

ities for k. If the order of the field is (n−1), the number of possibilities for k is n−1. It’s

assumed that it takes n/2 steps to guess k on average. If k is chosen large enough i.e. 160-

bit, it would take a very long computation by time. However there exist more effective

attacks to the discrete logarithm problem than the naive method. Shank’s baby step-giant

step method, Pollards-Rho method, Pohlig-Hellman algorithm and index calculus method

are well known faster attacks to the discrete logarithm problem. Nevertheless choosing

the elliptic curve parameters carefully (as recommended by NIST or IEEE) and obtaining

key size of at least 160-bit, provides security for ECC protocols currently.

3.1.1 ECC Key Exchange

Secure communication over an insecure channel needs a shared private key between the

users to encrypt their messages. Key exchange protocols allow sharing private keys with

another user in a reliable way and yield a shared private key between the entities. Thus

users who have the same private key can encrypt their messages and use an insecure

channel to communicate. The most famous key exchange protocol, Diffie-Hellman key

exchange algorithm, was proposed in 1976 [Diffie and Hellman (1976)]. For ECC there

8



are several protocols used for key exchange. Elliptic curve Diffie-Hellman (ECDH) key

exhange, ECMQV are the best known, standardized protocols using widely.

3.1.2 ECC Signature Algorithms

Digital signature algorithms cover functionality of a cryptosystem in aspect of integrity,

authentication and non-repudiation. Insecure channels i.e. web services require such se-

curity services. With the RSA algorithm presented by Ronald Rivest, Adi Shamir and

Len Adleman, digital signatures can be produced [Rivest et al. (1978)]. ElGamal signa-

ture scheme, Rabin signature scheme, Schnorr signature algorithm and digital signature

algorithm (DSA) are famous signature protocols. Elliptic curve digital signature algo-

rithm (ECDSA) derived from DSA and widely used for applications.

3.1.3 ECC Encryption

Although public key cryptography encryption performs slower compared to private key

cryptography, it is utilized to encrypt crucially important and relatively smaller data e.g.

bank account password, personal information, etc. Using public key encryption over

insecure channels while sharing session keys, password etc., private key encryption may

use in same application while dealing larger data. Thus both performance and security

can be provided.

3.2 FINITE FIELDS

In ECC, messages to be encrypted, or digitally signed, are represented as elements of

a finite field, and cryptographic operations on these messages are realized through a se-

quence of finite field arithmetic operations. The finite field representation that is used

influences the performance of an ECC implementation. Finite fields also known as Galois

fields (GF ) are cyclic abelian groups which have limited number of elements. Arithmetic

operations defined over a finite field such as multiplication/divison and addition/subtrac-

tion have identity elements also called neutral elements. Arithmetic operations satisfy the

9



law of distribution over the finite field [Hankerson et al. (2003)]. Size of a finite field

determined by total number of elements over the finite field and also called the order of

the finite field. For a finite field GF (q) of order q, the order should be power of a prime

number i.e. q = pk where p is a prime number and k ∈ Z. In ECC, implementations usu-

ally use three kinds of finite fields: prime fields, binary fields and extension fields. Since

elliptic curve cryptography is performed over finite fields, the field used effects arithmetic

operations considerably.

If q is the order of a finite field and equals q = pk where p is a prime and k = 1, the finite

field called a prime field and represented as GF (p), where p is called the modulus of the

field and all finite field operations over the prime field need to be reduced with p.

If the order of a finite field is formed as a power of two e.g. q = 2m, the field GF (2m)

is called a binary field. Here, m is usually selected to be larger than 160 bits in length to

provide secure ECC keys. The elements of a binary field are binary polynomials which

can be of degree m− 1 at most. Finite field arithmetic over binary fields are achieved via

bitwise operations such as bitwise exclusive or, bitwise and, logical right and left shifts.

Multiplication of the binary polynomials over binary field are performed with reduction

by an irreducible polynomial f(x).

Extension fields GF (pm) are combination of binary and prime fields. As noticed, select-

ing p = 2 or m = 1 transforms the extension field to binary field or prime field. If p and m

are selected considering hardware specification of the implementation, i.e. p smaller than

a word size of the processor, finite field arithmetic in the field would perform optimally.

Thus an optimal extension field (OEF) defined as a finite field which specially chosen for

application itself and it’s hardware. Reduction modulo p as prime fields and irreducible

polynomial f(x) as binomial are used in OEF arithmetic. GF (p) is the base field for an

OEF GF (pm). Base fields are subgroups of OEFs and each element of GF (pm) which

are polynomials, consist of coefficients over base field GF (p).
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3.3 ELLIPTIC CURVE GROUP OPERATIONS

An elliptic curve over a field GF (q) is defined as a set of all pairs (x,y), that satisfy the

following equation :

y2 = x3 + a.x+ b (3.2)

where x,y ∈ GF (q) and the discriminant of the equation is different from zero. Equation

given in (3.2) also called Weierstrass equation[Hankerson et al. (2003)]. Figure 3.1

shows an elliptic curve over real numbers R.

Figure 3.1: y2 = x3 − x

Reference: [Hankerson et al (2003)]

In elliptic curve cryptography, curves are defined over finite fields thus points are ele-

ments of GF (q). Point multiplication on an elliptic curve builds the cryptosystem. To

achieve point multiplication, group operations, point addition and point doubling have to

be performed consecutively . If P =(x1,y1) and Q = (x2,y2) ∈ GF (q) point doubling is

11



simply P+P = 2P = R and point addition is R= P+Q where R ∈ GF (q) according to

the group law. Geometric representation of group operations presented in figures 3.2a and

3.2b.

Figure 3.2: Group operations over an elliptic curve

a Point doubling b Point addition

Reference: [Hankerson et al (2003)]

Group law over an elliptic curve E: y2=x3+ ax+ b can be defined with following expres-

sions[Hankerson et al. (2003)]:

i. Point at infinity Q is the identity for group operation. e.g P+Q = P = Q+P

ii. Negative of a point P (x1,y1) is −P (x1,−y1) and (P )+(−P ) = Q.

iii. Doubling the point P (x1,y1) ⇒ 2P (x3,y3) can be achieved from following equa-

tions:

x3 = (
3x2

1 + a

2y1
)2 − 2x1 , y3 = (

3x2
1 + a

2y1
)(x1 − x3)− y1. (3.3)
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iv. Point addition of P (x1,y1) and Q(x2,y2)⇒ R(x3,y3) can be achieved from the fol-

lowing equations:

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2 , y3 = (
y2 − y1
x2 − x1

)(x1 − x3)− y1. (3.4)

3.3.1 Point Representation on Projective Coordinates

Point operations for Weierstrass equation y2 = x3 + a.x + b were presented in sec-

tion 3.3 previously. In 3.3, point addition and doubling formulas given straightforwardly

for affine coordinates. In group operations there are division (or inversion) operations and

divisions are the most computationally expensive operations compared to multiplication

or addition/subtraction. Projective coordinate representation of the points can be used

beneficially to avoid complex division/inversion operations. Affine coordinates represen-

tation of a point over the finite field GF (q) defined as :

Point P (x, y) on E : y2 = x3 + ax+ b (3.5a)

Negative of P (x, y) : P ′(x,−y) (3.5b)

Point at infinity Q : (0, 1) (3.5c)

and projective coordinates have another coordinate Z for point representation:

(x, y)→ (X/Z, Y/Z) , where Z ̸= 0 (3.6a)

Point P (X, Y, Z) on E : Y 2Z = X3 + aXZ2 + bZ3 (3.6b)

Negative of P (X, Y, Z) : P ′(X,−Y, Z) (3.6c)

Point at infinity Q : (0, 1, 0) (3.6d)

The third coordinate Z holds the inverse values in point operations, thus inverse and direct

value calculations occur separately. As a result, the product of point operations obtained

also in projective coordinates and can be transform back to affine coordinates easily with
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only two division by Z. Since, more division operations are eliminated while computing

in projective coordinates, using projective coordinates effect performance significantly.
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4. OUR ECC IMPLEMENTATION

In this work, we implement ECC over GF (pm) using the Optimal Extension Field (OEF)

representation [Bailey and Paar (1998, 2001)]. A finite field of the form GF (pm) is con-

sidered secure for implementing ECC, when the field extension degree m chosen to be

a prime [Hankerson et al. (2003)]. In the implementation of ECC over GF (pm), a large

number of finite field arithmetic operations, such as multiplication, inversion, addition

and subtraction, are performed in GF (pm). Inversion, the slowest arithmetic operation in

ECC, can be avoided if projective coordinates are used. Hence, if we do not count inver-

sion, multiplication remains the most costly arithmetic operation in ECC and any speedup

in the multiplication operation would directly improve the speed of an ECC implementa-

tion. Our ECC implementation performs finite field operations in the frequency domain

to speed up modular multiplication.

4.1 FREQUENCY DOMAIN REPRESENTATION AND FINITE FIELD ARITH-
METIC

Elements of GF (pm) are represented by polynomials of degree m − 1, with coefficients

in GF (p). E.g., A ∈ GF (pm) is represented as

A =
m−1∑
i=0

aix
i = a0 + a1x+ a2x

2 + . . .+ am−1x
m−1 (4.1)

where ai ∈ GF (p). Addition/subtraction of A and B, both elements of GF (pm), is

performed in only linear time by pairwise addition/subtraction of polynomial coefficients,

i.e equation 4.2.

C = A±B =
m−1∑
i=0

(ai ± bi)x
i mod p. (4.2)
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Multiplication of A and B, both elements of GF (pm), is performed by first computing

the polynomial product

C ′ = A ·B =
2m−2∑
i=0

c′ix
i (4.3)

and then the modular reduction

C = C ′ mod P (x) (4.4)

Using OEFs, the modular reduction C = C ′ mod P (x) has only linear, i.e. O(m), com-

plexity. However, the polynomial multiplication C ′ = A ·B =
∑2m−2

i=0 c′ix
i has quadratic,

i.e. O(m2), complexity using the classical schoolbook method.

We perform finite field arithmetic operations, such as addition, subtraction and multipli-

cation, all in the frequency domain. To facilitate finite field arithmetic in the frequency

domain, one needs to first convert finite field elements to their frequency domain repre-

sentations. Using the Number Theoretic Transform (NTT) [Pollard (1971)], the frequency

domain representation of an element in GF (pm) can be computed as following equations:

a(x) = a0 + a1x+ a2x
2 + . . .+ am−1x

m−1 (4.5)

in GF (pm), is represented with the following sequence after appending d − m zeros to

the end, where d ≥ 2m− 1 is length of the NTT.

(a) = (a0, a1, a2, . . . , am−1, 0, 0, . . . , 0) (4.6)

The frequency domain representation (A) of the time domain sequence (a) is obtained

with the NTT computation:

Aj =
d−1∑
i=0

air
ij, 0 ≤ j ≤ d− 1 (4.7)
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The time domain representation (a) can be obtained similarly, from the frequency domain

representation (A), by with the inverse NTT computation:

ai =
1

d
·
d−1∑
j=0

Ajr
−ij , 0 ≤ i ≤ d− 1 (4.8)

In an NTT computation of length d, a dth primitive root of unity, denoted as r, is needed.

We use r = −2 ∈ GF (p) in this work.

4.2 FINITE FIELD MULTIPLICATION IN THE FREQUENCY DOMAIN

We perform Montgomery multiplication in GF (pm), in the frequency domain, using the

DFT modular multiplication algorithm [Baktir and Sunar (2006b)]. The discrete Fourier

transform (DFT) [Tolimieri et al. (1989), Burrus and Parks (1985)] operation over a finite

field, as applied in the DFT modular multiplication algorithm, is the same operation as

the NTT. The inputs to the DFT modular multiplication algorithm are two elements in

GF (pm), represented in the frequency domain, and the output is the frequency domain

representation of their Montgomery product [Montgomery (1985)].
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Algorithm 4.1 DFT Modular Multiplication

Input: (A) ≡ a(x) ∈ GF (pm), (B) ≡ b(x) ∈ GF (pm), (P ′) ≡ P (x)/P (0) mod p.

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod P (x)

1: for i = 0 to d− 1 do
2: Ci ← Ai ·Bi mod p

3: for j = 0 to m− 2 do
4: S ← 0

5: for i = 0 to d− 1 do
6: S ← S + Ci mod p

7: S ← −S/d mod p

8: for i = 0 to d− 1 do
9: Ci ← (Ci + P ′

i · S) ·X−1
i mod p

10: Return (C)

Reference: [Baktir and Sunar (2006b)]

We give Algorithm 4.2 which is an optimized form of the DFT Modular Multiplication

algorithm [Baktir and Sunar (2006b)]. Algorithm 4.2 facilitates the Fast Fourier Trans-

form (FFT) to speed up Algorithm 4.2. All the parameters here are in their frequency

domain representations and GF (pm) multiplication is realized in the frequency domain.

The parameters used in the algorithm are the input operands a(x), b(x) ∈ GF (pm) and

the Montgomery product is:

c(x) = a(x) · b(x) · x−(m−1) mod P (x) ∈ GF (pm) (4.9)

The time domain sequences for these parameters are (a), (b) and (c), and the correspond-

ing frequency domain sequences are (A), (B) and (C). In the algorithm, a Mersenne

prime, of the form p = 2n − 1, is used as the field characteristic and the field exten-

sion degree is selected as m = n. In this setting, for obtaining the frequency domain

sequences (A) and (B), the NTT with length d = 2m and the r = −2 ∈ GF (p) is used.

This specialized NTT computation, modulo a Mersenne prime, is called the Mersenne

transform [Rader (1972)]. Note that in the optimized DFT modular multiplication al-
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gorithm, only a linear number of GF (p) multiplications are performed, in addition to a

quadratic number of simple addition/subtraction and bitwise rotation operations.

Algorithm 4.2 DFT Modular Multiplication algorithm optimized for p = 2n − 1, m odd,
m = n and P (x) = xm − 2

Input: (A) ≡ a(x) ∈ GF (pm), (B) ≡ b(x) ∈ GF (pm)

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod P (x) ∈ GF (pm)

1: for i = 0 to d− 1 do
2: Ci ← Ai ·Bi mod p

3: for j = 0 to m− 2 do
4: S ← 0

5: for i = 0 to d− 1 do
6: S ← S + Ci mod p

7: S ← −S/d mod p

8: Se ← S/2 mod p

9: So ← S + Se mod p

10: for i = 0 to d/2− 1 do
11: Ci ← (Ci + Se)/2

i mod p

12: Ci+1 ← −(Ci+1 + So)/2
i+1 mod p

13: Return (C)

Reference: [Baktir et al. (2007)]

4.3 IMPLEMENTING ECC ON MSP430

The read/write instructions from/to the memory has a significant impact on the efficiency

of arithmetic operations on MSP430. MSP430 has a RISC architecture with only 27

instructions and 7 addressing modes, and the adressing mode that is used determines the

number of clock cycles for an instruction execution. Instruction execution takes less clock

cycles using the register addressing mode, however there are only 12 general purpose

registers are available. We used these 12 registers for storing our operands as much as

possible to make our implementations faster. And to eliminate extra clock cycles, we

stored frequently used constants in these registers.
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For implementing the ECC, we use the finite field GF (pm) with the Mersenne prime

field characteristic p = 213 − 1 and the extension degree m = 13. We implement ECC

in the frequency domain, and use the NTT length d = 26 and the dth primitive root of

unity r = −2 ∈ GF (213 − 1). Note that, for r = −2 and p = 213 − 1, multiplications

in GF (p) with powers of r, as required in Algorithm 4.1, turn into multiplications with

powers of −2 (see Algorithm 4.2), and can be achieved with only a simple bitwise rota-

tion, in addition to a negation if r has an odd power. In our ECC implementations, we use

the projective coordinates, therefore inversions are avoided and the only arithmetic op-

erations required are addition, subtraction and multiplication. In the frequency domain,

one can achieve addition and subtraction very easily, by pairwise addition/subtraction

of frequency domain coefficients, which are elements of GF (213 − 1). We performed

multiplication in GF ((213 − 1)13) using the DFT modular multiplication algorithm. All

operations needed for implementing the DFT modular multiplication algorithm are mod-

ular addition, subtraction, multiplication and rotation operations in GF (213 − 1). Hence

efficient implementation of GF (213 − 1) arithmetic is critical. On the MSP430 micro-

controller, we implemented modular multiplication in GF (213−1) both with and without

hardware multiplier support.

4.3.1 Addition and Subtraction in GF (p)

In our ECC implementations, GF (213 − 1) addition/subtraction is the most commonly

used operation. Note that modular subtraction in GF (213 − 1) is the similar to addition,

where an additional “xor” instruction is applied to flip the bits of the sum, and costs 1

extra clock cycle than addition. We allocate two registers to store constant values for

masking and checking the Most Significant Bit (MSB) of operands during these opera-

tions. We realize modular addition and subtraction in GF (213−1) in 4 and 5 clock cycles,

respectively, using the following Assembly codes.
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Assembly Code 1: Modular addition

ADD R15 , R14

BIT R11 , R14 ; (R11=0x2000)

ADC R14

AND R13 , R14 ; (R13=0x1FFF)

Reference: Utku Gülen, Selçuk Baktır (2014)

Assembly Code 2: Modular Subtraction

XOR R13 , R14 ; (R13=0x1FFF)

ADD R15 , R14

BIT R11 , R14

ADC R14

AND R13 , R14

Reference: Utku Gülen, Selçuk Baktır (2014)

4.3.2 Modular Multiplication in GF (p)

It is crucial to perform modular multiplication in GF (213 − 1) efficiently, since it di-

rectly influences the efficiency of multiplication in GF ((213 − 1)13). We consider two

approaches for modular multiplication to satisfy possible constraints for power efficiency

or timing performance. There is a 16-bit hardware multiplier available on most MSP430

microcontrollers. This hardware multiplier can be used for achieving modular multiplica-

tion in less clock cycles, with the drawback of higher power consumption.

There is no multiplication instruction in the MSP430 instruction set, in spite of the avail-

able 16-bit hardware multiplier. The cost of 16-bit multiplication using the hardware

multiplier is just the cost of the write/read operations to/from the special function registers

for the hardware multiplier. Utilizing the hardware multiplier, a 16x16-bit multiplication

can be achieved in 14 clock cycles. Our implementation of modular multiplication in

GF (213 − 1) using the hardware multiplier takes 26 clock cycles. We perform modular
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reduction after reading the 26-bit product from the hardware multiplier, as described with

the following Assembly routine.

Assembly Code 3: Modular multiplication in GF (213 − 1) using hardware
multiplier support

MOV R14 , &MPY ; LOAD OPERANDS TO REGISTERS

MOV R15 , &OP2

MOV &RESLO , R14 ; GET BYTES OF PRODUCT

MOV &RESHI , R15

MOV R14 , R10 ; PERFORM MODULAR REDUCTION

RLC R10

RLC R15

RLC R10

RLC R15

RLC R10

RLC R15

AND R13 , R14 ; (R13 = 0X1FFF)

ADD R15 , R14

BIT R11 , R14 ; (R11 = 0X2000)

ADC R14

AND R13 , R14

Reference: Utku Gülen, Selçuk Baktır (2014)

We achieved multiplication in GF (213 − 1) both with and without hardware multiplier

support. In our first approach, we made used hardware multiplier support. And in our

second approach, instead of using hardware multiplier support, we achieved the required

13-bit multiplication operation by performing a sequence of additions. In this approach,

all the bits of one operand are scanned through. If the scanned bit is 1, the other operand

is added to the partial product, and then the partial product is shifted. We postponed

the modular reduction operation until after the 26-bit integer product is computed. Our

implementation of multiplication in GF (213 − 1) without hardware multiplier support

takes 90 clock cycles on average, depending on the Hamming weight of the multiplier.

We present the second approach with the following assembly routine.
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Assembly Code 4: GF (213 − 1)

multiplication without hardware
multiplier support

CLR R4

CLR R5

MOV @R12+ , R6

MOV @R13+ , R7

RLA R6

RLA R6

RLA R6

RLA R6

JNC DONEAB1

ADD R7 , R4

DONEAB1: RLA R4

RLA R6

JNC DONE1AB1

ADD R7 , R4

DONE1AB1: RLA R4

RLA R6

JNC DONE2AB1

ADD R7 , R4

DONE2AB1: RLA R4

RLC R5

RLA R6

JNC DONE3AB1

ADD R7 , R4

ADC R5

DONE3AB1: RLA R4

RLC R5

RLA R6

JNC DONE4AB1

ADD R7 , R4

ADC R5

DONE4AB1: RLA R4

RLC R5

RLA R6

JNC DONE5AB1

ADD R7 , R4

ADC R5

DONE5AB1: RLA R4

RLC R5

RLA R6

JNC DONE6AB1

ADD R7 , R4

ADC R5

DONE6AB1: RLA R4

RLC R5

RLA R6

JNC DONE7AB1

ADD R7 , R4

ADC R5

DONE7AB1: RLA R4

RLC R5

RLA R6

JNC DONE8AB1

ADD R7 , R4

ADC R5

DONE8AB1: RLA R4

RLC R5

RLA R6

JNC DONE9AB1

ADD R7 , R4

ADC R5

DONE9AB1: RLA R4

RLC R5

RLA R6

JNC DONE10AB1

ADD R7 , R4

ADC R5

DONE10AB1: RLA R4

RLC R5

RLA R6

JNC DONE11AB1

ADD R7 , R4

ADC R5

DONE11AB1: RLA R4

RLC R5

RLA R6

JNC DONE12AB1

ADD R7 , R4

ADC R5
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DONE12AB1: MOV R4 , R6

RLC R6

RLC R5

RLC R6

RLC R5

RLC R6

RLC R5

AND R15 , R4

ADD R5 , R4

BIT R8 , R4

ADC R4

AND R15 , R4

MOV R4 , 2(R14)

Reference: Utku Gülen, Selçuk Baktır (2014)

4.3.3 Bitwise Rotations in GF (p)

Since a large number of bitwise rotations in GF (213 − 1) are performed in the DFT

modular multiplication algorithm, we optimized this operation as much as possible in our

implementations. We used the 1-bit arithmetic shift and shift with carry instructions

in the MSP430 instruction set, which execute both in a single clock cycle, as often as

possible. We also used the set bit, test bit and swap byte instructions to realize the

rotation operations in the minimal number of clock cycles. For rotations by different

numbers of bits, we pursued various strategies to reduce the number of required clock

cycles.

We carry out 1-bit left-rotation by checking the MSB of the operand and then shifting

it to the right through carry. A masking operation is required to complete this operation,

therefore a 1-bit left-rotation, as shown in Figure 4.1 and given in the following Assembly

code, is accomplished in a total number of 3 clock cycles.
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Assembly Code 5: 1-bit left-rotation

BIT R14 , R10 ;(R14 = 0X1000)

RLC R10

AND R13 , R10 ;(R13 = 0X1FFF)

Reference: Utku Gülen, Selçuk Baktır (2014)

Figure 4.1: 1-bit left-rotation

11 10 9 8 7 6 5 4 3 2 012 1

C

11 10 9 8 7 6 5 4 3 2 012 1

Reference: Utku Gülen, Selçuk Baktır (2014)

We perform 2, 3 and 4-bit left-rotations by repeated 1-bit left-rotations.For rotations by

more than 4 bits, we utilize the swap byte instruction. We use the swap byte instruction

to exchange the low and high bytes of a 13-bit operand, as shown in Figure 4.2, and thus

simplify the rotation.

Figure 4.2: Swap byte instruction

Low Byte High Byte

Low ByteHigh Byte

Reference: Utku Gülen, Selçuk Baktır (2014)
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We optimize the 5, 6, 7, 8, 9 and 10-bit left-rotation operations through the use of the swap

byte instruction and mask/store operations. We handle rotations by different numbers of

bits slightly differently, i.e. by using different orders of codes, although we use a similar

strategy to achieve the best cycle time in each case. Exemplarily, the Assembly code for

the 6-bit left-rotation operation, which takes 9 clock cycles, is given as follows.

Assembly Code 6: 6-bit left-rotation

MOV R15 , R10 ;STORE OPERAND IN R10

AND R7 , R10 ;(R7 = 0X007F)

SWPB R10

RRA R10

RRA R10

RLA R15

SWPB R15

AND R6 , R15 ;(R6 = 0X003F)

BIS R10 , R15

Reference: Utku Gülen, Selçuk Baktır (2014)

We achieve the 12-bit left-rotation operation through a 1-bit right-rotation, as given in

Figure 4.3 and implemented with the following Assembly code. The required 1-bit right-

rotation operation is done by shifting the Least Significant Bit (LSB) to the carry flag and

setting the 13th bit of the operand depending on the value of the carry. We achieve a 11-bit

left-rotation by performing two 12-bit left-rotations.

Assembly Code 7: 12-bit left-rotation

RRA R10

JNC DONE

BIS R14 , R10; (R14 = 0X1000)

DONE:

Reference: Utku Gülen, Selçuk Baktır (2014)
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Figure 4.3: 12-bit left-rotation

012 11 10 9 8 7 6 5 4 2 13

C

012 11 10 9 8 7 6 5 4 2 13

Reference: Utku Gülen, Selçuk Baktır (2014)

In the DFT modular multiplication algorithm, the rotation operations, by differing num-

bers of bits, are performed an equal number of times. Our implementation of the rotation

operation takes 7.4 clock cycles on average, for rotations by different numbers of bits.

In figure 4.4, we give the required number of clock cycles individually for the rotation

operation by different numbers of bits.
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Figure 4.4: Execution times for bitwise left-rotation operations on MSP430
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Reference: Utku Gülen, Selçuk Baktır (2014)
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5. IMPLEMENTATION RESULTS AND COMPARISON

We implemented the ECC scalar point multiplication operation, for both random and fixed

points, on MSP430F149, Texas Instrument’s low-power 1 series 16 bit microcontroller.

We used IAR Embedded Workbench as our development tool and obtained accurate clock

cycle counts using it’s debugger. For the elliptic curve point addition and doubling oper-

ations, we used Edwards curve formulas in projective coordinates [Bernstein and Lange

(2007)]. Edwards curves [Edwards (n.d.)] are a new form of elliptic curves proposed for

ECC. In this work, we used an Edwards curve, defined by the equation

x2 + y2 = c2(1 + dx2y2) (5.1)

with c = 1, d random and dc4 6= 1, over the prime field GF ((213 − 1)13).

5.1 IMPLEMENTATION RESULTS FOR ECC SCALAR POINT MULTIPLICA-
TION WITH A RANDOM POINT

For the ECC scalar point multiplication operation with a random point, we utilized the

NAF method with a window size of 4. In Table 5.1, we present our performance result

and compare it with related work.

Table 5.1: Timings for ECC scalar point multiplication with a random point on MSP430

Platform Field Method Time (s)

MSP430 @8MHz (this work) GF ((213 − 1)13) 4NAF 1.55

MSP430 @8MHz [Wang et al. (2006)] Fp160 4NAF 3.51

MSP430 @8MHz [Araz and Qi (2006)] GF (2163) not specified 32.5

Reference: Utku Gülen, Selçuk Baktır (2014)
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As seen in Table 5.1, our timing figures for 169-bit ECC scalar multiplication with a

random point is only 1.55 s on MSP430 running at 8MHz. Wang et al.’s implementation

of the smaller sized 160-bit point multiplication, on the same microcontroller, has a timing

performance of 3.13 s [Wang et al. (2006)]. Finally, again on the same platform, an

implementation by Araz et al. for the smaller sized 163-bit point multiplication takes

32.5 s [Araz and Qi (2006)].

5.2 IMPLEMENTATION RESULTS FOR ECC SCALAR POINT MULTIPLICA-
TION WITH A FIXED POINT

For the ECC scalar point multiplication operation with a fixed point, we utilized the Comb

method with a window size of 4. In Table 5.2, we present our performance result and

compare it with related work.

Table 5.2: Timings for point multiplication with a fixed point on MSP430

Platform Field Method Time (s)

MSP430 @8MHz (this work) GF ((213 − 1)13) 4Comb 0.77

MSP430 @8MHz [Liu and Ning (2008)] Fp160 sliding window w/4 1.58

MSP430 @8MHz [Wang et al. (2006)] Fp160 sliding window w/4 3.13

Reference: Utku Gülen, Selçuk Baktır (2014)

As seen in Table 5.2, our timing figures for 169-bit ECC scalar multiplication with a

fixed point is only 0.77 s on MSP430 running at 8MHz. Liu et al.’s implementation of

the smaller sized 160-bit point multiplication, on the same microcontroller, has a timing

performance of around 1.58 s [Liu and Ning (2008)] (this is the timing for ECDSA, the

timing for scalar multiplication is not given explicitly in the paper). Finally, again on

the same platform, an implementation by Wang et al. for the smaller sized 160 bit point

multiplication takes 3.13 s [Wang et al. (2006)].
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5.3 IMPLEMENTATION RESULTS FOR ECC WITHOUT HARDWARE MUL-
TIPLIER SUPPORT

Large integer multiplication requires executing a significantly smaller number of word

multiplications in the frequency domain than with the classical schoolbook method in the

time domain. A word multiplication operation is realized in multiple clock cylex on the

MSP430 microcontroller, while other operations such as addition can be achieved in only

a single clock cycle. Hence, on a constrained microcontroller such as MSP430, frequency

domain multiplication can be more efficient than time domain multiplication for large

operand sizes, e.g. 160 bits or longer, as required for ECC. This advantage of frequency

domain multiplication would become even more obvious for low-power implementations

on constrained microcontrollers without hardware multiplier support. For instance, if

one prefers to realize a low-power ECC implementation, as would be required for many

WSN applications, they may pick a simpler MSP430 microcontroller without an onboard

hardware multiplier. Even when the microcontroller at hand has an onboard hardware

multiplier, in order to satisfy power constraints, it may be wise not to use it for certain

applications. In such scenarios, a word multiplication operation would be implemented as

a sequence of additions and take an even larger number of clock cycles. On the MSP430

microcontroller, a 16 bit word multiplication takes 14 clock cycles with the hardware

multiplier and up to 100 clock cycles without it.

In Figure 5.1, we present performance results for multiplication in GF ((213 − 1)13) us-

ing the DFT modular multiplication algorithm and the schoolbook method, both with and

without hardware multiplier support. As seen in figure 5.1, frequency domain multiplica-

tion is only around 1.3% faster than the schoolbook method. However, more importantly,

the performance of frequency domain multiplication slows down by only 18% if no hard-

ware multiplier is available. Whereas, the lack of a hardware multiplier unit slows down

the schoolbook multiplication by more than 59%. Note that frequency domain multipli-

cation performs more than 2.02 times faster than the schoolbook method on an MSP430

microcontroller without hardware multiplier support, and thus would be more preferable

for constrained low power implementations.
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Figure 5.1: Execution times for Multiplication in GF((213 − 1)13), using the
schoolbook and DFT modular multiplication methods, on MSP430
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While others’ implementations of ECC on the MSP430 microcontroller, listed in Ta-

bles 5.1 and 5.2, all utilize the onboard hardware multiplier, we propose our performance

results also without hardware multiplier support. We implemented the ECC scalar point

multiplication operation on MSP430 both with and without hardware multiplier support.

Our timings for both cases are satisfactory with similar or better results compared to pre-

vious implementations on the same microcontroller. It is particularly interesting to see

that, with the utilization of frequency domain arithmetic, the performance of ECC does

not deteriorate significantly if an onboard hardware multiplier is not available on the mi-
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crocontroller (see Figure 5.2). Our performance figures for point multiplication, without

using hardware multiplier support, are 1.89 s and 0.94 s for point multiplication with ran-

dom and fixed points, respectively. Surprisingly, our performance figures even without

hardware multiplier support is comparable to or better than others’ results with hardware

multiplier support. Our implementations without hardware multiplier support are only

21.9% and 22.1% slower than with hardware multiplier support, for random and fixed

point multiplication, respectively. Hence, our proposed method would be well-suited for

constrained low-power implementations of ECC on constrained microcontrollers without

an on-board hardware multiplier.

Figure 5.2: Performance comparisons for point multiplication using NAF4 and
Comb methods for random and fixed points, respectively (with and without
hardware multiplier support)
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6. CONCLUSION

We implemented ECC in the frequency domain on the constrained MSP430 microcon-

troller which is used widely in constrained environments such as WSNs. We presented

our performance figures for MSP430 both with and without hardware multiplier support.

Our timings for both cases are satisfactory with similar or better results compared to pre-

vious implementations on the same platform. It was particularly interesting to see that,

with the utilization of frequency domain arithmetic, the performance of ECC does not

deteriorate significantly on a microcontroller without hardware multiplier support. This

is due to fact that frequency domain multiplication requires only a small number of word

multiplications. Hence, for power efficient implementations of ECC on constrained de-

vices, such as WSN nodes, using frequency domain arithmetic would be desirable. With

this work, we present the first ever practical software implementation of ECC in the fre-

quency domain on a constrained microcontroller with no hardware multiplier support,

with promising results for low-power applications of ECC in WSNs.

Our Main Contributions:

a. We realized in the frequency domain an implementation of the elliptic curve scalar

point multiplication operation with a fixed point, as used in ECDSA [FIPS PUB

186-4: Digital Signature Standard (DSS) (2013)], as well as with a random point,

on the constrained MSP430 microcontroller. This work presents the first ever such

implementation in the frequency domain and provides similar or better performance

compared to previous implementations on the same platform.

b. We presented the first ever low-power implementations of ECC scalar point mul-

tiplication in the frequency domain, for both random and fixed points, on the con-

strained MSP430 microcontroller without hardware multiplier support. In spite of

not utilizing hardware multiplier support, our implementations exhibit similar or

better performance compared to previous implementations on the same platform

with hardware multiplier support.
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Pöppelmann, T. and Güneysu, T.: 2012, Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware, in A. Hevia and G. Neven (eds), LATIN-
CRYPT 2012, Vol. 7533 of Lecture Notes in Computer Science, pp. 139–158.

Rader, C. M.: 1972, Discrete Convolutions via Mersenne Transforms, IEEE Transactions
on Computers C-21(12), 1269–1273.

Rivest, R. L., Shamir, A. and Adleman, L.: 1978, A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems, Communications of the ACM 21(2), 120–126.

37



Walters, J. P., Liang, Z., Shi, W. and Chaudhary, V.: 2007, Wireless sensor network
security: A survey, Security in distributed, grid, mobile, and pervasive computing
1, 367.

Wang, H., Sheng, B. and Li, Q.: 2006, Elliptic curve cryptography-based access control
in sensor networks, International Journal of Security and Networks 1(3), 127–137.
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